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Abstract—Edge Learning (EL) pushes the computational re-
sources toward the edge of 5G/6G network to assist mobile users
requesting delay-sensitive and energy-aware intelligent services.
A common challenge in running inference tasks from remote is
to extract and transmit only the features that are most significant
for the inference task. From this perspective, EL can be effectively
coupled with goal-oriented communications, whose aim is to
transmit only the information relevant to perform the inference
task, under prescribed accuracy, delay, and energy constraints.
In this work, we consider a multi-user/single server wireless
network, where the users can opportunistically decide whether
to perform the inference task by themselves or, alternatively, to
offload the data to the edge server for remote processing. The
data to be transmitted undergoes a goal-oriented compression
stage performed using a convolutional encoder, jointly trained
with a convolutional decoder running at the edge-server side.
Employing Lyapunov optimization, we propose a method to
jointly and dynamically optimize the selection of the most suitable
encoding/decoding scheme, together with the allocation of com-
putational and transmission resources, across all the users and
the edge server. Extensive simulations confirm the effectiveness
of the proposed approaches and highlight the trade-offs between
energy, latency, and learning accuracy.

Index Terms—Edge learning, Goal-oriented communications,
Lyapunov stochastic optimization, deep learning.

I. INTRODUCTION

THE advent of the fifth/sixth generation of mobile com-
munications has radically changed the network concept,

from a pure communication infrastructure to a key enabler for
pervasive services, which are highly based on Artificial Intelli-
gence (AI) and Machine Learning (ML).Typical examples can
be found in augmented reality, autonomous driving, massive
Internet of Things, and mission critical applications [1]. In
these scenarios, the service delay and the reliability constraints
are often very restrictive, and this motivates the need to
design a holistic system where communication, computation,
learning, and control are jointly managed in order to reach
reliability, energy efficiency, and sustainability.

The need to process a huge amount of data, in real-
time, through proper AI/ML techniques, has driven researchers
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to design training/inference tasks at the wireless edge, in
collective as well as distributed fashions. This has led to the
definition of the so called Edge Intelligence (EI) paradigm
[2]. In this view, the allocation of system resources in order
to reach prescribed target performance in terms of latency,
accuracy, and energy consumption has been already considered
in [3]–[6]. Specifically, EI allows User Equipments (UEs)
connected to a mobile network to opportunistically offload
their learning tasks to Edge Servers (ESs), which are placed
in the edge, nearby the Radio Access Points (RAPs). This
allows the efficient management of system resources, such as
transmission rate, bandwidth, and CPU clock rates, according
to specific optimization strategies, which are mainly focused
on the trade-offs between energy consumption, overall latency,
and learning accuracy [6].

Clearly, in a resource optimization perspective, it would
be useful to offload to the ESs only the (minimum) amount
of information strictly necessary to fulfill the learning task
with the desired accuracy, while respecting the performance
requirements. This intuitive consideration, jointly with the
huge increase of traffic envisaged in future 6G networks [7],
motivates the search for a new communication paradigm, alter-
native to the classical Shannon design. In this view, a valuable
candidate is represented by Goal-Oriented Communications
(GOC) [8]. More specifically, if the goal of communication
is to perform an inference task on the data collected by the
UE, rather than requiring the accurate reproduction of all the
transmitted bits at the receiver side, the aim of GOC is to
transmit only the information that is most relevant to run the
inference task at the ES, guaranteeing a prescribed level of
decision accuracy and system performance. In this way, it is
possible to help the UEs to save transmission resources and
avoid unnecessary data rate growth, still respecting application
constraints, such as service delay and energy consumption.

Related works. Seminal EI frameworks, with a wireless
offloading strategy, have been proposed in [6], [9], which save
transmission resources by simply allocating, in a dynamic
fashion, the number of (quantization) bits used by UEs to
transmit their data to the ES. This compression strategy has
also been employed in [10] and [11], where edge classi-
fication and ensemble learning are considered, respectively,
with reliability guarantees. A more principled data reduction
strategy, better matched to the learning task and based on
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the Information Bottleneck (IB) [12] [13], has been proposed
in [14]. However, the IB principle admits a closed form
solution for the encoder only if the overall statistics are
jointly Gaussian [15] [14], or a solution achievable through
an iterative mechanism, if the statistics are discrete. When the
sensed data and decision outputs are neither jointly Gaussian,
nor discrete with manageable cardinality, it is not easy to
derive the IB solution and the source encoding problem can
be reformulated using the so called variational IB (VIB), as
recently explored in [16] and in [17], where a cooperative
(multi-device) inference framework is proposed.

A possibility to further deviate from the classical commu-
nication design is offered by Joint Source Channel/Coding
(JSCC), which has received increasing attention with the wide
spread use of Deep Neural Networks (DNNs). Quite recently,
several works have proposed to replace the classical cascade
of source and channel encoders with a DNN properly trained
with respect to the specific task. For instance, [18] proposed
a DNN-based JSCC scheme to achieve higher performance in
finite block-length regime for image retrieval applications. Fur-
thermore, if the task of communication is image recognition, it
makes sense to design the JSCC architecture directly focusing
on the learning task, rather than on the image reconstruction
followed by the recognition task, as proposed in [19]. The
authors of [20] presented a scheme for image retrieval where
the extracted vector features are directly mapped to the chan-
nel input symbols, without resorting to any channel coding
technique, and the server retrieves the most relevant images
directly from the noisy channel output. This approach has been
extended in [21], where the extracted features are quantized
before being mapped onto the channel symbols. In [22], JSCC
is coupled with an OFDM system operating over a frequency-
selective channel, while [23] considers the combination of
JSCC with non-linear transform coding (NTC) [24].

As far as goal-oriented (also known as task-oriented)
communications is concerned, several recent works testify
the emerging relevance of this topic. For instance, in [25]
and [26] GOCs have been exploited to define the common-
language between a listener and a speaker, employing Re-
inforcement Learning (RL) and Curriculum Learning (CL),
while a transformer-based approach has been proposed to
assist image and text transmissions [27]. A noise-aware JSCC
for text-transmission is described and assessed in [28], while
[29] exploited a hybrid automatic repeat request (HARQ)
scheme to improve reliability in sentence semantic transmis-
sion. Other examples of image classification for Unmanned
Aerial Vehicle (UAV) applications, and a GOC-assisted Visual
Question Answering (VQA) task, can be found in [30] and
[31], respectively. Furthermore, [19] and [20] motivate the
use of GOC schemes for computer vision applications, by
showing the accuracy improvements they provide in image-
classification and re-identification tasks of humans and cars,
respectively. Finally, the impact of goal-oriented communica-
tions has also been analyzed in speech recognition tasks [32].

However, none of the works cited above considered the
dynamic optimization of the data reduction strategy for multi-
user goal-oriented communications, jointly with the global
network resource management, under prescribed performance

guarantees, as we do in this manuscript. Along this line, in
[33] we proposed minimum-energy and maximum-accuracy
resource allocation strategies for edge-assisted image classifi-
cation tasks, in a single user/single server scenario, whereas
in [34] we reported some preliminary results on the extension
to the multi-user scenario, which we will further develop and
investigate more thoroughly hereinafter.

Our contributions. The main contributions of this work
concern the system architecture, the optimization strategies,
and the simulation results. They can be summarized as follows:

1) System Architecture: Extending the preliminary strate-
gies presented in [34], we consider a multi-user goal-oriented
communication scenario, where multiple UEs may decide to
offload their learning tasks to an ES (or not). Each user
relies on a bank of source encoders, each one associated to a
specific compression ratio, which dynamically compresses the
data-units (DUs) to be transmitted to the ES, depending on
the online system state. Specifically, exploiting convolutional
encoders (CEs), i.e., the encoders of convolutional auto-
encoders (CAE), as in [33], we improve their performance
by a new training function. The ES carries out multiple, user-
independent, inference tasks, using a bank of convolutional
classifiers (CCs), i.e., CNNs, each one matched to the CE
used at the UE. The overall CE-CC structure is instrumental
to split the classification task between UE and ES.

2) Optimization Strategies:: We implement a dynamical
split of the inference task, selecting, in each time slot, the
most suitable pair of CE-CCs, within the bank of available
(pre-trained) CE-CCs, depending on the channel state and
on the online accuracy and performance. More specifically,
resorting to Lyapunov optimization, we implement a multi-
user dynamical goal-oriented source compression architecture
that selects the CE-CC pair and allocates computational and
communication resources, trading off energy consumption
(including both UEs and ES), delay and classification accuracy.
Hereinafter, we extend the preliminary results and optimization
strategy shown in [34], by considering also a multi-user Max-
imum Accuracy strategy, with guaranteed (maximum) Delay
bounds and Energy consumption (MADE). Furthermore, we
let every UE able to decide whether to perform the inference
task locally or to offload it to the ES, since there might be
applications where the UE hardware is capable of running the
application locally, or it could be more convenient, for the
overall resource management, to do that.

3) Simulation Scenarios: We investigate scenarios that
were not analyzed in [34], where each UE has different service
requirements and constraints. The wide set of possible sce-
narios, optimization strategies, and simulation results, signifi-
cantly extends the results in [34], highlighting the effectiveness
and flexibility of the proposed holistic resource management.

Outline. The paper is organized as follows. Sec. II illus-
trates the goal-oriented communication system and the related
joint training procedure of both the CEs and the CCs for
classification purposes. Sec. III describes the overall system
model used in the formulation of the resource optimiza-
tion strategies, which are then solved in Sec. IV exploiting
stochastic Lyapunov optimization. In Sec. V we discuss our
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Fig. 1: Training scheme: the output of the CE h feeds both the ES
classification CNN and a CD.

experimental results and, finally, in Sec. VI we draw some
conclusions and highlight future research directions.

II. CLASSIFICATION NETWORK AND TRAINING

This section describes the architecture employed to make
parsimonious use of transmission energy and bandwidth.
Specifically, we compress the UEs data-units (DUs) (i.e., the
input of the learning task), before they are transmitted to the
ES. The latter has to perform the learning task without sacrific-
ing a prescribed target accuracy. As more deeply explained in
[33], the Information Bottleneck (IB) [12] is a promising the-
oretical framework to meaningfully compress the data-source
in a goal-oriented perspective. However, IB admits a closed
form solution only when the associated statistics are discrete
or Gaussian distributed [35] [14]. Thus, since in the multi-class
image classification task we are focusing on, the Gaussian
assumptions do not hold true and a meaningful definition of
mutual information is problematic [36], we proposed in [33]
a heuristic approximation of the IB that nicely fits with our
goal-oriented strategy. Specifally, our approach is based on the
deployment of a tunable data-compression at the UEs that is
useful for the associated inference task at the ES. Without
restriction of generality for the overall GOCs architecture
and its resource management, we resort to banks of CEs to
compress images at the UE side, according to a layer-by-layer
max-pooling strategy. The CEs are coupled with CCs at the
ES to perform the final decision, as summarized in Fig. 1 for
a single UE.

As detailed in [33], a CE may be realized as:
• Short-CE: It resizes the images to the desired resolution

by a single convolutional layer followed by a max-
pooling layer.

• Deep-CE: It down-samples the images by multiple con-
volutional layers, each one followed by a max-pooling
layer that halves the size of the (pseudo) image.

Note that our goal is to classify the images and not to repro-
duce them. Thus, for the CE-CCs compression and classifica-
tion network shown in Fig.1, we have to consider a different
learning cost function than those used for classical CAEs.
Specifically, we resort to the following objective function

minimize
θ, φ

1

Nt

Nt∑
n=1

Lce(Yn, Ŷn, φ, θ) + λLmse(Xn, X̂n, θ),

(1)

where Lce(Yn, Ŷn, φ, θ) is the cross-entropy loss, used in
order to control the performance of the ES classification task,
while Lmse(Xn, X̂n, θ) is the Mean Squared Error between
the input and the reconstructed version X̂ of the full CAE.
Note that the cross-entropy loss in (1) is a proxy of the
mutual information I(h;Y ) [37]. Thus, minimizing the cross-
entropy, we maximize the I(h;Y ) for a fixed CE architecture
(compression size) and this constitutes the link of the proposed
approach with the IB principle. However, differently from
what we did in [33], (1) considers also the output MSE of
a Convolutional Decoder (CD), i.e., that part of the CAE
that is typically used for image reconstruction. Actually, the
presence in (1) of this (regularizing) MSE penalty term favours
a meaningful feature extraction [38], which can improve the
performance of the overall learning task, for proper values
of the parameter λ. Anyway, note that the CD is taken into
account only during the CE-CCs training, while it is not used
for classification, as clarified by Fig. 1. Each CE-CC pair has
to be properly trained, possibly off-line, by a third party. Thus,
although it would be interesting to analyze how to train the
classification network by the same wireless edge-computing
architecture we consider herein for classification, this is not
the object of this manuscript and is left for future studies.

JPEG compression. Targeting good classification perfor-
mance, the CE compresses the images by a down-sampling
principle, due to the max-pooling strategy at each layer.
However, this design does not take into account the wireless
communication between UEs and ES. Thus, while the size of
the latent representation h of a CE output (see Fig. 1) may be
optimal for a target classification accuracy, it could be still sub-
optimal with respect to the file size of the compressed data-
units, leading to huge costs in terms of transmission energy
and time. This problem justifies the employment of a further
zipping (compression) phase on h, before transmitting it to
the ES, which will unzip it back to h at the CC input. Due
to the nature of the classification task and the structure of the
pseudo-images h extracted by the CE, we base this further
compression at the UE on a JPEG codec, which proved to
effectively reduce the file size of the data units, paying a
reasonable price in terms of additional computational overhead
from the UE perspective. The choice of JPEG is justified since
it is a widely used zipping system, with a plethora of efficient
implementations. Furthermore, despite its lossy nature, it has
been proved that JPEG codecs do not significantly affect the
classification performance of CNNs [39].

III. SYSTEM MODEL

The considered goal-oriented scenario encompasses mul-
tiple devices (UEs), with limited computational and energy
capabilities, which are connected through an Access Point
(AP) to an ES with a larger amount of computing resources;
an illustration is given in Fig. 2. To perform a generic learning
task, for each UE connected to the network, the system handles
three main phases: i) The UE buffers the Data Units (DUs),
i.e., the images to be classified; ii) Depending on the specific
offloading decision, which is affected by the system status, the
DUs are either scheduled to be compressed and transmitted by
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Fig. 2: Scenario: each UE dinamically employs its own set of CEs coupled with a proper set of CCs at the ES.

the goal-oriented compression strategy proposed in Section II
or, alternatively, to be processed locally; iii) The inference
task takes place either at the UE- or ES-side, depending on
the offloading decision.

The system evolves in a time-slotted fashion, where each
time slot has a fixed duration τ . Therefore, we deal with
discrete-time functions f(t), where t ∈ N is an index for
the t-th time-slot [tτ, (t + 1)τ [. The aim of the resource
optimization strategies for GOC is to guarantee a specific E2E
(maximum) delay requirement, while optimizing either the
system energy consumption or the learning accuracy. To this
end, the proposed policies have to manage several resources.
In particular, the k-th UE has to allocate its transmission rate
Rk(t) toward the ES, its clock frequency fdk (t), employed to
perform the data compression by a specific compression factor
ρk(t), and the offloading decision dk(t). As far as the ES is
concerned, the main optimization variable is represented by the
clock frequency fc(t), which has to be properly split among the
learning tasks of the different users. This quantities represent
the optimization variables of the objective functions we will
define for the proposed resource management strategies. We
are now ready to describe the models adopted for latency,
energy and classification accuracy.

A. Latency model

The system evolution over time is entirely described by a
queuing system, as prescribed by the Lyapunov optimization
framework [40]. In particular, for each user involved in the
network, we define two kind of physical queues:

- A computation/communication queue at each UE, which
collects the DUs, i.e., the images, generated by each de-
vice, which are waiting to be compressed and transmitted
to the ES for classification.

- A separate computation queue at the ES side for any
possible compression degree (e.g., CE) that the UEs may
dynamically employ: thus, for each UE connected to
the network, we have a different number of ES queues,

depending on the CE compression degrees that are avail-
able. This design choice has been motivated in order
to make the ES optimization problem computationally
affordable, as we will clarify later.

We denote with K the total number of UEs connected
to the network. The binary variable dk(t) ∈ {0, 1} models
the decision to offload (or not) the learning task of the k-th
device during the t-th time-slot. When any UE has to offload
its learning task (i.e., dk(t) = 1), we make the following
assumptions that are instrumental to practically manage the
optimization problem (see [33] for further details).

Assumption 1: The DUs in each UE queue have to be
compressed and transmitted within the same time-slot. Indeed,
during a given time-slot, it is impossible to optimally compress
DUs that will be transmitted during one of the next time-slots,
when the system could possibly experience different channel
conditions, or different lengths of the ES/UEs queues, etc.
Therefore, compression and transmission operations have to
be done sequentially within the same time-slot.

Assumption 2: We assume that, while an UE is transmitting
some DUs, it can also simultaneously compress other DUs.

The number of (compressed) DUs that would be possible
to transmit during the t-th time-slot is expressed by

N tx
k (t) =

⌊
τRk(t)

M(ρk(t))N(ρk(t))

⌋
, (2)

where Rk(t) and ρk(t) are the transmission rate and the
compression factor1, respectively, selected for the k-th UE at
time t; M(ρk(t)) is the DU’s size for a certain compression
factor ρk(t), and N(ρk(t)) is the number of bits that are
necessary (on average) to encode a pixel in the (zipped)
pseudo-image h. To shorten the notation, we define also
W (ρk(t)) = M(ρk(t))N(ρk(t)), which represents the average
number of bits to store an image with a given ρk(t). On
the other hand, the number N c

k(t) of DUs that is possible

1Note that we denote with ρ the compression factor of the images along
each dimension. The actual compression ratio scales with ρ2.
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to compress during the t-th time-slot by the k-th device is
expressed by

N c
k(t) =

⌊
τfdk (t)Jd(ρk(t))

⌋
, (3)

where Jd(ρk(t)) denotes the number of DUs compressed in
a clock cycle C (which depends on the selected compression
factor ρk(t)), and fdk (t) denotes the device clock-frequency
that has been chosen for the k-th UE, during the same time-
slot. Recalling Assumption 1, all the DUs that are compressed
within a time-slot have to be transmitted during the same
time-slot, and all the transmitted DUs have to be first com-
pressed. Thus, we need to use a transmission rate Rk(t) ≤
W (ρ(t))fdk (t)Jd(ρ(t)) which results in N tx

k (t) ≤ N c
k(t).

Taking into account that, before the transmission could start,
we need to wait a time equal to 1/(fdk (t)Jdk (t)) to compress
the first DU, the actual number of DUs that can be offloaded
by the k-th device during the t-th slot is expressed by

Noff
k (t) =

⌊
τ − 1/(fdk (t)Jdk (t))

W (ρk(t))/Rk(t)

⌋
. (4)

Plugging in (4) the inequality N tx
k (t) ≤ N c

k(t) we end-up with
the following (integer) inequality⌊

τRk(t)

W (ρk(t))

⌋
− 1 ≤ Noff

k (t) ≤
⌊
τRk(t)

W (ρk(t))

⌋
, (5)

which will be useful in the next derivations.
Finally, similarly to (3), when the learning task is performed

locally, the total number of DUs processed by the k-th UE is
expressed by

NL
k (t) = bτfdk (t)JLk (ρk(t))c, (6)

where JLk (ρk(t)) expresses the DUs that can be compressed
by a factor ρk(t) and successively classified in a clock-cycle
by the UE hardware. Putting together (4) and (6), the number
of DUs that can be processed by an UE, within a single time-
slot, is expressed by

NUE
k (t) = dk(t) ·Noff

k (t) + (1− dk(t)) ·NL
k (t). (7)

The UE queue QUEk (t) is fed by the arrival of new DUs, and
is drained either by the transmission of DUs to the ES, or by
their local classification at the UE. Thus, it is characterized by
the following evolution

QUEk (t+ 1) = max(0, QUEk (t)−NUE
k (t)) +Ak(t), (8)

where Ak(t) models the DUs arrival process, whose statistical
properties are generally unknown.

At the ES, we employ Lk different queues for each UE,
whose evolution is described by

QESki (t+ 1) = max(0, QESki (t)−NES
ki (t))

+ dk(t) ·min(NUE
k (t), QUEk (t)) · 1i{ρk(t)},

(9)

i.e., a queue for each compression factor among the Lk in
the set Sk = {ski}i=1,...,Lk

, which represents the set of the
compression factors employable by the k-th UE. These queues
store the ES computation load, expressed in number of DUs,
that is reserved for the k-th device. The term 1i{ρk(t)} in

(9) is a shorthand for the indicator function 1{ρk(t) = ski},
which models the arrival of new DUs in the ES queue only
if the UE have chosen the i-th compression factor. The term
NES
ki (t) in (9) denotes the number of DUs processed by the

ES during the t-th time-slot, and it is expressed by

NES
ki (t) = bτfski(t)Jski(t)c, (10)

where fski(t) is the ES clock-frequency assigned to the i-
th queue (compression factor) of the k-th UE, during the
t-th time slot.2 The quantity 1

Js
ki(t)

in (10) is a conversion
factor that maps the number of DUs received by the ES
into the equivalent number of clock-cycles requested for their
processing (e.g., classification).

To set-up our delay constraints, we need to define an overall
queue that, for each device, takes into account the overall
computational load at both the UE- and ES-side. Since we
aim to respect an average latency constraint, as we will detail
in the following, and taking in mind the ES can perform a
parallel computation of multiple DUs, by means of (8) and (9),
it makes sense to consider the average length of the parallel
queues, which is expressed by

Qtotk (t) = QUEk (t) +

Lk∑
i

pkiQ
ES
ki (t), (11)

where pki is the probability to employ the i-th compres-
sion factor in Sk, which can be estimated by an online
sample-mean3. By assuming a certain data arrival rate Ak =

E
{
Ak(t)
τ

}
, and exploiting the Little’s Law [41], (11) allow us

to model the average long-term delay, as expressed by

lim
T→∞

1

T

T∑
t=1

E
{
Qtotk (t)

Ak

}
. (12)

For a latency constraint Davg
k , we get a queue length

constraint Qavgk = Davg
k Ak and, consequently, we can equiv-

alently formalize the latency constraint as a queue constraint
by

lim
T→∞

1

T

T∑
t=1

E{Qtotk (t)} ≤ Qavgk . (13)

B. Energy model

The energy model of our system involves three main com-
ponents:

- Transmission energy at the UEs, requested to transmit the
DUs to the ES in case of offloading decisions.

2 Having different queues for each compression factor is a design choice
instrumental to obtain a mathematical dependence between NES

ki and fski, that
is simpler than in [33], where we used a single queue. This way, the solution
of the ES optimization problem becomes feasible also in a multi-user context,
as we will clarify later.

3The pk,i are actually time-varying with the system state, which is also
influenced by the instantaneous and adaptive resource management strategies
we will end up with. The assumption here is that the stochastic resource
management algorithms, which will exploit knowledge of the estimated pk,i,
will converge to a steady state where also the running sample mean estimate
of the pk,i will converge. This fact has been verified by extensive simulation
results.
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- Computation energy at the UEs, requested in order to
either compress/encode the DUs to be transmitted, or to
perform the learning task locally.

- Computation energy at the ES, requested to classify the
DUs transmitted by the UEs that decide to offload the
learning tasks.

For simplicity, assuming a capacity achieving transmission
system, in a flat-fading wireless channel, the transmission
power ptxk (t) requested by the k-th UE can be inferred by
the Shannon capacity [42]

Rk(t) = Bk log2

(
1 +

ptxk (t)|hk(t)|2

N0Bk

)
, (14)

where |hk(t)| is the channel gain, N0 denotes the noise power
spectral density at the receiver side, and Bk is the bandwidth.
Thus, by inverting (14), we obtain that the transmission energy
spent by the k-th UE during the t-th time-slot depends on the
rate Rk(t) by

Ektx(t) = τptxk (t) =
τBkN0

|hk(t)|2

(
e

Rk(t)ln(2)

Bk − 1

)
. (15)

From the computation perspective, the ES’s and UE’s models
are equivalent. Specifically, in order to estimate the energy
consumption, we exploit the model in [43], which assumes
a cubic dependence on the ES’s and UE’s clock-frequencies
fs(t) and fdk (t), as expressed by

Edk(t) = τκdkf
d
k (t)3 and Es(t) = τκsfs(t)

3. (16)

The constants κs and κdk represent the effective switched
capacitance [43] of ES and k-th UE processor, respectively.
Thus, we quantify the system energy consumption during
the t-th time-slot using the following weighted performance
metric:

Etotk (t) = (1− γ)Es(t) + γ

K∑
k=1

δk(Eck(t) + Etxk (t)), (17)

where the parameter γ is used to weight the UEs versus ES
energy consumption, enabling tuning toward the implemention
of an user-centric (γ → 1) or a server-centric (γ → 0)
optimization strategy. Furthermore, the weights {δk}Kk=1 (with∑K
k=1 δk = 1) can be employed to assign different importance

to the the energy consumption of different users, providing an
extra degree of flexibility to the optimization, depending on
the needs of the operators, users, and service providers.

C. Accuracy model

For the accuracy of the learning task of each UE, we resort
to a model-based management strategy. This means that the
accuracy for the k-th task can be cast in the optimization
problem as a function Gk(ρk(t)) of the compression degree.
This can be done in practice by employing a look-up table
(LUT) (shown in sec.V), where each entry is associated with

a specific compression factor ρk ∈ Sk.4 This LUT stores
the (average) classification accuracy of the k-th learning task,
associated with each one of the CE-CC classifying chains
that are available for the k-th UE. The values stored in this
accuracy-LUT can be estimated off-line on meaningful test-
sets, after each CE-CC structure has been properly trained, as
described in the previous section. Thus, we can exploit the
LUTs G(ρk(t)) to enforce an average accuracy constraint for
each learning task, as expressed by

lim
T→∞

1

T

T∑
t=1

E{Gk(ρk(t))} ≥ Gavgk . (18)

IV. DYNAMIC RESOURCE OPTIMIZATION FOR
MULTI-USER GOAL-ORIENTED COMMUNICATIONS

On the basis of the delay, accuracy, and energy models
presented in the previous section, we develop two resource
optimization strategies: a multi-user Minimum-Energy with
(maximum) Delay and Accuracy constraints (mu-MEDA), and
a multi-user Maximum-Accuracy with (maximum) Delay and
Energy consumption constraints (mu-MADE). In the sequel,
we describe the problem formulation and the algorithmic
solution for both strategies.

A. mu-MEDA: multi-user Minimum-Energy with Delay and
Accuracy constrains

Following a system energy minimization perspective, the
long-term optimization problem can be cast as follows:

min
Φ(t)

lim
T→∞

1

T

T∑
t=1

E{Etot(t)}

s.t. (a) lim
T→∞

1

T

T∑
t=1

E{Qtotk (t)} ≤ Qavgk ,∀k

(b) lim
T→∞

1

T

T∑
t=1

E{G(ρk(t)} ≥ Gavgk ,∀k

(c) 0 ≤ Rk(t) ≤ Rk,max, ∀k, t
(d) ρk(t) ∈ Sk, fs(t) ∈ Fs, fdk (t) ∈ Fd,k ∀k, t

(e)

K∑
k=1

Lk∑
i=1

fski(t) ≤ fs(t), (f) fski(t) ≥ 0

(g) dk(t) ∈ {0, 1} ∀k, i, t
(19)

where Φ(t) = [{Rk(t), fski(t), f
d
k (t), ρk(t), dk(t)}Kk=1, fs(t)]

contains all the optimization variables. The constraints in (19)
have the following meaning: (a) the average queue length for
the k-th UE must be lower than Qavgk , i.e., we are imposing
a maximum average service delay equal to Dk

avg = Qkavg/Ak
(cf. (13)); (b) the average classification accuracy for the k-th

4We modeled the relationship between the compression factor and the
accuracy through a LUT, rather than by a formal analytical expression, because
it is almost impossible to find a closed-form expression for this function in
practice. Indeed, despite noticeable examples to theoretically formalize DNNs
performance can be found in [44], [45], these approaches are based on Mutual
Information, which is intractable to derive in closed-form in most of the
practical cases.
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UE must be greater that Gkavg; (c) the k-th UE transmission
rate Rk(t) must be smaller than the value Rk,max(t), which
is the maximum possible rate for the k-th device, inferred
by (14), considering the maximum available transmission
power ptxk,max; (d) specifies the discrete sets Fc, Fd,k and
Sk for the server frequencies set, the frequencies set for the
k-th UE, and the set of the possible compression factors
respectively; the constraints (e) − (f) state that the sum of
the clock frequencies fski(t) that the (edge) server allocates
for all the queues assigned to each user, must be lower than
the total ES clock-frequency chosen for the t-th time slot,
and that each clock-frequency must be obviously grater than
0; finally, (g) represents the binary constraints on the set of
the opportunistic offloading decisions variables of each UE.
Problem (19) is complicated due to the lack of knowledge
of the statistics of the radio channels and data arrivals,
which would be necessary to compute the expected values in
(19). To tackle this issue, we resort to Lyapunov stochastic
optimization arguments [40], which solve the long term
problem (19) by casting it to a sequence of instantaneous
optimization problems, which can be solved in a per-slot
fashion. According to such an optimization framework [40],
we start associating a virtual queue to each one of the
long-term constraints (a) and (b). These virtual queues evolve
according to

Zk(t+ 1) = max(0, Zk(t) + µk(Qtotk (t+ 1)−Qavgk ))

Yk(t+ 1) = max(0, Yk(t) + νk(Gavgk −Gk(t))),
(20)

where µk and νk are step-sizes that control the convergence
speed of the algorithm. This way, it is possible to prove that
respecting the long term constraints (a)− (b) is equivalent to
guarantee the mean-rate stability of the virtual queues in (20)
[40]. To this end, we define the Lyapunov function L(t), as
the sum of the squares of all the (virtual and physical) queues

L(t) =

K∑
k=1

Zk(t)2 +

K∑
k=1

Yk(t)2. (21)

Defining Θ(t) =
[
{Zk(t)}Kk=1, {Yk(t)}Kk=1

]
, we obtain the

associated conditional Lyapunov drift

∆(Θ(t)) = E{L(t+ 1)− L(t)|Θ(t)}, (22)

whose minimization corresponds to the stabilization of the
virtual queues, but it does note take into account the objective
function (i.e., the system energy consumption). Thus, in order
to trade-off system stability and energy consumption, the
Lyapunov Drift is augmented with a term dependent on the
system energy, to obtain the so-called Lyapunov Drift plus
Penalty function

∆p(Θ(t)) = ∆(Θ(t)) + V E{Etot(t)}. (23)

By increasing the value of the parameter V we give more
importance to the objective function rather than to the queues
stability, thus pushing the solution toward optimality while
still guaranteeing the stability of the system, i.e., respecting
the long-term constraints. In particular, [40] proved that,
as the parameter V increases, the optimal solution of (19)
is asymptotically reached. Following stochastic optimization

arguments [40], we proceed minimizing an upper bound of
the Lyapunov Drift plus penalty function in (23) (derived in
the Appendix), ending up with the instantaneous optimization
problem in (24), where, since the optimization variables affect
only the terms NUE

k , NES
ki and Gk, we neglect all the terms

which do not depend on them. Note moreover that in the
following we omit the time index t to simplify the notation.

min
Φ

V Etot +

K∑
k=1

[
LkN

UE
k µ2

k

(
Lk∑
i=1

1i{ρk}pkiQESki −QUEk

)

− Lkµ2
k

Lk∑
i=1

pkiQ
ES
ki N

ES
ki + µkZk(max(0, QUEk −NUE

k )

+

Lk∑
i=1

max(0, pkiQ
ES
ki −NES

ki ))− νkYkGk(ρk)

]
s.t. 0 ≤ Rk ≤ Rk,max, ρk ∈ Sk, fs ∈ Fs, fdk ∈ Fd,k

(24)
K∑
k=1

fsk ≤ fs, fsk ≥ 0, ∀k, t.

Since the UEs energy-consumption terms in the cost
function of problem (24) depend only (and separately for
each UE) on the UEs optimization variables {Φd,k}Kk=1 =
{[Rk, fdk , ρk, dk]}Kk=1, we can optimize this part of the cost
function separately at each UE. Note that our design choice
to assign at the ES separate computation queues for each UE
offloaded task, lets us completely decouple the optimization
problem and separately handle the UE and ES resource op-
timization. Furthermore, as already pointed out in footnote
2, the use of multiple queues for each compression factor
ρki, thanks to (11), makes by (10) the problem linear with
respect to fki, up to the b.c operator. Consequently, Problem
(24) is separable and solvable for each compression factor, as
described in the following.

1) UE sub-problem: For the k-th device, at each time slot
t, we have to solve the following optimization problem

min
Φd,k

LkN
UE
k µ2

k

( Lk∑
i=1

1i{ρk}pkiQESki −QUEk
)

+ µkZk max(0, QUEk −NUE
k )− νkYkGk(ρk)

+ V γδk(Etxk + Eck) (25)

s.t. 0 ≤ Rk ≤ Rk,max, ρk ∈ Sk, fdk (t) ∈ Fd,k, (26)
dk ∈ {0, 1}.

Depending on the value of the offloading decision variable
dk we can optimize the other variables employing two dif-
ferent strategies. If dk = 1, we have to allocate both the
transmission rate Rk to transmit the DUs to the ES, and the
UE clock-frequency fdk and compression factor ρk to perform
compression. Otherwise, if dk = 0 we need only to allocate
fdk and ρk to perform the learning task locally. We remark
that we assume, although this is not mandatory, that the UE
employs also locally the same (bank of) CE-CC classification
chains we designed for the GOC scheme, thus fairly offering
to the UEs the same flexibility of classification accuracy and
energy consumption that could be exploited by the ES solution.
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Other choices, or a fixed structure of the classifier at the UE,
would obviously have an impact on the offloading decisions
by the optimal resource management and, consequently, on
the energy-delay-accuracy tradeoffs.

Coming to the solution of the problem, when dk = 1 we
handle the min(·) in (4) by adding the following constraint on
the transmission rate of the k-th user

0 ≤ Rk(t) ≤ R+
k,max(t),

R+
k,max = min

{
Rk,max,

QUEk W (ρk)

τ

}
.

(27)

This way, according to Assumptions 1 and 2, and taking in
mind we cannot compress more DUs that we can transmit, we
select a data-rate that is bounded by the minimum between
the maximum achievable rate Rk,max (computed plugging
the maximum power ptxk in the Shannon capacity (14)), and
the draining rate QUEk W (ρk)/τ that is capable to empty
the transmission queue (and lets remove the max(·)). By
considering that x−1 ≤ bxc ≤ x, we can also remove the b·c
in (4). Therefore, using the definition of the indicator function,
for any fixed compression factor ρki ∈ Sk, we end up with
the following optimization problem

min
Φd,k

− QTXki τRk
W (ρk)

+
τV γδkBkN0

h2
k

e
Rkln(2)

Bk + τV γδkκ(fdk )3

− νkYkGk(ρk)

s.t. 0 ≤ Rk ≤ R+
k,max, fdk ∈ Fd,k,

where QTXki = Lkµ
2
k(QUEk − pkiQ

ES
ki ) + µkZk. This is a

mixed-integer optimization problem. However, in practice,
the sets Fd,k and Sk have a quite low cardinality and, as
detailed below, the solution can be rapidly found by an
exhaustive search. Indeed, for any fixed couple of compression
factor ρk ∈ Sk and computation frequency fdk ∈ Fd,k, the
optimization problem is convex with respect to the data rate
Rk, whose optimal value can be found in closed form by
duality theory through the Lagrangian

L =− τQTXki Rk
M(ρk)N(ρk)

+
τV γδkN0Bk

h2
k

e
Rkln(2)

Bk + τV γδkκ(fdk )3

− νkYkGk(ρk)− αRk + β(Rk −R+
k,max),

(28)

where α and β are the Lagrangian multipliers. Note that, if
QTXki ≤ 0, the second term monotonically increases with the
rate, and the minimum of the Lagrangian is obtained for Rk =
0. Otherwise, when QTXki > 0 we can solve the optimization
problem by imposing the following KKT conditions [46]

(a)
∂L
∂Rk

= −Q
TX
ki τ

W (ρk)
+
τV γδkln(2)N0Bk

h2
k

e
Rkln(2)

Bk

− α+ β = 0

(b) 0 ≤ Rk ≤ R+
k,max, (c) α ≥ 0, (d) β ≥ 0

(e) αRk = 0, (f) β(Rk −R+
k,max) = 0.

(29)

Solving the KKT conditions leads to the following equation
to compute the optimal rate

R∗k(ρk, f
d
k ) =


[
Bk

ln(2) ln
(

QTX
ki h2

k

W (ρk)V γδk ln(2)N0

)]R+
max

0
QTX

ki > 0

0 otherwise

(30)
which gives us the closed form expression for the optimal rate
for any fixed compression factor ρk and clock frequency fdk ,
of the k-th user. Thus, as anticipated, to select the best clock
frequency fd∗k , and compression factor ρ∗k, we can proceed by
an exhaustive search, thanks to the limited cardinality of Fd,k
and Sk. Summarising, for a potential offloading (dk = 1), we
compute the optimal rate and clock frequency fdk for each
possible compression factor ρk, and then, at every time slot,
we select the triple T ∗k = (R∗k, f

d∗
k , ρ∗k) that gives the lowest

energy cost. Otherwise, for a potential classification at the UE
(dk = 0), the transmission rate to the ES would be Rk = 0
and we need to optimize only the clock-frequency for each
possible compression factor, thus obtaining the optimal pair
P ∗k = (fd∗k , ρ∗k) that minimizes the UE’s energy consumption.
The overall optimal solution of the UE’s optimization problem,
which includes the decision to offload or not the learning task,
is finally given by choosing between the pairs (dk = 1, T ∗k )
and (dk = 0, P ∗k ), as the one that leads to the minimum value
of the UE’s energy cost function.

2) ES sub-problem: From the ES perspective, for each
UE we have to manage multiple computing queues, each
one associated to a specific compression factor that has been
used by the specific UE: in the following, we denote with
QESki the i-th ES computing queue for the k-th UE. It clearly
makes sense to constrain the fraction fski (of the the total ES’s
computing frequency fs) reserved to the i-th queue of the k-th
user, to be lower than what would be necessary to completely
drain the same queue within a time-slot, as expressed by

fski(t) ≤ min

(
fs(t),

QESki (t)

τJski(t)

)
. (31)

This way, we can remove the terms max(0, QESki − NES
ki )

from the sum in (24) and, consequently, we can rewrite the
ES’s resource allocation problem as

min
Φs

−
K∑
k=1

Lk∑
i=1

τQcompki Jskif
s
ki + τV (1− γ)κf3

s (32)

s.t. 0 ≤ fski(t) ≤ min

(
fs,

QESki
τJski

)
K∑
k=1

L∑
i=1

fski ≤ fs, fs ∈ Fs,

where Φs = [{fski}i=1,...,Lk,k=1,...,K , fs], and Qcompki =
Lkµ

2
kQ

ES
ki + µkZk. Although the problem is a mixed-integer

optimization one, for any fixed ES’s clock frequency fs, it
boils down to the classical (fractional) knapsack problem [47].
Consequently, the optimal solution is obtained by a greedy
algorithm, which consists in ordering the queues by their
weights (Qcompki Jski) in descending order, and then assigning
the clock frequency to the queue as min

(
φ,

QES
ki

τJs
ki

)
, where φ
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is the remaining part of the ES’s clock frequency fc(t). Due
to the limited cardinality of the ES’s clock-frequency set Fs,
also in this case we can exhaustively solve the problem for
all the server clock frequencies fs ∈ Fs, thus obtaining the
set of possible solutions {(fski, fs)}fs∈Fs

and then choose the
one associated with the minimum ES’s cost in (32).

B. mu-MADE: multi-user Maximum-Accuracy with Delay and
Energy constraints

An alternative resource allocation, targeting a Maximum-
Accuracy, can be formulated as

min
Φ(t)

lim
T→∞

1

T

T∑
t=1

E

{
K∑
k=1

−Gk(t)

}

s.t. (a) lim
T→∞

1

T

T∑
t=1

E{Qtotk (t)} ≤ Qavgk

(b) lim
T→∞

1

T

T∑
t=1

E{Edk(t)} ≤ Ed,avgk ∀k

(c) lim
T→∞

1

T

T∑
t=1

E{Es(t)} ≤ Eavgs

(d) 0 ≤ Rk(t) ≤ Rk,max ∀k, t
(e) ρk(t) ∈ Sk, fs(t) ∈ Fs, fdk (t) ∈ Fd,k ∀k, t

(f)

K∑
k=1

Lk∑
i=1

fski(t) ≤ fs(t) ∀k, t

(g) fski(t) ≥ 0 ∀k, i, t
(h) dk(t) ∈ {0, 1} ∀k

(33)

where Φ(t) = [{Rk(t), fski(t), f
d
k (t), ρk(t), dk(t)}, fs(t)],

for k = 1, . . . ,K, and i = 1, . . . , Lk contains all the opti-
mization variables. The constraints in (19) have the following
meaning: (a) the average queue length for the k-th UE must be
lower than Qavgk , i.e., we are imposing a maximum average
service delay equal to Dk

avg = Qkavg/Ak (cf. (13)); (b) the
average energy consumption for the k-th UE must be lower
than Ekd,avg; (c) the average ES’s energy consumption must
be lower than Esavg; (d)-(h) are equivalent to (c)-(g) in (19).

Proceeding similarly to the mu-MEDA strategy, in order
to manage the long-term energy constraints (b) and (c), in
addition to the virtual queue Zk(t) defined in (20) to manage
(a), we need to define the virtual queues

Sk(t+ 1) = max(0, Sk(t) + λk(Edk(t+ 1)− Ed,avgk ))

O(t+ 1) = max(0, Ok(t) + η(O(t+ 1)− Eavgs )),
(34)

where {λk}Kk=1 and η are the step-sizes used to control the
convergence speed of the algorithm. By the definition of the
virtual queues, in this case the Lyapunov Function becomes

L(t) =

K∑
k=1

[Sk(t)2 + Zk(t)2] +O(t)2 (35)

and, consequently, given Θ(t) = [{Sk(t), Zk(t)}Kk=1, O(t)],
we derive the following expression for the Lyapunov drift-
plus-penalty function

∆p(t) = E{L(t+ 1)−L(t)|Θ(t)}− V E

{
K∑
k=1

Gk(t)

}
(36)

As detailed in the Appendix, we end up with the following
optimization problem

min
Φ

K∑
k=1

[
LkN

UE
k µ2

k

(
Lk∑
i=1

1i{ρk}pkiQESki −QUEk

)

+ µkZk(max(0, QUEk −NUE
k ) +

Lk∑
i=1

max(0, pkiQ
ES
ki −NES

ki ))

+ λkSkE
d
k − Lkµ2

k

Lk∑
i=1

pkiQ
ES
ki N

ES
ki

]
+ ηOEsk − V

K∑
k=1

Gk(t)

s.t. 0 ≤ Rk ≤ Rk,max, ρk ∈ Sk, fs ∈ Fs, fdk ∈ Fd,k
K∑
k=1

fsk(t) ≤ fs(t), fsk ≥ 0, ∀k, t. (37)

Exploiting again the decoupling of the problem, which
is granted by our proposed design to separately handle the
queues for any specific UE and any specific compression
factor, we end-up also in this case with distinct instantaneous
optimization problems, one at each UE, and a single one at
the ES.

1) UE sub-problem: As far as the k-th UE is concerned,
we get the following optimization problem formulation

min
Φd,k

LkN
UE
k µ2

k

(
Lk∑
i=1

{1i{ρk}pkiQESki QUEk

)
+ µkZk max(0, QUEk NUE

k )

− λkSkEdk − V Gk(ρk)

s.t. 0 ≤ Rk(t) ≤ Rk,max
ρk(t) ∈ Sk, fdk (t) ∈ Fd,k, dk ∈ {0, 1}, ∀k, t

(38)

where Φd,k = [Rk, f
d
k , ρk, dk], for k = 1, . . . ,K. The

resolution strategy is quite similar to the previous case, when
we minimized the energy consumption: if an UE would decide
to offload its task (dk = 1), we need to allocate the optimal
transmission rate Rk for any fixed compression factor ρk and
device clock frequency fdk . Also in this case we can obtain
the optimal rate in closed form by duality theory

R∗k(ρk, f
d
k ) =


[
Bk

ln(2) ln
(

QTX
ki h2

k

W (ρk)λkSk ln(2)N0

)]R+
max

,
QTX

ki > 0

0 otherwise

(39)
Thus, for a possible offloading decision (dk = 1) we com-
pute by (39) the optimal data transmission rate R∗k for each
ρk ∈ Sk and fdk ∈ Fk,d, and we select the optimal triple
T ∗k = (R∗k, f

d∗
k , ρ∗k) that minimizes the cost function in

(38). Conversely, in order to evaluate the minimum cost of
a local learning task at the k-th UE (dk = 0), we just
need to exhaustively search for the pair P ∗k = (fd∗k , ρ∗k) that
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would optimize the accuracy under the prescribed constraints.
Finally, depending on which one of the two optimal allocation
strategies guarantees the best accuracy, we decide to offload
(dk = 1), or not (dk = 0), the k-th user task, using the
associated optimal allocation strategy T ∗k , or P ∗k , respectively.

ES sub-problem: From the ES perspective, the optimiza-
tion problem is similar to the mu-MEDA, except for small
differences in the cost function, and is expressed by

min
Φs

−
K∑
k=1

Lk∑
i=1

τQESki J
s
kif

s
ki + ηOκτf3

s

s.t. 0 ≤ fski(t) ≤ min

(
fs,

QESki
τJski

)
,

K∑
k=1

L∑
i=1

fski ≤ fs, fs ∈ Fs, ∀k, t (40)

where Φs = [fski, fs], and can be solved likewise the mu-
MEDA formulation.

V. SIMULATION RESULTS

In this section, we present the simulation results we obtained
by the two optimization strategies we proposed and solved.
Tables II-III report the values of the accuracy Gk(ρ), the data-
units Jdk (ρ) that can be compressed (and zipped by JPEG) in
a clock-cycle by the k-th UE, when it decides to offload the
classification, and the data-units JLk (ρ) that can be compressed
and classified locally in a clock-cycle by the same UE. Table
IV reports the data-units Js(ρ) that can be classified in a
clock-cycle at the ES, as well as the image-size M(ρ) and
the average number of bits/pixel N(ρ) that are shared by both
the short- and deep-CE, when using JPEG.

TABLE I: LUTs parameters

TABLE II: Deep-CE

ρ G(ρ) [%] Jd
k (ρ) [DU

C
] JL

k (ρ) [DU
C

]

2 97.3 1.44× 10−7 8.35× 10−8

4 96.5 1.26× 10−7 9.04× 10−8

8 93.4 1.16× 10−7 8.90× 10−8

16 91.8 1.07× 10−7 8.73× 10−8

32 83.0 1.35× 10−7 1.06× 10−7

64 67.0 1.32× 10−7 1.09× 10−7

We assumed a flat-fading channel, whose statistical char-
acterization is based on the Clarke’s autocorrelation function
[48]. We considered two operating scenarios, summarized in
Table V, and we accordingly set the time-slot duration to
τ = 50ms, which corresponds to the the channel coherence
time. The parameter σ2

0 models the wireless channel power

TABLE III: Short-CE

ρ G(ρ) [%] Jd(ρ) [DU
C

] JL
k (ρ) [DU

C
]

2 97.3 1.44× 10−7 8.35× 10−8

4 95.8 1.68× 10−7 1.10× 10−7

8 91.5 1.88× 10−7 1.26× 10−7

16 91.3 1.95× 10−7 1.38× 10−7

32 77 2.25× 10−7 1.55× 10−7

64 50.0 2.25× 10−7 1.65× 10−7

TABLE IV: Common parameters

ρ M(ρ) [px] N(ρ) [ bits
px

] Js(ρ) [DU
C

]

2 128x128x3 1.08 1.2× 10−7

4 64x64x3 2.27 2.17× 10−7

8 32x32x3 4.72 2.87× 10−7

16 16x16x3 9.06 3.57× 10−7

32 8x8x3 8 5× 10−7

64 4x4x3 8 6.25× 10−7

TABLE V: Channel type
Ch. Type D [m] B [kHz] f0 [GHz] σ2

0
A 50 2500 6 1.06× 10−10

B 500 2500 9 2.72× 10−14

Fig. 3: Classification accuracy comparison

path-loss and it has been computed by considering the Alpha-
Beta-Gamma model [49]. In a first set of simulations we con-
sidered a scenario with K = 5 UEs connected to the network.
Although this is not strictly necessary, we assumed that the
devices of all the UEs share the same computation frequency
set Fd = {0.1, 0.2, . . . , 0.9, 1} × 1.4 GHz, while the server
computation frequency set is Fs = {0.1, 0.2, . . . , 0.9, 1} ×
4.5 GHz. Finally, for simplicity, we considered an effective
switched capacitance κ = 1.097× 10−27[ s

cycles ]3 for all the
UEs and for the ES. We underline that all the simulation results
have been obtained at convergence of the tested strategies [40].

A. Goal-Oriented compression results

For simplicity, all the UEs were assigned the same image
classification task, based on the German Traffic Sign Recogni-
tion Benchmarks (GTSRB) [50] dataset. This dataset includes
1213 pictures of German road signals, divided in 43 different
classes. The dataset has been split in a 80% training set,
composed of 970 images, and 20% test set, composed of
243 images. During the data loading phase, all the images
have been normalized to a size of 256x256, and converted to
a 3-channel image (one channel for each RGB color), such
that the initial size of each data-unit, is 256x256x3. Although
this is not strictly necessary, we assumed that all the UEs
share the same bank of CE-CC classification networks, e.g.,
the compression factors ρk assume values on the same fixed
set S = {2, 4, 8, 16, 32, 64}. In order to shade light on the
performance obtained by the proposed resource managements,
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we find useful to show in Fig.3 the average accuracy on the
test-set associated to different compressive architectures: i)
Deep-CE, ii) Short-CE, iii) Down-sampling with anti-aliasing
pre-filter. As expected, the accuracy G(ρ) has a monotone
decreasing behavior with respect to the compression fac-
tor, for all the models. The deep-CE has always the best
performances even if, for lower compression factors (up to
16), the differences with the Short-CE are almost negligible.
In contrast, for the highest ones (i.e., 32, 64) there is a
clear advantage in using the deep-CE. For compression factor
ρ = 64 we get output tensors with a size of 4x4x3=48 pixels:
despite (pseudo) images of this size have clearly undergone a
heavy transformation, the deep-CE still allows the ES’s CC to
classify them with a 67% accuracy, which is still a remarkable
performance for a 43-class classification task. Conversely, for
this compression factor neither the down-sampling strategy
nor the short-CE, allow a meaningful classification. The price
to be paid for an increased accuracy of the deep-CE is the
increase of the computation energy and processing delay (as
summarized in Tables II-III) that we trade by our resource
management policies.

B. mu-MEDA results

First of all, we tested the mu-MEDA strategy comparing
the CE (short and deep) with the down-sampling compression
strategy in channel scenario B, reported in Table V. We set
the same latency constraint Davg

k = Qavgk /Ak = 0.20 s,
for all the UEs. We considered a task arrival process with
Ak = 2DU/slot, and we forced the UEs to always offload
the classification task to the ES, without any opportunistic
strategy (i.e., dk(t) = 1, ∀k, t).

Each trade-off curve in Figures 4 and 5 is associated to
a different accuracy constraint, while they all respect the
same latency constraint, which is highlighted by a dashed
horizontal line in the plot. Each curve is obtained by evaluating
the solution (at convergence) of the resource optimization
problem, for several different values of the trade-off parameter
V in (23). Specifically, by increasing V we end-up to solutions
characterized by a lower energy consumption and a higher
latency and, as indicated by the black arrow on the figures, we
move from the bottom-right to the top-left corner of the trade-
off plots, which correspond to the desired optimal solutions on
the borders of the feasibility regions. Figure 4 shows that, from
the UE’s perspective, there is a clear advantage on employing
the CE compression strategy, since we end-up to solutions
characterized by a lower (computational and transmission)
energy consumption, while satisfying the same latency and
accuracy constraints. This depends on the fact that channel-
B is characterized by a huge attenuation: thus, since the
CE compression strategy allows to satisfy the same accuracy
constraint transmitting smaller DUs with respect to classical
down-sampling, this allows to reduce the transmission energy
expenditure considerably, without spending too much in extra
computational energy for CE-based compression at the UE.
Actually, the proposed dynamical, goal-oriented, compression
strategy leads also to a lower ES’s energy computational
expenditure, as witnessed from Fig.5. Indeed, also the classi-

Fig. 4: UE Energy/Latency trade-off. CE (solid) vs down-sampling
(dashed).

Fig. 5: ES Energy/Latency trade-off. CE (solid) vs down-sampling
(dashed).

fication of smaller DUs is cheaper from a computational and
energetic perspective.

UE Ch. Type κ[ s
cycles

]3

0 A 10× κ0
1 A 20× κ0
2 B 30× κ0

TABLE VI: Simulation scenarios for each UE

C. Opportunistic Offloading

We compared the previous scenario, where UEs always of-
fload decision tasks to the ES, with the opportunistic offloading
strategy where UEs can also decide to perform classifica-
tion locally, by the same CE-CC classification architecture.
Specifically, two out of five UEs are connected to the ES by
the channel in scenario A of Table V, while the other ones
by the channel in scenario B. The opportunistic offloading
strategy ends up to a dynamical resource optimization that
is characterized by a significant lower UE energy expenditure
with respect to the always offload strategy, still satisfying both
the accuracy and latency constraints, as shown by Figs.6-
7, where clearly all the solid curves are on the left, e.g.,
with a lower energy expenditure, with respect to the dashed
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Fig. 6: UE’s energy/latency trade-off. Opportunistic offloading (solid)
vs only offloading strategy (dashed).

Fig. 7: Average Accuracy vs V with opportunistic offloading at
convergence

Fig. 8: % of Offloading (Gavg
k = 70%∀k, V = 1× 106).

curves of the pure offloading strategy. Figure 8 shows the
histogram of the offloading decisions for each UE, for a
(minimum) accuracy constraint Gavg = 70% and a trade-off
parameter V = 1× 106. As expected, since the UE-0 and UE-
3 experience good channel conditions, they decide to offload
more frequently than the other devices, whose Channel-B
requests much higher transmission power to allocate rates to

the UEs and, sometimes, it may be also unfeasible to respect
either the accuracy or the delay constraint, or both.

D. Comparison with static allocation strategies

A key strength of the proposed approach is the joint dy-
namic optimization of transmission&computational resources,
together with the optimal dynamic selection of the classifica-
tion architecture used to perform the task. Thus, we compare
the proposed multi-user optimization strategy with:
• A Fixed-Accuracy optimization strategy, where we op-

timize both the computational and the transmission re-
sources at the UE-side, by keeping fixed a single CE-CC
classification architecture. This approach is quite similar
to the one presented in [6].

• A Hybrid static/dynamic optimization strategy, where,
inspired by [51], we fix the transmission rate R on
the basis of the average channel conditions, while we
dynamically optimize the CE-CC architecture, as well as
the computational resources at the UEs. The transmission
rate R is fixed as the minimum one that guarantees the
stability of the UE queue. This rate can be computed
through the capacity for flat-fading Rayleigh channels
(eq. (9) in [52]), and it fixes also the transmission power.

In this case we considered a scenario with K = 3 UEs, each
one experiencing different channel conditions and computa-
tional efficiency, as summarized in Table VI. We set an arrival
task with A = 2DU/slot, and we imposed the same accuracy
and latency constraints for all the UEs to Gavgk = 92%
and Davg

k = 0.2s, respectively. Thus, for the Fixed-Accuracy
optimization strategy, we considered the short-CE with ρk = 8
as the unique learning model, which according to Table
III is capable to grant the requested average classification
performance with a fairly moderate computational energy.
Figure 9 shows that employing a fully dynamic optimization
strategy leads to solution characterized by a lower UE energy
consumption. As expected UE-0 and UE-2 reach the lowest
and highest energy consumption, respectively, given their
computational and channel conditions summarized in Tab. VI.
It is clear that, for all the UEs, our optimization strategy allow
to reach the lowest energy consumption, thus confirming the
effectiveness to jointly and dynamically optimize the transmis-
sion/computation resources as well as the learning architecture
(i.e., the pair of CE-CC) to be employed, depending on the
instantaneous system conditions.

E. mu-MADE results

We tested the mu-MADE optimization strategy considering
a scenario with K = 3 UEs, each one characterized by
different channel and computational conditions. In particu-
lar, we considered an effective switched capacitance κ0 =
1.097× 10−27[ s

cycles ]3 for the ES, and higher values for the
UEs, in order to simulate a lower energetic efficiency. The UE
energy constraint has been set to Eavgk = 128× 10−3J . Table
VI summarizes the different conditions for the devices consid-
ered in the simulation, where we employed, concurrently, both
Deep- and the Short-CE. We remark that UE-0 experiences
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Fig. 9: Instantaneous UEs consumption for the dynamic optimization (a), fixed accuracy (b) and fixed rate (c).

Fig. 10: Accuracy vs Latency trade-off.

Fig. 11: Offloading histograms (V = 1× 105).

both good channel conditions and computational efficiency:
this means that it has the maximum degree of flexibility
on the management of the opportunistic offloading. UE-1 is
characterized by the same channel conditions of UE-0, with a
lower computational efficiency, while UE-2 operates with both
a bad channel and a low computational energy efficiency.

The curves shown in Fig. 10 represent the accuracy-latency
trade-off: by increasing the parameter V of (36), we end
up with solutions with higher accuracy and latency, moving
on the curves from bottom-left to top-right corner, where

we get the desired optimal solutions at the boundary of the
decision region. Specifically, Fig. 10 shows that UE-0 (i.e.,
the UE with the best computational & channel conditions)
gets the highest accuracy, while widely satisfying the latency
constraint. We note a similar behaviour for UE-1 and UE-2,
with a higher degree of latency for UE-2 (i.e., the device that
works in the worst conditions). Finally, we report in Fig. 11
the histogram of the offloading decisions for each UE. Given
its favorable channel and computational energy efficiency, we
have a balanced situation for UE-0, since it has the highest
flexibility to choose if offloading computations, or not. On
the other hand, UE-1 mostly performs offloading, since the
transmission of DUs in a channel with fairly low attenuation
allows to mitigate the burden due to the low computational
energy efficiency. Finally UE-2, although it has a much worse
channel, it offloads more DUs than UE-0 s due to its much
higher computational inefficiency.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we implemented a goal-oriented compression
architecture based on CEs, which is exploited by two distinct
dynamic optimization strategies in order to either minimize
the energy consumption or to maximize the learning accuracy
in a multi-user scenario, where the UEs can opportunisti-
cally decide whether and when to offload the computations
toward the ES. The extensive simulation results confirmed the
effectiveness and the flexibility of the proposed approaches
in different scenarios. However, we remark that the proposed
goal-oriented communication architecture, and the associated
resource management strategy, could exploit also classifica-
tion or learning-oriented compression strategies, that may
be different from the CE-based solutions presented herein.
Future research directions include the extension to multi-
server scenarios, cooperative learning tasks (e.g., Federated
Learning), as well as to explicitly take into account also the
battery level of each UE, which may be equipped by some
energy harvesting mechanism or batteries recharge plan.

APPENDIX A
MATHEMATICAL DERIVATIONS FOR MU-MEDA

Two Lemmas in [40] are useful to solve the proposed
resource optimization strategies.

Lemma A.1: Given a queue that evolves according to
X(t+ 1) = max(0, X(t) + x(t+ 1)− x), by defining ∆x =
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X(t+1)2−X(t)2

2 , it is always true that ∆x ≤ (x(t+1)−x)2

2 +
X(t)x(t+ 1)−X(t)x.

Lemma A.2: The following inequality holds true:

(max(0, Q− b) +A)2 ≤ Q2 +A2 + b2 + 2Q(A− b).

Employing Lemma A.1, and recalling that, given x ∈ Rk,
(
∑K
k=1 xk)2 ≤ K

∑K
k=1 x

2
k, for the Latency Virtual Queue

Zk(t) we have

∆zk(t) ≤
µ2
k(Qtotk (t+ 1)−Qavgk )2

2
+ µkZk(t)(Qtotk (t+ 1)−Qavgk )

≤ µ2
kLk
2

[QUEk (t+ 1)2 +

Lk∑
i=1

piQ
ES
ki (t+ 1)2]

+ µkZk(t)(Qtotk (t+ 1)−Qavgk ) +
µ2
kLk
2

(Qavgk )2,

Now, recalling (8), (9) and using Lemma A.2 we can derive
the following inequality

∆zk(t) ≤ µ2
kLk
2
{QUEk (t)2 +MUE

k + 2QUEk (t)(Ak(t)

−NUE
k (t)) +

Lk∑
i=1

[piQ
ES
ki (t)2 +MES

k

+ 2piQ
ES
ki (t)(Âki(t)−NES

ki (t))]}

+ µkZk(t)(Qtotk (t+ 1)−Qavgk ) +
µ2
kLk
2

(Qavgk )2

where Âki(t) = 1{ρk(t) = ski}NUE
k (t), MUE

k =
A2
k,max + N2

kdev,max and MES
ik = A2

ki,max + N2
ki,max .

The same derivations presented in [9] can be applied to
the accuracy virtual queue, thus obtaining an upper-bound
for ∆yk(t). Putting together the derived instantaneous upper-
bounds we end up to the optimization problem presented in
in Sec.IV-A.
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