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ABSTRACT 10 
Visual Odometry (VO) is a fundamental technique to enhance the navigation capabilities of planetary 11 

exploration rovers. By processing the images acquired during the motion, VO methods provide 12 

estimates of the relative position and attitude between navigation steps with the detection and tracking 13 

of 2D image-keypoints. This method allows to mitigate trajectory inconsistencies associated with 14 

slippage conditions resulting from dead-reckoning techniques. We present here an independent 15 

analysis of the high-resolution stereo images of the NASA Mars 2020 Perseverance rover to retrieve 16 

its accurate localization on sols 65, 66, 72, and 120. The stereo pairs are processed by using a 3D-to-17 

3D stereo-VO approach that is based on consolidated techniques and accounts for the main nonlinear 18 

optical effects characterizing real cameras. The algorithm is first validated through the analysis of 19 

rectified stereo images acquired by the NASA Mars Exploration Rover (MER) Opportunity, and then 20 

applied to the determination of Perseverance’s path. The results suggest that our reconstructed path 21 

is consistent with the telemetered trajectory, which was directly retrieved onboard the rover’s system. 22 

The estimated pose is in full agreement with the archived rover’s position and attitude after short 23 

navigation steps. Significant differences (~10-30 cm) between our reconstructed and telemetered 24 

trajectories are observed when Perseverance travelled distances larger than 1 m between the 25 

acquisition of stereo pairs. 26 

 27 
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 30 

1. INTRODUCTION 31 

In July 1997, as part of NASA’s Mars Pathfinder mission, the Sojourner rover became the first vehicle 32 

to drive on the planet Mars. During its 83-days mission, Sojourner explored the area near its landing 33 

site called Ares Vallis, travelling ~100 meters while capturing images of the Martian landscape. The 34 

acquired stereo pairs were processed in combination with light-striper sensors to detect hazards (e.g., 35 

rocks, depressions) in the rover’s proximity, supporting navigation operations (Mishkin et al, 1998). 36 

However, Sojourner’s localization software did not include information from the acquired images, 37 

and the rover’s position and attitude (i.e., pose) were updated through dead-reckoning by combining 38 

Inertial Measurement Units (IMUs) and wheel odometry (WO) measurements. 39 

Dead-reckoning represents the basic method to update the pose of rovers exploring planetary 40 

environments. This method is affected by significant errors associated with the slippage that 41 

accumulate over time. To compensate for dead-reckoning errors, Visual Odometry (VO) techniques 42 

enables highly accurate pose estimates of moving assets by tracking fiducial points of a scene 43 

observed by the onboard cameras. VO was first used for planetary applications by the Mars 44 
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Exploration Rovers (MER) Spirit and Opportunity (Biesiadecki & Maimone, 2006; Matthies et al., 45 

2007; Maimone et al., 2007). The MER-VO algorithm was based on the determination of 3D 46 

coordinates of selected keypoints after stereo-matching of left- and right-eye images through 47 

correlation methods. These keypoints were then tracked in the new stereo pairs, and a maximum-48 

likelihood filter was used in a 3D-to-3D pose estimation problem (Matthies & Shafer, 1987). The 49 

MER-VO algorithm enabled accurate pose estimates by measuring position variations as small as 2 50 

mm even on steep terrains (e.g., slopes >30°) (Maimone et al., 2007). However, limited computational 51 

resources onboard both rovers were not well-suited for continuous Guidance, Navigation, & Control 52 

(GNC) operations with the support of VO. The image processing algorithm required 2-3 minutes for 53 

each drive step, dramatically limiting the rover’s speed to ~8% of the maximum speed (i.e., ~120 54 

m/hour in “blind” drive sessions based on the execution of the navigation commands sent by the 55 

ground operations team). Autonomous safe exploration of rough terrains was also limited since the 56 

VO localization and autonomous hazard detection software were barely used simultaneously. 57 

To enhance the response time of the image processing scheme for the NASA Mars Science 58 

Laboratory (MSL) Curiosity rover, a refined stereo correlation algorithm and an iterative image 59 

pyramid scheme were included in the VO algorithm (Johnson et al., 2008). By going through all VO 60 

stages, from feature selection to motion estimate, iteratively at each level of the image pyramid, the 61 

MSL-VO algorithm allows to constrain the search of tracked features in the finer resolution images. 62 

This iterative approach yields significant computational time savings, and false feature tracking is 63 

limited once the bottom of the image pyramid is reached. This algorithm then led to obtain a motion 64 

estimate in 47 seconds on average, successfully processing 99.55% of the taken drive steps during 65 

the first seven years of the mission (Rankin et al., 2020). VO also played a crucial role in preserving 66 

the rover’s safety, as demonstrated during the MSL path replanning towards Mount Sharp after the 67 

detection of an unexpected high slippage of the wheels over the rippled sand of the Hidden Valley. 68 

The NASA’s MER and MSL missions paved the way to the accurate localization of planetary rovers 69 

on heterogeneous and demanding terrains through VO algorithms. This solid technique will be used 70 

by future and current missions, including the CNSA lunar Yutu-2 rover (Ma et al., 2020), the NASA 71 

Mars 2020 rover Perseverance, which landed on Mars in February 2021, and the ESA-Roscosmos 72 

ExoMars rover (Townson et al., 2018; Winter et al., 2015), which was planned to be launched in 73 

2022. Perseverance is currently exploring the Jezero crater searching for signs of ancient life and 74 

investigating the geological evolution of the planet (Farley et al., 2020). The rover’s navigation 75 

system represents the state of the art in planetary surfaces exploration. Compared to the previous 76 

rovers, Perseverance can move across the Martian surface more autonomously, and the visual input 77 

from the onboard navigation cameras (NavCams) are processed to continuously replan its trajectory 78 

during the motion, without a stop-and-go approach. Perseverance hosts onboard dedicated hardware 79 

to carry out demanding computer vision tasks for a safe path planning and an accurate localization 80 

based on VO (Verma, 2020; Verma et al., 2022). 81 

In addition to support autonomous scientific operations in difficult planetary environments, advanced 82 

vision-based localization systems have been employed in a wide range of terrestrial activities carried 83 

out on ground (Nistér et al., 2004; Howard, 2008; Scaramuzza et al., 2009), and in challenging aerial 84 

(Kim et al., 2019) and underwater scenarios (Ferrera et al., 2019; Teixeira et al., 2020). These 85 

applications will pave the way to future exploration missions to remote areas in the Solar System, 86 

including the icy moons’ oceans, and dense atmospheric environments (Witte et al., 2019). Although 87 

stereo-VO represents the baseline for planetary applications, the use of single omnidirectional (Corke 88 

et al., 2004) and monocular cameras has been investigated to support flying robots operations (e.g., 89 

the Ingenuity helicopter; Wudenka et al., 2021), to estimate the motion of a hopping rover on irregular 90 



 3 

asteroid surfaces (So et al., 2011), and to measure the rover’s slippage on loose terrains (Gonzalez & 91 

Iagnemma, 2018).  92 

In this paper, we present the results concerning an alternative and independent reconstruction of 93 

Perseverance path through a stereo-VO algorithm based on the 3D-to-3D formulation (Matthies & 94 

Shafer, 1987), which processes images captured by the rover’s NavCams (Maki et al., 2020). The 95 

camera model adopted in this study is presented in Section 2, and a step-by-step description of the 96 

VO algorithm is then discussed in Section 3. A validation of the method is provided in Section 4 by 97 

retrieving pose estimates of Opportunity through the processing of rectified stereo NavCams images. 98 

Section 5 is focused on the reconstruction of Perseverance’s path that is obtained by analyzing raw 99 

stereo NavCams image pairs with the proposed VO algorithm. 100 

The processing of data acquired by current and past planetary rover missions represents a significant 101 

testbed to assess the performances of image-based localization systems. This study provides accurate 102 

information on the pose estimation precision that can be attained with an autonomous navigation 103 

system, which is currently under development by our research group to support rover prototypes’ 104 

operations on unprepared terrains. 105 

 106 

 107 

2. ROVER AND CAMERA MODELING 108 

To define the parameters that will be adjusted in the filter, we present the adopted models of the 109 

camera and the rover in Sections 2.1 and 2.2, respectively. A thorough description of the camera 110 

modeling is important to correctly convert 2D image-points into 3D world-points forward and 111 

backward. 112 

 113 

2.1 CAHVORE Camera Model 114 

Images acquired by real cameras are affected by nonlinear effects (e.g., optical distortion) that are not 115 

accounted for by the pinhole camera model, which adopts an undistorted perspective projection 116 

(Young, 1971). To accurately describe the acquisition geometry of wide-angle cameras employing 117 

fisheye lenses, refined camera models have been developed, including the Brown model (Brown, 118 

1971), the Kannala-Brandt model (Kannala & Brandt, 2006), and the CAHVORE model (Gennery, 119 

2001; Gennery, 2006). The latter is currently adopted by the engineering cameras of NASA planetary 120 

rovers. 121 

Compared to other camera models, the CAHVORE model employs more parameters that enable a 122 

refined modeling of the radial optical distortion, by allowing for the possibility for the optical axis to 123 

be not exactly perpendicular to the camera sensor plane. In general, radial distortion is described by 124 

a polynomial that gives the departure of the off-axis coordinate from its ideal value as a function of 125 

the off-axis coordinate. The off-axis coordinate is usually expressed in terms of image coordinates 126 

(Brown, 1971; Kannala & Brandt, 2006) rather than to be defined relative to the lens optical axis, and 127 

this implies that the optical axis 𝑶 is assumed to be parallel to the sensor plane’s normal 𝑨. Although 128 

real camera lenses are manufactured so that this assumption holds, the two vectors may be slightly 129 

misaligned, and the CAHVORE model enables to account for this effect. Furthermore, the 130 

CAHVORE model accounts for the displacement of the entrance pupil along the optical axis 131 

(Fasogbon & Aksu, 2019) that is modeled as a function on the off-axis angle of the incoming light 132 

rays. This nonlinear effect is usually ignored in camera calibration since it is small, but can be 133 

significant for wide field-of-view (FOV) cameras. For example, for the hazard cameras onboard the 134 

MER rovers, the forward entrance pupil shift can be as high as ~7 mm, leading to an error of ~4° for 135 

objects as close as 10 cm (Gennery, 2006). 136 
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The CAHVORE model efficiently describes the acquisition geometry of wide-angle cameras through 137 

a set of seven 3-dimensional vectors, which are used to define the pose of the camera and the camera 138 

intrinsic parameters, and to model the nonlinear optical effects. Each letter of the acronym 139 

CAHVORE is associated with one of these vectors, which are detailed hereafter. The camera vector 140 

𝑪 defines the nominal 3D location of the entrance pupil. The axis vector 𝑨 is a unit vector orthogonal 141 

to the image plane and departs from the entrance pupil 𝑪 pointing outwards. The vectors 𝑯 and 𝑽 are 142 

the horizontal vector and the vertical vector, respectively. 𝑯 and 𝑽 are combined with 𝑨 to determine 143 

the image-coordinates of the camera principal point. Their projections onto the image plane (𝑯′ and 144 

𝑽′) provide vectors that are almost aligned with the image rows and columns, respectively (Di & Li, 145 

2004). The vectors 𝑶 and 𝑹 are the optical vector and the radial vector, respectively. They are jointly 146 

used to model optical radial distortion. The radial vector collects the even-order coefficients of a 4-147 

degree polynomial used to compute the displacement of the 3D points in a direction orthogonal to 𝑶, 148 

which compensates the lens curvature (Gennery, 2006). The definition of distinct vectors 𝑶 and 𝑨 149 

enables to account for the non-orthogonality of the image plane with respect to the optical axis; for 150 

ideal lenses or rectified images, the vectors 𝑶 and 𝑨 are parallel. 𝑬 is the entrance vector collecting 151 

the even-order coefficients of a 4-degree polynomial used to model the displacement of the entrance 152 

pupil along the optical axis 𝑶. The adjusted position of the entrance pupil 𝑪′ is defined accordingly 153 

to: 154 

 155 

𝑪′ = 𝑪 + 𝑠𝑶 (1) 156 

 157 

where 𝑠 = 𝑠(𝛼, 𝑬), and 𝛼 is the off-axis angle between the incoming viewing ray and the camera 158 

optical axis (Gennery, 2006). Incoming rays aligned with the optical axis (𝛼 = 0) produce a null 159 

displacement of the entrance pupil. 160 

The cameras onboard NASA planetary rovers have been accurately calibrated before flight through a 161 

metrology-dependent approach that uses precisely measured dot-target positions relative to the 162 

cameras and solves for the CAHVORE parameters only. This represents a major difference with 163 

respect to standard calibration procedures that employ a pure-photogrammetric approach that jointly 164 

solves for dot-targets locations and camera parameters in a single bundle-adjustment (Hayes et al., 165 

2021). A detailed documentation of the on-ground calibration activities reports the best-estimated 166 

CAHVORE parameters for each camera, which are defined for a specific pose of the camera with 167 

respect to the rover navigation frame. As the cameras change the pointing direction, the related 3D 168 

vectors 𝑪, 𝑨, 𝑯, 𝑽 and 𝑶 are updated through kinematical equations accounting for the actual azimuth 169 

and elevation angles of the mast (Ruoff et al., 2021). The vectors 𝑹 and 𝑬 are fixed depending on the 170 

lens characteristics only. The updated CAHVORE parameters are then referred to the rover 171 

navigation frame, and their values are reported in the image metadata. 172 

The VO navigation software of the NASA MER and MSL rovers processed rectified images, i.e., 173 

images projected in a theoretical and distortion-free stereo setup geometry (Ruoff et al., 2021), 174 

obtained through a preprocessing of the raw images. The rectified images can be described by a 175 

simplified CAHV model (Yakimovsky & Cunningham, 1978), equivalent to a pinhole camera model 176 

(Di & Li, 2004), and are epipolar-aligned. Therefore, corresponding pixels in the left and right images 177 

can be searched for about the horizontal epipolar line, reducing the chance of wrong matches. 178 

Perseverance navigation software was conceived to be independent from the rectification of the 179 

acquired images, and corresponding pixels are searched about the epipolar curve. This main change 180 

with respect to the previous missions is associated with the enhanced and upgraded design of the 181 

NavCams. Compared to MER and MSL NavCams (image detector size: 1024×1024 pixels; field of 182 

view: 45° × 45°), the Perseverance NavCams have a wider 90° × 70° field of view and acquire 20× 183 
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higher-resolution images (image detector size: 5120×3840 pixels). However, to deal with limited 184 

onboard memory resources, Perseverance flight software, inherited from MSL, processes only tiles 185 

of the full image (Ruoff et al., 2021). The maximum size of a readable tile is 1280×960 pixels, and 186 

16 tiles are then required to read out full-resolution (1× downsampling) images; at 2× downsampling, 187 

4 tiles are required; at 4× or 8× downsampling, only 1 tile is required, and the entire image can be 188 

read at once. These multiple image acquisition modes result in a more complex rectification 189 

procedure, depending on the actual tiling and downsampling parameters. To analyze non-rectified 190 

images, our VO algorithm accounts for the full nonlinear CAHVORE camera model. 191 

 192 

2.2 Parametrization of the Rover’s Motion 193 

The single rover’s drive step is assumed to be a 6 degrees of freedom (DOF) rigid rototranslation 194 

defined by the translation vector 𝝉 and the rotation matrix 𝐑{B}

{A}
. The motion parameters 𝝉 and 𝐑{B}

{A}
 195 

define the (4 × 4) transformation matrix 𝐓{B}

{A}
 from (𝑶B,{B}) to (𝑶A,{A}), which denote the rover 196 

navigation frame before and after the motion step, respectively. In this work, the rotation is expressed 197 

through the rotation vector 𝚯 that consists of the yaw-pitch-roll Bryant angles.  198 

To adjust the rover’s motion parameters, the VO algorithm takes as input two stereo pairs, acquired 199 

at the beginning and at the end of the drive step, and 3D points triangulated from both stereo pairs. 200 

The motion equation relates the 3D coordinates of a world-point 𝓟 observed before (𝑷{B}) and after 201 

(𝑷{A}) the rover’s motion, accordingly to: 202 

[𝑷
{A}

1
] = 𝐓{B}

{A}  [𝑷
{B}

1
] = [

𝐑{B}

{A} 𝝉

𝟎1×3 1
] [𝑷

{B}

1
] (2) 203 

 204 

Hereafter, the left and right images of the first stereo pair (acquired before the motion step) will be 205 

denoted by ℒ1 and ℛ1, respectively. The symbols ℒ2 and ℛ2 will be used to refer to the images of 206 

the second stereo pair (acquired at the end of the drive step). 207 

 208 

 209 

3. VISUAL ODOMETRY ALGORITHM 210 

3.1 Feature Detection 211 

A first step of VO algorithms is the identification of image keypoints that are matched and tracked 212 

across stereo pairs acquired at successive times. Image keypoints (e.g., corners) are first detected in 213 

the stereo pair acquired at the beginning of the rover’s motion step. The detection of such image-214 

points should be robust to changes in the illumination conditions and the viewing angle of the scene. 215 

Corner-points are extracted using the Harris corner detector (Harris & Stephens, 1988), which 216 

identifies image pixels where the Harris score function gets a local maximum (i.e., a pixel is classified 217 

as a corner if the associated Harris score is greater than the Harris scores computed at its 8 surrounding 218 

pixels). 219 

To ensure a uniform distribution of corners across the image, it is divided in patches (or Region of 220 

Interest, ROI) that are processed independently, and the strongest corners in each ROI are selected 221 

(Figure 1). The usage of ROI also improves the corner detection in case of images including rover’s 222 

structures, where corners associated with the metallic parts of the rover are much stronger than the 223 

ones associated with the environment (i.e., rocks). 224 

The extracted corner-points are associated with image-pixels and, therefore, have integer coordinates 225 

(𝑥, 𝑦). Sub-pixels accuracies are attained through a least-squares fitting of a bivariate quadratic 226 

function 𝑓(𝑥, 𝑦) to the Harris metric responses computed in the (3 × 3) template window centered 227 

at the detected corner. The choice of a bivariate quadratic function is supported by the observation 228 
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that the metric score about a corner has a distribution that can be locally fitted by a paraboloid (Zhu 229 

et al., 2007). The generic equation of the function 𝑓(𝑥, 𝑦) is: 230 

 231 

𝑓(𝑥, 𝑦) = 𝑎0𝑥
2 + 𝑎1𝑦

2 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 + 𝑎5 (3) 232 

 233 

where 𝑥 and 𝑦 are the column (sample) and row (line) coordinates of an image-point, respectively. In 234 

the least-squares fitting, the coordinates of the nine pixels inside the template window are remapped 235 

to be referred to the central pixel (𝑥, 𝑦) (e.g., the remapped coordinates of the central pixel are (0,0)). 236 

The least-squares estimate of the six polynomial coefficients 𝒂̂ is obtained accordingly to: 237 

 238 

𝒂̂ = (𝐁T𝐁)𝐁T𝐅 (4) 239 

 240 

where 𝐅 is the (9 × 1) column vector collecting the Harris score values associated with the nine 241 

image-points in the template window; and 𝐁 = (𝜕𝒇 𝜕𝒂⁄ ) is the (9 × 6) matrix of the partial 242 

derivatives of the function 𝑓 with respect to the polynomial coefficients 𝒂 = [𝑎0, … , 𝑎5] for the pixels 243 

in the template window. The remapping of the pixel coordinates yields a significant reduction of the 244 

computational cost related to 𝐁. The fractional part of the refined corner-coordinates (Δ𝑥, Δ𝑦) 245 

corresponds to the point where the function 𝑓 is maximum, which is computed accordingly to: 246 

 247 

Δ𝑥 = −
2𝑎1𝑎2 − 𝑎3𝑎4

4𝑎0𝑎1 − 𝑎4
2

(5) 248 

 249 

Δ𝑦 = −
2𝑎0𝑎3 − 𝑎2𝑎4

4𝑎0𝑎1 − 𝑎4
2

(6) 250 

 251 

The improved corner coordinates (𝑥̂, 𝑦̂) are finally retrieved by adding the computed correction 252 

(Δ𝑥, Δ𝑦) to the integer corner coordinates (𝑥, 𝑦). Unreliable corners yielding corrections greater than 253 

1 pixel are discarded. 254 

A further down-selection is carried out to exclude corner-points at the image edges because of 255 

significant distortion effects. The landmarks associated with these corners are not well-suited to 256 

estimate the rover’s pose since they may be off from the camera’s field of view after the motion step. 257 

We discard corner-points that are within 30 pixels from the image boundaries. 258 

 259 

3.2 Stereo-Matching 260 

To enable the triangulation of the world-points, the extracted left and right corner-points are matched 261 

to find pairs of corners corresponding to the same landmark. To efficiently describe the neighborhood 262 

of the extracted corner-points, we adopt the SURF descriptor (Bay et al., 2006). The sum of squared 263 

differences (SSD) metric is used to compare the descriptors, and corner-points yielding the minimum 264 

SSD are matched. Since the images are not rectified, the epipolar constraint cannot be imposed, and 265 

the coordinates of left and right matched corners are expected to differ. However, this difference is 266 

assumed to be small, and to filter out wrong matches, pairs of matched corners with |𝑦̂𝐿 − 𝑦̂𝑅| > 50 267 

pixels are discarded. 268 

 269 

3.3 Triangulation 270 

Each pair of stereo-matched corners is associated with a 3D world-point, whose coordinates can be 271 

retrieved by means of stereo triangulation. Our triangulation scheme accounts for the nonlinearities 272 

of the CAHVORE camera model (Gennery, 2006). The 3D coordinates of the world-points are 273 
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determined as the midpoint of the minimum distance segment between two lines, which are the 274 

viewing rays projected out from the left and right entrance pupils. Under ideal conditions, the left and 275 

the right viewing rays exactly intersect at a point in space. In real cases they do not intersect because 276 

of image noise (that yields errors in the corner detection), matching errors, and camera model 277 

uncertainties. A minimum distance line segment connecting the two rays is detected, and the midpoint 278 

of the segment is taken as the best-estimated triangulated location of the landmark. 279 

For rectified images described by the CAHV camera model (pinhole camera), the viewing rays depart 280 

from the projection center and intersect the image plane exactly where the corner-points are detected. 281 

To accurately retrieve the 3D landmarks coordinates in case of raw images, the nonlinear optical 282 

effects associated with the CAHVORE model are included. Given a pair of matched corners 𝒑𝐿 and 283 

𝒑𝑅, their 2D coordinates are processed in combination with the CAHVORE parameters to adjust the 284 

locations of both left and right entrance pupils, 𝑪𝐿
′  and 𝑪𝑅

′ , and viewing rays, 𝒓𝐿 and 𝒓𝑅 (Appendix 285 

A), which are unit vectors departing from 𝑪𝐿
′  and 𝑪𝑅

′ , respectively (Gennery, 2006). 286 

The 3D coordinates of the endpoints of minimum distance segment are defined as: 287 

 288 
𝑷𝐿 = 𝑪𝐿

′ +𝑚𝐿𝒓𝐿

𝑷𝑅 = 𝑪𝑅
′ +𝑚𝑅𝒓𝑅

(7) 289 

 290 

where 𝑚𝐿 = ‖𝑷𝐿 − 𝑪𝐿
′ ‖ and 𝑚𝑅 = ‖𝑷𝑅 − 𝑪𝑅

′ ‖. The unknown parameters 𝑚𝐿 and 𝑚𝑅 are retrieved 291 

by enforcing that the minimum distance segment (𝑷𝑅 − 𝑷𝐿) is orthogonal to the left and the right 292 

viewing unit vectors 𝒓𝐿 and 𝒓𝑅, as follows, 293 

 294 

{
(𝑷𝑅 − 𝑷𝐿) ∙ 𝒓𝐿 = 0
(𝑷𝑅 − 𝑷𝐿) ∙ 𝒓𝑅 = 0

, (8) 295 

 296 

and, by substituting Eqs. (7) in Eqs. (8), we obtain: 297 

 298 

{
(𝑪𝑅

′ − 𝑪𝐿
′ +𝑚𝑅𝒓𝑅 −𝑚𝐿𝒓𝐿) ∙ 𝒓𝐿 = 0

(𝑪𝑅
′ − 𝑪𝐿

′ +𝑚𝑅𝒓𝑅 −𝑚𝐿𝒓𝐿) ∙ 𝒓𝑅 = 0
 → {

𝑩 ∙ 𝒓𝐿 +𝑚𝑅𝒓𝑅 ∙ 𝒓𝐿 −𝑚𝐿 = 0
𝑩 ∙ 𝒓𝑅 +𝑚𝑅 −𝑚𝐿𝒓𝐿 ∙ 𝒓𝑅 = 0

 (9) 299 

 300 

where 𝑩 = 𝑪𝑅
′ − 𝑪𝐿

′  is the stereo baseline vector. 301 

Eqs. (9) are solved for 𝑚𝐿 and 𝑚𝑅 providing the following solution: 302 

 303 

{
 
 

 
 𝑚𝐿 = +

𝑩 ∙ 𝒓𝐿 − (𝑩 ∙ 𝒓𝑅)(𝒓𝐿 ∙ 𝒓𝑅)

1 − (𝒓𝐿 ∙ 𝒓𝑅)2

𝑚𝑅 = −
𝑩 ∙ 𝒓𝑅 − (𝑩 ∙ 𝒓𝐿)(𝒓𝐿 ∙ 𝒓𝑅)

1 − (𝒓𝐿 ∙ 𝒓𝑅)2

(10) 304 

 305 

The 3D coordinates of the landmark are then retrieved accordingly to: 306 

 307 

𝑷 =
𝑷𝐿 + 𝑷𝑅

2
(11) 308 

 309 

Since the 3D vectors 𝑪𝐿
′ , 𝑪𝑅

′ , 𝒓𝐿 and 𝒓𝑅 are defined with respect to the rover navigation frame, the 310 

3D coordinates of the world-points 𝑷 are referred to the rover navigation frame as well. 311 
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A parameter that measures the accuracy of the triangulated coordinates is the length 𝑑 of the minimum 312 

distance segment, 𝑑 =  ‖𝑷𝐿 −𝑷𝑅‖. In our image processing algorithm, 3D point characterized by 313 

𝑑 > 15 cm are filtered out as outliers (Figure 2). 314 

The (3 × 3) covariance matrix 𝚺𝑷 associated with the triangulated point is retrieved by propagating 315 

the (2 × 2) covariances related to the left and right corner-points, 𝚺𝒑𝐿 and 𝚺𝒑𝑅. In this work, we 316 

assume that 𝚺𝒑𝐿 = 𝚺𝒑𝑅 = 𝜎2𝕀2×2, with 𝜎 = 0.5 pixels. 𝚺𝑷 is then computed accordingly to: 317 

 318 

𝚺𝑷 = 𝐉𝚺𝒑𝐉
T,       𝚺𝒑 = [

𝚺𝒑𝐿 𝟎

𝟎 𝚺𝒑𝑅
] (12) 319 

 320 

where 𝐉 is the (3 × 4) Jacobian matrix defined as: 321 

 322 

𝐉 = [
𝜕𝑷

𝜕𝑥𝐿

𝜕𝑷

𝜕𝑦𝐿

𝜕𝑷

𝜕𝑥𝑅

𝜕𝑷

𝜕𝑥𝑅
] (13) 323 

 324 

We computed the columns of the Jacobian matrix by recursively applying the chain rule for the partial 325 

derivatives. We provide the analytical expressions of the derived Jacobian matrix 𝐉 in Appendix A. 326 

Hereafter, the symbols 𝑷{B} and 𝚺𝑷
{B}

 will be used to denote the landmarks coordinates triangulated 327 

before the motion step and the associated covariance matrix, respectively. The corresponding 328 

quantities computed after the motion step will be denoted by 𝑷{A} and 𝚺𝑷
{A}

. 329 

The (3 × 3) covariance matrix 𝚺𝑷 is defined with respect to the rover’s frame, and reflects the 3D 330 

distribution of the uncertainties related to the triangulated world-point coordinates. As a first 331 

approximation, the 3D point covariance is assumed Gaussian, and can be represented as an ellipsoid 332 

elongated along the line-of-sight direction from the camera to the landmark. Figure 3 shows the 1-σ 333 

formal uncertainties associated with the X-, Y-, Z-coordinates of the retrieved 3D points expressed 334 

in the left NavCam frame {L} (that is almost aligned with the right NavCam frame {R}). The camera 335 

frame {L} is defined as follows: +Z-axis along the camera optical axis, pointing outwards; +Y-axis 336 

along the image central column and pointing towards the top row; +X-axis along the image central 337 

row and pointing towards the image left column. To be consistent with the selected frame, the 3D 338 

points covariances 𝚺𝑷 are transformed accordingly to: 339 

 340 

𝚺𝑷
{L} = 𝐑{N}

{L}   𝚺𝑷  ( 𝐑{N}
{L} )

T

(14) 341 

 342 

where 𝐑{N}
{L}

 is the rotation matrix from the rover navigation frame {N} to the left NavCam frame {L}, 343 

which is obtained from the attitude mission kernels. The 1-σ formal uncertainties are then retrieved 344 

by taking the square root of the elements along 𝚺𝑷
{L}

 principal diagonal. As expected, a strong 345 

correlation of the uncertainties with the relative distance of the landmarks from the rover is observed 346 

(i.e., the farther the landmarks are, the greater the uncertainties are). The main contribution is related 347 

to 𝜎𝑧 (Figure 3c), since the camera boresight (i.e., Z-axis) is mainly aligned with the line-of-sight 348 

direction. Compared to 𝜎𝑧, the uncertainties on the X- and Y-coordinates show a greater dependence 349 

on the relative orientation of the line-of-sight and the image horizontal (i.e., X-axis) and vertical (i.e., 350 

Y-axis) directions, although dominant variations are associated with the distance of the landmarks 351 

from the rover. 𝜎𝑥 (Figure 3a) and 𝜎𝑦 (Figure 3b) are observed to increase towards the lateral 352 

boundaries and the top of the image, respectively. 353 

 354 

 355 
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3.4 Tracking 356 

To predict the 3D coordinates of the triangulated landmarks after the motion step, we would need to 357 

directly propagate the rover’s pose. Since WO and IMU measurements are not archived, we are not 358 

able to directly accomplish this task. However, we update the landmarks 3D coordinates after the 359 

triangulation by using the pose information that are included in the image metadata. These 360 

preliminary estimates were retrieved onboard the vehicle by processing WO and IMU data. The 361 

rover’s position and orientation are reported with respect to the site frame {S}, which is a fixed 362 

coordinate frame attached to the Martian surface. The center of this frame is periodically updated by 363 

the surface operations team to mitigate accumulation of the rover position errors. Ancillary 364 

information regarding the pose of the rover’s navigation frame with respect to the site frame are 365 

included in the image metadata as position vector 𝑷{S} and attitude quaternion 𝒒. The motion 366 

parameters associated with the rover’s motion are retrieved from the telemetered rover’s pose 367 

according to: 368 

 369 

𝐑{B}

{A} = 𝐑{S}

{A} ( 𝐑{S}

{B} )
T

𝝉 = 𝐑{S}

{A} (𝑷B

{S} − 𝑷A

{S})
(15) 370 

 371 

where (𝑷B

{S}, 𝐑{S}

{B} ) and (𝑷A

{S}, 𝐑{S}

{A} ) are the position vector and the rotation matrix defining the rover’s 372 

pose (with respect to the site frame) before and after the drive step, respectively. Matrices 𝐑{S}

{B}
 and 373 

𝐑{S}

{A}
 are retrieved from the associated quaternions. 374 

The tracking step identifies in the new left image ℒ2 (acquired at the end of the drive step) the corner-375 

points associated with the landmarks observed before the rover’s motion. To accomplish this task, 376 

the updated 3D points are first projected onto ℒ2 accounting for the nonlinearities of the CAHVORE 377 

camera model, yielding a 2D point 𝒑̅ℒ2
𝑖  for each feature 𝑖 = 1,… ,𝑁𝐵, with 𝑁𝐵 that denotes the number 378 

of triangulated landmarks before the motion step. A local corner detection (within a 21×21 pixels 379 

search region) is carried out about each point 𝒑̅ℒ2
𝑖  to extract the keypoints 𝒑ℒ2

𝑖,𝑘
 (𝑘 = 1,… ,𝑁𝑖) that can 380 

be associated with 𝓟𝑖. To enable an accurate match of keypoints between the left images before and 381 

after the motion step, we adopted a Normalized Cross Correlation (NCC)-based strategy, and square 382 

template windows of the same size 𝒲ℒ1
𝑖  and 𝒲ℒ2

𝑖,𝑘
 are defined about 𝒑ℒ1

𝑖  (i.e., the corner-point 383 

associated with 𝓟𝑖 and detected in the first left image) and each of the locally detected corners 𝒑ℒ2
𝑖,𝑘

 384 

in the second left image, respectively. The template window 𝒲ℒ1
𝑖  is then compared to each of the 𝑁𝑖 385 

template windows 𝒲ℒ2

𝑖,𝑘
 (𝑘 = 1,… ,𝑁𝑖) accordingly to the NCC index, defined as: 386 

NCC𝑘 =
∑ [DN1 (𝑗)][DN2

𝑘(𝑗)]
𝑛

𝑗=1

√∑ [DN1 (𝑗)]
2𝑛

𝑗=1
∑ [DN2

𝑘(𝑗)]
2𝑛

𝑗=1

(16) 387 

 388 

where 𝑛 is the number of the pixels in a single template window; and DN1(𝑗) and DN2
𝑘(𝑗) are the 389 

Digital Numbers (DN) associated with the 𝑗th pixel in 𝒲ℒ1
𝑖  and 𝒲ℒ2

𝑖,𝑘
, respectively. The locally 390 

detected corner-point that yields the maximum NCC is assumed to be the keypoint (in ℒ2) associated 391 

with 𝓟𝑖. In this work, we used 11 × 11 template windows, imposing a minimum NCC threshold of 392 

0.85 to discard unreliable tracked corners. 393 

 394 
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3.5 3D-to-3D Motion Estimate 395 

A second stereo matching is carried out to match the corners tracked in the second left image ℒ2 with 396 

the corner-points extracted from the second right image ℛ2. The 3D coordinates of the associated 397 

landmarks (𝑷𝑖

{A}
) are triangulated after the motion, and their covariances (𝚺𝑖

{A}
) are computed. 398 

At the end of this step, two 3D point-clouds are obtained; they are made up of the same set of 399 

landmarks observed before and after the rover’s motion. The 3D-to-3D VO algorithm processes the 400 

two sets of 3D points, providing a maximum-likelihood estimate of the rover’s rototranslation that 401 

best-aligns the point-clouds. 402 

An initial estimate of the rover’s motion ( 𝐑̂0{B}

{A}
, 𝝉̂0) is obtained through a least-squares solution (Arun 403 

et al., 1987). The first-guess solution is then refined through the maximum-likelihood estimation 404 

(MLE) algorithm, which minimizes the cost function 𝑈 depending on the residuals 𝒆𝑖 =405 

𝑷𝑖

{A}– 𝐑{B}

{A}  𝑷𝑖

{B} − 𝝉: 406 

𝑈 = ∑ (𝒆𝑖
T 𝐖𝑖  𝒆𝑖)

𝑁𝐿𝑀
𝑖=1 (17) 407 

with 𝑁𝐿𝑀 denoting the number of landmarks that are identified before and after the drive step. The 408 

residuals are weighted using the (3 × 3) matrix 𝐖𝑖, which accounts for the covariance matrices 409 

associated with the triangulated points 𝚺𝑖
{B}

 and 𝚺𝑖
{A}

 (Matthies & Shafer, 1987), accordingly to: 410 

𝐖𝑖 = (𝚺𝑖
{A} + 𝐑{B}

{A}  𝚺𝑖
{B} ( 𝐑{B}

{A} )
T

)
−1

(18) 411 

 412 

The inverse of 𝐖𝑖 is the covariance matrix associated with the residual errors obtained by linearizing 413 

the motion equation (Eq. (2)) about a first-guess solution for the rover’s motion. The MLE is iterated 414 

until convergence that is declared when the quantity |𝚯𝑡 − 𝚯𝑡−1| is lower than a tolerance of 10−6 415 

radians, with 𝑡 denoting the current iteration. The first point-cloud 𝑷𝑖
{B}

 (𝑖 = 1,… , 𝑁𝐿𝑀) is then 416 

transformed accordingly to the retrieved maximum-likelihood solution ( 𝐑̂{B}

{A} , 𝝉̂), and the resulting 3D 417 

points are projected back onto the second stereo pair, enabling the computation of the reprojection 418 

error. The updated coordinates of the 𝑖th landmark are defined as: 419 

 420 

𝑷̅𝑖
{A} = 𝐑̂{B}

{A} 𝑷𝑖
{B} + 𝝉̂, (19) 421 

 422 

and the reprojection error is computed accordingly to: 423 

 424 

𝐸𝑖 = |𝒑ℒ2
𝑖 − 𝒑̅ℒ2

𝑖 | + |𝒑ℛ2
𝑖 − 𝒑̅ℛ2

𝑖 | (20) 425 

 426 

where 𝒑̅ℒ2
𝑖  and 𝒑̅ℛ2

𝑖  are the 2D points retrieved by reprojecting 𝑷̅𝑖
{A}

 onto ℒ2 and ℛ2, respectively. 427 

Landmarks that show 𝐸𝑖 > 𝐸𝑀𝐴𝑋 are filtered out as outliers, since they are based on mismatched or 428 

mistracked corner-points. The down-selected landmarks are then used to compute the next maximum-429 

likelihood solution. The value of the threshold 𝐸𝑀𝐴𝑋 is fixed to 30 pixels for the first iteration and is 430 

reduced by Δ𝐸 = 5 pixels at each iteration. The estimation procedure is iterated until the reprojection 431 

error is lower than 5 pixels for each keypoint, leading to a maximum of six iterations. This tuning 432 

scheme was implemented to minimize the computational time required to declare convergence of the 433 

algorithm and to enable high accuracies of the rover’s pose. A looser threshold 𝐸𝑀𝐴𝑋 is initially 434 

adopted to discard outstanding outliers that may lead to the solution divergence. By reducing the 435 
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projection tolerance by Δ𝐸 at each iteration, a refined exclusion of the remaining outliers is obtained 436 

to enhance the pose reconstruction. 437 

After processing a set of stereo images captured during a traverse, the trajectory of the rover is 438 

retrieved by sequentially linking the estimated motion steps. The rover’s position with respect to the 439 

site frame {S} at epoch 𝑡𝑘 (i.e., at the end of the 𝑘th drive step) is defined as: 440 

𝑷𝑘

{S} = 𝑷𝑘−1

{S} + 𝐑{k−1}
{S}

( 𝐑{k−1}
{k}

 )
T

(−𝝉{k}), (21) 441 

where 𝑷𝑘−1

{S}
 is the rover’s location at epoch 𝑡𝑘−1 (i.e., before the 𝑘th drive step); 𝐑{k−1}

{S}
 is the rotation 442 

matrix from the rover navigation frame at epoch 𝑡𝑘−1 to the site frame {S}; 𝐑{k−1}
{k}

 is the maximum-443 

likelihood estimated rotation matrix between the rover navigation frame before ({k-1}) and after 444 

({k}) the 𝑘th motion step; and 𝝉{k} is the MLE-estimated translation vector associated with the 𝑘th 445 

motion step. The updated rover’s orientation with respect to the site frame {S} is retrieved as: 446 

𝐑{S}
{k}

= 𝐑{k−1}
{k}

( 𝐑{k−1}
{S}

)
T

. (22) 447 

 448 

The MLE provides the (6×6) covariance matrix associated with the rover’s position and orientation 449 

variations during the motion step (𝚺𝑘−1
𝑘 ). To propagate the formal uncertainties of the rover’s pose 450 

(Figure 4), this matrix is combined with the covariance matrix obtained after the previous motion step 451 

(𝚺𝑘−1), as follows: 452 

 453 

𝚺𝑘 = 𝐉𝐶,𝑘 [
𝚺𝑘−1 𝟎6×6
𝟎6×6 𝚺𝑘−1

𝑘 ] 𝐉𝐶,𝑘
T , (23) 454 

 455 

where 𝐉𝐶,𝑘 is the Jacobian matrix, 456 

 457 

𝐉𝐶,𝑘 = [
𝜕𝑪𝑘
𝜕𝑪𝑘−1

𝜕𝑪𝑘

𝜕𝑴𝑘−1
𝑘 ] . (24) 458 

 459 

The partial derivatives in the Jacobian matrix are computed between the pose vector 𝑪𝑘 and the pose 460 

vector of the previous step, 𝑪𝑘−1, and the estimated motion parameters vector, 𝑴𝑘−1
𝑘 = [𝚯̂ 𝝉̂], which 461 

defines the 𝑘th rototranslational motion step. 462 

The estimation of the rover’s pose uncertainty is a highly nonlinear problem. The mathematical 463 

formulation adopted in this study may then be affected by errors associated with the linearization of 464 

the equations used to update the rover’s pose. Furthermore, it relies on the strong assumption that the 465 

uncertainty of the rover’s pose is Gaussian, but the true probability distribution of the rover’s state 466 

vector may be non-Gaussian. These factors deeply affect the evolution of the pose covariance over 467 

the sequence of motion steps, and the accumulation of errors will eventually produce inconsistent 468 

results, i.e., the estimated uncertainty is smaller than the true error (Bailey et al., 2006). Therefore, 469 

the results retrieved by standard linearization-based methods only hold in first approximation, and for 470 

an accurate uncertainty propagation over longer motion sequences Monte Carlo-based approaches 471 

should be adopted instead (Pertile et al., 2014). However, due to the limited number of concatenated 472 

motion steps for each traverse, the standard linearized formulation is still suitable and adopted in the 473 

study. 474 

 475 

 476 
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4. TEST AND VALIDATION OF THE VO ALGORITHM: MER IMAGES ANALYSIS 477 

The 3D-to-3D VO algorithm was used to process two pairs of stereo images acquired by the NavCams 478 

of the NASA MER-1 rover Opportunity (Maki et al., 2003) on sol 839 (4 June 2006) and 840 (5 June 479 

2006). These optical data are 8-bit full-resolution (i.e., 1024×1024 pixel) images. To be consistent 480 

with MER VO flight software, we analyzed rectified images derived from raw data, which are 481 

described by a simplified CAHV camera model (on the NASA Planetary Data System (PDS) archive, 482 

the rectified images are named linearized products). In the CAHV model, the vector 𝑶 is not defined 483 

as it coincides with 𝑨, and the three vectors 𝑨, 𝑯′ and 𝑽′ are mutually orthogonal and form a right-484 

handed frame attached to the image plane. When the pinhole camera model is adopted, closed-form 485 

equations can be used to triangulate the world-points (e.g., Matthies & Shafer, 1987; Andolfo et al., 486 

2021; Andolfo et al. 2022). 487 

A first reprojection of the 3D point-cloud retrieved before the motion step onto the second stereo pair 488 

is carried out with the rover’s trajectory and attitude archived in the mission SPICE kernels. Figure 489 

5b shows the set of these 2D points (red dots) that are not consistent with the landmarks observed in 490 

the first stereo pair (blue dots in Figure 5a). These discrepancies preserve crucial information on the 491 

errors of the rover’s telemetered position, and are then used in our MLE motion estimate to enhance 492 

the knowledge of the rover’s drive step. Our VO algorithm allowed us to adjust the rover’s position, 493 

leading to an updated reprojection of the point cloud (green dots in Figure 5b) that is in full agreement 494 

with the landmarks observed before the motion. The reconstructed motion indicates that the length of 495 

the path travelled by the rover differs by ~7 cm compared to the WO-based estimate. No significant 496 

corrections are observed for the rotation vector that is in line with the orientation provided by the 497 

IMU (~0.1° error). 498 

To cross check our results, we also analyzed the point-clouds archived on the NASA PDS as XYZ 499 

images associated with the selected stereo pairs. These 3-bands images provide (𝑋, 𝑌, 𝑍) Cartesian 500 

coordinates of the world-points in the field of view of the rover’s left NavCam (Chen, 2014). The 3D 501 

coordinates of the surface points are defined with respect to the site frame. Since objects, such as 502 

rocks and boulders, are fixed on the surface, their coordinates with respect to the site frame do not 503 

change before and after the motion step. The archived point-clouds, however, show different 3D 504 

coordinates of a set of world-points (Figure S1) retrieved before and after the motion step 505 

(Supplementary Tables 1−2). The discrepancies between the archived point clouds before and after 506 

the motion, which were caused by dead-reckoning errors, are fully consistent with our motion 507 

adjustment based on the more accurate VO-based method. 508 

 509 

5. RESULTS 510 

A set of raw non-rectified stereo images acquired by Perseverance NavCams were processed with our 511 

3D-to-3D VO algorithm. The selected images were acquired on sols 65 (26 April 2021), 66 (27 April 512 

2021) and 72 (3 May 2021), and are single-tile 1280×960 pixels images (i.e., 4× downsampling). On 513 

these sols, the rover drove across the Van Zyl overlook region, a favorable surface area for the 514 

monitoring of the first Ingenuity helicopter’s flight attempts, and for testing its AutoNav driving 515 

capabilities. To limit pose reconstruction issues, we partitioned the rover’s trajectory into different 516 

legs that exclude strong changes in the heading angle. The lack of data during these surface maneuvers 517 

would prevent us from precise recovery of the rover’s pose. 518 

We also analyzed the stereo pairs acquired on sol 120 (22 June 2021), when the rover took images of 519 

the surrounding environment changing the cameras pointing direction only. These images are 520 

characterized by a 2× downsampling, and the full images are made up of four tiles with a size of 521 

1280×960 pixels. To process them, we preliminary assembled the tiles, obtaining 2560×1280 pixels 522 

images. A complete list of the processed images is reported in the Supplementary Table 3. 523 
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 524 

5.1 Traverse Cases: sol 65, 66, 72 525 

The 3D-to-3D VO algorithm was used to process sequences of stereo images acquired along the path. 526 

By combining the estimated drive steps accordingly to Eqs. (21) − (22), we retrieved an interpolated 527 

continuous trajectory for each leg. 528 

The rover’s path reconstructed by using our VO software is shown in Figure 6, and the points 529 

displayed along the trajectories show the estimated locations where new stereo pairs were acquired. 530 

At the beginning of sol 65, Perseverance is located at the North-West area of the Van Zyl overlook 531 

region. Perseverance was then commanded to move Eastwards (sol 65, red), and during this first 532 

driving session the rover maintained the cameras pointed in the opposite direction with respect its 533 

motion. To adjust its heading direction, once completing the first traverse, the rover performed a ~90° 534 

turn-in-place rotation about the yaw axis, and then started driving towards the South-East area (sol 535 

65, green). The route was maintained in the next sols (sol 66, blue; sol 72, black), while slight 536 

adjustments to the heading direction were carried out during the motion. The major number of stereo 537 

images was taken on sol 72, when the rover travelled the longest distance (>11.5 meters). 538 

To quantify the difference between our VO solution and the telemetry-based rover’s path, we 539 

computed the distance between the telemetered and the estimated rover’s location at each new stereo 540 

pair acquisition. We retrieved Perseverance’s telemetry data from two main sources, i.e., image 541 

metadata, and telemetry data archived in the Position Localization and Attitude Correction Estimate 542 

Storage (PLACES) database (Deen, 2022). Perseverance can use several localization techniques (i.e., 543 

wheel rotation integration, sun find) to update its position and attitude, and the pose solutions 544 

produced onboard (i.e., not adjusted by ground operators) are all tracked in the PLACES database. 545 

After completing a motion step, if the rover refines its location or attitude by using, for example, VO 546 

techniques, the pose counter of Rover Motion Counter (RMC) is incremented, and the new 547 

localization solution is stored in the PLACES database. In addition to the position and attitude data 548 

reported in the image labels (i.e., first localization solution), refined pose estimations are available 549 

for sol 72, and we considered them to further compare the solutions. 550 

As shown in Figure 7, position discrepancies accumulate on average as the rover moves for all the 551 

estimated traverses. This trend can be observed by using the location and attitude data reported in the 552 

image labels (solid), and the refined pose estimates retrieved from the PLACES database (dashed). 553 

Major increments of position discrepancies (>20 cm) are observed when adjacent stereo pairs are 554 

acquired more than 1-meter apart. 555 

For sol 72, we observe that our VO-solution is more consistent with the refined pose estimated by the 556 

rover (black, dashed) compared to the solution based on WO and IMU data only (black, solid). 557 

Furthermore, we computed the difference between the estimated distance travelled at each drive step 558 

based on our 3D-to-3D VO solution and the refined telemetry data (Figure 8). We observe that short 559 

distances (<1 m) traversed by the rover lead to a full agreement between the two independent 560 

solutions (i.e., differences of 1-2 cm). Larger discrepancies (~20 cm) are detected for cumulative 561 

drive steps >3.5 meters. The estimation of such large drive steps through computer vision techniques 562 

is extremely challenging, as adjacent images should be sufficiently overlapped. For the MER rovers, 563 

for example, turn-in-place rotations and forward steps were limited to 18° and to 75 cm, respectively 564 

(Matthies et al., 2007). Larger surface maneuvers result in significant differences between looking 565 

angles and image resolution that may affect the tracking of keypoints across stereo pairs, inducing 566 

possible larger errors in the pose reconstruction. 567 

The discrepancies may also rely on the weights adopted in the MLE estimation. By scaling the 568 

landmarks covariances accordingly to the landmarks distance from the rover, modified weighting 569 

matrices can be computed as: 570 
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  571 

𝚺̅𝑖
{B} = |𝑷𝑖

{B}|
2

𝚺𝑖
{B}        𝚺̅𝑖

{A} = |𝑷𝑖
{A}|

2

𝚺𝑖
{A}

𝐖̅𝑖 = (𝚺̅𝑖
{A} + 𝐑{B}

{A}  𝚺̅𝑖
{B} ( 𝐑{B}

{A} )
T
)
−1 . (25) 572 

 573 

This different weighting of the measurements leads to position estimates that are more consistent with 574 

the telemetered trajectory for motion steps >1 m. By including the landmark distance in the data 575 

weighting, the MLE adjustment of the rover’s position is limited if the pairs of stereo images are 576 

acquired at relative distant locations, since the tracked features are far apart from the rover. The 3D-577 

point measurements are then deweighted for longer motion steps. 578 

To further investigate the relationship between the position discrepancies and the length of the drive 579 

steps, we employed the 3D-to-3D VO scheme to estimate some extended motion steps that we defined 580 

by combining multiple motion steps into a single longer drive step. Extended drive steps were 581 

retrieved on sol 66 (i.e., by combining the drive steps 3-4) and on sol 72 (i.e., by combining the drive 582 

steps 3-4-5, and the drive steps 7-8-9, separately), and all have length of ~2 meters. We then compared 583 

the motion estimates produced by the VO algorithm by considering the single extended motion steps, 584 

and the multiple shorter drive steps. 585 

For sol 72, the longer drive steps yield position discrepancies that are comparable to the ones obtained 586 

by considering multiple shorter drive steps separately, while for sol 66, the extended drive step 587 

produces significantly larger position differences (~35 cm) compared to the case in which the drive 588 

steps are considered separately (~15 cm). These discrepancies result from the different tracking 589 

process of the terrain features. The combination of surface morphology and illumination conditions 590 

significantly affects the detection of the surface landmarks that are then tracked along the path. The 591 

traverses during sol 72 that are analyzed by excluding intermediate stereo-pairs are characterized by 592 

higher pose estimation accuracies since the algorithm tracks successfully features that are well-593 

defined by the solar illumination on the bedrock terrain at the local time of the image acquisition 594 

(Figure S2). The associated keypoints are well-defined corners outlined by the contrast between the 595 

bright small rocks and the shadows they cast on the terrain. These robust 3D-3D correspondences are 596 

processed by the MLE filter, which yields motion estimates consistent with the case in which small 597 

drive steps are considered separately, and then combined. On the other hand, for the traverse of sol 598 

66, the terrain close to the rover is quite repetitive and hosts smooth rocks, leading to some erroneous 599 

3D-3D correspondences that affect the reconstructed motion, and produce greater discrepancies. 600 

The results suggest that if there are some peculiar landmarks in the scene to which anchor robust 3D-601 

3D correspondences, the estimation of longer (~2 m) drive steps may not inflate significant errors in 602 

the reconstructed path. However, smaller drive steps are preferred, since it is easier for the algorithm 603 

to track more keypoints that can be processed in the motion estimation filter. Further analyses will be 604 

carried out as new suitable sequences of stereo NavCam pairs are archived on the NASA PDS. 605 

To assess the level of accuracy of our 3D-to-3D VO estimated trajectory, we employed a loop closing 606 

technique based on the matching of common features that are observed in the first- and the last-607 

acquired stereo pair along each traverse. We first carried out separate stereo-matching of detected 608 

corner-points in the first and the last stereo pairs. Image-points associated with the same landmarks 609 

were then identified in the two stereo pairs, and 3D coordinates of the selected landmarks were 610 

triangulated at the beginning (𝑷𝑖

{b}
) and at the end (𝑷𝑖

{e}
) of the overall rover’s traverse. The 611 

telemetered and reconstructed position and attitude of the rover were used to retrieve the 3D points 612 

𝑷̂𝑖

{e}
, which are computed through the transformation of 𝑷𝑖

{b}
 according to the telemetered and 613 

estimated 𝐑 and 𝝉, as follows: 614 
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 615 

𝑷̂𝑖

{e} = 𝐑𝑷𝑖

{b} + 𝝉. (26) 616 

 617 

By subtracting 𝑷̂𝑖

{e}
 to 𝑷𝑖

{e}
, we obtain the distance 𝐷𝑖 = |𝑷𝑖

{e} − 𝑷̂𝑖

{e}| between the triangulated and the 618 

estimated 3D points location after the motion. The lower this parameter is, the more accurate the 619 

retrieved position and attitude of the rover are. By selecting a set of landmarks, we computed the 620 

parameter 𝐷𝑖 for each landmark with the telemetered trajectory (𝐷𝑇𝐿𝑀) and the trajectory retrieved 621 

through our VO algorithm (𝐷𝑉𝑂). The results indicate that all paths reconstructed through our VO 622 

software provide smaller errors compared to the telemetry-based trajectories (i.e., 𝐷𝑇𝐿𝑀 𝐷𝑉𝑂⁄ > 1), 623 

supporting a more accurate reconstruction of the rover’s path through our localization solution (Table 624 

1). Landmarks position discrepancies computed accordingly to our VO-reconstructed path are 625 

reduced by a factor >2 compared to the telemetry-based solution. The left images acquired at the 626 

beginning and at the end of the estimated paths are shown in Figure 9 and Figures S3−S6. 627 

 628 

 629 

Table 1. Landmarks position discrepancies computed accordingly to our VO-reconstructed path 630 

(𝐷𝑉𝑂) and the telemetered rover’s path (𝐷𝑇𝐿𝑀). 631 
 632 

 Landmark ID 1 2 3 4 

Sol 65 (1st leg) 

𝑫𝑽𝑶 [m] 0.018 0.054 0.017 0.023 

𝑫𝑻𝑳𝑴 [m] 0.065 0.118 0.068 0.074 

𝑫𝑻𝑳𝑴/𝑫𝑽𝑶 3.69 2.19 4.02 3.20 

Sol 65 (2nd leg) 

𝑫𝑽𝑶 [m] 0.073 0.034 0.092 0.101 

𝑫𝑻𝑳𝑴 [m] 0.292 0.332 0.455 0.275 

𝑫𝑻𝑳𝑴/𝑫𝑽𝑶 4.01 9.81 4.94 2.73 

Sol 66 

𝑫𝑽𝑶 [m] 0.189 0.071 0.214 0.075 

𝑫𝑻𝑳𝑴 [m] 0.878 0.779 0.941 0.711 

𝑫𝑻𝑳𝑴/𝑫𝑽𝑶 4.65 10.91 4.40 20.57 

Sol 72 

𝑫𝑽𝑶 [m] 0.158 0.155 0.216 0.167 

𝑫𝑻𝑳𝑴 [m] 0.431 0.604 0.712 0.348 

𝑫𝑻𝑳𝑴/𝑫𝑽𝑶 2.74 3.90 3.29 2.08 

 633 

5.2 Rotation case: sol 120 634 

On sol 120, six stereo pairs were acquired by the rover from the same spot by only changing the 635 

NavCams pointing direction through the azimuth and elevation angles of the rover’s mast. This case 636 

is an important test to better understand whether our algorithm may deal with pure rotations. As the 637 

position and the attitude of the rover navigation frame with respect to the site frame were kept fixed, 638 

the rotation and the translation vectors to be estimated are both null. The results show that the attitude 639 

error is always <0.1° along the yaw (blue), pitch (green) and roll (red) axes (Figure 10a), which is 640 

fully in line with the expected motion, and the overall position discrepancy (black) is <1.5 cm (Figure 641 

10b). The small position discrepancies can be explained by a few erroneous 3D-3D correspondences, 642 
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which impact on the final solution, and by the estimation filter itself, which is not constrained to 643 

provide a null translation. 644 

 645 

5.3 Discussion 646 

The past and current Mars surface exploration missions have demonstrated a successful use of vision-647 

based localization techniques to provide reliable and accurate pose estimates that are required to 648 

optimally plan the rover’s activities. VO methods enable to estimate the rover’s change-in-pose by 649 

only processing the camera measurements that are independent from dead-reckoning data, and are 650 

not affected by the wheel-soil interaction forces. However, the image processing steps are time-651 

consuming, and a dedicated hardware (e.g., Field Programmable Gate Array, FPGA) is required to 652 

support real-time applications, as on Perseverance (Verma et al., 2022). 653 

Although VO methods can mitigate localization errors related to the wheels slippage, they are still 654 

dependent on the terrain characteristics, and good visual inputs are required to produce reliable 655 

motion estimates. For example, untextured or repetitive terrains are bad for the keypoints extraction 656 

and tracking, and may yield to the algorithm convergence failure. Also, optical cameras are not 657 

suitable to navigate at night. On the other hand, dead-reckoning methods based on wheel encoders 658 

and IMU data are independent from the illumination conditions, although visual obstacle detection is 659 

disabled, jeopardizing the rover’s safety. 660 

By providing relative pose updates only, VO techniques are not suitable to recover the rover’s path 661 

over very long traverses, since localization errors will eventually accumulate, representing a risk for 662 

safe rover operations. To reduce the drift of the reconstructed trajectory from the real path, additional 663 

measurements provided by other onboard instruments can be included in the localization algorithm. 664 

Sun sensor (Olson et al., 2003) and star-trackers (Enright et al., 2012) data, for example, can provide 665 

periodical updates to the absolute rover’s orientation, limiting the growth rate of position errors. 666 

Auxiliary orientation data can also be beneficial to adjust the rover’s attitude after large reorientation 667 

maneuvers, as the one performed by Perseverance on sol 65. To further mitigate the accumulated 668 

errors during the motion, a joint refinement of the rover’s positions and the landmarks coordinates 669 

(i.e., keyframe-based bundle adjustment) is usually carried out at the end of the rover’s driving 670 

sessions. By minimizing the reprojection error associated with the observed landmarks in multiple 671 

images, these methods allow to refine the 3D locations of the observed features, and to significantly 672 

increase the consistency of the reconstructed path, enabling high localization accuracies through 673 

extended traverses (Di et al., 2008). 674 

Differently from terrestrial applications, planetary rovers typically carry out one-way traverses 675 

(Matthies et al., 2007), due to the main requirement of exploring new areas of scientific interest, and 676 

accounting for the limited rover’s speed. In the next years, novel highly movable rovers (speed >20 677 

cm/s) will be launched, such as the lunar NASA VIPER rover (Utz & Fluckiger, 2021), and the 678 

advanced moving capabilities of these assets will enable the rovers to revisit the same areas multiple 679 

times. Simultaneous Localization and Mapping (SLAM) approaches could then take advantage of 680 

loop-closure detection to globally adjust the rover’s trajectory while building a consistent map of the 681 

operational environment (Hidalgo-Carrió et al., 2018; Giubilato et al., 2022), paving the way for an 682 

effective human-robotic cooperative framework. 683 

 684 

 685 

6. CONCLUSIONS 686 

Trajectory reconstructions of the NASA Mars 2020 rover Perseverance were presented in this study 687 

to enable a better understanding of the vehicle’s path, when the rover explored the Van Zyl overlook 688 

region. After introducing the CAHVORE camera parameters, which enable an accurate modeling of 689 
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the image acquisition geometry, we provided a step-by-step description of the 3D-to-3D VO software 690 

that is used to retrieve a MLE of the rover’s location and attitude. 691 

The software was first tested by processing two consecutive pairs of rectified images captured by the 692 

rover Opportunity of the NASA Mars Exploration Rovers mission. The maximum-likelihood motion 693 

estimate obtained by the algorithm allowed to detect and to mitigate errors in the SPICE mission 694 

kernels, which also caused inconsistencies in the archived point-clouds. 695 

Our VO algorithm was then used to reconstruct Perseverance’s location and orientation along several 696 

traverses on sols 65, 66 and 72 by processing archived raw stereo images. To quantify the differences 697 

between our VO-estimated and the telemetered paths, position discrepancies between the two 698 

solutions were computed. The accumulation of position differences along the drives can be partially 699 

explained by the presence of errors in the encoders-based position estimates that are compensated in 700 

our solution. Drive steps smaller than 1 m are fully consistent with telemetry data. The discrepancies 701 

inflate in correspondence to larger drive steps. Because of sparse tracked features in stereo pairs 702 

acquired after long distance travelled by the rover, the pose estimation is significantly affected by the 703 

measurement weighting of MLE filter.  704 

To assess the accuracies of the two solutions, a method was implemented, based on the triangulation 705 

of common world-points observed before and after the entire path. By using our VO estimates to 706 

predict the landmarks coordinates at the end of the traverse, smaller discrepancies are obtained 707 

compared to the telemetry-based paths. The results support higher localization accuracies provided 708 

by our solution, which yields a reduction of the landmarks localization errors by a factor >2. A set of 709 

stereo pairs acquired on sol 120 from the same spot were also processed to assess the capabilities of 710 

our algorithm to deal with large rotations. The results indicate limited accumulation of position errors 711 

(<1.5 cm), and a reconstructed orientation in full agreement with the accurate IMU measurements 712 

(<0.1° errors). 713 

To compare the localization performances of different VO-based localization methods, we processed 714 

the sequence of images acquired on sol 72 by also using a 3D-to-2D VO scheme (Supplementary 715 

Section 3). For drive steps smaller than 1 m, the 3D-to-3D and 3D-to-2D VO approaches produce 716 

comparable results. For longer motion steps, the 3D-to-2D VO method produces estimates that are 717 

more consistent with the refined telemetry data (<10 cm discrepancies) compared to the 3D-to-3D 718 

VO-based solution. This behavior may be partially explained by the uneven distribution of the tracked 719 

image-keypoints in case of longer drive steps, which are mostly related to the farther landmarks. The 720 

3D-to-2D VO method tends to classify the few 3D-2D correspondences associated with the closer 721 

landmarks as outliers, since they yield the major reprojection errors. By excluding these data, the 3D-722 

to-2D VO motion estimates rely on the farther landmarks only, limiting the adjustment to the onboard 723 

estimated motion (i.e., retrieved from the image metadata), which is indeed used to track the keypoints 724 

between adjacent stereo pairs. On the other hand, the 3D-to-3D VO method preserves the information 725 

associated with the closer landmarks by weighting them more, leading to major discrepancies with 726 

respect to the telemetered motion. 727 

VO represents a key localization technique that enables accurate updates of the pose of moving assets 728 

in the operational environment, although localization error will eventually accumulate over long 729 

traverses. To support safe navigation operations on demanding terrains (Gargiulo et al., 2021a), data-730 

fusion approaches can be adopted to process additional measurements, such as sun sensors and star-731 

trackers observations, and LiDAR data (Carle et al., 2010; Carle & Barfoot, 2010; Gargiulo et al., 732 

2021b). Local bundle adjustment techniques can be also employed to reduce the drift of the 733 

reconstructed trajectory by jointly refining the position of the rover and the landmarks locations, 734 

enabling an accurate extended motion estimation. Furthermore, global localization accuracies in the 735 

operational environment can be attained by using correlation-based techniques based on Digital 736 
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Terrain Models (DTM). For example, local 3D maps of the vehicle’s neighborhoods (retrieved from 737 

the stereo imaging data collected by the rover) can be compared to global high-resolution DTMs that 738 

are extracted from orbital stereo-images (Fergason et al., 2020) or by processing altimetry data (e.g., 739 

MOLA (Smith et al., 2001); Genova, 2020), allowing for a further mitigation of the rover’s pose drift 740 

errors after extended traverses. A combined processing of these datasets will enable significant 741 

enhancements in the trajectory reconstruction, especially after long drive steps without intermediate 742 

acquisitions of stereo images. 743 

 744 

 745 
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 1002 

 1003 

 1004 

APPENDIX A 1005 

In this section, we outline how to compute the Jacobian matrix associated with the partial derivatives 1006 

of the triangulated coordinates of a world-point, 𝑷, with respect to the associated left and right image-1007 

points 2D coordinates. We present the computations needed to retrieve the first column of the 1008 

Jacobian matrix, which is related to the partial derivative of 𝑷 with respect to the 𝑥-coordinate of the 1009 

left pixel. The other columns of the Jacobian matrix can be retrieved performing analogous 1010 

computational steps. 1011 

Since the 3-dimensional vector 𝑷 depends on 𝑥𝐿 through 𝑷𝐿 and 𝑷𝑅 (see Eq. (11)), it results that: 1012 

 1013 
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2
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By applying the chain rule for the partial derivatives to the right-hand side terms of Eq. (A. 1), one 1016 

obtains: 1017 

 1018 
𝜕𝑷𝑖
𝜕𝑥𝐿

=
𝜕𝑷𝑖
𝜕𝑪𝑖

′

𝜕𝑪𝑖
′

𝜕𝑥𝐿
+
𝜕𝑷𝑖
𝜕𝒓𝑖

𝜕𝒓𝑖
𝜕𝑥𝐿

+
𝜕𝑷𝑖
𝜕𝑚𝑖

𝜕𝑚𝑖

𝜕𝑥𝐿
      𝑖 = 𝐿, 𝑅 (A. 2) 1019 

 1020 

The partial derivatives of 𝑷𝑖 with respect to 𝑪𝑖
′, 𝒓𝑖 and 𝑚𝑖  (𝑖 = 𝐿, 𝑅) and the partial derivatives of 𝑚𝑖 1021 

with respect to 𝑪𝑖
′ and 𝒓𝑖 (𝑖 = 𝐿, 𝑅) are computed by applying the chain rule to differentiate Eqs. (7) 1022 

and Eqs. (10), respectively. The partial derivatives of 𝑪𝑖
′ and 𝒓𝑖 (𝑖 = 𝐿, 𝑅) with respect to the 2D 1023 

coordinates of the image-keypoints are finally retrieved by differentiating the full set of nonlinear 1024 

equations based on the CAHVORE camera parameters. A thorough description of the main steps 1025 

required to retrieve these quantities is provided hereafter (to simplify the notation, the subscript 𝑖 that 1026 

refers to left/right quantities is not reported explicitly).  1027 

First, the adjusted (i.e., distortion compensated) viewing ray direction 𝒓 is computed. Given the 1028 

(𝑥, 𝑦)-coordinates of a keypoint, the associated viewing ray is first projected out (from the image 2D 1029 

space into 3D world space) according to the CAHV model (that neglects distortion and the entrance 1030 

pupil displacement) from the point 𝑪′ (i.e., the adjusted location of the entrance pupil) as follows: 1031 

  1032 

𝒓′ =
(𝑽 − 𝑦𝑨) × (𝑯 − 𝑥𝑨)

𝑨 ∙ 𝑽 × 𝑯
(A. 3) 1033 

 1034 

where 𝑨,𝑯 and 𝑽 are the axis, horizontal and vertical vectors associated with the CAHVORE model. 1035 

The vector 𝒓′ can be written as the sum of two vectors, one parallel to the optical axis 𝑶, and the 1036 

other along the direction 𝝀′̂, which is orthogonal to 𝑶, as follows: 1037 

 1038 

𝒓′ = 𝜁′𝑶 + 𝜆′𝝀′̂ = 𝜁′(𝑶 + 𝜒′𝝀′̂) (A. 4) 1039 

 1040 

where 𝜒′ = 𝜆′/𝜁′. The effect of the radial distortion is modeled as an apparent shift of the 3D point 1041 

associated with the image keypoint (𝑥, 𝑦) in a direction orthogonal to 𝑶 by an amount 𝜇𝜆, being 𝜆 = 1042 

𝒓 ∙ 𝝀′̂, and 𝜇 the distortion polynomial defined as: 1043 

 1044 

𝜇 = 𝑹(1) + 𝑹(2)𝜒2 + 𝑹(3)𝜒4 (A. 5) 1045 

 1046 

where 𝑹(𝑗) denotes the 𝑗𝑡ℎ component (𝑗 = 1,2,3) of the radial vector 𝑹, and the parameter 𝜒 = 𝑓(𝜃) 1047 

is a function of the off-axis angle 𝜃 between 𝒓 and 𝑶. Therefore, it results that 𝜆′ = (1 + 𝜇)𝜆; 1048 

similarly, the parameter 𝜒′ can be expressed as: 1049 

 1050 

𝜒′ = (1 + 𝜇)𝜒 = (1 + 𝑹(1))𝜒 + 𝑹(2)𝜒3 + 𝑹(3)𝜒5 (A. 6) 1051 

 1052 

Once the apparent 3D displacement of the observed point is compensated, the adjusted viewing unit 1053 

vector can be written as: 1054 

 1055 

𝒓 = sin(𝜃)𝝀′̂ + cos(𝜃)𝑶 (A. 7) 1056 

 1057 

To compute the off-axis angle 𝜃, the nonlinear equation (A. 6) is solved for 𝜒 by using Newton-1058 

Raphson method (with 𝜒′ as the initial approximation for 𝜒), and then 𝜒 = 𝑓(𝜃) is solved for 𝜃 (for 1059 
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ideal fisheye lenses, 𝜒 = 𝜃). The ray 𝒓 is considered projected from the adjusted entrance pupil 1060 

location 𝑪′, which is computed according to (1). 1061 

The partial derivatives of 𝑪′ and 𝒓 with respect to the 𝑥-coordinate of the image keypoint are retrieved 1062 

by applying the chain rule to Eq. (1) and Eq. (A. 7), as follows: 1063 

 1064 
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(A. 8) 1065 

 1066 

where 𝜕𝒓′/𝜕𝑥 is retrieved from eq. (A. 3), and the partial derivatives of 𝑪′ and 𝒓 with respect to 𝒓′ 1067 

are computed accordingly to (Gennery, 2006): 1068 

 1069 
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𝜕𝒓′

(A. 9) 1070 

 1071 

Analogous computations based on Eqs. (A. 8 − A. 9) can be carried out to compute the remaining 1072 

partial derivatives that are required to define the Jacobian (i.e., the partial derivatives of the left/right 1073 

𝑪′ and 𝒓 with respect to the 𝑥-coordinate and the 𝑦-coordinate of the left/right image keypoint 1074 

associated with the landmark 𝑷). To speed up the computations, some terms can be neglected, since 1075 

the left entrance pupil and viewing ray do not depend on the coordinates of the right corner-point, 1076 

and vice-versa, leading to: 1077 

 1078 
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′
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=
𝜕𝑪𝐿

′
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′
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= 0 (A. 10) 1079 
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 1081 

Figure 1. Detected corner points (red) in the left image of the first stereo pair (ℒ1) acquired on sol 1082 

65. The Regions of Interest (ROI) are highlighted by green squares. 1083 

 1084 
 1085 

 1086 

Figure 2. Triangulation error, represented through the length of the minimum distance segment 1087 

joining the left and right viewing rays associated with a pair of matched corners. As expected, the 1088 

farther landmarks are affected by larger triangulation errors. A maximum error of 15 cm is imposed 1089 

to filter out unreliable landmarks. The left image of the first stereo pair (ℒ1) acquired on sol 65 is 1090 

shown on the background. 1091 

 1092 
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 1093 

Figure 3. One standard deviation formal uncertainty of the triangulated landmarks coordinates, 1094 

shown on the corner-points 𝒑ℒ1 of the left image of the first stereo pair (ℒ1) acquired on sol 65. The 1095 

uncertainties are referred to the camera-centered frame (i.e., Z-axis along the camera boresight; 1096 

horizontal X-axis aligned with the image rows, from right to left; vertical Y-axis aligned with the 1097 

image columns, from bottom to top, completing the right-hand triad). The uncertainties related to the 1098 

X- (a), Y- (b), and Z-direction (c) all show a strong correlation with the relative distance of the 1099 

landmarks from the rover (i.e., farther landmarks are associated with greater triangulation 1100 

uncertainties). The uncertainty distribution also depends on the orientation of the camera frame axes 1101 

with respect to the line-of-sight direction (i.e., the direction from the camera to the landmark, along 1102 

which the 3D uncertainty distribution is elongated). 1103 

 1104 

 1105 

 1106 

  1107 
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 1108 

Figure 4. Reconstructed Perseverance’s path on sol 72, and propagated 3-𝜎 formal uncertainty 1109 

ellipses. The rover’s trajectory is recovered by using our VO algorithm, and the points where the 1110 

ellipses are centered represent Perseverance’s estimated locations at new stereo pair acquisitions. The 1111 

red point represents Perseverance’s initial position. The 3-𝜎 ellipses are retrieved from the propagated 1112 

rover’s pose covariance (𝚺𝑘) that is computed by combining the rover’s pose covariance at the 1113 

previous step (𝚺𝑘−1) with the covariance associated with the estimated drive step (𝚺𝑘−1
𝑘 ). The 1114 

uncertainties related to the initial position and attitude vectors are assumed uncorrelated; the initial 1115 

pose covariance is defined as 𝚺0 = diag(𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜎𝜃𝑥 , 𝜎𝜃𝑦 , 𝜎𝜃𝑧), with 𝜎𝑖 = 2 cm and 𝜎𝜃𝑖 = 0.1° 1116 

(𝑖 = 𝑥, 𝑦, 𝑧). 1117 

 1118 

  1119 
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 1120 

Figure 5. Left images acquired by Opportunity’s left NavCam on sols 839-840 (5-6 June 2006), 1121 

before (a) and after (b) a motion step. The left panel shows the left corner-points used for the first 1122 

stereo-triangulation (blue), which provides the first 3D point-cloud (i.e., triangulated landmarks 1123 

before the drive step). The reprojection of the first point-cloud onto the second left image accordingly 1124 

to the archived rover’s position and attitude (i.e., SPICE mission kernels) yields 2D image-points 1125 

(red) that are not consistent with the corner-points detected in the first left image (blue), indicating 1126 

errors on the rover’s motion estimated onboard. A refined pose update is enabled by our maximum-1127 

likelihood VO motion estimate (MLE), which yields reprojected points (green) that are fully 1128 

consistent with the landmarks observed before the drive step (blue). The reprojection vectors shown 1129 

as yellow lines highlight the discrepancies between the two sets of reprojected points, which are 1130 

retrieved by using the archived rover’s motion and our pose estimate. 1131 
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 1134 

Figure 6. Perseverance’s path on sol 65 (1st leg: red; 2nd leg: green), 66 (blue) and 72 (black) based 1135 

on our VO solution. The initial rover’s location for each leg is retrieved from telemetry data, and the 1136 

points displayed along the path represent our estimated locations at new stereo pairs acquisitions. 1137 

Perseverance’s positions are referred to site 3, and are expressed in the local level (i.e., North-East-1138 

Nadir) frame. 1139 

 1140 

 1141 

 1142 

  1143 



 31 

 1144 

Figure 7. Position discrepancies between Perseverance’s telemetry-based path and our VO-estimated 1145 

trajectory. Telemetered rover’s positions are retrieved from the image metadata (solid) and from the 1146 

PLACES database (dashed), if pose updates were produced onboard. The points on the curves 1147 

represent new stereo pair acquisitions, and traversed distances are based on telemetry data. Our 1148 

estimates of short drive steps (<1 m) are consistent with telemetry-based paths, and larger 1149 

discrepancies (10-30 cm) are detected for stereo pairs acquired more than 1 m apart. On sol 72, our 1150 

VO-estimated path is more consistent with the refined pose estimated onboard (black, dashed), as 1151 

shown in the bottom right panel. 1152 
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 1173 

Figure 8. Differences between the distance travelled at each drive step on sol 72 accordingly to our 1174 

VO estimate and to the refined localization solution produced onboard (retrieved from the PLACES 1175 

database). The drive step length (i.e., the distance traversed between the acquisition of adjacent stereo 1176 

pairs), reported on the horizontal axis, is computed accordingly to the refined telemetry data. The two 1177 

solutions are fully consistent (differences of 1-2 cm) for short distances (<1 m), leading to 1178 

discrepancies <5 mm for drive steps <30 cm (top right panel). Larger discrepancies (~20 cm) are 1179 

detected for drive steps >3.5 meters. 1180 
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Figure 9. Left images acquired (a) at the beginning and (b) at the end of the first leg of the path 1185 

driven on sol 65. Corner-points (red) corresponding to the same landmarks in the two images are 1186 

labelled using same numbers. 1187 
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 1190 

Figure 10. Attitude (a) and position (b) errors on sol 120. The total rotation error (a, black) is 1191 

computed as the norm of the rotation error vector Δ = [Δ𝜃𝑥 Δ𝜃𝑦 Δ𝜃𝑧]. The total position error (b, 1192 

black) is computed as the norm of the position error vector Δ = [Δ𝑋 Δ𝑌 Δ𝑍]. The overall position 1193 

and attitude errors are <1.5 cm and <0.1°, respectively. 1194 
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