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ABSTRACT A hybrid methodology combining the use of a robust LQR servomechanism (RSLQR) and
a genetic algorithm (GA) for the design of the flight control system (FCS) of a lightweight unmanned
aerial vehicle is the subject of this paper. The objective is to develop a systematic design approach based
on a proven technique that provides improved time response and robust steady-state performance of the
control system, so as to reduce the burden of trial-and-error procedures. The design of the inner loops of
the UAV autopilot is formulated as an optimization problem where the GA is used to determine the weights
of the RSLQR synthesis. The process is aimed at maximizing a weighted sum of an appropriately defined
multi-objective fitness function, evaluated through a series of nonlinear simulations, so as to fully engage
the control system in complex maneuvers, such as combined changes in altitude and heading at different
flight speeds. The performance of the proposed control design approach is evaluated using analytical tools
for linear systems, software-in-the-loop simulations, and Monte Carlo campaigns. The comparison between
the new controller and a classical FCS with internal PID loops on attitude angles for stability and control
augmentation is analyzed and discussed using an accurate vehicle model with an extended Kalman filter for
output reconstruction.

INDEX TERMS Optimal tuning, genetic algorithm, UAV autopilot.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are increasingly used in
different applications in both military and civilian domains.
In particular, small fixed-wing UAVs present several advan-
tages compared to multi-copter configurations, such as
payload capabilities, a much wider operative range, and
improved overall power efficiency. Moreover, a fixed-wing
configuration is mandatory whenever endurance is a primary
requirement. UAV operations can be challenging when the
vehicle interacts with the environment [1], i.e. approaching
terrain for inspection and data gathering, infrastructure and
building monitoring, goods delivery, search and rescue mis-
sions, or providing medical emergency services. Moreover,
small UAVs are more subjected to atmospheric disturbances
due to their lightweight, particularly when flying close to the
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ground, walls or rigid obstacles [2]. Therefore, a major design
objective is to develop, with limited effort and cost, effective
and reliable FCSs for aerial systems having a significant level
of model uncertainty.

Conventional autopilot systems for fixed-wing UAVs
provide lateral and longitudinal control through proportional-
integral-derivative (PID) controllers and/or phase-lead or lag
compensators [3]. An optimization-based tuning for a clas-
sical PID plus compensator architecture is proposed in [4],
where the longitudinal controller is found as the solution of a
single objective, constrained nonlinear optimization problem,
solved by means of a Sequential Quadratic Programming
(SQP) algorithm. In [5], an automatic tuning algorithm is
used for the controller design of a micro-aircraft, based
on tests in a wind tunnel. In the framework of autotuning
methods, the relay feedback approach is discussed in [6]
for the determination of controller parameters once gain
and phase margins are specified. This technique was further
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extended to allow the tuning of a gain scheduling PID
controller, so as to provide improved performance with
respect to system nonlinearities [7].

Besides PID controllers, more modern design methodolo-
gies have been proposed for fixed-wing UAVs, including
robust control techniques such as H∞, used to reduce the
response to atmospheric turbulence and ground effect [8],
model predictive control (MPC) [9], and linear parameter
varying (LPV) [10]. The latter allows for improved control
effectiveness by better capturing the system nonlinearities
in the control design. Nonlinear model predictive control
(NMPC) is applied in [11] to, again, include the nonlinear
effects in the synthesis of attitude and speed control laws,
and explicitly deal with the boundary of the flight envelope
and the actuator limits. Feedback linearization and model
reference adaptive control (MRAC) are integrated in [12]
to improve the robustness of the attitude control system
of a high-altitude UAV with respect to uncertainties and
gust disturbances. Reference [13] presents a nonlinear
controller for a twin-engine UAV in the 500 N weight class
where a recurrent neural network trained offline realizes
the inversion required for feedback linearization. A model
reference adaptive control, specifically tailored to an LQR
baseline controller, is proposed in [14], and a fuzzy neural
network featuring a proportional controller is considered
in [15] to deal with a high level of uncertainty in the UAV
model. Adaptive laws based on uncertain Euler-Lagrange
dynamics of the vehicle are developed in [16] for the
autopilot of a fixed-wing UAV to explicitly take into account
under-actuation in the dynamics, and system uncertainty.
When reference is made to novel, advanced functionalities
of FCSs for unmanned systems with unknown dynamics and
disturbances, and in a broader perspective than for small-size
drones, the study [17] is recalled where a fragility-avoidance
prescribed performance control (PPC) methodology, based
on a fuzzy neural approximation, is developed for velocity
and attitude control.

In this study, a robust FCS is devised for a small fixed-wing
UAV in the weight class of 150 N. In particular, control
law parameters for the inner control loops are determined
by means of the LQR and static projective control (SPC)
methods [18], and LQR weights are specified solving an
optimization problem through a genetic algorithm (GA).

The major design objective is to improve FCS performance
throughout the UAV flight envelope while systematizing
the synthesis process in order to relieve the designer from
the need for time-consuming, manual tuning approaches
and reduce the development time of low-cost aerial plat-
forms. The robust LQR servomechanism design technique
(RSLQR) is particularly suitable for realizing, along with
the required level of stability, important flight characteristics
for unmanned vehicles, such as reliable command tracking
and minimal control effort in the presence of uncertainties in
system dynamics, wind gust disturbances, and sensor noise.
Furthermore, by reconstructing the closed-loop structure of
the optimal system obtained by the RSLQR method, the SPC

allows the system characteristics to be maintained even if not
all the original feedback signals are available or accurate.

The present work builds on and aims to develop the
preliminary analysis presented in [19] where i) the same
approach was applied to a simplified UAV model not
featuring the extended Kalman filter (EKF) for output
reconstruction which is a key element of the real vehicle FCS,
and ii) the synthesis method and the effects of outer loops on
controller performance were not investigated.

Relevant examples of the effectiveness of the considered
design methodology are reported in a number of applications.
In the work of Lavrestsky [20] the results of RSLQR design
for the longitudinal control of a UAV are compared with
those based on projective control theory (PCT), namely
RSLQG and RSLQG/LTR, where RSLQG and LTR stand,
respectively, for robust servomechanism linear quadratic
Gaussian, and loop transfer recovery. The high control
accuracy of RSLQR is exploited in [21] for a UAV normal
acceleration controller, where a L1 adaptive controller [22]
is used to compensate for the effects of model uncertainties.
A combination of RSLQR and SPC techniques is considered
in [23] for the inner control loops of the nonlinear model of a
flying-wing UAV. The solution of a trajectory tracking prob-
lem shows the excellent response of attitude loops, in terms
of quickness and precision, with respect to an ordinary PID
autopilot. A pitch angle controller for UAVs based on RSLQR
and Kalman filtering to improve performance under noisy
conditions is presented in [24]. Application of the RSLQR
technique is combined with an extended state observer in [25]
to design the control system of a tilt-rotor UAV, capable
of successfully managing actuator saturation limits while
improving tracking and disturbance rejection performance
with respect to a PID controller.

Yet, the result of RSLQR design depends on the definition
of a set of suitable weight parameters. In this respect, the goal,
provided that a reasonably accurate model of the vehicle is
available, is to reduce the gap, in the early stages of the design
process, between the linear control synthesis model and the
nonlinear assessment and validation framework. This may
be obtained by parameterizing the LQR weight matrices and
setting up a two-layer global optimization problem, where an
evolutionary algorithm (EA) [26] determines the weights.
In order to design the inner control loops of the UAV

autopilot, a composite merit index is defined that accounts
for metrics related to flight qualities, as evaluated over a
carefully-selected set of nonlinear simulations in extended
regions of the UAV flight envelope. The resulting controller
is expected to provide better overall performance in terms of
stability, precision, and responsiveness of command tracking,
robustness to model parameters, and disturbance rejection.

Application of EAs for solving real-world optimiza-
tion problems is a recent and effective practice in the
aerospace field [27]. EA algorithms overcome traditional
gradient-based numerical optimization methods in practical
scenarios, being able to deal with non-differentiable, mixed
real-discrete, and highly nonlinear objective fitness function
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landscapes [28]. Using a population of candidate solutions
in spite of a single one allows for a robust search that is
less likely to get trapped in local optima than a traditional
single-point search with gradient information and, in turn,
provides a smoother (yet less accurate) alternative of the
gradient. Being very simple to use and effective in practical
problems, EAs are also suitable when the objective function
is computed by means of numerical simulation, that is,
as the output of a black-box (i.e., proprietary) code/tool like
in CFD or computational structural design. Also, EAs are
easy to scale on massively parallelized processing hardware,
taking substantial advantage from current improvements in
computing capabilities. Finally, EAs can be hybridized, that
is, used in conjunction with (possibly derivative-free) local
optimization algorithms, such as the Nelder–Mead Simplex
technique [29] to retain the advantages of both methods.

Among various EA approaches, a GA that mimics the
process of natural selection, in which the fittest individuals
are selected for breeding to produce the next generation’s
offspring, was selected in this study for its superior usability
and robustness [30]. GAs have been extensively used for
PID controller tuning. A comparison between GAs and
the conventional Ziegler-Nichols method for PID tuning is
presented in [31], where a first-order dynamical system is
taken into consideration in order to illustrate the advantages
of the former approach. A revised formulation of the
same methodology is presented in [32], which relies on
a combination of different performance metrics such as
integral square error (ISE), integral time square error (ITSE),
integral time absolute error (ITAE), and mean square error
(MSE), to determine the optimal tuning of a controller for
chemical processes. As for applications in the aerospace field,
a method utilizing GA to automate the tuning process is
proposed in [33] for the parameters of the Robust Inverse
Dynamics Estimation (RIDE) controller of an F-18/HARV
aircraft model. An improved GA, intended to overcome some
shortcomings of the methodology such as premature or local
convergence and low search efficiency, is presented in [34]
to optimize the parameters of a PID pitch control loop for
a small UAV. In the comprehensive study of [35], where a
GA allows for the optimization of a set of trajectory-tracking
controllers for autonomous aircraft, the performance index
is composed of a set of metrics based on tracking error
and control activity in response to a commanded trajectory
consisting of a series of climbing and descending S-turns.

A GA has been utilized as a PI/PID tuning method
to enhance the autopilot response of a very lightweight
fixed-wing UAV [36]. The Zeigler-Nichols method and GA
optimization technique are considered in [37] to tune the
roll-axis PID controller of an aircraft model. The PID gains in
the inner loops of the position controller for a quadrotor are
optimized in [38] using different meta-heuristic algorithms,
including GA, to minimize a fitness function based on the
integral of timemultiplied by absolute error, and the rise time,
settling time and overshoot. GA shows superior performance
in forward flight among a number of EA algorithms, the

performances of which are compared in the optimized tuning
of a PID-based FCS for a medium-scale rotorcraft [39].
GA effectiveness for control tuning has been also exploited
by the authors for the attitude control of a launch vehicle in
atmospheric flight [40].
Although the application of GA for controller tuning is

an established field of research, further developments may
lead to exploiting the full potential of the methodology and
overcoming some limitations in its application. For example,
in [31], [32], [36], and [37], the PID gains are adjusted to
optimize performance indexes mainly associated with the
error between the reference input signal and the simulated or
ideal system step response for single-axis excitation. More
representative performance indexes are considered in [34]
and [38], based among others on control action, overshoot,
rise and settling times, and system error, but still using
PID-based control architectures in a SISO framework. In [33]
the tuning is carried out by minimizing the Euclidean norm of
the difference between the response of a linearized form of the
aircraft model and an ideal reference model and, apparently,
the analysis is limited to a single trim point and the roll
response.

The main contribution of this work is as follows:

• A relatively simple hybrid and robust control archi-
tecture is proposed, suitable for lightweight, low-cost
UAVs, featuring a GA to determine the weights that
enter the RSLQR problem, which, in turn, provides the
optimal controller tuning.

• A complete UAV autopilot is considered, designed
by RSLQR and SPC synthesis methodologies, with
realistic and complete functionalities, and the increased
complexity in tuning is handled by the GA.

• A generalized framework for UAV control system
parameters evolutionary optimization is provided, where
the LQR weights are determined by considering the
nonlinear simulation of a sequence of maneuvers,
including speed, height, and heading changes, thus
encompassing a variety of flight conditions. The fitness
function takes into account the quickness and precision
of the UAV response to the reference commands at
different flight speeds, together with the maximum
value of the aerodynamic angles, the high-frequency
content of the control signal, and the coupling between
longitudinal, lateral, and speed controllers.

• The designed controller, whose characteristics are
implicitly defined by the fitness function formulation,
provides higher performance, compared with PID
loops, under a wide range of flight conditions, despite
nonlinearities, coupling, model uncertainty, and servo
saturation.

The methodology is applied to the mathematical model of
a 1:3 scale model of the Yakovlev Yak-112 aircraft, which is
currently used as a flight and ground testbed for the design
and validation of UAV FCSs. The performance of the FCS
design is analyzed by software-in-the-loop (SIL) simulations
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TABLE 1. UAV model parameters.

of specific maneuvers. In particular, the effectiveness of the
optimally tuned autopilot is compared, in terms of command
tracking, robustness, and disturbance rejection, to that of the
actual control system of the vehicle, which features PID inner
loops on attitude angles (roll and pitch) and yaw rate for
stability and control augmentation.

In what follows, the simulation model of the UAV
is outlined in Sec. II, where a short description of the
main features and architecture of the autopilot currently
implemented in the vehicle is also reported. The design of the
inner controllers is presented in Sec. III with reference to the
two steps related to (i) RSLQR synthesis for the longitudinal
and lateral dynamics, and (ii) optimal tuning of LQRweights.
In Sec. IV FCS performance is analyzed and discussed in
order to assess the advantages and possible limitations of the
proposed control design technique. A section of conclusions
ends the paper.

II. UAV SYSTEM
A. SIMULATION MODEL
The main inertial and geometric characteristics of the UAV
are reported in Table 1 together with a few performance data.
The vehicle is modeled as a six-degrees-of-freedom rigid
body flying over a flat, not rotating Earth. The equations of
motion are standard (see for instance [41, Ch. 3]), and the
dynamical system is represented, in state-space form, as

ẋ = f (x,u,w) (1)

y = g(x,u,w) (2)

where x = [xv, xs]T , and the elements of xv =

[u, v,w, p, q, r, φ, θ, ψ,�, h,2g,8g]T are related to the
translational (velocity components u, v, w, altitude h and
geographic longitude 2g and latitude 8g) and rotational
(angular velocity components p, q, r and Euler angles
φ, θ , ψ) motions, and to the dynamics of the pro-
peller rate of revolution (rpm) �. The states in xs =

[δt , δ̇t , δe, δ̇e, δa, δ̇a, δr , δ̇r ]T are associated with the servo
model, where the subscripts t , e, a and r indicate throttle,
elevator, aileron, and rudder, respectively. The command
input vector is u = [δcmdt , δcmde , δcmda , δcmdr ]T , and y =

[V , ay, az, φ, θ, ψ, p, q, r, h,2g,8g, ḣ, χ ] is the vector of
measured outputs, being V the indicated airspeed, ay and
az the lateral and normal components of acceleration in

TABLE 2. Constant coefficients in the aerodynamic model.

body-axes, respectively, and χ the heading angle. The
wind vector (input w) is represented as the sum of a
persistent deterministic component, and a random variation
described by a Dryden turbulence model specialized for low
altitude [42]. Finally, a standard atmosphere model for air
density (ρ) and temperature (T ) is featured, the latter to be
used in the single-piston engine model. Figure 1 shows the
major elements of the UAV model.

As for the aerodynamic block, the expression of force
and moment components in body axes is standard, and the
aerodynamic coefficients are expressed as

CD = CD1 (α, β)

Cy = Cy1 (α, β) + Cyr (2rb/V ) + Cyδr δr
CL = CL1 (α, β) + CLq (2qc/V ) + CLδe δe
Cl = Cl1 (α, β) + Clp (2pb/V )

+ Clr (2rb/V )Clδa δa + Clδr δr
Cm = Cm1 (α, β) + Cmα̇ (2α̇c/V )

+ Cmq (2qc/V ) + Cmδe δe
Cn = Cn1 (α, β) + Cnp (2pb/V )

+ Cnr (2rb/V ) + Cnδa δa + Cnδr δr (3)

where α is the angle of attack and β is the sideslip angle, c
and b are, respectively, the mean aerodynamic chord and the
wing span. The aerodynamic model has been determined by
means of the VSAERO™ code [43], a 3D panel method that
calculates irrotational and incompressible subsonic flows on
bodies of arbitrary shape, featuring an iterative procedure for
the calculation of nonlinear wake effects. Viscous effects are
taken into account by coupling the potential flow field to a
boundary layer solution. The constant parameters in Eqs. (3)
are reported in Table 2, whereas the terms depending on the
aerodynamic angles (subscript 1 in Eqs. (3)) are specified in
tabular form in the ranges −10 ≤ α ≤ 9 deg and −30 ≤ β ≤

30 deg, and shown in Fig. 2 for, respectively, the longitudinal
and lateral coefficients.

The Engine block features a two-strokes piston engine
with first-order rpm dynamics and the propeller model.
In particular, the DLE 55 gasoline engine brake horsepower
curve is provided by a look-up table as a function of throttle
level and rpm, taking into consideration air temperature
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FIGURE 1. Schematic of UAV model.

FIGURE 2. Terms depending on α and β in the expressions of aerodynamic coefficients (Eqs. 3).

and pressure, while the performance data of the fixed-pitch
propeller (thrust and power coefficients, efficiency) are also
specified in tabular form depending on the advance ratio.

A second-order dynamics with a delay of 0.03 s is
considered for the servos, with identified parameters for the
Hitec® HS-5965MG model, namely damping coefficient,
natural frequency, and delay, given by ζ = 0.85, ωs =

21.318 rad/s, and τs = 30ms, respectively. Angular ranges

are 30 deg and −25 deg for elevator and rudder, and 25 deg
and −20 deg for ailerons, while the angular rate of all servos
saturates at 50 deg/s.

The sensor suite is composed of an absolute pressure
sensor (Bosh® BPM 280) with an integrated digital ther-
mometer used as a barometric altimeter, a Honeywell®

differential pressure sensor transducer with ±5 inH2O range
for the indicated airspeed (IAS), an Xsense® 28A54G35
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TABLE 3. Error model parameters: First set.

TABLE 4. Error model parameters: Second set.

AHRS (attitude and heading reference system) that measures
the angular rate and linear acceleration components in
body axes, and the attitude angles, and a GPS sensor
Venus638FLPx by SkyTraq Technology, Inc.® for position,
velocity and heading angle χ . Sensor models associated with
measurements of acceleration, angular rate, IAS, altitude,
GPS velocity, and χ feature white noise additive errors
the characteristics of which, identified through a campaign
of ground tests, are reported in Table 3, where µ and σ
are, respectively, mean value and covariance. The noise ηg
on position (GPS) and attitude (AHRS) measurements is
described by a Gauss-Markov first-order process as

η̇g = −
1
τ
ηg + ηd (4)

where τ > 0 is the autocorrelation time, and ηd is the
driving zero-mean white noise. Table 4 shows the error model
parameters for this second set of data.

B. FLIGHT MANAGEMENT SYSTEM
The architecture of the UAV autopilot is illustrated in Fig. 3
where the block related to the physical plant (featuring the
models of vehicle, servos, and sensors shown in Fig. 1), and
the EKF are also shown. The filter uses the values of Euler’s
angles provided by the Xsense® proprietary sensor fusion
algorithm as input, and the GPS data for position, altitude,
and velocity components in the horizontal plane, together
with the coarse output of the AHRS for acceleration and
angular rate as measurements. Estimates of c.g. coordinates,
altitude, acceleration, and velocity components in the North-
East-Down (NED) frame, and angular velocity components
in body axes are computed at the frequency of 50 Hz,
and used in the inner or outer loops of the controllers.
Biases on acceleration and angular velocity components
are also evaluated at the same rate. The analog output of
the differential pressure sensor is low-pass filtered by a

Butterworth filter with unit gain and 0.48 Hz cutoff frequency
prior to IAS computation. The block Mode and comms
manager receives data from the ground station, such as
mode switching and task processing commands, waypoint
coordinates, and inputs for autopilot modes, that is, command
and hold for speed, altitude, rate of climb and heading, and
data on aircraft status to activate the control modes and
functionalities related to the assigned mission. Reference
values for the outer loops are generated in the block Guidance
laws when the waypoint navigation mode or auto take-off and
auto-landing modes are engaged.

All the UAV mission planning and control functionalities
are included in the discrete-time model of the FMS, where
servo commands are updated at 50 Hz, with a time delay of
0.03 s due to the effects of computational delay and sampling.

The actual control system of the vehicle (FCS block in
Fig. 3), sketched in Fig. 4 and dubbed Controller 1, features
a classic cascade structure with outer loops that generate
reference commands for the inner loops using values of
speed, altitude, rate of climb (RC), and heading provided by
the guidance laws. The inner loops, which are designed to
increase the damping of high-frequencymodes, namely, short
period and dutch-roll, command aileron and elevator using
PI controllers with feedback on attitude error signals for roll
and pitch angles, respectively, along with terms proportional
to pitch and roll rates. The rudder is controlled by a yaw
damper with a washout filter on the yaw rate. The design
point of the inner loops is at 30m/s flight speed and the
closed loop system is compliant with the requirements shown
in Table 5, so as to achieve adequate robustness, expressed in
terms of classical gain and phase margins, attitude tracking
performance through the limitation of steady-state error, and
transient response, specified in terms of maximum angular
rate, bandwidth, and settling time. The outer loops are
designed at the same speed to guarantee a limited steady-state
error with respect to reference variables, and the pertinent
requirements are shown in Table 6. The inner and outer loop
gains are reported in Tables 7 and 8, respectively. This classic
control system is used to assess by comparison the optimal
controller performance.

III. CONTROL LAW DESIGN
In this section, the main features of the RSLQR method and
its application to the design of the inner loops of the UAV
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FIGURE 3. Sketch of the simulation model architecture.

TABLE 5. Inner loop requirements for Controller 1.

FIGURE 4. Schematic of Controller 1.

TABLE 6. Outer loop requirements.

FCS are discussed first. Then, the optimization problem is
formulated, the solution of which provides the LQR weights
for the determination of controller gains.

The control system must provide accurate tracking of
reference commands, disturbance rejection, and adequate
stability of the closed-loop system. To this end, the design
process is carried out through three main steps [23], that
is, i) development of servomechanism model (SM) [44], ii)

TABLE 7. Controller 1, Inner loop gains.

TABLE 8. Controller 1, Outer loop gains.

LQR synthesis for full-state control, and iii) application of the
SPC method in order to devise the output feedback control
law, each of them being instrumental for a specific feature
of the controller. In this respect, the first two requirements
above are met by building the servomechanism model,
whereas the LQR technique is adopted due to its excellent
stability and robustness performance, since it guarantees,
in theory, infinity gain margin and at least 60 deg of phase
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margin, and the resulting controller minimizes the control
action [20]. SPC is used because, unlike applications of
the LQR method to conventional aircraft models, control
angle and rate measurement are commonly not available on
small UAVs. The UAV model is numerically linearized in
the design points, which leads as usual to the decoupled
longitudinal and lateral dynamics [41, Ch. 4].

The design approach is presented in some detail for the
longitudinal controller. Lateral control synthesis follows the
same guidelines and only major features are recalled. The
reduced-order, short-period model of the UAV longitudinal
dynamics is formulated in terms of normal acceleration
sensed at c.g. (az) that, together with the pitch rate (q) is a
measurable state. When the second-order servo dynamics are
included, the model in Eq. (5) is obtained, as shown at the
bottom of the page, where ue is the trim velocity, and wd
is the disturbance due to stochastic wind. Symbols for the
dimensional derivatives are standard [41, Ch. 4].

A. SERVOMECHANISM MODEL
The SM is obtained by adding the error dynamics, associated
with the difference between the actual acceleration (az) and
the reference input (acmdz ), to the state-space form of Eq. (5)
with state vector xlon =

[
az q δe δ̇e

]T .
The state-space form of the SM features a model of

the class of signals to be tracked or rejected (in case
of disturbances) such that, when LQR is applied, the
accurate tracking of the selected class of external commands
is realized [20]. Type 1 controllers are considered in
this study in order to track a constant input with zero
steady-state error and reject disturbances of the same
class (e.g. step gusts) according to the internal model
principle [45].

Following the approach outlined in [20, Ch. 3], we assume
ȧcmdz = 0 for the command input, and ẇd = 0 for the
unknown disturbance model. Given the output equation

yc = Ccxlon + Dcδ
cmd
e (6)

where Cc = [1 0 0 0]T and Dc = 0, the goal is that
tracking error decreases asymptotically to zero in a robust

manner with respect to the plant description, in the presence
of disturbance of the considered class. Upon differentiation,
the error equation becomes

ė = ȧz − ȧcmdz = ẏc (7)

that, considering Eq. (6), is written as

ė = Ccẋlon (8)

Setting zx = ẋlon and µ = δ̇cmde , differentiation of Eq. (5)
gives

żx = Axzx + Buµ+ Pẇd (9)

where, as said, the disturbance term is set to zero. Finally, the
augmented state vector z = [e zTx ]

T is defined by adding the
error dynamics to the system in Eq. (9), and the SM is written
as follows, in compact form

ė
äz
q̈
δ̈e...
δ e


︸ ︷︷ ︸

ż

=

[
0 Cc
0 Ax

]
︸ ︷︷ ︸

A


e
ȧz
q̇
δ̇e
δ̈e


︸ ︷︷ ︸

z

+

[
0
Bu

]
︸ ︷︷ ︸

B

δ̇cmde︸︷︷︸
µ

(10)

B. LQR SYNTHESIS FOR THE SM
A static state-feedback controller for the augmented system
in Eq. (10) is given by

µ = −Kcz (11)

where Kc = [KeI , K
T
xlon] ∈ R1×5, and the gains KeI , Kxlon ,

are obtained by applying LQR theory to Eq. (10), and solving
a minimization problem with cost function

JLQR =

∫
∞

0

(
zTQz + µTRµ

)
dτ (12)

where, again, reference is made to [20, Ch. 3] for the details
on the formulation and solution of the optimization problem.
The feedback gains Kc depend upon the numerical values
of the weight matrices Q and R, positive-semidefinite and
positive-definite, respectively. The augmented state vector
z contains the error dynamics and the system model (Eq.


ȧz
q̇
δ̇e
δ̈e


︸ ︷︷ ︸
ẋlon

=


Zw +

ZqM̃w
Zw

Zq(M̃q −
M̃wZq
Zw

) + Zwue Zq(M̃δe −
M̃wZδe
Zw

) Zδe
M̃w
Zw

M̃q −
M̃wZq
Zw

M̃δe −
M̃wZδe
Zw

0
0 0 0 1
0 0 −ω2

−2ζω


︸ ︷︷ ︸

Ax


az
q
δe
δ̇e


︸ ︷︷ ︸

xlon

+


0
0
0
ω2


︸ ︷︷ ︸

Bu

δcmde +


1
0
0
0


︸︷︷ ︸

P

wd (5)
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FIGURE 5. Inner loop of longitudinal controller.

(9)), and the control term µ, when integrated, is implemented
for command tracking and state feedback for stabilization.
In particular, the control law for Eq. (5) is obtained by Eq. (11)
so as to express the integral over time of the augmented state
vector z as

zIlon =

∫ t

0
z(τ )dτ =

[
eI xTlon

]T
where

eI (t) =

∫ t

0
e(τ ) dτ

so that

δcmde = −KeI eI − Kxlonxlon (13)

C. OUTPUT-FEEDBACK CONTROL
As the full state xlon is not available, an output-feedback
controller is devised in the form

δcmdeof = −Kylonylon (14)

where the measurement vector is ylon = [eI az q]T =

ClonzIlon , with Clon = [I3×3 03×2]. Application of the SPC
gives a control law that (partially) recovers the eigenstructure
of the system with full-state feedback [23]. In particular, the
gain vector in Eq. (14) is expressed as

Kylon = KcXy
(
CXy

)−1 (15)

where the columns of Xy ∈ R5×3 are the eigenvectors
obtained by the solution of

(A − BKc)Xy = Xy3y (16)

while the elements of the diagonal matrix 3y ∈ R3×3 are the
eigenvalues associated to the dynamics of ylon. A sketch of the
longitudinal control system is shown in Fig. 5 where, as said,
the UAV model includes the dynamics of elevator servo.

The same design methodology is adopted for the lateral
controller, sketched in Fig. 6, where a multi-input single-
output (MISO) architecture is proposed for the coordinated
control of ailerons and rudder. As for the longitudinal
design, the lateral force equation is rewritten in terms
of the acceleration ay, since the sideslip angle β is not
available from the measurements. The state vector of the
reduced-order model for the lateral controller is thus xlat =

FIGURE 6. Inner loops of lateral controller.

[ay, p, r, δa, δ̇a, δr , δ̇r ]T , where the symbols have the
known meaning. The state-space form of the lateral SM is
reported in the Appendix, and the inner loop uses the error on
roll rate elat = p− pcmd to generate the commands δcmda and
δcmdr on ailerons and rudder, respectively. The SPC method
gives the control law as[

δcmdaof δcmdrof

]T
= −Kylat ylat (17)

where ylat =
[
elat p r ay

]T
= Clatzlat , with Clat =

[I4×4 04×4] and zlat =
[
elat xTlat

]T . The gain matrix

Kylat =

[
Ky1 Ky3 Ky4 Ky5
Ky2 Ky6 Ky7 Ky8

]
(18)

is computed according to the same procedure discussed in
Sec. III-B.

D. OPTIMAL TUNING
Selection of the state and control weight matrices Q and R
for the LQR synthesis is usually realized by means of an
iterative procedure, where the elements are modified one
by one using, for instance, the so-called design charts [20]
that report performance metrics in the time and frequency
domains as functions of loop-gain crossover frequency. This
procedure is usually time-consuming and, more importantly,
the resulting control law may exhibit degraded performance
when tested in nonlinear simulations of an accurate model of
the vehicle as well as in-flight tests, so that additional work
is often required to recover the desired performance.

The optimal tuning procedure relies on a GA for selecting
appropriate values of the weight matrices elements, and
the resulting LQR controller minimizes a cost function that
takes into consideration a linear combination of stability and
performance metrics, directly evaluated by simulation of the
vehicle model that features all the elements of the FCS but
the EKF. In so doing, the coarse measurements of angular
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rates are considered in Eqs. (14) and (17) as the result of a
trade-off between the increased influence of noise, and the
improvement in control law performance when the effects of
filter dynamics are neglected. As a remark, tuning the EKF
after the completion of the inner-loop design seems effective,
at least in this application, to handle the degradation of the
frequency-domain properties of the control system usually
associated with the filter.

Let ξ be the vector of the unknown parameters of the LQR
weight matrices, and K(ξ ) a control law with the gain matrix
of Eq. (15), obtained through the combined application of
the SPC and RSLQR syntheses using the weights R(ξ ) and
Q(ξ ). For the sake of simplicity, we assume that R is the
identity matrix and Q is of diagonal form so that ξ reduces
to the diagonal terms of Q. Let 0 be a reference trajectory
specified in terms of flight altitude, speed, and course angle,
to be precisely tracked by the UAV, and s(ξ ) the trajectory
determined by simulation of a high-fidelity model of the UAV
when the controllerK(ξ ) is used. The tuning problem is posed
as

max
ξ

JGA(ξ ) = max
ξ

∑
i

λi Ji[s(K(ξ )] (19)

where the Ji(s) are scalar performance metrics evaluated
through the simulation s using the controller K(ξ ), and
weighted by a user-selected constant coefficient λi.
The trajectory 0 consists of a sequence of five basic

maneuvers given by i) at t (1)0 , a combined climb with altitude
variation 1h and a 1χ right turn at constant speed VLS (low
speed), ii) at t (2)0 , a combined descent and left turn with
variations of altitude and heading angle −1h and −1χ ,
respectively, at VLS, iii) at t

(3)
0 , a speed variation from VLS to

VHS (high speed) maintaining constant altitude and heading,
iv) at t (4)0 , a combined climb (1h) and right turn (1χ) at VHS,
and v) at t (5)0 , a combined descent (−1h) and left turn (−1χ)
at VHS. Figure 7 shows (left) the plots of the commanded
(red dashed lines) and computed through simulation (blue
continuous lines) values of the reference variables V , h, and
χ , together with (right) the trajectory flown by the UAV
model. The maneuver parameters are 1h = 50m, 1χ =

90 deg, VLS = 16m/s, VHS = 40m/s and, for the initial
times of the different phases: t (1)0 = 10 s, t (2)0 = 50 s,
t (3)0 = 90 s, t (4)0 = 120 s and t (5)0 = 160 s.
For the sake of clarity, the metrics Ji are organized into

three groups. The first one is related to the quickness and
precision of the UAV response to the reference commands,
and the metrics are evaluated for the aforementioned values
of altitude and heading variations, at low (VLS) and high
speed (VHS). The use of rise time Tr , settling time Ts, and
percentage overshoot (PO) defined, as usual, as themaximum
value of step response minus its steady-state value divided
by steady-state value, in percent units, appears as a natural
choice. Accordingly, the performance indexes are written as

JRTi = 1 − Tri/T̃ri (20)

JSTi = 1 − Tsi/T̃si (21)

JPOi = 1 − POi/100 (22)

where the subscript i stays for {χLS, χHS, hLS, hHS}, and
T̃r , T̃s are, respectively, normalization values for rising and
settling times defined as

T̃r h = 0.8
1h

RCmax
T̃rχ = 0.8

1χ

ψ̇max
(23)

In Eq. (23) RCmax is the maximum rate of climb, and
ψ̇max =

g
V

√
n2z − 1 is the maximum rate of turn (to be

evaluated at VLS and VHS), being nz = 1/cosφmax the limit
load factor of the vehicle, and T̃si is set to 1.2T̃ri . The above
parameters can be easily adjusted for specific applications
and UAV characteristics by properly selecting the maximum
bank angle and maximum rate of climb. The same values
RCmax = 3m/s, and nz = 1.5 at VLS and VHS have been
considered here.

The merit index JXC aims at mitigating the effects
of unwanted coupling between longitudinal and lateral
dynamics that may cause not negligible deviations from the
reference trajectory, as in the case of maneuvers involving
simultaneous variations of altitude and heading. Also, JXC
appears particularly relevant in control architectures where
the velocity and altitude are managed separately, in order to
reduce the effects of change of velocity on altitude tracking
and vice versa. In this respect, the error exi is defined for the
j-th basic maneuver as the absolute value of the maximum
difference between the actual and reference values of flight
speed, altitude, and heading angle, in the time frame from
the initial time (t (j)0 ) plus the settling time (Ts) through the
beginning of the next maneuver (t (j+1)

0 ), that is

JXC = 1 −

∑
i

∑
j

e(j)xi
x̃i

(24)

where x̃i is a normalization value for the quantity xi ∈

{V , h, χ} and

e(j)xi = max
t∈

[
t (j)0 +Ts, t

(j+1)
0

] ∥∥∥xi(t) − xrefi

∥∥∥ (25)

being xrefi the reference signal.
The second group of metrics is introduced with the goal of

minimizing the maximum variations of angle of attack α and
sideslip angle β, so as to reduce the probability of incurring
into a stall condition and improve the aerodynamic efficiency
in turning flight, respectively. The following indexes are thus
defined

Jα = 1 −
|α|∞

αmax
Jβ = 1 −

|β|∞

βmax
(26)

where αmax and βmax are the limit values of the aerodynamic
angles.

The last metrics concern the high-frequency content in the
control rates (δ̇a, δ̇e, δ̇r ) so as to penalize excessive control
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FIGURE 7. Flight profile for controller tuning: (left) commanded (red dashed lines) and computed (continuous blue lines) values of
reference variables; (right) computed trajectory.

activity and limit oscillations in UAV response. They are
written as

Jδi = 1 −

∫
(HHP δ̇i)2dt (27)

where the subscript i now indicates the control variable
{a, e, r}, andHHP is a second-order high-pass filter providing
50 dB attenuation at low frequency, the cut-off frequencies of
which are ωce = 3 rad/s, ωca = 2 rad/s and ωcr = 2 rad/s,
for ailerons, elevator, and rudder, respectively. The constant
parameters and weight coefficients in the expressions of the
metrics are reported in Table 9. Note that the values for
rise time and settling time are specified according to the
characteristics of the outer loops.

The optimization problem in Eq. (19) is solved using a GA,
that is, a population-based, derivative-free, meta-heuristic
technique inspired by natural evolution, that performs a
global optimization and, thanks to its stochastic selection
and mutation operators, has greater chances to evade from
local optima than greedy methods [30]. This property is very
helpful in the problem at hand, as the objective function
landscape is characterized by a (possibly large) number of
local minima so that a global optimization algorithm such
as GA is highly effective in order to prevent premature
convergence to a sub-optimal solution.

Although population-based techniques usually result in an
order of magnitude lower convergence rate than deterministic
optimization algorithms, adoption of GA is motivated by
the fact that the fitness function JGA(ξ ) is non-differentiable
and possibly not even defined for every choice of the
design vector ξ . This is not an issue for GAs, where
unfeasible solutions are simply discarded in favor of feasible

ones, without compromising the effectiveness of the search
process, provided that the feasible search space is sufficiently
large as in the problem under investigation. In this respect,
it is worth reporting that initial attempts at using a single-
point derivative-free optimization, such as the Nelder-Mead
algorithm [46], were unsuccessful, as the method is very
sensitive to the initial guess and converges to a local optimum
in a neighbor of the specified guess.

Also, note that the performance in solving the optimization
problem is highly dependent on an appropriate definition of
the merit index, which must be able to capture all relevant
aspects of the nonlinear simulations while being as simple
and fast as possible to compute.

In the design process of the novel controller, which will
be heretofore referenced as Controller 2, the LQR synthesis
is carried out for each step of the GA-based optimization
procedure in the trim points at V = 30 and 15m/s for the lon-
gitudinal and lateral loops, respectively. The operating points
were specified following a preliminary analysis of control
performance with respect to the requirements in the expected
range of flight speed. Therefore, the resulting controllers
provide good performance being not gain-scheduled as will
be discussed in what follows-

The GA is run with a population of Np = 128 individuals
for Ng = 128 generations, using a single tournament
for selection operator, simulated binary crossover (SBX)
operator with crossover probability pc = 0.9, and uniform
mutations with probability pm = 0.1 as mutation operator
[30]. As a rule of thumb, a larger Np improves the
search capability of the algorithm because more points
in the objective function landscape are sampled at each
iteration, thus improving the convergence in case of complex,
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TABLE 9. Reference values and parameters for performance metric evaluation.

TABLE 10. Controller 2: Elements of Q matrix and gains for the
longitudinal control loop.

multi-modal (i.e., non-convex) problems. Larger populations
require a greater Ng in order to make the search effective,
as the individuals are initially randomly scattered over all
the search space, which slows down the convergence. As a
result, increasing either parameter causes a linear increase in
the computational effort; thus, a trade-off between available
time and the desired quality of the solution is mandatory. The
other parameters (i.e., crossover and mutation probability)
are kept at the default values as suggested by several studies
(see among others [30]) as, apparently, the solution depends
only marginally on their values. A single run of the solver
requires roughly 2 hours on a computer equipped with an 8-
core Intel Core i7-9700K CPU @3.60GHz. Multiple runs
are performed to ensure robustness against the inherent
randomness of initialization, and the best solution found is
elected as the putative optimum. The resulting LQR weights,
that is, diag(Q), are reported in Tables 10 and 11 for the
longitudinal and lateral controllers, respectively, together
with the elements of the gainmatricesKylon andKylat obtained
by the solution of the projective control problem.

Outer loops are modified with respect to Controller 1 in
order to generate reference values on normal acceleration
(az) and roll rate (p), still retaining the simple PID structure
of Controller 1, and using the same design constraints of
Table 6. Figure 8 shows the architecture of the outer loops
of Controller 2.

Note that, in fact, the optimal design is carried out on
the inner loops while performance metrics also depend

FIGURE 8. Sketch of the outer loops for Controller 2.

on the characteristics of outer loops. In this respect, the
gains of outer loops, reported in Table 12, are specified
before the tuning of inner loops is carried out by GA, and
their characteristics are compliant with the specifications in
Table 6. It is also worth mentioning that the inner loops of
Controller 2 satisfy the requirements of Table 5 in the design
point.

At this point, it should be emphasized that GA is not the
only population-based, derivative-free algorithm that could
be used to solve a single-objectivemulti-modal unconstrained
optimization problem as the one here discussed. Several
meta-heuristic algorithms have been proposed to this end,
among which Particle Swarm Optimization (PSO) [47],
Differential Evolution (DE) [48], and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [49] are the
best known, even though the list is far longer and keeps
growing [50]. One might be tempted to try all these
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TABLE 11. Controller 2: Elements of Q matrix and gains for the lateral control loops.

TABLE 12. Controller 2: Outer loop gains.

algorithms to find out which one is the best. Unfortunately,
it is not possible to determine which algorithm is the absolute
best, as the “no free lunch” (NFL) theorem states that no
algorithm can be always better than another one for all
problems, and their performance is the same if averaged over
a sufficiently large number of problems [51]. In addition, the
choice of the algorithm is as important as the choice of the
hyper-parameters, and an extremely lengthy trial-and-error
procedure would be required, while the potential benefits
are usually modest. According to the authors’ experience
on similar problems [52], GA is one of the most robust
algorithms with respect to hyper-parameter selection and was
therefore adopted in this study.

IV. RESULTS AND DISCUSSION
Performance of the FCS featuring the optimally tuned
controller (Controller 2) is assessed using the model illus-
trated in Section II. First, the FCS robustness is evaluated
through the computation of the singular-value-based MIMO
stability margins in multiple operating points across the flight
envelope. The margins provide a simple and effective means
for capturing the stability of the linearized UAV model.

Next, simulation tests are run with the objective of
comparing the performances of Controllers 1 and 2 in
terms of command tracking, disturbance rejection, control
response, and robustness to model parameter variations.
A simulation model featuring a simplified version of the FCS
not including the EKF, where all sensor models generate
measurements at a sample rate of 50 Hz, is used in a number
of tests. In this respect, the principal goal is to enhance
the understanding of control law behavior, when complexity
is reduced by neglecting a dynamic element that requires

a tuning process specific to each controller. Conversely,
sampling at different rates and sensor fusion by EKF is
featured in the simulation model in specific cases where
the effects of reference signal variations and atmospheric
turbulence are discussed and, in these circumstances, the
same values of filter parameters are used for the two
controllers.

A. STABILITY MARGINS
MIMO stability margins are computed by means of the
singular values of return difference and stability robustness
matrices across the frequency spectrum, using the KG open-
loop transfer function matrix, where K and G are, respec-
tively, the transfer functions of controller and plant [20]. The
margins, evaluated in the speed range from 15m/s to 40m/s
for the longitudinal and lateral controllers, are reported in
Fig. 9 alongwith the design requirement (red lines) of Table 5.
Figure 9(a) shows that positive and negative gain margins
for the longitudinal control decrease as velocity increases,
with the positive margin slightly below the threshold at high
speed (V > 36m/s), and the negative gain margin going
to −∞ for V < 33m/s. Conversely, the gain margins of
the lateral controller are compliant with the requirements
in the considered range of flight speed and, in particular,
the positive margin is nearly constant up to a speed V >

35m/s beyond which there is limited reduction, while the
negative margin remains well below the threshold despite
non-negligible variations with flight speed. As for the phase
margins in Fig. 9(b), the longitudinal controller satisfies
requirements up to V = 36m/s, whereas the margin of the
lateral controller is slightly below the limit of 45 deg for
21 ≤ V ≤ 25m/s.
The same MIMO margins of Controller 1, where K

now denotes the transfer function of the inner loops on θ ,
φ and r (see Fig. 4), are shown in Fig. 10 in order to
improve the clarity of comparisons between the two control
methodologies. Controller 1 has lower stability margins than
Controller 2 in a wide range of flight speeds. It is also
worth noting that the design of Controller 1 was done
in a sequential loop-by-loop manner and, as a result, the
somewhat conservative MIMO phase margins for lateral
control laws are lower than the specification.

B. COMMAND TRACKING
In Fig. 11 the responses to commanded altitude and course
variations of 50m and 90 deg, respectively, at t = 10 s,
are shown for the two controllers. A constant flight speed
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FIGURE 9. Singular value stability margins of Controller 2 vs. flight speed;
longitudinal controller (black), lateral controller (green), and design
requirements (red).

of 30m/s is maintained during the maneuver. The time
histories of longitudinal and lateral state and control variables
are determined by UAV model simulation, with the FCS
including the EKF, for two c.g. positions, i.e., the nominal
one and the one shifted backward by 10% c̄ so as to reduce
the stability margin. It has to be remarked that, as expected,
the filter degrades to some extent the performance of both
controllers, with a major effect on Controller 1 as it will
be discussed when the robustness to wind disturbances is
analyzed. It is apparent that the performance of Controller
2 is much improved with respect to Controller 1 in terms
of control activities. In addition, Controller 2 provides more
limited variations in aerodynamic angles (α and β) in the
dynamic phase of flight, and a more uniform transient
response, as well as reduced steady-state altitude and heading
errors. Small-amplitude oscillations, more pronounced for
Controller 2, are visible in the plots of δe and α for the case
with c.g. shifted backward, due to the reduced stability of the
system when the static margin KN of the model is decreased
from 0.28 to 0.18.

In particular, the Nichols plot reported in Fig. 12 for the
nominal (blue line) and backward (red line) c.g. positions,
shows a phase margin reduction of 21 deg at the crossover
frequency (0.41 Hz) in the latter case (10% rear shift),
with negligible change in the gain margin. The result is
a slightly larger amplitude of the short-period oscillations,

FIGURE 10. Singular value stability margins of Controller 1 vs. flight
speed; longitudinal controller (black), lateral controller (green), and
design requirements (red).

whose natural frequency moves from 1.76 Hz to 1.34 Hz for
the system controlled by the inner loop, while the effect of
the outer loop on the rate of climb brings the same parameter
down to about 1 Hz, as visible in the δe and α plots of Fig. 11.
It is worth noting that the reduction of control activity on
ailerons and rudder realized by Controller 2 is a positive
feature since high command rates cause considerable power
consumption in the servos of small UAVs.

Controller performances with inactive EKF are compared
in more detail in Fig. 13, where the L2-norm of the variations
of control angles, and α and β with respect to their trim
values for the two considered c.g. positions, normalized with
respect to the norms calculated in the case of Controller
1 and nominal c.g. position, are shown. The reduction of α
variations is realized by Controller 2 with an elevator activity
similar to that of Controller 1. The decrease in the norm of δe
for both controllers is a result of the improved controllability
associated with the lower static margin, while the effects on
the other variables are negligible.

C. DISTURBANCE REJECTION
Response to wind disturbances is studied using, again, the
full model of the UAV that includes the filter. During the
simulation, in which the stochastic wind components in
the NED frame are generated according to the low altitude
turbulence model reported in [42] with an average wind
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FIGURE 11. Response to commanded altitude and heading variations in
the nominal case and with 10% c backward shift of the c.g.: Controller 1
(light blue and blue lines, respectively) and Controller 2 (orange and red
lines, respectively).

FIGURE 12. Controller 2: Nichols plot of pitch actuator loop cut: nominal
c.g. position (blue line), 10% c.g. backward shift (red line).

intensity of 6m/s, the autopilot has the Command/Hold
function engaged on the altitude (selected value h = 400m),
speed (V = 30m/s), and heading (χ = 0 deg). Figure 14
shows that, in the presence of high-frequency disturbances,
Controller 2 is more effective than Controller 1 since smaller
tracking errors on altitude and heading are apparent, with a
reduction in control effort at least for the elevator channel.

The L2-norms of perturbations (w.r.t. trim values) of
the same variables, normalized with respect to the norms
calculated for the implementation of Controller 1 without the
filter (light blue line with unit values), are reported in Fig. 15.

FIGURE 13. L2-norm of control activity and aerodynamic angles in
response to commanded altitude and heading variations; EKF is off-line.

FIGURE 14. Response to wind disturbances: time histories of state and
control variables for Controller 1 (blue line) and Controller 2 (red line)
with EKF.

The aim is also to illustrate the effect of EKF on control
performance since the filter is not considered in the design
model and tuning process of Controller 2. The reduction of
δe control activity for Controller 2 in the case with EKF is
confirmed along with the reduction of rudder and aileron
control actions (blue vs. red line). Regarding the aerodynamic
angle perturbations, a significant decrease of1β is observed,
while the norm of1α is very close to the value obtained with
Controller 1. This is explained when referring to the metrics
in Eqs. (26) that penalize the infinite norms of aerodynamic
angles, considering also that the lateral controller uses the
ay acceleration component to manage (and limit) the values
of sideslip angle. Of course, the effect of the optimal tuning
on the angle of attack is somewhat hidden by the significant
variation in α required for the prescribed maneuvers.

When reference is made to the Controller 2 performance
in the case without EKF (orange line), higher L2-norms on δa
and δr , and a lower value of the norm of1δe are apparent. The
different behavior of Controller 2 in the two configurations
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FIGURE 15. Response to wind disturbances: L2-norm of control activity
and aerodynamic angles in response to the atmospheric turbulence.

is related to the reduction of the high-frequency component
of turbulence realized by the filter on the roll rate signal (on
which the error e of the inner loop in Fig. 6 depends), which
limits the excitation of the inner loops and, consequently,
the lateral control activity. On the contrary, the normal
acceleration, i.e., the reference input of the longitudinal inner
loop (Fig. 5), is not filtered, and the phase shift due to
the EKF results in degrading the controller performance on
the elevator action. Note that, as far as the outer loops are
concerned, the EKF is also active in limiting high-frequency
variations of the reference commands, since the altitude,
(h), rate of climb (RC), heading (χ), and roll angle (φ)
in Fig. 8 are all filter states. It is also worth noting that
the longitudinal control activity is reduced for Controller
2 with little change in the L2-norm of the angle of attack
according to the LQR tuning, where a limited control effort
is searched for (Eq. 12). On the other hand, despite the large
weights on aileron and rudder commands resulting from the
optimal LQR tuning for the lateral inner controller visible
in Table 11, the requirement for sideslip angle minimization
prevails, leading to the reduction of the β norm at the cost of
an increased lateral control activity.

Figure 16 presents the results of a simulation performed
with the objective of analyzing the system response under a
condition where the static margin is as high as 1.21, which
requires an elevator angle δe = −19.5 deg to trim the UAV
model at the initial velocity of 18m/s. At t0 = 10 s a
step downward gust of 11m/s occurs which decays as t0/t .
In terms of instantaneous response, the disturbance causes
a relevant reduction in the angle of attack and an increase
in flight speed, resulting in intense control activity on the
elevator and throttle, which, respectively, saturate at -25 deg
and zero in a few seconds, trying to limit changes of V and
h. Thereafter, a strong increment of the thrust is noted, as the
throttle saturates at the maximum value (δt = 1) in response
to the significant reduction of flight speed, along with a
20 deg increment of δe. Once velocity is recovered at about
t = 25 s at the cost of a relevant increase in altitude (errors
on V are corrected by throttle commands), the time histories
show a poorly damped oscillation of longitudinal states
during which the elevator control action is used primarily

FIGURE 16. Controller 2: response to a gust disturbance with a forward
shift of the c.g. (KN = 1.21).

to balance the pitching moment due to propeller thrust. The
strong coupling with the lateral degrees of freedom (see the
large variations of headingχ and roll angleφ) is caused by the
propeller torque. It is worth noting that, despite the expected
degradation of performance, the UAV control is retained in a
severe off-design situation where the c.g. is near the forward
limit and the longitudinal commands are saturated.

D. MONTE CARLO SIMULATIONS
The evaluation of FCS performance, with particular attention
to the effectiveness of the linear control laws implemented in
the nonlinear model of the UAV, is also carried out through
an extensiveMonte Carlo (MC) campaign, in which a number
of simulations are carried out for randomly generated inputs
and/or parameters, and the outputs are assessed in terms
of statistical properties or maximum/minimum values. Each
of the 1,000 simulations starts with the model in a steady-
state level flight condition, at an altitude h = 100m, with
speed randomly scattered between 16 and 40m/s. Step inputs
for the outer loops on altitude, heading, and velocity are
assigned at t = 10 s, with amplitudes randomly chosen in
the intervals 0 ≤ h ≤ 200m, −180 ≤ χ ≤ 180 deg,
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FIGURE 17. L2-norm (a) and L∞-norm (b) of control activity and
aerodynamic angles from the MC campaign with EKF: Controller 1 (blue
line), Controller 2 (orange line).

and 16 ≤ V ≤ 40m/s, respectively. By realizing large
variations of the velocity vector in a wide region of the
flight envelope, the relevant dynamics are excited for different
values the of system parameters and, therefore, the evaluation
of appropriate metrics provides a reliable and consistent
representation of controller performance.

The two cases of the model with and without EKF are
discussed to examine in more detail the effect of the filter
on the behavior of the optimal controller.

Figure 17 shows the L2-norm and L∞-norm of the
differences between time history and trim value of α and
β, together with the overall control action for δe , δa, and
δr , evaluated for Controller 2 with filter active. The norms
are averaged over all runs and normalized with respect to
the same metrics computed when using Controller 1. Control
performance in terms of L2-norm (Fig. 17(a)) is substantially
improved by Controller 2, particularly with regard to the
63% decrease in sideslip angle along with the 21% and
22% reductions in control effort for ailerons (δa) and rudder
(δr ), respectively, while smaller changes are apparent on α
and δe. The more limited improvement of the L2-norm of
longitudinal variables deserves comment: the variations of

FIGURE 18. Normalized response to step inputs (t = 10 s) on V , h, and χ

from the MC campaign with EKF: settling time (ST), percentage overshoot
(PO), and rise time (RT) for Controller 1 (blue line) and Controller 2
(orange line).

α and δe are largely driven by the specified profile of flight
speed so the advantage provided by the optimal controller is
less obvious. Note also that the outer-loop logic on the flight
speed requires elevator commands each time the throttle is
varied, because of the pitching moment resulting from the
offset of the thrust line with respect to the c.g.

The improvements of Controller 2 are more evident when
considering the L∞-norms in Fig. 17(b) because, in terms of
worst cases, the maximum values of β, δa and δr are reduced
by 71%, 76%, and 69%, respectively. In addition, Controller
2 is able to limit the peaks of α and δe by 35% and 31%,
respectively, compared with Controller 1. When EKF is not
present, slight increases in the above values, within the range
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FIGURE 19. Normalized response to step inputs (t = 10 s) on V , h, and χ

from the MC campaign without EKF: settling time (ST), percentage
overshoot (PO), and rise time (RT) for Controller 1 (blue line) and
Controller 2 (orange line).

of 6%, are observed in the comparative performance of the
two controllers.

Further insight into the characteristics of Controller
2 regarding, in particular, the behavior of outer loops is
provided by Fig. 18, where rise time (RT), settling time (ST)
and percentage overshoot (PO) are shown, for the response
to step inputs at t = 10 s on velocity (Fig. 18(a)), altitude
(Fig. 18(b)) and heading (Fig. 18(c)). The metrics reported
in the figure are averaged over the MC runs and normalized
with the results on the same quantities obtained by Controller
1. It is apparent that Controller 2 has a 35% increment of
PO on speed response, while the two designs provide very
close results on ST and RT. This can be explained by the
fact that on one hand, the two controllers share the same
outer loop structure on the velocity channel, but on the other
hand, having vertical acceleration as the reference command
of the inner loop of Controller 2, the response is slower.
Consequently, the proportional gain of the velocity loop of
Controller 2 (first row in Table 12) must be increased by 30%
compared to that of Controller 1, which results in a higher
PO. Note also that the vertical acceleration is an output of the
IMU, not processed by the EKF, while the input variables of
the longitudinal inner loops of Controller 1 are all filtered.

Controller 2 achieves a slightly smoother response on
altitude (barely visible in the simulation of Fig. 11) albeit with
12% and 5% increases in RT and ST, respectively, and shows

FIGURE 20. L2-norm (a) and L∞-norm (b) of control activity and
aerodynamic angles for MC simulations with scattered model and EKF
parameters.

a faster and more accurate response on the heading (27% and
8% reductions of RT and ST, respectively) with a smaller
(5%) increase in PO. The results for the case with off-line
EKF are shown in Fig. 19 for the flight speed and altitude,
as the changes in the same metrics for heading are negligible.
As noted above, the performance of the two controllers on the
speed channel is closer, while RT and PO on altitude response
are slightly higher (3% and 14% increments, respectively),
compared with the situation with EKF on).

To study the robustness of the optimal controller to model
uncertainty, a second campaign of 1,000 MC simulations is
conducted by scattering inertial and aerodynamic parameters
along with the static margin, as reported in Table 13. The
flight task is a combined climb of 1h = 50m and right turn
of 1χ = 90 deg at constant velocity V = 30m/s. Figure 20
shows the L2-norm and L∞-norm of the variations of α, β,
δe, δa, and δr with respect to the trim values, normalized as
mentioned above. It appears that Controller 2 is more robust
than Controller 1 to the large variations in the parameters
considered, although the latter is still able to maintain
control of the vehicle at the cost of much higher values of
maximum aerodynamic angles and significantly more control
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TABLE 13. Nominal values and scattering range of selected parameters.

activity. This is consistent with the higher stability margins of
Controller 2 already observed in Figs. 9 and 10. In particular,
the results shown in Fig. 20(a) demonstrate the improvement
of Controller 2 in terms of lateral control activity and sideslip
angle reduction, with a negligible change (−2%) in elevator
activity and α norm, as the behavior of angle of attack
is somewhat prescribed in the steady-state sections of the
considered sequence of maneuvers. The L∞-norms of δe, δa,
and δr in Fig. 20(b) present a reduction of 30%, 75%, and
68%, respectively, for Controller 2, with α and β maximum
reduced by 45% and 74%, respectively.

V. CONCLUSION
In this paper, an optimal tuning procedure has been proposed
with the aim of improving the performance and robustness
of the control system of a lightweight UAV, designed
according to the methods of robust linear quadratic servo
linear regulator (RSLQR) and static projective control (SPC)
while maintaining low system complexity, consistent with the
type of application envisaged for small, low-cost fixed-wing
unmanned systems.

The tuning is based on a genetic algorithm (GA) to
find the weights for solving the LQR problem. The fitness
function is specified in terms of a set of appropriately
defined performance metrics, evaluated directly by nonlinear
simulation of the flight of a high-fidelity UAV model along
a complex trajectory. The reference inputs of the outer
loops are specified so that the performance, dynamics,
and response characteristics of the vehicle and flight con-
trol systems, upon which the cost function depends, are
taken into account in wide areas of flight and maneuver
envelopes.

The effectiveness and suitability of the proposed procedure
have been analyzed through a comparative evaluation of
the GA-tuned control system and the UAV PID controller.
Specific simulations have been performed to analyze the
control response characteristics and wind disturbance rejec-
tion. The results show that the optimal controller provides
improvements in terms of stability and performance robust-
ness as well as reducing tracking errors when the vehicle
operates in turbulent wind conditions. The FCS is also able
to maintain control of the vehicle under limiting conditions
with longitudinal control saturation.

Monte Carlo analyses have been conducted, in which
a rather complex and representative mission has been
simulated, spanning several points of the flight envelope and
presenting a series of maneuvers in the vertical and horizontal
planes, taking into account the effects of initial flight speed,

autopilot controls, and large modeling errors, such as a 10%c̄
backward shift of the c.g. position, and variations up to
±30% in the inertial parameters (mass and moments of
inertia) and aerodynamic coefficients. The test confirms the
overall improvement of the closed-loop performance and,
in particular, the comparative analysis shows that the lateral
control activity is significantly reduced and the maximum
values of aerodynamic angles are limited. The optimally
tuned and robust control system again achieves superior
performance compared with the current PID-based controller
in the presence of model uncertainty and is less sensitive
to the effects of sampling at different rates and filtering of
measured feedback variables for both inner and outer control
loops performed in the real FCS.

The proposed GA optimization scheme provides a highly
effective tuning solution for RSLQR design and appears
suitable for reducing the problems and burden of trial-
and-error manual procedures often adopted for the design
of linear controllers for low-cost lightweight UAVs. The
methodology requires the GA to be performed offline, and
the controller does not include adaptive features at this stage.
The computational cost of the control algorithm is identical
to that of a controller adjusted by traditional techniques, and
the autopilot, including the EKF, is implemented and runs
smoothly at 50 Hz on a Teensy® 4.1 Developer Board by
PJRC.

The design method allows the solution of the tuning
problem to be automated, using an inner loop synthesis
technique that can handle model uncertainty better than PIDs,
and can be easily applied to different airframes provided that
a realistic simulation model of the vehicle is available, and
a number of cost function parameters are specialized for the
performance characteristics of the vehicle.

APPENDIX: LATERAL SERVOMECHANISM MODEL
The SM model for the lateral controller synthesis, developed

under the assumption that (1− I2xz
Ix Iz

) ≃ 1, is written as Eq. (28),
shown at the top of the next page, where the symbols for
dimensional derivatives are standard [41, Ch. 4], and

Pp = L ′
p −

Yp
Yv

; Pr = L ′
r −

L ′
vYr
Yv

;

PR = L ′
δr

−
L ′
vYδr
Yv

; Rp = N ′
p −

N ′
vYp
Yv

;

Rr = N ′
r −

N ′
vYr
Yv

; RR = N ′
δr

−
N ′
vYδr
Yv

;

AA = Yv +
N ′
vYr
Yv

+
L ′
vYp
Yv

;
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
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δ r
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Yv

Pp Pr L ′
δa 0 PR 0

0 N ′
v
Yv

Rp Rr N ′
δa 0 RR 0

0 0 0 0 0 1 0 0
0 0 0 0 −ω2

−2ζω 0 0
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−2ζω
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
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+
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0 0
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
︸ ︷︷ ︸

Blat

(
δcmda
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)
︸ ︷︷ ︸

µlat

(28)

Ap = YrPr + YpPp;

Ar = YrRr − ueYv + YpRp;

AR = YrRR + YpPR;
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