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ABSTRACT We present the design of a novel K-band radar architecture for short-range target detection.
Applications include direction finding systems and automotive radar. The developed system is compact
and low cost and employs substrate-integrated-waveguide (SIW) antenna arrays and a 4×4 Butler matrix
(BM) beamformer. In particular, the proposed radar transmits a frequency modulated continuous-wave
(FMCW) signal at 24 GHz, scanning the horizontal plane by switching the four input ports of the BM in
time. Also, in conjunction with a new processing method for the received radar signals, the architecture
is able to provide enhanced resolution at reduced computational burden and when compared to more
standard single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems. The
radar performance has also been measured in an anechoic chamber and results have been analyzed by
illuminating and identifying test targets which are 2◦ apart, while also making comparisons to SIMO and
MIMO FMCW radars. Moreover, the proposed radar architecture, by appropriate design, can also be scaled
to operate at other microwave and millimeter-wave frequencies, while also providing a computationally
efficient multi-channel radar signal processing platform.

INDEX TERMS Automotive radar, multiple-input multiple-output (MIMO) radar, short-range radar (SRR),
substrate-integrated waveguide (SIW), Butler matrix.

I. INTRODUCTION AND MOTIVATION

IN THE last decade, there has been an increasing demand
for low-cost and low-profile radar solutions for short-

range collision avoidance systems. Radar technology is
becoming a standard equipment for the current generation of
city cars and a key element for the design of next-generation
self-driving platforms. One major challenge in this field is
the possibility of achieving high angular resolution while

maintaining relatively small processing times and reduced
system complexity.
The use of multiple-input multiple-output (MIMO) tech-

niques to provide real-time collision-avoidance information
by means of millimeter-wave radars has also been under
discussion over many years (see, e.g., [1]–[8]) but, even
if very high resolution can be achieved by implementing
well-established signal processing techniques [9]–[13], the
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processing time can become an important issue for automo-
tive radar applications and new self-driving systems [6], [7],
[14]–[16].
Other high-resolution algorithms have also been stud-

ied to complement these approaches. For example, in [17]
a MIMO system in conjunction with a multiple signal
classification (MUSIC) [18] approach was reported. Capon
filtering [19] and the estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) [20], have also been
used in MIMO systems (more information can be found
in [6] and [21]). On the other hand, super-resolution algo-
rithms [22]–[24] generally perform better in terms of angular
resolution since they search sub-spaces for the strongest
signal, however this requires extensive time to process in
the presence of multiple sources. Hence, delay-and-sum
beamforming is generally less complex and computation-
ally demanding to obtain the angular target response, even
if it provides reduced angular resolution [25].
This type of low-resolution algorithm can detect multiple

targets with reduced accuracy within the radar field-of-view
(FOV). This can be extremely dangerous in automotive
systems and for moving vehicles. For example, when a
pedestrian is walking on the sidewalk in a narrow street or
even when the car is traveling within a tunnel, targets can be
misidentified. Multipaths can also represent an issue as they
could generate false targets; i.e., they should be removed
from the target image by performing additional processing
(see, e.g., [26], and refs. therein). Considering those advance-
ments, it should be mentioned that multipath propagation
effects are not considered further herein as false targets are
typically generated by low-resolution systems and in the
presence of reflections from very long surfaces (guardrails
for example). This means that the position of the ghost tar-
gets are typically outside the trajectory of the vehicle where
the radar is mounted.
When considering broad FOV requirements, radars

can employ phased-array techniques, beam switching,
or frequency scanning antennas. Even if phased arrays
are suitable for real-time beam scanning they can also
require high implementation costs as well as cum-
bersome feeding networks, and can suffer from high
losses [27], [28]. Frequency scanning antennas, instead, are
moderate in complexity and cost, and can be easily integrated
with frequency-modulated continuous wave (FMCW) radar
systems [29], [30]. Likewise, the beam pattern of phased-
array antennas, as well as frequency scanning antennas, can
also be non-uniform and dispersive. The gain can also be
reduced at larger scan angles, affecting the FOV [31], [32].
In these cases, since the gain can be non-uniform, a depen-
dency on the power transmitted can be observed, influencing
the target detection as a function of both angle and range.
To compensate for such a non-constant gain profile, more
complex approaches can be adopted such that the gain ver-
sus angle is more stable. Alternatively, techniques based
on switched beamforming networks can represent an attrac-
tive solution [33]. They can be considered a compromise

FIGURE 1. Possible radar configuration for automotive systems; comparison
between a conventional radar front end (a) with the proposed RF beam steering
approach based on a BM network (b) showing a wider illumination angle when
considering all the transmitted beam patterns.

between cost and complexity, while maintaining close-to-
ideal antenna beam patterns for the switching angles [33].
To provide short processing times at reduced cost and

complexity, this paper presents the design and test of an
FMCW radar for automotive applications, proposing beam
switching at the transmitter (see Fig. 1) for enhanced FOV.
A preliminary investigation of our proposed radar architec-
ture has been reported in [34], [35], and [36]. The advanced
system, now detailed in this paper herein, provides faster pro-
cessing and enhanced resolution as well as higher antenna
gains, improving the possible radar range and detection capa-
bilities at the extremities of the FOV. Basically switched
time-domain beamforming at the transmitter is implemented,
in conjunction with pattern-multiplication and multi-channel
processing at the receiver, to achieve high resolution angular
target detection.
The newly developed radar system also employs a Butler

matrix [37], i.e., a passive radio-frequency beamforming
network in transmission, as in [38], but now with sum-and-
delay processing at the receiver whilst being demonstrated
with said transmitter and radar electronics for a low-profile
implementation. High angular resolution and broad FOV are
achieved with reduced processing time (< 40ms), provid-
ing therefore, and as will be shown in the paper, advanced
performance with respect to comparable SIMO and MIMO
radar systems. These features, in conjunction with the newly
reported signal processing methodology described in the fol-
lowing, makes the proposed radar architecture particularly
suitable for collision-avoidance automotive systems as well
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FIGURE 2. Schematic representation of the proposed BM radar system. Each of the
4 states of the switch are individually processed (see the Power Plus, Pwr+ , module),
providing parallel computation as shown in Figs. 3 and 5(c).

as other real-time tracking scenarios which require enhanced
resolution.

II. STATE OF THE ART AND THEORETICAL
BACKGROUND
In [34], a radar system comprised of conventional substrate-
integrated-waveguide (SIW) transmit antennas based on a
2 × 4 MIMO system was proposed. That system suffered
from gain degradation for angles off broadside. Moreover,
the processing time required for MIMO operation was higher
than our proposed system (i.e., the proposed radar system
is outlined in Figs. 2 and 3). In [35] the same beamformer
as the one presented here, i.e., in Fig. 2, was briefly exam-
ined, but that work only reported comparative studies of the
transmit gain with respect to other MIMO and SIMO radar
arrangements. In [36], also, four independent 2 × 4 MIMO
sub-modules were used and combined together with a mul-
tiplication technique which was shown to improve the radar
accuracy by reducing the side-lobe level (SLL). However, the
system required a complicated hardware setup and involved
signal processing. This is because each of the four radar
sub-modules needed to process a 2 × 4 MIMO acquisi-
tion individually, which is not needed in this paper, due
to the developed radar signal processing approach, defined
as Power Plus (Pwr+). This technique, Pwr+, will be further
described shortly.
The use of lens antennas, on the other hand, can improve

the gain, FOV, and the angular resolution but at the cost
of increased size [39]–[42], making those solutions less
practical to be fitted onto a vehicle. This problem was par-
tially mitigated in [43] introducing a metasurface, whose
thickness and weight of the lens were significantly reduced
compared with a more conventional planoconvex dielectric
lens antenna. However, the total size of the lens antenna
is still bigger with respect to the system proposed in this
work.

A. FMCW RADARS, PATTERN MULTIPLICATION &
ANGLE ESTIMATION
FMCW radars are based on the transmission of a CW sig-
nal over a fixed period of time, introducing a frequency
modulation on the signal, which can periodically increase
or decrease over time [29], [44]. These radar systems can
calculate the range position of the illuminated target, with
an accuracy that is comparable with the wavelength of
the probing signal. In contrast with a conventional pulsed
radar system, FMCW radars do not require the use of high
peak power and can simplify the realization of the required
processing circuits [29], [44].
In order to retrieve the angular position of the scatter-

ing objects with respect to the radar location, at least two
receiving antennas are needed. A system not in mechanical
rotation, formed by 1 transmitter and 2 receivers (placed at
a distance d), constitutes a basic single-input multi-output
(SIMO) radar. By assuming that one of the two antennas
collects a signal from a direction over the horizontal plane
given by θ , an additional distance equal to d sin θ should be
considered to reach the second antenna. This corresponds
to a phase difference of β = (2π/λ)d sin θ between the
received signals. On this basis, it is possible to determine the
angular position of the target through the following simple
expression:

θ = arcsin

(
βλ

2πd

)
(1)

For classic beamforming algorithms, such as the Barlett
beamformer, the raw data at the sensor nodes are adjusted
in order to account for the delay caused by the travelling
wavefront [18]. Some of the outputs are weighted to account
for the antenna configuration. This means that the signals
are constructively interfering in order to detect the direction
of maximum energy. The resulting pattern can be perhaps
associated with the shape of a sinc function, or in other
words, to a function that has a Gaussian pattern with the
point of maximum return occurring at the peak of the target.
This approach can also be used as a basis for a more refined
signal processing method to combine the RF channels or
views (see Figs. 2 and 3) as employed in this work. Also,
as investigated in [36], a more accurate radar response of
the targets occurs when multiple images of the same target
are convolved in the time domain. Basically, this operation
has a smoothing effect which better identifies target peaks
in the angular spectrum estimate.
This underlying principle can be applied also for the

proposed BM radar system and its Pwr+ signal process-
ing of the multiple RF channels (as illustrated in Figs. 2
and 3). Let us define E(f ) as a sinc-shaped function in the
frequency domain:

E(f ) = sinc(2π f T) (2)

where T is the period of the function, f is the frequency of
the signal. And a smoothing function with the same shape:

W(f ) = sinc(2π f T) (3)
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FIGURE 3. General operation of the proposed Pwr+ radar signal processing algorithm for the four channels. Two targets located at θ1 and θ2 are considered. Each channel for
the different angular views is multiplied n times and then combined. The resulting angle target estimate plot is shown in red for the four combined channels.

FIGURE 4. Results of spectral multiplication for Gaussian functions in the
frequency domain as a pre-requisite for the adopted Pwr+ radar signal processing
approach for the combination of multiple channels (see Fig. 3).

Their convolution in the time domain will result in a
multiplication in the frequency domain. Thiswill be defined as:

E′(f ) = E(f ) ·W(f ) = sinc2(2π f T) (4)

So if the processing of the four states of the BM radar system
can be used in conjunction with multiplication of the angular
spatial spectrum (see Fig. 3), this will result in a smooth-
ing process as illustrated in Fig. 4. Basically this defines a
sharper peak for the target estimate. More information about
this smoothing process, pattern sharpness, and the support-
ing mathematics can be found in [45]. As will be further
examined in the paper, this technique which employes these
mathematical concepts (defined as the Pwr+ radar signal
processing approach) can improve radar accuracy and image
sharpness, due to the noted pattern multiplication operation.
A SIMO system can only provide a coarse angular reso-

lution, defined by the half-power beamwidth, �3dB, of the
receiving array. A way to increase the angular resolution con-
sists in increasing the number of receivers and/or the distance
between them. The latter strategy, however, introduces grat-
ing lobes, thus limiting the angular range (i.e., the FOV) of
the radar, derived from (1) considering the maximum phase
difference (i..e, π and −π ), as θFOV = ± arcsin( λ

2d ).
The angular resolution is set by the IEEE Standard for

Radar Definitions [46]: “The ability to distinguish between

two targets solely by the observation of their angle, usu-
ally expressed in terms of the minimum angle separation by
which two targets at a given range can be distinguished.”
It is often assumed that the two targets to be identified
have the same received power level (usually the half-power
point), and minimum angular separation, which thus consti-
tutes the angular resolution. An estimation of this parameter
is dependent on the size of the antenna aperture [47]:
sin(θRES) ≈ λ/D, D being the size of the receiver. This
approach, unfortunately, unavoidably increases the number
of RF chains based on the number of receiver elements.

B. MIMO RADAR
To reduce the number of receiving chains needed to sup-
port the use of more antennas, MIMO systems have been
proposed (see, e.g., [1], [48]). They require the use of more
transmitters to provide higher resolution at reduced costs
with respect to a SIMO system. By increasing the number
of transmitters, indeed, the number of virtual receivers is
given by NTx × NRx. Therefore, when element spacing is
appropriate, a 2 × 4 MIMO radar would provide the same
angular resolution as a 1 × 8 SIMO radar.

Typically the transmitters are activated sequentially in
time, so that, when the first radiates, the target reflects back
a signal with a phase distribution at each receiver element
given by 0, β, 2β, and 3β. Once the received signal has
been stored, the second transmitter is activated and a phase
offset of 4β is observed with respect to the first transmit-
ted signal. This offset will contribute to the second half of
the virtual receiving array (with phases 4β, 5β, 6β, and 7β,
respectively). Once the returned signals for both halves of
the array have been collected, considering λ/2 spacing for
the effective virtual array, the returned signal is processed
as a single eight-element receiver array. It should be men-
tioned that having transmitters and receivers co-located in
space can make the physical dimensions of the MIMO radar
significantly smaller. This would reduce the hardware costs
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FIGURE 5. Timing sequence diagram for the proposed radar when compared to more conventional approaches: (a) 1 × 4 SIMO, (b) 4 × 4 MIMO, and (c) the proposed Pwr+
approach. (d) Processing time estimation for each of the three cases based on MATLAB calculations. In particular, the horizontal axis is the iteration number defining the number
of times the radar measurements were completed automatically and then individually processed in MATLAB. This was required in order to estimate the mean processing time for
each individual radar setup providing a comparison for the different radar systems.

while maintaining high resolution, at the expense however
of the processing time.

III. BUTLER MATRIX FMCW RADAR
To achieve the same performance of a MIMO system or bet-
ter, but with reduced computational complexity, we propose
here a radar system connected to a 4×4 BM, providing four
possible phasing configurations at the transmitting point. The
system architecture is shown in Fig. 2. The BM is connected
to a single transmitter array, which is associated with one
transmission channel and four receiving channels. This trans-
mitter generates four different beams in time (see Fig. 3)
depending on the port excited. The complete transmitter
antenna system, therefore, is constituted by a single-element
antenna array, time-domain switch, and BM beamformer.
The four different angular views (i.e., the beams) divide

the observed space in four sections, which are combined in
post-processing through a technique further defined here as
Pwr+ (i.e., Power Plus, which refers to the power and addi-
tion operations made in the processing as further described in
the next sub-section). After, the delay-and-sum beamforming
is applied for each of the BM switching angles, the data is
taken and a multiplication technique is applied to combine
the individual angular target responses similar to [36]. As
discussed in the following, this provides improved angular
resolution along with competitive processing time.

A. SIGNAL PROCESSING USING PWR+ AND BUTLER
MATRICES
The Pwr+ procedure is illustrated in Fig. 3, and it can be
summarized as follows when considering the BM transmitter.

1) Both switches in Fig. 2 are synchronized to be at
the same position (i.e., from 1 to 4). Then, the BM
is excited through the first port, the scattered signals
are collected by the 4 receivers and stored. Therefore,
both switches are set on the subsequent position,
and the signal is processed as a conventional 1 × 4
SIMO radar. It is noted that the Pwr+ block includes
four independent processors, thus defining a parallel
processing algorithm to avoid inefficient queues that
would increase the total delay (see Fig. 5(c)). The pro-
cess is repeated four times in sequence to collect the
signal through all beams.

2) When the four datasets have been processed, the fol-
lowing combination algorithm is implemented (see
Fig. 3):

vPwr+ = vn1(θ) + vn2(θ) + vn3(θ) + vn4(θ) (5)

where vi represents one of the four views, and n corre-
sponds to a positive integer greater than 1, introduced
to provide a sharper pattern for the single beam (see
Fig. 4). This approach can obviously increase when
more voltage channels are considered (set equal to
four here for proof of concept).

The proposed processing makes the compound signal (i.e.,
vPwr+ ) sharper and more defined, improving the accuracy
over more conventional radars. This Pwr+ approach is orig-
inal and has not been applied before in other works, to the
best knowledge of the authors. We should make it clear that
improved resolution is not achieved by the n multiplication
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of the individual radar signals alone, vni , but it is the combi-
nation (vPwr+ ) of these four voltage channels which can offer
improved resolution. This is because the individual returned
signals offer different views or perspectives of the targets,
similar to [4], within the FOV of the radar. As discussed
next, shorter processing-time performances with respect to
a comparable MIMO system can also be achieved.

B. PERFORMANCE ANALYSIS
To understand the temporal performance of the BM radar
with respect to a conventional 4 × 4 MIMO system, we
developed a numerical study to analyze the time delay of
the processing. Three different configurations have been con-
sidered: a 1 × 4 SIMO radar, a 4 × 4 MIMO system, and
the proposed BM radar. As mentioned, the latter could be
considered as a 1 × 4 SIMO enhanced by the presence of
four different beams, but without introducing additional RF
chains. To operate the four channels, as shown in Fig. 2,
every time a signal is detected, the transmitter is switched
to the subsequent port of the BM.
Timing diagrams for the signal processing shown in

Fig. 5(a, b and c) gives an estimation of the total delay.
It starts accumulating when the transmitter sends the signal
and it finishes when the information of the target position
is acquired. In such diagrams, there are 4 different timing
blocks.

1) T: time that starts when the transmitter begins sending
the pilot signal in air. The signal hits the target and
the time stops with the reception of the raw data at the
receivers. It depends on the target distance (i.e., Rt)
and on the time the receiver block takes to record and
store the collected raw data (i.e., tstorage). Therefore,
we consider

T = 2Rt
c

+ tstorage (6)

Note that, since tstorage � 2Rt
c , the term related to the

target can be neglected.
2) 1×4 SIMO: time needed by the system to process the

raw data and to obtain the information of the target
position. The average value is equal to about 36ms
when developing the processing in MATLAB (version
R2017b), as shown in Fig. 5(d) (black curve).

3) 4 × 4 MIMO: time needed by the system to process
the raw data by following [6], [49]; once the four
different signals have been collected by the four beams
the average processing time was about 125ms (see
Fig. 5(d), red curve).

4) Pwr+: time needed to apply the Pwr+ algorithm right
after the four views have been acquired by the system
based on the BM, which perform four SIMO iterations.
Basically, the average value of about 0.3ms in Fig. 5(d)
(blue curve) is needed for the multiplication.

The time estimations for each case were obtained running
1000 iterations on a code that performs the relevant radar

TABLE 1. Radar computation times and angular resolutions.

processing. The machine is equipped with an Intel Core i7-
4790 CPU (3.60GHz, 4 cores, and 8 logical processors),
and 16GB of RAM.
The total time required for each case is given in the

following:

�tSIMO = t′2 − t′1 = T + t1×4 ≈ T + 36 ms (7)

�tMIMO = t′′2 − t′′1 = 4T + t4×4 ≈ 4T + 125 ms (8)

�tBMPwr+ = t2 − t1 = 4T+t1×4 +tPwr+ ≈4T+36 ms (9)

Taking only into account the processing time term, com-
putation times and angular resolutions are also compared
in Table 1. As it can be observed in Fig. 2, the proposed
BM radar is composed of 4 receiver elements, which there-
fore, will define an angular resolution of 30 degrees on their
own. However, this resolution is based on a single view (1
out of 4), and when all the 4 views are processed using
the Pwr+ algorithm (by Eq. (5)), a more refined angular
resolution is made possible by the proper selection of n
and the combination of the multiple channels by pattern
multiplication.
Taking into account the three different scenarios under

comparison (classic 1×4 SIMO, classic 4×4 MIMO and the
proposed BM architecture), it can be observed that the BM
system (i.e., �tBMPwr+ ) is significantly faster than classic
4×4 MIMO (i.e., �tMIMO) whilst offering enhanced angular
resolution and with simpler radar hardware implementation.

IV. BUTLER MATRIX AND ARRAY DESIGN
Both high angular resolution and broad FOV are important
requirements for automotive applications. To scan the space
in front of the radar a beamforming technique should be
included. Typically, antenna arrays work on a finite number
of discrete states, which are determined by the phase distri-
bution applied to each element. We propose here the design
of an SIW antenna array and feeding network based on the
BM concept. Alternative approaches for the beamformer,
such as the Blass matrix [50], the Wullenweber array [51],
and lens antennas could also be adapted to this system.

A. BUTLER MATRIX
The BM provides uniform amplitude distribution and con-
stant phase difference at its output ports [37]. It consists of
N input and N output ports, with N = 2m and m = 2, 3, . . . .
A 4 × 4 BM is depicted in Fig. 6, which shows the three
basic components: delay lines, crossovers, and 90◦ hybrid
couplers. Typically, it is also possible to use 180◦ hybrids
couplers, which would involve fewer delay lines, even if its
positions and magnitudes would follow a more complicated
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FIGURE 6. Schematic circuit representation of the proposed 4 × 4 BM, representing
the radar antenna beamformer for the transmitter.

TABLE 2. Number of hybrids and delay lines required for an N × N BM.

TABLE 3. Phase outputs on a butler matrix.

pattern [52]. Once the network is sized, the number of delay
lines and couplers can be easily obtained as outlined in
Table 2.
Depending on the excited port, the resulting weights

applied to the array controls the pointing direction for the
transmitted signal. The output phase differences between
consecutive ports and the corresponding direction of the
induced main beams for a 4 × 4 BM are shown in Table 3.
The delay lines connected on top and bottom and between
the hybrids require a specific phase delay, which is related
to N as follows [53]:

φdl = 90◦ − 1

N
180◦ = 45◦. (10)

More details on advanced BM designs can be found
in [53].

B. ANTENNA DESIGN IN SIW TECHNOLOGY
We describe here the design procedure of a planar waveguide
slot array antennas [54], [55] to be connected with the four
outputs of the BM. A standing-wave design [38], depicted
in Fig. 7, has been selected and optimized by means of CST
Microwave Studio. To achieve a broadside and symmetric
beams the spacing between slots is set to λg/2 [56], whereas
the distance between the last slot and the traversal vias is

FIGURE 7. Simulation model of the SIW slot antenna array, defined by four 3 × 1
sub-arrays (a = 9.28; b = 4.89; c = 6.10; d = 0.54; e = 0.28 [mm]) for operation at
24 GHz. This SIW structure is representative of the radar antenna transmitter and
receiver (albeit no beamforming network).

approximately 3λg/4. A 3 × 1 four-element series-fed sub-
array is considered as trade-off between the needed antenna
gain over the plane parallel to the SIW structure (i.e., normal
to the z axis in Fig. 7) and the encumbrance of the system.

The displacement for each slot from the axial center
of the SIW along the x axis, the slot widths and the
lengths (lslot), have been finely tuned to cancel higher-
order mode coupling, starting from an initial value given by
lslot = λ0/

√
2(εr + 1) [57]. Four sub-arrays are needed for

the final design, leading to a 4×3 array, as shown in Fig. 7.
The antenna dimensions determined by the optimization
process are reported in the caption.
The simulated reflection coefficients at each port of the

proposed SIW array, reported in Fig. 8(a), exhibit a −10 dB
operational bandwidth of 7.3% (1.75GHz). The simulated
radiation and total efficiencies are also reported in Fig. 8(b),
showing 85% over the operating band, reaching values over
90% around 24.75GHz. A realized gain versus the frequency
(not reported here) above 15 dBi has been achieved over the
entire 1.75GHz operating band.
The main lobe direction of the SIW series-fed slot array

is a critical aspect for the considered radar application, since
the phasing at each slot presents different values versus the
frequency. The simulated main lobe direction (not reported
here for brevity) over the frequency, in both the principal
planes, showed very minor deviation with respect to broad-
side (about 0.7◦ in the YZ plane; i.e.,φ = 90◦). The level of
the first sidelobe was found to be around −13 dB within the
XZ plane, and −23 dB for the YZ plane. The simulated radi-
ation patterns over the E and H planes (not reported here for
brevity), at three different frequencies (the two extremes of
the frequency of operation and the center), show consistent
results, which is a key aspect for a proper operation of the
FMCW radar. Cross-polarization levels in excess of −25 dB
are also achieved when compared to the main beam maxi-
mum. This confirms the suitability of the array performance
for the proposed radar system.

C. BEAMFORMER DESIGN IN SIW TECHNOLOGY
We consider here a hybrid coupler based on the waveguide
design proposed in [58]. Properly selecting the length L
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FIGURE 8. (a) Simulated reflection coefficient for the 4 antenna ports of the SIW
4 × 3 antenna array; (b) simulated radiation and total efficiencies considering uniform
excitation of all the ports (see Fig. 7) for broadside radiation.

FIGURE 9. Simulated output phase difference for the 90◦ SIW hybrid coupler
employed within the BM. A top view of the SIW coupler is shown in the inset where the
ports are defined.

in Fig. 9, the power split through the output ports 2 and
3 experiences a phase difference of 90◦. To provide good
matching and to balance the power splitting [59], the value
of wm has been tuned. Simulation results (not reported here)
exhibit low insertion losses within the operating bandwidth
(around 0.2 dB) and a very high isolation (below 30 dB).

FIGURE 10. Additional passive circuit components for the SIW BM: (a) top view of
the crossover conformed by 2 riblet short 90◦ hybrids (one highlighted by a red
dashed line), (b) top view of the required SIW delay line, (c) SIW transmission line
bends for improved connector matching, (d) exponentially tapered microstrip-to-SIW
transition.

A very good output phase difference within the simulated
bandwidth has been achieved, with maximum deviation in
the order of 0.1◦, as reported in Fig. 9.

For the design of the crossover, two cascaded couplers are
used as in Fig. 10(a). This is possible given the split and com-
bining characteristics of the 90◦ hybrid coupler: when port 1
is excited, at the two outputs of the first hybrid (red dashed
square) a 90◦ phase difference is obtained. Therefore, at the
second hybrid two ports are excited simultaneously, perform-
ing as a combiner and outputting all the signal through port
3. In other words, in the second stage, the hybrid works
in reverse with respect to the first. Simulated results (not
reported here for brevity) testify an excellent matching, high
isolation, and insertion losses of about 0.2 dB. With respect
to the required delay lines, 90◦ bends have been used includ-
ing vias on each of the corners for matching purposes [60].
Moreover, phase-delay adjustments for this component are
made by tuning ldelay, which is depicted in Fig. 10(b).

Since the SIW width is narrower than the actual con-
nector width, a transition was designed. Figure 10(c) shows
the input SIW paths followed by each individual port. In
this case, unlike the SIW delay lines, 90◦ curvatures [60]
were chosen instead of 90◦ bends to optimize the matching
performance. This is likely related to the proximity of the
input ports of the BM, which makes this area more sensitive
to the input impedance. It should be noted that these different
paths had to be properly adjusted to avoid unwanted phase
offsets at the sub-arrays. The transition from microstrip to
SIW has been designed following an exponential tapering
(see Fig. 10(d)), as proposed in [61].
A picture of the manufactured BM is shown in Fig. 11.

Simulations and measurements of the amplitude balance for
each of the four states are reported in Fig. 12. The output
phase differences are shown in Fig. 13. A very good match-
ing can be observed between simulations and measurements
(below 5◦), for each of the different beam switching states.
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FIGURE 11. Photograph of the prototyped BM prior to integration with the antenna
and radar. Ports from 1 to 4, i.e., P1−4, corresponds to the input and 5 to 8, i.e., P5−8,
to the outputs.

D. BEAMFORMER AND ANTENNA ARRAY INTEGRATION
The manufactured beamforming system and the planar array
have been integrated as reported in Fig. 14. Radiating slots
were etched in the top ground plane to avoid unwanted
coupling coming from the microstrip sections at each port.
The simulated and measured reflection coefficients within
the relevant bandwidth are reported in Fig. 15(a), showing
values below −10 dB. The four normalized radiation pat-
terns, achieved by switching the driven ports, are reported
in Fig. 15(b). A very good agreement between the sim-
ulated and measured steered patterns is observed. Due to
constraints enforced by the NSI near-field scanner used to
collect antenna measurements, results only cover an angular
range from −60◦ to 60◦ over the ZX plane in Fig. 15.

V. RADAR SYSTEM TESTING AND RANGE ESTIMATION
In order to test the capabilities of the proposed radar
system, a set of measurements have been performed in
a calibrated anechoic chamber at Heriot-Watt University.
Fig. 16(a) shows the proposed butler matrix array (BMA),
which acts as transmitting system for the radar. Results have
been collected manually by switching the ports of the BMA
and terminating the others with 50-
 loads. Also, to ensure
low-cost demonstration and implementation of the support-
ing radar materials (i.e., dielectric laminates, radio-frequency
beamforming networks, and the supporting electronics), the
FMCW system operated at 24GHz with a 250MHz band-
width. The radar transmitter and receiver PCBs could also
be scaled downwards in size to operate at 77GHz (following
the standard tolerancing available from PCB manufactures)
while different radar electronics could be properly selected
as well. This 77GHz operational frequency range rep-
resents another standard carrier frequency for automotive
applications.
The SIW 4 × 3 array shown at the bottom of Fig. 16(a)

constitutes the receiving antenna. In this case, only the
four central elements of the antenna array have been
used, realizing the architecture described in Fig. 2. The

FIGURE 12. Simulated and measured S-parameters for the SIW BM as in Fig. 11.
Results are shown when each individual input port (1-4) is excited: port 1 (a), port 2
(b), port 3 (c) and port 4 (d). Dashed lines correspond to simulations and solids lines
to measurements.

employed radar system electronics used connectorized mono-
lithic microwave integrated circuit (MMIC) components
from Analog Devices containing the phase-lock loop and
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FIGURE 13. Simulated and measured phase difference for the SIW BM (see Fig. 11).
Dashed lines correspond to simulations whereas solid lines relate to measurements.
Phase differences are defined between consecutive output ports (5-8) when each
individual input port (1-4) is excited. Each of the obtained output phase states match
the expected values as they are shown in Table 3.

FIGURE 14. Picture of the manufactured SIW BM and antenna array defining the
radar transmitter.

voltage-controlled oscillator (ADF4159), the transmitter chip
(ADF5901), and a 4-port receiver chip (ADF5904). Data
sampling was performed using the ADAR7251, a 4-channel
continuous time analogue to digital converter (ADC) with
16-bit resolution. This enabled fast acquisition for the down-
converter at receive. Also, each of the receiver antenna ports
were connected to an HMC751LC4 low noise amplifier
(LNA) also from Analog Devices to reduce system noise
(see [35, Fig. 2] for a representative circuit schematic). Raw
datasets collected at the receivers were then post-processed
in MATLAB. The measurements were made at a range equal
to about 2 meters using metallic targets; i.e., the two vertical
metallic posts shown in Fig. 16(b) which could be made to
have different angular separations.
The measurement procedure and results are described

in the following. It should be highlighted that two targets
were selected and appropriately spaced to ensure an angular
resolution beyond the capability of the four-element SIW
receiver. This θRES can be calculated to be 30◦ consider-
ing the employed λ/2-spaced receiver; i.e., four sub-arrays

FIGURE 15. Simulated and measured reflection coefficients (a) and the steered
beam patterns (b) for the radar antenna transmitter (see Fig. 14) normalized to the
observed maximum. Dashed lines correspond to simulations while solid lines relate to
measurements.

defined by a four-element 3 × 1 series-fed array in SIW
technology (see Fig. 7). As described previously, a similar
radar system was reported in [35] where additional mea-
surements were also compared to more conventional (and
equivalent) SIMO and MIMO radar configurations [34]. It
was shown in [35] that the proposed BM radar architecture
can offer improvements in terms of higher returned signal
powers, improved signal-to-noise ratios, and enhanced FOV
(see [35, Figs. 6 and 7]).
During the measurements for this paper each port of the

BMA was individually driven and returned signals were sam-
pled at the radar module, as discussed in Section III-B.
These results were then processed as an individual SIMO
radar because the transmitted beam was steered to a partic-
ular direction as defined in Table 3. Once the four beams
were transmitted and the four received signals obtained, the
Pwr+ algorithm described in Section III was applied to the
four receiver channels. However, since each individual view
shows an angular resolution above the angle between the
two targets; i.e., θRES = 30◦, the resulting view will only
show one peak (see gray lines in Fig. 17). More views can be
anyway added considering space constraints, implementation
costs, and a more advanced beamformer.
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TABLE 4. Comparison of a 4 × 4 MIMO radar with the proposed BM radar.

FIGURE 16. a) Radar transmitter defined by the SIW BM and antenna array (top) and
the SIW receiver (bottom); b) Metallic posts employed as targets during the
measurements.

Angular target detection results which employed the Pwr+
algorithm are reported in Fig. 17, where the two targets,
with an angular separation equal to 10◦, 6◦, 4◦, and 2◦
degrees, respectively, are considered. The gray lines show
the independent SIMO views corresponding to an angular
resolution of 30◦, whereas the colored lines represent the
resulting angular target response after applying Pwr+ for
different values of n. It should be noted that the resolution
improves for increased n, as outlined in Table 4, and larger
n marginally increases the total processing time, however,
this is negligible as described in Section III-B (see also
Table 4). This makes the proposed algorithm and beamformer
a very convenient approach to decrease the total processing
time while also offering enhanced angular resolution beyond
comparable, and more classic, SIMO and MIMO radars with
a similar number of RF chains, transmitters, and receivers.
Apart from an improvement in the detection of very close

targets, the proposed radar system would also be able to
cover a wider angular range due to the beamforming capa-
bilities in comparison to the conventional SIMO and MIMO
approaches. As is well known, the maximum detectable

FIGURE 17. Angular target response measurements where two targets are resolved
using the Pwr+ algorithm for different values of n. For these radar system
measurements, targets were positioned at a distance of 2 meters from the radar and
separated at the following angles (from the top to the bottom panel): ±5◦ , ±3◦ , ±2◦
and ±1◦.

range over angle is given by [62]:

Rmax(θ) = 4

√
Pt · g(θ)2 · λ2 · σ

Pmin · (4π)3
[m] (11)

where Pt is the transmitted power in watts (1 W, as a
reference), g(θ) relates to the realized gain over angle in
linear units, λ corresponds to the free-space wavelength
(24.125 GHz), σ is the RCS of the target (in our case we take
100 m2, which is the average value for a car), Pmin relates to
the minimum detectable power in watts needed for detection
which is −82.8 dBm (whilst considering a signal-to-noise
ratio of 5 dB) [29].
From this expression the realized gains and the maximum

detectable range for the three relevant cases are shown in
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FIGURE 18. (a): Maximum realized gain versus angle for comparably sized radar
transmitter antennas (representing SIMO and MIMO radars) and the BMA
(representing the BM radar). (b): An estimation of the maximum detectable range
versus angle by Eq. (11) whilst considering the different radar transmitters as in (a).
Note: legend in (a) also applies to (b).

Fig. 18. These results include the radar transmitter patterns
for the developed BMA as well as for comparably sized
SIMO and MIMO radar transmitter antennas (see Fig. 18(a)
and [35]). The black line corresponds to the proposed butler
matrix transmitter (the envelope pattern), the red line relates
to the same number of antennas, although equiphased by a
corporate feeding network, and, the blue line corresponds
to only one antenna at the transmitter. Clearly, the longest
range over the widest possible angular range is exhibited
by the BM radar. Although there are nulls at broadside and
about ±30◦, the maximum detectable range would still be
over 100 meters (see Fig. 18(b)) which is more than enough
time to compute the target and safely avoid it considering
a car driving at its maximum (typically allowed) speed on
a highway (120 km/h). This demonstrates that by using the
proposed BM matrix radar, an important improvement in the
FOV and maximum detectable range is achieved if compared
to other arrangements; i.e., conventional SIMO and MIMO
as reported herein.

VI. CONCLUSION
We have presented the design of a planar beamformer based
on the use of an SIW-based Butler matrix associated with
a processing technique defined as Power Plus (i.e., Pwr+),
to decrease the computational costs for FMCW radars. The

passive Butler matrix beamformer at transmit has been inte-
grated to achieve four independent beams and improves the
angular resolution of the effective SIMO system without
increasing the hardware complexity, the number of RF chan-
nels, the required radar signal processing as well as the
encumbrance and cost of the developed structures.
The design of both the SIW Butler matrix and the

corresponding radar antenna have been described and exper-
imentally validated. Also, measurements within an anechoic
chamber have been reported to describe the performance of
the proposed radar. A good agreement between simulations
and measurements has been observed. When compared to
more conventional SIMO and MIMO FMCW radars, the
proposed radar system also offers improvements in terms
of higher signal-to-noise ratios, enhanced field-of-view, and
higher returned signal powers which can increase the range
of the radar.
The angular resolution and the total delay processing

time of the proposed BM radar system, equipped with four
receivers, defines a new type of 1×4 switched-beam FMCW
radar architecture. This system has also been directly com-
pared to a 4 × 4 MIMO radar. In particular, measurement
results show that targets placed at an angular distance of
up to 2◦ can be successfully detected using the proposed
BM radar transmitter and the four-element receiver (which
alone would have an angular resolution of 30◦) while also
providing shorter processing times when compared to more
conventional radars. To achieve similar angular resolution, an
alternative MIMO system would require a 7×8 radar config-
uration. This would significantly increase system complexity,
processing and implementation costs. More importantly, it
would unavoidably deteriorate the detection time, which is
a key aspect for collision-avoidance applications and more
real-time radars.
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