
Web Semantics: Science, Services and Agents on the World Wide Web 84 (2025) 100841

A
1
n

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the World
Wide Web

journal homepage: www.elsevier.com/locate/websem

Indistinguishability in controlled query evaluation over prioritized
description logic ontologies
Gianluca Cima a, Domenico Lembo a,∗, Lorenzo Marconi a, Riccardo Rosati a,
Domenico Fabio Savo b

a Sapienza Università di Roma, Italy
b Università degli Studi di Bergamo, Italy

A R T I C L E I N F O

Keywords:
Description logics
Ontologies
Confidentiality preservation
Query answering
Data complexity

A B S T R A C T

In this paper we study Controlled Query Evaluation (CQE), a declarative approach to privacy-preserving query
answering over databases, knowledge bases, and ontologies. CQE is based on the notion of censor, which defines
the answers to each query posed to the data/knowledge base. We investigate both semantic and computational
properties of CQE in the context of OWL ontologies, and specifically in the description logic DL-Lite, which
underpins the OWL 2 QL profile. In our analysis, we focus on semantics of CQE based on censors (called optimal
GA censors) that enjoy the so-called indistinguishability property, analyzing the trade-off between maximizing the
amount of data disclosed by query answers and minimizing the computational cost of privacy-preserving query
answering. We first study the data complexity of skeptical entailment of unions of conjunctive queries under all
the optimal GA censors, showing that the computational cost of query answering in this setting is intractable.
To overcome this computational issue, we then define a different semantics for CQE centered around the notion
of intersection of all the optimal GA censors. We show that query answering over OWL 2 QL ontologies under
the new intersection-based semantics for CQE enjoys tractability and is first-order rewritable, i.e. amenable to
be implemented through SQL query rewriting techniques and the use of standard relational database systems;
on the other hand, this approach shows limitations in terms of amount of data disclosed. To improve this
aspect, we add preferences between ontology predicates to the CQE framework, and identify a semantics
under which query answering over OWL 2 QL ontologies maintains the same computational properties of the
intersection-based approach without preferences.
1. Introduction

Controlled Query Evaluation (CQE) is a declarative approach to
privacy-preserving query answering over databases and knowledge
bases [1–6]. Such an approach has recently been studied in the context
of Semantic Web languages and ontologies [7–11].

In CQE, a data protection policy is defined through a logical theory,
and the information disclosed through query answering must comply
with such a policy. The notion of censor is the one that formalizes
the semantics of the above approach. A censor defines the answers
to each query posed to the ontology, in a way such that the data
protection policy is not violated while the information disclosed to
the user of the ontology is maximized, according to some optimization
criterion. Different semantics for CQE exist, giving rise to different
notions of censors and different computational costs of query answering
(see e.g. [11]). Notably, in most of the semantics for CQE defined in the

∗ Corresponding author.
E-mail addresses: cima@diag.uniroma1.it (G. Cima), lembo@diag.uniroma1.it (D. Lembo), marconi@diag.uniroma1.it (L. Marconi), rosati@diag.uniroma1.it

(R. Rosati), domenicofabio.savo@unibg.it (D.F. Savo).

literature, multiple censors for the same ontology may exist. This aspect
may have consequences both from the semantic and the computational
viewpoint.

In this paper, we conduct an analysis of the formal and com-
putational properties of different approaches to CQE over OWL and
Description Logic ontologies. We focus on semantics for censors that
enjoy the so-called indistinguishability property. In abstract terms, this
property implies that a user can never understand whether she is
querying an ontology with or without sensitive information. Indistin-
guishability gives a high level of confidentiality protection to CQE,
thus preventing information leakage [7,12]. Specifically, we prove that
the class of optimal GA censors (censors defined through sets of ground
atoms) enjoys the above property, thus our subsequent analysis focuses
on such a class of censors. In general, multiple optimal GA censors for
the same knowledge base may exist.
https://doi.org/10.1016/j.websem.2024.100841
Received 23 February 2024; Accepted 18 November 2024
vailable online 9 December 2024
570-8268/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/websem
https://www.elsevier.com/locate/websem
mailto:cima@diag.uniroma1.it
mailto:lembo@diag.uniroma1.it
mailto:marconi@diag.uniroma1.it
mailto:rosati@diag.uniroma1.it
mailto:domenicofabio.savo@unibg.it
https://doi.org/10.1016/j.websem.2024.100841
https://doi.org/10.1016/j.websem.2024.100841
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Cima et al.

m
f

a

d

s
W
i
u
a

o
a

a

C

p
t
e

a
r

i
f

a
f
c

a
i
G
f
a
I

t

s

t

T
s
a

q

𝑅

l

𝜙

F
𝛼
∃
o

Journal of Web Semantics 84 (2025) 100841
We analyze both semantic aspects and computational properties of
CQE over Description Logic ontologies under the above
indistinguishability-based semantics. We are particularly interested in
the trade-off between maximizing the amount of information that is
disclosed by query answers while preserving confidentiality and mini-

izing the computational cost of query answering. In our analysis, we
ocus on ontologies expressed in the Description Logic DL-Lite [13],

the Description Logic underpinning the W3C-recommended OWL 2
QL profile [14]: our choice is motivated by the well-known nice
computational properties of query answering over such ontologies.

More specifically, we first consider the case when the presence of
multiple GA censors is solved by arbitrarily selecting a single optimal
GA censor. While we show that this approach enjoys nice computa-
tional properties, we argue that this solution is not coherent with the
declarativity of the CQE approach.

We then analyze the data complexity of skeptical entailment of
queries (specifically, unions of conjunctive queries) under all the op-
timal GA censors. In this case, we avoid the above arbitrary choice of
 single censor. On the other hand, it turns out that the computational

cost of query answering in this setting is problematic: in particular, the
data complexity of query answering over ontologies expressed in the
lightweight DL DL-Lite is intractable (coNP-complete).

To overcome the above computational issue, we then define a
ifferent semantics centered around the notion of intersection of all
the optimal GA censors, called IGA censor in the paper, and study the
emantic and computational properties of CQE under such semantics.
e show that query answering over DL-Lite ontologies under the new

ntersection-based semantics for CQE has the same data complexity as
nder the standard semantics, that is, it is in AC0 in data complexity,
nd enjoys the so-called first-order rewritability property (see e.g. [15]).

The last property makes it possible to implement query answering
algorithms based on query rewriting in SQL and the use of standard
relational database systems.

The above result indicates the possibility of effective realization
f practical CQE systems based on the notion of IGA censor. This
pproach, however, shows limitations with respect to the maximization

of the information disclosed through query answering.
In order to improve the above aspect, we add preferences between

ontology predicates to the CQE framework, in a way analogous to
recent work in the area of Consistent Query Answering [16]. The pres-
ence of such preferences has the consequence of restricting the set of
admissible censors, and thus they allow for augmenting the set of query
nswers both under the skeptical-entailment semantics and under the

intersection-based semantics.
While preferences increase the amount of information disclosed by

QE, they constitute in general an overhead in terms of computational
cost of query answering, as already shown e.g. in [16]. However,
we are able to identify an intersection-based semantics for CQE with
references under which answering UCQs over DL-Lite ontologies is
ractable in data complexity and not harder than in the absence of pref-
rences. In particular, under this semantics for CQE, query answering

is in AC0 in data complexity and enjoys the first-order rewritability
property, which indicates that such an approach to CQE is potentially
ble to increase confidentiality-preserving answers to queries while
emaining feasible in practice.

The paper is structured as follows. After introducing some pre-
liminaries in Section 2, we define our framework for CQE over DL
ontologies in Section 3. Then, in Section 4 we study query answering
under optimal GA censors in the case of CQE specifications expressed
in DL-Lite. In Section 5 we introduce the notion of IGA censor, and
n Section 6 we study query answering over the IGA censor, again
or DL-Lite CQE specifications. In Section 7, we extend the CQE

framework with preferences expressed over ontology predicates, and in
Section 8 we study query answering in the prioritized CQE framework
for DL-Lite CQE specifications. Finally, we discuss related work in
Section 9, and conclude the paper in Section 10.

This paper is an extended and revised version of [17] and, partially,
of [18].
 s

2
2. Preliminaries

We use standard notions of function-free first-order (FO) logic,
nd in particular, we consider Description Logics (DLs), which are
ragments of FO using only unary and binary predicates, called atomic
oncepts and atomic roles, respectively [19]. We assume to have the

pairwise disjoint countably infinite sets 𝛴 , 𝛴, 𝛴 , and 𝛴 for atomic
concepts, atomic roles, constants (a.k.a. individuals), and variables, re-
spectively.

For a DL , an TBox is a finite set of assertions allowed in ,
adopting symbols from 𝛴∪𝛴 as predicates and symbols from 𝛴∪𝛴
s terms. The set of atomic concepts, roles, and individuals mentioned
n the assertions of constitutes the signature of , denoted by 𝛴().
iven a TBox , an ABox for is a finite set of ground atoms of the

orm 𝐴(𝑎) and 𝑃 (𝑎, 𝑏), where 𝐴 and 𝑃 are an atomic concept and an
tomic role, respectively, occurring in the signature of and 𝑎, 𝑏 ∈ 𝛴 .
n what follows, when a TBox is given, whenever we refer to an ABox
, we implicitly assume that is for and, unless otherwise specified,

hat ∪ is a consistent FO theory.
For a DL , an ontology = ∪ is constituted by an TBox

 and by an ABox . The semantics of an ontology = ∪ is given in
terms of FO models (or, simply, models) in the standard way [19]. Given
a model and an FO sentence 𝜙, we say that 𝖾𝗏𝖺𝗅(, 𝜙) is true if the
tandard evaluation of 𝜙 in returns true [20], and say that 𝖾𝗏𝖺𝗅(, 𝜙)

is false otherwise. Given an ontology and an FO sentence 𝜙, we say
hat entails 𝜙, denoted by ⊧ 𝜙, if 𝖾𝗏𝖺𝗅(, 𝜙) is true for every model

of . If this is not the case, does not entail 𝜙, denoted by ̸⊧ 𝜙.
o simplify the presentation, given a set of ground atoms and an FO
entence 𝜙, with a slight abuse of notation, we will write 𝖾𝗏𝖺𝗅(, 𝜙) to
ctually denote 𝖾𝗏𝖺𝗅(𝐻(), 𝜙), where 𝐻() is the Herbrand model of

[21].
In this paper, we are particularly interested in DL-Lite ontologies,

where DL-Lite is the member of the DL-Lite family [13] underpinning
OWL 2 QL [22], i.e. the OWL 2 profile specifically designed for efficient
uery answering. A DL-Lite TBox consists in a finite set of assertions

of the following form1:
𝐵1 ⊑ 𝐵2 (denoting positive concept inclusion)
𝑅1 ⊑ 𝑅2 (denoting positive role inclusion)
𝐵1 ⊑ ¬𝐵2 (denoting negative concept inclusion, a.k.a.

concept disjointness)
1 ⊑ ¬𝑅2 (denoting negative role inclusion, a.k.a.

role disjointness)

where:

• 𝐵1 and 𝐵2 are basic concepts, i.e. expressions of the form 𝐴, with
𝐴 ∈ 𝛴 , ∃𝑃 , with 𝑃 ∈ 𝛴, or ∃𝑃−. The expressions ∃𝑃 and
∃𝑃− are called unqualified existential restrictions, which denote
the set of objects occurring as the first or second argument of 𝑃 ,
respectively.

• 𝑅1 and 𝑅2 are basic roles, i.e. expressions of the form 𝑃 or 𝑃−

(called the inverse of 𝑃).

As usual in query answering over DL ontologies, we focus on the
anguage of conjunctive queries. A Boolean conjunctive query (BCQ) 𝑞

is an FO sentence of the form ∃�⃗�.𝜙(�⃗�), where �⃗� are variables in 𝛴 , and
(�⃗�) is a finite, non-empty conjunction of atoms of the form 𝛼(�⃗�), where

𝛼 ∈ 𝛴 ∪𝛴, and each term in �⃗� is either a constant in 𝛴 or a variable
in �⃗�. In a BCQ 𝑞, each variable in �⃗� appears in at least one atom of 𝜙(�⃗�).
or a BCQ 𝑞 and an atom 𝛼(�⃗�), we write 𝛼(�⃗�) ∈ 𝑞 to denote the fact that
(�⃗�) occurs in 𝑞. A BCQ with inequalities is an FO sentence of the form
�⃗�.𝜙(�⃗�) ∧𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�), where ∃�⃗�.𝜙(�⃗�) is a BCQ and 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�) is a conjunction
f inequality atoms of the form 𝑡1 ≠ 𝑡2, with 𝑡1 and 𝑡2 either variables

1 For DL-Lite assertions we adopt the well-known variable-free DL
yntax [19].

G. Cima et al.

a

t
t
w
o

∀
a

u

b

t

i

t
i
a
a
c
e
a
a

W
a

A
i

i

c
f

u

a
i
a
w

w
b

f
C
t
s
𝖼

Journal of Web Semantics 84 (2025) 100841
in �⃗� or constants in 𝛴 . A union of BCQs (BUCQ) 𝑄 is an FO sentence
of the form ⋁𝑛

𝑖=1 𝑞𝑖, where 𝑞𝑖 is a BCQ for each 𝑖 = 1,… , 𝑛. With a little
buse of notation, we will sometimes treat a union of BCQs as a set of

BCQs.
Given a BCQ 𝑞 (possibly with inequalities) and an ABox , we say

hat an image of 𝑞 in is a minimal subset ′ of such that 𝑞 evaluates
o true in ′. Furthermore, given a BCQ 𝑞, a TBox and an ABox ,
e say that an image of 𝑞 in with respect to is a minimal subset ′

f such that ∪′ ⊧ 𝑞.
A denial assertion (or simply a denial) is an FO sentence of the form

�⃗�.𝜙(�⃗�) → ⊥, such that ∃�⃗�.𝜙(�⃗�) is a BCQ. Given one such denial 𝛿 and
n ontology , note that ∪ {𝛿} is consistent if ̸⊧ ∃�⃗�.𝜙(�⃗�), and that
∪ {𝛿} is inconsistent otherwise.
In the following, with 𝐅𝐎, 𝐂𝐐, and 𝐆𝐀 we denote the languages of

function-free FO sentences, BCQs, and ground atoms, respectively, all
specified over the alphabets 𝛴 , 𝛴, 𝛴 , and 𝛴 . Note that 𝐆𝐀 ⊆ 𝐂𝐐 ⊆
𝐅𝐎. Given an ontology = ∪ and a language ⊆ 𝐅𝐎, with ()
we refer to the subset of containing all those sentences constructible
sing the atomic concepts and atomic roles in the signature of as

predicates, and the constants occurring in ∪ and the variables in
𝛴 as terms. Given a language ⊆ 𝐅𝐎, a TBox , and an ABox , we
denote by 𝖼𝗅 () the set of those sentences in (∪) that are entailed
y ∪, i.e. 𝖼𝗅 () = {𝜙 ∣ 𝜙 ∈ (∪) and ∪ ⊧ 𝜙}.

We recall that, for every DL-Lite TBox and BUCQ 𝑄, it is possible
o effectively compute an FO query 𝑞𝑟, called the perfect reformulation
of 𝑄 with respect to , such that, for each ABox , we have ∪ ⊧ 𝑄
f and only if 𝖾𝗏𝖺𝗅(, 𝑞𝑟) is true [13]. This yields the well-known result

that answering BUCQs over DL-Lite ontologies is FO-rewritable, and
hen the underlying decision problem is in AC0 in the size of the ABox,
.e. in the so-called data complexity [23]. In this paper, we will use the
lgorithm 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 given in [13], which takes as input a BUCQ 𝑄 and
 TBox and uses the positive inclusions in as rewriting rules to
ompute the perfect reformulation of 𝑄 with respect to . 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿
xecutes two main steps, applied repeatedly to each BCQ 𝑞 ∈ 𝑄 until
 fixpoint is reached: step (𝑖) uses positive inclusions as rewriting rules
pplied from right to left, to rewrite query atoms one by one, each time

producing a new BCQ to be added to the final rewriting 𝑞𝑟; step (𝑖𝑖)
unifies the atoms in the query to enable further executions of step (𝑖).

e point out that the reformulation 𝑞𝑟 returned by 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 is in turn
 BUCQ. The following proposition firstly appeared in [13].

Proposition 1. Let be a DL-Lite TBox and 𝑄 be a BUCQ. For every
Box , we have that ∪ ⊧ 𝑄 if and only if 𝖾𝗏𝖺𝗅(, 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑄,))
s true.

For the sake of presentation, we will limit our technical treatment
to languages containing only closed formulas, but our results also hold
for open formulas. In particular, the results on entailment of BUCQ (see
Sections 6 and 8) can be extended to arbitrary (i.e. non-Boolean) UCQs
n the standard way.2 All the complexity results in this paper concern

data complexity.

3. Framework for CQE in DLs

We now define the framework for CQE over DL ontologies. First of
all, given a TBox , a policy for is a set of denials over the signature
of such that ∪ is a consistent FO theory. We then introduce CQE
specifications.

Definition 1 (CQE Specification). Let be a DL. An CQE specifi-
ation is a pair = ⟨ ,⟩, where is an TBox and is a policy
or .

2 We also note that, since DL-Lite is insensitive to the adoption of the
nique name assumption (UNA) for CQ answering [24], all our results hold

both with and without UNA.
 𝖼

3
In the rest of the paper, we will omit for definitions and results
applying to any DL.

Example 1. Consider the following DL-Lite CQE specification =
⟨ ,⟩, where:

 = {𝖲𝖲𝖾𝗋𝗏 ⊑ 𝖦𝖠𝗀𝖾𝗇𝖼𝗒,

𝖲𝖲𝖾𝗋𝗏 ⊑ ∃𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇,

𝖬𝖺𝗇𝖺𝗀𝖾𝗌 ⊑ 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋,

∃𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒− ⊑ ∃𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇 }

 = {∀𝑥, 𝑦.𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥) → ⊥,

∀𝑥, 𝑦.𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) → ⊥ }

In words, the TBox sanctions that (𝑖) every secret service (𝖲𝖲𝖾𝗋𝗏) is
 particular kind of government agency (𝖦𝖠𝗀𝖾𝗇𝖼𝗒) and it must operate
n (∃𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇) some countries, (𝑖𝑖) if somebody manages (𝖬𝖺𝗇𝖺𝗀𝖾𝗌)
n agency, then she/he works for (𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋) that agency, and (𝑖𝑖𝑖)
ho breaches an agency (∃𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒−) operates in (∃𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇) some

countries. The data protection policy specified by hides all the people
orking for a secret service and all the secret services that have been
reached. □

In this paper we make use of the notion of confidentiality-preserving
(CP) censors, introduced for the first time in [9] and then generalized
in [11] through parameterization with respect to a censor language.

Informally, given a CQE specification = ⟨ ,⟩, a CP censor in a
language 𝑐 (called censor language) is a function that, taken an ABox
 for as input, establishes which are the sentences in 𝑐 entailed by
 ∪ that can be disclosed to the user without violating the policy .

Definition 2 (CP Censor). Let = ⟨ ,⟩ be a CQE specification
and 𝑐 ⊆ 𝐅𝐎 be a language. A confidentiality-preserving (CP) censor
in 𝑐 for is a function 𝖼𝖾𝗇𝗌(⋅) that, for each ABox , returns a set
𝖼𝖾𝗇𝗌() ⊆ 𝖼𝗅𝑐

() such that ∪ ∪ 𝖼𝖾𝗇𝗌() is a consistent FO theory.

Example 2. Recall the CQE specification = ⟨ ,⟩ provided in
Example 1. The following functions are CP censors in 𝐆𝐀 for , i.e.
when the censor language 𝑐 coincides with the language of ground
atoms:

− 𝖼𝖾𝗇𝗌1(⋅) such that 𝖼𝖾𝗇𝗌1() = 𝖼𝗅𝐆𝐀() ⧵ {𝖲𝖲𝖾𝗋𝗏(𝑐) ∣ 𝑐 ∈ 𝛴 and
 ∪ ⊧ ∃𝑥.(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑥, 𝑐) ∨ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑐 , 𝑥))} for each ABox ;

− 𝖼𝖾𝗇𝗌2(⋅) such that 𝖼𝖾𝗇𝗌2() = ⧵{𝖲𝖲𝖾𝗋𝗏(𝑐) ∣ 𝑐 ∈ 𝛴 and 𝖲𝖲𝖾𝗋𝗏(𝑐) ∈
} for each ABox . □

It is easy to see that a CP censor always exists,3 but, as Example 2
shows, there may be many CP censors in a given censor language 𝑐
or a given CQE specification , and so it is reasonable to look for those
P censors preserving as much information as possible. Formally, given
wo CP censors 𝖼𝖾𝗇𝗌(⋅) and 𝖼𝖾𝗇𝗌′(⋅) in a censor language 𝑐 for a CQE
pecification = ⟨ ,⟩, we say that 𝖼𝖾𝗇𝗌′(⋅) is more informative than
𝖾𝗇𝗌(⋅) if:

1. 𝖼𝖾𝗇𝗌() ⊆ 𝖼𝖾𝗇𝗌′(), for every ABox , and
2. there exists an ABox ′ such that 𝖼𝖾𝗇𝗌(′) ⊂ 𝖼𝖾𝗇𝗌′(′).

We are now ready to formalize the notion of optimal CP censors for
a CQE specification.

Definition 3 (Optimal CP Censor). Given a CQE specification and a
language 𝑐 , we say that a CP censor 𝖼𝖾𝗇𝗌(⋅) in 𝑐 for is optimal in
𝑐 if there does not exist any CP censor 𝖼𝖾𝗇𝗌′(⋅) in 𝑐 for such that
𝖼𝖾𝗇𝗌′(⋅) is more informative than 𝖼𝖾𝗇𝗌(⋅).

3 Given any CQE specification , note that the function 𝖼𝖾𝗇𝗌(⋅) such that
𝖾𝗇𝗌() = ∅ for each ABox is trivially a CP censor in 𝐆𝐀 for .

G. Cima et al.

𝖼
𝖼

c
n
a

c
a
t

s

w
C

f

C
W

s
c
A
t
m
a

C
𝖼

e
i
𝛾

𝖼

𝖼

c
p

t
𝖼

𝖼

Journal of Web Semantics 84 (2025) 100841
Example 3. Consider again the CQE specification = ⟨ ,⟩ and the
CP censors 𝖼𝖾𝗇𝗌1(⋅) and 𝖼𝖾𝗇𝗌2(⋅) in 𝐆𝐀 for of Example 2. Note that
𝖾𝗇𝗌2(⋅) is not optimal in 𝐆𝐀 because 𝖼𝖾𝗇𝗌1(⋅) is more informative than
𝖾𝗇𝗌2(⋅). Indeed, consider the following ABox:

 = { 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎𝑛𝑛, 𝑎2), 𝖲𝖲𝖾𝗋𝗏(𝑎2),

𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑎2, ℎ2) }.
It is easy to verify that 𝖼𝖾𝗇𝗌2() ⊂ 𝖼𝖾𝗇𝗌1() (in particular, 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎2) ∈
𝖼𝖾𝗇𝗌1() ⧵ 𝖼𝖾𝗇𝗌2()). Moreover, one can see and that 𝖼𝖾𝗇𝗌2(′) ⊆
𝖼𝖾𝗇𝗌1(′) for every other ABox ′. On the other hand, one can verify
that 𝖼𝖾𝗇𝗌1(⋅) is an optimal CP censor in 𝐆𝐀 for . □

For a given censor language 𝑐 , we are naturally interested in the
ensors in 𝑐 that are maximally informative, i.e. that do not filter out
on-confidential information. Therefore, from now on we restrict our
ttention to optimal censors in 𝑐 .

Moreover, as said in the introduction, to increase the robustness
of censors, literature on CQE has often looked at censors satisfying
a property of instance indistinguishability (or, simply, indistinguishabil-
ity) [3,7,12,25]. Intuitively, a censor fulfilling such a property masks
onfidential information in such a way that a user cannot distinguish
n instance actually containing sensitive data (i.e. those protected by
he policy) from an instance without such data, in order to increase the

incompleteness of the information of a possible attacker.
A CP censor for a CQE specification satisfies the indistinguisha-

bility property if for every ABox there exists an ABox ′ (possibly
distinct from) that does not violate any data protection property
and is indistinguishable from from the user perspective. In our
framework, this is formalized as follows.

Definition 4 (Indistinguishability). Let = ⟨ ,⟩ be a CQE specifica-
tion, 𝑐 ⊆ 𝐅𝐎, and 𝖼𝖾𝗇𝗌(⋅) be a CP censor in 𝑐 for . We say that 𝖼𝖾𝗇𝗌(⋅)
satisfies the indistinguishability property if, for every ABox , there exists
an ABox ′ (not necessarily distinct from) such that:

(𝑖) 𝖼𝖾𝗇𝗌() = 𝖼𝖾𝗇𝗌(′), and
(𝑖𝑖) ∪ ∪′ is a consistent FO theory.

Example 4. Consider again the CQE specification = ⟨ ,⟩ and
the optimal CP censor 𝖼𝖾𝗇𝗌1(⋅) in 𝐆𝐀 for of Example 2. Observe that
𝖼𝖾𝗇𝗌1(⋅) satisfies the indistinguishability property because, given any
ABox , we have that 𝖼𝖾𝗇𝗌1() itself plays the role of the ABox ′

atisfying the conditions (𝑖) and (𝑖𝑖) of Definition 4. □

Previous research in CQE has mostly considered two censor lan-
guages: 𝐂𝐐 [9] and 𝐆𝐀 [11,26]. We now analyze these two languages
with respect to the above indistinguishability property.

Our first result states that, in general, optimal censors in 𝐂𝐐, i.e.
hen the censor language 𝑐 coincides with the language of Boolean
onjunctive Queries, do not satisfy the indistinguishability property.

Proposition 2. There exists a CQE specification and an optimal censor
𝖼𝖾𝗇𝗌(⋅) for in 𝐂𝐐 such that 𝖼𝖾𝗇𝗌(⋅) does not satisfy the indistinguishability
property.

Proof. Let = ⟨ ,⟩ with = ∅, = {𝐶(𝑎) → ⊥}. It can be
easily verified that the unique optimal censor 𝖼𝖾𝗇𝗌(⋅) for in 𝐂𝐐 is
such that: (𝑖) for every ABox that contains 𝐶(𝑎), 𝖼𝖾𝗇𝗌() = {𝑞 ∈
𝐂𝐐 ∣ (⧵ {𝐶(𝑎)}) ∪ {∃𝑥.𝐶(𝑥)} ⊧ 𝑞}; (𝑖𝑖) for every ABox that does
not contain 𝐶(𝑎), 𝖼𝖾𝗇𝗌() = {𝑞 ∈ 𝐂𝐐 ∣ 𝖾𝗏𝖺𝗅(, 𝑞) is true}. Now, observe
that, for the ABox = {𝐶(𝑎)}, there exists no ABox ′ such that
 ∪ ∪′ is consistent (i.e. ′ does not contain 𝐶(𝑎)) and 𝖼𝖾𝗇𝗌(′) =
𝖼𝖾𝗇𝗌(). Consequently, 𝖼𝖾𝗇𝗌(⋅) does not satisfy the indistinguishability
property. ■
4
We now consider the case of 𝐆𝐀 as the censor language, and show
that, whatever is the CQE specification , all optimal CP censors in 𝐆𝐀
or enjoy the indistinguishability property. The formal proof makes

use of the following two lemmas.

Lemma 1. Let = ⟨ ,⟩ be a CQE specification, 𝖼𝖾𝗇𝗌(⋅) be an optimal
P censor in 𝑐 for , and be an ABox such that ∪ ∪ is consistent.
e have that 𝖼𝖾𝗇𝗌() = 𝖼𝗅𝑐

().

Proof. Note that 𝖼𝖾𝗇𝗌() ⊆ 𝖼𝗅𝑐
() trivially holds from the fact that

𝖼𝖾𝗇𝗌(⋅) is a CP censor in 𝑐 for . We now prove that 𝖼𝗅𝑐
() ⊆ 𝖼𝖾𝗇𝗌()

holds as well.
Towards a contradiction, suppose this is not the case, i.e. there exists

a 𝛾 ∈ 𝖼𝗅𝑐
() such that 𝛾 ∉ 𝖼𝖾𝗇𝗌(). Since ∪ ∪ is consistent, and

ince 𝛾 ∈ 𝖼𝗅𝑐
(), we have ∪ ∪ ∪ {𝛾} is consistent as well. So,

onsider the function 𝖼𝖾𝗇𝗌′(⋅) such that (𝑖) 𝖼𝖾𝗇𝗌(′) = 𝖼𝖾𝗇𝗌′(′) for each
Box ′ ≠ , and (𝑖𝑖) 𝖼𝖾𝗇𝗌′() = 𝖼𝖾𝗇𝗌() ∪ {𝛾}. It is straightforward

o verify that 𝖼𝖾𝗇𝗌′(⋅) is a CP censor in 𝑐 for and that 𝖼𝖾𝗇𝗌′(⋅) is
ore informative than 𝖼𝖾𝗇𝗌(⋅). This contradicts the fact that 𝖼𝖾𝗇𝗌(⋅) is

n optimal CP censor in 𝑐 for . ■

In words, the above result shows that, if the considered ABox does
not contain confidential data, then every optimal CP censor in 𝑐
preserves all the information in that can be expressed in 𝑐 . In
particular, if 𝑐 ⊇ , then each optimal CP censor preserves all the
information in .

Lemma 2. Let = ⟨ ,⟩ be a CQE specification, 𝖼𝖾𝗇𝗌(⋅) be an optimal
P censor in 𝑐 for , and be an ABox. We have that 𝖼𝖾𝗇𝗌() =
𝗅𝑐

(𝖼𝖾𝗇𝗌()).

Proof. Note that 𝖼𝖾𝗇𝗌() ⊆ 𝖼𝗅𝑐
(𝖼𝖾𝗇𝗌()) trivially holds. We now prove

that 𝖼𝗅𝑐
(𝖼𝖾𝗇𝗌()) ⊆ 𝖼𝖾𝗇𝗌() holds as well.

Towards a contradiction, suppose this is not the case, i.e. there
xists a 𝛾 ∈ 𝖼𝗅𝑐

(𝖼𝖾𝗇𝗌()) such that 𝛾 ∉ 𝖼𝖾𝗇𝗌(). Since ∪ ∪ 𝖼𝖾𝗇𝗌()
s consistent because 𝖼𝖾𝗇𝗌(⋅) is a CP censor in 𝑐 for , and since
∈ 𝖼𝗅𝑐

(𝖼𝖾𝗇𝗌()), we have that ∪ ∪ 𝖼𝖾𝗇𝗌() ∪ {𝛾} is consistent as
well. So, exactly as done in the proof of Lemma 1, consider the function
𝖾𝗇𝗌′(⋅) such that (𝑖) 𝖼𝖾𝗇𝗌(′) = 𝖼𝖾𝗇𝗌′(′) for each ABox ′ ≠ , and (𝑖𝑖)
𝖾𝗇𝗌′() = 𝖼𝖾𝗇𝗌() ∪ {𝛾}. It is straightforward to verify that 𝖼𝖾𝗇𝗌′(⋅) is a

CP censor in 𝑐 for and that 𝖼𝖾𝗇𝗌′(⋅) is more informative than 𝖼𝖾𝗇𝗌(⋅).
This contradicts the fact that 𝖼𝖾𝗇𝗌(⋅) is an optimal CP censor in 𝑐 for
 . ■

Theorem 1. Let be a CQE specification and 𝖼𝖾𝗇𝗌(⋅) be an optimal CP
ensor in 𝐆𝐀 for . We have that 𝖼𝖾𝗇𝗌(⋅) satisfies the indistinguishability
roperty.

Proof. According to Definition 2, when the censor language is set to
𝐆𝐀, for every ABox we have that 𝖼𝖾𝗇𝗌() ⊆ 𝖼𝗅𝐆𝐀(), i.e. 𝖼𝖾𝗇𝗌()
is an ABox, and also that ∪ ∪ 𝖼𝖾𝗇𝗌() is consistent. We show
hat the ABox ′ of Definition 4 is 𝖼𝖾𝗇𝗌() itself, i.e. we show that
𝖾𝗇𝗌() = 𝖼𝖾𝗇𝗌(𝖼𝖾𝗇𝗌()) for each ABox .

Consider any ABox . By Lemma 2, we have that 𝖼𝖾𝗇𝗌() =
𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()). Furthermore, since ∪ ∪ 𝖼𝖾𝗇𝗌() is consistent, by
Lemma 1 we know that 𝖼𝖾𝗇𝗌(𝖼𝖾𝗇𝗌()) = 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()). It follows that
𝖾𝗇𝗌() = 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()) = 𝖼𝖾𝗇𝗌(𝖼𝖾𝗇𝗌()), as required. ■

As a consequence of Proposition 2 and Theorem 1, in what follows
we focus our study on BUCQ answering over DL-Lite CQE specifi-
cations by considering optimal CP censors in 𝐆𝐀, that, for sake of
conciseness, we will denote by (optimal) GA censors.

G. Cima et al.

o
1
2
3
4
5
6
7
8

o

o
t
o
a

b

d

t

f

i
t
𝖼
t
𝖼
t
i
f

i

f

w

t
b
f

𝖮

a

t

G

n
c

Journal of Web Semantics 84 (2025) 100841
Algorithm 1 𝖮𝗉𝗍𝖦𝖠𝖢𝖾𝗇𝗌𝗈𝗋

input: a DL-Lite CQE specification = ⟨ ,⟩, an ABox ;
utput: an ABox ′;
) ← 𝖼𝗅𝐆𝐀();
) ′ ← ∅;
) while ≠ ∅ do:
) let 𝛼 be the lexicographically first assertion in ;
) ← ⧵ {𝛼};
) if ∪′ ∪ {𝛼} ∪ is consistent then
) ′ ← ′ ∪ {𝛼};
) return ′;

4. Query answering under optimal GA censors

In this section we study query answering under optimal GA censors
over DL-Lite CQE specifications. In particular, we consider entailment
f BUCQs.

A possible strategy for addressing this problem is to choose only
ne GA censor among the optimal ones, and use it to alter the answers
o user queries. In the absence of a criterion for determining which
ptimal censor is the best for users’ purposes, the choice is made in an
rbitrary way, as done in [9,27].

In the same spirit, we provide the algorithm 𝖮𝗉𝗍𝖦𝖠𝖢𝖾𝗇𝗌𝗈𝗋 (Al-
gorithm 1), which implements a function that, for every DL-Lite
CQE specification and every ABox , returns an ABox that indeed
coincides with 𝖼𝖾𝗇𝗌() for an optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for .

The algorithm first computes the set of ground atoms entailed
y ∪. Then, it iteratively picks a ground atom 𝛼 from following

a lexicographic order, and adds 𝛼 to the current ABox ′ if ∪′∪ {𝛼}
oes not violate the policy .

It is easy to see that the algorithm runs in polynomial time in the
size of , as stated by the following theorem, which also establishes
he correctness of the algorithm.

Theorem 2. Let = ⟨ ,⟩ be a DL-Lite CQE specification. The
ollowing holds:

• There exists an optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for such that, for each
ABox , 𝖮𝗉𝗍𝖦𝖠𝖢𝖾𝗇𝗌𝗈𝗋(,) returns 𝖼𝖾𝗇𝗌();

• Given any ABox , 𝖮𝗉𝗍𝖦𝖠𝖢𝖾𝗇𝗌𝗈𝗋(,) runs in polynomial time in
the size of .

Proof. For each ABox , the set ′ returned by the algorithm contains
only assertions in 𝖼𝗅𝐆𝐀(), that is, it contains only assertions in 𝐆𝐀
entailed by ∪ . Moreover, step 6 of the algorithm guarantees that
 ∪′∪ is a consistent FO theory. Hence, according to Definition 2, the
algorithm implements a GA censor 𝖼𝖾𝗇𝗌(⋅) for . Verifying that 𝖼𝖾𝗇𝗌(⋅)
s optimal is also immediate. Indeed, suppose, by way of contradiction,
hat there exists an ABox and a censor 𝖼𝖾𝗇𝗌′(⋅) such that 𝖼𝖾𝗇𝗌() ⊂
𝖾𝗇𝗌′() and 𝖼𝖾𝗇𝗌(′′) ⊆ 𝖼𝖾𝗇𝗌′(′′) for every other ABox ′′. This means
hat there exists an assertion 𝛼 ∈ 𝖼𝗅𝐆𝐀() such that 𝛼 in 𝖼𝖾𝗇𝗌′() ⧵
𝖾𝗇𝗌(), but since 𝛼 is not in 𝖼𝖾𝗇𝗌() then ∪ 𝖼𝖾𝗇𝗌() ∪ {𝛼} ∪ has
o be inconsistent (step 6 of the algorithm), and so ∪ 𝖼𝖾𝗇𝗌′() ∪ is
nconsistent too, which contradicts the fact that 𝖼𝖾𝗇𝗌′(⋅) is a GA censor
or .

As for the complexity, note that the algorithm iterates on the set
of ABox assertions 𝖼𝗅𝐆𝐀() by choosing an assertion 𝛼 and, in each
teration, it checks whether ∪ ′ ∪ {𝛼} ∪ is consistent. Clearly,

the algorithm terminates since 𝖼𝗅𝐆𝐀() is finite. Moreover, the thesis
ollows from the following facts: (𝑖) given a DL-Lite TBox, a policy ,

and an ABox ′∪ {𝛼}, checking whether ∪′∪ {𝛼} ∪ is consistent can
0 ′ 28]; (𝑖𝑖) the set 𝖼𝗅 () can be
be done in AC w.r.t. the size of ∪ {𝛼} [𝐆𝐀

5
computed in polynomial time w.r.t. || and that its size is polynomial
.r.t. || as well. ■

From Theorem 2 it follows that, given a DL-Lite CQE specification
 = ⟨ ,⟩, an ABox and a BUCQ 𝑞, it is possible to verify in
polynomial time in the size of whether ∪ 𝖼𝖾𝗇𝗌() ⊧ 𝑞, where 𝖼𝖾𝗇𝗌(⋅)
is the optimal GA censor for implemented by the algorithm (since
the size of 𝖼𝖾𝗇𝗌() is polynomially related to the size of and that
deciding ∪ 𝖼𝖾𝗇𝗌() ⊧ 𝑞 is in AC0 w.r.t. the size of 𝖼𝖾𝗇𝗌()).

Moreover, given a DL-Lite CQE specification and an ABox , it
is possible to simulate the behavior of different optimal GA censors for
 (actually, every optimal GA censor for) on by simply modifying
he order in which the ABox assertions from the set 𝖼𝗅𝐆𝐀() are selected
y the algorithm (see step 4). More formally, it is easy to see that the
ollowing holds.

Proposition 3. Let = ⟨ ,⟩ be a DL-Lite CQE specification.
For every optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for and for every ABox , there
exists a lexicographic order on the ground atoms in 𝖼𝗅𝐆𝐀() for which
𝗉𝗍𝖦𝖠𝖢𝖾𝗇𝗌𝗈𝗋(,) returns 𝖼𝖾𝗇𝗌().

Depending on the application at hand, however, the approach of
randomly choosing a censor may not always be considered appropri-
te [9]. For this reason, [11] studies skeptical entailment under all the

optimal censors, i.e. a Boolean query 𝑞 has a positive answer over a
CQE specification and an ABox if 𝑞 is entailed when considering
each optimal GA censor for .

Definition 5. Let = ⟨ ,⟩ be a CQE specification, be an ABox,
and 𝑞 be a Boolean query. GA-Cens-Entailment(,, 𝑞) is the problem
of deciding whether ∪ 𝖼𝖾𝗇𝗌() ⊧ 𝑞 for each optimal GA censor 𝖼𝖾𝗇𝗌(⋅)
for .

Example 5. Recall the CQE specification = ⟨ ,⟩ of Example 4
and the GA censor 𝖼𝖾𝗇𝗌1(⋅) for illustrated in Example 2. Furthermore,
consider the GA censor 𝖼𝖾𝗇𝗌4(⋅) for such that 𝖼𝖾𝗇𝗌4() = 𝖼𝗅𝐆𝐀(

′) for
each ABox , where ′ is the ABox obtained from by removing the
ground atoms 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎, 𝑏), 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎, 𝑏), and 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑏, 𝑎) for all
the individuals 𝑎, 𝑏 ∈ 𝛴 such that 𝖲𝖲𝖾𝗋𝗏(𝑏) ∈ . Now, if we consider
he ABox of Example 3, then it is easy to verify that every optimal

GA censor for applied to returns one of the two following sets of
ground atoms:

𝖼𝖾𝗇𝗌1() = {𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎𝑛𝑛, 𝑎2), 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎𝑛𝑛, 𝑎2), ;
𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑎2, ℎ2), 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎2)}

𝖼𝖾𝗇𝗌4() = {𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖲𝖲𝖾𝗋𝗏(𝑎2), 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎2)}.

For the BCQ 𝑞 = ∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦), we have that
A-Cens-Entailment(,, 𝑞) is true because both ∪ 𝖼𝖾𝗇𝗌1() ⊧ 𝑞 and

 ∪ 𝖼𝖾𝗇𝗌4() ⊧ 𝑞 hold. □

Despite skeptically reasoning under all optimal GA censors is a
atural approach for avoiding the randomness introduced by arbitrarily
hoosing one (optimal) GA censor over the others, as shown in [11],

the GA-Cens-Entailment problem is intractable in data complexity in
our considered scenario (in fact, already for BCQs), unless P = NP.

Theorem 3 ([11]). GA-Cens-Entailment(,, 𝑞) for DL-Lite CQE speci-
fications and BCQs 𝑞 is coNP-complete in data complexity.

In the next section, we propose a new semantics for CQE that
soundly approximates GA censor semantics we discussed so far and, at
the same time, allows us to overcome the above computational issue.

5. IGA censors

Towards the identification of a practical setting, we propose a new
semantically well-founded notion of GA censor which, on the one hand,

G. Cima et al.

s

𝖼

d

A

t

a

p

e
𝖼
t
𝐆
t
f

a
𝖼

h

i
i

b
f
r

t
r

G
6

s

i
C
q
t
r

Journal of Web Semantics 84 (2025) 100841
makes, in the case of DL-Lite, conjunctive query answering tractable
(by approximating the skeptical reasoning), and, on the other hand,
avoids arbitrary choices by being always unique.

The approximation we propose consists in considering a non-
necessarily optimal GA censor corresponding to computing the inter-
ection of all optimal GA censor for a CQE specification CQE.

Definition 6 (IGA Censor). Let = ⟨ ,⟩ be a CQE specification. The
Intersection GA (IGA) censor for is the function 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅) such that,
for every ABox :

𝖼𝖾𝗇𝗌𝖨𝖦𝖠() =
⋂

𝖼𝖾𝗇𝗌(⋅)∈𝗈𝗉𝗍𝖢𝖾𝗇𝗌()
𝖼𝖾𝗇𝗌()

where 𝗈𝗉𝗍𝖢𝖾𝗇𝗌() denotes the set of optimal GA censors for .

Example 6. Recall the CQE specification = ⟨ ,⟩ and the optimal
GA censors 𝖼𝖾𝗇𝗌1(⋅) and 𝖼𝖾𝗇𝗌4(⋅) for of Example 5. The IGA censor for

is the function 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅) such that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = 𝖼𝖾𝗇𝗌1() ∩ 𝖼𝖾𝗇𝗌4()
for each ABox , i.e. 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() is the ABox obtained from 𝖼𝗅𝐆𝐀()
by removing (𝑖) the ground atoms 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎, 𝑏), 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎, 𝑏), and
𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑏, 𝑎) for all individuals 𝑎, 𝑏 ∈ 𝛴 such that 𝖲𝖲𝖾𝗋𝗏(𝑏) ∈
and (𝑖𝑖) the ground atoms 𝖲𝖲𝖾𝗋𝗏(𝑏) such that 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎, 𝑏) ∈ , or
𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎, 𝑏) ∈ or 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑏, 𝑎) ∈ for all individuals 𝑎, 𝑏 ∈ 𝛴 .

As an example, consider the ABox of Example 3. We have that
𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = {𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎1)}. □

As the above example shows, the IGA censor for a CQE specification
 is not guaranteed to be an optimal GA censor. Notably, however, the
following proposition shows that, for any CQE specification , the IGA
censor exists and is unique.

Proposition 4. Let = ⟨ ,⟩ be a CQE specification. The IGA censor
𝖾𝗇𝗌𝖨𝖦𝖠(⋅) for exists, is unique, and is a GA censor for .

Proof. By looking at Definition 6, in order to prove that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅)
exists, it is enough to show the existence of at least an optimal GA
censor 𝖼𝖾𝗇𝗌(⋅) for . The uniqueness, then, directly follows from its
efinition. To see that there exists at least one optimal GA censor for
, observe that (𝑖) the function 𝖼𝖾𝗇𝗌0(⋅) such that 𝖼𝖾𝗇𝗌0() = ∅ for each
Box is a GA censor for , and (𝑖𝑖) each GA censor 𝖼𝖾𝗇𝗌(⋅) for is

such that 𝖼𝖾𝗇𝗌() is a finite set of ground atoms for each ABox . This
latter is guaranteed by the fact that 𝖼𝖾𝗇𝗌() ⊆ 𝖼𝗅𝐆𝐀() by definition,
where 𝖼𝗅𝐆𝐀() is a finite set of ground atoms since is a finite set of
ground atoms as well. So, (𝑖) and (𝑖𝑖) imply the existence of at least one
optimal GA censor for .

We now prove that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅) is a GA censor for . Let be any
ABox. Note that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ⊆ 𝖼𝖾𝗇𝗌() for any optimal GA censor 𝖼𝖾𝗇𝗌(⋅)
for . Since, however, ∪ ∪ 𝖼𝖾𝗇𝗌() is consistent for any GA censor
𝖼𝖾𝗇𝗌(⋅) for , we have that ∪ ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() is consistent as well due
to the monotonicity of first-order-logic. ■

We show now that the IGA censor satisfies the indistinguishability
property. First, we provide the counterparts of Lemmas 1 and 2 for the
IGA censor.

Lemma 3. Let = ⟨ ,⟩ be a CQE specification and be an ABox such
hat ∪ ∪ is consistent. We have that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = 𝖼𝗅𝐆𝐀().

Proof. The thesis trivially follows from the definition of IGA censor
nd by Lemma 1. ■

Lemma 4. Let = ⟨ ,⟩ be a CQE specification and be an ABox. We
have that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()).
6
Proof. Note that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ⊆ 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()) trivially holds. We now
rove that 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()) ⊆ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠().

Towards a contradiction, suppose this is not the case, i.e. there
xists a 𝛾 ∈ 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()) such that 𝛾 ∉ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(). Since 𝛾 ∈
𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()), then there exists in 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() a set of facts such
hat ∪ ⊧ 𝛾. Moreover, since 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ⊆ 𝖼𝖾𝗇𝗌() for each optimal
𝐀 censor 𝖼𝖾𝗇𝗌(⋅) for , we also have that ⊆ 𝖼𝖾𝗇𝗌(), and so, given

he monotonicity of first-order-logic, we have that 𝛾 ∈ 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌())
or each optimal censor 𝖼𝖾𝗇𝗌(⋅) for . Therefore, by Lemma 2, we have

also that 𝛾 ∈ 𝖼𝖾𝗇𝗌(), for each optimal 𝐆𝐀 censor 𝖼𝖾𝗇𝗌(⋅) for , from
which it clearly holds that 𝛾 ∈ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(). This contradicts the initial
ssumption that 𝛾 ∉ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(). Thus, it must be that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() =
𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()). ■

We are now ready to show that the indistinguishability property
olds for the IGA censor.

Proposition 5. Let = ⟨ ,⟩ be a CQE specification. The IGA censor
𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅) for satisfies the indistinguishability property.

Proof. We prove that the ABox ′ of Definition 4 is 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() itself,
.e. we show that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() is an ABox such that ∪ ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠()
s consistent and 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()) for each ABox
. Consider any ABox . By Lemma 4, we have that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() =

𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌()). Furthermore, since ∪ ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() is consistent,
y Lemma 3 we know that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()) = 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()). It
ollows that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = 𝖼𝗅𝐆𝐀(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()) = 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(𝖼𝖾𝗇𝗌𝖨𝖦𝖠()), as
equired. ■

6. Query answering under the IGA censor

In this section, we focus on DL-Lite CQE specifications and BUCQs
as queries, and we show that query answering based on the IGA censor
is reducible to the evaluation of an FO query over the ABox, i.e. it is
FO-rewritable and therefore in AC0 in data complexity.

Below, we provide the general decision problem we focus on.

Definition 7. Let = ⟨ ,⟩ be a CQE specification, be an ABox,
and 𝑞 be a Boolean query. IGA-Cens-Entailment(,, 𝑞) is the problem
of deciding whether ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ⊧ 𝑞.

The following proposition, whose proof is straightforward, says
hat IGA-Cens-Entailment is a sound approximation of the skeptical
easoning approach under GA censors.

Proposition 6. Let = ⟨ ,⟩ be a CQE specification, be an ABox,
and 𝑞 be a Boolean query. If IGA-Cens-Entailment(,, 𝑞) is true, then
A-Cens-Entailment(,, 𝑞) is true.

The next example shows that, in general, the converse of Proposition
does not hold.

Example 7. We refer to the same CQE specification and ABox of
Example 5. While we have that GA-Cens-Entailment(,, 𝑞) is true, ob-
erve that IGA-Cens-Entailment(,, 𝑞) is false because ∪𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ̸⊧
𝑞. □

In what follows on this section, we show that IGA-Cens-Entailment
s FO-rewritable in our considered scenario, that is, for every DL-Lite
QE specification and BUCQ 𝑞, one can effectively compute an FO
uery 𝑞𝑟 such that, for every ABox , IGA-Cens-Entailment(,, 𝑞) is
rue if and only if 𝖾𝗏𝖺𝗅(, 𝑞𝑟) is true. We call such a query 𝑞𝑟 the IGA
eformulation of 𝑞 with respect to .

The intuition behind our rewriting algorithm is as follows. For a
DL-Lite CQE specification = ⟨ ,⟩, given any ABox , we want to
filter out facts from 𝖼𝗅𝐆𝐀() that together with the TBox lead to the
violation of some denial in the policy . At the same time, we want

this elimination of facts to be done in a minimal way, according to our

G. Cima et al.

s

A

𝑠

𝖬

o
f

A
f

s

i
d
t

p

l
s
F

D
w
w
a

p

i
𝖬

a
g
∀

𝑞
f

p
w

T

Journal of Web Semantics 84 (2025) 100841
definition of the IGA censor. Thus, only ‘‘really dangerous’’ facts have
to be dropped from 𝖼𝗅𝐆𝐀(). Let us first formally define such a minimal
et of facts violating the policy, which we call secrets.

Definition 8. Let = ⟨ ,⟩ be a CQE specification and be an
Box. A set of ground atoms ⊆ 𝖼𝗅𝐆𝐀() is a secret for and if

(i) ∪ ∪ is inconsistent, and
(ii) there is no set ′ of ground atoms such that ′ ⊂ and ∪ ∪ ′

is inconsistent.

Given a CQE specification and an ABox , we denote by
𝑒𝑐 𝑟𝑒𝑡𝑠(,) the set of secrets for and .

Example 8. Consider the CQE specification = ⟨ ,⟩ and ABox
of the previous examples. We have that 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,) = {{𝖲𝖲𝖾𝗋𝗏(𝑎2),
𝖺𝗇𝖺𝗀𝖾𝗌(𝑎𝑛𝑛, 𝑎2)}, {𝖲𝖲𝖾𝗋𝗏(𝑎2),𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎𝑛𝑛, 𝑎2)}, {𝖲𝖲𝖾𝗋𝗏(𝑎2),

𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑎2, ℎ2)}}. These are indeed the only three minimal subsets
 of 𝖼𝗅𝐆𝐀() such that ∪ ∪ is inconsistent. □

The next key proposition shows that, for DL-Lite CQE specifica-
tions = ⟨ ,⟩, given an ABox , the IGA censor for returns all and
nly those ground atoms in 𝖼𝗅𝐆𝐀() that does not occur in any secret
or and .

Proposition 7. Let = ⟨ ,⟩ be a DL-Lite CQE specification, be an
Box, and 𝛾 ∈ 𝖼𝗅𝐆𝐀(). We have that 𝛾 ∉ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() if and only if 𝛾 ∈
or some ∈ 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,).

Proof. Note that a ground atom 𝛾 ∈ 𝖼𝗅𝐆𝐀() does not belong to
𝖼𝖾𝗇𝗌𝖨𝖦𝖠() if and only if there exists an optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for
 such that 𝛾 ∉ 𝖼𝖾𝗇𝗌(). So it is sufficient to show that 𝛾 ∉ 𝖼𝖾𝗇𝗌() for
ome optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for if and only if there exists a secret
 in 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,) such that 𝛾 ∈ .

(⇒). Suppose, by way of contradiction, that 𝛾 does not belong to
any secret in 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,). It follows that, for any optimal GA censor
𝖼𝖾𝗇𝗌(⋅) for , ∪ ∪ 𝖼𝖾𝗇𝗌() ∪ {𝛾} is consistent (otherwise, one can
see that 𝛾 would belong to some secret in 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,)) and so 𝖼𝖾𝗇𝗌(⋅)
is not an optimal GA censor for , from which the contradiction that
𝖼𝖾𝗇𝗌(⋅) is an optimal GA censor for . Indeed, the function 𝖼𝖾𝗇𝗌′(⋅) with
𝖼𝖾𝗇𝗌′(′) = 𝖼𝖾𝗇𝗌(′) for each ABox ′ ≠ and 𝖼𝖾𝗇𝗌′() = 𝖼𝖾𝗇𝗌() ∪ {𝛾}
would be a GA censor for that is more informative than 𝖼𝖾𝗇𝗌(⋅).

(⇐). Suppose that 𝛾 ∈ for some secret ∈ 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,). We
now show that there exists an optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for such that
𝛾 ∉ 𝖼𝖾𝗇𝗌(). From Definition 8, we can derive that ∪ ∪ (⧵ {𝛾})
is consistent. It follows that there exists at least an optimal GA censor
𝖼𝖾𝗇𝗌(⋅) for such that (⧵ {𝛾}) ⊆ 𝖼𝖾𝗇𝗌(). ■

Identifying the ground atoms occurring in some secret is easier if
we can reason on each denial in the policy in isolation. Unfortunately,
this may not always be possible even in very simple cases. Consider,
for instance, the policy = {∀𝑥.𝐴(𝑥) ∧𝐵(𝑥) → ⊥,∀𝑥.𝐴(𝑥) → ⊥}. The set
{𝐴(𝑑), 𝐵(𝑑)} of ground atoms occurring in an ABox is a minimal set
violating the first denial, but is not a secret for ⟨ ,⟩ and since its
subset {𝐴(𝑑)} is in 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(⟨ ,⟩,) (in this example = ∅).

To be able to solve this issue and treat denials separately, we now
ntroduce the notion of extended denial assertion (or simply extended
enial), which is a formula of the form ∀�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�) → ⊥ such
hat ∃�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�) is a BCQ with inequalities.

Then, an extended policy is a finite set of extended denials. More-
over, in the rest of this section, we call non-extended denial a denial as
defined in Section 3.

Definition 9. Let = ⟨ ,⟩ be a CQE specification. An extended
policy ′ is a non-redundant representation of w.r.t. if the following
conditions hold:
7
(𝑖) for every ABox , we have that ∪ ∪ is inconsistent if and
only if ′ ∪ is inconsistent;

(𝑖𝑖) for every 𝛿 ∈ ′, ABox , and minimal (w.r.t. set inclusion) set
of ground atoms ⊆ 𝖼𝗅𝐆𝐀() such that {𝛿} ∪ is inconsistent, we
have that ∈ 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,).

One might think that, given a CQE specification = ⟨ ,⟩, com-
uting an extended policy ′ that is a non-redundant representation of

w.r.t. means simply eliminating from each denial 𝛿 such that
∪ (⧵ {𝛿}) ⊧ 𝛿. In fact, only eliminating denials that are (fully)

ogically inferred by other denials (and the TBox) is not sufficient, since
ome redundancies can occur for specific instantiations of the denials.
or example, consider the CQE specification ⟨ ,⟩, where = ∅ and
= {𝛿1, 𝛿2} with 𝛿1 = ∀𝑥, 𝑦.𝑄(𝑥, 𝑦) ∧ 𝐶(𝑦) → ⊥ and 𝛿2 = ∀𝑧.𝑄(𝑧, 𝑧) → ⊥.

espite the fact that ∪ {𝛿2} ̸⊧ 𝛿1, for the particular instantiation in
hich 𝑥 = 𝑦, giving rise to denial 𝛿1[{𝑥 = 𝑦}] = ∀𝑥.𝑄(𝑥, 𝑥) ∧ 𝐶(𝑥) → ⊥,
e have that ∪ {𝛿2} ⊧ 𝛿1[{𝑥 = 𝑦}]. This implies that, for instance, given
n ABox containing the ABox assertions 𝑄(𝑎, 𝑎) and 𝐶(𝑎), although
= {𝑄(𝑎, 𝑎), 𝐶(𝑎)} is a minimal violation of 𝛿1, is not a secret for
and since {𝑄(𝑎, 𝑎)} is already a secret for and . An extended

olicy that would be a non-redundant representation of w.r.t. is
′ = {𝛿′1, 𝛿2}, where 𝛿′1 = ∀𝑥, 𝑦.𝑄(𝑥, 𝑦) ∧ 𝐶(𝑦) ∧ 𝑥 ≠ 𝑦 → ⊥.

Actually, given a DL-Lite TBox and a policy , in order to
compute an extended policy ′ that is a non-redundant representation
of w.r.t. , it is possible to use the same technique illustrated
n [28], called 𝖬𝗂𝗇𝖴𝗇𝗌𝖺𝗍𝖰𝗎𝖾𝗋𝗒, to solve a similar issue. We note that
𝗂𝗇𝖴𝗇𝗌𝖺𝗍𝖰𝗎𝖾𝗋𝗒 takes as input a set composed of DL-Lite TBox axioms

and denial assertions. In what follows, given an extended denial 𝛿 =
∀�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�) → ⊥, we denote by 𝑞𝛿 the BCQ with inequalities
ssociated to 𝛿, i.e. 𝑞𝛿 = ∃�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�), and, on the other direction,
iven a BCQ with inequalities 𝑞 = ∃�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�), we let 𝛿𝑞 =
�⃗�.𝜙(�⃗�) ∧ 𝑖𝑛𝑒𝑞 𝑙 𝑠(�⃗�) → ⊥. Now, given a DL-Lite TBox and a policy
, we define the function 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒 as follows: 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,) = {𝛿𝑞 ∣
∈ 𝖬𝗂𝗇𝖴𝗇𝗌𝖺𝗍𝖰𝗎𝖾𝗋𝗒(𝑝 ∪)}, where 𝑝 is the DL-Lite TBox obtained

rom by removing all the disjointness axioms occurring in .

Example 9. Consider the CQE specification = ⟨ ,⟩ of the running
example. Then, 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,) returns of the following set of extended
denials:
{ ∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥) ∧ 𝑥 ≠ 𝑦 → ⊥,
∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑦, 𝑥) ∧ 𝑥 ≠ 𝑦 → ⊥,
∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥) ∧ 𝑥 ≠ 𝑦 → ⊥,
∀𝑥. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑥, 𝑥) → ⊥,
∀𝑥. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑥) → ⊥,
∀𝑥. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑥, 𝑥) → ⊥ }.

Anyway, for the sake of conciseness, in the subsequent examples we
always refer to the following simplified version of the above set:
{ ∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥) → ⊥,
∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑦, 𝑥) → ⊥,
∀𝑥, 𝑦. 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥) → ⊥ }.

Note that such a set is still a non-redundant representation of w.r.t.
 . □

Proposition 8. Let be a DL-Lite TBox and be a policy. The extended
olicy returned by 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,) is a non-redundant representation of
.r.t. .

Proof. Follows immediately from Definition 9 and from Lemma 6 and
Lemma 7 of [28]. ■

We are now ready to provide our query rewriting technique. In what
follows, without loss of generality, we assume that, given a DL-Lite

Box and a policy , the output of 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,) is an extended
policy such that in each extended denial the arguments of the various
atoms are always variables different to one another (the presence of

G. Cima et al.

D
c
b
a
i
d

e
i

B

w

a

w
𝖼

B

B
𝖣
i
∃

t

𝖾
t

r

o
𝖾
i

Journal of Web Semantics 84 (2025) 100841
the same variable or of constants can be indeed expressed through
equalities).

The basic idea is to exploit Proposition 7 for identifying, given a
L-Lite CQE specification = ⟨ ,⟩ and an ABox , those atoms that
an be involved in the evaluation of a BUCQ in 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(). This is done
y discarding those atoms in 𝖼𝗅𝐆𝐀() that occur in some secret for
nd , that is, as follows from Proposition 8, the atoms that participate
n the image of at least one BCQ with inequalities associated to some
enial in 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,).

Let 𝛼 and 𝛽 be two atoms. We say that 𝛽 is compatible with 𝛼 if there
xists a mapping 𝜇 of the variables occurring in 𝛽 to the terms occurring
n 𝛼 such that 𝜇(𝛽) = 𝛼. Given an FO sentence 𝜙, we denote by 𝜇𝛼∕𝛽 (𝜙)

the FO sentence obtained from 𝜙 by applying the mapping 𝜇. Moreover,
given an atom 𝛼 and an FO sentence 𝜙, we denote by 𝖼𝗈𝗆𝗉𝖲𝖾𝗍(𝛼 , 𝜙) the
set of atoms of 𝜙 that are compatible with 𝛼.

For an atom 𝛼 and a DL-Lite CQE specification = ⟨ ,⟩, we
define 𝖣(𝛼 ,) as follows:

𝖣(𝛼 ,) = 𝛼 ∧

⎛

⎜

⎜

⎜

⎝

⋀

∀𝛿∈𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,),
∀𝛽∈𝖼𝗈𝗆𝗉𝖲𝖾𝗍(𝛼 ,𝑞𝛿)

∀�⃗�.
(

¬𝜇𝛼∕𝛽 (𝑞𝛿)
)

⎞

⎟

⎟

⎟

⎠

,

where �⃗� contains all the variables in the various 𝜇𝛼∕𝛽 (𝑞𝛿) that do not
occur in 𝛼.

Example 10. Consider again the CQE specification = ⟨ ,⟩ of the
running example. We have that: 𝖣(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦),) = 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒

(𝑥, 𝑦) ∧ ∀𝑤.(¬(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑤) ∧ 𝖲𝖲𝖾𝗋𝗏(𝑥))). A shorter, yet equivalent,
version of such a formula is 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ ¬𝖲𝖲𝖾𝗋𝗏(𝑥). □

Given a BUCQ 𝑄 and a DL-Lite CQE specification , we define the
oolean FO query 𝖣𝖰(𝑄,) as follows:

𝖣𝖰(𝑄,) =
⋁

𝑞∈𝑄

(

∃�⃗�𝑞 .
⋀

𝛼∈𝑞
𝖣(𝛼 ,)

)

,

where, for every BCQ 𝑞 ∈ 𝑄, �⃗�𝑞 denotes the existential variables of 𝑞.

Example 11. Consider the CQE specification = ⟨ ,⟩ and the
query 𝑞 described in previous examples. We have that 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,) =
∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦) ∨ ∃𝑥, 𝑦.𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∨ ∃𝑥.𝖲𝖲𝖾𝗋𝗏(𝑥). Moreover, one
can verify that:

𝖣𝖰(𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,),) = ∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)∨
∃𝑥, 𝑦.(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ ¬𝖲𝖲𝖾𝗋𝗏(𝑥))∨
∃𝑥.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦))∧

∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥))∧
∀𝑦.(¬𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥))) □

Given a DL-Lite TBox and an FO query 𝜙, we define 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝜙)
as the FO query obtained from 𝜙 by replacing every atom 𝛼 occurring
in 𝜙 with its ‘‘TBox-expansion’’ 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝛼), defined as follows:

𝖾𝗑𝗉𝖺𝗇𝖽(, 𝛼) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⋁

 ⊧𝐷 ⊑𝐶 𝐷(𝑡)∨
⋁

 ⊧∃𝑅⊑𝐶 (∃𝑥.𝑅(𝑡, 𝑥))∨
⋁

 ⊧∃𝑅−⊑𝐶 (∃𝑥.𝑅(𝑥, 𝑡)),
if 𝛼 = 𝐶(𝑡)

⋁

 ⊧𝑆 ⊑𝑅 𝑆(𝑡1, 𝑡2)∨
⋁

 ⊧𝑆−⊑𝑅 𝑆(𝑡2, 𝑡1),
if 𝛼 = 𝑅(𝑡1, 𝑡2)

Finally, for a BUCQ 𝑞 and a DL-Lite CQE specification = ⟨ ,⟩,
e define:

𝖣𝖱𝖾𝗐(𝑞 ,) = 𝖾𝗑𝗉𝖺𝗇𝖽(,𝖣𝖰(𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,),)).

It is easy to see that 𝖣𝖱𝖾𝗐(𝑞 ,) is a Boolean FO query.
 t

8
Example 12. Consider the CQE specification = ⟨ ,⟩ and the query
𝑞 of the running example. One can see that:

𝖣𝖱𝖾𝗐(𝑞 ,) = ∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)∨
∃𝑥, 𝑦.(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ ¬𝖲𝖲𝖾𝗋𝗏(𝑥))∨
∃𝑥.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦))

∧ ∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥))∧
∀𝑦.(¬(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥) ∨𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)))) □

We are now ready to prove that, for DL-Lite CQE specifications
and BUCQs 𝑞, the decision problem IGA-Cens-Entailment(,, 𝑞) can
lways be solved by checking whether 𝖣𝖱𝖾𝗐(𝑞 ,) evaluates to true in
. In other terms, we prove that the problem is FO-rewritable. We start
ith the next lemma, which immediately follows from the definition of
𝗅𝐆𝐀() and 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝜙).

Lemma 5. Let 𝜙 be an FO query. Then, 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(), 𝜙) is true if and
only if 𝖾𝗏𝖺𝗅(, 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝜙)) is true.

On the basis of Proposition 1 and Lemma 5, we prove FO-
rewritability of IGA-Cens-Entailment(,, 𝑞) for DL-Lite CQE speci-
fications and BUCQs 𝑞.

Theorem 4. Let = ⟨ ,⟩ be a DL-Lite CQE specification and 𝑞 be a
UCQ. For every ABox , we have that ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ⊧ 𝑞 if and only if

𝖾𝗏𝖺𝗅(,𝖣𝖱𝖾𝗐(𝑞 ,)) is true.

Proof. By exploiting Proposition 1 and Lemma 5, to prove the thesis
of the theorem note that it is enough to show the following: given
a BUCQ 𝑄, we have that 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(), 𝑄) is true if and only if
𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖰(𝑄,)) is true.

First, since 𝖾𝗏𝖺𝗅(′, 𝑄) = 𝖾𝗏𝖺𝗅(′, 𝑞1) ∨ … ∨ 𝖾𝗏𝖺𝗅(′, 𝑞𝑛) holds for any
UCQ 𝑄 = 𝑞1 ∨ … ∨ 𝑞𝑛 and ABox ′, it follows from the definition of
𝖰(⋅, ⋅) that it is enough to prove that, for any BCQ 𝑞, 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(), 𝑞)

s true if and only if 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖰(𝑞 ,)) is true. Note that 𝖣𝖰(𝑞 ,) =
�⃗�𝑞 .

⋀

𝛼∈𝑞 𝖣(𝛼 ,) because 𝑞 is a BCQ.
(⇒). Suppose 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),∃�⃗�𝑞 .

⋀

𝛼∈𝑞 𝖣(𝛼 ,)) is true. By construction
of 𝖣(⋅, ⋅), this means that there is at least an image 𝐼 of 𝑞 in 𝖼𝗅𝐆𝐀() such
that 𝖾𝗏𝖺𝗅(𝐼 ,∃�⃗�𝛼 .𝖣(𝛼 ,)) is true for any 𝛼 ∈ 𝑞, where �⃗�𝛼 are the variables
occurring in the atom 𝛼. We denote by 𝐼𝛼 the image (ground atom) of
each atom 𝛼 in 𝐼 . Now, Proposition 8 guarantees that there is no ∈
𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(,) such that 𝐼𝛼 ∈ , otherwise this would easily contradict
he fact that 𝖾𝗏𝖺𝗅(𝐼 ,∃�⃗�𝛼 .𝖣(𝛼 ,)) is true. It follows that 𝐼 =

⋃

𝛼∈𝑞 𝐼𝛼 is
such that there is no atom in 𝐼 that belongs to some secret for and
. Obviously, we have that 𝖾𝗏𝖺𝗅(𝐼 , 𝑞) is true. Now, by Proposition 7, it
directly follows that 𝐼 ⊆ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(), and therefore 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(), 𝑞) is
true as well because 𝑞 is a BCQ.

(⇐). Suppose now 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(), 𝑞) is true. Consider each atom
𝛼 ∈ 𝑞. Since, by Proposition 7, we know that all the ground atoms in
𝖼𝖾𝗇𝗌𝖨𝖦𝖠() do not belong to any secrets for and , by Proposition 8
and by construction of 𝖣(⋅, ⋅), we easily derive that
𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(),∃�⃗�𝛼 .𝖣(𝛼 ,)) is true as well. Thus, we immediately ob-
ain that 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖨𝖦𝖠(),∃�⃗�𝑞 .

⋀

𝛼∈𝑞 𝖣(𝛼 ,)) is true, as required. ■

Example 13. Consider the CQE specification = ⟨ ,⟩, the ABox
, and the query 𝑞 of the running example, and consider the IGA
eformulation 𝖣𝖱𝖾𝗐(𝑞 ,) of 𝑞 w.r.t. illustrated in Example 12. Note

that 𝖾𝗏𝖺𝗅(,𝖣𝖱𝖾𝗐(𝑞 ,)) is false. Indeed, as observed in Example 7, we
have that ∪ 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() ̸⊧ 𝑞. □

Provided that 𝖣𝖱𝖾𝗐(⋅, ⋅) first rewrites the input query via 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 ,
ne may wonder whether rewriting atom by atom through the
𝗑𝗉𝖺𝗇𝖽(⋅, ⋅) function is necessary. We then show a simple example
llustrating how performing such a step is indeed essential for ensuring
he correctness of our approach. Consider a TBox = {𝐴 ⊑ 𝐵}, an

G. Cima et al.

s

𝜙

e

v
g
b
f
p

C

(

i

o
i

i

𝖼

i
𝖯

(

𝖼

t
a
i

(

Journal of Web Semantics 84 (2025) 100841
ABox = {𝐴(𝑜)} and a policy = {∀𝑥.𝐴(𝑥) → ⊥}. It is easy to
ee that there is only one optimal GA censor 𝖼𝖾𝗇𝗌(⋅) for = ⟨ ,⟩

which is such that 𝖼𝖾𝗇𝗌() = {𝐵(𝑜)}. Thus, also the IGA censor for
is such that 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() = {𝐵(𝑜)}. Now, consider a BCQ 𝑞 = ∃𝑥.𝐵(𝑥),
which clearly evaluates to true in 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(). Rewriting 𝑞 without
using the 𝖾𝗑𝗉𝖺𝗇𝖽(⋅, ⋅) function would result in the following FO query:

= ∃𝑥.𝐵(𝑥) ∨ ∃𝑥.(𝐴(𝑥) ∧ ¬𝐴(𝑥)), whose evaluation in returns false.
On the other hand, by adopting the 𝖾𝗑𝗉𝖺𝗇𝖽(⋅, ⋅) function we get the
following FO query: 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝜙) = ∃𝑥.(𝐵(𝑥) ∨𝐴(𝑥)) ∨ ∃𝑥.(𝐴(𝑥) ∧ ¬𝐴(𝑥)),
whose evaluation in is true.

The corollary below follows from Theorem 4 and the fact that
valuating an FO query over an ABox is in AC0 in the size of the ABox

(i.e. in data complexity).

Corollary 1. IGA-Cens-Entailment(,, 𝑞) for DL-Lite CQE specifica-
tions and BUCQs 𝑞 is in AC0 in data complexity.

7. Prioritized CQE framework

Answering queries under the IGA semantics, considered in the pre-
ious section, may be too restrictive. This is due to the fact that any
round atom belonging to any secret is not included in the set returned
y the IGA censor. In this section, we present an extension of the CQE
ramework in which one can specify a priority relation over ontology
redicates. These priorities can be used to induce a choice between facts

belonging to the same secret, in order to reveal some facts that would
instead be kept undisclosed, thus improving the throughput of answers
to user queries with respect to the IGA semantics.

Given a TBox , a priority relation ≻ over is an acyclic binary
relation over the signature of , i.e. ≻ ⊆ 𝛴() × 𝛴().

Definition 10 (Prioritized CQE Specification). Let be a DL. A
prioritized CQE specification ≻ is a triple ⟨ , , ≻⟩, such that ⟨ ,⟩

is an CQE specification and ≻ is a priority relation over .
Similarly to what done for (non-prioritized) CQE specifications, we

will omit for definitions and results applying to any DL language.

Example 14. Suppose that, if we know that a person 𝑝 works for
a secret service 𝑠 (both 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑝, 𝑠) and 𝖲𝖲𝖾𝗋𝗏(𝑠) hold), we prefer
to disclose the fact that 𝑝 works for 𝑠 (𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑝, 𝑠)) rather than the
fact that 𝑠 is a secret service (𝖲𝖲𝖾𝗋𝗏(𝑠)). This will be indicated with
(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋, 𝖲𝖲𝖾𝗋𝗏) ∈ ≻.

In the following examples, we will refer to the prioritized DL-Lite
QE specification ≻ = ⟨ , , ≻⟩, where ⟨ ,⟩ is the DL-Lite CQE

specification of Example 1 and ≻ = {(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋, 𝖲𝖲𝖾𝗋𝗏),
𝖬𝖺𝗇𝖺𝗀𝖾𝗌, 𝖲𝖲𝖾𝗋𝗏)}. □

The definitions of GA censor, optimal GA censor, IGA censor,
GA-Cens-Entailment, and IGA-Cens-Entailment apply also to a pri-
oritized CQE specification (e.g. given one such specification ≻ =
⟨ , , ≻⟩, 𝖼𝖾𝗇𝗌(⋅) is a GA censor for ≻ if it is a GA censor for the CQE
specification = ⟨ ,⟩). We also use for prioritized CQE specifications
the same notations introduced for (non-prioritized) CQE specifications,
with the same meaning. In particular, we denote by 𝗈𝗉𝗍𝖢𝖾𝗇𝗌(≻) the set
of optimal GA censors for a prioritized CQE specification ≻.

We now exploit the priority relation to induce a partial order
over censors. We consider two optimality notions introduced by [29]
n the context of consistent query answering (CQA) over databases,

and recently adopted in [16] for repairing inconsistent prioritized DL
ntologies.4 Whereas the priority relations considered in this paper are
ntentional, i.e. between ontology predicates, priorities considered in

4 CQA [30] is a well-known declarative approach to inconsistency-tolerant
reasoning. As discussed in [11], there is a tight connection between CQA and
CQE.
9
[16,29] are between (conflicting) facts. However, intensional priorities
straightforwardly induce priorities over facts: given a TBox , a priority
relation ≻ over , an ABox , and two assertions 𝑆1(𝑛) and 𝑆2(�⃗�) in
, we have that 𝑆1(𝑛)≻𝑆2(�⃗�) if 𝑆1≻𝑆2.

Below we take the definitions of Pareto- and Globally-optimal repair
from [16] and adapt them to our framework.

Definition 11 (Pareto/Globally-optimal Censor). Let ≻ = ⟨ , , ≻⟩ be a
prioritized CQE specification, be an ABox, and 𝖼𝖾𝗇𝗌(⋅) ∈ 𝗈𝗉𝗍𝖢𝖾𝗇𝗌(≻).
We say that an ABox ′ ⊆ 𝖼𝗅𝐆𝐀(), such that ∪ ∪′ is consistent,
is:

• a Pareto improvement of 𝖼𝖾𝗇𝗌() w.r.t. ≻ if there exists an as-
sertion 𝛾 ′ ∈ ′ ⧵ 𝖼𝖾𝗇𝗌() such that, for every assertion 𝛾 ∈
𝖼𝖾𝗇𝗌() ⧵ ′, we have that 𝛾 ′≻𝛾 and {𝛾 , 𝛾 ′} ⊆ for some ∈
𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(, ,);

• a Global improvement of 𝖼𝖾𝗇𝗌() w.r.t. ≻ if ′ ≠ 𝖼𝖾𝗇𝗌() and,
for every assertion 𝛾 ∈ 𝖼𝖾𝗇𝗌() ⧵ ′, there exists an assertion
𝛾 ′ ∈ ′ ⧵ 𝖼𝖾𝗇𝗌() such that 𝛾 ′≻𝛾 and {𝛾 , 𝛾 ′} ⊆ for some
 ∈ 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(, ,).

Then, 𝖼𝖾𝗇𝗌(⋅) is a Pareto- (resp. Globally-)optimal censor for ≻ if
there exists no other GA censor 𝖼𝖾𝗇𝗌′(⋅) for ≻ such that, for each ABox

, either 𝖼𝖾𝗇𝗌′() = 𝖼𝖾𝗇𝗌() or 𝖼𝖾𝗇𝗌′() is a Pareto (resp. Global)
mprovement of 𝖼𝖾𝗇𝗌() w.r.t. ≻.

We denote by 𝖯𝖢𝖾𝗇𝗌(≻) (resp. 𝖦𝖢𝖾𝗇𝗌(≻)) the set of all Pareto- (resp.
Globally-) optimal censors for ≻. It is easy to see that 𝖦𝖢𝖾𝗇𝗌(≻) ⊆
𝖯𝖢𝖾𝗇𝗌(≻) ⊆ 𝗈𝗉𝗍𝖢𝖾𝗇𝗌(≻) for every prioritized CQE specification ≻,
analogous to the containment between Pareto- and Globally-optimal
repairs given in [29]. Also, if ≻ is empty, then 𝖯𝖢𝖾𝗇𝗌(≻) = 𝖦𝖢𝖾𝗇𝗌(≻) =
𝗈𝗉𝗍𝖢𝖾𝗇𝗌(≻).

As done for GA censors (see Definition 6), we define intersection-
based versions of both Pareto- and Globally-optimal censors. Given a
prioritized CQE specification ≻ = ⟨ , , ≻⟩, we call:

• Intersection Pareto (IP) censor for ≻ the function 𝖼𝖾𝗇𝗌𝖨𝖯(⋅) such
that, for every ABox :

𝖼𝖾𝗇𝗌𝖨𝖯() =
⋂

𝖼𝖾𝗇𝗌(⋅)∈𝖯𝖢𝖾𝗇𝗌(≻)
𝖼𝖾𝗇𝗌()

• Intersection Global (IG) censor for ≻ the function 𝖼𝖾𝗇𝗌𝖨𝖦(⋅) such
that, for every ABox :

𝖼𝖾𝗇𝗌𝖨𝖦() =
⋂

𝖼𝖾𝗇𝗌(⋅)∈𝖦𝖢𝖾𝗇𝗌(≻)
𝖼𝖾𝗇𝗌()

Obviously, 𝖼𝖾𝗇𝗌𝖨𝖯() ⊆ 𝖼𝖾𝗇𝗌𝖨𝖦() for each ABox . Also, if ≻ is
empty, then, since 𝖯𝖢𝖾𝗇𝗌(≻) = 𝖦𝖢𝖾𝗇𝗌(≻) = 𝗈𝗉𝗍𝖢𝖾𝗇𝗌(≻), we have that
𝖾𝗇𝗌𝖨𝖯(⋅) = 𝖼𝖾𝗇𝗌𝖨𝖦(⋅) = 𝖼𝖾𝗇𝗌𝖨𝖦𝖠(⋅).

Given a prioritized CQE specification ≻, an ABox , and a Boolean
query 𝑞, P-Cens-Entailment(≻,, 𝑞) (resp. G-Cens-Entailment(≻,, 𝑞))
s the problem of deciding whether ∪ 𝖼𝖾𝗇𝗌() ⊧ 𝑞 for each 𝖼𝖾𝗇𝗌(⋅) ∈
𝖢𝖾𝗇𝗌(≻) (resp. 𝖼𝖾𝗇𝗌(⋅) ∈ 𝖦𝖢𝖾𝗇𝗌(≻)), and IP-Cens-Entailment(≻,, 𝑞)
resp. IG-Cens-Entailment(≻,, 𝑞)) is the problem of deciding whether
∪ 𝖼𝖾𝗇𝗌𝖨𝖯() ⊧ 𝑞 (resp. ∪ 𝖼𝖾𝗇𝗌𝖨𝖦() ⊧ 𝑞), where 𝖼𝖾𝗇𝗌𝖨𝖯(⋅) (resp.

𝖾𝗇𝗌𝖨𝖦(⋅)) is the IP (resp. IG) censor for ≻. It is immediate to see
hat P-Cens-Entailment(≻,, 𝑞) implies G-Cens-Entailment(≻,, 𝑞),
nd IP-Cens-Entailment(≻,, 𝑞) (resp. IG-Cens-Entailment(≻,, 𝑞))
mplies P-Cens-Entailment(≻,, 𝑞) (resp. G-Cens-Entailment(≻,, 𝑞)).

From the outcomes presented in [16], which already hold for BCQs,
it immediately derives what follows.

Proposition 9. For prioritized DL-Lite CQE specifications ≻ and
BCQs 𝑞, we have that P-Cens-Entailment(≻,, 𝑞) and IP-Cens-Entailment
≻,, 𝑞) are coNP-hard in data complexity, whereas G-Cens-Entailment
(≻,, 𝑞) and IG-Cens-Entailment(≻,, 𝑞) are 𝛱𝑝

2 -hard in data complex-
ity.

G. Cima et al.

o
d
s

s

𝑖

s
s

t

g

T

l

a
f

t

D

Journal of Web Semantics 84 (2025) 100841
The results in Proposition 9 represent a clear obstacle to the use
f the above forms of priority-based censors over real-world, large
atasets. In the next section, we will see how these censors can be
uitably approximated for practical use.

8. FO-rewritable prioritized CQE in DL-Lite

In this section, we first give a deterministic notion of priority-
based censor (DD censor), which is an adaptation in our framework
of the one studied in [16] in the context of CQA, and its parameterized
ound approximation called 𝑘-DD censor. Then, we show that BUCQ

entailment under 𝑘-DD censors in DL-Lite is FO rewritable. The full
rewriting algorithm is given in the last part of this section.

8.1. DD censors and 𝑘 censors

Proposition 9 clearly says that under Pareto or Global censors, or
their intersection-based versions, entailment of BCQs is inherently non-
deterministic. Towards the identification of a tractable approximation,
we give below the notion of deterministically disclosed atoms (𝖣𝖣𝖠)
and deterministically censored atoms (𝖣𝖢𝖠). Hereinafter, given a priority
relation ≻, a fact 𝛼, and a set of facts , we write 𝛼 ≻ if there exists
a fact 𝛽 ∈ such that 𝛼 ≻𝛽. Moreover, given a fact 𝛼, we denote by
𝑛𝑆 𝑒𝑐(, ,, 𝛼) the set of secrets ∈ 𝑠𝑒𝑐 𝑟𝑒𝑡𝑠(, ,) such that 𝛼 ∈ .

Definition 12. Given a prioritized CQE specification ≻ = ⟨ , , ≻⟩
and an ABox , we denote by 𝖣𝖣𝖠(≻,) and 𝖣𝖢𝖠(≻,) the
inclusion-minimal subsets of 𝖼𝗅𝐆𝐀() such that:

𝖣𝖣𝖠(≻,) = {𝛼 ∈ 𝖼𝗅𝐆𝐀() ∣ ∀ ∈𝑖𝑛𝑆 𝑒𝑐(, ,, 𝛼) ∃𝛽 ∈
s.t. 𝛼 ≻𝛽 ∨ (𝛼 ≠ 𝛽 ∧ 𝛽 ∈ 𝖣𝖢𝖠(≻,))}

𝖣𝖢𝖠(≻,) = {𝛼 ∈ 𝖼𝗅𝐆𝐀() ∣ ∃ ∈𝑖𝑛𝑆 𝑒𝑐(, ,, 𝛼)
s.t. ⧵ 𝖣𝖣𝖠(≻,) = {𝛼}}

In words, an atom 𝛼 ∈ 𝖣𝖣𝖠 is such that 𝛼 does not occur in any
ecret or, either, in each secret in which it occurs there is an atom 𝛽
uch that 𝛼 ≻𝛽 or 𝛽 ∈ 𝖣𝖢𝖠. Instead, an atom in 𝖣𝖢𝖠 is such that there is

a secret where it is the only atom not in 𝖣𝖣𝖠. It is immediate to verify
hat 𝖣𝖣𝖠(≻,) and 𝖣𝖢𝖠(≻,) are unique for a given pair (≻,). We

are now ready to provide the definition of Deterministically Disclosing
(DD) censor.

Definition 13 (DD Censor). Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE
specification. The Deterministically Disclosing (DD) censor for ≻ is the
function 𝖼𝖾𝗇𝗌𝖣𝖣(⋅) such that, for every ABox :

𝖼𝖾𝗇𝗌𝖣𝖣() = 𝖣𝖣𝖠(≻,).

Example 15. Let ≻ = ⟨ , , ≻⟩ and be as in Example 14 and
Example 3, respectively. The set of deterministically disclosed atoms
is 𝖼𝖾𝗇𝗌𝖣𝖣() = 𝖣𝖣𝖠(≻,) = {𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎𝑛𝑛, 𝑎2),
𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎𝑛𝑛, 𝑎2), 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑎2, ℎ2), 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎2)}. On the other hand,
we have that the set of deterministically censored atoms is 𝖣𝖢𝖠(≻,)
= {𝖲𝖲𝖾𝗋𝗏(𝑎2)}. □

The proposition below follows immediately from the definition of
DD censor.5

Proposition 10. Let ∅ = ⟨ , , ∅⟩ be a prioritized CQE specification
with an empty priority relation. The DD censor for ∅ coincides with the
IGA censor for ⟨ ,⟩.

5 A similar result is provided in [16, Theorem 38] in the context of CQA.
10
It is also easy to verify that the DD censor satisfies the property
iven in Definition 4.

Proposition 11. Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE specification.
he DD censor 𝖼𝖾𝗇𝗌𝖣𝖣(⋅) for ≻ satisfies the indistinguishability property.

The following proposition, whose proof is straightforward, estab-
ishes the relationship between DD censors and the previously pre-

sented IP and IG censors.

Proposition 12. Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE specification,
nd let 𝖼𝖾𝗇𝗌𝖨𝖯(⋅) and 𝖼𝖾𝗇𝗌𝖨𝖦(⋅) be the Intersection Pareto and Global censor
or ≻, respectively. Then, for every ABox we have that:
𝖼𝖾𝗇𝗌𝖣𝖣() ⊆ 𝖼𝖾𝗇𝗌𝖨𝖯() ⊆ 𝖼𝖾𝗇𝗌𝖨𝖦().

Query entailment under DD censors is defined as usual.

Definition 14. Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE specification,
 be an ABox, and 𝑞 be a Boolean query. DD-Cens-Entailment(≻,, 𝑞)
is the problem of deciding whether ∪ 𝖼𝖾𝗇𝗌𝖣𝖣() ⊧ 𝑞.

From Proposition 12, it follows that DD-Cens-Entailment(≻,, 𝑞)
implies IP-Cens-Entailment(≻,, 𝑞) (and consequently
IG-Cens-Entailment(≻,, 𝑞)), for every prioritized CQE specification
≻, ABox , and Boolean query 𝑞.

Given a prioritized CQE specification ≻ = ⟨ , , ≻⟩ and an ABox
, it is not difficult to see that 𝖣𝖣𝖠(≻,) and 𝖣𝖢𝖠(≻,) correspond
o the least fixpoint of the equations:

𝖣𝖣𝖠𝑖+1(≻,) = {𝛼 ∈ 𝖼𝗅𝐆𝐀() ∣ ∀ ∈ 𝑖𝑛𝑆 𝑒𝑐(, ,, 𝛼) ∃𝛽 ∈

s.t. 𝛼 ≻𝛽 ∨ (𝛼 ≠ 𝛽 ∧ 𝛽

∈ 𝖣𝖢𝖠𝑖(≻,))}

𝖣𝖢𝖠𝑖+1(≻,) = {𝛼 ∈ 𝖼𝗅𝐆𝐀() ∣ ∃ ∈ 𝑖𝑛𝑆 𝑒𝑐(, ,, 𝛼)
s.t. ⧵ 𝖣𝖣𝖠𝑖(≻,) = {𝛼}}

where 𝖣𝖣𝖠0(≻,) = 𝖣𝖢𝖠0(≻,) = ∅. Notice that, by definition,
𝖣𝖣𝖠𝑖(≻,) = 𝖣𝖣𝖠𝑖+1(≻,) holds for every odd integer 𝑖. For a
prioritized DL-Lite CQE specifications ≻ and an ABox , computing
such fixpoint is in P in the size of , and from the results in [16] it
also follows that, for BCQs 𝑞, DD-Cens-Entailment(≻,, 𝑞) is P-hard in
data complexity.

By fixing a positive integer 𝑘, we can define a new censor that we
call 𝑘-DD censor.

Definition 15. Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE specification
and 𝑘 be a positive integer. The 𝑘-DD censor for ≻ is the function
𝖼𝖾𝗇𝗌𝖣𝖣𝑘

(⋅) such that, for every ABox :

𝖼𝖾𝗇𝗌𝖣𝖣𝑘
() = 𝖣𝖣𝖠𝑘(≻,).

We next define Boolean query entailment under 𝑘-DD censors.

Definition 16. Let ≻ = ⟨ , , ≻⟩ be a prioritized CQE specification,
𝑘 be a positive integer, be an ABox, and 𝑞 be a Boolean query.
kDD-Cens-Entailment(≻,, 𝑞) is the problem of deciding whether ∪
𝖼𝖾𝗇𝗌𝖣𝖣𝑘

() ⊧ 𝑞.

In the rest of this paper, we study the above problem for prioritized
L-Lite CQE specifications and BUCQs as queries.

Since for every prioritized CQE specification ≻, positive integer
𝑘, and ABox , 𝖣𝖣𝖠𝑘(≻,) ⊆ 𝖣𝖣𝖠(≻,), the 𝑘-DD censor for ≻
constitutes a sound approximation of the DD censor for ≻, and thus
kDD-Cens-Entailment(≻,, 𝑞) implies DD-Cens-Entailment(≻,, 𝑞)
for every Boolean query 𝑞. Moreover, it is immediate to verify that the
𝑘-DD censor preserves the indistinguishability property.

G. Cima et al.

s

𝖣

𝖣

r
f

k
W

k

l

w
a

s
r

a
f

c
∃

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

𝖣

Journal of Web Semantics 84 (2025) 100841
Example 16. Let ≻ = ⟨ , , ≻⟩ and be, respectively, the CQE
pecification and the ABox of the running example. For 𝑘 = 3, the 𝑘-DD

censor can be computed as follows:

𝖣𝖣𝖠0(≻,) = 𝖣𝖢𝖠0(≻,) = ∅
𝖣𝖠1(≻,) = {𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑏𝑜𝑏, 𝑎1), 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑎𝑛𝑛, 𝑎2),

𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑎𝑛𝑛, 𝑎2),
𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑎2)}

𝖣𝖢𝖠1(≻,) = ∅
𝖣𝖣𝖠2(≻,) = 𝖣𝖣𝖠1(≻,)

𝖣𝖢𝖠2(≻,) = {𝖲𝖲𝖾𝗋𝗏(𝑎𝑛𝑛)}
𝖣𝖠3(≻,) = 𝖣𝖣𝖠2(≻,) ∪ {𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑎2, ℎ2)}

Note that for 𝑘 = 3 we reach the fixpoint, i.e. 𝖣𝖣𝖠(≻,) =
𝖣𝖣𝖠3(≻,) and 𝖣𝖢𝖠(≻,) = 𝖣𝖢𝖠3(≻,). □

In what follows, we show that kDD-Cens-Entailment(≻,, 𝑞) is FO-
ewritable in our considered scenario for any positive integer 𝑘, that is,
or every prioritized DL-Lite CQE specification ≻ and BUCQ 𝑞, one

can effectively compute an FO query 𝑞𝑟 such that, for every ABox ,
DD-Cens-Entailment(≻,, 𝑞) is true if and only if 𝖾𝗏𝖺𝗅(, 𝑞𝑟) is true.
e call such a query 𝑞𝑟 the 𝑘-DD reformulation of 𝑞 with respect to ≻.

8.2. Query rewriting algorithm

We now give our query rewriting technique for solving
DD-Cens-Entailment(≻,, 𝑞).

In the following, with a slight abuse of notation, for atoms 𝛼 = 𝑆1(�⃗�)
and 𝛽 = 𝑆2(𝑦) and a priority relation ≻, we say that 𝛼 ≻𝛽 if 𝑆1≻𝑆2. Now,
et 𝛼 be an atom, be a set of FO formulas, and ≻ be a priority relation.

We denote by 𝗇𝗈𝗍𝖯𝗋𝖾𝖿 𝖾𝗋𝗋𝖾𝖽(𝛼 ,, ≻) the set of all formulas 𝜙 ∈ such
that there does not occur in 𝜙 any atom 𝛽 such that 𝛼 ≻𝛽.

Let 𝜙 be the BCQ with inequalities ∃�⃗�.𝛼 ∧ 𝛽1 ∧ … ∧ 𝛽𝑛 ∧ 𝜆1 ∧ … ∧ 𝜆ℎ,
here 𝛼 and each 𝛽𝑖 are predicate atoms and each 𝜆𝑖 is an inequality,
nd let ≻ be a prioritized DL-Lite CQE specification. We define:

• 𝖺𝗅𝗅𝖣𝖣𝑖(𝜙, 𝛼 , ≻) = ∃𝑦.𝖣𝖣𝑖(𝛽1, ≻) ∧ … ∧𝖣𝖣𝑖(𝛽𝑛, ≻), where 𝑦 are the
variables in �⃗� that do not occur in 𝛼;

• 𝗈𝗇𝖾𝖣𝖢𝑖(𝜙, 𝛼 , ≻) = 𝖣𝖢𝑖(𝛽1, ≻) ∨ … ∨ 𝖣𝖢𝑖(𝛽𝑛, ≻).

By convention, if 𝑖 = 0, then 𝖺𝗅𝗅𝖣𝖣𝑖(𝜙, 𝛼 , ≻)
= 𝑡𝑟𝑢𝑒 and 𝗈𝗇𝖾𝖣𝖢𝑖(𝜙, 𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒. Moreover, we denote by the
et of BCQs with inequalities corresponding to the extended denials
eturned by 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,), i.e. = {𝑞𝛿 ∣ 𝛿 ∈ 𝖬𝗂𝗇𝖯𝗈𝗅𝗂𝖼𝗒(,)}.

For an atom 𝛼, a prioritized DL-Lite CQE specification ≻ =
⟨ , , ≻⟩, and a positive integer 𝑖, we define 𝖣𝖣𝑖(𝛼 , ≻) as follows:

𝖣𝖣𝑖(𝛼 , ≻) =

𝛼 ∧

⎛

⎜

⎜

⎜

⎝

⋀

∀𝑞𝛿∈𝗇𝗈𝗍𝖯𝗋𝖾𝖿 𝖾𝗋𝗋𝖾𝖽(𝛼 , ,≻),
∀𝛽∈𝖼𝗈𝗆𝗉𝖲𝖾𝗍(𝛼 ,𝑞𝛿)

∀�⃗�.
(

¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨ 𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻)
)

⎞

⎟

⎟

⎟

⎠

,

where �⃗� contains all the variables in the various 𝜇𝛼∕𝛽 (𝑞𝛿) that do not
occur in 𝛼. In case 𝑖 = 0, we impose 𝖣𝖣0(𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒.

We also define 𝖣𝖢𝑖(𝛼 , ≻) as follows:

𝖣𝖢𝑖(𝛼 , ≻) =
⋁

∀𝑞𝛿∈𝗇𝗈𝗍𝖯𝗋𝖾𝖿 𝖾𝗋𝗋𝖾𝖽(𝛼 , ,≻),
∀𝛽∈𝖼𝗈𝗆𝗉𝖲𝖾𝗍(𝛼 ,𝑞𝛿)

∃𝑣.𝜇𝛼∕𝛽 (𝑞𝛿) ∧ 𝖺𝗅𝗅𝖣𝖣𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻),

where 𝑣 contains all the variables in the various 𝜇𝛼∕𝛽 (𝑞𝛿) that do not
occur in 𝛼. In case 𝑖 = 0, we impose 𝖣𝖢0(𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒.

Given a BUCQ 𝑄, a prioritized DL-Lite CQE specification ≻, and
 positive integer 𝑘, we define the Boolean FO query 𝑘-𝖣𝖣𝖰(𝑄, ≻) as
ollows:

𝑘-𝖣𝖣𝖰(𝑄, ≻) =
⋁

(

∃�⃗�𝑞 .
⋀

𝖣𝖣𝑘(𝛼 , ≻)
)

,

𝑞∈𝑄 𝛼∈𝑞

11
where, for every BCQ 𝑞 ∈ 𝑄, �⃗�𝑞 denotes the existential variables of 𝑞.

Finally, for a BUCQ 𝑞, a prioritized DL-Lite CQE specification ≻ =
⟨ , , ≻⟩, and a positive integer 𝑘, we define:

𝑘-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻) = 𝖾𝗑𝗉𝖺𝗇𝖽(, 𝑘-𝖣𝖣𝖰(𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,), ≻)).

Notice that, for every odd 𝑖, 𝖣𝖣𝑖(𝛼 , ≻) = 𝖣𝖣𝑖+1(𝛼 , ≻) (by definition),
and thus 𝑖-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻) = (𝑖+1)-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻).

Example 17. Consider the prioritized DL-Lite CQE specification
≻ = ⟨ , , ≻⟩ and BUCQ 𝑞 of the running example. For computing the
𝑘-DD reformulation 𝑘-𝖣𝖣𝖰(𝑄, ≻) for 𝑘 = 3, we first need to compute
the formula 𝖣𝖣3(𝛼 , ≻) for each atom 𝛼 occurring in 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,) (re-
all that 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,) = {∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦),∃𝑥, 𝑦.𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦),
𝑥.𝖲𝖲𝖾𝗋𝗏(𝑥)}). This can be done as follows.𝖣𝖣0(𝛼 , ≻) = 𝖣𝖢0(𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒, for each atom𝛼 .

𝖣1(𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦), ≻) = 𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)
𝖣1(𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑥), ≻) = 𝖦𝖠𝗀𝖾𝗇𝖼𝗒(𝑥)
𝖣1(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑥, 𝑦), ≻) = 𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑥, 𝑦)
𝖣1(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑥, 𝑦), ≻) = 𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑥, 𝑦)
𝖣1(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻) = 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)

∧ (¬(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)∧
𝖲𝖲𝖾𝗋𝗏(𝑥)) ∨ 𝖣𝖢0(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻))

= 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ ¬𝖲𝖲𝖾𝗋𝗏(𝑥)
𝖣1(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻) = 𝖲𝖲𝖾𝗋𝗏(𝑥)∧

∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)) ∨ 𝖣𝖢0(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻))∧
∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)) ∨ 𝖣𝖢0(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥), ≻))∧
∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥)) ∨ 𝖣𝖢0(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥), ≻))

= 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦))∧
∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)) ∧ ∀𝑦.(¬𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥))

𝖢1(𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒, for each atom𝛼 .

𝖣2(𝛼 , ≻) = 𝖣𝖣1(𝛼 , ≻), for each atom𝛼 .

𝖢2(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑥, 𝑦), ≻) = 𝑓 𝑎𝑙 𝑠𝑒
𝖢2(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑥, 𝑦), ≻) = 𝑓 𝑎𝑙 𝑠𝑒
𝖢2(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻) = 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)

∧ 𝖣𝖣1(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻)
= 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)

∧ 𝖲𝖲𝖾𝗋𝗏(𝑥)∧
∀𝑦′.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦′))∧
∀𝑦′.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦′, 𝑥))∧
∀𝑦′.(¬𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦′, 𝑥)) = 𝑓 𝑎𝑙 𝑠𝑒

𝖢2(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻) =
∃𝑦.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)
∧ 𝖣𝖣1(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻))∨
∃𝑦.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)
∧ 𝖣𝖣1(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥), ≻))∨
∃𝑦.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥)
∧ 𝖣𝖣1(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥), ≻))
= ∃𝑦.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥))
∨ ∃𝑦.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥))

𝖣3(𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦), ≻) = 𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)
𝖣3(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻) = 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ (¬(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)∧

𝖲𝖲𝖾𝗋𝗏(𝑥)) ∨ 𝖣𝖢2(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻))
= 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦) ∧ (¬𝖲𝖲𝖾𝗋𝗏(𝑥) ∨ ∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥)∧
𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦′, 𝑥)) ∨ ∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦′, 𝑥)))

𝖣3(𝖲𝖲𝖾𝗋𝗏(𝑥), ≻) = 𝖲𝖲𝖾𝗋𝗏(𝑥)∧
∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)) ∨ 𝖣𝖢2(𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦), ≻))∧
∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)) ∨ 𝖣𝖢2(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥), ≻))∧
∀𝑦.(¬(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥)) ∨ 𝖣𝖢2(𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥), ≻))
= 𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦))∧
∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥)) ∧ ∀𝑦.(¬𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥))

G. Cima et al.

t
𝑄

𝑖

a

(

t

(

s
o
w

o

o

t
o
c

s

Journal of Web Semantics 84 (2025) 100841
Now, called 𝑞𝑟 = 𝖯𝖾𝗋𝖿 𝖾𝖼𝗍𝖱𝖾𝖿 (𝑞 ,), we have that:

𝑘-𝖣𝖣𝖰(𝑞𝑟,≻) = ∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)∨
∃𝑥.

(

𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)) ∧ ∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥))∧
∀𝑦.(¬𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥))

)

∨

∃𝑥, 𝑦.
((

¬𝖲𝖲𝖾𝗋𝗏(𝑥) ∨ ∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦′, 𝑥))∨
∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦′, 𝑥))

)

∧ 𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)
)

and finally:

𝑘-𝖣𝖣𝖱𝖾𝗐(𝑞 ,≻) = ∃𝑥, 𝑦.𝖮𝗉𝖾𝗋𝖺𝗍𝖾𝗌𝖨𝗇(𝑥, 𝑦)∨
∃𝑥.

(

𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ ∀𝑦.(¬𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)) ∧ ∀𝑦.(¬𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥))∧
∀𝑦.(¬(𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦, 𝑥) ∨𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦, 𝑥)))

)

∨

∃𝑥, 𝑦.
((

¬𝖲𝖲𝖾𝗋𝗏(𝑥) ∨ ∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦′, 𝑥))∨
∃𝑦′.(𝖲𝖲𝖾𝗋𝗏(𝑥) ∧ (𝖬𝖺𝗇𝖺𝗀𝖾𝗌(𝑦′, 𝑥) ∨𝖶𝗈𝗋𝗄𝗌𝖥𝗈𝗋(𝑦′, 𝑥)))

)

∧

𝖡𝗋𝖾𝖺𝖼𝗁𝖾𝖽𝖡𝗒(𝑥, 𝑦)
)

□

It is easy to see that 𝑘-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻) is a Boolean FO query. The fol-
lowing theorem states that, for prioritized DL-Lite CQE specifications
≻ and BUCQs 𝑞, kDD-Cens-Entailment(≻,, 𝑞) can always be solved
by checking whether 𝑘-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻) evaluates to true in , and this
holds for every fixed positive integer 𝑘. In other terms, the problem
is FO-rewritable. As done for Theorem 4, we do this on the basis of
Proposition 1 and Lemma 5.

Theorem 5. Let ≻ = ⟨ , , ≻⟩ be a prioritized DL-Lite CQE
specification, 𝑘 be a positive integer, 𝖼𝖾𝗇𝗌𝖣𝖣𝑘

(⋅) be the 𝑘-DD censor for ≻,
and 𝑞 be a BUCQ. For every ABox , we have that ∪ 𝖼𝖾𝗇𝗌𝖣𝖣𝑘

() ⊧ 𝑞 if
and only if 𝖾𝗏𝖺𝗅(, 𝑘-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻)) is true.

Proof. By exploiting Proposition 1 and Lemma 5, to prove the thesis of
he theorem note that it is enough to show the following: given a BUCQ
, we have that 𝖾𝗏𝖺𝗅(𝖼𝖾𝗇𝗌𝖣𝖣𝑘

(), 𝑄) = 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(), 𝑘-𝖣𝖣𝖰(𝑄, ≻)).
First, we prove inductively the following property: for every integer

such that 0 ≤ 𝑖 ≤ 𝑘, and for every ground atom 𝛼, we have that
𝛼 ∈ 𝖣𝖣𝖠𝑖(≻,) if and only if 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖣𝑖(𝛼 , ≻)) is true and
𝛼 ∈ 𝖣𝖢𝖠𝑖(≻,) if and only if 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖢𝑖(𝛼 , ≻)) is true.

The base case trivially holds since 𝖣𝖣𝖠0(≻,) = 𝖣𝖢𝖠0(≻,) = ∅
nd 𝖣𝖣0(𝛼 , ≻) = 𝖣𝖢0(𝛼 , ≻) = 𝑓 𝑎𝑙 𝑠𝑒.

We now prove the inductive case. We only prove that 𝛼 ∈ 𝖣𝖣𝖠𝑖
≻,) if and only if 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖣𝑖(𝛼 , ≻)) is true. One can prove in

an analogous way that 𝛼 ∈ 𝖣𝖢𝖠𝑖(≻,) if and only if 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖢𝑖
(𝛼 , ≻)).

Suppose that 𝛼 ∈ 𝖣𝖣𝖠𝑖(≻,), i.e. 𝛼 ∈ 𝖼𝗅𝐆𝐀() and for each secret
 ∈ 𝑖𝑛𝑆 𝑒𝑐(, ,, 𝛼) either 𝛼 ≻𝛽 for some 𝛽 ∈ or 𝛽 ∈ 𝖣𝖢𝖠𝑖−1(≻,)
for some 𝛽 ∈ with 𝛼 ≠ 𝛽. Consider the formula 𝖣𝖣𝑖(𝛼 , ≻), which is
of the form 𝛼 ∧

⋀

∀�⃗�.(¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨ 𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼), ≻). In particu-
lar, consider each conjunct ∀�⃗�.(¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨ 𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻)) in
𝖣𝖣𝑖(𝛼 , ≻). By Proposition 8, either 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(), 𝜇𝛼∕𝛽 (𝑞𝛿)) is false, and
so 𝛼 does not belong to any secret that violate 𝛿, or there is a secret
 violating 𝛿 such that 𝛼 ∈ . In the former case, we are done. In the
latter case, by construction of 𝖣𝖣𝑖(𝛼 , ≻) (in particular, the fact that
𝑞𝛿 ∈ 𝗇𝗈𝗍𝖯𝗋𝖾𝖿 𝖾𝗋𝗋𝖾𝖽(𝛼 , , ≻)), we have that there is no 𝛽 ∈ with 𝛼 ≻𝛽. By
the assumption that 𝛼 ∈ 𝖣𝖣𝖠𝑖(≻,), it follows that 𝛽 ∈ 𝖣𝖢𝖠𝑖−1(≻,)
for some 𝛽 ∈ with 𝛼 ≠ 𝛽. But then, due to the inductive hypoth-
esis, we derive that 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖢𝑖−1(𝛽 , ≻)) is true, and therefore
𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻) is true as well. Thus, also in the latter case
we have that 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),∀�⃗�.(¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨ 𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻))) is
true, from which we derive that 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖣𝑖(𝛼 , ≻)) is true. Now,

suppose that 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖣𝑖(𝛼 , ≻)) is true, i.e. 𝛼 ∈ 𝖼𝗅𝐆𝐀() and

12
each ∀�⃗�.(¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨ 𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻)) in 𝖣𝖣𝑖(𝛼 , ≻) is such that
𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),∀�⃗�.(¬𝜇𝛼∕𝛽 (𝑞𝛿) ∨𝗈𝗇𝖾𝖣𝖢𝑖−1(𝜇𝛼∕𝛽 (𝑞𝛿), 𝛼 , ≻))) is true. From the
latter, by Proposition 8, we derive that every secret with 𝛼 ∈ for
which there is no atom 𝛽 ∈ with 𝛼 ≻𝛽 is such that there exists an atom
𝛽 ∈ with 𝖾𝗏𝖺𝗅(𝖼𝗅𝐆𝐀(),𝖣𝖢𝑖−1(𝛽 , ≻)) true. By the inductive hypothesis,
we derive that 𝛽 ∈ 𝖣𝖢𝖠𝑖−1(≻,). Since this holds for every possible
secret with 𝛼 ∈ and for which there is no atom 𝛽 ∈ with 𝛼 ≻𝛽,
by definition we have that 𝛼 ∈ 𝖣𝖣𝖠𝑖(≻,).

Now, one can prove the thesis of the theorem following similar
considerations as done in the proof of Theorem 4 (it is indeed sufficient
o replace 𝖣(𝛼 ,) with 𝖣𝖣𝑘(𝛼 , ≻) and 𝖼𝖾𝗇𝗌𝖨𝖦𝖠() with 𝖼𝖾𝗇𝗌𝖣𝖣𝑘

(), and
follow the same line of reasoning). ■

Example 18. Let ≻, and 𝑞 be as in Example 14, Examples 1 and
5, respectively, and consider the perfect reformulation 3-𝖣𝖣𝖱𝖾𝗐(𝑞 , ≻)
of Example 17. One can verify that 𝖾𝗏𝖺𝗅(, 3-𝖣𝖣𝖱𝖾𝗐(𝑞𝑟, ≻)) is true.
Indeed, for 𝑘 = 3 we have that ∪ 𝖼𝖾𝗇𝗌𝖣𝖣𝑘

() ⊧ 𝑞.
It is also worth noting that, for 𝑘 = 1, we have that 𝖾𝗏𝖺𝗅(, 𝑘-𝖣𝖣𝖱𝖾𝗐

𝑞𝑟, ≻)) is false and ∪ 𝖼𝖾𝗇𝗌𝖣𝖣𝑘
() ̸⊧ 𝑞. □

The corollary below follows from Theorem 5 and the fact that
evaluating an FO query over an ABox is in AC0 in the size of the ABox.

Corollary 2. Let 𝑘 be a positive integer. kDD-Cens-Entailment(≻,, 𝑞) for
prioritized DL-Lite CQE specifications ≻ and BUCQs 𝑞 is in AC0 in data
complexity.

9. Related work

Similarly as we do in the present paper, some previous works on
CQE have proposed techniques to conceal sensitive data in a manner
that makes it impossible for a user to discern the actual database
or knowledge base from an alternative version without secrets, as,
e.g., in [3,5–8]. Using the terminology proposed in this paper, we may
ay that all such papers study censors that, even if defined in different,
ften incomparable ways, enjoy the indistinguishability property that
e formulate in Definition 4. As pointed out in [7] and more recently

in [12], and as we already remarked in previous sections, censors of
this form proved to be more robust than censors not enjoying indis-
tinguishability : the latter, indeed, may be subject to attacks based on
object-level and/or meta-level background knowledge. This behavior
makes such a property desirable in CQE, and is the behavior we
guarantee with the notions of censors studied in this paper.

Our investigation, however, differs form previous ones in various
aspects. Compared to the initial work on CQE, such as [1,3,5,6], which
merit the introduction and study of CQE in the context of databases,
our research addresses this problem in the ambit of Description Logic
ontologies and Semantic Web applications, similarly as [7–10]. CQE in
this scenario is particularly challenging, considered that the usage of
ntologies enables the deduction of implicit information from explicit

data, which further escalates the risk of information leakage.
In this respect, latter references are closer to our work. In more

detail, Ref. [8] defines CQE for ontologies specified in Boolean
and queries that are formulas. The paper identifies useful and
reasonable properties that a censor should have for protecting confi-
dentiality. In [9] the authors study CQE for ontologies in OWL 2 RL,
ne of the tractable profile of OWL 2 [22], and a policy expressed

by a set of ground atoms. One of the main outcomes of this paper is
he identification of a subset of OWL 2 RL for which the computation
f a censor is tractable. It has to be noted that the policy language
onsidered in the two works above is not able to consider protection

rules involving CQs, as we do. Complexity of censor computation is also
tudied in [10], where the same authors extend the framework of [9] to

consider ontologies specified either in Datalog or in any of the OWL 2
profiles, with the policy expressed as a single CQ.

G. Cima et al.

f

w

c

t
p
a
p
t

d

t

t
a

a
s
𝐂

i

a

i
a
a
c
t
q
p

i
p
c
p

p
m

C
p
(
i
r

t

o
t
d

C

B

p
o
i
a
e

p

t
p
e
i
e
r
e
w
a
f

a
p
e
h
o
s
t
o
a

i
f
o
B

c

Journal of Web Semantics 84 (2025) 100841
It is worthwhile remarking that all papers we mentioned so far
ocus on the problem of verifying the existence of a (optimal) censor

ensuring a secure view for the data and on how to construct it. This
approach is similar in spirit to what we discuss in Section 4, where

e provide an algorithm that returns, in polynomial time in data
complexity, one GA censor among several possible optimal ones. This
ensor is then used for query answering, so that answers to queries

are altered exclusively according to the selected censor. Whereas on
he one hand picking up an optimal censor guarantees confidentiality
rotection, on the other hand the selection is typically arbitrary, if there
re no additional metadata supporting such a choice. To overcome this
roblem, in the present paper we also consider a different strategy
hat involves reasoning skeptically with respect to all optimal censors

(Definition 5). This alternative approach was already briefly discussed
in [9] and then elaborated and deeply investigated in [11]. In more
etail, the latter paper generalizes the notion of censor given in [9,10],

by introducing the so-called censor language as a parameter. This
idea is recalled here in Definition 2. Then, [11] studies entailment
of CQs under GA censors and censors in 𝐂𝐐 (cf. Definition 5) from
he computational viewpoint, for ontologies in ⊥ and DL-Lite, the

logics at the basis of the OWL 2 profiles OWL 2 EL and OWL 2 QL,
respectively, and for policies specified in terms of CQs, analogously to
he present article. Indistinguishability is however not considered (this
spect is also overlooked in [9,10]). One of the aim of the present paper

is to clarify the relationship between the notions of censors of [11]
nd censors that require the existence of an indistinguishable ABox. As
hown in Section 3, GA censors enjoy this property, whereas censors in
𝐐 do not.

Further studies on information disclosure leveraging an
ndistinguishability-based notion of policy compliance have then been

developed in the context of information integration. In [25], the
authors consider the setting of Ontology-Based Data Access (OBDA)
nd study the problem of determining whether information that is

declared confidential at the data sources through a protection policy, as
n CQE, can be inferred by a user only on the basis of the data she can
ccess through the OBDA system, assuming that she is knowledgeable
bout the OBDA specification. The paper studies the computational
omplexity of this problem, under various assumptions on the forms of
he mapping (GAV or LAV [31]) and on the complexity of conjunctive
uery entailment for the given ontology language. In [32], a similar
roblem is studied for data integration systems in the presence of con-

straints specified over the data sources. CQE in OBDA is also considered
n [26], but indistinguishability is not explicitly investigated. The latter
aper, however, uses GA censors and introduces the notion of IGA
ensor studied in the present work (Section 6). As discussed in the
revious sections, besides enjoying indistinguishability (Proposition 5),

IGA censors have a desirable computational behavior, allowing for
conjunctive query answering in AC0 in data complexity (Corollary 1).
On the other hand, an IGA censor in general conceals more data than
other forms of censors (e.g., GA censors) to preserve confidentiality.
Equipping ontologies with preferences between predicates expressing
riorities on the way in which data should be censored may help to
itigate this last issue, as we discussed in Sections 7 and 8.

To the best of our knowledge, this is the first paper considering
QE over prioritized ontologies. The priority-based CQE semantics we
ropose are adapted from the literature on Consistent Query Answering
CQA). CQA is a declarative approach to inconsistency management
n databases and knowledge bases constructed around the notion of
epair [30,33,34]. In the context of ontologies, a repair is often defined

as a maximal subset of the ABox that is consistent with the TBox
(even though alternative definitions have been even proposed in the
literature). In other terms, repairs are obtained by resolving conflicts in
all possible ways. To some extent, repairs in CQA act as censors in CQE,
and query answering in the former framework amounts to skeptically
reasoning with respect to all possible repairs, similarly as in CQE we
 D

13
reason with respect to all possible censors. An in-depth investigation on
he connection between the two frameworks can be found in [11]. In

the context of CQA, the use of preferences has been proposed originally
in [29] to select a set of preferred repairs, and thus reducing the level
f nondeterminism in reasoning. The setting of preferred repairs has
hen been investigated in several other papers, in the context of both
atabases (see, e.g., [35,36]) and ontologies (see, e.g., [16,37–39]).

Among the mentioned papers, the work [16] is certainly the closest
to our research. Indeed, our DD censor has a correspondence with the
grounded extension introduced in [16] through a transformation of the

QA problem into an argumentation framework. Also, our rewritability
result corresponds to an analogous finding mentioned in that paper.

esides the differences between the settings studied in the two papers,
we remark that priorities considered in [16] are specified between
ABox facts, whereas we here assume priorities between ontology predi-
cates, maintaining this aspect at the intensional level, and thus making
riorities easier to manage from the modeling viewpoint. Furthermore,
ur treatment is tailored to CQE, and does not require transformation
nto a different problem, thus streamlining the technical aspects of the
pproach. Also, the rewriting algorithm that we provide allows us to
asily exploit the idea of [26] for solving CQE over ontologies through

the use of off-the-shelf tools for OBDA [40,41].
We conclude this related work section by mentioning the approach

presented in [42]. That paper proposes a way to select censors in the
CQE framework that is alternative to the specification of priorities
described above. The idea is to use the order of queries posed to the
ontology to define a dynamic selection criterion over the GA censors.
Given its tight dependency on the history of the user queries, this
approach is actually not comparable with the CQE framework of the
resent paper.

10. Conclusions

In this paper, we investigated CQE in Description Logics through the
lens of instance indistinguishability. In particular, we studied different
ypes of censors and identified the ones satisfying such a desirable
roperty. We also introduced an intersection-based semantics for BUCQ
ntailment that soundly approximates skeptical reasoning while enjoy-
ng first-order rewritability in the case of DL-Lite ontologies. We then
nriched the framework with the possibility of specifying a priority
elation over the predicate signature, and presented a well-founded
ntailment semantics that improves the throughput of query answers
hile still preserving confidentiality. At the same time, this novel
pproach retains the indistinguishability property and maintains the
avorable computational complexity of the intersection-based scenario.

We note that these results are not only theoretically significant but
also have important practical implications. On one hand, it is worth
highlighting the declarativeness of the proposed approach: it provides
 system designer with powerful and easy mechanisms to express her
rotection needs, i.e. denials and preferences, requiring little design
ffort compared to classical ontology modeling activities. On the other
and, we have identified an implementable case involving widely-used
ntology and query languages in the Semantic Web, which are well-
uited for data-intensive scenarios. This enabled us to successfully apply
hese techniques in preliminary experiments using benchmarks for
ntology-based data integration, leveraging off-the-shelf OBDA engines
s described in [18,26].

Our current research is focused on the problem of intensionally (i.e.
ndependently of the ABox) deciding whether, for a given CQE speci-
ication, there exists an integer 𝑘 such that the 𝑘-DD censor converges
n the DD censor. Interestingly, for such specifications, entailment of
UCQs under the DD censor is first-order rewritable.

As for future work, it would be highly intriguing to conduct a
omputational analysis involving ontologies specified in alternative
Ls. Then, a possible improvement for our framework may consist in

G. Cima et al.

c
i

R
a
r
A

Journal of Web Semantics 84 (2025) 100841
enriching the preference mechanism, e.g. adapting to the CQE setting
one of the recent approaches to preferred repairs in CQA [37–39].

CRediT authorship contribution statement

Gianluca Cima: Conceptualization, Formal analysis, Methodology,
Supervision, Writing – original draft. Domenico Lembo: Conceptual-
ization, Formal analysis, Methodology, Supervision, Writing – original
draft. Lorenzo Marconi: Conceptualization, Formal analysis, Method-
ology, Supervision, Writing – original draft. Riccardo Rosati: Concep-
tualization, Formal analysis, Methodology, Supervision, Writing – orig-
inal draft. Domenico Fabio Savo: Conceptualization, Formal analysis,
Methodology, Supervision, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work was partially supported by : projects FAIR (PE0000013)
and SERICS (PE00000014) under the MUR National Recovery and

esilience Plan (PNRR) funded by the European Union - NextGener-
tionEU; GLACIATION project funded under the European Union’s HE
esearch and innovation programme (grant agreement No 101070141);
NTHEM project funded by the Italian National Plan for PNRR Comple-

mentary Investments (prj. n. PNC0000003 - CUP B53C22006700001).

Data availability

No data was used for the research described in the article.

References

[1] G.L. Sicherman, W. de Jonge, R.P. van de Riet, Answering queries without
revealing secrets, ACM Trans. Database Syst. 8 (1) (1983) 41–59.

[2] J. Biskup, For unknown secrecies refusal is better than lying, Data Knowl. Eng.
33 (1) (2000) 1–23.

[3] J. Biskup, P.A. Bonatti, Controlled query evaluation for known policies by
combining lying and refusal, Ann. Math. Artif. Intell. 40 (1–2) (2004) 37–62.

[4] J. Biskup, P.A. Bonatti, Lying versus refusal for known potential secrets, Data
Knowl. Eng. 38 (2) (2001) 199–222.

[5] J. Biskup, P.A. Bonatti, Controlled query evaluation for enforcing confidentiality
in complete information systems, Int. J. Inf. Secur. 3 (1) (2004) 14–27.

[6] J. Biskup, T. Weibert, Keeping secrets in incomplete databases, Int. J. Inf. Secur.
7 (3) (2008) 199–217.

[7] P.A. Bonatti, L. Sauro, A confidentiality model for ontologies, in: Proc. of the
12th Int. Semantic Web Conf, ISWC, in: Lecture Notes in Computer Science, vol.
8218, 2013, pp. 17–32.

[8] T. Studer, J. Werner, Censors for boolean description logic, Trans. Data Priv. 7
(3) (2014) 223–252.

[9] B. Cuenca Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query
evaluation over OWL 2 RL ontologies, in: Proc. of the 12th Int. Semantic
Web Conf, ISWC, in: Lecture Notes in Computer Science, vol. 8218, 2013
pp. 49–65.

[10] B. Cuenca Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query
evaluation for Datalog and OWL 2 profile ontologies, in: Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence, IJCAI, 2015, pp. 2883–2889.

[11] D. Lembo, R. Rosati, D.F. Savo, Revisiting controlled query evaluation in
description logics, in: Proc. of the 28th Int. Joint Conf. on Artificial Intelligence,
IJCAI, 2019, pp. 1786–1792.

[12] P.A. Bonatti, A false sense of security, Artificial Intelligence 310 (103741) (2022).
[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable

reasoning and efficient query answering in description logics: The DL-Lite family,
J. Automat. Reason. 39 (3) (2007) 385–429.

[14] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, B. Cuenca Grau, OWL
Web Ontology Language Profiles, W3C Recommendation, World Wide Web
Consortium, 2009, available at http://www.w3.org/TR/owl-profiles/.
14
[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity
of query answering in description logics, Artificial Intelligence 195 (2013)
335–360.

[16] M. Bienvenu, C. Bourgaux, Querying and repairing inconsistent prioritized
knowledge bases: Complexity analysis and links with abstract argumentation,
in: Proc. of the 17th Int. Conf. on the Principles of Knowledge Representation
and Reasoning, KR, 2020, pp. 141–151.

[17] G. Cima, D. Lembo, R. Rosati, D.F. Savo, Controlled query evaluation in
description logics through instance indistinguishability, in: Proc. of the 29th Int.
Joint Conf. on Artificial Intelligence, IJCAI, 2020, pp. 1791–1797.

[18] G. Cima, D. Lembo, L. Marconi, R. Rosati, D.F. Savo, Controlled query evaluation
over prioritized ontologies with expressive data protection policies, in: Proc. of
the 20th Int. Semantic Web Conf, ISWC, in: Lecture Notes in Computer Science,
vol. 12922, Springer, 2021, pp. 374–391.

[19] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),
The Description Logic Handbook: Theory, Implementation and Applications,
second ed., Cambridge University Press, 2007.

[20] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley Publ.
Co., 1995.

[21] J.W. Lloyd, Foundations of Logic Programming (Second, Extended Edition),
Springer, Berlin, Heidelberg, 1987.

[22] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL
2 Web Ontology Language Profiles (Second Edition), W3C Recommendation,
World Wide Web Consortium, 2012, available at http://www.w3.org/TR/owl2-
profiles/.

[23] M.Y. Vardi, The complexity of relational query languages, in: Proc. of the 14th
ACM SIGACT Symp. on Theory of Computing, STOC, 1982, pp. 137–146.

[24] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family
and relations, J. Artificial Intelligence Res. 36 (2009) 1–69.

[25] M. Benedikt, B. Cuenca Grau, E.V. Kostylev, Logical foundations of information
disclosure in ontology-based data integration, Artificial Intelligence 262 (2018)
52–95.

[26] G. Cima, D. Lembo, L. Marconi, R. Rosati, D.F. Savo, Controlled query evaluation
in ontology-based data access, in: Proc. of the 19th Int. Semantic Web Conf,
ISWC, 2020, pp. 128–146.

[27] J. Biskup, P.A. Bonatti, Controlled query evaluation with open queries for a
decidable relational submodel, Ann. Math. Artif. Intell. 50 (1–2) (2007) 39–77.

[28] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant
query answering in ontology-based data access, J. Web Semant. 33 (2015) 3–29.

[29] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent
query answering in relational databases, Ann. Math. Artif. Intell. 64 (2–3) (2012)
209–246.

[30] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in inconsistent
databases, in: Proc. of the 18th ACM SIGMOD SIGACT SIGART Symp. on
Principles of Database Systems, PODS, 1999, pp. 68–79.

[31] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. of the 21st
ACM SIGMOD SIGACT SIGART Symp. on Principles of Database Systems, PODS,
2002, pp. 233–246.

[32] M. Benedikt, P. Bourhis, L. Jachiet, M. Thomazo, Reasoning about disclosure in
data integration in the presence of source constraints, in: Proc. of the 28th Int.
Joint Conf. on Artificial Intelligence, IJCAI, 2019, pp. 1551–1557.

[33] M. Bienvenu, C. Bourgaux, Inconsistency-tolerant querying of description logic
knowledge bases, in: Reasoning Web. Semantic Technologies for Intelligent Data
Access – 12th Int. Summer School Tutorial Lectures, RW, 2016, pp. 156–202.

[34] L.E. Bertossi, Database Repairing and Consistent Query Answering, in: Synthesis
Lectures on Data Management, Morgan & Claypool Publishers, 2011.

[35] R. Fagin, B. Kimelfeld, P.G. Kolaitis, Dichotomies in the complexity of preferred
repairs, in: Proc. of the 34rd ACM SIGMOD SIGACT SIGAI Symp. on Principles
of Database Systems, PODS, 2015, pp. 3–15.

[36] B. Kimelfeld, E. Livshits, L. Peterfreund, Counting and enumerating preferred
database repairs, Theoret. Comput. Sci. 837 (2020) 115–157.

[37] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic
knowledge bases under preferred repair semantics, in: C.E. Brodley, P. Stone
(Eds.), Proc. of the 28th AAAI Conf. on Artificial Intelligence, AAAI, AAAI Press,
2014, pp. 996–1002.

[38] M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-
tolerant query answering under existential rules, Artificial Intelligence 312
(2022) 103772.

[39] T. Lukasiewicz, E. Malizia, C. Molinaro, Complexity of inconsistency-tolerant
query answering in datalog+/- under preferred repairs, in: Proc. of the 20th
Int. Conf. on the Principles of Knowledge Representation and Reasoning, KR,
2023, pp. 472–481.

[40] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M.
Rodriguez-Muro, G. Xiao, Ontop: Answering SPARQL queries over relational
databases, Semant. Web J. 8 (3) (2017) 471–487.

http://refhub.elsevier.com/S1570-8268(24)00027-1/sb1
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb1
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb1
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb2
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb2
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb2
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb3
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb3
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb3
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb4
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb4
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb4
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb5
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb5
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb5
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb6
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb6
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb6
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb7
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb7
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb7
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb7
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb7
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb8
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb8
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb8
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb9
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb10
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb10
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb10
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb10
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb10
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb11
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb11
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb11
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb11
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb11
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb12
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb13
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb13
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb13
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb13
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb13
http://www.w3.org/TR/owl-profiles/
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb15
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb15
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb15
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb15
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb15
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb16
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb17
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb17
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb17
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb17
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb17
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb18
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb19
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb19
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb19
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb19
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb19
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb20
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb20
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb20
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb21
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb21
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb21
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb23
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb23
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb23
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb24
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb24
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb24
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb25
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb25
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb25
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb25
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb25
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb26
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb26
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb26
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb26
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb26
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb27
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb27
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb27
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb28
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb28
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb28
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb29
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb29
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb29
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb29
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb29
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb30
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb30
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb30
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb30
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb30
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb31
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb31
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb31
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb31
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb31
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb32
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb32
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb32
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb32
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb32
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb33
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb33
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb33
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb33
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb33
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb34
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb34
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb34
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb35
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb35
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb35
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb35
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb35
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb36
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb36
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb36
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb37
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb38
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb38
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb38
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb38
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb38
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb39
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb40
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb40
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb40
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb40
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb40

G. Cima et al. Journal of Web Semantics 84 (2025) 100841
[41] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore,
R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, D.F. Savo, MASTRO
STUDIO: managing ontology-based data access applications, Proc. VLDB Endow.
6 (12) (2013) 1314–1317.
15
[42] P.A. Bonatti, G. Cima, D. Lembo, L. Marconi, R. Rosati, L. Sauro, D.F. Savo,
Controlled query evaluation in OWL 2 QL: A longest honeymoon approach, in:
Proc. of the 21st Int. Semantic Web Conf, ISWC, in: Lecture Notes in Computer
Science, vol. 13489, 2022, pp. 428–444.

http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb41
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42
http://refhub.elsevier.com/S1570-8268(24)00027-1/sb42

	Indistinguishability in controlled query evaluation over prioritized description logic ontologies
	Introduction
	Preliminaries
	Framework for CQE in DLs
	Query Answering under Optimal GA Censors
	IGA Censors
	Query Answering under the IGA Censor
	Prioritized CQE Framework
	FO-rewritable Prioritized CQE in DL-LiteR
	DD censors and k censors
	Query rewriting algorithm

	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

