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ABSTRACT

On average once every four years, the Tropical Pacific warms considerably during events called El Niño, leading to weather disruptions
over many regions on Earth. Recent machine-learning approaches to El Niño prediction, in particular, Convolutional Neural Networks
(CNNs), have shown a surprisingly high skill at relatively long lead times. In an attempt to understand this high skill, we here use data
from distorted physics simulations with the intermediate-complexity Zebiak–Cane model to determine what aspects of El Niño physics
are represented in a specific CNN-based classification method. We find that the CNN can adequately correct for distortions in the ocean
adjustment processes, but that the machine-learning method has far more trouble to dealing with distortions in upwelling feedback
strength.
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Tropical Pacific can periodically be subjected to an irregular vari-20
ation in sea surface temperature (SST), affecting the climate over21
many regions on Earth. In the last decade, deep learning tech-22
niques, in specific Convolutional Neural Networks (CNNs), have23
shown to be peculiarly accurate in El Niño predictions, even at24
long lead times. In order to give a deeper understanding and an25
interpretation of this high skill of CNN, we make use of data26
from distorted physics simulations to determine what aspects27
of El Niño physics can be captured and recognized in a specific28
CNN-based classification method. We find that the CNN can cap-29
ture the wave adjustment and feedback process, but that the deep30
learning method has far more trouble to dealing with distortions31
in upwelling feedback strength.32

I. INTRODUCTION33

Interannual climate variability is strongly dominated by the El34
Niño-Southern Oscillation (ENSO) in the Tropical Pacific. During35
an El Niño, the positive phase of ENSO, sea surface temperatures36
in the eastern Pacific increase by a few degrees with respect to37

seasonally averaged values; the oscillation phase opposite to El Niño 38
is La Niña, with a colder eastern Pacific. A much used measure of 39
the state of ENSO is the NINO3.4 index, which is the area-averaged 40
Sea Surface Temperature (SST) anomaly [i.e., deviation with respect 41
to the mean seasonal cycle (SC)] over the region 170◦W–120◦W 42
× 5◦S–5◦N. El Niño events typically peak in December, occur every 43
two to seven years, and their strength varies irregularly on decadal 44
time scales. The spatial pattern of ENSO variability is often deter- 45
mined from principal component analysis (Preisendorfer, 1988), 46
detecting patterns of maximal variance. At least two different types 47
of El Niño events exist (Kug et al., 2009; and Zhang et al., 2019), with 48
the largest temperature anomalies either in the eastern Pacific (East- 49
ern Pacific or EP El Niño’s) or near the dateline (Central Pacific or 50
CP El Niño’s). 51

As ENSO has distinct influences on the climate around the 52
globe through well-known teleconnections (Diaz et al., 2001), skill- 53
ful predictions of up to a one year lead time are desired to be able 54
to mitigate the effects (Balmaseda et al., 1995). For ENSO predic- 55
tions, often the Oceanic Niño Index (ONI) is used, which is defined 56
as the three-month running mean of the NINO3.4 index. Both 57
statistical models (those capturing behavior of past events) and 58
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dynamical models (i.e., those based on the underlying physical59
conservation laws) are used for El Niño prediction (Latif, 1998;60
Chen and Cane, 2008; Barnston et al., 2012; Saha et al., 2014;61
Timmermann et al., 2018; Tang et al., 2018; and Barnston et al.,62
2019). El Niño events are difficult to predict as they have an irregu-63
lar occurrence and each time have a slightly different development64
(McPhaden et al., 2015; and Timmermann et al., 2018). Many ENSO65
prediction evaluation studies (Barnston et al., 2012; and L’Heureux66
et al., 2017) have shown that dynamical models do better than statis-67
tical models, although there are exceptions (Newman and Sardesh-68
mukh, 2017). When initialized before the boreal spring, most models69
perform much worse than when initialized in summer. The lat-70
ter notion has been indicated by the spring predictability barrier71
problem (McPhaden, 2003).72

ENSO theory (Neelin et al., 1998) provides a framework to73
understand the existence of such predictability barriers. The ENSO74
phenomenon is thought to be an internal mode of the coupled75
equatorial ocean-atmosphere system which can be self-sustained or76
excited by small-scale processes, often considered as noise (Fedorov77
et al., 2003). Bjerknes’ feedbacks are central in the amplification78
of SST anomalies, whereas equatorial ocean wave processes pro-79
vide a delayed negative feedback and are responsible for the time80
scale of ENSO. The interactions of the internal mode and the exter-81
nal seasonal forcing can lead to chaotic behavior through nonlinear82
resonances (Tziperman et al., 1994; and Jin et al., 1994). On the83
other hand, the dynamical behavior can be strongly influenced by84
noise, in particular, westerly-wind bursts (Lian et al., 2014). During85
boreal spring and summer, the Pacific climate system is most sus-86
ceptible to perturbations leading to predictability barriers (Latif and87
Barnett, 1994). The growth of perturbations from a certain initial88
state has been investigated in detail from a much used intermediate-89
complexity model, the Zebiak–Cane (ZC) model (Zebiak and Cane,90
1987). Applying the methodology of optimal modes (Mu et al., 2007;91
Duan et al., 2009; and Yu et al., 2012), it was indeed shown that92
spring is the most sensitive season for EP El Niños and likewise93
summer for CP El Niños (Tian and Duan, 2015; and Hou et al.,94
2019).95

Deep learning methods (DLMs) are powerful statistical mod-96
els, which have now been used in a wide range of applications97
such as speech recognition and image reconstruction (Goodfellow98
et al., 2016). These methods include feed-forward Artificial Neural99
Networks (ANNs), Recurrent Neural Networks (RNNs), Reservoir100
Computers (RCs), and Convolutional Neural Networks (CNNs);101
over quite some time now, DLMs have been applied to El Niño pre-102
diction (Dijkstra et al., 2019). The current work is motivated by the103
high El Niño prediction skill of two types of DLMs. First, in Ham104
et al. (2019), CNNs were trained on model data from the Climate105
Model Intercomparison Project, phase 5 (CMIP5) using transfer106
learning and subsequently trained on reanalysis data. The CNN-107
based scheme shows a better forecasting skill than most dynamical108
models and this forecast skill remains high up to lead times of about109
17 months. It is also able to successfully predict the type of El Niño110
(CP or EP) patterns that develop. Second, in Petersik and Dijk-111
stra (2020), deep ensemble methods (Lakshminarayanan, 2017), in112
particular, Gaussian Density Neural Networks (GDNNs) and Quan-113
tile Regression Neural Networks (QRNNs), were used in ENSO114
prediction. These methods also give a skillful model for the long-lead115

time prediction of the ONI (and its uncertainty) using a relatively 116
small predictor set. 117

At the moment, there is an enormous effort to understand 118
the performance of DLMs generally referred to as explainable AI 119
(Arrieta et al., 2020). The research described above shows that DLMs 120
are a very promising tool in ENSO prediction that can provide 121
useful skills of El Niño forecasts beyond the predictability barri- 122
ers. The intriguing question is now what the DLMs capture of the 123
ENSO physics contained in the data. Addressing this question is 124
precisely the focus of this paper. We will approach this issue using 125
the Zebiak–Cane model, which is also routinely used for ENSO 126
prediction. The novel aspect of this work is that we use so-called 127
distorted physics experiments where different physical processes 128
(such as equatorial wave dynamics and ocean-atmosphere feed- 129
backs) are perturbed. Using saliency analyses, determining which 130
input variables contribute most to the prediction skill, we then aim 131
to determine what part of the ENSO dynamics is represented by the 132
DLM. 133

II. MODELS AND METHODS 134

A. ENSO model 135

The Zebiak–Cane (ZC) model (Zebiak and Cane, 1987) rep- 136
resents the coupled ocean-atmosphere system on an equatorial β- 137
plane in the equatorial Pacific. In this model, a shallow-water ocean 138
component is coupled to a steady shallow-water (Gill, 1980) atmo- 139
sphere component (Fig. 1). The atmosphere is driven by heat fluxes 140
from the ocean, depending linearly on the anomaly of the sea surface 141
temperature T with respect to a radiative equilibrium temperature 142
T0. We use the numerically implicit fully-coupled version of this 143
model, developed in van der Vaart et al. (2000) and slightly extended 144
in Feng and Dijkstra (2017). In this version, the zonal wind stress τ x 145
is written as 146

τ x
= τ x

ext + τ x
c ,

τ x
ext = −τ0 e

−
1
2

(

y
La

)2

.
(1)

Here, the external part τ x
ext represents a weak (τ0 ∼ 0.01 Pa) east- 147

erly wind stress due to the Hadley circulation, La is the atmospheric 148
Rossby deformation radius and y is the meridional coordinate. 149
The zonal wind stress τ x

c is proportional to the zonal wind from 150
the atmospheric model which, in turn, depends on sea surface 151
temperature. 152

As shown in van der Vaart et al. (2000), the parameter mea- 153
suring the strength of all ocean-atmosphere coupled feedbacks is 154
the coupling strength µ. When µ < µc, where µc indicates a crit- 155
ical value, the Tropical Pacific climatology (a stationary state of the 156
model) is stable. However, if the coupling strength exceeds the crit- 157
ical value µc, a supercritical Hopf bifurcation occurs and sustained 158
oscillations occur with a period of approximately four years. A sea- 159
sonal cycle is included in the model by varying µ over time with a 160
specific amplitude #µ and with an annual period. 161

Apart from the coupled ocean-atmosphere processes, ENSO is 162
also affected by fast processes in the atmosphere, such as westerly- 163
wind bursts. These processes are considered as noise in the ZC 164
model. The representation of atmospheric noise in the model is sim- 165
ilar to that in Feng and Dijkstra (2017), where the westerly-wind 166
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FIG. 1. Schematic of the Zebiak–Cane model, where a shallow-water ocean
model is coupled to a shallow-water atmosphere model through a mixed-layer
oceanmodel with temperature T . The ocean-atmosphere coupling involves a heat
flux Qoa and a wind-stress vector τ .

bursts are represented by one Empirical Orthogonal Function pat-167
tern (with the associated principle component fitted to an AR(1)168
process) in the zonal wind stress. The observation-based dataset in169
Feng and Dijkstra (2017) contains weekly patterns of this wind-170
stress noise. In the ZC model, we randomly add one of such patterns171
at each time step (of a week) to the zonal wind stress. The effect of172
the noise on the model behavior depends on whether the model is173
in the super- or sub-critical regime (i.e., whether µ above or below174
µc). If µ < µc, the noise excites the ENSO mode, causing irregular175
oscillations. In the supercritical regime, the cycle of approximately176
four years is still present, but the noise causes an irregular amplitude177
of ENSO variability.178

While the ZC model is used for ENSO predictions, it also has179
its limitations as it cannot capture either tropical basin interactions180
(e.g., Atlantic and Indian Oceans) or tropical-extratropical interac-181
tions (it described only the dynamics of the Pacific). The model also182
cannot represent adequately a Tropical Pacific seasonal cycle, and,183
hence, such a seasonal cycle is prescribed in the model.184

B. Distorted physics simulations185

The advantage of the ZC model is that the behavior of the186
model can be connected to the physical processes in a very trans-187
parent way (Jin, 1997). In the distorted physics approach, we define188
a “truth” by a reference simulation, using an external seasonal cycle,189
prescribed noise in the wind-stress, and parameter settings such as190
in Feng and Dijkstra (2017). Next, in subsequent distorted-physics191
simulations, we change the representation of physical processes192
in the model by varying parameters. We will focus on the main193
processes setting the time scale and amplitude of ENSO.194

An important memory component in the Tropical Pacific cli- 195
mate system is the ocean adjustment to changes in the atmospheric 196
forcing. This is accomplished by equatorial wave dynamics and best 197
described by a basin mode response, where the basin mode consists 198
of a sum of one Kelvin and multiple Rossby waves. In the SST-mixed 199
ocean dynamics mode framework behind ENSO variability (Neelin 200
et al., 1998), the adjustment is crucial for the timing of El Niño 201
events. It plays also a crucial role in the recharge/discharge oscil- 202
lator view of ENSO (Jin, 1997), where the equatorial heat content 203
is varied, usually measured by the warm water volume (WWV) in 204
observations. The temporal aspects of the adjustment can be con- 205
trolled in the Zebiak–Cane model by putting a coefficient δ before 206
the time derivatives of the ocean momentum equations (Neelin, 207
1991). In the extreme case where the time derivative is effectively 208
zero (δ = 0), the so-called “fast-wave” limit is reached. 209

Three of the most important positive Bjerknes’ feedbacks are 210
the thermocline feedback, the zonal advection feedback, and the 211
upwelling (or Ekman) feedback (Dijkstra, 2005). The relative mag- 212
nitude of these feedbacks determines which spatial SST perturbation 213
patterns are amplified. In addition, the feedbacks determine also 214
the mean state and seasonal cycle of the tropical Pacific climate 215
state (Dijkstra and Neelin, 1995). Specific feedback strengths can be 216
changed in the ZC model by varying the mean thermocline depth 217
(thermocline feedback), the mean zonal temperature gradient (zonal 218
advection feedback), or Ekman friction (upwelling feedback). We 219
will concentrate on the latter feedback, affecting the amplitude of 220
ENSO and which can be changed in the ZC model by adjusting the 221
parameter δs. 222

Hence, we have already a good idea of how the behavior of 223
the model is distorted by varying the parameters δ and δs. Now, 224
δ is an artificial parameter enabling the variation of the equatorial 225
wave speeds and in the results below, we vary it from 0.5 to 1.5. The 226
upwelling feedback strength δs is quite an uncertain parameter in 227
the ZC model and we vary it over the range δs = 0.1 to δs = 0.6, 228
which is a plausble range, where an adequate mean state and vari- 229
ability are obtained (van der Vaart et al., 2000). In the approach 230
below, we are interested in whether a CNN is able to capture ENSO 231
dynamics adequately when trained with data from distorted model 232
simulations. 233

C. CNN approach 234

Due to their versatility and peculiarity in solving binary and 235
multi-labels classification tasks by capturing and recognizing the 236
discerning patterns of the input data, CNNs (Convolutional Neural 237
Networks) can represent a powerful method for making forecast- 238
ing of ENSO events with lead times of up to one and a half years 239
(Ham et al., 2019) or for solving a binary classification problem 240
in hybrid models with high complexity multi-resolution input data 241
(Yan et al., 2020). Unlike more sophisticated and popular ANNs 242
like CNN-LSTM and ConvLSTM, the predictions provided by the 243
CNN can be made explainable by means of saliency maps (Zhou 244
et al., 2016; Selvaraju et al., 2017; Adebayo et al., 2018; Montavon 245
et al., 2019; and Mundhenk et al., 2019) that allow us to outline the 246
spatial locations of those signal patterns that mainly contribute to 247
making the CNN give the classes of output. Therefore, CNNs rep- 248
resent the perfect choice for classifying the occurrence of ENSO 249
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FIG. 2. Schematic illustrationsQ7 of the CNN model; flow diagram (a) and the hidden layers (b).

events in ZC simulations and investigating in detail on which fea-250
tures contained in data can lead to highly accurate predictions. To251
leverage the basic feature of the CNN of encoding the sequentiality252
of the patterns contained in the input data, we feed the CNN with253

simulated time series obtained via the Zebiak–Cane model. This 254
synthetic dataset describes the temporal evolution in the NINO3.4 255
region of some physical observables of interest as the thermo- 256
cline depth, the sea surface temperature, the wind speed, and the 257
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wind-stress noise. The extraction of the instances from the ZC sim-258
ulations, therefore, consists in slicing the synthetic time series along259
the time domain, i.e., the set of time series is chunked in a sequence260
of overlapping time windows of 48 months and stride 1. As a result,261
each single instance is a tensor of rank 2 whose dimensions are262
the time-length (48 pixels, sampling frequency one month) and the263
number of time-series features (the four physical observables of264
interest). The labeling of the instances is performed by equipping265
each instance with the corresponding ONI-index value and so we266
label one ENSO event whenever the ONI-index value is greater than267
0.5 (El Niño event) or lower than −0.5 (La Niña event). The input268
instances are then pre-processed via standardization (each feature269
has now zero-mean and unit variance) and divided into training set270
and test set; we validate the CNN model by means of the fivefold271
cross validation. Therefore, we evaluate the AUC (Area Under the272
Curve) of the receiver operating characteristic curve on each fold;273
the mean value and the standard error mean will provide the degree274
of accuracy of the CNN model and its error, respectively. The design275
of our CNN is quite standard and it is composed by the sequence276
of one convolutional layer (64 kernels, size 9) with a Rectified Lin-277
ear Unit (ReLu) activation function, followed by a maxpooling Layer278
with pooling size 2 (Fig. 2). Dropout layers (Srivastava et al., 2014)279
with a dropout rate of 0.50 are also employed to reduce overfitting,280
but no stride is applied during the convolutions. After repeating two281
times this block of hidden layers, the resulting feature map is flat-282
tened via a flattened layer; the final fully-connected layer with the283
sigmoid activation function returns the output of the CNN. During284
the training phase, the ADAM (Kingma and Ba, 2014) algorithm is285
used as an optimizer for the binary-cross entropy loss function; the286
batch size and learning rate are set equal to 128 and 0.005, respec-287
tively. The SMOE scale method (Mundhenk et al., 2019) is a robust288
statistical measure of the activation values of CNNs arising at dif-289
ferent spatial locations (temporal locations in the domain of our290
instances). This statistics can be used to construct robust saliencyQ2 291
maps that appear to be much more efficient and computationally292
faster than popular gradient methods. More specifically, this method293
estimates the saliency of the input data at each temporal location;294
the saliency values are returned as a score laying in the range [0, 1].295
Therefore, the closest is one score to the unit value, the more is the296
saliency attributed to its temporal location. We, therefore, exploit297
the capability of SMOE scale method to detect those patterns and298
their spatial domains that mostly indicate the approaching or the299
occurring of the ENSO events. Thus, we proceed with the analysis300
of the profile of the saliency maps in order to evince possible analo-301
gies and differences between the patterns learnt during the training302
phase and the patterns contained in the test dataset. In order to303
complete the analysis provided by the SMOE scale method, we even304
look at how the predictions can change when only a spectral sub-305
band of the input instances is propagated through the hidden layers.306
With this approach, we aim to investigate how oscillations occurring307
under a specific regime can really be a basic aspect of the prediction308
provided by the CNN. Therefore, we can progressively apply a digi-309
tal Butterworth filter (Butterworth et al., 1930; and Hamming, 1998)310
of order 3 as either a bandpass filter or low-pass filter to smooth311
the input instance. The ensemble of bandpass filters is designed312
to cover the whole spectral domain of any input instance and be313
non-overlapping at the same time and, thus, we impose the cutoff314

TABLE I. Frequency bands and cut-off frequencies for the bandpass and low-pass
digital filters, respectively.

Frequency bands (period in months) Cut-off period (months)

[2, 4) 2
[4, 8) 4
[8, 16) 8
[16, 32) 16
[32, 48) 32

frequencies of each filter to be in ratio 1:2. This means that, start- 315
ing from the Nyquist frequency ν0, the first digital filter will have 316
its frequency band in

[

ν0
2

, ν0

]

, the second one in
[

ν0
4

, ν0
2

]

, and so on. 317
Again, when considering the low-pass digital filters, we will choose 318
the cut-off frequency according to a dyadic scale, i.e., the first filter 319
will have cut-off frequency ν0, the second one ν0

2
, the third one ν0

4
, 320

and so on. The full list of bandwidths (in periods) and cutoff fre- 321
quencies is reported in Table I. Note that we will apply these digital 322
filtering techniques by repeating the same fivefold cross validation 323
with metrics AUC, as we do in the model validation; the CNN archi- 324
tecture will not be altered during this step. Hence, by means of this 325
approach, we aim to reveal which time scale is dominant in those 326
patterns that characterize the ENSO events (e.g., a slow oscillating 327
trends against rapid oscillating deviations), i.e., we make an effort 328
to understand how the periodicity of the time-series features is an 329
essential characteristic of data that the CNN captures for solving 330
the classification task and how a distortion of it can give rise to a 331
decrease in the CNN capability of classifying the events El Niño and 332
La Niña. 333

III. RESULTS 334

A. Distorted physics 335

The model experiments broadly consist of two steps: first, the 336
ZC model is run for standard parameter values to produce reference 337
case data; and then it is run again but for a range of values around 338
the standard parameter value (shown in Table II) to get the distorted 339
data. This ultimately results in three different kinds of datasets: ref- 340
erence case, distorted wave speed, and distorted upwelling feedback. 341
There are no simulations where more than one parameter is dis- 342
torted at the same time. In the second step, the distorted datasets are 343
used as training data for the DLMs whose performance is then deter- 344
mined by using the reference case as the test set. As a consistency 345
check, the DLMs are also trained on the reference case data and then 346
tested on reference case data. This should produce the highest per- 347
formance because the DLMs are tested on data they have already 348
seen. 349

B. Equatorial wave dynamics: Saliency maps 350

Time series of the ONI for the different δ values, as computed 351
from the ZC model are shown in Fig. 3. Changing the δ value causes 352
the amplitude of the oscillation to become much smaller for δ < 1, 353
so much even that by definition only ENSO neutral conditions 354
(−0.5 < ONI < 0.5) are present. Increasing δ above the reference 355
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TABLE II. Parameter settings of the ZC model used to generate the data used in the
distorted physics experiments with the parameter step size shown within brackets.
Parameter ranges are chosen to cover roughly a 50% increase and decrease com-
pared to the reference value, step size is chosen to get around 10 points within this
range. The parameters are from left to right: coupling strength µ, wave speed param-
eter δ, and upwelling feedback parameter δs. The value ofµ = 2.7 is subcritical in the
ZC model.

Effect µ δ δs

Distorted wave speed 2.7 0.5–1.5 (0.1) 0.3
Distorted wave speed 2.7 0.5–1.5 (0.1) 0.3
Distorted upwelling feedback 2.7 1.0 0.1–0.6 (0.05)
Distorted upwelling feedback 2.7 1.0 0.1–0.6 (0.05)
Reference 2.7 1.0 0.3

value of 1.0 initially leads to an increase in the oscillation ampli-356
tude and it then decreases again for higher values of δ. This is357
expected because the ENSO period depends on the speed of Rossby358
and Kelvin waves crossing the Pacific basin. In the study of the clas-359
sification performance of the CNN, we take a prediction lead time360
of 9 months. The propagation of the δ-distorted data through the361
CNN can lead to substantial changes when testing the accuracy of362
the model on the reference data. By construction, the AUC score363
[Fig. 4(a)] attains excellent results at δ = 1.0 (AUC 0.94) as the CNN364
is trained on the reference data. The AUC scores tend to remain365
relatively high (peak of AUC 0.91 at δ = 0.8) as the δ parameter is366
slightly decreased from its reference value. Instead, as δ is reduced367
up to value 0.5, we can observe a severe degradation of the accu-368
racy with respect to the reference case; from δ = 0.7, the evaluation369
of the AUC metrics decreases monotonically (AUC 0.66 at δ = 0.5).370
At values δ > 1.0, we observe a total reduction of the AUC values.371
Specifically, models trained for δ = 1.1, and δ = 1.2 show low AUCs372
as 0.58 and 0.56 but the lowest value (AUC value 0.51) is reached373
at δ = 1.5. The evaluation of the loss function (when the reference374
data are propagated through the CNN models) confirms the sce-375
nario expressed above [see Fig. 4(b)]. Indeed, the global minimum376
value is achieved at δ = 1.0 and a relative minimum is also present at377

δ = 0.8. When δ is decreased or augmented toward the bound values 378
δ = 0.5 and δ = 1.5, respectively, we can observe the loss function 379
tends to reach higher values. In particular, an increase or decrease in 380
the AUC along the δ domain is followed by a decrease or an increase 381
in the loss function. 382

The application of the combined SMOE Scale on the mean 383
instances (namely, the instances obtained by averaging all samples of 384
the test data of the reference case) can help identify which patterns in 385
the data are captured by the CNN to generate (accurate or degraded) 386
ONI predictions. The reason for analyzing the mean instance is that 387
it represents the main patterns in the feature time series; the inter- 388
pretation of the saliency maps of all instances would turn out to be 389
really impractical. The mean instances of both the events El Niño 390
and La Niña are represented in Figs. 5(a) and 6(a), respectively. 391
Therefore, after propagating the mean instance through the trained 392
CNN model, we get the activated feature maps and compute the 393
saliency map by means of the SMOE scale method. Next, we indi- 394
vidualize the regions (months) of the saliency maps achieving the 395
highest values; at the same regions of the mean instance, we can 396
identify those time-series patterns that are mainly captured by the 397
CNN model. 398

Taking into account the event El Niño, the saliency map of 399
δ = 1 reference case [green line in Fig. 5(a)] shows two peaks with 400
an intensity of 0.6 and 0.9 around months 18 and 36, respectively 401
(note that the instances are 48 months long and that the lead time is 402
9 months). These two regions turn out to be the most salient along 403
the whole domain of the mean instance. At month 18, we find a 404
peak in the thermocline depth [Fig. 5(a), green line] and a trough in 405
both sea surface temperature [Fig. 5(a), orange line] and wind speed 406
[Fig. 5(a), indigo line]. Conversely, in the neighborhood of month 407
36, we find the thermocline is descending toward a trough, while 408
both sea surface temperature and wind speed are reaching a peak 409
value. Both these two combinations of patterns represent the main 410
characteristic that mostly defines the event El Niño according to the 411
recognition activity of the CNN model. 412

Likewise, we can find some similar results for the event 413
class La Niña. The spatial locations, where the saliency map 414
[Fig. 6(b), green line] achieves values close to unity correspond- 415
ing to one interval domain (months 0–7) of the mean instance [see 416
Fig. 6(a)] where the thermocline depth attains a peak while both 417

FIG. 3. Several time series of ONI calculated from ZC model simulations using δ parameter values of 0.5, 1.0, and 1.5, respectively.
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FIG. 4. The AUC score (a) and the loss function (b) as a function of the equatorial
wave speed δ. Each point represents the mean AUC over five different folds; error
bars are evaluated via the standard error mean.

the sea surface temperature and the wind speed descend toward a418
trough.419

When considering other distorted cases, such as δ = 0.5 and420
δ = 0.8 (where waves are propagating faster than the reference case),421
the combination of peaks in the thermocline and troughs in the422
sea surface temperature (and vice versa) still represents those rele-423
vant time-series patterns that the CNN model captures during the424
learning phase. If we focus our attention on the event El Niño, the425
saliency map of case δ = 0.8 [see Fig. 5(b), orange line] shows at426
months 30–38 a broad region with intensity larger than 0.8, whereas427
the saliency map of case δ = 0.5 [Fig. 5(b), blue line] shows inten-428
sities close to unity in the region 0–10 months. In the first case, we429
find that the high saliency region corresponds to a peak in the ther-430
mocline and a trough in both the sea surface temperature and the431
wind speed, while in the latter case, we find the thermocline depth432

FIG. 5. The mean instance considering all the El Niño event instances in
the test data (reference case) (a). Saliency maps of CNN models (b) and
(c) trained with the wave distorted data (variation of δ) considering the cases
(b) δ = 0.5, 0.8, 1.0, 1.2, 1.5 and (c) δ = 0.7, 0.8, 0.9, 1.0.

shows a soft minimum value as opposed to the high-valued peak in 433
the sea surface temperature and wind speed. 434

Similar results are also obtained for the event La Niña. The 435
saliency map of case δ = 0.5 [see Fig. 6(b), blue line] shows at 436
months 35–40 a saliency region with intensity higher than 0.85. In 437
Fig. 6(a), we see that this high saliency region corresponds to a peak 438
in the thermocline depth and a trough in both the sea surface tem- 439
perature and the wind stress. The saliency map of case δ = 0.8 [see 440
Fig. 6(b), orange line] reveals a broad high-valued peak (maximum 441
intensity 0.81) around month 18 and a flat salient region (intensity 442
close to 0.9) at months 40–48. By looking at those temporal regions 443
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FIG. 6. The mean instance considering all the event La Niña instances in
the test data (reference case) (a). Saliency maps of CNN models (b) and
(c) trained with the wave distorted data (variation of δ) considering the cases
(b) δ = 0.5, 0.8, 1.0, 1.2, 1.5 and (c) δ = 0.7, 0.8, 0.9, 1.0.

in Fig. 6(a), we find a peak in both the sea surface temperature and444
the wind stress together with a deep trough in the thermocline depth445
around month 18, whereas the domain months 40–48 show a soft446
trough in the thermocline and a prominent peak in both sea surface447
temperature and wind speed.448

A deeper insight into the region δ = 0.7–1.0 (where the AUC449
takes the highest values) reveals that all CNN models tend to capture450
a specific type of time-series patterns when they have to deal with451
the recognition of the event El Niño. For all cases considered in this452
interval, the saliency maps indicate as interesting the region months453
32–38 [see Fig. 5(c)], where the values attained are larger than 0.8.454
Thus, we find that the results previously discussed for both cases455

δ = 0.8 and δ = 1.0 (where we discussed the behavior of the mean 456
instance around month 36) are still valid even when we consider 457
both cases δ = 0.7 and δ = 0.9. Interestingly, the case δ = 0.9 shows 458
a recognition activity that is similar to that of the model trained 459
under the reference case because the saliency maps appear to be par- 460
tially overlapped [see both the pink and the green line of Fig. 5(c) at 461
months 32–38]. Moreover, the saliency map of case δ = 0.9 points 462
out some other aforementioned details of interest, e.g., those corre- 463
sponding to the peak with intensity 0.6 at month 18, as shown by the 464
pink line in Fig. 5(c). 465

For La Niña event, instead, the saliency map of case δ = 0.7 466
[Fig. 6(c), cyan line] presents some analogies with case δ = 0.8 467
[Fig. 6(c), orange line], individualizing one highly salient region at 468
months 40–48 with an intensity around. Similarly to case δ = 1.0 469
[Fig. 6(c), green line], the saliency map of case δ = 0.9 [Fig. 6(c), 470
pink line] individualizes a salient region in proximity of the left edge 471
of the instance domain (months 0–5) with an intensity around to 472
0.95. It is interesting to note that both saliency maps of cases δ = 0.9 473
and δ = 1.0 are overlapped at the middle region (months 15–35); 474
both two CNN models show a similar approach to capturing some 475
low relevant features to identify the event La Niña. 476

For the cases δ = 1.2 and δ = 1.5 (where waves are propagating 477
slower), the saliency maps [Fig. 5(b), red and purple line] reveal that 478
the region around month 18 is no longer salient as in the reference 479
case for El Niño event. For case δ = 1.2, we find a salient region at 480
months 36–48, where the saliency map takes values larger than 0.8. 481
This corresponds to the presence of one broad peak in both the sea 482
surface temperature and the wind speed with a less important contri- 483
bution (than in the reference case) in the thermocline depth located 484
at months 32–48. For case δ = 1.5, we can observe that the saliency 485
map is similar and almost completely overlapped with that of case 486
δ = 0.5; in this case, the analysis of the most salient time-series pat- 487
terns will lead to some results that have already been discussed for 488
the case δ = 0.5. 489

When considering the event La Niña, the saliency map of case 490
δ = 1.2 [see Fig. 6(b), red line] attains values with an intensity close 491
to unity at months 0–10. This temporal domain is characterized by 492
the opposite feature, i.e., a broad peak in the thermocline depth and 493
a trough in the sea surface temperature, located at months 0–10. 494
The same feature can be also found for the case δ = 1.5. Indeed, the 495
saliency map [see Fig. 6(b), purple line] shows high saliency regions 496
at either months 0–10 (intensity values close to unity) and month 36 497
(a peak with a maximum of 0.81). In particular, at month 36, the sea 498
surface temperature and the wind speed reach a deeper trough with 499
respect to that of region months 0–10. 500

C. Equatorial wave dynamics: Filtering of the 501
instances via Butterworth digital filter 502

The application of a bandpass filter on all the instances 503
included in the test dataset (reference case data) reveals that the 504
propagation of one specific frequency band through the CNN mod- 505
els can retrieve most of the AUC scores obtained with the non- 506
filtered data, as shown in Fig. 7. In specific, the model trained under 507
the reference case turns out to be very sensitive to the frequency 508
band corresponding to periods 8–16 months, where the AUC is 509
equal to 0.80 [Fig. 7(a), green line]. On the contrary, the complete 510
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FIG. 7. The AUC score for different values of δ for the event El Niño as a func-
tion of (a) the bandpass frequency range and (b) the cut-off frequency, obtained
by filtering the data by (a) bandpass Butterworth digital filter and (b) a low-pass
Butterworth digital filter.

degradation of AUC scores is attained when propagating lower and511
higher frequency bands, e.g., both intervals 16–32 months and 2–4512
months, where the AUC value is equal to 0.61 and 0.58, respectively.513
Similar results can be found for other cases taken under consider-514
ation, as the case δ = 0.5 and δ = 0.8 [Fig. 7(a), blue and orange515
lines]. For both these cases, the band 8–16 months turns out to be516
the most predictive one with a net degradation of AUC score as soon517
as slower frequency bands are considered.518

In particular, case δ = 0.8 still shows some analogies with the519
reference case; the frequency band 8–16 months is still the most pre-520
dictive with an AUC score of 0.80, and net degradation occurs at521
either lower or higher frequency bands. Such a result offers further522
details in interpreting the saliency maps, i.e., the CNN models tend523

FIG. 8. Evaluation of AUC when the ROARmethod (a) or the replacing at random
strategy is applied (b); on the x axis, the ratio of pixels is replaced and on the y
axis the AUC value.

to capture oscillating trends with specific carrier frequencies within 524
the low-medium band of frequencies. It is important to highlight 525
that the presence of details on a shorter frequency scale (i.e., period 526
16–32 months) is still fundamental and needed to allow the CNN 527
to make an accurate classification of the ENSO events. The smooth- 528
ing of the sample instances with a low-pass filter [Fig. 7(b)] reveals 529
the instances tend to substantially lose many of their discriminating 530
patterns at cutoff frequencies as 8 or 16 months. For example, in the 531
cases δ = 0.8 and δ = 1.0 [Fig. 7(b), orange and green lines], we can 532
observe a decrease in the predictive power with degradation of 0.1 533
AUC at 8 months and 0.3 AUC at 16 months. Hence, medium-low 534
frequency patterns (4–8 months) as those contained in the thermo- 535
cline depth or in the wind-noise time series can play an important 536
role in the detection of the events. 537
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FIG. 9. Several time series of ONI calculated from ZC model simulations using δs parameter values of 0.1, 0.3, and 0.6 using µ = 2.7.

D. Equatorial wave dynamics: ROAR538

To ensure the correct implementation of the combined SMOE539
Scale and guarantee the validity of the results obtained, we used (and540
adapted to this analysis) the metrics ROAR (Remove and Retain)541
introduced in Mundhenk et al. (2019). The replacement in the vali-542
dation sets of an increasing amount of salient spatial locations with543
zero-valued pixels rapidly deteriorates the predictive characteristics544
of the data; as shown in Fig. 8. It is important to remember that the545
CNN models do not make use of any bias term neither in the convo-546
lutional layers nor in the dense layers. Accordingly, the CNN model547
considers the zero-valued patterns as absolutely non-informative,548
i.e., the propagation of such a pattern through the CNN is designed549
to prevent the activation of any stimulus along the hidden layers.550
In Fig. 8(a), we can observe that the removal of the top 50% salient551
pixels via ROAR (actually 24) guarantees a considerable decrease in552
the AUC; under the reference case model, the AUC scores present553
a loss equal to 0.20. Contrary to this, when randomly replacing the554
50% pixels with zero-valued pixels, we can still observe a slighter555
decrease in the AUC curve under the reference, i.e., a loss equal to556
0.03 [see Fig. 8(b)]. Likewise, similar results can be found when even557
considering all the other distorted physics cases.558

E. Upwelling feedback: Saliency maps559

We next consider the distortion of the model data due to a560
wrong representation of the upwelling feedback, represented by the561
parameter δs in the ZC model. Figure 9 shows that the ONI’s ampli-562
tude increases (decreases) for larger (smaller) values of δs. This563
behavior is expected because the upwelling feedback is a positive564
one, enhancing the existing sea surface temperature anomaly fur-565
ther and consequently increasing the amplitude of the ONI. The566
AUC score vs δs curve [Fig. 10(a)] reveals that a particular tuning567
of the parameter δs strongly affects the accuracy of the CNN models568
when trained with distorted data. By construction, the AUC score569
attains the highest score at the reference value δs = 0.3 (AUC 0.94).570
For δs < 0.3 the profile of the curve suggests a net degradation in the571
AUC scores with the lowest score attained at δs = 0.15 (AUC 0.5),572
whereas at δs > 0.3 the AUC scores remain stable, but still attain val-573
ues lower than 0.7. The profile of the AUC has a plateau at values of574
0.6 as δs goes toward the boundary value δs = 0.6. The evaluation of575

the loss function [Fig. 10(b)] as a function of the parameter δs con- 576
firms the results obtained above. At δs = 0.3, the global minimum 577
is achieved, and the net degradation occurring at lower and higher 578
δs = 0.3 are still present; the loss function increases monotonically 579
in both cases. Similarly to the analysis provided for the distortion 580
of the δ parameter, we next consider the mean instances (of the 581
test data of the reference case) and their saliency maps [Figs. 11(a) 582
and 12(a)]. 583

For the event El Niño, we can observe that different regions 584
of saliency can be associated to different variations of δs, i.e., for 585
δs < 0.3 the saliency maps [Fig. 11(b), blue and orange lines] 586
indicate the left part of the instance as the most predictive, 587
while for δs > 0.3 the right part [Fig. 11(b), red and purple 588
lines]. In particular, the saliency map of cases δs = 0.10 and 589
δs = 0.25 [Fig. 11(b), blue and orange lines] turns out to be 590
very salient at 0–8 months, with intensity above 0.8. In that 591
region, the mean instance presents a peak occurring in both the 592
sea surface temperature and the wind speed time-series features. 593
On the contrary, for cases δs = 0.45 and δs = 0.60, the saliency 594
maps [Fig. 11(b), red and purple lines] achieve intensities larger 595
than 0.8 around 32–48 months and capture one single broad 596
oscillating peak in both the sea surface temperature and the wind 597
speed time-series features. 598

For the event La Niña, we refer to Fig. 12. In particular, the 599
saliency maps of cases δs = 0.10 and δs = 0.25 [Fig. 12(b), blue and 600
orange lines] present intensities larger than 0.8 at 42–48 months. 601
It is interesting to observe that the saliency map of case δs = 0.25 602
presents a plateau around 32–48 months; in opposition to the event 603
El Niño, the CNN here captures a deep trough in the sea surface 604
temperature time-series feature. 605

F. Upwelling feedback: Filtering of the instances via 606
Butterworth digital filter 607

The application of bandpass and low-pass filters on the sample 608
instances brings to light a result similar to the analysis done for the 609
parameter δ, as shown in Fig. 13. When applying a bandpass filter 610
with bandwidth 8–16 months, the case δs = 0.25 [Fig. 13(a), orange 611
line] can partially retrieve the original prediction with AUC 0.70, 612
whereas for other cases such as δs = 0.6 [Fig. 13(a), purple line] the 613
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FIG. 10. The AUC score (a) and the loss function (b) as a function of the upwelling
feedback parameter δs. Each point represents the mean AUC over five different
folds; error bars are evaluated via the standard error mean.

original prediction can be retrieved only by oscillations lying within614
the frequency band corresponding to 32–48 months. The smooth-615
ing of the instances via low-pass filter [Fig. 13(b)] shows that the616
removal of high-frequency patterns oversimplifies the data; and so,617
the classification task cannot be solved by the information contained618
in the low-frequency data only.619

As confirmed by the filtering of the instances, the frequency620
bands 4–8 months and 8–16 months represent the main frequency621
bands in the reference case (δs = 0.3). Capturing one of these two622
can retrieve a considerable amount of skill. The case δs = 0.25623
focuses a large amount of relevant patterns mainly in the frequency624
band 8–16 months. The filtering with a low-pass digital filters also625
reveals that a cut-off frequency of 16 months can reduce the AUC in626
both cases, but a cut-off frequency of 8 months leads to a degrada-627
tion for the reference case only. In the latter scenario, we register628
a loss of 0.1 AUC, i.e., a degradation on the same order of mag-629
nitude as when testing the reference case data and the data of630

FIG. 11. The mean instance (a) of all the El Niño event instances in the test data
(reference case). Saliency maps of CNN models (b) trained with the upwelling
distorted data (variation of δs). In specific, cases δs = 0.10, 0.25, 0.30, 0.45, 0.60
are considered.

case δs = 0.25. Hence, this example shows how a manipulation in 631
the intrinsic characteristic of the instances can lead to a reduction 632
and oversimplification of the instances, i.e., the distortion of the 633
periodicity of data provokes a reduction or missing of some patterns 634
that are fundamental in the classification of the reference case data. 635

G. Comparison of CNN and GDNN 636

To provide a comparison, we also applied the distorted physics 637
approach in the Gaussian Density Neural Network (GDNN) as used 638
in Petersik and Dijkstra (2020). The Gaussian density terminology 639
refers to the network’s purpose of predicting a Gaussian distribution 640
by producing both a mean and standard deviation as output. The 641
variable to be predicted (or target variable) is also the ONI at a (lead) 642
time in the future. The features used in the GDNN are described by 643
Petersik and Dijkstra (2020): ONI, network graph connectivity met- 644
ric c2, adjusted Hamming distance H∗ (measure of change in the 645
network graph) and a seasonal cycle (SC) in the form of a cosine. 646
The warm water volume (WWV, volume of water above the 20 ◦C 647
thermocline) is not available in the output of ZC model, and, there- 648
fore, the thermocline depth itself was used here. All feature datasets 649
are normalized before training. 650

Training the GDNN consists of a number of ensemble mem- 651
bers that are trained in parallel. Each of the members is trained 652
for 100 iterations over 500 epochs with a batch size of 100. The 653
training starts with a random selection of hyperparameters within 654
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FIG. 12. The mean instance (a) of all the La Niña event instances in the test data
(reference case). Saliency maps of CNN models (b) trained with the upwelling
distorted data (variation of δs). In specific, cases δs = 0.10, 0.25, 0.30, 0.45, 0.60
are considered.

bounds defined by the user and is then optimized using the ADAM655
algorithm (Kingma and Ba, 2014) with a user specified learning rate,656
dropout, and Gaussian noise. The resulting ensemble members each657
predict a mean and standard deviation of the target variable and658
these predictions are then averaged over the ensemble for the final659
prediction. Again, the lead time is 9 months in the result below.660

We use two different measures for the performance of the661
GDNN: the RMSE and the Pearson correlation; also, the loss func-662
tion is shown (see Fig. 14). Different simulations give different663
networks and give different performance values. The GDNN’s, when664
trained on distorted physics data, still perform consistently when665
varying δ or δs. However, a change in the ONI’s amplitude in the666
training data (such as for higher than reference δs) is poorly cor-667
rected for, leading to a large overestimation of the predicted variable668
[e.g., see δs = 0.40 in Fig. 14(a)]. The model only tolerates a differ-669
ence in amplitude between test and training dataset ONI if only a670
small distortion of the variable is used (e.g., δs = 0.35). The ability671
to compensate for the period but not the amplitude is explained by672
the relatively simple architecture of the GDNN. Whereas the former673
only requires a scalar addition to the input, the latter would require674
some linear combination of (co)sines to be learned by the neural675
network.676

The attempt of comparing the capability of both CNN and677
GDNN in detecting El Niño events is made complicated by the678
intrinsic design of both models. Although both models are trained679

FIG. 13. The AUC score for different values of δs for the event El Niño as a func-
tion of (a) the bandpass frequency range and (b) the cut-off frequency, obtained
by filtering the data by (a) bandpass Butterworth digital filter and (b) a low-pass
Butterworth digital filter.

to solve the same problem, we have to take into account that the 680
CNN model is a binary classifier, while the GDNN is designed to 681
solve regression problems. In addition, the fact that both models 682
optimize the same loss function does not ensure a relation or a simi- 683
larity about what the two models learn during the training phase can 684
be found. The two models could focus on capturing totally different 685
features of data, because the outputs of the two models represent two 686
different probabilities, i.e., the CNN estimates the probability of the 687
event itself, whereas the GDNN estimates the probability distribu- 688
tion of the ONI index. However, the ENSO events are based on the 689
behavior of the ONI index and we can exploit this fact to make the 690
outputs of the GDNN more close to those of the CNN. After train- 691
ing the GDNN, we can use the estimation on the Gaussian density 692
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FIG. 14. Performance of the GDNN when trained on distorted ZC model data
using several values of (a) δs and (b) δ.

to estimate the probability of El Niño events, i.e., the probability that693
the absolute value of ONI index is greater than 0.5 ◦C. Thereafter,694
we can use the AUC metric to compare the performance of the two695
models.696

As we can see in Fig. 15, the GDNN model appears to be less697
accurate than the CNN model. The reference case data show a lower698
AUC [compare to Fig. 3(a)] and we can observe a general reduction699
of 0.1 AUC with respect to the results obtained with the CNN model.700
When feeding the GDNN model with ZC data with a different tun-701
ing of parameters δ, we can observe that GDNN tends to be more702
degraded at δ < 1, then the CNN model [compare to Fig. 8(a)]; in703
fact, the AUC can lose up to 0.21 with respect to the reference case.704
Note that the same tuning of parameter δ would reveal a plateau in705
the AUC score whose values are much closer to that one attained706
in the reference case. When considering the distortion of parame-707
ter δs we can still appreciate a degradation at values lower than 0.3.708
However, the decrease in the AUC scores appears milder (∼ 0.1)709
with respect to that shown for the CNN model. On the contrary,710
as δs > 0.3, there is a significant reduction in the AUC scores; with711
respect to the reference case, the AUC scores can now be reduced up712
to 0.2.713

IV. SUMMARY AND DISCUSSION714

This work was strongly motivated to understand the high715
skill in ENSO prediction obtained with the CNN approach in716

FIG. 15. AUC metric for the GDNN when considered as a classifier for both the
wave distorted case (a) and the upwelling distorted case (b). On the x axis, the
values of ZC parameters (δ, δs) and on the y axis the AUC score.

Ham et al. (2019), in particular, at long lead times. Although heat 717
maps were presented in Ham et al. (2019), their analysis does not 718
connect immediately to the detailed processes of ENSO dynamics, 719
which is also difficult because of the wide range of data they used. 720
In this paper, we introduced distorted physics simulations with the 721
well-known Zebiak–Cane (ZC) model (Zebiak and Cane, 1987) to 722
determine how a CNN can perform on real data when trained on 723
data from “wrong” model simulations. 724

The behavior of the ZC model can be elegantly described by a 725
delay-differential equation (Suarez and Schopf, 1988; and Jin, 1997) 726

dT(t)

dt
= aT(t) − bT(t − d) − cT3(t) (2)

for the eastern Pacific temperature T as a function of time t. Here, 727
the constant a indicates the strength of the positive feedbacks, b 728
that of the delayed negative feedback (with a delay d due to equa- 729
torial wave dynamics), and c measures the strength of the nonlinear 730
equilibration. 731
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By distorting the δ parameter in the ZC model, we modify the732
delay d in (2) and, hence, mostly the adjustment processes in the733
equatorial Pacific. When the equatorial wave speeds are distorted,734
there is an asymmetry in the skill of the CNN. For faster waves δ < 1,735
the performance remains good, whereas for δ > 1 (slower waves), it736
deteriorates. For example, in case δ = 1.2, the El Niño event appears737
to be mainly constituted by slower oscillations, even though the738
behavior of the large-scale thermocline depth and sea surface tem-739
perature is similar to the reference case. However, the loss of details740
on shorter time scales leads the model to still reasonably solve the741
classification task.742

By distorting the parameter δs, we basically modify the feedback743
parameter a in (2) and, hence, the amplitude of the El Niño events.744
However, also the stability properties of the background climate745
state are changed as seen through the shift in the Hopf bifurcation746
with δs (van der Vaart et al., 2000). For increasing δs and constant747
µ (as is done here), the background destabilizes as can also be seen748
in Fig. 9. The case δs = 0.1 (reference case δs = 0.3) offers a clear749
example about how the manipulation in the upwelling feedback can750
degrade the AUC, i.e., the distortion of the patterns in the data leads751
to a misplacement and misalignment and reduce the capability of752
the network in capturing the right patterns at the right (temporal)753
location. For other cases (e.g., δs = 0.25, δs = 0.45, and δs = 0.6), the754
skill of the CNN predictions is reduced less, because the right com-755
bination of peaks and valleys in the time series are present. Indeed,756
the absence of oscillating terms located at the frequency band 4–8757
months does not allow the CNN to capture all the relevant patterns758
but only a part of them.759

The results indicate that the accuracy of the classification of760
the El Niño and La Niño events for lead times of 9 months using761
a CNN approach is strongly related to the capability of the CNN762
to capture the wave adjustment and feedback processes. The exact763
combination of specific patterns like peaks and valleys occurring at764
specific regions of the time domain of all features is essential to gen-765
erate skill in the CNN predictions. The distorted physics approach766
can be very useful to look at how a CCN based prediction scheme767
can represent additional processes. For example, it is well knownQ3 768
that connections between the Indian-Pacific (Izumo et al., 2010) and769
Atlantic-Pacific (Ham et al., 2013) and extratropical-tropical con-770
nections (Zhao and Di Lorenzo, 2020) are important for the skill771
of ENSO predictions. The latter interactions have been described as772
ocean-atmosphere meridional modes and can influence ENSO and773
tropical variability on decadal time scales from both hemispheres774
independently (Amaya, 2019). Also, the effect of climate change775
on ENSO prediction skills, and how a CNN would capture this,776
is an interesting future line of work. However, one cannot use the777
Zebiak–Cane model for such studies and needs to do such distorted778
physics simulations with more sophisticated global climate models.779
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