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BRACKETS AND PRODUCTS FROM CENTRES IN EXTENSION
CATEGORIES

DOMENICO FIORENZA AND NIELS KOWALZIG

ABSTRACT. Building on Retakh’s approach to Ext groups through categories
of extensions, Schwede reobtained the well-known Gerstenhaber algebra struc-
ture on Ext groups over bimodules of associative algebras both from splicing
extensions (leading to the cup product) and from a suitable loop in the cat-
egories of extensions (leading to the Lie bracket). We show how Schwede’s
construction admits a vast generalisation to general monoidal categories with
coefficients of the Ext groups taken in (weak) left and right monoidal (or Drin-
fel'd) centres. In case of the category of left modules over bialgebroids and
coefficients given by commuting pairs of braided (co)commutative (co)monoids
in these categorical centres, we provide an explicit description of the algebraic
structure obtained this way, and a complete proof that this leads to a Gersten-
haber algebra is then obtained from an operadic approach. This, in particular,
considerably generalises the classical construction given by Gerstenhaber him-
self. Conjecturally, the algebraic structure we describe should produce a Ger-
stenhaber algebra for an arbitrary monoidal category enriched over abelian
groups, but even the bilinearity of the cup product and of the Lie-type bracket
defined by the abstract construction in terms of extension categories remain
elusive in this general setting.
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INTRODUCTION

An apparently quite wide-spread theorem roughly states that for a monoidal
category (¢, ®, 1) fulfilling some mild conditions, the groups Ext«(1,1) define
a Gerstenhaber algebra: that is, a graded object equipped with a graded Lie
bracket and a graded commutative product subject to a Leibniz rule. However,
a detailed proof has appeared only very recently in [LoVdB] in a vast general-
ity, using the language of properads. This builds on [Sh1, Sh2], see also [He]
for an advanced attempt and [VoWo] for a treatment in terms of coderivations.

The mild conditions just mentioned refer to the problem that for an arbi-
trary monoidal category a priori the monoidal structure is not exact, and one
hence assumes the existence of a full additive subcategory which has the de-
sired properties and is implicitly dealt with instead of the original monoidal
category. The precise conditions needed, which we prefer not to discuss here in
detail, are spelled out in [Sh1, §2.1] or, somewhat differently, in [Sh2, Def. 5.1],
or [Schw, Lem. 2.1] for a discussion adapted to the Hochschild context of asso-
ciative algebras.

Less known and so far unproven is the following enhancement of the above
statement, which we formulate as a conjecture here:

Conjecture. Let € be a monoidal category (fulfilling a few mild conditions), let
Z be a braided commutative monoid in the left weak monoidal centre of ¢, and
let X be a braided cocommutative comonoid in the right weak monoidal centre
of €. If (X, Z) is a commuting pair, then Exty (X, Z) is a Gerstenhaber algebra.

Here, by left resp. weak centre of (¢, ®, 1) we mean those (braided monoidal)
categories 2°(%) resp. 2" (¢) whose objects are objects in ¢ together with not
necessarily invertible natural maps ZQ M - M ® Zresp. M@ X —> X Q@ M
that for arbitrary M € ¢ fulfil certain (hexagon) compatibilities in a customary
sense, and commuting pair refers to the case where these two maps coincide
on Z ® X, see §A.1 for a more precise definition.

That these central objects need further structure such as a multiplication
resp. comultiplication in order to define a Gerstenhaber algebra on their Ext
groups becomes clear, e.g., when observing that the usual Yoneda product is
not an internal operation on Ext« (X, Z).

In §1, we motivate the above conjecture by mimicking Schwede’s description
[Schw] of the Gerstenhaber algebra structure on the Hochschild cohomology of
an associative algebra through Retakh’s enhancement of Ext groups to &zt
spaces. More precisely, if we denote by # the splicing of two extensions in &zt
(that induces the Yoneda product on Ext groups), and if we assume X to be a
comonoid in 2" (%) with comultiplication A, and Z a monoid in 2°(%) with
multiplication y, we can consider both multiplication resp. comultiplication as
extensions of length zero, and so as objects in &zt (X, X ® X) and &2t%(Z ®
Z,7Z), respectively. Given two extensions E € &t (X, Z) and [ € &xtl (X, Z) of
length p resp. ¢, one can then consider the splicing

FuF = p#(E® Z)#(X @ F)#A,

and its connected component in gxtfgq(X , Z), that for convenience will be de-
noted by the same symbol:

EuT emért (X, Z) ~ Ext (X, Y).

On top, if Moloch(E,F) denotes the truncated tensor product complex of two
extensions [ and [, one can devise the following loop in &2t5 (X, Z):
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p#Moloch(E, F)#A ¢

EUF = u#(E® 2)#(X ® )#Ax 1#(Z @ D)#(E® X)#Ax

n#(Z @ E)#(F ® X)#Ax FUE = u#(F® Z)#(X @ D)#Ax

\/

u#Moloch(F, E)#A

where the vertical arrows use in an essential way that X and Z form a com-
muting pair in the right and left weak centres of ¢, respectively.
Choosing £ U [ as a base point in £’xt%+q(X ,Z), this gives an element

{E,F} em (a7 9(X, Z),EUT) ~ ExtZF (X, 2).
This way, one has defined a degree zero cup product
u: ExtL (X, Z) x ExtL (X, Z) — ExtL (X, Z)
and a degree —1 bracket
{—, —}: Extb (X, Z) x ExtL (X, Z) — Ext2 71 (X, 2).

Unfortunately, even in the case of the category of bimodules over associative
algebras, this topological approach leaves one one step before the conclusion:
a proof that these operations define a Gerstenhaber algebra or the mere fact
these operations are bilinear remain elusive and no simpler argument than
those used in [Sh1] seems to be available to establish these facts in a purely
topological fashion.

In case of the category of bimodules over associative algebras, however,
there is a convenient mixed topological/algebraic approach developed in the al-
ready mentioned work [Schw] by Schwede, which leads to a transparent proof
of the fact that the cup product and the bracket obtained from a similar loop as
above indeed do endow the groups Ext 4. (A, A) of an associative algebra A with
a Gerstenhaber algebra structure: it is shown in op. cit. how to obtain an ex-
plicit description in terms of Hochschild cocycle representatives of the cup and
bracket operations (dictated by the geometry of &zt spaces) for which the Ger-
stenhaber algebra axioms can be directly checked, and which coincide with the
cup product and Lie bracket of the classical Gerstenhaber algebra structure on
Ext4-(A, A) as originally introduced in [Ge].

Following the mentioned approach, we will show how to extract a cocycle de-
scription for the cup and bracket operations derived from the geometry of &zt
spaces of a commuting pair (X, Z). As even an accurate construction will not
allow us here to obtain a proof for a Gerstenhaber algebra structure in full gen-
erality, we will be rather informal in this derivation, omitting all the needed
technical (mainly categorical) assumptions in order to make the construction
completely rigorous. Yet, we will be accurate enough to be able to provide in
§2 an explicit cocycle description for the operations in the particular case that
% is the monoidal category of left U-modules for a left bialgebroid (U, A). In
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terms of this cocycle description we shall explicitly exhibit the Gerstenhaber
algebra structure, thus turning the above Conjecture into Theorem 2.35:

Theorem (Theorem 2.35). Let (U, A) be a left bialgebroid, Z a braided com-
mutative monoid in the left weak centre of the monoidal category of left U-
modules, and X a braided cocommutative comonoid in its right weak cen-
tre such that (X, Z) constitutes a commuting pair. Then the cochain complex
Homy (Bar. (U, X), Z), computing Exty; (X, Z) for A-projective U, defines an op-
erad with multiplication, which induces a Gerstenhaber algebra structure on
the cohomology groups.

Taking U = A® and X =Y = A, this recovers the usual Gerstenhaber alge-
bra structure on the standard Hochschild cohomology of an associative algebra
A with coefficients in itself as a very particular case.

* 0k ok

Finding higher structures on chain or cochain complexes, or more specifi-
cally on cohomology groups such as Ext groups, has risen some interest in the
last two decades. For example, in [FaSo] the case for a Hopf algebra over a field
k was treated by identifying Ext}; (k, k) as a subalgebra of the Hochschild co-
homology Ext};. (H, H), where H is merely seen as a k-algebra. This has been
elaborated on in [Me] by establishing a duality relation to the Gerstenhaber
structure on Cotor groups using operadic techniques. Both approaches have
been generalised in [Ko] to bialgebroids using the centre construction, which,
in particular, allows to establish that the well-known isomorphism

Extyy (k,ad(H)) = Extye (H, H) ()

of k-modules is actually one of Gerstenhaber algebras. Here, ad(H) refers to H
itself seen as a left H-module with respect to the left adjoint action.

Independently from our work at hand, in the context of finite tensor cate-
gories, a Gerstenhaber algebra structure on Exté, (X, Z) defined through a co-
product on X, a product on Z, and the respective lifts of these structure to the
monoidal center, appeared in Section 3 of the first (arXiv) version of [SchW1],
compare [SchW2] as well for a separate treatment by the same authors. This
provides a vast class of examples with applications relevant in quantum topol-
ogy. In particular, due to the finiteness assumption on the tensor category, one
has distinguished choices for X and Z, in addition to the monoidal unit, given
by the canonical coend and the canonical end, respectively. Among the applica-
tions, see [SchW2, Ex. 5.10], one recovers (}) for a finite dimensional quantum
group or Hopf algebra.

However, as the result in [Ko] shows, a finiteness assumption is not needed
in order for an isomorphism of Gerstenhaber algebras as in (f) to hold, and
hence one obtains a large class of examples from infinite dimensional quan-
tum groups. Other interesting infinite dimensional examples include, in
the same spirit, Exty (coad(H),k) or, from a somewhat different viewpoint,
Exthm,q)(k, H(H, G)) for a generalised Heisenberg double 7 (H, G) over a gen-
eralised Drinfel’d double D(H, G) for two arbitrary Hopf algebras H and G, as
detailed in §3. Crossing braided commutative monoids in the monoidal cen-
tre of the category of H-modules with the Hopf algebra H in question leads to
another class of examples related to left Hopf algebroids.

* 0k ok
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Throughout the whole text k will be a commutative ring, of characteristic
zero if need be. Unadorned tensor products are not to be understood over k but
rather denote the product in a monoidal category.

1. OPERATIONS IN EXTENSION CATEGORIES

We begin by recalling, in an informal way, the basic definitions of the &t
spaces we are going to use in the construction of the cup product and the
bracket operation on Ext groups. Our aim here is not to provide a rigorous
construction but rather to fix notation and orient the reader. Details on the
formal construction and proofs of the statements can be found, e.g., in the orig-
inal works by Retakh on &zt spaces [Re] or by Neeman and Retakh [NeRe].

We will be working in a fixed monoidal category ¢ and will denote the ob-
jects of € by the symbols X,Y, Z,.... We will also assume ¥ is close enough
to an abelian category with enough projectives so that expressions like “zero
object”, “short exact sequence” or “projective resolution” make sense in 4. In
particular, in ¥ we will have a notion of an extension of an object X by an
object Y, meaning by this a short exact sequence of the form

0-Y->FEF—-X-—>0

in €. Iterating this construction, one gets the notion of a p-fold extension of an
object X by an object Y, which will be denoted by

E: 0-Y —>E, - —FEj—X—0,

so that
0 ifig -2
X ifi=-1
E,=<FE ifo<i<p-1
Y ifi=p
0 ifizp+1.

The maps E; — E;_; will be denoted by dg ; or simply by d;, dg, or still simpler
by d when no or not much confusion is likely to arise. Occasionally, to make
it manifest that X is in place or degree —1 and Y in place or degree p, we
will formally use the degree j shift symbol [j], familiar from the theory of
triangulated categories, and will write a p-fold extension of X by Y as

E: 0-Y[pl—>Ep1— - — Ey— X[-1] 0.

In other words, we will be implicitly assuming that objects without an index
are placed in degree zero. More generally, an object denoted, for example, E;[j],
is to be thought as placed in degree i + j.

IfE and F are two p-fold extensions of X by Y, a morphism f: E — F of p-fold
extensions is defined as a commutative diagram

0—)Y—)Ep_1 E1 EQ X 0 (11)
B
0—)Y—>Fp_1 F1 FQ X 0

that is, where the leftmost and rightmost vertical arrows are the identity. If
f,9: E — [ are two morphisms of p-fold extensions, then a chain homotopy
between f and g is a degree +1 morphism s of graded objects from E to F such
that f — g = [d,s]. Explicitly, remembering that both f and ¢ are identities
in degree —1 and p and that both E; and F; are zero outside the range [—1, p|,
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this amounts to the datum of a family of morphisms s;: E;, — F;,1, for i =
—1,0,1,...,p, such that

dOOS_1 = 0,
dos;+s;_10d fi—g; for0<i<p-—1,
Spflodpfl = 0.

Similarly, one defines homotopies between homotopies, etc. This way, one de-
fines an co-category Ext’ (X,Y’) whose objects are p-fold extensions of X by Y,
whose 1-morphisms are morphisms of p-fold extensions, whose 2-morphisms
are homotopies between morphisms, and so on. The space &zt (X,Y) is de-
fined as the topological realisation of the simplicial set defined by this co-
category Extf (X,Y), that is, the simplicial set having the k-morphisms in
Ext? (X,Y) as k-simplices. For p = 0, the space Ext%(X,Y) is defined as the
set Homy (X,Y) endowed with discrete topology. The two basic properties of
the &at spaces that we shall need and are going to use are the following re-
lations to Ext groups in %, which run under the name Retakh’s isomorphism
[Re, NeRe]:

mo&att,(X,Y) = Ext (X,Y),
m(8xth, (X,Y);E) = Extl ' (X,Y),

where the first line can be taken as a definition of the Ext group Ext’, (X,Y).
When ¥ is an abelian category with enough projectives, this is equivalent to
the classical definition of the Ext groups in %'.

1.1. The hash operation. The hash operation, also known as splicing, is a
concatenation type operation

#: &t (Y, Z) x Ext (X,Y) — Extl (X, Z)
on &zt spaces, implementing the Yoneda product
o: ExtL, (Y, 2) ® ExtL(X,Y) — Ext2 (X, Z)

on Ext groups by passing to path connected components. It is defined in slightly
different ways depending on whether p or ¢ are zero or not. When both p
and ¢ are zero, &2t (Y, Z), &t (X,Y), and &zt (X, Z) are just the hom sets
Home (Y, Z), Home (X,Y) and Homg (X, Z), respectively, and the hash opera-
tion in this case is the composition of homomorphisms.

When p > 0 and ¢ = 0, we are considering a hash of the form E#[F, where
F: X — Y is a morphism. It is defined as the top horizontal row of the commu-
tative diagram

0 A Ep,1 El E() Xy X—X—0 (12)
| || )
0 Z E, Ey Ey Y 0

where the rightmost commutative square is a pullback and the map E; —
Ey xy X is induced by the commutative diagram

E Y x

|k

EFy—Y

and by the universal property of the pullback.
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In case p = 0 and ¢ > 0, dually, with E: Y — Z a morphism, E#[F is defined
as the bottom horizontal row of the commutative diagram

0 Y Fyy Fy_s Fo X 0 (13)
ol | |
0—)2—)ZI_Jqu_1 Fq_g FQ X 0

where the leftmost commutative square is a pushout.

It remains to be said what happens when both p and ¢ are greater than
zero. In this case, points in the spaces &zt%, (Y, Z) and &zt (X,Y) are iterated
extensions

E: 0>Z—>E,q—-—FE—Y >0,
and

F: 0-Y —>F, 1 — - —F—X—0,
respectively. Their hash E#F is the iterated extension given by the top hori-
zontal row in the concatenation

E#F: 0 —=2Z2—FE, 41— - —FE——F,_1— - —F—X—0.

Ly

Notice that the hash composition is associative (up to natural isomorphisms)

and unital with units given by the compositions X <5 1 -% Z, where 1 is
the unit object of ¥ and ex and 1 are the counit of X and the unit of Z,
respectively.

Remark 1.1. In the above concatenation, the lower indices no more corre-
spond to the position in the sequence of iterated extensions. This may be quite
confusing, so occasionally we will formally use the shift operator [1] of trian-
gulated categories as a symbol to restore the correct correspondence. That is,
the iterated extension

E: 0-Y—>E, 11— --—>E—>X—->0
will be rewritten as
E: ()—»Y'[])]—»E'p_l—>---—>E’O—>AX[—1]—>O7

to stress that X is in position (or degree) —1 in the sequence, and Y in position
p. With this notation, the iterated extension F#[F will read

0—Z[p+4q] = Ep-ilg] = -+ — Eolq] = Fy—1 — -+ — Fy = X[-1] = 0.
Yet, when no confusion can arise, we will still adopt the less cumbersome
0>Z—>Ey 14— —>E —F_1—- —F—X—0.
1.2. The tensor product. By using the monoidal structure in ¥ and the hash
composition, one has (at least) four natural ways of defining a map
Extl (X, Z) x Extl(X,Z) - Ent (X @ X, Z® Z).

Namely, given E in &zt?,. (X, Z) and F in &xtd (X, Z), one can use the hash com-
position jointly with the tensor product to form
@) (E®2)#(X ),
@) (Zoh#(E®X),
@) F®Z2)#(X L),
(v) (Z@E)#(F ® X).
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Both hashing and tensoring are well defined on path connected components
and so the above define four operations

Extl (X, Z) x ExtL(X,Z) - Ext (X ® X, Z ® Z).

Quite remarkably, the two operations induced on the Ext groups by (i) and (ii)
coincide, as well as the two operations induced by (iii) and (iv). To see this, we
need to exhibit a path in £&2t27(X ® X, Z ® Z) between (E® Z)#(X ® ) and
(Z@®F)#(E® X). We show how to do this in case p, ¢ > 1, leaving to the reader
the not particularly compelling task of completing the proof in case p or ¢ are
equal to zero. An easy way of realising such a path is as a span

AE,F

(E®Z)#(X ®T) Moloch(E,F) —= — (Z@F)#(E® X), (1.4)

where Moloch(E, F) is the totalisation of the diagram obtained by partially
removing the top row and the rightmost column of E ® [ as follows:

X®X

7

ZQF)y —— LB, 1 ®F Ey® Fy

Z@Fq,1 —)Ep,1 ®Fq,1 —>"'—>E()®qul

ZQ7Z——E, 102 Ey®Z

One easily checks by explicit computation in the top two degrees and by the
Kiinneth isomorphism in all the lower degrees that Moloch(E, [) is indeed an
object in &2t (X @ X, Z ® Z).

Remark 1.2. When X = 1« is the unit object of the monoidal category ¢, the
complex Moloch(E, F) is the tensor product of E and F as augmented complexes
considered in [Schw].

To produce the span (1.4), notice that the iterated extension (EQ Z)#(X ®F)
is given by the top horizontal row in

ZQZ—=Ep 1®Z— - —-FEQ@L——XQF 11— = XQ®Fh—>X®X.
\xez—
(1.5)

In the spirit of Remark 1.1, one can use the shift operator to have a better
control of positions or degrees and write this as

Z[pl®Zlq] — Ey1®Zlq) — - — Bo®Z[q] = X@Fy—1 — - — X®Fp — X®X[1].

Similarly, the iterated extension (Z®F)#(E® X) is given by the top horizontal
row in

ZQZ—=ZQF; 11— = ZQFh——FE, 1 X— - =2 EQX = X®X,

k—)Z@XJ
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that is, in the degree-shifted notation,
Zp]l®Z[q] — Z[p]®F¢-1 — -+ = Z[p]®Fo > Ep-1®X — -+ > Ei®X - XX [-1].

These combine with Moloch(E, F) into the single commutative diagram

et

Z®FQ4)EP,1®F() Fy@ Fh —— X ® Fjy

[ l I I I

Z@Fq,1 —)Ep,1 ®Fq,1 —)"'—>E()®Fq,1 —)X@Fq,1

IQ7———E, Q2 E®F—
The morphism
Aer: Moloch(E,F) - (EQ Z)#(X ®F) (1.6)
is then given by the natural projection
Moloch(E, F), = Ey—, ® Z|q]
for ¢ < k < q + p, by the composition
Moloch(E,F), 5 Ey® Fr, — X ® F},
for 0 < k < ¢ — 1, and by the identity of X ® X[—1] for ¥ = —1. The morphism
0, Moloch(E,F) - (ZQF)#(E® X) (1.7
is defined analogously, that is, by the natural projection
Moloch(E, ), 5 (—1)P*"?Z[p]| ® Fi._,
for p < k < p + g, by the composition
Moloch(E,F), 5 E,® Fy — B, ® X

for 0 < k < p — 1, and again by the identity of X ® X[—1] for k = —1.
Exchanging the roles of £ and [, we obtain the span

AFE OF ,E

(F®2)#(X QL) (ZeB)#([F @ X),

showing that (iii) and (iv) above define the same map at the level of Ext groups.

We would also like (Z ® F)#(E® X) and (F ® Z)#(X ® E) to lie in the same
path connected component so that all of the four operations would coincide at
the level of Ext groups. As the two expressions we want to compare only differ
by the order of the factors in the tensor products, a natural requirement to do
in order to have them connected by a morphism in éa:ctfj;q(X ®X,Z® Z)is to
assume that Z and X are in the (left resp. right) centre of ¢, that is, come with
natural maps

Moloch(F, E)

07,-:2@(-) > (-)®Z,
Txi (H)®X > X®(-),
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the (left resp. right) braidings. With this assumption, we obtain the diagram
(a|T)r e

Z2QZ—=7ZQF, 11— = ZQF)———E_ 1 QX — - = ER/X —X®X

0z.z 0Z,Fq_1 0Z,Fy p—1,X TEg, X

o
L.
N

TX,X

Z2QZ —=F 1Q@Z—= - —FHQ®Z——XQF, 1 — - = XQE —-X®X.

(1.8)
where, thanks to the naturality of the braidings o, _ and 7_ ., everything
commutes except possibly the small diagram in the middle with the two arrows
from Z ® X to X ® Z. In order to have this part commute as well, we require

Oz,x = Tz,x,

thatis, (X, Z) is a commuting pair in the sense of Definition A.2. Nevertheless,
even when this is fulfilled and so (o|7); ¢ is a commutative diagram, we are
not generally done yet: the diagram (o|7)s does not define a morphism in
gxtfgq(X ® X,Z® Z), see (1.1), as the left- and rightmost vertical “boundary”
morphisms o, , and 7 x are generally not the identity morphisms. We are
going to show how to circumvent this problem by introducing a variant of the
above construction in the following section.

1.3. The cup product. Assume now not only that (X, 7) is a commuting pair
in % in the sense of Definition A.2, but also that Z be a (braided) commutative
monoid in the braided monoidal category 2°*(%) and X a (braided) commuta-
tive monoid in the braided monoidal category 2 (%)°P. This allows for a cup
product

U Exth (X, Z) x Entl (X, Z) — Exth (X, Z)
as follows. Let
Ay: X -X®X and W ZRZ—7Z

be the morphisms defining the (co)monoid structures on X and Z, respectively.
Then, for E in &zt?, (X, Z) and F in &zt (X, Z), the cup product E U F is defined
as

EuF = pu#(E® Z)#(X ® F)#Ax.
Passing to path connected components, this yields a map
u: Ext? (X, Z) x ExtL (X, Z) — ExtL (X, Z).
We already know from the results in §1.2 that E U [ is connected to
pH#(Z QF)H#(E® X)#Ax

via the span through u#Moloch(E, F)#A«. But now there is more: since Z
and X are (braided) commutative monoids in 4" and in %°P, respectively, the
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commutative diagrams

X®X YACYA
"k /

TX,X X Z 0Z.7Z
e N

X®X VAYA

precisely cure the issue with the boundary morphisms in (1.8), changing the
boundary morphisms oz 7 and 7x, x into identity morphisms. Taking the rele-
vant pullbacks and pushouts the diagram (1.8) induces a morphism

(017)set H#(Z @ F)H(E @ X)#A, HIDEFES | i(F @ Z)#(X @ E)#A

in &2t (X, 2).

1.4. The mystic hexagon. With the assumptions of the previous section, we
have a loop in &zt2, (X, Z) given by

 p#Moloch(E, F)#Ax (1.9)
Aer Ger
EUF = u#(EQ Z)#(X @F)#Ax p#(Z @ F)#(EQ X)#Ax
(oT)e.r (o1)5 e
p#(Z @ E)#(F @ X)#Ax FUE=pu#([ @ 2)#(X @ E)#Ax

@[F,[E %

p#Moloch(F, E)#A ¢
where we wrote

5‘[[,&' = UFNer FAx and Oc,r = UH#0e s #Ax,

respectively. Choosing E U F as a base point, this defines an element in the
based loop space Q[Eu[p@@xt%”(X , 7). Passing to connected components, we ob-
tain a map

{,}: Extl(X,Z) x ExtL(X,Z) —» Ext} (X, Z).

1.5. Cocycle representatives. Itis often convenient to represent an element
Ein &xtt, (X, Z) by a cocycle representative ¢. By this one means the following:
fix a projective resolution P¥ = X of the object X and for p = 0 consider the
composition

$o: PX > X5 27, (1.10)
while for p > 0 one considers a chain map ¢: PX — E which is the identity over
X, that is, a commutative diagram of the form

R e ¢ 0 (1.11)

A R

0 Z—"E, 4. . — 5K X 0
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The chain map ¢ exists and is unique up to homotopy by the projectivity of
PX. Moreover, since P¥ is a resolution, the datum of the homotopy class of
¢ is equivalent to the datum of the cohomology class of ¢, in the complex
Home (PX, Z). For this reason one usually identifies p-cocycles with closed ele-
ments in Home (P,X, Z).

Remark 1.3. To get a more uniform presentation, 0-cocycle representatives
will be realised by commutative diagrams as follows:

P ——X
¢0J J[E
Z Z

It will be convenient to consider more generally commutative diagrams of
the form

T e N A ¢ 0 (1.12)
l d’pl Jd’pl d’ol J/f
0o—t sz—"pg, 4, L ip-TLX 0

for an arbitrary morphism f: X — X. We will call these diagrams f-twisted
cocycle representatives or f-twisted chain maps, or still chain maps over f. In
degree zero, an f-twisted 0-cocycle representative for E will be defined as a
commutative diagram of the form

P ——X (1.13)
¢0l l[EOf
Z Z

Remark 1.4. It is immediate from the definition of twisted cocycle representa-
tives that if ¢: PX — [ is an f-twisted cocycle representative and v: PX — PX
is a morphism of chain complexes, then ¢ o v: PX — [E is a (f o y_;)-twisted
cocycle representative, where v_;: X — X is the degree —1 component of ~; if
¢: PX — Eis an f-twisted cocycle representative and v: E — F is a morphism
of chain complexes, then yo¢: PX — [ is a (y_; o f)-twisted cocycle representa-
tive, where 7_1: X — X is the degree —1 component of 4. Another immediate
consequence of the definition (and of the additivity of our category %) is that if
¢,v: PX — [ are an f-twisted and a g-twisted cocycle representative, respec-
tively, then ¢ + ¢ is an (f + g)-twisted cocycle representative.

1.6. The cup product in terms of cocycle representatives. If ¢ and ¢ are
cocycle representatives for E € &xt?,(Y, Z) and F € &xt (X,Y), one can easily
write a cocycle representative ¢#1 for E#F. As for the #-operation on the &t
spaces, we will need to distinguish four cases. When p and ¢ are zero, E and
[ are morphisms from Y to Z and from X to Y, respectively, and their rep-
resentative 0-cocycles are the compositions Py — Y L Zand P — X Ly,
respectively. In this case, ¢#1 is simply the composition

rFo-xLyvLz

When p > 0 and ¢ = 0, one considers the commutative diagram
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PX PX PX, PX P ——Pf —X——0
<p+1J CPJ Cpll ClJ Col on J[F
PY Py Py, PY Py Y =——=Y ——0
l ‘bpl ¢pll ¢>1l ¢>0l
0 z Ep_q e E, Ey Y Y ——0

~_

where the top vertical arrows are defined by the projectivity of PX. By the
universal property of the pullback, we obtain a commutative diagram

PY, —— BX —— BY, P P ———X 0
l <¢#w>pJ <¢#w>pll <¢#w>1J (¢#1/))0J H
0 Z By - B pres X — X ——50
L] |
0 Z Ep1 E Ey Y 0

whose top part exhibits a cocycle representative ¢#+ for E#F. Notice that for
every i > 0 one has (¢p#v); = ¢; o (;, while for i = 0 that (¢#v)o is the lift of
¢o © (o to the fibre product EyPe=x%, X, that is, (¢o o (o, ). Similarly, and more
directly, when p = 0 and ¢ > 0, one considers the commutative diagram

PX, — P =P} PX, = P B —— X ——0
{ o ]
Py Py Y Fy e By Fy— X —0
| 4 4 | | ]
00— Z=——=Z——Zuy Fyy — —— R Fp—— X ——0

\_/

whose composite vertical arrows are a cocycle representative ¢#) for E#4F. In
degrees from 0 to ¢ — 2, one has (¢#v); = 1;, whereas in degree ¢ — 1 one sees
that (¢#1),—1 is the class of (0,1,_1) in the quotient of Z ® F,_; by the image
of Y, and in the top degree ¢, one has (¢#1)), = ¢ © (o = E o 1.

Finally, in case p,q > 0, one uses the projectivity of Px to define the maps

Gi: P, — P, making the diagram
TN
Pr,— PN, — —PX—=—PY—PY — . — P —X
le lel lCo J% J%l lwo H
Py Py, i P Y~ Fyy s g X
o] o | ||
Z Ep s Eo Y Fyopy—s - — Fp— X

~_
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commute. Since the cup product is a composition of #-products, the above rules
yield, in particular, an expression for a cocycle representative ¢ u v for the
product E u [, given cocycle representatives ¢ and ¢ for E and [, respectively.

Remark 1.5. By verbatim repeating the above construction of the case p > 0
and ¢ = 0, one sees that if ¢ is an f-twisted cocycle representative for [ and g
a cocycle representative for a morphism F: X — Y, then

PX, —PX —PX PX X —= ,x 0
J (¢#1/))pJ (d’#w)le (¢#¢)1l (¢#¢)ol H
(d,O) fo[f»_
0 z By B Bors T X — 5 X ——0

is a cocycle representative for E#(f o ), where (¢#1)o = (¢ o (o,€) and
(p#1)); = ¢; o ¢; for every i > 0.

1.7. The bracket { , } in terms of cocycle representatives. Let ¢ and ¢ be
two cocycle representatives for [E] € Extf, (X, Z) and [F] € Ext (X, Z), respec-
tively, and as before assume that (X, Z) is a commuting pair in the sense of
Definition A.2, where X is a (braided) commutative monoid in 2" (U-Mod)°P
and Z a (braided) commutative monoid in 2°*(U-Mod).

In order to associate with ¢ and 1 a cocycle representative {¢, ¢} represent-
ing the element

{[E],[F]} € Ext2 7N (X, Z) = m &t (X, Z),

defined by the loop (1.9) based at E u [, one applies the following procedure.
For any n > 0, one considers the (higher) categories %\/zt%(X , Z), whose objects
are pairs (G, ), where G is an object in &zt2 (X, Z) and ¢: P¥ — G is a cocycle
representing G. Morphisms between (G, ¢1) and (Gs, ¢2) are pairs (f, h) con-
sisting of a morphism f: G; — G, in &zt (X, Z) and of a homotopy h between
fopr and 2, that is, a degree —1 map h: PX — Gy such that [d, h] = ¢2 — fops.
Higher morphisms are defined recursively in a similar way. One has a natural
forgetful functor
Et(X, 7) — Extn(X, Z)

whose fibre at the point G is the hom space Homgyin (x,2) (PX,0). Since PX is a
resolution of X, it is in particular an acyclic complex and so this hom space is
contractible. Therefore, the projection %%(X ,Z) — &ty (X, Z) is a homotopy
equivalence and one can read the homotopy groups of &zt”. (X, Z) in terms of
the homotopy groups of %%(X ,Z). Moreover, %%(X Z) — &ty (X, Z) is
a flat fibration: every path in &zt (X,Z) has a canonical horizontal lift in
%%(X ,Z), once a lift for the starting point is chosen: if (G, ¢1) is a point in
the fibre over G, and f: G; — Gz a morphism in &2t% (X, Z), then we have the
canonical lift

(f,0): (G1,91) = (G2, f o).
This gives a way to encode a loop v in &zt (X, Z) based at a point G into a
homotopy operator, i.e., a degree —1 map h.: PX — G, once a representative
cocycle PX — G for G is chosen: one horizontally lifts the loop to a path in
%%(X , Z) with starting point (G, ¢). The final point of this path will be a
point (G, ¢) and, since they both represent the same element [G] in Ext (X, Z),
the two cocycle representatives ¢ and ¢ will be homotopic via a degree —1 map
h.: PX — G, which is unique up to higher homotopies. The homotopy class
[hy] is the element in Ext%_1 (X, Z) representing the loop ~.
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We now apply this abstract nonsense to the loop (1.9). Starting with two
cocycle representatives ¢ and v for | and [, respectively, one can form a repre-
sentative cocycle ¢ U ¢ for E U F and exhibit a representative cocycle

¢ Ogth: PX — p#tMoloch(E, F)#A

for u#Moloch(E, F)#A such that ¢ U ) = Acr o (¢ Ogtb). The first step in
the horizontal lift of the loop consists in lifting A ;. This is immediate: the
horizontal lift is

(u#Moloch([E, F)#Ax, ¢ Og 1/1) M ([E ulF,¢u 1/1)

Also the subsequent horizontal lift of (o|7), ;. © g+ is immediate: it is

((o7)s g0 £.0) —~—
_

(n#Moloch(E, F)#Ax, ¢ O ) (FUE (0]7); e 0 0es 0 (¢ O ¥)).

The next step is less trivial: one has to horizontally lift S\M in such a way that

—_—

its endpoint matches the endpoint of ((J|T)M o g¢,¢,0). That is, one has to find
a cocycle representative 7 for u#Moloch(F, E)#A « such that

—_

5\[F,[E © ’%qb,w = (O—|T)m,[5 © @[E,[F © (¢ Ug 1/})
Writing R¢ 4 = ¥ Og ¢ + €44, this becomes the equation

e © (1 Og ¢ + E5,p) = (0]7), 1 © e © (¢ T ).

Assuming one has been able (or lucky) enough to find an ¢ solving this equa-
tion, then one has the immediate horizontal lift

}\;) O0F,E» T ~ ~ ~
(1 Moloch(F, E)x, e 6420,0) W= <), (£ BT, o 06 64 20.).
This concludes the procedure of horizontally lifting the loop based at E u [, so
the corresponding element {¢, ¢} in Extf{,}"“q_1 (X, Z) is represented by a homo-
topy 3(¢, ¥) between (o|7), . 0 dr,e(¢ Og ¢ + €,4) and Aer 0 (¢ Og 1), taken up to
higher homotopies. Writing

71(0,9) = Aes (6 O 1) — (017), 1 © bre (1) O & + ),

one therefore sees that the element {¢, ¢} is represented by the homotopy class
of a solution $(¢, ) of the equation 7(¢,v) = [d, 5(¢, )], that is, by the coho-
mology class of the closed element 5,1 ,_1(¢, %) in Hom%(Pp)qu_l, Z).

To explicitly compute the element 5, ,_1(¢,), one can argue as follows. If
a is a cocycle representative for an object H in &2t2 % (X ® X, Z ® Z), then by
the constructions from §1.6 one writes an explicit formula for a cocycle repre-
sentative a for the object G = u#H#A , in &2t579(X, Z), which can be straight-

forwardly extended to arbitrary collections of maps
. pX®X . pX®X
{Bk- Pk ®X _, Hk}Oskéerq and {l/k. Pk — Hk"’l}()gkéerqfl'
Doing this, one obtains a graded linear map
®,: @ Homg(PF®Y Hy) » @ Homeg(PYX,Gh).
k=—1 k=—1

Looking at the explicit expression for ®, it is rather easy to define a graded
linear map

r=1 r—1
U,: @ Homg(PYF®Y Hyyr) — @ Homeg(PY,Grir)
k=—1 k=—1
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such that

Writing
n(e, ) = )\Lw((¢ Ug ¥) © 7') (0]T)e,r o oF, E((w Ug @ + €4

) )
where ¢ Ug ¥ is a T-twisted cocycle representative for Moloch(E, F), the map
1 Ug @ is a T-twisted cocycle representative for Moloch(F, E), and e(¢7, Y) = €pup
is a O-twisted cocycle representative for Moloch(F, E), then ®(n(¢, 1)) = 7(¢, )
and the defining equation 7j(¢, 1) = [d, $(¢, ¢)] for 5(¢, V) reduces to

(n(¢, 1)) = [d, 5(¢,9)].
If 5(¢,¢) € ALY, Homey (PX®X ((E® Z)#(X ® F))jy1) is tailored in such a
way that ®([d, s(¢,v)]) = ®(n(é,v)), then one can take 5(¢,v) = V(s(p,)),
and deduces that {¢, 1} is explicitly represented by the cohomology class of the
closed element W, 1(sp+q-1(¢, %)) in Home (PN, 1, Z).
In the next section, we will explicitly apply what we just developed.

2. AN EXPLICIT APPROACH FOR BIALGEBROIDS

In this section, we shall describe how the aforementioned theory for exten-
sion categories can be made explicit in case of the category of left modules over
a left bialgebroid, endowing the corresponding Ext groups with a Gerstenhaber
algebra structure. To this end, a short account on bialgebroids (U, A) and on
the respective notions of left and right weak centre in relation to (the categories
of) Yetter-Drinfel’d modules can be found in Appendix §A.2.

The main goal in the final part of this section (§2.7) will be to see that
Exty (X, Z) is a Gerstenhaber algebra if (X, Z) is a commuting pair in the sense
of Definition A.2. There, the explicit proof works along standard lines, that is,
one shows that the explicit cochain complex Homy (Bar, (U, X), Z) computing
Exty (X, Z) is an operad with multiplication, with the bedevilling difference
that the operadic composition is somewhat complicated and not defining any
endomorphism operad structure.

2.1. Ext groups and extension categories over bialgebroid modules.
Let (U, A) be a left bialgebroid. For simplicity, we will always and tacitly as-
sume that .U, is left-right projective over A, that is, projective with respect to
both the left A-action » and the right A-action «, see (A.1) for notation.

Let U-Mod be the monoidal category of left U-modules. In generalising
Schwede’s approach from the Hochschild case of associative algebras to bialge-
broids, that is, in passing from A°-Mod to U-Mod, we are facing the same kind
of problems with respect to the exactness of the monoidal category in question.
More precisely, the tensor product £ ®4 F of two extensions in U-Mod is in
general not exact but it is so if E and [ are taken in the full subcategory &zt;;
of the extension category &xty that consists of those extensions in which all
U-modules are left-right projective over A. One can then generalise Lemma
2.1 in [Schw] in a straightforward way and show that the inclusion of &zt
into &rty induces a homotopy equivalence on classifying spaces. We omit the
technical details here but feel therefore entitled to not explicitly distinguish
between &zt;; and Sxty in what follows.

As expounded in Appendix §A.2, a standard result [Sch, Prop. 4.4] estab-
lishes an equivalence of braided monoidal categories between the left weak
centre 2‘(U-Mod) and YYD, the category of left-left Yetter-Drinfel’d mod-
ules; likewise between Z"(U-Mod) and ,;YDV, the category of left-right Yetter-
Drinfel’d modules. In the former case, this is done by assigning to any Z € YYD



BRACKETS AND PRODUCTS FROM CENTRES IN EXTENSION CATEGORIES 17

the underlying left module Z € U-Mod along with what we might call a left
braiding

0=0zu:2Q@aM —>M®aZ, zQ@am— z_1ym®a z() (2.1)

for any M € U-Mod, to form an object (Z,0) in 2°*(U-Mod). Likewise, assign
to any X € 2" (U-Mod) its underlying left module X € U-Mod along with the
right braiding

T=TM7Z:M®AX—>X®AM, m@Ax'—»x[O](@Aac[l]m (2.2)

for any M € U-Mod, to give an object (X, 7) in Z"(U-Mod), see Appendix A
for more details and all notation used in what follows.
A cochain complex computing Ext}; (X, Z) is given by (C*(U, X, Z), §), where

C™(U, X, Z) = Homy (Bar, (U, X), 2), (2.3)

and
Bar, (U, X) = (U, )®4 " @ 400 X,

with Bar_; (U, X) = X, is the bar resolution of the left U-module X, seen as
a right A-module X, as in (A.3), with differential d = )} ,(—1)'d; induced by
the multiplication in U in the first n — 1 faces d; and the left U-action

L:Barg(U,X) = .U Qa0 X0 » X =Bar_1(U,X), u®uer & +— ux (2.4)

on X that induces the last face map d,,. In a standard fashion, we then simply
have § := d*. Observe that the tensor product used in the bar resolution is not
the monoidal one (A.4) of U-Mod (in which factorwise multiplication would not
be defined), but rather Bar, (U, X) € U-Mod by left multiplication on the first
tensor factor.

The Hochschild case for an associative k-algebra A and hence Schwede’s
construction in [Schw] is reobtained by setting U = A® aswellas X = Z = A
in what follows.

To connect the context of a left bialgebroid to our general observations in
§1, let us write down in detail what the concrete setting is here: for two exten-
sions E in &2t} (X, Z) and F in &xt}; (X, Z), respectively, consider chain maps
¢: Bar(U,X) — E and ¢: Bar(U, X) — [ over the identity of X. With respect to
the bar resolution, Diagram (1.11) then takes the form

0—)Barp(U X) —)Barp 1(U, X)—) —)Baro(U X) —Liyx— 50 @5

T N

0o—2% 7 - Ep g —2 pp— 0

where L is the left U-action on X as in (2.4); likewise for ¢ and F.
Observe that with respect to the differential 6 = d* of the cochain complex
C™(U, X, Z) from (2.3), the commutativity of this diagram can be expressed as

i[E e} gf)p = (bp*l od= 5¢p*15 do gf)j = (bjfl od= 5@/)]',1, (26)

forj =1,...,p—1, and likewise for ). In particular, the first square in Diagram
(2.5) implies that

¢P © d = 6¢P = 07 (27)

that is, ¢, is a cocycle (and likewise for 1),), whereas the last square reads

De o ¢o = L. (2.8)
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2.2. The external cup product. As above, let (Z, o) be an object in the left

weak centre 2/(U-Mod) ~ YYD and (X, 7) an object in the right weak centre
Z"(U-Mod) ~ ,YDY, and consider again two extensions

E:0—>Z-5E, 1%, . % E 25X -0,

Fr0>2Z5F 1% LR X0,
of U-modules, along with two families of morphisms ¢; € C7(U, X, E;) for j =
0,...,pand ¢; € C/(U, X, F;) fori = 0,...,q as in Diagram 2.5.
For these, one can define a sort of 1-product, or external cup product

Ug: CI(U, X, E;))@CHU, X, F;) — CIT(U,X®4X,E;®aF))

fori=1,...,pand j =1,...,q, by defining

(9; Vg wi)(uo, oW m®a m’)
= @, (U?1)7 e 7U21)7 (uz;;l .. .ugg_)zm/)[o]) (2.9)
®a 'l/)z (U(()Q) s ’U,z2) (u{;)l cee u%;)zm/)[lb uz;r)l, ceey U%;r)z, m),

where the Sweedler notation in square brackets refers to the right U-coaction
on X, see §A.2.4 for notational details.

Remark 2.1. Observe that
CjJri(U, X ®4 X, Ej ®a E) c C’J-JFZ-(U7 X ®a )(7 MOlOCh([E, [F))

for 7,5 > 0, so we may regard ug as a map into the latter. In other words,
given two chain maps ¢ and ¢ as above, the operation ug defines a collection
of linear morphisms

(¢ Ug ¥)1: Barg(U, X ®4 X) — Moloch(E, F), k>0,
which we extend to degree —1 by setting (p ug¥)—1 =7: X ®4 X > X ®4 X.

Remark 2.2. By functoriality of the tensor product and the (left-right) YD
condition (A.6), it is not difficult to see that the map 7,: Bar,(U, X ®4 X) —
Bar, (U, X ®4 X) is a morphism of complexes, where 7_1 = 7.

Lemma 2.3. Let ¢; € C/(U, X, E;) and ¢; € C'(U, X, Z) and as before let § = d*
be the pullback of the differential of the bar resolution. Then ¢ is a derivation
of the external cup product (2.9), that is, the graded Leibniz rule

5(pj Ug i) = 665 Ug Vi + (—1)1p; Ug 09; (2.10)
holds for any i,j = 0.
Proof. This is a direct verification using (2.9), the explicit form of the differen-
tial in the bar resolution as described below (2.3), the fact that the coproduct

is a ring morphism, along with the monoidal structure (A.4) in U-Mod and X
as an object in the weak right centre of U-Mod, that is, that the (left-right) YD
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condition (A.6) is true. Indeed, one has
(6(¢j Ug wi))(uo, T m®a m') = (¢; Ug zpi)(d(uo, T m®a m'))
j+i L
= 3 (=D)*(¢; g i) (u®, ..., uFuFT I m @4 m)
k=0
(-1 () U ) (W, @4 g )
J 1 2 1
= 2 (=D ¢ (ulty, - s ulnuih - ul (ulz? - ulg T m o)
k=0
0 uFs kit +1,, j+2 j+i+1 j+2 +it1
®a Yi(uly) - ulnug) e uls) (s ugy T m ) ug e m)
j+i . . L
k +1 k k+1 +i+1
2 D (i () u ey M)
0 j j+1 k k+1 j+i+1 j+1 k k+1 j+i+1
®a i (uge -y (ugz) - uyuE) T ML) s UOUG) U
j+it1 0 j 41 j+it1
+(=1)’ ?; (u(l), EE 7%) (ug Uig)y * ’“Zz) m/)[O])
0 ] j +i+1 / j+1 +1 j+i+1
®avi(u(z) - i) (“@) ) M)l Uy - fl) sugy ™ m)
On the other hand,
(0 Ue ¥i)(u’, ..., o’ T m@am)
0 j+1 j+2 j+i4+1
= 0¢; (u(l), R uff) , (uf;) . ug) + m')[o])
0 j+1 j+2 1 j+2 i+i+1
®a i (uy) - ufy) (uga)” i) m g us o u T m)

J
k k k+1 +2 +i+1
k;()(—l) (bj (u?1)7 N ’LL( )U,(S goen 7u(1) 5 (U;ZQ) U‘Z2)Z ’)[0])

®a viluly - ulyy (u)” i) M) gy’ m)
+ (=17 (uyy, oy ul ()l T m )
®a Vs (U?Q) _ ug)l(ugf e ug)lﬂm') 1] u{fﬁ A uff')'“, m)
B éo(_l)k‘“ (s oy (g ol o)
®a i (ulyy - ubayulsy Wl -l )yl m)
+ (fl)jﬂqu (u(()l), .. 7“(1)7 (u f;)l e ug)zﬂm')[o])
®a Pi (U?Q) e uf )(ug)l e u{;)iﬂm')[l]u{f)l, u{f)Q, . 7u{$i+17 m)

where the Yetter-Drinfel’d condition (A.6) was used in the last step for the last
summand. Moreover,

(—1) (¢j U i) (W°, ..., W T m@a m)

j 1 1
_<_1)J¢j(u?1)74-.7 f) (Uf;) .. J+z+ , ])

0 j j+1 i+it1 i+1 j+it1
®a 69 (U(2) “(2)( fz) o Z2) /) fl) A ’ufl) ,m)
j 0 j 1
= (=105 (), - -y ufyys (ufyy)' -l m) o)
0 j+1 +i+1 +1 +2 j+i+1
®a Vi <U(2) u(2)( 2 ~u%2)’ /)[ ]ufl) 7uf1) S ,u{l)l ,m)
d j j 1 itit1
+ kzl(_l)k+J¢j (u((jl)7 D) ufl) ( €2+) : U’Z;) * ml)[O])
®Ra YP; (u?g) .- u{ )(u(g')l . ug)”lm')[l], uff)l, o u(SJu( 4;”1 .. 7u{$1+17 m)
itit1 0 i1 it1
+ (71)’+ + o; (u(l), .. ,u(l), (uf;) .. f;) + m')[o])
0 j j+1 j+it1 j+1 kI it
®a i (uly) - ufy (uly) gy m )yl ugh T g m).

By reindexing the second sum right above and subsequently comparing the
three explicit expressions just obtained for d(¢; Ug 1;), as well as d¢; Ug1; and
(—1)7¢; Ug 01);, one confirms that Eq. (2.10) is true. O

19
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2.3. A cocycle representative for the cup product. We now have the tech-
nical prerequisites to explicitly illustrate the path indicated in §1.7. As a start,
we need to prove:

Lemma 2.4. If ¢: Bar(U,X) — E and ¢: Bar(U,X) — [ are chain maps as
above, then the collection of maps (¢ Ug V)i : Barg(U, X ®4 X) — Moloch(E, F)
from Remark 2.1 induced by the external cup product (2.9) defines a T-twisted
cocycle representative ¢ Ug t: Bar(U, X ®4 X) — Moloch(E,F).

Proof. This is a direct consequence of Lemma 2.3 and the Leibniz rule (2.10):
to start with, let us prove, for k = 1,...,p + ¢, that the diagram

Bary, (U, X ®4 X) —% Bary_1 (U, X ®4 X)

X (b5 ve wi)J l 2 (¢ ve i)
jti=k jti=k—1
DE®iFi—1— @E ®F
jt+i=k jti=k—1

commutes, where i, 7 > 0. Indeed, by means of (2.6), one has
do (Xgjueti) = X ((dog;) ug i+ (1) ¢; ug (doy))
jti=k jti=k

Y (0051 Ve i + (=1)7¢; Ug hi—1).

j+i=k

On the other hand, using the Leibniz rule (2.10), we compute
(2925;1' vei)od= Y (¢ ug i)

ik jimk—1
= Y (0¢; ue ¥ + (—1)7¢; Ug ;)
jimk—1
= D 0pj—1ue i+ CIVADY ¢ Ug 01,
jtizk ek

which proves the commutativity of the diagram above; for k¥ > p or k > ¢, this
also needs the cocycle condition (2.7). In lowest degree, i.e., for £ = 0, we obtain
the diagram

Baro(U, X @4 X) —— X @4 X

o V@ wol JT
PE® APF

Ey@aFy ———— X @4 X

where 7 is the braiding as in (2.2). By virtue of (2.8), this reduces to the claim
L ug L = 70 L. Indeed, with (2.9) and the (left-right) YD condition (A.6), we
directly have
(L ug L)(u®,m@am') = L(“%)a ml[o]) ®a L(u(()z)m/[q ,m) = U?Um/[o] ®a u((jz)ml[l]m
= (U(()z)m/)[o] ®a (U(()z)m/)[uu(()mm
= 7(uyym ®a ulyym’)

= (o L)(u’,m®am’),

using the monoidal structure (A.4) in the last step. O
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Remark 2.5. For the external cup product of two 0-cocycle representatives
E: X > Zresp. F: X - Z, the statement of Lemma 2.4 amounts to the com-
mutativity of

Baro(U, X @4 X) —— X @4 X

o V@ wol JT

Z®1Z e X ®a X

which again is a consequence of the YD condition (A.6), where ¢y = [E o L resp.
1o = F o L are as in (1.10). Equivalently, this is the commutativity of

Baro(U, X @4 X) —— X @4 X

b0 U@ d}ol l([E@A[F)o'r

ZQA L —=7Qa 7
expressing that ¢y Ug 1o is a T-twisted 0-cocycle representative, see Eq. (1.13).
Corollary 2.6. Let \¢ - : Moloch(E,F) —» (E®4 Z)#(X ®a4 F) be the morphism
of complexes from Eq. (1.6). Then
der(dug)or,: Bar(U, X ®4 X) - (E®a4 Z)#(X @4 F)
is a T2-twisted cocycle representative.

Proof. Immediate from Lemma 2.4 and Remark 1.4. O

Assuming from now on that X is a comonoid in 2" (U-Mod) with comulti-
plication Ay : X - X®4 X and Z a monoid in & E(U-Mod) with multiplication
w: Z®a Z — Z, our next step consists in giving explicit formulee for a cocycle
representative for the object p#H#A  in &xt}; (X, Z), starting from a cocycle
representative ¢ for an object H in &t} (X ®4 X, Z ®4 Z).

Lemma 2.7. Let (Z, 1) be a monoid in 2°*(U-Mod) and (X, Ay) a comonoid in
Z"(U-Mod), let He &zt (X®aX,ZQ@aZ), and &: Bar(U, X®4X) — H be a co-
cycle representative for H. Then a cocycle representative for u#H#A« is given by
idx for k=-—1,
(500(id®Aop Ax),L) for k=0,
€ = { & o (1Id" T @400 Ay) for 1<k<r-—2,
(0,6 -1 0 (id" ®aor Ay)) for k=r—1,
pwoé&.o (idTJrl ® g0p AX) for k=r,

where (, ) indicates the projection onto the quotient Z W H,_1 — Z Uzg,z Hr—1,
and where we abbreviated id" = id®4°"*,

Proof. We start by computing a cocycle representative for H#A , using the bar
resolutions for X and X ® 4 X, respectively. Following the general prescription
in §1.6, we are to consider the commutative diagram

Bar, ;1 (U, X) ——— Bar, (U, X) ——— s Bar,_ 1 (U, X) ——— ...

id"t2® gop Axl idr+1®AopAXl idT@AUPAxl

Barr 41 (U, X ®4 X) —— Bar,, (U, X ®4 X) —— Bar, 1 (U, X ®4 X) —— ...

I

Z®AZ Hr—l




22 DOMENICO FIORENZA AND NIELS KOWALZIG

...%Barl(U,X)g)Baro(U,Xé_mX 0

Barg

1d2®AopAXJ id® gop AXJ Lo(id@Aopr)l JAX

...—)Barl(U,X®AX)—)BaI'0(U,X®AX)—)X@AX X®4a X —0

‘| “ | ]

Hy Hy X®a X X®a X ——0

Note that the commutativity of the upper two rows depends on the fact that X
is a comonoid in U-Mod, that is, explicitly from (A.16). From this diagram we
obtain the representative cocycle

Bar, .1 (U, X) — Bar, (U, X) — Bar,_, (U, X) —— ...

J Ero(idHl@Aor)Ax)l Er—10(id"® a0p Ax)l

0 —————Z2Q@a 2 H,_4

...——— Bar; (U, X) ———— Bary(U, X) X 0

510(id2®A0PAX)J/ (L7€00(id®A0PAX))J H

H1 0.) X XXRaX H() X 0.

Next, to compute a cocycle representative for u#H#Ay, we consider the com-
mutative diagram

Bar,+1(U, X) — Bar, (U, X) Bar,(U,X) — Bar,_1(U, X) ——— ...

C1l Col Ero(i(lr+1®AopAX)l &r_10(id"® gop AX)J/

LR YN - H,
l J uJ (O,id)J/

...— Bar; (U, X) — Baro (U, X) X 0

£1o<id2®AopAX{ (£00(id® go0p Ax)i)l
Hy
H,

to see that u#G#A is represented by the cocycle

Ho X xgx X — X ——— 0

Ho xxg,x X — X ——0,

Bar, .1 (U, X) —— Bar, (U, X) —— Bar,_1 (U, X) ——— ...

J uogro(id”@AOPAX)J (O,ETlo(idT®AopAX))J

0 Z ZI_JZ®A2H7._1—)...
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...—— Bary (U, X) ———— Bary (U, X) X 0

flo(id2®A°pAX)J (foo(id®A0r)Ax),L)J H

H1 H() XX®AXX X 0,

from which the explicit expression for £ can be read off in all degrees. O

Remark 2.8. For r = 2, the statement of Lemma 2.7 has to be understood
without the middle line, i.e.,

idx for k= -1,
& (§o o (i[d®aer Ax),L) for k=0, @.11)
T 06 0 (2 @aw Ay)) for k=1, '

,uo&o(id?’@Aop AX) for k=2.

If r = 1, the two central lines of (2.11) are merged and one has

idx for k= -1,
é:k = (0750 o (id ®Aop AX),L) fOI‘ k = 0, (2-]—2)
‘uoglo(idQ ®aor Ax) for k=1,

where & is now taking values in
Z|—|Z®AZ HO XX®AX X

Here we are omitting the parentheses thanks to the natural isomorphism of
U-modules (Z U Z®aZz Ho) XXQaX X ~7 UZ®aZ (HO XXQaX X) Finally, for
r = 0 one removes the central line of (2.12), obtaining

«f'— H for k=-1,
" pokoo (id®uer Ay) for k=0,

where H: X ®4 X — Z ®4 Z is the element in @@xt%(X ®a X, Z®a Z) of which
¢ is a 0-cocycle representative.

The above Lemma 2.7 suggests the following.

Definition 2.9. Let X and Z be as before and let H € &zt[,(X ®4 X,Z ®4 Z)
as well as G = u#H#A. Define the graded linear map

D,: é Hom(Bark(U,X®AX),Hk) — é Hom(Bark(U,X),Gk)

k=—1 k=—1
as follows:
0 for k= -1,
(500(id®Aop AX),O) fOI‘ k= 5
Dy (&) = < & o (1[d* @400 Ax) for 1<k<r-2, (2.13)

(0,610 (id" @aer Ay)) for k=r—1,
poéro@(id ™ @aw Ax) for k=r,

for any ¢ € @), __, Hom (Bar, (U, X ®4 X), Hy).
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Remark 2.10. Following Remark 2.8, for » = 2, this has to be understood
without the middle line, i.e.,

0 for k=-1,
ou(6) = | L0 (d@aw Ax),0) for k=0, @14
* (0,610 (1d* ®aor Ax)) for k=1, ‘

,uoggo(id3®Aop Ay) for k=2

If r = 1, the two central lines of (2.14) are merged and one has
0 for k= -1,

(I)k(€) = (0,60 ] (ld & Aop AX), 0) for k= 0, (215)
Mo&o(id2®Aop Ax) for k=1,

where ®(¢) takes values in Z Lzg,z Hyo Xxg,x X. Finally, for r = 0 one
removes the central line of (2.15) to obtain

{0 for k= -1,

(0] =
k(€) Mo§00(1d®Aop AX) for k=0,

Remark 2.11. In terms of the linear map ® from Definition 2.9, Lemma 2.7
can be stated by saying that if £: Bar(U, X ®4 X) — H is a cocycle representa-
tive for H e &zt (X ®a X, Z ®4 Z), with r > 0, then

0,...,0,(L,0),idx) + ®(&)
is a cocycle representative for G = u#H#Ax € &t} (X, Z).

Lemma 2.12. If ¢: Bar(U, X®4 X ) — His an f-twisted cocycle for the extension
He Ext],(X®aX, ZQaZ), with r > 0, then (0,...,0,(L,0),idx)+®(&) is a cocycle
representative for p#H#(f o Ay) € &xt} (X, Z).

Proof. Immediate from Remarks 1.5 & 2.11. O

Corollary 2.13. Let &: Bar(U, X ®4 X) — H be an f-twisted cocycle for the
extension H e &t} (X ®a X, Z @4 Z), with r > 0, such that f o Ax = Ay. Then
(0,...,0,(L,0),idx )+ (&) is a cocycle representative for p#H#A « € Ext} (X, Z).

If we additionally assume from now on that X is a braided cocommutative
comonoid in 2" (U-Mod), by summing up we obtain the following proposition,
which we give for strictly positive degrees leaving to the reader the easy task
of deriving the corresponding statement for 0-cocycles.

Proposition 2.14. Let Z be as before and X a braided cocommutative comon-
oid in Z"(U-Mod), let E € &z}, (X, Z) and | € &xtl (X, Z), with p,q > 0, and
let ¢: Bar(X,U) — Eand ¢: Bar(X,U) — [ be cocycle representatives for E and
F, respectively. Moreover, let ¢ Ug 1): Bar(U, X ®4 X) — Moloch(E, F) be the
T-twisted cocycle representative from Lemma 2.4, and let A\¢ s : Moloch(E,F) —
(X ®4F)#(E®a Z) be the morphism of complexes from Eq. (1.6). Then

(Oa -0, (La 0)71dX) + q)()‘[E,EF((Z5 Ve "/)) © T-))
is a cocycle representative for E U F = p#(E®a Z)#(X ®@a F)#Ax.

Proof. Corollary 2.6 states that A\e (¢ Ug ¥) o 7.: Bar(U, X ®4 X) — (E®a
Z)#(X®4F) is a 72-twisted cocycle representative. By assumption 7oAy = Ay
as in (A.19), therefore 72 0 Ay = Ay, and one concludes by Corollary 2.13. [
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Definition 2.15. Let E € &ut}(X,Z) resp. F € &xt}(X,Z) be extensions
of length p resp. ¢, with cocycle representatives ¢: Bar(X,U) — [E resp.
1: Bar(X,U) — F. The cocycle representative ¢ U ¢ for E U [ is defined as

put=(0,...,0,(L,0),idyx) + ‘I).()\[,m(¢ Ug ) o T)
for any p,q > 0.

Remark 2.16. By expanding the above definition, one sees that the top degree
component of ¢ U 1 is, for any p, ¢ = 0, given by

(¢ 7/’)p+q(uoa cee aUerq, m) = q’p+q()\[g,[r(¢ Ve P) o T)(an e 7Up+qa m)

= 10 (¢p U@ Vq) © Tptq © (idp+q+1 ®aor Ax)(u?, ..., uP*9 m)
PR (2.16)
= Gp(ulrys - - ufyys (u(R) - uly) 'm))o))
+1 + +1 +
2 Pq(ulyy - ulyy (Wly) - ulpy ) ul) - upht may),

when inserting the external cup product (2.9), the edge morphism A;; as in
(1.6), the top degree of ® as in (2.13), and the braided cocommutativity (A.19)
on X.

2.4. The cup product as internal operadic composition. Before finding,
in the spirit of §1.7, a second cocycle representative for E u F, we would like
to understand how to reproduce the cup product from Eq. (2.16) from more
operadic ideas. To this end, we need to give both an external as well as an
internal operadic vertical composition first.

2.4.1. The external operadic composition. As said, let us introduce an, in a
sense, 2-product, or (partial) external operadic composition

o®: CNU,X,E;)®@CUU,X,Z) — CIT1 U, X ®4 X, E; ®a Z),

where j =1,...,pandi=1,...,7, as follows:
(¢; o€ ) (u’,uty .. P T m@a m') =
oy (u?l), . ,uff)l, ¢q(1, ufl), .. ,uéf)qfl,
(Wi ) Ly
P, m) ®a ulsy - uip by (1w . ,ué$q*17 (ufg ugqflm’)[o])(o).
Denote by
050y = 3 (~1)0DEDg; 08 g, (2.18)

i=1
the full external operadic composition (or external Gerstenhaber product). For

a zero cochain, that is, for j = 0, put ¢o5®¢, = 0. The commutator with
respect to this Gerstenhaber product will be denoted by

[, ¢P]6® =1y 0% ¢ — (*1)(7”*1)(11*1)@5;0 5% 1hg.

Remark 2.17. Observe that it is, a priori, not so clear how to generalise (2.17)
to a map

CHU,X,E;))®C'(U,X,F;) » C"" N U, X ®a X,E; @4 F})

for 0 < ¢ < g as there is in general no reason why, apart from F, = Z, also the
U-modules F; for i # g should be U-comodules as well.
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2.4.2. The internal operadic composition. Precomposing resp. postcomposing
the partial external operadic composition (2.17) in case j = p with the comul-
tiplication Ay on X and the multiplication i on Z, respectively, gives a true
(partial) (internal) operadic composition on the family

O(n) = C™"(U, X, Z) = Homy (Bar, (U, X), Z) (2.19)
of k-modules. This results into a map
Op)®0(q) > Op+q—1)
explicitly given for any ¢, € O(p), ¥, € O(q), any v’ € U, and m € X by

((bp Oi wQ)(uO7 u17 cee 7up+q—17 m) =

0 i1 i itq—1
¢P(u(1)7"'7u(1) 7¢q(17u(1)7"'7u(1)q ) (2 20)
it +g-1 i ita—1, i+ +q—1 it .
(i ulyy ™ mez))o) Cyyulz o uey () uly T me)p ey
+qg—1 0 i—1 [ i+g—1 i+ +qg—1
uﬁ)q 7m(1)) y (U(Q)"'U(g) Q/)q(17'u,(1),...7u(1)q 7(u(2)q...u€2)q m(g))[o])(0)>,

for any i = 1,...,p. Observe that the full structure of Z and X is used here:
being left U-modules, being (left resp. right) U-comodules, and having a multi-
plication on Z resp. a comultiplication on X. That (2.20) indeed defines partial
composition maps in an operad in the standard sense (cf Appendix A.3) will
not be proven before §2.7 under the three assumptions that X is a (braided) co-
commutative comonoid in 2" (U-Mod) and Z a (braided) commutative monoid
in 2°/(U-Mod) such that (X, Z) yields a commuting pair.

Analogously to (2.18), let us introduce the full (internal) operadic composi-
tion by defining

6550, = 3 (~1)IDEDg, o, . (2.21)
i=1

which, again, might be called the (internal) Gerstenhaber product.

For the sake of illustration, we list a couple of special instances: for arbitrary
Z and X = A, the base algebra itself, one obtains:

(d)P Oi wQ)(u07u17 e 7UP+¢]*1)
= ¢p (u?l), . 7U7E;)17¢q(17 ufl), e uzf)qfl)(_l)uég) e ug)qfl,uiﬂ, . ,up+q71) (2.22)
z (ula) ugy VoL uay, - uy™ o)

For example, for p = ¢ = 1, this would be
(dp 01 ¥g) (1, v) = dp(u(1), Yg(Lv1)) (—1)v(2)) -2z (w2 e(1,v1))(0))- (2.23)
On the other hand, let 7 = A and X be arbitrary. Then (2.20) reduces to

(¢p Od ¢q)(U07U17 e .7up+q717m) =

¢P(u07'"7ui_l7wQ(17u%1)7“'7uz('-1*—)q_17
j -1 j itq—1, i -1 i -1
(- ufs) ™ ' mea)io) > e - ud T gl me) gl ma).

Finally, if both X = Z = A equal the base algebra itself, that is, the unit object
in the monoidal category U-Mod, we obtain
(¢p Oi wQ)(u07u17 M up+q_l) =
bp (uo, coutTh ¥q(1, u?l), ... ,uz'l*)qfl) > ufg) .- -ug)qfl, wtte u“q*l)

)

which is sort of the nicest and makes it clear why people never bothered about
introducing more general coefficients. Again, in case of the bialgebroid (U, A) =
(A°; A) and X = Z = A, employing the explicit bialgebroid structure of A° as
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quoted in (A.2), this reduces to the classical Gerstenhaber insertion operations
as they originally appeared in [Ge], that is,

1 +q—1 1 i—1 i i+q—1 i+ +q-1
(¢pp 0i Yg)(a™,...,a"™1 )=<;5],,(a,...,az B (N A A N )7
where now the commata mean a tensor product over k instead of over A°P, and

where we identified Hom 4. ((A°)®4°° "1 A) ~ Homy,(A®+", A).

2.4.3. The internal cup product. Introducing a special element p € O(2),

p(u®,ut,u? m) = ex (uutuim),

the multiplication, which will again serve in §2.7, one can define the (internal)
cup product

u:0(p)®0(q) — O(p+q),

in the customary way, i.e.,

Pp U g = (1 021g) 01 Pp. (2.24)
For ¢, € O(p), 1, € O(q), any v’ € U and m € X this explicitly comes out as
(dp U ¥g)(u’, ..., uP*T,m)
= G (uys -+ Uy (uzg)l -yt ms)) o) (2.25)
2 Y (Ul (W - ey me)n - uh may)-

Remark 2.18. Observe that this is now the same formula as the one obtained
by a different approach in (2.16), with the striking difference that here one
does not need to start from the assumption of dealing with cocycles; indeed, in
Eq. (2.25) above, both ¢, and 1, are merely cochains.

Remark 2.19. As already hinted at in Remark 2.17, observe again that as
in (2.24) analogously writing ¢; Ug ¥; = (1 0§ ;) o ¢; for the external cup
product (2.9) in terms of the external operadic operation (2.17) does not make
sense, and therefore (2.9) had to be defined, sort of, by hand.

Let us again discuss some special cases: for arbitrary Z and X = A,
Eq. (2.25) reduces to
(pp U wq)(uo, o uPT) = d)p(u?l), e ,u?l)) ‘z wq(u?Q) e ué), uPt up+q),

which, from a slightly different viewpoint, precisely reflects the DG coalgebra
structure of the bar resolution, whereas for arbitrary X and Z = A, Eq. (2.25)
by replacing the multiplication in Z with the product in A does not really sim-
plify. In case Z = X = A, we therefore obtain

(¢p U 1/)q)(u07 R ,up+Q) = ¢p(u?1)7 ceey U}Zl))’l/)q(u&) .. .ué),up"'l, ... ,up-HJ),

which, again, in case (U, A) = (A°, A) reduces to the well-known cup product
from [Ge], that is

(6p U ¥g)(a',...,aP") = gy(al,... uP)ihg(a?*!,. .. a""),

where, once more, the commata mean a tensor product over k instead of over
A°P, and where we identified Hom e ((A®)®4°" 1 A) ~ Homy (A®+", A).



28 DOMENICO FIORENZA AND NIELS KOWALZIG

2.5. A second cocycle representative for £ U F. As in §1.7, we are now
going to construct a second cocycle representative for £ U [, see Proposition
2.24, that in the next subsection will turn out to be homotopic to the one from
Definition 2.15. For this, in particular, we need to find the, sort of, correction
term ¢ along with a couple of technical lemmata.

As above, for the whole section, let E € &t} (X, Z) and [ € &xtf, (X, Z), with
p,q > 0, and let ¢: Bar(X,U) — E and ¢: Bar(X,U) — [ be chain maps, i.e.,
cocycle representatives for | and [, respectively.

By switching the réles of £ and F in Remark 2.1 and in Lemma 2.4, we
immediately obtain the following.

Lemma 2.20. If ¢,v are chain maps as above, then the collection of maps
(¥ g O)r: Bar(U, X ®4 X) — Moloch(F,E); induced by the external cup
product defines a T-twisted cocycle representative 1) Ug ¢: Bar(U, X ®4 X) —
Moloch(F, E).

Let us introduce the (doubly) braided cup commutator

[¢5: Yglog,or = (&) Ug tg) © Tjtg — (*1)”0 o (g Ve ¢5), (2.26)
where we wrote
73, = (UM @ yop 7) (2.27)
in order to enhance notational beauty. In this sense, 7_; == 7.
Lemma 2.21. Let ¢; € C/(U, X, E;) and ¢, € C1(U,X,Z) and as before let

d = d* be the pullback of the differential of the bar resolution. If (X,Z) is a
commuting pair in the sense of Eq. (A.9), then the homotopy formula

(1) [h5, ¥qluguor = (—1)76; 5% 00y — (—1)70(9; 5% 1)g) — 66, 5% (2.28)

holds, where o and T are the left resp. right braidings from (2.1) resp. (2.2). For
j =0, Eq. (2.28) reduces to

[¢0) wq]u®,o,r = _6¢0 O? Q/Jq- (2.29)

Proof. This essentially works by writing down and comparing all appearing
terms one by one, not dissimilar to the operadic case; which is a tedious but
straightforward computation, we only indicate here a couple of decisive steps.

To this end, note if § = 377 (~1)*3; is the decomposition of the differential
0 = d* into its cofaces dy, then one directly checks that

(65 Ve ¥q) 0 Tjag) (U, .., u? ™, m®@a m)

L (85 ve Y)W’ T mig) @4 miyym)

E i (s ufyy,s (“<z>+>l' u(miym)o)
Dath (uly) - (2)( (+)1 “ugytmpym)pg,uly s ulh mi)

= Gy, oy, (ugg) - u miym) o))
®auly) -+~ uly) (uly) -+ ufy mpyym)pyve (Ll ufy’ mio)

@10 ¢j(u?1)7---7“{1)7%(17“(1) ,...,uﬁ)q’m’[])( ) (+)1 ,ufg) miyym)
sy -1 5 5 )

= 6j+1<l5j(“(()1)7‘“71‘{1)’%(1’“{;)1’“"u(l) ’m[o])( D {;)1 f;’)q )
®auly) gy (Lufy s uly mioy) o)

L ((8j4105) 0y Vo) (W, W T m@a m)),

where the fact that (X, Z) is a commuting pair was used in the fourth step;
that is,

(95 Ve ¥q) © Tjrg = (0j4105) 0F11 Vg, (2.30)
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in analogy to the operadic case. On the other hand,

U((d)q Ve ¢i)(u’, .. 47uq+’7m®A m’))

e U(Q/)q(“?l)v---vugm(u(z) “'“(2) m’)or) _
®ad; () -+ uly (u ?2> S u m))

= g (udyy, o u ?1) (uly uyy'm)o )( 1>¢J(“(2) ?2)(“351”'“35%')[1]7
u?f;lw..,u 7m) ®a ¢q( ,u() (u?;}l- u(;;jm')[o])(o)

@s ¢j(u?1)¢q(1,u(1),..., ),
(u?$1...u?;;jm’)[o])(_l)ué)...U?Q)( il )y, u .
utysm) ®a u?zwq(lvu%waU?w( o UE%J ’>H)<o>

= ooy (ufsy g (L ufyys - (1),
(u‘(12+)1, ?;)] )[0])( 1)“(2) 1(12)( (2+)1.. (2) m’) 1]7u¢(11+)17,..,
u?;r)j7m) ®Au(2)1/)q(1 u(l)? "7“((11)7( (2) ’ ((Z;)J /)[])(0)

(2:7 ((60¢]) Ol® ¢Q)(u07"'7uq+j7m®14 m/)7

using the U-linearity of both ¢, and ¢;, and where in the third step we used
the fact that the braiding ¢ is morphism in U-Mod. Hence,

00 (1hg Ug ¢5) = (d0d;) oF ¢q, (2.31)

from which also (2.29) immediately follows.
With the two identities (2.30) and (2.31) at hand, verifying the homotopy
(2.28) becomes a feasible task and its full verification is left to the reader. O

Again by Remark 2.17, one cannot write down a version of the right hand
side of (2.28) with the positions of ¢; and 1, interchanged (as one could, up
to signs, in the standard operadic situation). Also, the left hand side, i.e., the
braided cup commutator (2.26) would not make sense with ¢; and v, in oppo-
site order.

Lemma 2.22. Let ¢: Bar(U, X) — Eand ¢: Bar(U, X) — [ be as above, and let
ex(6,¥): Bary(U, X ®4 X) — Moloch(F, E)y,
forany k= —1,0,...,p+ q be defined by
0 for k < p,

7[wkfpa ¢p]u®,a,‘r
+(=1)PRHRY(F i1 ®aie) © (Vh—ps1 0% ¢p) forp<k <p+q-—1,

_[Q/an (bp]uca,a,f fork=p+q.

If (X, Z) is a commuting pair in the sense of Eq. (A.9), then (¢, ) : Bar(U, X ®4
X) — Moloch(F, E) is a 0-twisted cocycle representative.

€k (¢a w) =

Proof. By definition of 0-twisted cocycle representative, we have to show that e
is a chain map with ¢_; = 0. The last part of the statement is true by definition
of ¢, so we have only to prove that ¢ is a chain map. To start with, let p < k <
p + q — 1; the cases for k = p + ¢ and k = p will be proven separately. Observe
first that since d is a U-module map, we have from (2.1) and (2.2) that

(d®a Z)oo = oc0o(Z®ad),

(X®ad)or = 70(d®aX). (2.32)
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Using again the notation 7, = (U®4"*¥ ® 400 7) as in (2.27), we compute with
doiz =0, Egs. (2.9), (2.26), and (2.6) as well as (2.32):

doe(p, 1))

= do (= [hp dplogor + (V)P Frpir @a i) o (g—pi1 5% 6p))
= —(dotr_p) Ug dpoTh1 + (~1)P* Vg0 (¢ Ug (do viy))

D PN Fuep ®a ie) © [Vr—p, dplog o

PR @4 i) © (Yh—p1 O dp)

Stbr—p-1) Vs bp 0 Thet + (—1)PE V0 0 (¢, U (59—p-1))

+ (1) PN (Frep ®4 ic) © [Yh—p, Oplogonr

+ (=P R, @4 ie) © (08k—p 3% ),

whereas, on the other hand, using the homotopy formula (2.28) and the fact
(2.10) that ¢ is a derivation of the cup product, along with d¢, = 0,

ek—1(4,¢) od
= ( - [wk—p—la Qﬁp]u’a"r + (_1)p(k_1)+k(Fk—p ®a i[) © (wk—p 5® ¢p)) od
= —(6¢r—p-1 Vg bp) 0Tk + (—1)"* 0 0 ((¢p Ug Yr—p-1) © d)
+ (*1)p(k71)+k(kap ®a ig) © ((wkfp 5% ¢p) o d)
= —(0¢r—p-1 Vg dp) o Tk + (*1)p(k+1)‘7 o (¢p Vg 0Y—p—1)
+ (_1)p(k_1)+k(Fk—p ®a i[) © 5(wk—p 5® ¢p)a
which by the homotopy relation (2.28) for the braided cup commutator is the
same as before, hence do e, (¢, 1) = ex_1(p, %) od for p < k < p+ ¢ — 1. The case
k = p + ¢ is proven similar and left to the reader. As for the case k = p, one has
to show that d o ([7/10, Dplog,or + (F1 @a ig) o (115 gbp)) = 0. Indeed, with the
help of (2.29) and the fact that (dy ® 4 Z)(Fy ®4 Z) = 0 in Moloch(F, E),
do ([1/}(), ¢p]u®,a,‘r + (Fl ®A i[E) o (1/)1 0619 d)p))
= (FO @A i[) o [lﬂo, ¢p]u®,a,7— + (d ®A i[E) o (1/]1 O? ¢P)
= (FO ®A i[E) o [1/}0; ¢p]u®,a,‘r + (FO ®A i[E) o (5"/)0 o@19 d)p)
= (FO ®a i[E) o [1/}0, d)p]u@,d,‘r - (FO ®a i[E) o [1/10, ¢p]u®,a,‘r = 0,
which ends the proof. O

(,
(,

Jr
Jr
- —(

Corollary 2.23. Let ¢ be as in Lemma 2.22 and (X, Z) a commuting pair sub-
Jject to the same assumptions as before, and let gy : Moloch(F,E) — (Z ®a
E)#(F ®4 X) be the morphism of complexes obtained by switching the réles of E
and [ in (1.7). Then
ke (Y Vg ¢ + €(0, 1)) : Bar(U, X @4 X) — (Z ®a B)#(F ®4 X)

is a T-twisted cocycle representative, which implies that

(0]T)er 0 0re(th Ug & + €(¢,¥)): Bar(U, X ®4 X) = (E®a Z)#(X @4 F)
is a T2-twisted cocycle representative.
Proof. From Lemmata 2.20 & 2.22 we have that ¢ ug ¢ + €(¢,v¥): Bar(U, X ®4
X) — Moloch(F,E) is a 7-twisted cocycle representative. By noticing that

(0r,e)—1 = idxg,x and with the help of Remark 1.4, one proves the first state-
ment. The second is then obvious. O

Finally, reasoning as in the proof of Proposition 2.14, we obtain:
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Proposition 2.24. In the same notation as above,

(0,...,0,(L,0),idx) + ®((0]7)e.e © 0re(1h Ug ¢ + €(¢,)))

is as well a cocycle representative for EUF = p#(E®a Z2)#(X Q@4 F)# A, where
® is defined in (2.13).

2.6. Brackets from homotopies. So far, in §2.3 and §2.5, we have exhibited
two representative cocycles for E U F, namely ¢ u ¢ = (0,...,0,(L,0),idx) +
P(Aer(p ug ) oT.)) as well as (0,...,0,(L,0),idx) + ®((o]7T)er © 0r,e(¥) Ug ¢ +
e(¢,1))). We now want to produce an explicit homotopy between these two.
Writing

n(¢,v) = AE,EF((QS Ug ) © T) - (U|T)[E,cr © Q[F,[E((w Ug ¢ + €(0, 7/)))a (2.33)

where (o|7)e s is the morphism of complexes defined in (1.8), this amounts to
exhibiting a homotopy between ®(7(¢, v)) and zero.
Before we do so, let us give an explicit expression for 7 in (2.33):

Lemma 2.25. Under the standing assumptions, we have

(UlT)ﬂ',[E S Q[,m(¢ Ug 1/]) - )\m,[((w Ve ¢) oT, + 6(¢7 w)) =0,

as well as
0(6.9) = Aer (6 Lo 1) 07.) — (017)er 0 gre (1 Ug & + ()
0 for k <gq,
[¢h—q Valog,o.r forg<k<ptaq-2 (2.34)

= [¢p—17 wq] U®,0,T
+(=1)PT0 0 (Z®aie) o (q0° ¢p) fork=p+q—1,
[¢p7"/’q]u®,a,‘r + (*1)pq‘7 © [7/}qa ¢p]u®,cr,‘r fOT‘ k=p+aq,

for any two chain maps ¢: Bar(U, X) — E and v¢: Bar(U, X) — F as before.

Proof. Observe first that explicitly looking at the edge morphisms (1.6) and
(1.7) yields

0 fork<p+q—1,
05 c€k(9,0) = { (—1)PTUZ @aie) 0 (1q 0% ¢p) fork =p+q—1, (2.35)

—(=1)P[hg, Splug.or for k = p +q,
as well as
0 for k < p,
A e€k(9,9) = {_[ s bolomon forp<k<p+a. (2.36)
Slightly less straightforward, one also has
Z. ((017)s 2 © 0 s (05 U 1) = Mg o (W1 Ug 85) 0 Tinj) )
(2.37)

L for k < p,
[wk*pv ¢p]u®,o’,r forp < k < p+aq,
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which is seen as follows: first, in case k < p, one directly computes

Z (U|T)F,E o Q[E,[F ((¢J U@ Qpi)(u07 e 7ui+j7 m@A m’))

jti=k
-2 omeee 0e,r (63 (uny, -y, (! ulas o)
j+1 j+i j+1 +i
®ai (u 2)° U‘Z2) (u( 2) "7 U‘Z2) m )[1]7 “{1) ) 7“{1) 7m))
70 (dn(ulyy, - - ufty, Mlo) ®a Prio(uly) -+ uzymiy), m))
70 (¢x (“?Uv - uf1y, M) ®a L(“(z) “ufy) My, m))

(ulyy - m[l]m) ®a (Ulyy -+ uyymiyym) Gk (ulyy, - - - ulyy, Mo

A.7),(1.8)
2.8)

(2.4),(A.8)

whereas
Z AF,E(((wi Ve ¢J) © Ti+j)(u07 B ui+j7 m®a m’))
jti=k

= 2 )\EF,[E((%/H v ¢;)(u’,. .. u' Y mig ®a m[l]m))

j+i=k

2.9) 0 Ul 1 it
= j+;:k )\[F,[E (1/17, (U(l), ey ( ) ( z;) u( )]m[l]m)[ ])

®a; (u?g) . -u(Q) (u(2) . ~u(2+)Jm[l]m)[1],uET)1, . ,ué#, m'[o]))
= priYo (U(()m (Ué) T UI(€2)m’[1]m)[0])
®adk (u(s) (uz) *++ uloyMp M1, Ulnys - - - Uty Miop)
ulyy (ugs) -z mpsym) o)
@40k (uls) (ufz) ++ uloympyym) ), wisys - - - Uy, Mioy)
(A.6)

= (uly - ulymiym)ie ®a (uly - ulymiyym)m $k (uyy, - -, ufty, migp)

(2.5),(2.4)

where in the last step we also used the U-linearity of ¢;; hence, the same

expression as above and the claim follows. The case in which p < k < p + ¢
again directly follows from how the edge morphisms are defined, see (1.6)—
(1.7), once more. Finally, one proves in an analogous way that

Y (s (@5 Vs i) 0 Tjai) = (01T)er 0 00 (¥ Us 6)))

jti=k
_)o for k < q, (2.38)
[d)k*qv ’l/)q]u®,a',‘r fOI‘ q < k < p+q.
Gathering Eqs. (2.35)—(2.38) yields the two claims in this lemma. O

Lemma 2.26. Let ¢: Bar(U, X) — Eand ¢: Bar(U, X) — [ be as above, and let
&x(6,v): Barg (U, X @4 X) — (E@a 2)#(X ®4F)),

be the map given by

0 for k <gq
[Pk—q> Vgl oo forq<k<p+q-2
§u(0,9) = [¢p—1a ¢q]u®,a,r (2.39)
+(=1)PT(ix ®a Z) 0 (g% ¢p) fork=p+q—1
0 for k=p+q.

If (X,Z) is a commuting pair, then £($,1) is a homotopically trivial 0-twisted
cocycle for (E®a Z)#(X ®a F). A homotopy between £(¢, 1) and zero is given by

sk(¢,1): Barg(U, X ®4 X) = (E®a 2)#(X ®aF)), .,
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defined forany k = —1,0,...,p+q— 1 by

0 for k < q,
sk(0,9) = 4 (1)1 gy 11884, forq<k<p+q-—2, (2.40)
(—1)p+q[wq,q§p]ﬁ® fork=p+q—1.

Proof. The condition £_; = 0 is true by definition of £, so we only have to show
that ¢ is a homotopically trivial morphism of complexes £: Bar(U, X ®4 X) —
(E®a Z)#(X ®4 F), with homotopy given by s(¢, ). This means we need to
show that &, = do s + sx—1 o d = [d, s]x, where we denote, somewhat ambigu-
ously, by d not only the differential on Bar(U, X ® 4 X ), but also the differential
of both extensions E and F as well as on (E®4 Z)#(X ®a4 F), analogously to
diagrams (2.5) and (1.5), respectively.
Note first that

do(¢j 07 1g) = 6¢j—1 97 Vg (2.41)
for any i = 1,...,7, as follows from the precise form of the differential d on
the spliced extension (E®4 Z)#(X ®4 F) as in (1.5), along with (2.6). Now, for
k < g, one clearly has [d, s(¢,1)]r = 0. In case k = ¢, we have with Eq. (2.41)

[d, 5(¢7 w)]q =do Sq(¢a wq) =—do (¢1 o® wq) = _6¢0 0619 Q/Jq = [¢07 wq]u®,a,‘ra

where the last step follows from (2.29). Using (2.41) again, for ¢ + 1 < k <
p + g — 2 along with the homotopy formula (2.28), one immediately obtains

[d,s(¢, )]k = dosk(d,¥) + sk—1(d,¢) o d
= (=11 D d o (proge1 5%9g) + (= 1) ™ (¢r—q 5°g) 0 d
= (=) " D8k 5% + (=1) ™6 (Ph—q 5%g) = [Sh-g: Vgl g.o.r
whereas, for &k = p + ¢ — 1 we have, again with (2.41) in the third step,

[d, (¢, %) ]p+g—1 = d 0 Sprq—1(d, ) + Sprq—2(d,¢) o d
= (~1PFd 0 [y, 6% + (~1)76(6p-1 5% 0y)
= (=1)P*9d o (3% ¢p) + (1P ((—1)778¢p-1 5% 90g — 6(¢p—1 5% 1g))
= (=1)P*(ie ®4 Z) © (¥4 5% ¢p) + [Pp—1,Vg)Ug 0,

where we interchangeably write d = i ® 4 Z in the highest degree Z ® 4 Z of

the spliced extension (E®4 Z)#(X ®4 F). Finally, for k£ = p + ¢, we have

Sprg-1(6,1) o d = (=177 954y, 6,1 = 0,

as ¢ is a derivation of [¢y, ¢p]6®, which directly follows from (2.28), and since
both ¢, and v, are cocycles. To sum up, £ = [d, s] in each degree, as desired. [

We add one final assumption, i.e., from now on not only the comonoid X in
Z7"(U-Mod) is supposed to be braided cocommutative but also the monoid Z
braided commutative in 2°*(U-Mod). We can then formulate:

Lemma 2.27. Let the comonoid X € Z"(U-Mod) be braided cocommutative
and let the monoid 7Z € Z*(U-Mod) be braided commutative such that (X, Z)
constitutes a commuting pair. Furthermore, let £,1: Bar(U, X ®4 X) > (E®a
Z)#(X ®4 F) be the 0-twisted cocycle representatives defined by (2.33) and in
(2.39), respectively. Then we have

(n(¢, ) = 2(&(9,9))-
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Proof. This is proven by a degree-wise comparison of the images of £(¢, ) as in
(2.39) resp. the explicit expression of 7(¢, 1)) obtained in (2.34) under the map
® defined in Eq. (2.13).

To start with, for the top degree component of the former we have

Dpig(€) = po&prg o ((IdPTM @ Ay): Baryy (U, X) — Z, (2.42)

which is simply the zero map as seen from (2.39). In one degree less, that is, in
degree p + g — 1, with the help of (A.19), we read off

Ppig-1(€) = (0,&p1q-1 0 (1d"7 ® Ax))
= (0, [¢p—1qu]U®,0 oAx + (_1)17("[ ®a Z) © (wq o® ¢7p) © AX)) (2.43)

= (0, [pp—1,Vqlug,o © Ax) + (_1)1)—1(” 0 (104 5% ¢p) 0 Ay, 0),

where [¢,_1,74] g0 denotes the (simply) braided commutator in the sense of
(2.26), that is, with no 7 present anymore (or the identity on X ® 4 X). Here,
as before, (, ) indicates the class
(fu(z@)A z’),O) = (0, (e ®a Z2)(2®a z’)) (2.44)
for 2,2’ € Z in the quotient Z Lizg, 7 (Ep—1 ®4 Z).
On the other hand, the same considerations hold for ®(n(¢,)): here, from
an analogous expression as the one in (2.42) with 7,,, instead of {,,, it is
clear by means of (A.13) and (A.19) that the top degree is again the zero map.

As the lower degrees of £ and 7 are the same except for (the second summand
in) degree p + ¢ — 1, we are left with comparing this one:

(0, 7p+q-1 0 (10”77 ® Ay))

= (0, [#p—1,Yqlugir © Ax + (=1)Po 0 (Z @4 ie) © (14 5% ¢p) © Ax),

= (0, [6p-1,¥glug.s © Ax) + (=1)7(0, (ie ®a Z) 0 0 0 (10 5° ¢y) 0 Ax))
= (0,[¢p-1,%q)ug.o © Ax) + (=1)P7 (o0 0 (16452 ¢p) © A, 0)

= (0, [¢p—1,Yq)ug,c © Ax) + (—1)p‘1(u 0 (104 5% ¢p) 0 Ax,0),

by the identification (2.44), the naturality of o, that is, (ir®4Z)o0 = 00(Z®4ir)
as in (2.32), and finally the braided commutativity (A.13) again, which hence
coincides with the expression in (2.43). O

Definition 2.28. Let H € &t} (X ®4 X, Z®4 Z) and let G = p#H#A . Define
the graded linear map

r—1 r—1
U,: @ Hom(Barg(U,X ®4 X), Hpr1) > @ Hom(Barg (U, X), Gi+1)

k=-1 k=—1
as follows:
(v_10Ax,0) for k=-1,
Ve(v) = Vg © (idkH.@{T Ax) for 0<k<r-3, (2.45)
(0,vp—20(id""" ®aop Ay)) for k=r—2,
povp_10 (id" ®qe0 Ayx) for k=r-—1,

for any v e ®,_" , Hom(Bary(U, X ®4 X), Hp11).
Remark 2.29. For r < 3, Eq. (2.45) is to be interpreted as in Remark 2.10.

Lemma 2.30. Under the same assumptions as in Lemma 2.27, consider two
elements € € ®),__,Hom(Bary, (U, X®4X), Hy) and v € ®),_" ;Hom(Bary, (U, X®a
X), Hy11) subject to the property that £ = [d,v]. Then ®(&) = [d, U (v)].
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Proof. We will only consider the case » > 3 here and leave the adaptation for
r < 3 to the reader.
By the hypothesis £ = [d, v] we explicitly mean &, = dy; o v, + Vi1 © dpar, for

any k=0,...,r—1,alongwith & = v,_jodg,, aswellas¢_ 1 = d;, ov_;. Hence,
it is enough to show Uy_; (v) o dg,, = ®x(vodyd4™) for k = 0,...,r, along with

dg o (V) = ®p(dy ov) for k = —1,0,...,7r — 1.

The first of these statements follows directly, by looking at the explicit def-
inition of ® and ¥ in (2.13) resp. (2.45), from the fact that X is a comonoid
in U-Mod, that is, from (A.16), which along with the monoidal structure (A.4)
implies

(id’ ®aor Ax) 0 diyyy = dp24™ o (Id T @00 Ay), (2.46)
for j =0,...,r, as already used in the proof of Lemma 2.7. This proves the case
for k = 1,...,r, where for k = 7 — 1 one uses that (0,7, 50 (id" ™" ®400 Ax)) 0
A% = (0,020 (id" ' @400 Ay) 0 d¥); Eq. (2.46) also already proves ®,.(¢) =
[d, U(v)], in top degree. In case k = 0,

Po(vodp2a¥) = (Ood)B;@r“X,l/,l 0dp®4% o (id®Ay))

= (07 V_i0 AX © d)B(ar) = le—l(V) © d)B(ar'

As for the second statement, first consider the degrees » — 1 and » — 2: as in
(1.3), and similar to the proof of Lemma 2.7, one has a commutative diagram

27— Hoy — " H,_,
ul l(o,id) lid
(—id,0) dpopra
Z—— 7 gz H1 —% H,_,
and hence, for G = p#H#Ay,
dego¥,_1(v) = (—id,0) o (,u ovp—1 0 (id" ®Acp AX))
= (0,id) o (i[H ovp—1 0 (id" ®0p AX))
= (0, (im0 vp—1) 0 (10" ®aor Ax))
= (I)r—l(dm o l/),
considering that d;, = i;, in highest degree. In degree » — 2, we compute
do 0¥, _5(v) = (dw o pra) o (0,20 (id" ™" @aer Ax))
= (d[H e} I/T,Q) e} (idr_l ®A0p AX)
= (I)T—Q(dm o V)-

In degrees 1 < k < r — 3, there is nothing to prove. As for the cases k¥ = —1 and

k = 0, recall from (1.2) that the sequence G, Lo, Go 25 X is actually given by

(du—|,0) pr2
H1 —)HQ XX®AXX—>X;

and therefore
de o Wo(v) = (dw,0) o (vp o (id ®a0r Ax))
= (dH o v o (id ®a0p AX),O) = Oy (dy ov),
which proves the case k = 0. Finally, for k¥ = —1, one has:
psoV_1(v)=prao(r_10Ax,0) =0=>_4(dyov),
which ends the proof. O

As an immediate consequence we find:.
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Proposition 2.31. Let X, Z be as above and as before ¢ and 1) be two cocycle
representatives for | € &ty (X, Z) and F € Ext} (X, Z), respectively. Let

p+g—1

s.(¢,v) e @ Hom (Bary(U, X ®4 X), (E®a Z)#(X ®4T)),,,)

k=—1
be the map defined by Eq. (2.40). Then

(1(¢,1) = [d. W(s(¢,))].

Proof. By Lemma 2.30 and Lemma 2.26, we have [d, ¥(s(¢,9))] = ®(£(¢,v)).
The conclusion then immediately follows from Lemma 2.27. O

As motivated at the end of §1.7, the following definition now makes sense:

Definition 2.32. The Gerstenhaber bracket of two cocycle representatives ¢
and ¢ as above is, up to a sign, defined as the top degree component of the
homotopy ¥, 4—1(s(¢,%)). More precisely,

{(ba 1/}} = (71)pq\IlP+¢I*1 (S(¢7 ’l/)))
This definition of the Gerstenhaber bracket can be completely made explicit:
Corollary 2.33. One has

{bp, g} = dpothg — (1)@ Dy 50, (2.47)

where S is the full (internal) operadic composition defined in (2.21).

Proof. Analogously to what we saw in the proof of Lemma 2.7, the top degree
U, q-1(5(¢,7)) is obtained by precomposing with id”*? ® 4o» Ay and postcom-
posing with p, that is, ¥, , 1(s(4,%)) = po spirg-1(p, 1) o (Id?"? @400 Ax).
With the explicit form of s given in (2.40) along with the external and inter-
nal operadic compositions of Egs. (2.17) and (2.20), respectively, the claim is
straightforward. O

Remark 2.34. Similarly to what was said in Remark 2.18, Eq. (2.47) now
makes sense even if one drops the assumption that ¢, and v, are cocycles. In
fact, the internal operadic composition (2.21) only asks for cochains.

However, that this is a Gerstenhaber bracket indeed, that is, a graded Lie
bracket fulfilling a graded Leibniz rule with respect to the (internal) cup prod-
uct (2.25), will explicitly only follow from the results in the subsequent §2.7.

2.7. The Ext groups as a Gerstenhaber algebra. The explicit Gersten-
haber algebra structure on Exty; (X, Z) is in a direct way obtained by adding
a multiplication to the operad O = Homy (Bar.(U, X), Z) from Section 2.4.2,
along with an identity and a unit. Define ;€ O(2),1 € O(1), and e € O(0) as

pu® ut i u?,m) = ex(ululu?m) ey,
1(u®ut,m) = ex@ulm)vly,, (2.48)
e(u;m) = ex(u®m)rv1,.

The U-linearity of these maps follows directly from Eqgs. (A.17) and (A.12), and
it is a straightforward check that oy = pos paswellas poje =1 = pose.
We then have:

Theorem 2.35. Let (U, A) be a left bialgebroid, Z ¢ %*(U-Mod) a braided
commutative monoid and X € Z"(U-Mod) a braided cocommutative comonoid
such that (X, Z) constitutes a commuting pair in the sense of Definition A.2.
Then (O, u, 1, e) defines an operad with multiplication, and its cohomology with
respect to the differential §¢ = (—1)°*1{p, ¢}, which coincides with Ext}; (X, Z)
if U, is projective over A, becomes a Gerstenhaber algebra.
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Proof. The proof is a cumbersome but straightforward explicit computation
that consists in verifying the associativity (A.21) for the partial compositions
on O defined in (2.20).

Let ¢, € O(p), ¥q € O(q), and x, € O(r). We provide a detailed proof for
the case j < i only, the other cases being completely analogous and left to the
reader. We have to show that

((¢P O4 Q/Jq) Oj XT)(UO7 e 7up+q+7‘—27 m)

2.49
= ((¢p o) xr) Cirr—1g) (..., uPFTHT72 ). 249

For better readability in later computations, let us introduce the following
shorthand notation:

ulbl = (il ), w9 =yt

for i < j. We will be dealing with the following intervals:

I =1[0,j —1]

I = [j,j +r—1]
Is=[j+ri+r—2]
=[i+r—1i+q+r—2]
[

=li+qg+r—Lp+qg+r—2].
To keep notation even shorter, let us moreover set

wh e gl03=1 () (051

and similar for the intervals I, to I5. Finally, we will write I; ; for I; u I;, and
so on. As a first step, we fully expand the left hand side of (2.49):

((¢p O4 ’l/)Q) Oj X’l“)(uov ula cee ,,uerquT*?, m)

_ (Is,15) (1), (s.1.5) I,
= (8 01 %) (u(lys xr (Lou3y, ()™ mes) o)) e ()™ mey) g iy ma )

( gﬁ)xT(l “(1)v(u(2) "m))[o ])(0))

(Is.a5) L12) (4, Ts.0.5) I
= by (ufty xr (Lt (ugay ™ mes)io) oy (s (s mes) s ugl,

(15) (13) (,05) ;
(L ufy (ugss e i) 1y () M), (k) mo)
(1) )

2 (U

b5

L (sas) (1), (s
Lo (uggy ™ mis)io)) oy ts) (g™

I (Is,4,5)
1)”(%)7 (u(3§45 m(g))[o])(o))

(Is)
m(s))[2] 2) wq(l “(1) , (u Ug) m(2))[0])(0))

—~

Now, we manipulate this expression using the identity

O (uqry, 220", 0P m) 2 (W) 2-1)2") -2 (uE)2(0)
= op(uy, 210", .., 0P, m) -5 (w2 2(0)) 2 (uz)2")
0

for any u,2°,...,9P"' e U, m € X, and z, 2’ € Z, that follows as an immediate
consequence of (A.15), to obtain:
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U(1) ; 2(=2)

I I (I3,4,5) () (I3,4,5) I:
6o (ultyxr (Luft)s (ugy ™ mes)o) o) (23( Gy M)y ug)s

(Is) (1), (Is Is
Vg (1 “(1)7( 2) m(2))[0])(_1)u(2) (“(2) m(2))[1]vu(1)’m(1))

’

“(2) Z(=1) z
1) L (Inas) ) Taas) (Is) Lo (Is) '
( Uy Xr(lv“&)a(%?“ mea)io)) _py U (W) M)t b (L ul, () me)o) o)
u(3) 2(0)

) 2 (sas)
2 (u g))XT(l ulhy, (uy ™ me)o) ) )

U(1) Z(=1)
_ I Iz (I3,4,5) ( 2) ¢, (L 0) I:
= ¢p(u(1)7XT(1vu(1)’ (“(3; m(3))[0])(_1) 2) (u (3;4 (3))[1]’“(13)’
(I5) (1) T
o (L uly, (wi) me)o)) 1)) (i) )y ufsy m)

U(2) Z(0)
r 1

o (0 (1, s o) )

U(3) 2
W) 4, (12) 0 (5.0.5) (I5) '
( Ug)y Us) (u (3;45 me)) 2]“(2) wq(l “(1)7( 2) m(2))[0])(o))-

Next, we use that the the YD condition (A.6) implies

(u(2ym)[o] ®a (wzym) ) ®a (u(zym)21ua) 2.50)
= (uymop)o] ®a (u@ymio)) 1] @a wzymy '

for any v € U and m € X, to obtain:
| (u(2)m)[o] | | (ue2ym) 1]
(I3), (I1,5) (I2) ¢, (Is), (1a;5) I:
O (uhy X (L uhy, (s gy ™ e )toy ) Cayuga) (o) gy ™ ey

(Is) (I1) ¢, (I5) Is
bg(L,u 1)’( 2 m(2))[0])(_1)“(2§ (“(23 m(2))[1]’“(1)’m(1))

(u(2ym)o)

(1) 1o (1), 005) '
2 () xe (1, “<1>’( 3w me)) o)
(u(2)m)[21u(1)

(112) (, (I), (as) (Is) Lo (Is)
( U3) (u (33 (3§ (3))[2]1‘(2; 7/’q<1’“(‘11)v(u(2) m(2))[0])(o))

(u@)ympo1)io] (u@ympo)y

_ (I3) s, (Ia;5) (I2) ¢, (I3), (Is,5) I:
=op ( (1)’XT(1 u(1) ( (2;( (3) m(3))[0])[o])( 1D (2) ( (2;( (3) m(3))[0])[1]’“(f)’

(1) (1), (I3)
a(Lufly, (w) me)o)) _pyu) (4] m<2>)[11a“<i)am<1>)
(u@)ympo1)io]

& ( (o) X (Lt (“ES)(“%’S)W<3>)[OJ)[O])<o>)

U(2)m[1]

(I2) . (Is),, (Iss) ' Lo ()
2 (uge)? wis) () me)m da (1 ull), (wi) me)o) o) )-

Finally, we use that for all z € X and z € Z one has

Z[0] ®A Z[112 = 2(—1)T Q4 Z(0)
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in X ®4 Z, as follows from the explicit expressions for the braidings (A.8) and
(A.7), respectively. This implies

Z(—1) ®a Z[0] ®A T[1]2(0) = Z(—2) ®A 2(—1)T ®A 2(0)

as elements in U ® s X ® 4 Z, and so we obtain:

(o) (o)
I—I
I I (Is) ¢, (I (I2) (, (Is) ¢, (2 I:
bp U(1)’XT(L“(1) (u (2; (u Uy m(3))[0]) o)(—l)“@) (u (2; (u(s) m(3))[0]) 177 Uy
(0] (1]

(=1

' (I5) (I, (Is) I
o (Ll (s me)jo) _yyulay) (Wl me) i, ufhy ma)
Z[0]

z (“Em)XT(l “(1) (“ES)( §§§5)m<3>)[01)[01)<0>)

Gty Z(0)

(2.8) () Tas), L (Is)
(ugay™* (ugy ™ mes)) o (Luflys (sl mea)or) o)

(3)
2D 1T = 1
(I3) (Is) (I1,5) (I2)
= ¢p( 1),Xr(1 “(1) ( ) wq(l “ 1y’ (“(z) m(2))[0])(71) “(335 m(3))[o])(71)“(2§ :
Z( 1) T
(1) (15 )
(u (2; T/Jq(l “(1)7( (2) m(2))[0])( 1) (3§ m(B))p]v
I Z( 2) 1
I: I (Is) (I1) ¢, (I5) Is
u(f)ﬂ/’q(l’“(il)v (u) m(2))[0])(_2) ) (U m(2))[1]’“(1)vm(1))
2(=1) x
(1) (I3) | Lo, (s) o as)
( Ug 3 xr (1, “(1) (u (5 %(1’“(?)’ (“(23 m(2))[0])(71) “(335 m(3))[0])(0))
z(0)
(I1,2,3) (Is) I
( U3) K %(1 “(1)7( 2) m(2))[0])(o))'

For the right hand side of (2.49) we perform a similar computation. First, let
us expand

((¢p 0, Xr) Of4r—1 "/’q)(uo, ul, o ,up+q+r72, m)
Iy,2, (Is) (I1) (Is)
= (¢p 0j XT) (U(l) 3,¢q(1 U(1)7( (2) m(z))[o])(_l)u@‘; (u(2)

( 2;23)1/’q(1 “(1)7( gzj)m@))[o])(o))

I
M)y, Ul M)

(Is) (I3) (L), (I5) L)
¢p( Xr(l u( s (ugy vq (1w 1)7( 3 m(3))[01)(_1)u(3§ (ugz) m(3)) 21t o) m(2))[01)(—1)

(I2) )

(1) (I3 (1), (I (15
ulg (ufs) o (1 ultys (u(e) mes)o)) oy uls)) (s} mes) 1) me) -

I: (Is) (I1) ¢, (I5) Is
u(f)v“/’q(l “(1)v(u(3) m(3))[0])( 2%2) (“(3) m)); “(1)’7”(1))

(I1) I> (I3) Iy (I 1) o (I5) u'ds)
( gy Xr (1 U1y (u (2; a1, u(1)’( (3) m(S))[O])( 1) (3) (u U(s) m(s))2)u 2) m(2))[o])(0))

Iy,2, 5
( 23) ”%(Lu(l)v(U§3))m<3>)[01)<o>)-

Using (2.50) again, we have
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(u@2ym) o] (u(2ym)21u(1)

(Is) (Is) (L) ¢, (Is) (Is)
bp(u(hys xr (Ludt), (u(s) e (1 uft), (s me)o) ) sy (s me) e me)) ) o

(u(2ym)[o] (u(2ym)p2ju() :
(12) (I3) (Is) ( ) (I5) (15) I-
uay () o (Lot (uggy me)io)) sy (s m@)E1u] M) pp Uy
(u2)m)0] (u@2ym)y

I (I5) (14) ¢, (I5) I
o (Loufty, () mes)o) ) oy i) () mes s uhy, ma )

(u(2ym) o] (ug2ym) 21U

(1) (Is) (Is) W00 (4, 15) (Is)
o (e X (Lot (e a (Ll (s mes)o) ) yyugs) (s M) 1) me) o) o)
(u(2)m)[o]

1
(I (Is)
'z ( - l/Jq(l u 1)’( (33 m(3))[0])(0))
(uympo})io) u(2)M1]
I I (Is) Is) (I1) , (Is)
= 6wl xr (Louty, (ugs) e (Loulty, (@ meo)ion) ) v men me) o) o
(u@ympoy)io) u2)m)
(I (Is) I4 (Is) (I) (Is) I:
Y (uay ¥a (L ughy, (uigy meayonio)) 1yt ) M@ me) gy i)
(Wl)m[o )[0] (uympo)

Ly, (Is) (13) ¢, (Is) I
o (Loulhy, (s meo)ion) oy izy) (s} meo) s ulhy, ma)

(u@ympo1)io] U(2) M1
(1) Lo () LU5) L0 )
2 (uge) X (Lot (o) va (Loufhy, () mesopion) sy ws) memme) o) ©)

(u@ymio)io)

( (1,2,3) Q/Jq( 1)’( gé‘;)m(S)[O])[O])(O))

Finally, using
T(2)[0] ®A T(2)[1)Z(1) = (1) 4 T(2),
that is, the braided cocommutativity of X from (A.20), we obtain:

Z(2)[0] T)[1]%(1)

I I (Is) IR Y —— (Ius)
¢p(u(1)aX7~(1 Jutys (g ¥a (1, u(l),( (2) m(s)[O])[O])(_l)u(g) Im(3)[1]m(2)l)[01)(—1)
(12) (I3) 1 (Is)m (Iss) T(2)[1]1%(1) I
(2) ( 7/’(1( u 1)7( (2) m(s)[o])[o])(_l)u(g) '771(3)[1]m(2)')[1]7u(l)7
T(2)[0] T (ay[0]

1o (05 (L), (1 I
(L uly, (uisy) M@ o) aue) (ue Mo u),mao)

L(2)[0] T@)[1]%(1)
(1) (1s) (12) o (11.5) Pt
o (e} xr (Ll (G g (1t (uie) My 10) oyt ™ T ) ) )
Z(2)[0]
(1, (1) Pt
o (s g (L uft), (3 Mol o) o)
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(1) T(2)

=9 ( (1)’XT(1 u(l s (u (Id)“/’q(l u(1) , (u EI))%I)[O])( 1)“%4)1’5)”1(3))[0])(—1)
(1) Ius) Z(2)

(I 14 (Is) I-
) ( wq(l e (U<23’ m(2))[0])(_1) (3) m(B))[qvu(f)’

I(l) T(1)
Iy (Is) F—1 (Ia) ¢, (Is) Is
%(17“(1),@(;} m(2))[0])(_2)“(2§ (“(23 m(2))[1]’“(1)’m(1))
T(1) T(2)

7 (e xr (L), (ufa) g (Ll (u(a)) MEDio) y ™ 267 ) o) )

@)
., ( (I1,2,3) ¢q(1 u 1),( g))m@))[ol)w))

which is the same as the left hand side of (2.49) computed a moment or two
ago (and if it is not, it is merely a typo); hence, this proves the first line of the
partial operadic associativity (A.21). Verifying the second line in (A.21) is left
to the reader, and the third line is actually redundant as it says the same as
the first (but the associativity properties are easier to read or memorise written
this way). This concludes the proof that O is an operad with multiplication.
That the differential § on the complex (2.19) can be expressed as d¢ =
(=1)?*{u, ¢} additionally uses the property (A.18). That an operad with multi-
plication induces a Gerstenhaber structure on cohomology follows from a well-
known (by now) classical result [GeSchl], ¢f. Appendix §A.3. O

3. EXAMPLES

3.1. Hopf algebra cohomology and adjoint (co)representations. It is a
standard result that any Hopf algebra H can be seen as a braided commutative
monoid in ZYD when using the left adjoint action H @y H — H, hQr g —
h(1)gS(h(2)) and the coproduct in H as coaction, a situation we denote by ad(H).
Hence, Theorem 2.35 implies that the cohomology groups Ext3; (k,ad(H)) form
a Gerstenhaber algebra, a fact already noted in [Ko, Ex. 3.5]. What is more, in
loc. cit. it has been shown that the customary k-module isomorphism

Ext}, (k,ad(H)) = Ext}y. (H, H)

that follows by applying [CaEi, Thm. VIII.3.1] is not only an isomorphism on
the level of chains, but remarkably enough also an isomorphism of Gersten-
haber algebras, where the right hand side as the Hochschild cohomology of H
seen as a k-algebra is a Gerstenhaber algebra by the primordial construction
in [Gel.

If the antipode of H is invertible, then an equally standard result says that
H is a braided cocommutative comonoid in ,YD* by means of the right adjoint
coaction H — H®y H, h — h(2) Qx h(g)S_l(h(l)) and by the action given by the
multiplication in H, a situation we denote by coad(H ). Hence, Ext};(coad(H), k)
by Theorem 2.35 becomes a Gerstenhaber algebra as well. It would be interest-
ing to see whether these coadjoint action examples are related by any means
to Hochschild cohomology (with nontrivial coefficients) as happens in the case
of the adjoint action above.

As a final remark, putting both the adjoint and the coadjoint action to-
gether, one might be tempted to say that the groups Extj;(coad(H),ad(H))
form a Gerstenhaber algebra. Yet, Theorem 2.35 requires (coad(H),ad(H))
to be a commuting pair for this to be true, and this only happens if H is si-
multaneously commutative and cocommutative. But then the adjoint and the
coadjoint actions are trivial and so is Ext};(coad(H ), ad(H)), which means that
Exty(coad(H),ad(H)) is indeed a Gerstenhaber algebra, but a trivial one.
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3.2. Generalised Drinfel’d and Heisenberg doubles. By means of a (not
necessarily nondegenerate) Hopf pairing ¢: H ® i G — k between arbitrary
Hopf algebras H and G, one can construct a generalised Drinfel’d double
D(H,G) that can be seen as a bicrossed product H » G on the underlying
vector space H @ G, see [Ka, §X.2] or [KaRoTu, Thm. 3.2] for full details, we
only give a few hints here in a slightly different convention.

The Hopf pairing allows for a right H-action on G, resp. for a left G-action
on H, given by

GRrH — G, gQrh— goh=yph,gz)90)
GRuH - H, gQuh—geh=o(S () 9)ha),

respectively. The generalised Drinfel’d double D(H, G) = H < G is then a Hopf
algebra when equipped with the coproduct, resp. counit, given by the standard
coproduct, resp. counit, on the tensor product of H and G, and the product

(h®wg) - (W ®wg') = h(gn) & 1)) Ok (92) 2 h{2))d’s

making the two Hopf algebras H and G Hopf subalgebras by means of the
canonical injection. In contrast to the classical construction that uses H =
(G°P)* if G is finite dimensional, D(H, () is not necessarily a braided Hopf
algebra but is so if both H, G are finite dimensional and the braiding ¢ is non-
degenerate (which is, of course, the case for the canonical pairing between G
and its dual G* but, for example, not so if one uses the trivial pairing induced
by the two counits of two arbitrary Hopf algebras H and G).

In the same spirit, one can define a generalised Heisenberg double H(H, G)
as a generalisation of both the Heisenberg algebra and the Heisenberg double
for H = G* in case of finite dimensions. This is essentially the smash product
H#G with respect to the left action from (3.1), that is, the tensor product H ®
G with product

3.1

(h®kg)- (W ®ug) = hlgn = h')®kgey-

Along the lines of the customary case for H = G*, as for example spelled out in
[Sel, one can define a left action, resp. a left coaction, on the Heisenberg double
H#G of, resp. over, the Drinfel’d double H =< G that turn H#G into a braided
commutative monoid in the category of left-left Yetter-Drinfel’d modules over
H ~ G, and hence the cohomology groups

EXt.D(H,G)([kv H(H,G)) = EXt}iNG(k H#G)

carry the structure of a Gerstenhaber algebra.

Infinite dimensional versions of the Heisenberg double appear, for example,
in [MeSkSt] in the study of noncommutative phase spaces of Lie type as be-
ing isomorphic to U(g)#U (g)* ~ U(g)#S(g*), where on the right one uses a
suitable completion of the symmetric algebra. Other applications include the
extension of the Hall algebra formalism to derived categories of an abelian
category as in [Kap].

3.3. Crossed product bialgebroids. If H is a k-bialgebra and Z a braided
commutative monoid in YD, the smash product Z#H is a left bialgebroid
over Z as shown in [BrzMi, Thm. 4.1]. As Z is the monoidal unit in the category
of left Z# H-modules, this hence implies that Ext}, ;(Z, Z) is a Gerstenhaber
algebra as any base algebra of a bialgebroid U is trivially a braided commuta-
tive monoid in YYD.

On the other hand, if H is in addition a Hopf algebra with invertible an-
tipode S, by turning the right H-coaction on Z into a left one by using S and the
left H-action into a left H°P-action by means of S~—!, the opposite algebra Z°P
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becomes a braided commutative monoid in 57 YD, and hence Extjop (k, Z°P) is
a Gerstenhaber algebra as well by Theorem 2.35.

Moreover, one has a k-module isomorphism between the cochain complexes
computing Exty, ;(Z, Z) and Extyes (k, Z°P), which we indicate here for short-
ness in exposition and better readability in degree two only:

n: Homger ((Z#H) ®ver (Z#H),Z) > Homy(H Q@ H, Z°P),
fom {h@uh = f((1F#h) @ver (131)) 1,
with inverse
fro { (z#h) @ver (Z'#1)
— f(S(z[q (h(1)zfo])[1])h(2)zfl] R S(ZEQ])h’) 2 2[0) 2 (h(l)zfo])[o] 4

where we used the definition of the bialgebroid cochain complex in (2.19) along
with the target map on the left Z-bialgebroid Z#H given by the right H-
coaction z +— 2[g) ® 2[1], as detailed in [BrzMi, Thm. 4.1].

Moreover, one can show that n and its inverse are chain maps (easy for 7,
naturally more involved for its inverse) and hence one has

Extyypy(Z, Z) ~ BExtyos (k, Z°P). (3.2)

Finally, the induced isomorphism (3.2) can be, with some effort, shown to be an
isomorphism of Gerstenhaber algebras, the detailed exposition of which being,
however, not within the scope of this article.

APPENDIX A. CENTRES, BIALGEBROIDS, AND OPERADS

A.1. Centres in monoidal categories. The following standard definition
can be found, e.g., in [Sch, Def. 4.3] or [EtGeNiOs, Def. 7.13.11]:

Definition A.1. The left weak centre 2°*(%¢) of a monoidal category (¥, ®, 1) is
the category whose objects are pairs (Z,0, _), where Z € €, such that

Oz ZQQM —->M®Z

is natural in M € % and such that o, ygw = (M ® 04, )(02,m ® M) holds
for all M, M’ € ¥ (which amounts to a hexagon axiom if involving associators),
along with o, 1 = id,.

The left weak centre is a monoidal category again, in particular a braided
one. At times, we only write (Z, ) instead of (Z, o, _) for objects in 2°(%).

Likewise, one defines the right weak centre 2" (¢) of a monoidal category &
as the category with objects (X, 7_ ), where this time

Tuxi MRX > XM
is natural in M € ¢, subject to analogous conditions as above.

Definition A.2. A commuting pair in a monoidal category ¥ is a pair (X, Z) €
ZT(€) x ZY€) such that
Oz,x = Tz,x

holdsasmaps Z® X - X ® Z.

Remark A.3. Since we wanted to deal with left and right centres and hence
involve two different braided monoidal categories, the above definition is a
slight variation of the following more standard one: in a braided monoidal cat-
egory (Z,0), a pair (X, Z) of its objects is called a commuting pair or a pair
of commuting objects if 0, x 0 0x , = idxgz. For example, the braided tensor
product algebra (see [Bae, Lem. 2]) of two braided commutative monoids X, Z
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in (Z,0) is not necessarily braided commutative again but is so if (X, Z7) is a
commuting pair, see op. cit., Lemma 3. See Remark A.4 for further discussion.

A.2. Left bialgebroids, their (co)modules, and centres. In this subsec-
tion, we gather all the necessary material on bialgebroids, their modules, their
comodules, the left and right weak centres in question and how explicitly com-
muting pairs translate to this context.

A.2.1. Bialgebroids. A left bialgebroid (U, A, A, ¢, s,t), or (U, A) for short, is a
generalisation of a k-bialgebra to a bialgebra object over a noncommutative
base ring A (typically a k-algebra), and consists of a k-algebra U which is si-
multaneously an A°-ring and an A-coring that are compatible in mostly the
standard way, at least formally. In particular, one has a ring homomorphism
resp. antihomomorphism s,t: A — U (source resp. target) inducing four com-
muting A-module structures on U

arbru<ccad=t(c)s(b)us(d)t(a) (A.1)

forue U, a,b,c,d e A, abbreviated by symbols like ,,U.. or similar, depending
on the relevant action(s) in a specific situation. Also introduce the A®-ring

Ux,U:= {Ziui(@vi elU,®a:U | Y0 ui ®@vi = Y ui Qu; «a, Yae A}
the Sweedler-Takeuchi product, which allows to define on U a comultiplication
A:U—->UxaUcU, ®4.U, U= U ®a Uz,
along with a counit ¢: U — A subject to certain identities that at some points

differ from those in the bialgebra case, see [Ta] for the original construction.

A.2.2. Example. The simplest example of a (noncommutative noncocommuta-
tive) left bialgebroid is given by (A°, A), where A°® .= A®; A°P is the enveloping
algebra of an associative k-algebra A (which, in particular, allows to consider
Schwede’s approach in [Schw] as a special case of our results in the main text).
Its structure maps are, for any a,b € A, given by

A(a@kb) (a®k1)®A(1®u<b), E((I@[kb) = ab,
s(a) = a®xl, t(a) = 1®ua,

along with the factorwise multiplication on A ®j A°P for the product.

(A.2)

A.2.3. Bialgebroid modules and comodules. A left U-module M over a left bial-
gebroid (U, A) is a left module over the underlying ring U. The category of left
U-modules will be denoted by U-Mod and we usually write all U-actions just
by juxtaposition. The forgetful functor U-Mod — A°-Mod is induced by

av>mab:=s(a)t(b)m, Va,be A, me M, (A.3)

with respect to which one forms the tensor product M ® 4 M’ of left U-modules,
and which, similar to the bialgebra case, is a left U-module again by

u(m®a m') = A(u)(m s m') = ugym ®a uym’, (A4)

for u € Uym € M, m' € M'. In other words, U-Mod is a (strict) monoidal
category with ® 4 as monoidal product and A as its unit object.

A left (and analogously right) comodule over a left bialgebroid (U, A) is a
comodule over the underlying A-coring [BrWi, §3]: a left A-module M along
with a coassociative and counital coaction A\: M — U.®@4M, m — m_1)®am ),
which, by defining the right A-action ma = e(m(_1) «a)m) for alla € Aon M,
effectively corestricts to amap A\ : M — U, x 4 M, where

Uy x, M = {Ziui@)miqu ®aM|X,aru;@m; = Y ,u; ® ma, VaEA}
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is a subspace in U, ®4 M. The left coaction is A-bilinear in the sense of
Aamb) = a v m_1) «b®a my for all m € M, a,b € A. Again, the cate-
gory U-Comod of left U-comodules (resp. the category Comod-U of right U-
comodules) is a (strict) monoidal category with monoidal product ® 4 and unit
object A.

A.2.4. A left-left Yetter Drinfel’d (YD) module Z over a left bialgebroid (U, A)
is simultaneously a left U-module (with action denoted by juxtaposition) and a
left U-comodule with coaction \: Z — U, ®4 Z, z — z(_1) ®4 2(0) such that the
two forgetful functors U-Mod — A°-Mod and U-Comod — A°-Mod induce
the same A-bimodule structure on Z, and such that

U(1)2(—1) @A U2)Z(0) = (u(1)2)(—1)t(2) ®a (u(1)2)(0) (A.5)

holds for all © € U and z € Z, the corresponding category of which is braided
monoidal (see below) with respect to ® 4, unit object given by the base algebra
A, and denoted by Y YD.

A.2.5. Likewise, a left-right Yetter Drinfel’d (YD) module X over a left bialge-
broid (U, A) is simultaneously a left U-module (with action denoted by juxtapo-
sition) and a right U-comodule with coaction ¢: X — X®4 .U, =+ 2g) @4 z[1)
such that the two forgetful functors U-Mod — A°-Mod and Comod-U —
A°-Mod induce the same A-bimodule structure on X, and such that

(1) To] ®a U(2)[1] = (U2)®)[0] ®a (u(2)T)[1ju(1) (A.6)

holds for all u € U and z € X, the corresponding category of which is braided
monoidal (see below) with respect to ® 4, unit object given by the base algebra
A, and denoted by ,YDV.

A.2.6. Observe that, in contrast to bialgebras, there are no right-left or right-
right YD modules over left bialgebroids.

A.2.7. Weak centres and commuting pairs for left bialgebroids. As mentioned
at the beginning of §2.1, a well-known fact [Sch, Prop. 4.4] establishes
an equivalence of braided monoidal categories between the left weak cen-
tre 2°/(U-Mod) of the monoidal category U-Mod in the sense of Definition
A.1, and the category YYD, and analogously between the right weak centre
Z7(U-Mod) and ,YDV: as for the first case, assign to any Z € YYD its under-
lying left module Z € U-Mod along with the left braiding

0‘=0’Z,M:Z®AM—>M®AZ, z@Am'—»z(_l)m(@Az(o) (A.7)

for any M e U-Mod, to form an object (Z,0) in 2°*(U-Mod). Much the same
way, assign to any X € YDV its underlying left module X € U-Mod along
with the right braiding

T=Tux: MOaX > XQ®1 M, m®az— z[0 Qaz1)Mm (A.8)

for any M € U-Mod, to give an object (X, 7) in 2" (U-Mod).
A pair (X, Z) of objects in 2" (U-Mod) x 2*(U-Mod) resp. ;YD" x VYD is
then called a commuting pair in the sense of Definition A.2 if

Tz,x =0z,x (A9)
holds, or, if forall z € X and z € Z
T[] ®A T[1]2 = 2(—1)T ®A Z(0) (A.10)
is true, using explicitly the braidings (A.8) and (A.7), respectively.
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Remark A.4. If the braiding (A.7) is invertible, which happens if more struc-
ture is present as, for example, if a bialgebra is a Hopf algebra with invertible
antipode, one sets 7,, , = a;f}z, and left and right weak centres are equivalent
as braided monoidal categories, which we then refer to simply as the centre,
also called the Drinfel’d centre and denoted here by %7 (U-Mod).

As a braided monoidal category this has a centre again (the centre of a cen-
tre, so to speak), sometimes referred to as Miiger or Rehren centre, defined
by those objects Z in 27 (U-Mod) for which o, ,, = o},!, for all M € U-Mod,
and denoted Z2%(U-Mod), see [Mii, Def. 5.12] or [Reh] for more information.
The category % (U-Mod) is obviously symmetric monoidal (and can be de-
fined for any monoidal category %¢). By mere definition, each pair of objects
in Z5(U-Mod) yields a commuting pair in the sense of (A.9) but at least for
¢ = U-Mod not very interesting ones: these are essentially A-modules (or
direct sums thereof) as is the case if U were a Hopf algebra over A = k.

However, the notion of commuting pairs is more general: for example, both
(M, A) and (A, N) for arbitrary M, N € %7(U-Mod) obviously are commuting
pairs, but not necessarily in 25(U-Mod). Slightly less trivial, for a cocom-
mutative left bialgebroid, each M € U-Mod can be made into a (left-left) YD
module by means of the trivial left coaction and hence each pair (M, N) of left
U-modules yields a pair of commuting objects.

A.2.8. Braided commutative monoidsin ¥YD. A braided commutative monoid
in YYD is, roughly speaking, an object Z that has four properties: it is a (left-
left) YD module, it is a left U-module algebra, a left U-comodule algebra, and
finally it is braided commutative.

More in detail, writing the action and coaction of an object Z € YD as in
§A.2.4, assume that (Z, u, 1,) with multiplication =z -, 2’ = u(z,2’) and unit 1,
is an A-ring. Being a left U-module algebra then explicitly means

u(z -5 2") = (uyz) -2 (u)?'), (A.11)
along with
uly, =e(u) »1,. (A.12)
On the other hand, (Z, i1, 1,) also being a left U-comodule algebra implies
Az(z22) =X (2)A2(7) = z(_l)zéfl) ®4 2(0) 2 zéo),
along with A\,(1;) = 1, ®4 1,. Moreover,
poo = pu, (A.13)
which says that (Z, 4, 1,) is supposed to be braided commutative; explicitly,
z-2 72 = (221)?') 2 Z(0)- (A.14)

Observe that it is precisely (and tautologically) the YD condition (A.5) on Z
that guarantees (A.14) to be well-defined, even when thinking of U-modules:

u(z 5 ) = @z ue? = () cnue s (o)

@“s u(l)Z(—l)z’ z U(2)2(0) = U((Z<—1)Z') 'z Z(O))-

(A.15)

Note that there is no relation whatsoever to whether the multiplication
in Z itself is commutative or not: for example, the base algebra A in a left
bialgebroid itself is a braided commutative monoid in J'YD but not necessarily
commutative as a k-algebra.
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A.2.9. Braided cocommutative comonoids in ;YDV. In much the same way as
in §A.2.8, a braided cocommutative comonoid in YDV (equivalently, a braided
commutative monoid in (,YDV)P) is again an object equipped with four prop-
erties: it is a (left-right) YD module, it is a left U-module coalgebra as well as
a right U-comodule coalgebra, and finally it is braided cocommutative.

More precisely, writing the action and coaction on an object X € ;YDV as
in §A.2.5, assume that (X,Ay,ex) is an A-coring with coproduct Ay: X —
X ®a X, 2 — x1) ®a 22y and counit ex: X — A. Being a left U-module
coalgebra then explicitly means

Ax(uz) = Alu)Ax(z) = U(1)Z(1) ®A U(2)T(2), (A.16)
along with
ex(uz) = e(uaex(x)). (A.17)

On the other hand, (X,Ay,ex) is also a right U-comodule coalgebra, which
means (Ax ®4 U)o ox = 0xg,x © Ay, and which amounts to

T1o](1) ®4 Z[o](2) @A T[1] = T(1)[0] DA T(2)[0] ®A T(2)[1]T(1)[1]>
for any x € X, along with

t(ex(2)) = ex(zp)) » ) (A.18)
Finally, braided cocommutativity manifests as
ToAx = Ay, (A.19)
or, explicitly,
(2)[0] @4 L()IT() = T(1) A T(2)- (A.20)

A.3. Operads and Gerstenhaber algebras. A (non-X)operad O in the cate-
gory of k-modules is a family {O(n)},>0 of k-modules with k-bilinear operations
0,: O(p) ®O(q) > O(p+q—1),i=1,...,p, subject to

poip = 0 ifp<i or p=0,
(05 X) Citr—1¥ if j <1,
(poi)ojx = Jpoi(Poj_iz1ix) ifi<j<q+i, (A.21)

(poj_g+1X)0i ¥ if j >q+1.

In the main text, especially in §2.4.1, these operations are referred to as
internal operadic composition, in contrast to the external one dealt with in §2.2.
Call an operad unital if there is an identity 1 € O(1) such that po;1 = 1ojp = ¢
for all ¢ € O(p) and @ < p, and call it with multiplication if there exists a
multiplication p € O(2) and a unit e € O(0) such that p oy p = p oy as well as
oy e = poge = 1. Such an object will be denoted by the triple (O, i, e). It is
then a standard result (see [GeSchl]) that (O, u, e) defines a cocyclic k-module
the cohomology H*(O) of which yields a Gerstenhaber algebra.
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