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Abstract
This paper deals with Emergency Department (ED) fast-tracks for low-acuity patients, a strategy often adopted to reduce
ED overcrowding. We focus on optimizing resource allocation in minor injuries units, which are the ED units that can treat
low-acuity patients, with the aim of minimizing patient waiting times and ED operating costs. We formulate this problem
as a general multiobjective simulation-based optimization problem where some of the objectives are expensive black-box
functions that can only be evaluated through a time-consuming simulation. To efficiently solve this problem, we propose a
metamodeling approach that uses an artificial neural network to replace a black-box objective function with a suitable model.
This approach allows us to obtain a set of Pareto optimal points for the multiobjective problem we consider, from which
decision-makers can select the most appropriate solutions for different situations. We present the results of computational
experiments conducted on a real case study involving the ED of a large hospital in Italy. The results show the reliability and
effectiveness of our proposed approach, compared to the standard approach based on derivative-free optimization.

Keywords Emergency department fast-track · Discrete event simulation · Simulation-based optimization · Metamodel ·
Neural network · Multiobjective optimization · Machine learning

Highlights

• Our study focuses on fast-tracks for low-acuity patients,
commonly used to reduce ED overcrowding.

• We provide a mathematical formulation of the problem
with the aim of minimizing patient waiting times and ED
operating costs.

• The approach we propose provides ED managers with a
decision support system for determining the best strategy
to adopt.

• This system enables ED managers to define the optimal
resource allocation of minor injuries ED units, where
low-acuity patients can be diverted via a fast-track.

1 Introduction

Emergency Medical Services play a central role among
healthcare services as they are devoted to providing timely

Extended author information available on the last page of the article

medical treatments to people in need of urgent care [6]. The
Emergency Department (ED) is usually considered one of
the most important emergency services, as hospital EDs typ-
ically provide the first care to urgent patients transported
by ambulance or arriving autonomously. Unfortunately, the
worldwide phenomenon of overcrowding may significantly
affect the quality and promptness of the care delivered. This
phenomenon often results in long waiting times that may
endanger the lives of critical patients by increasing the risk
of deteriorating health conditions.Besides visit and treatment
delays (especially for low-acuity patients), overcrowding
generates unpleasant phenomena, such as an excessive num-
ber of patients in the ED, patients treated in the hallways,
an increasing number of patients who leave without being
seen (LWBS), ambulance diversion, reduced patient satis-
faction, and overloaded ED staff. The increase in patient
mortality can also be directly attributed to the ED over-
crowding problem [25, 68]. The causes of this issue can be
traced back to both exogenous factors, such as flu season
and requests for non-urgent visits, and endogenous factors,
such as shortages in ED internal resources (observation units,
beds) and understaffing.
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SeveralKeyPerformance Indicators (KPIs) canbe adopted
to assess ED performance (see the recent paper [77]) and, in
particular, to estimate the overcrowding level. These include
commonly used metrics such as the Length Of Stay (LOS)
in the ED, the waiting time before the first medical visit, also
known asDoor-To-Doctor Time (DTDT), and the percentage
of LWBS patients. Moreover, some more sophisticated mea-
sures have been proposed to quantify ED crowding and staff
workload, aiming to prevent critical conditions by imple-
menting proactive solutions. Examples of such measures
include NEDOCS, READ, EDWIN, and the Work Score [1,
10, 79–81]. However, studies have shown that none of these
methods are consistently effective in providing timely warn-
ings while maintaining low rates of false alarms [41].

Efficient management of both physical and human re-
sources in an ED, along with the adoption of strategies to
improve patient flow, are essential components of any effort
to address the overcrowding problem [3]. In particular, spe-
cificFast-Tracks (FTs) are often implemented to alleviate this
phenomenon. FT systems were introduced in the late 1980s
in North American hospitals and later in the UnitedKingdom
andAustralia. Today, they are adopted in hospitals around the
world, and the advantages of using FTs have been highlighted
in many case studies (see, e.g., the review article [84]). A sig-
nificant reduction in the ED LOS is usually observed, along
with a decrease in the percentage of LWBS patients and the
average number of patients in the ED. As a direct conse-
quence, providing more timely and higher-quality care leads
to improved patient satisfaction and safety. This motivates
the rapid adoption of FT systems, which are now prevalent
in most EDs.

In this paper, we focus on FTs for low-acuity patients,
which constitute a dedicated pathway for individuals with
non-urgent complaints and uncomplicated diseases. These
patients are identified by the triage nurse and directed via
the corresponding FT to a specific unit or area known as
theMinor Injuries Unit (MIU). In the MIU, patients receive
treatment and can often be discharged relatively quickly. This
unit typically requires specific resources not shared with
other ED units and is staffed with dedicated senior med-
ical and nursing personnel who can make swift discharge
decisions. Operating hours for the MIU are usually deter-
mined by EDmanagers and are restricted to specific daytime
hours, rather than offering 24-hour service. The allocation
of resources in the MIU is closely related to the percentage
of patients directed to it via the corresponding FT by the
triage nurse. The operating costs of the MIU depend on the
allocated resources and its operating hours.

Given the substantial variability in operations, the de-
cision-making process for designing the FT system and
the MIU is highly complex. Thus, providing ED managers
with a Decision Support System (DSS) could prove highly
beneficial. Such a systemwould optimizeKPIs by facilitating

strategic patient diversion via the FT system and ensuring
efficient resource allocation for the MIU. As far as we are
aware, the adoption of such a DSS system is rare in practice,
and managers typically rely on their own experience to make
empirical decisions regarding the allocation of resources in
the MIU and its operating hours. For instance, they might
choose to align the MIU’s opening hours with the highest
overall daily influx of ED patients and they might consider
closing the MIU on Sundays due to lower patient volumes or
staffing constraints on weekends. However, the effectiveness
of the MIU is closely related to the percentages of patients
diverted to it, making these percentages fundamental con-
trol variables in the problem. Consequently, the role of the
triage nurse is crucial from a practical standpoint. A conser-
vative approach by the triage nurse, aimed at retaining most
patients within standard ED pathways, would undermine
the goal of an FT system. Therefore, when implementing
an FT for low-acuity patients, an enhanced triage process
becomes desirable. It is important to note that the same rea-
soning extends to specialist clinical pathways, such as those
for ophthalmologists, orthopedists, and various other spe-
cialties. These pathways are commonly utilized in EDs to
directly guide patients with specific pathologies, identified
during triage, to specialized units.

In this paper, we address the optimal resource allocation
problem in the MIU as part of a strategy to manage ED
low-acuity patients within an FT system. We formulate
this problem using a multiobjective optimization formula-
tion to minimize potentially conflicting goals, such as the
expected value of the overall patient waiting time (specif-
ically, the DTDT) and MIU operating costs (measured in
terms of unit working hours and the number of rooms used
in theMIU). These goals can be conflicting because reducing
patientwaiting timemay require increasing theMIUworking
hours and the number of rooms, thus leading to higher oper-
ating costs. Note that our approach is not restricted to these
objectives and allows for the consideration of any other KPIs,
such as LOS and the percentage of LWBS patients.

Addressing the multiobjective optimization problem we
aim to solve poses a significant challenge, as it cannot be
formulated analytically due to the unavailability of the KPIs
of interest in closed form. Indeed, due to the intricate nature
of the processes within an ED, there are typically no tractable
analytical models available to compute the KPIs as outputs
of functions that take input variables representing ED set-
tings. Therefore, it is necessary to resort to a simulation
model that simulates the processes within an ED, obtain-
ing the values of the KPIs as outputs of simulation runs. As
a result, the problem falls into the domain of Simulation-
Based Optimization (SBO), a well-established field that
combines Optimization and Simulation techniques. In SBO
problems, which are widely recognized as challenging (see,
e.g., [4, 30, 31, 34]), function evaluations are associated
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with “measurements” from experimental simulations, and
the functions can be very expensive to evaluate due to the
complexity of the simulation. Moreover, since simulation
responses (outputs) exhibit noise, the adopted optimization
techniques need to be robust enough to converge despite this
noise in function evaluations. Since function derivative infor-
mation is unavailable, derivative-free optimization (DFO) or
black-box optimization methods must be used [7, 16, 19, 26,
33, 54, 57, 58]

To address the significant challenges posed by SBO, we
propose using a metamodeling approach that uses an Artifi-
cial Neural Network (ANN) to compute the KPIs of interest.
In particular, the key idea is to construct a machine learn-
ing model that “mimics” the simulation model representing
patient flow through the ED. This enables the inexpensive
evaluation of the expected value of the overall patient DTDT.
An accurate machine learning model that captures the rela-
tionships between the input and the output variables can be
efficiently used as an alternative to the simulation model. In
particular, we adopt a Multi-Layer Perceptron architecture
for its well known universal approximation properties [20,
55].

The approach we propose has the following advantages:

– the only time-consuming phase concerns the generation
of the dataset used to train the neural network;

– it determines optimal solutions of an SBO problem
through powerful gradient-based methods;

– it generates Pareto optimal solutions of themultiobjective
optimization problemwith a better coverage of the Pareto
front;

– parallel computing techniques can be used to further
improve the overall efficiency.

We performed an extensive experimentation of our approach
on a real case study, namely, the ED of a large hospital in
Rome (Italy), where an FT is currently used to possibly divert
low-acuity patients to the MIU. We formulate the optimal
resource allocation of this MIU as a bi-objective mixed inte-
ger SBO problem and we determine Pareto optimal points by
using the weighting method. We emphasize the importance
of providing ED managers with a set of optimal solutions
rather than a single one. This approach allows them to select
the most suitable solution based on their specific needs. The
solution points obtained through our experimentation clearly
indicate that, considering the criteria we adopted, the cur-
rent ED setting is far from optimal. Improvements can be
made both in terms of the overall patient DTDT and theMIU
operating costs.

To assess the reliability and efficiency of our proposed
ANN-based metamodeling approach, we conducted a com-
parison with the results obtained using the standard proce-
dure in SBO, which involves the use of a derivative-free

optimization method directly combined with a simulation
model. Despite adopting a highly efficient derivative-free
optimization algorithm recently proposed in the literature,
our comparison clearly demonstrates the superiority of the
ANN-based metamodeling approach, particularly in terms
of the Pareto front coverage. Specifically, our approach
demonstrates a tendency to cover a wider range of trade-off
solutions, which is a crucial advantage in our context. This
superiority can be attributed to the significant computational
burden required to directly evaluate a black-box objective
function through simulation model runs, which exhausts the
computational budget before obtaining a sufficient number
of Pareto optimal solutions.

The organization of the paper is as follows: Section 2
provides a literature review on the use of FT systems
and the simulation-based metamodeling approach in ED
resource planning. Section 3 presents the formal state-
ment of the MIU optimal resource allocation problem,
while Section 4 describes the methodologies considered
for addressing it. Our proposed ANN-based metamodeling
approach is detailed in Section 5. Section 6 presents a real
case study, and the associated MIU management problem is
outlined in Section 7. Experimental results on the case study
are provided in Section 8, alongwith some findings from sen-
sitivity analysis experiments. Finally, concluding remarks are
presented in Section 9.

2 Literature review

The literature on ED overcrowding is extensive. Readers
are directed to the review paper [40] (and the references
therein), which highlights the main causes and effects of
overcrowding, along with potential solutions. Other papers
addressing the overcrowding phenomenon include [21, 44,
63–65, 82]. FT systems and enhanced triagemodels are com-
monly employed to address overcrowding, as noted in [3].
The review article [84] discusses strategies such as team
triage, streaming, and fast-tracking, which have been proven
to reduceEDovercrowding.Additionally, the article explores
some ideal models for the patient journey within an ED.

Using an FT for patients with low-acuity illnesses and
injuries is a strategy analyzed in many studies aiming at
assessing its impact on reducing patient waiting times and,
accordingly, the ED overcrowding [18, 45, 46, 62, 64, 69]. In
particular, in [64], the authors report that the expected bene-
fits of using FT systems are observed in every ED, regardless
of the specific case studies considered. In [69], the authors
show that reducing the number of low-acuity patients does
not significantly affect the waiting times of the high-acuity
patients when the resources in charge of the visit and treat-
ment of low-acuity patients are dedicated. Contrarily, when
such resources are shared with critical patients, a worsening
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in the total average waiting times of the most urgent patients
may be experienced [51]. The authors in [51] show that
most benefits of the FT system are observed in EDs with
a considerable number of urgent patients, as the improve-
ment in terms of waiting time is higher when the low-acuity
patients can bypass a larger number of patients. In the case
study discussed in [78], the effects of FT systems on the ED
performance of Australian hospital EDs are thoroughly ana-
lyzed. The study concludes that FTs enable effective care
for patients with minor illnesses without negatively affect-
ing treatments for other non-FT patients. Additionally, [17]
reports the results of another case-controlled study, clearly
highlighting several benefits of adopting an FT.

Among the methodologies adopted, Discrete Event Sim-
ulation (DES) models (see, e.g., [9, 27, 35, 45, 50, 52, 83,
89]) and Agent-Based Simulation (ABS) (see, e.g., [5, 46,
56]) are frequently used to study patient flow through an ED.
For a comprehensive review of simulation modeling applied
to EDs, we refer the reader to the recent paper [67] and the
references therein. Moreover, some papers dealing with ED
management haveproposed the use ofSBOapproaches, com-
bining a simulation model with an optimization algorithm
[2, 13, 23, 24, 28, 36, 37, 53, 75, 76, 88, 90]. However, most
of the published papers on FTs only use simulation model-
ing to assess their effectiveness. Sometimes, simulation is
combined with other techniques (see, e.g., [39], where simu-
lation is combined with the system dynamics approach), but
to the best of our knowledge, papers using optimization are
still very few. Indeed, many papers examine the impact of
the adoption of FT strategies through scenario-based anal-
yses, and only a few focus on identifying the settings that
provide effective diversion policies by optimizing KPIs. A
recent paper adopting the latter approach is [71], where a
multi-criteria method is proposed to determine the best con-
figuration for an FT system in terms of five performance
indicators.

The use of metamodel-based SBO is very limited in
healthcare. A recent systematic literature review [72] reports
only six papers in the healthcare field, with four of them (i.e.,
[15, 86, 87, 89]) applying a metamodel-based SBO approach
to ED resource planning, albeit none focusing on FTs. In
particular, [89] proposes the combined use of SBO with a
metamodel to determine optimal ED resource allocation,
considering both budget and capacity constraints, with the
goal ofminimizing the total average patientwaiting time. The
computationally expensive simulationmodel is replaced by a
suitable metamodel, chosen among several alternatives. The
authors showed that for their case study, anANN-basedmeta-
model exhibited superior performance compared to two other
metamodels considered. In the ED management context,
another paper replacing a DES model with an ANN-based
metamodel is [85], where a resource allocation problem is

considered by analyzing the impact of human errors caused
by the increase in ED workload.

3 Statement of theMIU optimal resource
allocation problem

In order to define the problem we are addressing, let us first
briefly review some structural and operational elements that
characterize an ED. The triage process is the initial activity a
patient undergoes upon arriving at the ED. During this phase,
a triage nurse conducts an initial assessment and assigns a
severity tag to each patient. Such assignment corresponds
to prioritizing patients based on their acuity level. Various
scales can be adopted; for instance, the five-level Emergency
Severity Index (ESI) commonly used in the USA stratifies
patients into five groups ranging from 1 (most urgent) to 5
(least urgent) [32]. For simplicity, tags canoftenbe associated
with colors, such as red, yellow, green, and white (listed in
order of decreasing severity), which are used in four-level
scales. National Health Systems guidelines usually provide
a threshold value that should not be exceeded by the average
patient waiting time (i.e., DTDT) and stay time (i.e., LOS),
for each triage tag. We denote the set of severity tags by T .

From a structural point of view, an ED typically consists
of several units (e.g., surgical unit, resuscitation area, etc),
which are ED areas or rooms to which patients are directed
post-triage based on their pathology. We will indicate the
set of ED units by U . More precisely, for each severity tag
t ∈ T , we denote byU (t) the set of ED units where a patient
taggedwith severity tag t canbedirected.EDunits are usually
equipped differently, and patients can only be assigned to one
of them based on their triage tag.

In our paper, we focus on FT systemswithin EDs that offer
prompt and effective care to low-acuity patients. Using an FT
involves diverting such patients towards a dedicated ED
unit (i.e., the MIU) to expedite their visit, treatment, and dis-
charge, thus preventing excessive crowding in the standard
clinical pathways of the ED. This approach is expected to
result in an overall decrease in the number of patients in the
ED, DTDT, and LOS. Two key issues underlie the success
of such an FT strategy:

• suitable allocation of physical and human resources for
the MIU, along with a proper operating schedule;

• enhanced triage, facilitating the prompt identification of
patients with low-acuity illnesses and injuries for direct
transfer to the MIU via the FT.

The first issue concerns the allocation of resources
within the MIU. Typically, the MIU comprises a set of
rooms equipped with armchairs, stretchers, and beds, where
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dedicated personnel (physicians and nurses) attend to and
treat patients. Additionally, since the MIU usually oper-
ates during the day, its opening and closing times must be
predetermined for each day within a specified time period
(typically on a weekly basis). The second issue pertains to
the proportion of patients directed to the FT by the triage
nurse. While the nurse’s decision is primarily based on the
clinical assessment of patients, an overly cautious approach
by the triage nurse may result in a low percentage of patients
being diverted to the MIU, rendering the FT system ineffec-
tive.

Now, we can formally introduce the problem. Let D =
{1, . . . , n} represent the set of days within the chosen time
period (for example, D = {1, . . . , 7} if a weekly schedule
is adopted). The MIU optimal resource allocation problem
consists of deciding the number of rooms to be open and
their operating hours for each day within the period D. It is
important to note that, due to fluctuations in patient flow, the
required number of MIU rooms to be open, as well as the
opening and closing times, may vary from day to day.

Optimizing the opening and closing times of the MIU
arises from the need to efficiently allocate limited resources
while balancing resource costs and patientwaiting times. The
goal is to reduce patient waiting times whileminimizing total
personnel costs at theMIU. Therefore, in the following prob-
lem formulation, we consider the MIU opening and closing
times as decision variables. Note that this choice is reason-
able only if the MIU personnel can flexibly adjust their shifts
to accommodate the chosen opening and closing times. In
particular, in the case study discussed in Section 6, the deci-
sion to optimize theMIUopening and closing times stemmed
directly from a request by the ED management.

3.1 The decision variables

To formulate the problem, we introduce the following deci-
sion variables:

– let xd ∈ Z
+ be the opening time of the MIU on day

d ∈ D;
– let yd ∈ Z

+ be the closing time of theMIUon day d ∈ D;
– let rd ∈ Z

+ be the number of rooms used in the MIU on
day d ∈ D;

– let z ∈ R be the percentage of patients assigned to the
MIU during its working hours.

Therefore, we have three n-dimensional integer val-
ued vector variables, namely x = (x1, . . . , xn)�, y =
(y1, . . . , yn)�, and r = (r1, . . . , rn)�, and the percentage
real value z. Hence, (x, y, r, z) ∈ Z

n × Z
n × Z

n × R rep-
resents the MIU setting for the time period D. Note that
variables xd and yd are assumed to be integer since opening

and closing times usually refer to exact hours (e.g., 8.00 a.m.
– 4.00 p.m.).

The rationale behind the choice of considering the per-
centage of patients that are assigned to the MIU as a
decision variable is as follows: although the triage nurse
makes decisions based on the seriousness of the patient’s
health, including this percentage as a decision variable aims
to demonstrate the potentially significant improvement that
would be obtained if the number of patients assigned to the
MIU were increased. The hope is that showing the potential
benefits obtained from experimental results can encourage
the nurse to send a larger number of patients to the MIU,
thereby reducing the workload of the other ED units. How-
ever, it is important to note that some scenarios may be
idealistic, as the nurse’s choice is strictly related to the sever-
ity of the patient’s condition.

Note that a working day can be divided into several time
slots, and different percentages of patients diverted to the
MIU could be chosen for each time slot. This simply requires
introducing variables (such as zi ) for each time slot.

3.2 The objective functions

We can now define the objective functions of the problem
under consideration. First, we introduce the concept of sam-
ple response functions, which represent the relationships
between inputs and outputs of a simulationmodel. Such func-
tions are used to evaluate theKPIs of interest that characterize
the objective functions.

Given a time period D, for each tag t ∈ T and
unit u ∈ U (t), we denote a sample response function by
Ftu(x, y, r, z; ξ(ω)), where (x, y, r, z) represents the MIU
setting and ξ(ω) is a random vector defined on a probabil-
ity space representing the randomness. Specifically, random
realizations ξi of ξ(ω) correspond to different patient flows
through the ED. When a simulation model is used to
represent ED patient flow, a single simulation run eval-
uates Ftu(x, y, r, z; ξi ) for a random realization ξi . In
this framework, sample response functions are commonly
adopted to compute waiting times or stay times in the ED,
such as the DTDT or LOS, or to compute certain counters,
such as the number of patients in the ED or the number of
patients waiting in a queue. Typically, objective functions
are defined by the expected value of a sample response func-
tion, i.e., E

[
Ftu(x, y, r, z; ξ(ω))

]
, where E[·] denotes the

expected value taken with respect to the probability dis-
tribution of ξ(ω). Note that a sample response function is
not available in closed form because the analytical relation-
ship between inputs and outputs of the simulation model is
unknown. As a result, the corresponding objective functions
do not have an explicit form either.

Wecannowdefine the objective functions of theMIUopti-
mal resource allocation problem. The first objective function
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computes the expected value of the overall patient waiting
time over the time period D, namely,

f1(x, y, r, z) =∑

t∈T
αt

∑

u∈U (t)

βu E
[
DT DT tu(x, y, r, z; ξ(ω))

]
, (1)

where αt > 0 and βu > 0 are scalars, and DT DT tu(x, y, r,
z; ξ(ω)) is the sample response function representing the
DTDT of a t-tagged patient assigned to the ED unit u, given
the MIU setting during the period D as (x, y, r, z). The sec-
ond objective function counts the MIU working hours over
the time period D, namely,

f2(x, y) =
∑

d∈D
γd(yd − xd), (2)

where γd > 0 are scalars. Finally, the third objective function
calculates the number ofMIU rooms open daily over the time
period D, namely,

f3(r) =
∑

d∈D
δdrd , (3)

where δd > 0 are scalars. The scalars in Eqs. 1, 2, and 3 are
introduced to accommodate potential variations in weighting
among the individual terms of the objective functions.

3.3 The constraints

Simple box constraints must be imposed on the variables, as
follows

lxd ≤ xd ≤ uxd
lyd ≤ yd ≤ uyd
lrd ≤ rd ≤ urd
lz ≤ z ≤ uz,

(4)

for all d ∈ D, where lxd , lyd , lrd and uxd , uyd , urd
are non-negative integer prefixed lower and upper bounds,
respectively, and lz , uz are real values in [0, 100]. The prac-
tical selection of the upper bound uz is a critical choice.
Accurate tuning of this value is necessary to prevent unre-
alistic scenarios. Note that the value of uz depends on the
conservative approach of the triage nurse in directing patients
to the MIU via the FT and also on the patient mix in the
ED (available from historical data), since not all patients are
eligible for transfer to theMIU.Additionally, ifmultiple vari-
ables zi are introduced to take into account different time
slots, it may be appropriate to define a different bound for
each of them.

Moreover, we must consider the constraints

yd − xd ≥ hd , (5)

for all d ∈ D, where hd ≥ 0 is an integer value that serves
as the lower bound for the daily minimum number of hours
that the MIU must be open. It is necessary to impose such a
requirement to ensure that the MIU operates for a sufficient
duration each day, particularly if a weekly threshold for the
total number of operating hours is desired.

An additional constraint imposes a lower bound on the
overall number of MIU working hours in the time period D,
namely,

∑

d∈D
(yd − xd) ≥ g, (6)

where g is a prefixed non-negative integer. This constraint
ensures that the MIU remains open for an adequate duration
throughout the entire period D, providing consistent service.

3.4 Themultiobjective simulation-based
optimization problem

The MIU optimal resource allocation problem can be for-
mally stated as

min ( f1(x, y, r, z), f2(x, y), f3(r))�
s.t. (x, y, r, z) ∈ F,

(7)

where F represents the feasible set, i.e., the set of points
satisfying all the constraints defined in Section 3.3. Problem
Eq. 7 constitutes a multiobjective mixed integer constrained
optimization problem.

It is important to note that the number of MIU work-
ing hours directly influences the MIU operating costs: the
longer the MIU rooms remain open, the higher the operat-
ing expenses. Therefore, since our aim is to minimize both
the expected value of the overall patient waiting time and
theMIUoperating costs,we formulate the optimization prob-
lem as a simultaneous minimization of the functions f1, f2,
and f3. This results in a problem with conflicting objectives,
where the goal is to find a trade-off between reducing oper-
ating expenses and ensuring timely treatments for patients
based on their urgency level.

A significant challenge arises when addressing problem
Eq. 7. As previously noted, the intricate and stochastic nature
of processes within the ED precludes the use of analyti-
cal models, necessitating the adoption of simulation models.
Among these, DES models stand out for their flexibility and
robustness inmodeling patient flow through an ED. By lever-
aging this approach, we can construct and validate an ED
DES model that allows us to evaluate the sample response
function associated with the overall patient waiting time
through simulation runs. Therefore, the problem we are con-
sidering is aMutiobjective (mixed integer) Simulation-Based
Optimization (MOSBO) problem.
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4 Methodology

In this section,we describe themethodologieswe use to solve
the MOSBO problem stated in Eq. 7.

4.1 Sample average approximation

The most commonly used technique for addressing SBO
problems is the sample average approximation, also called
sample path method (see, e.g., [47, 49]). This approach
involves approximating the expected values of a sam-
ple response function with deterministic sample averages.
Specifically, the expected value of the sample response func-
tion Ftu(·) is approximated by a deterministic realization of
the underlying stochastic function:

E
[
Ftu(x, y, r, z; ξ(ω))

] ≈
1

N

N∑

i=1

Ftu(x, y, r, z; ξi ) = F̂ tu
N (x, y, r, z),

(8)

where {ξ1, . . . ξN } is an independent and identically dis-
tributed sample.

Given a sample {ξ1, . . . ξN }, the sample average response
function F̂ tu

N (·) is deterministic, allowing for the application
of deterministic (Derivative-Free/Black-Box) optimization
algorithms for its minimization. In the DESmodeling frame-
work, each ξi corresponds to the output of a single replication
in a simulation run, and the average in Eq. 8 is computed
over N independent replications. Therefore, each evalua-
tion of the function F̂ tu

N (·) may require a significant amount
of computational time. Hence, optimization methods that
require a very large number of function evaluations to gen-
erate a good solution (such as standard heuristics and/or
Derivative-Free methods) may not be practical in this con-
text.

4.2 Response surfacemethodology

The necessity of running a DES model to evaluate objective
functions implies that the direct application of an opti-
mization algorithm typically results in a time-consuming
procedure. The required computational effort depends on
the complexity of the simulation model and the length and
number of replications for each run. Therefore, the standard
procedure of solving SBO problems by directly combin-
ing a simulation model with an optimization algorithm may
demand extended CPU times.

To overcome this drawback, Response Surface Methodol-
ogy (RSM) is often used (see, e.g., [34, Chapter 4] and [4,
30]). RSM constructs an approximate functional relation-
ship between the input variables and the output objective
function. In particular, RSM involves building a metamodel

(also known as a surrogate model) that represents an approx-
imation of the objective function obtained by simulating the
system at a finite number of sampled points across the entire
parameter space. The hope is that themetamodel will provide
a good approximation of the function, which is not available
in closed form, once the metamodel parameters are accu-
rately estimated. Then, the approximate underlying objective
function can be evaluated easily and inexpensively, enabling
the adoption of powerful derivative-based optimization pro-
cedures. For further information on the use of metamodels
in SBO, we refer the reader to [8].

Different RSM approaches vary based on the nature of the
functional formused for approximation. Themost commonly
used functional forms are based on polynomial response sur-
face approximations. Other metamodeling approaches use
splines, radial basis functions, Kriging models, or neural
networks. In our paper, we adopt a neural network-based
metamodeling approach for solving the MOSBO problem
stated in Eq. 7, as detailed in the next sections. This approach
is also referred to as the neuro-response surface method (see
[34, Chapter 4]).

5 The proposed Artificial Neural
Network-basedmetamodeling approach

We introduce the use of an Artificial Neural Network (ANN)
to efficiently solve the MOSBO problem stated in Eq. 7,
specifically, to determine its Pareto optimal points. The key
idea is to construct a machine learning model that “mim-
ics” the DES model, enabling the evaluation of the objective
function Eq. 1 in a significantly less computationally inten-
sive manner than running a simulation, albeit with slightly
reduced precision.

ANNs are computing systems inspired by biological neu-
ral networks found in animal brains (for a detailed description
of ANNs, we refer to [29, Chapter 11] and [38, Chapter 2]).
These systems can effectively capture complex interactions
among inputs using hidden neurons. The neurons are units of
computation that receive input from other neurons, perform
computations on these inputs (such as performing aweighted
sum before applying a nonlinear function commonly known
as an activation function), and transmit their output to other
neurons. If the ANN is structured as a Multi-Layer Per-
ceptron (MLP), where neurons are arranged in layers with
connections between all neurons of adjacent layers, it is
well known that the ANN possesses universal approxima-
tion properties [20, 55]. These properties hold for certain
choices of activation functions and a sufficient number of
hidden neurons [42, 43].

Ourmotivation for employing anANN-basedmetamodel-
ing approach lies in the fact that sufficiently precise machine
learningmodels, capable of accurately capturing the essential
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relationships between input and output variables, can pro-
vide efficient alternatives to computationally expensive DES
models. Since the ANN metamodel provides an analytic
expression of the objective function, our approach enables
the solution of SBO problems using gradient-basedmethods.
The complexity of the ANN metamodel depends on factors
such as the number of hidden layers, the number of neurons,
and the types of activation functions in the underlying MLP.
Regardless of the metamodel’s complexity, the gradient of
the MLP can always be computed.

We now describe theANN-basedmetamodeling approach
proposed to address the MOSBO problem in Eq. 7. This
approach involves the following sequential steps:

1. generation of the dataset used to train the MLP;
2. identificationof suitable hyperparameters for the training

process;
3. training of the MLP;
4. generation of Pareto optimal points for the MOSBO

problem when using the MLP to evaluate the objective
function f1 in Eq. 1.

In the following subsections, we provide a detailed descrip-
tion of these steps.

5.1 Generation of the dataset

To train the ANN metamodel under the supervised learning
paradigm, a dataset with the following structure is needed:
{v j , w j }pj=1,where v j represents the input vector andw j rep-
resents a scalar target variable. For the specific applicationwe
are considering, for a given period D = {1, . . . , n}, each v j

corresponds to anEDsetting (x1, . . . , xn, y1, . . . , yn, r1, . . . ,
rn, z)� (see Section 3.1).

After generating p random vectors v1, . . . , vp satisfy-
ing constraints Eqs. 4, 5, and 6, the associated target values
w1, . . . , wp required to train the MLP underlying the ANN
metamodel are obtained by running the DES model. Specif-
ically, we compute the overall patient DTDT for each ED
setting v j from the simulation output and store its value in
the corresponding scalar w j .

It is worth highlighting that this method of generating the
dataset avoids many common issues encountered in datasets
typically used to train machine learning models, such as
missing values, outliers, and variations in the probability dis-
tribution of each data sample.Using runs of theDESmodel to
generate data ensures high-quality data, allowing for control
over the dataset size (adjustable based on the desired ANN
metamodel accuracy) and facilitating the training of a reli-
able ANNmetamodel. Given the high degree of nonlinearity
and complex relationships between the vectors v j and the tar-
get variables w j , an MLP with a sufficiently large number of

hidden layers and neurons is typically identified as a suitable
ANN architecture for learning this relationship [38]. It is
important to note that the procedure described for generating
the dataset is the only time-consuming phase of the approach
we propose.

5.2 Identification of the hyperparameters

Before training the MLP, it is necessary to decide the val-
ues of the hyperparameters involved in the training process.
These hyperparameters include parameters that define the
network’s architecture (such as the number of layers, number
of neurons in each layer, and dropout rate) as well as param-
eters influencing the training process itself (such as those
related to the optimization algorithm, number of epochs,
and batch size). Due to the critical role of hyperparameters
in determining the MLP performance, and for an overview
of various selection strategies, we refer interested readers
to [14].

To select an optimal configuration of hyperparameters,
we implemented a random search with a K -fold Cross-
Validation, a widely-used resampling procedure for deter-
mining hyperparameter values without biasing the assess-
ment of the generalization capabilities of an ANN [11].
The K -fold Cross-Validation procedure works as follows:
first, the training set is divided into K groups or folds. Then,
K iterations are performed, where at each iteration k (with
k ∈ {1, . . . , K }), K − 1 folds are used as the training set,
while the remaining fold serves as the validation set. During
each iteration, the MLP is trained using a specific config-
uration of hyperparameters, and an evaluation metric (such
as the mean absolute error) is calculated to assess the MLP
performance on the validation set. After completing all K
iterations, the average value of the evaluation metric across
the K different validation sets is computed and recorded.
Finally, the configuration of hyperparameters yielding the
minimum average value of the chosen metric is selected as
the optimal configuration.

5.3 Training of the MLP

Training a machine learning model involves adjusting its
parameters to minimize the approximation error by reducing
the discrepancy between themodel’s predicted values and the
actual values. This training procedure is typically achieved
through the solution of an optimization problem, often
employing the Stochastic Gradient Descent algorithm [12].
Once the training is complete, the MLP serves as a meta-
model to compute approximate values of the function f1
in Eq. 1, which is used in the MOSBO problem stated in
Eq. 7.
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5.4 Generation of the Pareto optimal points

The solution of the multiobjective problem Eq. 7 is provided
in terms of a Pareto front, which is a set of solutions that rep-
resent trade-offs between conflicting objectives. We obtain
Pareto optimal points by using the well known weighting
method (see, e.g., [61]). This method involves solving the
following single-objective problem

min
3∑

i=1

ηi fi (x, y, r, z)

s.t. (x, y, r, z) ∈ F ,

(9)

for different values of the weights ηi , with ηi ≥ 0, i =
1, . . . , 3, and η1 + η2 + η3 = 1. A solution to problem Eq. 9
serves as a (weak) Pareto optimal point (see [61]). While it
may not determine all Pareto optimal solutions, in general,
this method enables the construction of a good approximate
Pareto front for a multiobjective optimization problem, and
this explains its widespread usage.

When the function f1 in Eq. 1 is replaced by its approxi-
mation obtained via the ANNmetamodel, several significant
advantages emerge:

– Evaluation of the objective function f1 becomes extremely
fast.

– Since the derivatives of f1 can be evaluated by apply-
ing the backpropagation algorithm [66], all problem
functions now have derivatives that can be numerically
computed, allowing for the use of gradient-based opti-
mization methods and leading to substantial efficiency
improvements.

– Parallel or distributed computing techniques can be used
to expedite the dataset generation phase by generat-
ing the dataset through concurrent processes, separate
from the optimization process. Additionally, concurrent
processes canbe used to performsimultaneousminimiza-
tions, each corresponding to a combination of weights in
problem Eq. 9.

– Additional objective functions and constraints that do not
involve KPIs computed via the simulation model can be
easily incorporated into the initial problem formulation,
without the need to re-train the ANN metamodel.

Specifically, in scenarios where new constraints are intro-
duced or terms in the objective functions are modified,
the ANN metamodel exhibits its inherent adaptability by
obviating the need to rerun the computationally demand-
ing DES model. This adaptability arises from the surrogate
nature of the pre-trained ANN metamodel, which allows for
immediate rerunning of the optimization phase without addi-
tional training. Compared to the conventional approach of

using the DES model, this strategy significantly accelerates
the optimization process. The evaluation of the objective
function through the trained ANN metamodel is accom-
plished in a fraction of the time typically required for a single
DES model simulation. Moreover, since a single-objective
minimization can be performed quickly, a great number of
such minimizations can be carried out, leading to the gener-
ation of several points in the approximate Pareto front.

Note that an additional (optional) final step can be applied
to the results of the optimization procedure. The value
of the objective function f1 corresponding to each Pareto
optimal point, obtained using the ANN metamodel, is actu-
ally an approximation of the expected value of the overall
patient DTDT. To enhance the accuracy of this value, each
obtained point can be given as input to the DES model, and
the actual DTDT can be computed via a simulation run.
Of course, this requires additional computational time. In
the case study we describe below, we adopt this strategy to
improve the accuracy of the results.

6 The case study

To test the proposedANN-basedmetamodeling approach,we
examine a real case study: the ED of a large Italian hospital,
specifically, the ED of Policlinico Umberto I in Rome, Italy,
which is significantly affected by the overcrowding problem.
This ED is among the largest in Europe, with approximately
140,000 patient arrivals per year, and is composed of sev-
eral areas addressing medical specialties that range from
ophthalmology and hematology to obstetrics, pediatrics, and
dentistry. In this paper, we focus on the central area, which
provides treatments to patients whose conditions fall within
the realms of internal medicine and general surgery. The
empirical data used in our computational experiments was
collected in 2018, when more than 50,000 patients used the
emergency services offered in the central area of this ED.
Note that the triage system in place in 2018 employed a four-
level color-coded scale, assigning tags of red, yellow, green,
and white in descending order of severity.1

Some important aspects of this case study have been
already deeply analyzed in the papers [22] and [23]. In par-
ticular, [22] examines the patient arrivals process in depth to
determine the optimal piecewise constant approximation for
the nonhomogeneous Poisson process arrival rate. Paper [23]
addresses the problem of missing data, which affects many
processes within the ED, by proposing a model calibration
procedure to obtain a DESmodel that produces accurate out-
put. We refer to these two papers for a detailed description
of the ED operation. In the following sections, for the sake
of completeness, we briefly describe aspects that are more

1 More recently, a five-level based scale has been adopted.
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relevant to the MIU optimal resource allocation problem we
are addressing.

6.1 The ED units

Two main units are used to visit and treat patients from
all triage categories: a Medical Unit (MU), which special-
izes in diseases and disorders related to internal medicine,
and a Surgical Unit (SU), which provides treatments to
patients needing a surgical operation. Within these units,
fully-equipped areas, denoted as MURed and SURed , are
dedicated to red-tagged patients. Moreover, a Resuscitation
Area (RA) is available for cases requiring increased attention
due to life-threatening diseases. In contrast, yellow-tagged
and green-tagged patients do not have dedicated rooms and
share resources within the MU and SU. Finally, a Minor
Injuries Unit (MIU) is devoted to the visit and treatment of
less urgent patients, including the least critical green-tagged
patients and all white-tagged patients directed to the MIU by
the triage nurse via the corresponding FT. Typically, theMIU
operates Monday through Saturday from 7:00 a.m. to 8:00
p.m., with green tags assigned in place of white ones when
the MIU is closed. All other units are open 24 hours a day, 7
days a week.

Regarding the number of rooms used for the medical
visit and treatment of red-tagged patients, the RA always
has 2 rooms available, while the MU and SU have 1 and 2
rooms, respectively. For the medical visit and treatment
of yellow-tagged, green-tagged, and white-tagged patients,
the MU and SU utilize 3 and 2 rooms during the daytime
(8:00 a.m. to 8:00 p.m.) and 2 and 1 rooms during the
nighttime (8:00 p.m. to 8:00 a.m.), respectively. Typically,
2 rooms are used in the MIU. In our study, although we
report data related to the RA, we do not consider this unit
in the experimentation since it is reserved exclusively for
severe red-tagged patients with the highest priority, thereby
avoiding any waiting time.

6.2 The patient flow

Several diagnostic and therapeutic pathways can be identified
within the ED based on the severity tag assigned to patients.

In Fig. 1 we present a simplified scheme of the patient flow,
highlighting the major blocks.

Specifically, in the examined ED, red-tagged patients can
be directed to the MURed or SURed based on the required
medical specialty, or to the RA in cases of critical health con-
ditions. Yellow-tagged patients are only visited and treated
in the MU and SU, where resources are shared with green-
taggedpatients not sent to theMIU.This latter decision,made
by the triage nurse, depends on both whether theMIU is open
or closed and the severity of the patient’s condition. In the
MIU, green-tagged patients share available resources with
white-tagged ones. Following medical visits and treatment,
the subsequent stage includes exams (CT scans, X-rays, etc.)
and reassessments. Some patients may also require obser-
vation periods between exams or before discharge. Again, a
comprehensive description of all clinical pathways adopted
in this ED can be found in [23].

6.3 Data collection

Data collection is crucial for developing an accurate ED
model. For the purpose of this study,we consider the data col-
lected in January, since this month is considered particularly
critical in terms of overcrowding level by the ED managers
(of course, differentmonths or time periods can be easily con-
sidered). In January 2018, 4192 patients arrived at the central
area of the ED of Policlinico Umberto I. Table 1 reports the
distribution of patients among severity tags and ED units
assigned, excluding LWBS and deceased patients, as well as
those directed to the orthopedic unit, which is not considered
in this study since it concerns a different dedicated pathway.

The table clearly shows that the majority of patients
are yellow-tagged and that most of them are directed to
the MU, while green-tagged patients are mostly sent to
the SU.Most red-tagged patients require visits and treatment
in the MU.

While data concerning tags assigned and resources sched-
uled is typically sufficiently complete (information such as
assigned tags, physician and nurse shifts, and rooms available
is usually recorded), there is often a lack of detailed data on
the timestamps for each patient activity within an ED. This is
a well known problem in the literature on EDs (see [23] and

Fig. 1 Scheme of ED patient flow and related timestamps. A green tick indicates that a timestamp is available from data
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Table 1 Distribution of patients
among ED units and color tags

White Green Yellow Red

MU − 248 (21.83 %) 1316 (65.51 %) 191 (75.79 %) 1755

SU − 628 (55.28 %) 693 (34.49 %) 45 (17.86 %) 1366

RA − − − 16 (6.35 %) 16

MIU 47 (100 %) 260 (22.89%) − − 307

47 1136 2009 252

the references reported therein). Regarding our case study,
Fig. 1 reports the timestamps of the main processes in the
patient flow, highlighting those available and unavailable. For
a detailed description of all the timestamps and the reasons
for the unavailability of some of them, we again refer to [23].
We just recall here that since timestamps t2, t4, t5, and t6 are
unavailable, we cannot directly compute the service times of
triage, medical visits, and examinations and reassessments
from the data, and we use the procedure described in [23] to
estimate these service times.

6.4 The discrete event simulationmodel

A DES model of the patient flow within the considered ED
was implemented using the R package Simmer [74], which
allows building process-oriented DES models based on tra-
jectories. For a complete description of the DES model of
the ED under study, once again, we refer to [23]. Here we
simply recall that themodel entities are patientswho enter the
model according to a proper arrival process, namely, a piece-
wise constant approximation of a nonhomogeneous Poisson
process (see [22] for a detailed description of this process).
After triage, entities follow different trajectories according
to the received severity tag (which is stored as an attribute)
and the assigned ED unit. The combination of the color tag
and the ED unit determines the different patient flows. The
resources used in the model represent the rooms for med-
ical visits and treatments. While the rooms of the MURed ,
SURed and RA have fixed capacities, the rooms of the MU,
SU, andMIU are based on a schedule that reflects the change
in capacity between day and night shifts.

For the model validation and the design of experiments,
we refer to [23] and adopt the same choices here, i.e., a sim-
ulation length of 38 days, a warm-up period of 1 week, and
a fixed number of replications set to 30.

7 Statement of theMIU optimal resource
allocation problem for the case study

The simulation model of the ED of Policlinico Umberto I
is used to achieve the final goal of reducing the level of
overcrowding. Through interviews with the ED managers,

a significant interest emerged in exploring the possibility of
accommodating a larger number of green-tagged patients in
the MIU. This interest arose because triage nurses, responsi-
ble for assigning color tags, often adopt a cautious approach,
directing fewer patients to the MIU than the ones it can
accommodate. They do so out of concern for potential lia-
bility if a patient’s condition worsens due to a misjudged ED
unit assignment at triage. However, reducing overcrowding
by balancing the workload across ED units requires careful
monitoring of the overall number of patients to prevent the
benefits achieved in one unit from leading to long waiting
times in other units of the ED.

Naturally, diverting more patients to the MIU is just one
potential strategy to decrease overcrowding. Another tool
considered by the ED managers is adjusting the working
hours of the MIU, which currently operates from 8:00 a.m.
to 8:00 p.m., Monday through Saturday. Given the high flex-
ibility of the ED staff, managers consider any combination
of MIU opening and closing times throughout the week fea-
sible, provided it leads to an improvement over the current
situation and falls within the 7:00 a.m. to 8:00 p.m. time-
frame. Of course, the largest reduction in waiting times is
expected for low-acuity patients, i.e., green-tagged or white-
tagged patients, since these are the categories assigned to
the MIU. As observed in [69], more critical patients may
experience a lower reduction in waiting times due to their
priority, which guarantees shorter waiting times. In partic-
ular, some benefits are expected for yellow-tagged patients,
who will share resources with a lower number of low-acuity
patients. In contrast, red-tagged patients rely on dedicated
resources, and accordingly, no improvement is expected for
them.

Let us now formally state the MIU optimal resource
allocation problem. By using the notation introduced in
Section 3, we define T = {R,Y ,G,W } as the set of
severity (color) tags: red (R), yellow (Y ), green (G), and
white (W ). Moreover, for each t ∈ T , we have U (t) ⊆
{MU,SU,RA,MIU}, where

U (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{MIU} if t = W ,

{MU,SU,MIU} if t = G,

{MU,SU} if t = Y ,

{MU,SU,RA} if t = R.
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As wementioned at the end of Section 6.1, we do not con-
sider the RA in our experimentation, which impliesU (R) =
{MU , SU }. Since a weekly planning is adopted, we have D =
{1, . . . , 7}. The decision variables include the opening and
closing times for each weekday, denoted as xd and yd ,
with d ∈ D, as well as the percentage of patients diverted
to the MIU via the FT system. The need to differentiate this
percentage between morning and afternoon emerged from
observing the data and conducting interviews with ED per-
sonnel. Therefore, we introduce two variables, z1 and z2, to
denote these percentages. The upper bounds for these vari-
ables are directly deduced from real data by observing the
maximum values of these percentages in the morning and
afternoon for each day of the week. For this case study, the
variables rd and the objective function f3 in Eq. 3 are omitted
from our problem formulation because the number of rooms
used in the MIU of the examined ED is fixed.

The resultingMOSBO problem can then be formulated as
follows:

min ( f1(x, y, z1, z2), f2(x, y))�
s.t. (x, y, z1, z2) ∈ F,

(10)

where the feasible set F is defined by constraints Eqs.
4–6, and the functions f1 and f2 are defined in Eqs. 1
and 2, respectively. This problem constitutes a bi-objective
mixed integer SBO problem, involving 15 variables and 22
constraints. We employ the sample average approxima-
tion method, as described in Section 3.4, to approximate
the expected value in function f1. In particular, runs of
the EDDESmodel described in Section 6.4 are used to evalu-
ate the sample average response functions associatedwith the
overall patient DTDT. Here, the DTDT for each patient can
be computed from the difference t3−t1,where t1 and t3 are the
timestamps in Fig. 1. Note that we approximate the DTDT
using t3 − t1 (i.e., the time difference between the start of
triage and the start of the medical visit) instead of t3 − t0
because the arrival time t0 is unavailable from the data. This
approximation amounts to assuming that the triage begins
when a patient arrives in the ED (i.e., t0 = t1).

Theweightingmethod applied to problemEq. 10 for deter-
mining Pareto optimal points requires solving the following
single objective problem

min η1 f1(x, y, z1, z2) + η2 f2(x, y, z1, z2)
s.t. (x, y, z1, z2) ∈ F,

(11)

for different values of η1 ≥ 0 and η2 ≥ 0, where η1+η2 = 1.

8 Experimentation

In this section, we present the results of computational
experiments performed to solve the MIU optimal resource

allocation problem for the case study described in Section 6.
In this experimentation, we consider problem Eq. 10 with the
following specifications: the function f1 in Eq. 1withαt = 1,
for all t ∈ T and βu = 1 for all u ∈ U (t), and the function f2
in Eq. 2 with γd = 1, for d = 1, . . . , 7. These weight val-
ues are chosen to assign equal importance to all terms in the
respective functions. Regarding the problem constraints, we
set lower and upper bounds on the variables xd and yd in the
box constraints Eq. 4 to 7:00 a.m. and 8:00 p.m., respectively
(i.e., lxd = lyd = 7 and uxd = uyd = 20 for d = 1, . . . , 7).
For the variables z1 and z2, according to indications of the
ED personnel, we set lz1 = lz2 = 0 and uz1 = 75, uz2 = 35.
In constraints Eq. 5, we set hd = 0 for d = 1, . . . , 7 to
allow for the possible closure of the MIU on certain days of
the week. In Eq. 6, as suggested by the ED managers, we
choose g = 21 to ensure a minimum number of MIU open
hours during the week.

All the tests were performed on a PC equipped with
an Intel Core i7-4790K Quad-Core 4.00 GHz Processor
with 32 GBRAM. For the implementation of the ANNmeta-
model,we usedPython3.8.10. In particular,we implemented
the MLP using the PyTorch library. The MLP hyperparam-
eters were determined through a random search with K = 5
in the K -fold Cross Validation, with the mean absolute error
employed as a metric. The training was performed by using
ADAM optimizer [48] with a learning rate set to 10−5. We
used 574 epochs with a batch size of 4 and an early stopping
patience set to 8 epochs. The resulting network is com-
posed of two hidden layers, each containing 90 neurons. We
employed the Rectified Linear Unit (ReLU) as the activation
function.

The starting point of each single objective minimization
of the “scalarized" problem Eq. 9 is given by (x0, y0, z01, z

0
2),

which corresponds to the “as-is” status, i.e., the current MIU
opening and closing times (x0 and y0, respectively) and the
current average percentages of patients directed to the MIU
by the triage nurse in the morning and afternoon (z01 and z01,
respectively). The values of each component of this start-
ing point are reported in Table 2 (note that the MIU is
currently closed on Sundays) along with the correspond-
ing values f 01 = f1(x0, y0, z01, z

0
2) (in minutes) and f 02 =

f2(x0, y0, z01, z
0
2) (in hours), which are provided for refer-

ence.
We set the maximum overall number of runs of the DES

model to 10, 000 (we recall that each run consists of 30
independent replications). The ANN-based metamodeling
approach allocates this entire budget of runs to the dataset
generation phase. As mentioned previously in Section 4.2,
this phase represents the most time-consuming aspect of
the proposed metamodeling approach. After completing the
training of the ANNmetamodel on the generated dataset, the
time required to evaluate the function f1 using the ANN
metamodel becomes negligible. Therefore, we can afford
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Table 2 Starting point of the optimization algorithm associated with the “as-is” status and corresponding values f 01 (in minutes) and f 02 (in hours)

x01 y01 x02 y02 x03 y03 x04 y04 x05 y05 x06 y06 x07 y07 z01 z02 f 01 f 02

8 20 8 20 8 20 8 20 8 20 8 20 8 8 45 5 734.34 72

to conduct a large number of single objective minimiza-
tions for problem Eq. 11, each corresponding to different
combinations of the weights η1 and η2. This approach
allows us to generate several Pareto optimal solutions and
obtain a good coverage of the Pareto front. In particu-
lar, we consider 101 combinations of the weights (η1, η2):
{(1, 0), (0.99, 0.01), . . . , (0.01, 0.99), (0, 1)}. We note
that weights with values close to each other may lead to the
same minimizer in different single objective minimizations.
For the single objective minimizations, we employ a stan-
dard SQP algorithm for constrained nonlinear optimization
available in the Scipy library. Integer variables are treated as
continuous variables, and their values are then rounded to the
nearest integers.

In Table 3, we present the distinct non-dominated Pareto
optimal points along with the corresponding values for func-
tions f1 and f2.

In Fig. 2, the resulting approximate Pareto front is depicted
in the objective space (i.e., the space where the objective
values are used as coordinates). The point corresponding to
the starting point is also included.

From Fig. 2, we can observe that the obtained Pareto
optimal points provide a good coverage of the Pareto front.
However, the distribution of points is more concentrated for
values of f2 (abscissa axis) exceeding 30 hours. This is due to
the limited number of MIU opening hours during the week,
resulting in fewer Pareto optimal solutions.We also highlight
that the starting point corresponding to the “as-is” status is
dominated by the generated Pareto optimal points, indicat-
ing that the current status is suboptimal based on the selected
criteria. The extreme points A and K result from separate

minimizations of f1 and f2, respectively. These extreme
points are likely unrealistic: A entails excessively high costs,
while in the ED setting corresponding to K, patient waiting
times (measured by the objective function f1) are signif-
icantly high. In contrast, the intermediate points represent
trade-off solutions, offering ED managers various options to
choose from while ensuring Pareto optimality.

Observing the ED settings corresponding to the Pareto
optimal points in Table 3 yields several interesting conclu-
sions. Firstly, there is a noticeable increase in the percentage
of patients directed to the MIU via the FT compared to the
“as-is” status. This increase is relatively modest in the morn-
ing, rising from 45% to 60-70%, but more pronounced in
the afternoon, varying from 5% to 35%. This suggests the
need for EDmanagers to explore enhanced triage methods to
assess the feasibility of directing a greater number of patients
to the MIU via the FT, particularly during afternoon hours.
Additionally, except for settings J and K, MIU is expected
to be operational on Sundays, whereas it is currently closed.
Moreover, inmany cases, the opening and closing times devi-
ate from the ones currently adopted (8:00 a.m. to 8:00 p.m.),
with some solutions proposing earlier or later opening times
and earlier closing times.

It is important to note that, although inmost cases theMIU
is open for fewer hours compared to the current “as-is” status,
the optimized distribution of opening hours throughout the
week facilitates the redirection of more patients to the MIU
while minimizing waiting times. The primary source of this
improvement lies in the adoption of an optimal resource
allocation strategy, allowing for the customization of MIU
opening hours based on actual requirements. This clearly

Table 3 Pareto optimal
solutions and corresponding
values f1 (in minutes) and f2 (in
hours)

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 z1 z2 f1 f2

A 7 18 9 20 9 20 7 19 7 20 10 20 7 19 65 35 701.23 80

B 8 19 10 20 9 19 7 18 8 19 10 20 7 18 70 35 702.52 74

C 9 20 10 20 7 16 7 18 9 20 9 17 7 15 65 35 705.23 68

D 8 19 10 20 7 16 7 18 9 20 8 16 7 13 60 35 708.98 66

E 10 20 11 20 7 15 10 18 9 20 9 14 7 12 60 35 711.09 56

F 10 20 10 19 8 16 10 18 9 20 9 13 7 12 60 35 714.55 55

G 12 20 9 17 9 17 10 15 9 20 10 14 7 11 65 35 719.00 48

H 12 20 9 16 10 17 10 15 9 20 10 14 7 11 65 35 722.95 46

I 12 20 9 16 10 17 11 14 9 20 10 14 7 10 65 35 733.92 43

J 12 20 8 14 10 16 11 13 9 19 9 13 7 7 65 35 736.74 36

K 7 7 10 13 11 16 11 14 9 16 12 15 7 7 60 35 766.11 21
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Fig. 2 Pareto optimal solutions obtained using the ANN-based meta-
modeling approach are depicted in the objective space, with f1 (in
minutes) represented on the ordinate axis and f2 (in hours) on the
abscissa axis. The green square represents the point corresponding to
the current “as-is” status, which serves as the starting point of the opti-
mization procedure

shows the necessity for greater flexibility in determining
the MIU operational schedule.

For brevity, we do not report the patient DTDT for
each color tag and ED unit. However, it is worth noting
that the findings confirm our expectations: patient wait-
ing times for red-tagged and yellow-tagged patients remain
largely unchanged due to their high priority. Conversely,
improvements are observed for green-tagged and white-
tagged patients, who are directly impacted by potential
diversion to the MIU via the FT.

8.1 Comparison with the use of Derivative-Free
Optimization

The aim of this section is to compare the proposed ANN-
based metamodeling approach with a DFO-based approach,
which consists of applying a DFO algorithm to solve the
consideredSBOproblemwithout using ametamodel. Specif-
ically, in the DFO approach, we again solve the bi-objective
problem Eq. 10 using the weighting method, i.e., solving
a series of single objective optimization problems Eq. 11
for several weight combinations. However, we now evalu-
ate the objective function f1 directly by running the DES
model and using the sample average approximation method
described in Section 4.1. In other words, we employ the stan-
dard simulation optimization approach: during each iteration
of the DFO algorithm, the trial point (representing an ED set-
ting) is passed to the DES model, and the resulting output is
used to approximate each expected DTDT in the objective
function f1 in Eq. 1.

For the DFO approach, we decided to adopt the DFLINT
algorithm, which is an effective DFO algorithm recently
proposed in [59]. This algorithm employs a novel strategy
for solving black-box problems with integer variables, using
well-suited search directions and a non-monotone linesearch
procedure. Even in cases of early termination, needed for lim-
iting the computational burden, it still produces points that are
guaranteed to approximate local minimum points. Moreover,
the accuracy of the obtained solution can be easily controlled
by means of the stopping criterion. This algorithm is avail-
able with GNU GPL license on the web2. Note that in some
healthcare problem instances, algorithms belonging to the
class of linesearch-based DFO methods have been proven
to be much more efficient than optimization engines com-
monly used in the area of simulation optimization (see [60]
for a comparison with OptQuest).

In the experiments, we use the default parameters of
the DFLINT algorithm, with the stopping criterion based on
the maximum number of function evaluations. To ensure
a fair comparison between the ANN-based metamodel-
ing approach and the DFO approach, we allocate the
same overall budget of 10,000 function evaluations. In
the ANN-based metamodeling approach, these evaluations
are used as the maximum overall number of runs of
the DES model for generating the dataset. In the DFO
approach, these evaluations are equally divided into 11
single-objective minimizations of problem Eq. 11, each cor-
responding to one of the following combinations of weights:
{(1, 0), (0.9, 0.1), (0.8, 0.2), . . . , (0.1, 0.9), (0, 1)}. In
particular, for each single objectiveminimization, theDFLINT
algorithm is subject to a stopping criterion of 909 function
evaluations (where 909 results from the division 10,000/11).
The rationale behind partitioning the budget in this manner
is based on the fact that allocating a larger number of single
objective minimizations would result in a very small num-
ber of function evaluations available for each, reducing the
accuracy of the solutions obtained from each minimization.
The same starting point considered previously and given in
Table 2 is used.

In Fig. 3, we present a comparison between the Pareto
optimal points obtained by the ANN-based metamodeling
approach (red bullets) with those obtained by the DFO
approach (blue diamonds), without providing their values
for the sake of brevity. Figure 3 clearly evidences that
the ANN-based approach provides us with a wider range
of trade-off solutions. In fact, a greater number of Pareto
optimal solutions are generated, leading to a better cover-
age of the Pareto front. In practical terms, the ANN-based
approach offers decision-makers a more extensive array of
options to consider, which represents a significant advan-

2 See the Derivative Free Library (DFL) at http://www.iasi.cnr.it/
~liuzzi/DFL
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Fig. 3 Pareto optimal solutions obtained by the ANN-based metamod-
eling approach (red bullets) and the DFO algorithm (blue diamonds).
The green square corresponds to the starting point

tage of our proposed method. Conversely, the application
of a DFO algorithm in the DFO approach demands consider-
able computational resources, since each function evaluation
necessitates runs of the DES model. This computational
burden limits the exploration of a large number of weight
combinations when employing the weighting method. The
small coverage of the Pareto front is the major drawback of
using the DFO approach.

Figure 3 also highlights that the DFO algorithm tends to
generate solution points that dominate the ones obtained by
the ANN-based approach, even if the difference in the cor-
responding function values is very small. This is expected
because greater accuracy can be achieved by employing an
exact algorithm like the one adopted in the DFO approach.
We also believe that the use ofmore sophisticated techniques,
such as active learning (see, e.g., [70]) could significantly
improve the proposedANN-based approach, leading to over-
all greater accuracy.

8.2 Results from sensitivity analysis experiments

The results of the experimentation we reported are obtained
by setting αt = 1 for all t ∈ T and βu = 1 for all u ∈ U (t)
in the definition of the function f1 in Eq. 1, and γd = 1 for
d = 1, . . . , 7 in the definition of the function f2 in Eq. 2.
The rationale behind this choice is to assign equal impor-
tance to all terms in these objective functions. However, it is
worth noting that different values for these coefficients could
be chosen to prioritize certain terms over others. To evalu-
ate the impact of such variations, we conducted a sensitivity
analysis. It is important to note that the proposed ANN-
based metamodeling approach facilitates the execution of

sensitivity analyseswithminimal computational effort.With-
out using this approach, conducting such analyses through
the combined use of a computationally expensiveDESmodel
with a DFO algorithm would be highly costly, thereby lim-
iting the scope of feasible experimentation for this analysis.
We provide a summarized overview of the extensive analysis
we performed below.

Regarding the coefficients αt , t ∈ T , associated with
patient tags, we expect minimal effects when varying their
values. This is because the priority-based mechanism of the
triage tags governs patient flow. Tests performed by vary-
ing the coefficients αt confirmed our expectation: even when
assigning greater values to coefficients associated with less
severe tags (such as green and white), only slight modi-
fications were observed in the resulting waiting times. As
expected, waiting times for more severe tags remained rela-
tively shorter. Given the limited significance of the analysis
in this case, detailed results are not provided.

A greater sensitivity is observed when varying coeffi-
cients βu , u ∈ U (t), associated with the ED units. We adopt
two different representative choices of βu , u ∈ U (t), as
reported in Table 4, setting γd = 1 for all d ∈ D and αt = 1
for all t ∈ T . In Tables 6 and 7 in Appendix A, detailed
results are presented. Alongside the optimal values of vari-
ables and functions ( f1, f2), these tables provide the actual
(unweighted) values of the first objective function, denoted
by f̂1. Additionally, they include the aggregated patient wait-
ing times for each ED unit, regardless of the triage tags of the
patients directed to these units. Comparing these tables, it can
be observed that adopting a higher value, such as βMIU = 0.6
(choice (i) in Table 4), leads to a greater allocation of open-
ing hours for the MIU. Conversely, choosing βMIU = 0.2
(choice (ii) in Table 4) results in a reduction of the MIU
opening hours, aligningwith expectations. To offer a compre-
hensive understanding of the impact on waiting times across
all ED units, average values of the aggregated waiting times
for each unit are included in Table 5. These values are com-
puted by averaging the aggregated waiting times over all
obtained Pareto optimal points reported in Tables 6 and 7.

It is evident that the aggregated waiting times decrease as
the coefficients βu assigned to the corresponding ED units
increase. In contrast, whenever a lower value of βu is used,
increased aggregated waiting times are observed for the cor-
responding ED unit. The observed behavior in these two
example choices is consistent with the results from all the
other tests we conducted.

Table 4 Two representative
choices for βu , u ∈ U (t)

βSU βMU βMIU

(i) 0.2 0.2 0.6

(ii) 0.5 0.3 0.2
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Table 5 Cumulative waiting
times (in minutes) for each ED
unit corresponding to the
choices (i) and (ii) for βu ,
u ∈ U (t), specified in Table 4

SU MU MIU

(i) 257.88 347.61 129.50

(ii) 256.63 340.79 133.68

We now focus on analyzing the coefficients γd , d ∈ D,
which assign different weights to each day of the week in
the objective function f2. For brevity, we present results for
selected values of γd , while maintaining αt = 1 for all t ∈ T
and βu = 1 for all u ∈ U (t). Specifically, we highlight the
effects of adopting different coefficients by reporting detailed
results for an extreme case where some coefficients are inten-
tionally chosen to be very high. This case is represented as
follows:

γd = 7, d = 1, . . . , 5, and γ6 = γ7 = 7000.

This choice consists of assigning uniform values to the
coefficients γd associated with weekdays (Monday to Fri-
day), while a substantially higher value is assigned to
Saturday and Sunday. Note that large values of the coeffi-
cients γd are necessary to achieve the desired effect due to
the different magnitudes of the two objective functions, f1
and f2.

In Table 8 of Appendix A, we provide detailed results.
This table includes the optimal values of variables and func-
tions ( f1, f2), as well as the actual (unweighted) values
of the second objective function, denoted by f̂2, represent-
ing the actual number of MIU opening hours during the
week. Observing Table 8, as expected, all the obtained Pareto
optimal points suggest closing theMIU on the weekend. Dif-
ferent distributions of coefficients γd lead to expected results:
typically, choosing high coefficients associated with specific
days of the week implies a decrease in MIU opening hours
(or even closure) on those days (hence we do not provide fur-
ther detailed results). Experiments not included in this paper
also demonstrated the possibility of suitably tuning coeffi-
cients γd to achieve desired results on MIU opening hours.

While the sensitivity analysis presented in this section is
not exhaustive, we have provided results for specific rep-
resentative settings of the coefficients in the two objective
functions. Our experimentation demonstrates the robustness
and effectiveness of both the problem formulation and the
ANN-based metamodeling approach proposed in our paper.
Furthermore, the analysis highlights the flexibility offered by
the coefficients αt , βu , and γd , allowing decision-makers to
tailor solutions to meet specific needs.

9 Conclusions

Weexamined the use of an FT system for low-acuity patients,
a strategy commonly adopted to alleviate ED overcrowding.

In particular, we focused on an optimal resource allocation
problem in the MIU, the ED unit where such patients are
possibly diverted via the corresponding FT. We formulated
this problem as a multiobjective optimization problem, aim-
ing at minimizing conflicting objective functions. Some of
these objectives are computationally expensive black-box
functions, requiring time-consuming simulations for their
evaluation. Therefore, the problem at hand is a multiobjec-
tive SBO problem that requires high computational effort
when using the standard approach based on DFO algorithms.
To efficiently solve this problem, we developed a metamod-
eling approach that uses an ANN to replace a black-box
objective function with a suitable metamodel.

To show the reliability and effectiveness of the proposed
ANN-based metamodeling approach, we considered a real
case study, namely, the ED of a large hospital in Rome, where
an FT for low-acuity patients is currently adopted.We formu-
lated the relatedMIU optimal resource allocation problem as
a bi-objective SBO problem. The aim was to minimize both
the expected overall patient DTDT and the operating costs
of the MIU. Leveraging the available data, we developed
a detailed DES model to simulate patient flow in the ED.
Since our experimentation confirmed the significant com-
putational burden associated with computing the expected
overall patient DTDT through runs of this simulation model,
we replaced this function with an ANN metamodel. This
approach facilitated the generation ofmultiple Pareto optimal
solutions, providing decision-makers with valuable insights.
Our experimental results further underscored the subopti-
mal nature of the current ED setting based on the selected
criteria. A comparison with the results obtained using the
standard DFO approach highlighted the strengths of our
proposed methodology. While our experimental case study
showed that the DFO approach tends to generate Pareto opti-
mal points that dominate those obtained by the ANN-based
metamodeling approach, the latter is generally preferred due
to the following key advantages:

– The generation of a larger number of Pareto optimal solu-
tions (compared to the DFO approach), which cover a
wider range of trade-off solutions to be provided to ED
managers.

– The possibility of using parallel or distributed comput-
ing techniques to expedite the dataset generation phase
by running concurrent processes, enabling simultaneous
executions of the DES model. This feature offers sub-
stantial time savings, particularly when compared to the
sequential runs of the DES model required in the DFO
approach.

– The adaptability to changes: the ANN-based metamod-
eling approach demonstrates robust resilience when new
objective functions or constraints need to be incorporated
within the problem formulation. If these adjustments do
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not affect the KPIs computed via the simulation model,
the ANN metamodel can efficiently generate new Pareto
optimal solutions. Notably, evaluating a single objective
function valuewith our trainedANNmetamodel requires
mere hundredths of a second, substantially less than the
thirty seconds to a minute needed with the DES model.
This leads to a marked improvement in the computa-
tional speed of the optimization phase through the use
of gradient-based optimization methods, which do not
require additional costly simulation runs.

This efficiency is further illustrated by our sensitivity anal-
ysis (Section 8.2), which would have been impractical with
the DES model alone due to the prohibitive computational
demands.

On the other hand, our approach has some limitations. The
first one concerns the specific formulation we adopted. To
accommodate the requests of the ED managers in our case
study, our approach assumes flexible MIU opening hours.
Therefore, it is suitable for all EDs where MIU personnel
can adjust their shifts to align with the chosen opening and
closing times. Of course, if this flexibility is not suitable for
a particular setting, a different problem formulation must be
used. Another limitation lies in determining the values of the
upper boundon the percentage of patients diverted to theMIU
by the triage nurse. In general, this can be a complex task,
depending on the specific dynamics of the ED. However,
for EDs where the FT for low-acuity patients is already in
place, conducting accurate data analysis can greatly assist in
making an initial choice that reflects the current “as-is” status.

If different scenarios lead to unrealistic results, different val-
ues of the upper bound on this percentage must be selected.

Futureworkwill involve several aspects. From amodeling
perspective, a potential avenue of research would be to mini-
mize the maximum waiting time among all patients for each
triage tag to ensure that no low-acuity patients wait signifi-
cantly longer than others. Moreover, as already mentioned at
the end of Section 8, one can study more sophisticated learn-
ing techniques to further improve result accuracy. Finally,
one can explore specific algorithms, such as the one recently
proposed in [73], to address the so called “heterogeneous”
multiobjective optimization problems. In this context, “het-
erogeneous” refers to cases where one objective function is
an expensive black-box function while others are given ana-
lytically. Note that even if the MOSBO problem stated in
Eq. 7 falls into this class of problems, the algorithm pro-
posed in [73] cannot be directly applied since it is designed
for unconstrained problems, whereas the MOSBO problem
involves both box and linear constraints.

A: Appendix

In this appendix we report detailed results of our experi-
mentation concerning the sensitivity analysis considered in
Section 8.2. In particular, Tables 6 and 7 report the results
obtained for different values of the coefficients βu in the
objective function f1. Table 8 includes the results obtained
for different values of coefficients γd in the objective function
f2.

Table 6 Results obtained for βSU = 0.2, βMU = 0.2, and βMIU = 0.6

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 z1 z2 f1 f2 f̂1 WTSU WTMU WTMIU

7 20 7 20 7 20 7 20 7 18 7 20 7 20 50 35 578.16 89 697.90 254.74 310.31 132.85

7 20 7 20 7 20 7 17 7 17 7 20 7 20 45 30 578.59 85 702.55 254.39 317.28 130.88

7 20 7 15 7 20 7 20 7 19 7 20 8 20 40 25 582.08 84 706.68 253.07 321.88 131.73

7 20 7 20 7 20 7 15 7 19 13 19 7 20 45 35 585.62 78 712.72 257.22 323.84 131.66

7 20 15 20 7 20 7 14 7 20 7 11 7 19 40 35 585.96 67 719.86 257.32 334.17 128.37

7 18 7 20 8 20 7 15 11 20 7 14 20 20 40 35 587.70 60 719.28 255.50 333.67 130.11

11 16 7 20 10 20 13 18 7 18 15 20 10 20 50 35 594.45 59 731.64 257.40 344.68 129.56

7 12 7 20 11 20 12 20 7 16 20 20 16 20 50 35 599.80 48 743.02 258.33 356.36 128.32

12 14 20 20 7 18 7 14 7 20 7 16 10 13 30 35 604.15 45 749.45 259.65 361.07 128.73

14 20 7 14 17 20 7 12 12 20 7 13 13 20 30 35 618.65 42 772.89 261.79 382.01 129.09

7 12 8 18 14 20 19 20 7 14 15 19 16 20 40 35 618.91 37 778.01 263.58 387.68 126.75

7 12 20 20 17 20 13 14 13 16 14 18 9 14 65 35 622.92 21 786.13 261.69 398.40 126.04

The results include Pareto optimal solutions, objective function optimal values ( f1, f2), actual (unweighted) values f̂1, and the corresponding values
for the aggregated patient waiting times (WT) for each ED unit, regardless of the triage tags of the patients directed to these units
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Table 7 Results obtained for βSU = 0.5, βMU = 0.3, and βMIU = 0.2

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 z1 z2 f1 f2 f̂1 WTSU WTMU WTMIU

11 20 9 20 7 16 10 19 10 20 8 14 8 16 60 35 742.96 62 701.55 252.84 314.91 133.80

11 20 9 20 7 16 10 19 10 20 8 14 9 16 60 35 746.48 61 704.14 254.85 315.44 133.85

11 20 10 20 8 16 10 18 10 20 8 14 7 14 60 35 750.30 58 710.06 253.15 321.46 135.46

11 20 10 20 8 16 10 18 10 20 8 13 7 14 60 35 754.72 57 712.87 255.22 324.34 133.32

9 20 8 14 7 16 10 15 9 19 8 15 7 7 7 35 759.42 48 718.00 256.81 324.98 136.21

11 20 9 15 8 16 10 14 10 20 9 17 7 7 70 35 766.99 45 723.60 259.90 329.73 133.97

11 20 12 17 9 17 10 15 9 20 10 13 7 7 65 35 774.30 41 734.73 254.57 347.82 132.34

10 18 9 16 7 17 13 15 8 18 12 15 7 7 60 35 783.29 40 741.50 258.87 351.36 131.27

12 20 14 16 8 14 8 15 10 20 8 14 7 7 65 35 790.23 39 751.70 256.35 361.65 133.70

12 20 15 18 8 14 9 15 10 20 10 13 7 7 65 35 793.50 36 752.56 259.90 360.19 132.47

12 13 12 17 11 16 9 13 10 15 9 11 13 13 70 35 796.83 22 755.81 259.67 365.48 130.67

11 13 12 15 12 17 11 15 9 14 10 12 12 12 65 35 799.56 21 760.33 257.45 372.19 130.68

The results include Pareto optimal solutions, objective function optimal values ( f1, f2), actual (unweighted) values f̂1, and the corresponding values
for the aggregated patient waiting times (WT) for each ED unit, regardless of the triage tags of the patients directed to these units

Table 8 Results obtained for γ1 = γ2 = γ3 = γ4 = γ5 = 7 and γ6 = γ7 = 7000

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 z1 z2 f1 f2 f̂2

9 20 11 17 9 16 7 12 9 20 13 13 7 7 70 35 718.55 280 40

9 20 12 18 8 16 8 12 10 20 13 13 7 7 65 35 720.68 273 39

11 20 14 20 7 12 7 12 10 19 11 11 12 12 70 35 732.91 238 34

17 20 14 19 7 9 7 10 10 18 13 13 7 7 70 35 749.03 147 21

The results include Pareto optimal solutions, objective function optimal values ( f1, f2) and actual (unweighted) values f̂2
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