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BRACKETS AND PRODUCTS FROM CENTRES IN EXTENSION

CATEGORIES

DOMENICO FIORENZA AND NIELS KOWALZIG

ABSTRACT. Building on Retakh’s approach to Ext groups through categories
of extensions, Schwede reobtained the well-known Gerstenhaber algebra struc-
ture on Ext groups over bimodules of associative algebras both from splicing
extensions (leading to the cup product) and from a suitable loop in the cat-
egories of extensions (leading to the Lie bracket). We show how Schwede’s
construction admits a vast generalisation to general monoidal categories with
coefficients of the Ext groups taken in (weak) left and right monoidal (or Drin-
fel’d) centres. In case of the category of left modules over bialgebroids and
coefficients given by commuting pairs of braided (co)commutative (co)monoids
in these categorical centres, we provide an explicit description of the algebraic
structure obtained this way, and a complete proof that this leads to a Gersten-
haber algebra is then obtained from an operadic approach. This, in particular,
considerably generalises the classical construction given by Gerstenhaber him-
self. Conjecturally, the algebraic structure we describe should produce a Ger-
stenhaber algebra for an arbitrary monoidal category enriched over abelian
groups, but even the bilinearity of the cup product and of the Lie-type bracket
defined by the abstract construction in terms of extension categories remain
elusive in this general setting.
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INTRODUCTION

An apparently quite wide-spread theorem roughly states that for a monoidal
category pC ,b, 1q fulfilling some mild conditions, the groups ExtC p1, 1q define
a Gerstenhaber algebra: that is, a graded object equipped with a graded Lie
bracket and a graded commutative product subject to a Leibniz rule. However,
a detailed proof has appeared only very recently in [LoVdB] in a vast general-
ity, using the language of properads. This builds on [Sh1, Sh2], see also [He]
for an advanced attempt and [VoWo] for a treatment in terms of coderivations.

The mild conditions just mentioned refer to the problem that for an arbi-
trary monoidal category a priori the monoidal structure is not exact, and one
hence assumes the existence of a full additive subcategory which has the de-
sired properties and is implicitly dealt with instead of the original monoidal
category. The precise conditions needed, which we prefer not to discuss here in
detail, are spelled out in [Sh1, §2.1] or, somewhat differently, in [Sh2, Def. 5.1],
or [Schw, Lem. 2.1] for a discussion adapted to the Hochschild context of asso-
ciative algebras.

Less known and so far unproven is the following enhancement of the above
statement, which we formulate as a conjecture here:

Conjecture. Let C be a monoidal category (fulfilling a few mild conditions), let

Z be a braided commutative monoid in the left weak monoidal centre of C , and

let X be a braided cocommutative comonoid in the right weak monoidal centre

of C . If pX,Zq is a commuting pair, then ExtC pX,Zq is a Gerstenhaber algebra.

Here, by left resp. weak centre of pC ,b, 1q we mean those (braided monoidal)
categories Z ℓpC q resp. Z rpC q whose objects are objects in C together with not
necessarily invertible natural maps Z b M Ñ M b Z resp. M b X Ñ X b M

that for arbitrary M P C fulfil certain (hexagon) compatibilities in a customary
sense, and commuting pair refers to the case where these two maps coincide
on Z bX , see §A.1 for a more precise definition.

That these central objects need further structure such as a multiplication
resp. comultiplication in order to define a Gerstenhaber algebra on their Ext
groups becomes clear, e.g., when observing that the usual Yoneda product is
not an internal operation on ExtC pX,Zq.

In §1, we motivate the above conjecture by mimicking Schwede’s description
[Schw] of the Gerstenhaber algebra structure on the Hochschild cohomology of
an associative algebra through Retakh’s enhancement of Ext groups to Ext

spaces. More precisely, if we denote by # the splicing of two extensions in Ext

(that induces the Yoneda product on Ext groups), and if we assume X to be a
comonoid in Z rpC q with comultiplication ∆X and Z a monoid in Z ℓpC q with
multiplication µ, we can consider both multiplication resp. comultiplication as
extensions of length zero, and so as objects in Ext0

C
pX,X b Xq and Ext0

C
pZ b

Z,Zq, respectively. Given two extensions E P Ext
p
C

pX,Zq and F P Ext
q
C

pX,Zq of
length p resp. q, one can then consider the splicing

E Y F – µ#pE b Zq#pX b Fq#∆X

and its connected component in Ext
p`q
C

pX,Zq, that for convenience will be de-
noted by the same symbol:

E Y F P π0Ext
p`q
C

pX,Zq » Ext
p`q
C

pX,Y q.

On top, if MolochpE,Fq denotes the truncated tensor product complex of two
extensions E and F, one can devise the following loop in Ext

p`q
C

pX,Zq:
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µ#MolochpE,Fq#∆X

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

E Y F “ µ#pE b Zq#pX b Fq#∆X
OO

µ#pZ b Fq#pE bXq#∆X

µ#pZ b Eq#pF bXq#∆X F Y E “ µ#pF b Zq#pX b Eq#∆X

��

µ#MolochpF,Eq#∆X

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

66❧❧❧❧❧❧❧❧❧❧❧❧❧

where the vertical arrows use in an essential way that X and Z form a com-
muting pair in the right and left weak centres of C , respectively.

Choosing E Y F as a base point in Ext
p`q
C

pX,Zq, this gives an element

tE,Fu P π1pExtp`q
C

pX,Zq,E Y Fq » Ext
p`q´1
C

pX,Zq.

This way, one has defined a degree zero cup product

Y : Ext
p
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q
C

pX,Zq

and a degree ´1 bracket

t´,´u : Extp
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q´1
C

pX,Zq.

Unfortunately, even in the case of the category of bimodules over associative
algebras, this topological approach leaves one one step before the conclusion:
a proof that these operations define a Gerstenhaber algebra or the mere fact
these operations are bilinear remain elusive and no simpler argument than
those used in [Sh1] seems to be available to establish these facts in a purely
topological fashion.

In case of the category of bimodules over associative algebras, however,
there is a convenient mixed topological/algebraic approach developed in the al-
ready mentioned work [Schw] by Schwede, which leads to a transparent proof
of the fact that the cup product and the bracket obtained from a similar loop as
above indeed do endow the groups ExtAepA,Aq of an associative algebra A with
a Gerstenhaber algebra structure: it is shown in op. cit. how to obtain an ex-
plicit description in terms of Hochschild cocycle representatives of the cup and
bracket operations (dictated by the geometry of Ext spaces) for which the Ger-
stenhaber algebra axioms can be directly checked, and which coincide with the
cup product and Lie bracket of the classical Gerstenhaber algebra structure on
ExtAepA,Aq as originally introduced in [Ge].

Following the mentioned approach, we will show how to extract a cocycle de-
scription for the cup and bracket operations derived from the geometry of Ext

spaces of a commuting pair pX,Zq. As even an accurate construction will not
allow us here to obtain a proof for a Gerstenhaber algebra structure in full gen-
erality, we will be rather informal in this derivation, omitting all the needed
technical (mainly categorical) assumptions in order to make the construction
completely rigorous. Yet, we will be accurate enough to be able to provide in
§2 an explicit cocycle description for the operations in the particular case that
C is the monoidal category of left U -modules for a left bialgebroid pU,Aq. In
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terms of this cocycle description we shall explicitly exhibit the Gerstenhaber
algebra structure, thus turning the above Conjecture into Theorem 2.35:

Theorem (Theorem 2.35). Let pU,Aq be a left bialgebroid, Z a braided com-

mutative monoid in the left weak centre of the monoidal category of left U -

modules, and X a braided cocommutative comonoid in its right weak cen-

tre such that pX,Zq constitutes a commuting pair. Then the cochain complex

HomU pBar‚pU,Xq, Zq, computing Ext‚

U pX,Zq for A-projective U , defines an op-

erad with multiplication, which induces a Gerstenhaber algebra structure on

the cohomology groups.

Taking U “ Ae and X “ Y “ A, this recovers the usual Gerstenhaber alge-
bra structure on the standard Hochschild cohomology of an associative algebra
A with coefficients in itself as a very particular case.

* * *

Finding higher structures on chain or cochain complexes, or more specifi-
cally on cohomology groups such as Ext groups, has risen some interest in the
last two decades. For example, in [FaSo] the case for a Hopf algebra over a field
k was treated by identifying Ext‚

Hpk, kq as a subalgebra of the Hochschild co-
homology Ext‚

HepH,Hq, where H is merely seen as a k-algebra. This has been
elaborated on in [Me] by establishing a duality relation to the Gerstenhaber
structure on Cotor groups using operadic techniques. Both approaches have
been generalised in [Ko] to bialgebroids using the centre construction, which,
in particular, allows to establish that the well-known isomorphism

Ext‚

Hpk, adpHqq “ Ext‚

HepH,Hq (:)

of k-modules is actually one of Gerstenhaber algebras. Here, adpHq refers to H
itself seen as a left H-module with respect to the left adjoint action.

Independently from our work at hand, in the context of finite tensor cate-
gories, a Gerstenhaber algebra structure on Ext‚

C pX,Zq defined through a co-
product on X , a product on Z, and the respective lifts of these structure to the
monoidal center, appeared in Section 3 of the first (arXiv) version of [SchW1],
compare [SchW2] as well for a separate treatment by the same authors. This
provides a vast class of examples with applications relevant in quantum topol-
ogy. In particular, due to the finiteness assumption on the tensor category, one
has distinguished choices for X and Z, in addition to the monoidal unit, given
by the canonical coend and the canonical end, respectively. Among the applica-
tions, see [SchW2, Ex. 5.10], one recovers (:) for a finite dimensional quantum
group or Hopf algebra.

However, as the result in [Ko] shows, a finiteness assumption is not needed
in order for an isomorphism of Gerstenhaber algebras as in (:) to hold, and
hence one obtains a large class of examples from infinite dimensional quan-
tum groups. Other interesting infinite dimensional examples include, in
the same spirit, Ext‚

HpcoadpHq, kq or, from a somewhat different viewpoint,
Ext‚

DpH,Gqpk,HpH,Gqq for a generalised Heisenberg double HpH,Gq over a gen-
eralised Drinfel’d double DpH,Gq for two arbitrary Hopf algebras H and G, as
detailed in §3. Crossing braided commutative monoids in the monoidal cen-
tre of the category of H-modules with the Hopf algebra H in question leads to
another class of examples related to left Hopf algebroids.

* * *
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Throughout the whole text k will be a commutative ring, of characteristic
zero if need be. Unadorned tensor products are not to be understood over k but
rather denote the product in a monoidal category.

1. OPERATIONS IN EXTENSION CATEGORIES

We begin by recalling, in an informal way, the basic definitions of the Ext

spaces we are going to use in the construction of the cup product and the
bracket operation on Ext groups. Our aim here is not to provide a rigorous
construction but rather to fix notation and orient the reader. Details on the
formal construction and proofs of the statements can be found, e.g., in the orig-
inal works by Retakh on Ext spaces [Re] or by Neeman and Retakh [NeRe].

We will be working in a fixed monoidal category C and will denote the ob-
jects of C by the symbols X,Y, Z, . . . . We will also assume C is close enough
to an abelian category with enough projectives so that expressions like “zero
object”, “short exact sequence” or “projective resolution” make sense in C . In
particular, in C we will have a notion of an extension of an object X by an
object Y , meaning by this a short exact sequence of the form

0 Ñ Y Ñ E Ñ X Ñ 0

in C . Iterating this construction, one gets the notion of a p-fold extension of an
object X by an object Y , which will be denoted by

E : 0 Ñ Y Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ X Ñ 0,

so that

Ei “

$
’’’’’’&
’’’’’’%

0 if i ď ´2

X if i “ ´1

Ei if 0 ď i ď p´ 1

Y if i “ p

0 if i ě p` 1.

The maps Ei Ñ Ei´1 will be denoted by dE,i or simply by di, dE, or still simpler
by d when no or not much confusion is likely to arise. Occasionally, to make
it manifest that X is in place or degree ´1 and Y in place or degree p, we
will formally use the degree j shift symbol rjs, familiar from the theory of
triangulated categories, and will write a p-fold extension of X by Y as

E : 0 Ñ Y rps Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ Xr´1s Ñ 0.

In other words, we will be implicitly assuming that objects without an index
are placed in degree zero. More generally, an object denoted, for example,Eirjs,
is to be thought as placed in degree i` j.

If E and F are two p-fold extensions of X by Y , a morphism f : E Ñ F of p-fold

extensions is defined as a commutative diagram

0 // Y // Ep´1

fp´1

��

// ¨ ¨ ¨ // E1
//

f1

��

E0

f0

��

// X // 0

0 // Y // Fp´1
// ¨ ¨ ¨ // F1

// F0
// X // 0

(1.1)

that is, where the leftmost and rightmost vertical arrows are the identity. If
f, g : E Ñ F are two morphisms of p-fold extensions, then a chain homotopy

between f and g is a degree `1 morphism s of graded objects from E to F such
that f ´ g “ rd, ss. Explicitly, remembering that both f and g are identities
in degree ´1 and p and that both Ei and Fi are zero outside the range r´1, ps,
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this amounts to the datum of a family of morphisms si : Ei Ñ Fi`1, for i “
´1, 0, 1, . . . , p, such that

d0 ˝ s´1 “ 0,

d ˝ si ` si´1 ˝ d “ fi ´ gi for 0 ď i ď p´ 1,

sp´1 ˝ dp´1 “ 0.

Similarly, one defines homotopies between homotopies, etc. This way, one de-
fines an 8-category Ext

p
C

pX,Y q whose objects are p-fold extensions of X by Y ,
whose 1-morphisms are morphisms of p-fold extensions, whose 2-morphisms
are homotopies between morphisms, and so on. The space Ext

p
C

pX,Y q is de-
fined as the topological realisation of the simplicial set defined by this 8-
category Ext

p
C

pX,Y q, that is, the simplicial set having the k-morphisms in
Ext

p
C

pX,Y q as k-simplices. For p “ 0, the space Ext0C pX,Y q is defined as the
set HomC pX,Y q endowed with discrete topology. The two basic properties of
the Ext spaces that we shall need and are going to use are the following re-
lations to Ext groups in C , which run under the name Retakh’s isomorphism

[Re, NeRe]:

π0Ext
p
C

pX,Y q “ Ext
p
C

pX,Y q,

π1pExtp
C

pX,Y q;Eq “ Ext
p´1
C

pX,Y q,

where the first line can be taken as a definition of the Ext group Ext
p
C

pX,Y q.
When C is an abelian category with enough projectives, this is equivalent to
the classical definition of the Ext groups in C .

1.1. The hash operation. The hash operation, also known as splicing, is a
concatenation type operation

#: Ext
p
C

pY, Zq ˆ Ext
q
C

pX,Y q Ñ Ext
p`q
C

pX,Zq

on Ext spaces, implementing the Yoneda product

˝ : Extp
C

pY, Zq b Ext
q
C

pX,Y q Ñ Ext
p`q
C

pX,Zq

on Ext groups by passing to path connected components. It is defined in slightly
different ways depending on whether p or q are zero or not. When both p

and q are zero, Ext0
C

pY, Zq, Ext0
C

pX,Y q, and Ext0
C

pX,Zq are just the hom sets
HomC pY, Zq, HomC pX,Y q and HomC pX,Zq, respectively, and the hash opera-
tion in this case is the composition of homomorphisms.

When p ą 0 and q “ 0, we are considering a hash of the form E#F, where
F : X Ñ Y is a morphism. It is defined as the top horizontal row of the commu-
tative diagram

0 // Z // Ep´1
// ¨ ¨ ¨ // E1

// E0 ˆY X

��

// X //

F

��

0

0 // Z // Ep´1
// ¨ ¨ ¨ // E1

// E0
// Y // 0

(1.2)

where the rightmost commutative square is a pullback and the map E1 Ñ
E0 ˆY X is induced by the commutative diagram

E1
0 //

��

X

F

��

E0
// Y

and by the universal property of the pullback.
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In case p “ 0 and q ą 0, dually, with E : Y Ñ Z a morphism, E#F is defined
as the bottom horizontal row of the commutative diagram

0 // Y

E

��

// Fq´1

��

// Fq´2
// ¨ ¨ ¨ // F0

// X // 0

0 // Z //// Z \Y Fq´1
// Fq´2

// ¨ ¨ ¨ // F0
// X // 0

(1.3)

where the leftmost commutative square is a pushout.
It remains to be said what happens when both p and q are greater than

zero. In this case, points in the spaces Ext
p
C

pY, Zq and Ext
q
C

pX,Y q are iterated
extensions

E : 0 Ñ Z Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ Y Ñ 0,

and
F : 0 Ñ Y Ñ Fq´1 Ñ ¨ ¨ ¨ Ñ F0 Ñ X Ñ 0,

respectively. Their hash E#F is the iterated extension given by the top hori-
zontal row in the concatenation

E#F : 0 // Z // Ep´1
// ¨ ¨ ¨ // E0

// Fq´1
// ¨ ¨ ¨ // F0

// X // 0.

Y

BC OO@A
//

Notice that the hash composition is associative (up to natural isomorphisms)
and unital with units given by the compositions X ǫXÝÝÑ 1

1ZÝÝÑ Z, where 1 is
the unit object of C and ǫX and 1Z are the counit of X and the unit of Z,
respectively.

Remark 1.1. In the above concatenation, the lower indices no more corre-
spond to the position in the sequence of iterated extensions. This may be quite
confusing, so occasionally we will formally use the shift operator r1s of trian-
gulated categories as a symbol to restore the correct correspondence. That is,
the iterated extension

E : 0 Ñ Y Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ X Ñ 0

will be rewritten as

E : 0 Ñ Y rps Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ Xr´1s Ñ 0,

to stress that X is in position (or degree) ´1 in the sequence, and Y in position
p. With this notation, the iterated extension E#F will read

0 Ñ Zrp` qs Ñ Ep´1rqs Ñ ¨ ¨ ¨ Ñ E0rqs Ñ Fq´1 Ñ ¨ ¨ ¨ Ñ F0 Ñ Xr´1s Ñ 0.

Yet, when no confusion can arise, we will still adopt the less cumbersome

0 Ñ Z Ñ Ep´1 Ñ ¨ ¨ ¨ Ñ E0 Ñ Fq´1 Ñ ¨ ¨ ¨ Ñ F0 Ñ X Ñ 0.

1.2. The tensor product. By using the monoidal structure in C and the hash
composition, one has (at least) four natural ways of defining a map

Ext
p
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q
C

pX bX,Z b Zq.

Namely, given E in Ext
p
C

pX,Zq and F in Ext
q
C

pX,Zq, one can use the hash com-
position jointly with the tensor product to form

(i ) pE b Zq#pX b Fq,
(ii ) pZ b Fq#pE bXq,

(iii ) pF b Zq#pX b Eq,
(iv ) pZ b Eq#pF bXq.
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Both hashing and tensoring are well defined on path connected components
and so the above define four operations

Ext
p
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q
C

pX bX,Z b Zq.

Quite remarkably, the two operations induced on the Ext groups by (i) and (ii)

coincide, as well as the two operations induced by (iii) and (iv). To see this, we
need to exhibit a path in Ext

p`q
C

pX b X,Z b Zq between pE b Zq#pX b Fq and
pZ b Fq#pE bXq. We show how to do this in case p, q ě 1, leaving to the reader
the not particularly compelling task of completing the proof in case p or q are
equal to zero. An easy way of realising such a path is as a span

pE b Zq#pX b Fq
λE,F

ÐÝÝÝÝÝÝ MolochpE,Fq
̺E,F

ÝÝÝÝÝÝÑ pZ b Fq#pE bXq, (1.4)

where MolochpE,Fq is the totalisation of the diagram obtained by partially
removing the top row and the rightmost column of E b F as follows:

X bX

Z b F0
// Ep´1 b F0

// ¨ ¨ ¨ // E0 b F0

99ssssssssss

...

OO

...

OO

...

OO

...

OO

Z b Fq´1
//

OO

Ep´1 b Fq´1
//

OO

¨ ¨ ¨ //

OO

E0 b Fq´1

OO

Z b Z //

OO

Ep´1 b Z //

OO

¨ ¨ ¨ //

OO

E0 b Z

OO

One easily checks by explicit computation in the top two degrees and by the
Künneth isomorphism in all the lower degrees that MolochpE,Fq is indeed an
object in Ext

p`q
C

pX bX,Z b Zq.

Remark 1.2. When X “ 1C is the unit object of the monoidal category C , the
complex MolochpE,Fq is the tensor product of E and F as augmented complexes
considered in [Schw].

To produce the span (1.4), notice that the iterated extension pEbZq#pXbFq
is given by the top horizontal row in

Z b Z // Ep´1 b Z // ¨ ¨ ¨ //E0 b Z //X b Fq´1
// ¨ ¨ ¨ // X b F0

// X b X.

X b Z

BCOO@A
//

(1.5)
In the spirit of Remark 1.1, one can use the shift operator to have a better

control of positions or degrees and write this as

ZrpsbZrqs Ñ Ep´1bZrqs Ñ ¨ ¨ ¨ Ñ E0bZrqs Ñ XbFq´1 Ñ ¨ ¨ ¨ Ñ XbF0 Ñ XbXr´1s.

Similarly, the iterated extension pZbFq#pEbXq is given by the top horizontal
row in

Z b Z // Z b Fq´1
// ¨ ¨ ¨ // Z b F0

//Ep´1 b X // ¨ ¨ ¨ // E0 b X // X b X,

Z b X

BCOO@A
//
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that is, in the degree-shifted notation,

ZrpsbZrqs Ñ ZrpsbFq´1 Ñ ¨ ¨ ¨ Ñ ZrpsbF0 Ñ Ep´1bX Ñ ¨ ¨ ¨ Ñ E0bX Ñ XbXr´1s.

These combine with MolochpE,Fq into the single commutative diagram

Ep´1 bX // ¨ ¨ ¨ // E0 bX // X bX

Z b F0

GF //

// Ep´1 b F0
//

OO

¨ ¨ ¨ //

OO

E0 b F0
//

OO 88♣♣♣♣♣♣♣♣♣♣♣

X b F0

OO

...

OO

...

OO

...

OO

...

OO

...

OO

Z b Fq´1
//

OO

Ep´1 b Fq´1
//

OO

¨ ¨ ¨ //

OO

E0 b Fq´1
//

OO

X b Fq´1

OO

Z b Z //

OO

Ep´1 b Z //

OO

¨ ¨ ¨ //

OO

E0 b Z

BC
OOOO

The morphism
λE,F : MolochpE,Fq Ñ pE b Zq#pX b Fq (1.6)

is then given by the natural projection

MolochpE,Fqk
π

ÝÑ Ek´q b Zrqs

for q ď k ď q ` p, by the composition

MolochpE,Fqk
π

ÝÑ E0 b Fk Ñ X b Fk

for 0 ď k ď q ´ 1, and by the identity of X bXr´1s for k “ ´1. The morphism

̺E,F : MolochpE,Fq Ñ pZ b Fq#pE bXq (1.7)

is defined analogously, that is, by the natural projection

MolochpE,Fqk
π
ÝÑ p´1qpk´pZrps b Fk´p

for p ď k ď p` q, by the composition

MolochpE,Fqk
π

ÝÑ Ek b F0 Ñ Ek bX

for 0 ď k ď p´ 1, and again by the identity of X bXr´1s for k “ ´1.
Exchanging the rôles of E and F, we obtain the span

pF b Zq#pX b Eq
λF,E

ÐÝÝÝÝÝÝ MolochpF,Eq
̺F,E

ÝÝÝÝÝÝÑ pZ b Eq#pF bXq,

showing that (iii) and (iv) above define the same map at the level of Ext groups.
We would also like pZ b Fq#pE bXq and pF b Zq#pX b Eq to lie in the same

path connected component so that all of the four operations would coincide at
the level of Ext groups. As the two expressions we want to compare only differ
by the order of the factors in the tensor products, a natural requirement to do
in order to have them connected by a morphism in Ext

p`q
C

pX b X,Z b Zq is to
assume that Z and X are in the (left resp. right) centre of C , that is, come with
natural maps

σZ,´ : Z b p´q Ñ p´q b Z,

τ´,X : p´q bX Ñ X b p´q,
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the (left resp. right) braidings. With this assumption, we obtain the diagram
pσ|τqF,E:

Z b Z

σZ,Z

��

// Z b Fq´1
//

σZ,Fq´1

��

¨ ¨ ¨ // Z b F0
//

σZ,F0

��

**

Ep´1 bX //

τEp´1,X

��

¨ ¨ ¨ // E0 bX //

τE0,X

��

X bX

τX,X

��

Z bX

HH

σZ,X %% τZ,Xyy

X b Z

��

Z b Z // Fq´1 b Z // ¨ ¨ ¨ // F0 b Z //

44

X b Ep´1
// ¨ ¨ ¨ // X b E0

// X bX.

(1.8)
where, thanks to the naturality of the braidings σZ,´ and τ´,X , everything
commutes except possibly the small diagram in the middle with the two arrows
from Z bX to X b Z. In order to have this part commute as well, we require

σZ,X “ τZ,X,

that is, pX,Zq is a commuting pair in the sense of Definition A.2. Nevertheless,
even when this is fulfilled and so pσ|τqF,E is a commutative diagram, we are
not generally done yet: the diagram pσ|τqF,E does not define a morphism in
Ext

p`q
C

pX b X,Z b Zq, see (1.1), as the left- and rightmost vertical “boundary”
morphisms σZ,Z and τX,X are generally not the identity morphisms. We are
going to show how to circumvent this problem by introducing a variant of the
above construction in the following section.

1.3. The cup product. Assume now not only that pX,Zq is a commuting pair
in C in the sense of Definition A.2, but also that Z be a (braided) commutative
monoid in the braided monoidal category Z ℓpC q and X a (braided) commuta-
tive monoid in the braided monoidal category Z rpC qop. This allows for a cup
product

Y : Ext
p
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q
C

pX,Zq

as follows. Let

∆X : X Ñ X bX and µ : Z b Z Ñ Z

be the morphisms defining the (co)monoid structures on X and Z, respectively.
Then, for E in Ext

p
C

pX,Zq and F in Ext
q
C

pX,Zq, the cup product E Y F is defined
as

E Y F – µ#pE b Zq#pX b Fq#∆X .

Passing to path connected components, this yields a map

Y : Ext
p
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q
C

pX,Zq.

We already know from the results in §1.2 that E Y F is connected to

µ#pZ b Fq#pE bXq#∆X

via the span through µ#MolochpE,Fq#∆X . But now there is more: since Z
and X are (braided) commutative monoids in C and in C op, respectively, the
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commutative diagrams

X bX

τX,X

��

X

∆X{{✇✇
✇✇
✇✇
✇✇
✇

∆X

cc●●●●●●●●●

X bX

Z b Z

σZ,Z

��

Z bb

µ ❋❋
❋❋

❋❋
❋❋

||

µ
①①①①①①①①①

Z b Z

precisely cure the issue with the boundary morphisms in (1.8), changing the
boundary morphisms σZ,Z and τX,X into identity morphisms. Taking the rele-
vant pullbacks and pushouts the diagram (1.8) induces a morphism

Ćpσ|τq
F,E : µ#pZ b Fq#pE bXq#∆X

µ#pσ|τqF,E#∆X
ÝÝÝÝÝÝÝÝÝÝÝÝÑ µ#pF b Zq#pX b Eq#∆X

in Ext
p`q
C

pX,Zq.

1.4. The mystic hexagon. With the assumptions of the previous section, we
have a loop in Ext

p`q
C

pX,Zq given by

µ#MolochpE,Fq#∆X

λ̃E,F

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

˜̺E,F

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

E Y F “ µ#pE b Zq#pX b Fq#∆X
OO

Čpσ|τq
E,F

µ#pZ b Fq#pE bXq#∆X

µ#pZ b Eq#pF bXq#∆X F Y E “ µ#pF b Zq#pX b Eq#∆X

��

Čpσ|τq
F,E

µ#MolochpF,Eq#∆X

˜̺F,E

hh❘❘❘❘❘❘❘❘❘❘❘❘❘ λ̃F,E

66❧❧❧❧❧❧❧❧❧❧❧❧❧

(1.9)

where we wrote

λ̃E,F – µ#λE,F#∆X and ˜̺E,F – µ#̺E,F#∆X ,

respectively. Choosing E Y F as a base point, this defines an element in the
based loop space ΩEYFExt

p`q
C

pX,Zq. Passing to connected components, we ob-
tain a map

t , u : Extp
C

pX,Zq ˆ Ext
q
C

pX,Zq Ñ Ext
p`q´1

C
pX,Zq.

1.5. Cocycle representatives. It is often convenient to represent an element
E in Ext

p
C

pX,Zq by a cocycle representative φ. By this one means the following:
fix a projective resolution PX

ε
ÝÑ X of the object X and for p “ 0 consider the

composition
φ0 : P

X
0 Ñ X

E
ÝÑ Z, (1.10)

while for p ą 0 one considers a chain map φ : PX Ñ E which is the identity over
X , that is, a commutative diagram of the form

PXp`1

��

d // PXp
d //

φp

��

PXp´1

d //

φp´1

��

. . .
d // PX0

ε //

φ0

��

X // 0

0
d // Z

iE // Ep´1
d // . . .

d // E0

pE // X // 0

(1.11)
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The chain map φ exists and is unique up to homotopy by the projectivity of
PX . Moreover, since PX is a resolution, the datum of the homotopy class of
φ is equivalent to the datum of the cohomology class of φp in the complex
HomC pPX , Zq. For this reason one usually identifies p-cocycles with closed ele-
ments in HomC pPXp , Zq.

Remark 1.3. To get a more uniform presentation, 0-cocycle representatives
will be realised by commutative diagrams as follows:

PX0

φ0

��

ǫ // X

E

��

Z Z

It will be convenient to consider more generally commutative diagrams of
the form

PXp`1

��

d // PXp
d //

φp

��

PXp´1

d //

φp´1

��

. . .
d // PX0

ε //

φ0

��

X

f

��

// 0

0
d // Z

iE // Ep´1
d // . . .

d // E0

pE // X // 0

(1.12)

for an arbitrary morphism f : X Ñ X . We will call these diagrams f -twisted

cocycle representatives or f -twisted chain maps, or still chain maps over f . In
degree zero, an f -twisted 0-cocycle representative for E will be defined as a
commutative diagram of the form

PX0

φ0

��

ǫ // X

E˝f

��

Z Z

(1.13)

Remark 1.4. It is immediate from the definition of twisted cocycle representa-
tives that if φ : P

X Ñ E is an f -twisted cocycle representative and γ : P
X Ñ P

X

is a morphism of chain complexes, then φ ˝ γ : PX Ñ E is a pf ˝ γ´1q-twisted
cocycle representative, where γ´1 : X Ñ X is the degree ´1 component of γ; if
φ : PX Ñ E is an f -twisted cocycle representative and γ : E Ñ F is a morphism
of chain complexes, then γ ˝φ : PX Ñ F is a pγ´1 ˝fq-twisted cocycle representa-
tive, where γ´1 : X Ñ X is the degree ´1 component of γ. Another immediate
consequence of the definition (and of the additivity of our category C ) is that if
φ, ψ : PX Ñ E are an f -twisted and a g-twisted cocycle representative, respec-
tively, then φ` ψ is an pf ` gq-twisted cocycle representative.

1.6. The cup product in terms of cocycle representatives. If φ and ψ are
cocycle representatives for E P Ext

p
C

pY, Zq and F P Ext
q
C

pX,Y q, one can easily
write a cocycle representative φ#ψ for E#F. As for the #-operation on the Ext

spaces, we will need to distinguish four cases. When p and q are zero, E and
F are morphisms from Y to Z and from X to Y , respectively, and their rep-
resentative 0-cocycles are the compositions P Y0 Ñ Y

E
ÝÑ Z and PX0 Ñ X

F
ÝÑ Y ,

respectively. In this case, φ#ψ is simply the composition

PX0 Ñ X
F

ÝÑ Y
E

ÝÑ Z.

When p ą 0 and q “ 0, one considers the commutative diagram
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PXp`1
//

ζp`1

��

PXp
//

ζp

��

PXp´1
//

ζp´1

��

¨ ¨ ¨ // PX
1

//

ζ1

��

PX
0

$$

ζ0

��

PX
0

//

ψ0

��

// X

F

��

// 0

PYp`1
//

��

PYp
//

φp

��

PYp´1
//

φp´1

��

¨ ¨ ¨ // PY
1

//

φ1

��

PY
0

φ0

��

// Y Y // 0

0 // Z // Ep´1
// ¨ ¨ ¨ // E1

//// E0
//

::Y Y // 0

where the top vertical arrows are defined by the projectivity of PX . By the
universal property of the pullback, we obtain a commutative diagram

PXp`1
//

��

PXp
//

pφ#ψqp

��

PXp´1
//

pφ#ψqp´1

��

¨ ¨ ¨ // PX1
//

pφ#ψq1

��

PX0
ε //

pφ#ψq0

��

X // 0

0 //

��

Z // Ep´1
// ¨ ¨ ¨ // E1

pd,0q
// E0

pEˆF

Y X
//

��

X

F

��

// 0

0 // Z // Ep´1
// ¨ ¨ ¨ // E1

// E0
// Y // 0

whose top part exhibits a cocycle representative φ#ψ for E#F. Notice that for
every i ą 0 one has pφ#ψqi “ φi ˝ ζi, while for i “ 0 that pφ#ψq0 is the lift of
φ0 ˝ ζ0 to the fibre product E0

pEˆF

Y X , that is, pφ0 ˝ ζ0, εq. Similarly, and more
directly, when p “ 0 and q ą 0, one considers the commutative diagram

PXq`1
//

ζ1

��

PXq

''

ζ0

��

PXq
//

ψq

��

PXq´1

ψq´1

��

// ¨ ¨ ¨ // PX1
//

ψ1

��

PX0
//

ψ0

��

X // 0

P Y1

��

// P Y0
//

φ0

��

Y

E

��

// Fq´1
//

��

¨ ¨ ¨ // F1
// F0

// X // 0

0 // Z
77

Z // Z \Y Fq´1
// ¨ ¨ ¨ // F1

// F0
// X // 0

whose composite vertical arrows are a cocycle representative φ#ψ for E#F. In
degrees from 0 to q ´ 2, one has pφ#ψqi “ ψi, whereas in degree q ´ 1 one sees
that pφ#ψqq´1 is the class of p0, ψq´1q in the quotient of Z ‘ Fq´1 by the image
of Y , and in the top degree q, one has pφ#ψqq “ φ0 ˝ ζ0 “ E ˝ ψq.

Finally, in case p, q ą 0, one uses the projectivity of PX to define the maps
ζi : P

X
i`q Ñ P Yi , making the diagram

PXp`q

ζp

��

// PXp`q´1
//

ζp´1

��

¨ ¨ ¨ // PXq

&&

ζ0

��

PXq

ψq

��

// PXq´1
//

ψq´1

��

¨ ¨ ¨ // PX0

ψ0

��

// X

P Yp

φp

��

// P Yp´1
//

φp´1

��

¨ ¨ ¨ // P Y0

φ0

��

// Y // Fq´1
// ¨ ¨ ¨ // F0

// X

Z // Ep´1
// ¨ ¨ ¨ // E0

//
99

Y // Fq´1
// ¨ ¨ ¨ // F0

// X
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commute. Since the cup product is a composition of #-products, the above rules
yield, in particular, an expression for a cocycle representative φ Y ψ for the
product E Y F, given cocycle representatives φ and ψ for E and F, respectively.

Remark 1.5. By verbatim repeating the above construction of the case p ą 0

and q “ 0, one sees that if φ is an f -twisted cocycle representative for F and ψ0

a cocycle representative for a morphism F : X Ñ Y , then

PXp`1
//

��

PXp
//

pφ#ψqp

��

PXp´1
//

pφ#ψqp´1

��

¨ ¨ ¨ // PX1
//

pφ#ψq1

��

PX0
ε //

pφ#ψq0
��

X // 0

0 // Z // Ep´1
// ¨ ¨ ¨ // E1

pd,0q
// E0

pEˆf˝F

Y X // X // 0

is a cocycle representative for E#pf ˝ Fq, where pφ#ψq0 “ pφ0 ˝ ζ0, εq and
pφ#ψqi “ φi ˝ ζi for every i ą 0.

1.7. The bracket t , u in terms of cocycle representatives. Let φ and ψ be
two cocycle representatives for rEs P Ext

p
C

pX,Zq and rFs P Ext
q
C

pX,Zq, respec-
tively, and as before assume that pX,Zq is a commuting pair in the sense of
Definition A.2, where X is a (braided) commutative monoid in Z rpU -Modqop

and Z a (braided) commutative monoid in Z ℓpU -Modq.
In order to associate with φ and ψ a cocycle representative tφ, ψu represent-

ing the element

trEs, rFsu P Ext
p`q´1
C

pX,Zq “ π1Ext
p`q
C

pX,Zq,

defined by the loop (1.9) based at E Y F, one applies the following procedure.
For any n ě 0, one considers the (higher) categories ĄExtnC pX,Zq, whose objects
are pairs pG, ϕq, where G is an object in Extn

C
pX,Zq and ϕ : PX Ñ G is a cocycle

representing G. Morphisms between pG1, ϕ1q and pG2, ϕ2q are pairs pf, hq con-
sisting of a morphism f : G1 Ñ G2 in Extn

C
pX,Zq and of a homotopy h between

f ˝ϕ1 and ϕ2, that is, a degree ´1 map h : PX Ñ G2 such that rd, hs “ ϕ2 ´f ˝ϕ1.
Higher morphisms are defined recursively in a similar way. One has a natural
forgetful functor

ĄExtnC pX,Zq Ñ ExtnC pX,Zq

whose fibre at the point G is the hom space HomExtn
C

pX,ZqpPX ,Gq. Since PX is a
resolution of X , it is in particular an acyclic complex and so this hom space is
contractible. Therefore, the projection ĄExtnC pX,Zq Ñ Extn

C
pX,Zq is a homotopy

equivalence and one can read the homotopy groups of Extn
C

pX,Zq in terms of
the homotopy groups of ĄExtnC pX,Zq. Moreover, ĄExtnC pX,Zq Ñ Extn

C
pX,Zq is

a flat fibration: every path in Extn
C

pX,Zq has a canonical horizontal lift in
ĄExtnC pX,Zq, once a lift for the starting point is chosen: if pG1, ϕ1q is a point in
the fibre over G1 and f : G1 Ñ G2 a morphism in Extn

C
pX,Zq, then we have the

canonical lift
pf, 0q : pG1, ϕ1q Ñ pG2, f ˝ ϕ1q.

This gives a way to encode a loop γ in Extn
C

pX,Zq based at a point G into a
homotopy operator, i.e., a degree ´1 map hγ : PX Ñ G, once a representative
cocycle PX Ñ G for G is chosen: one horizontally lifts the loop to a path in
ĄExtnC pX,Zq with starting point pG, ϕq. The final point of this path will be a
point pG, ϕ̃q and, since they both represent the same element rGs in ExtnC pX,Zq,
the two cocycle representatives ϕ and ϕ̃ will be homotopic via a degree ´1 map
hγ : PX Ñ G, which is unique up to higher homotopies. The homotopy class
rhγs is the element in Extn´1

C
pX,Zq representing the loop γ.
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We now apply this abstract nonsense to the loop (1.9). Starting with two
cocycle representatives φ and ψ for E and F, respectively, one can form a repre-
sentative cocycle φY ψ for E Y F and exhibit a representative cocycle

φ Ỹb ψ : P
X Ñ µ#MolochpE,Fq#∆X

for µ#MolochpE,Fq#∆X such that φ Y ψ “ λ̃E,F ˝ pφ Ỹb ψq. The first step in
the horizontal lift of the loop consists in lifting λ̃E,F. This is immediate: the
horizontal lift is

`
µ#MolochpE,Fq#∆X , φ Ỹb ψ

˘ pλ̃E,F,0q
ÝÝÝÝÝÑ

`
E Y F, φY ψ

˘
.

Also the subsequent horizontal lift of Ćpσ|τq
F,E ˝ ˜̺E,F is immediate: it is

`
µ#MolochpE,Fq#∆X , φ Ỹb ψ

˘
`
Čpσ|τq

F,E˝ ˜̺E,F,0

˘
ÝÝÝÝÝÝÝÝÝÝÝÑ

`
F Y E, Ćpσ|τq

F,E ˝ ˜̺E,F ˝ pφ Ỹb ψq
˘
.

The next step is less trivial: one has to horizontally lift λ̃F,E in such a way that

its endpoint matches the endpoint of
`Ćpσ|τq

F,E ˝ ˜̺E,F, 0
˘
. That is, one has to find

a cocycle representative κ̃φ,ψ for µ#MolochpF,Eq#∆X such that

λ̃F,E ˝ κ̃φ,ψ “ Ćpσ|τq
F,E ˝ ˜̺E,F ˝ pφ Ỹb ψq.

Writing κ̃φ,ψ “ ψ Ỹb φ` ǫ̃φ,ψ, this becomes the equation

λ̃F,E ˝ pψ Ỹb φ` ǫ̃φ,ψq “ Ćpσ|τq
F,E ˝ ˜̺E,F ˝ pφ Ỹb ψq.

Assuming one has been able (or lucky) enough to find an ǫ̃ solving this equa-
tion, then one has the immediate horizontal lift

`
µ#MolochpF,Eq#∆X , ψ Ỹb φ`ǫ̃φ,ψ

˘
`
Čpσ|τq

E,F˝ ˜̺F,E,0

˘
ÝÝÝÝÝÝÝÝÝÝÝÑ

`
EYF, Ćpσ|τ q

E,F˝ ˜̺F,Epψ Ỹb φ`ǫ̃φ,ψq
˘
.

This concludes the procedure of horizontally lifting the loop based at E Y F, so
the corresponding element tφ, ψu in Ext

p`q´1
C

pX,Zq is represented by a homo-

topy s̃pφ, ψq between Ćpσ|τq
E,F ˝ ˜̺F,Epψ Ỹb φ` ǫ̃φ,ψq and λ̃E,F ˝ pφ Ỹb ψq, taken up to

higher homotopies. Writing

η̃pφ, ψq “ λ̃E,Fpφ Ỹb ψq ´ Ćpσ|τq
E,F ˝ ˜̺F,Epψ Ỹb φ` ǫ̃φ,ψq,

one therefore sees that the element tφ, ψu is represented by the homotopy class
of a solution s̃pφ, ψq of the equation η̃pφ, ψq “ rd, s̃pφ, ψqs, that is, by the coho-
mology class of the closed element s̃p`q´1pφ, ψq in HomC pPXp`q´1, Zq.

To explicitly compute the element s̃p`q´1pφ, ψq, one can argue as follows. If
α is a cocycle representative for an object H in Ext

p`q
C

pX b X,Z b Zq, then by
the constructions from §1.6 one writes an explicit formula for a cocycle repre-
sentative α̃ for the object G “ µ#H#∆X in Ext

p`q
C

pX,Zq, which can be straight-
forwardly extended to arbitrary collections of maps

 
βk : P

XbX
k Ñ Hk

(
0ďkďp`q

and
 
νk : P

XbX
k Ñ Hk`1

(
0ďkďp`q´1

.

Doing this, one obtains a graded linear map

Φ‚ :
rÀ

k“´1

HomC pPXbX
k , Hkq Ñ

rÀ
k“´1

HomC pPXk , Gkq.

Looking at the explicit expression for Φ, it is rather easy to define a graded
linear map

Ψ‚ :
r´1À
k“´1

HomC pPXbX
k , Hk`1q Ñ

r´1À
k“´1

HomC pPXk , Gk`1q
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such that
Φ ˝ rd,´s “ rd,´s ˝ Ψ.

Writing

ηpφ, ψq “ λE,F

`
pφYb ψq ˝ τ

˘
´ pσ|τqE,F ˝ ̺F,E

`
pψ Yb φ` ǫφ,ψ

˘
,

where φ Yb ψ is a τ -twisted cocycle representative for MolochpE,Fq, the map
ψYbφ is a τ -twisted cocycle representative for MolochpF,Eq, and ǫpφ, ψq “ ǫφ,ψ
is a 0-twisted cocycle representative for MolochpF,Eq, then Φpηpφ, ψqq “ η̃pφ, ψq
and the defining equation η̃pφ, ψq “ rd, s̃pφ, ψqs for s̃pφ, ψq reduces to

Φpηpφ, ψqq “ rd, s̃pφ, ψqs.

If spφ, ψq P
Àp`q´1

k“´1 HomC pPXbX
k , ppE b Zq#pX b Fqqk`1q is tailored in such a

way that Φprd, spφ, ψqsq “ Φpηpφ, ψqq, then one can take s̃pφ, ψq “ Ψpspφ, ψqq,
and deduces that tφ, ψu is explicitly represented by the cohomology class of the
closed element Ψp`q´1psp`q´1pφ, ψqq in HomC pPXp`q´1, Zq.

In the next section, we will explicitly apply what we just developed.

2. AN EXPLICIT APPROACH FOR BIALGEBROIDS

In this section, we shall describe how the aforementioned theory for exten-
sion categories can be made explicit in case of the category of left modules over
a left bialgebroid, endowing the corresponding Ext groups with a Gerstenhaber
algebra structure. To this end, a short account on bialgebroids pU,Aq and on
the respective notions of left and right weak centre in relation to (the categories
of) Yetter-Drinfel’d modules can be found in Appendix §A.2.

The main goal in the final part of this section (§2.7) will be to see that
ExtU pX,Zq is a Gerstenhaber algebra if pX,Zq is a commuting pair in the sense
of Definition A.2. There, the explicit proof works along standard lines, that is,
one shows that the explicit cochain complex HomU pBarnpU,Xq, Zq computing
ExtU pX,Zq is an operad with multiplication, with the bedevilling difference
that the operadic composition is somewhat complicated and not defining any
endomorphism operad structure.

2.1. Ext groups and extension categories over bialgebroid modules.

Let pU,Aq be a left bialgebroid. For simplicity, we will always and tacitly as-
sume that ŻUŽ is left-right projective over A, that is, projective with respect to
both the left A-action Ż and the right A-action Ž, see (A.1) for notation.

Let U -Mod be the monoidal category of left U -modules. In generalising
Schwede’s approach from the Hochschild case of associative algebras to bialge-
broids, that is, in passing fromAe-Mod to U -Mod, we are facing the same kind
of problems with respect to the exactness of the monoidal category in question.
More precisely, the tensor product E bA F of two extensions in U -Mod is in
general not exact but it is so if E and F are taken in the full subcategory ExtU
of the extension category ExtU that consists of those extensions in which all
U -modules are left-right projective over A. One can then generalise Lemma
2.1 in [Schw] in a straightforward way and show that the inclusion of ExtU
into ExtU induces a homotopy equivalence on classifying spaces. We omit the
technical details here but feel therefore entitled to not explicitly distinguish
between ExtU and ExtU in what follows.

As expounded in Appendix §A.2, a standard result [Sch, Prop. 4.4] estab-
lishes an equivalence of braided monoidal categories between the left weak
centre Z ℓpU -Modq and U

U
YD, the category of left-left Yetter-Drinfel’d mod-

ules; likewise between Z rpU -Modq and UYD
U , the category of left-right Yetter-

Drinfel’d modules. In the former case, this is done by assigning to any Z P U

U
YD
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the underlying left module Z P U -Mod along with what we might call a left

braiding

σ “ σZ,M : Z bAM Ñ M bA Z, z bA m ÞÑ zp´1qmbA zp0q (2.1)

for any M P U -Mod, to form an object pZ, σq in Z ℓpU -Modq. Likewise, assign
to any X P Z rpU -Modq its underlying left module X P U -Mod along with the
right braiding

τ “ τM,Z : M bA X Ñ X bAM, mbA x ÞÑ xr0s bA xr1sm (2.2)

for any M P U -Mod, to give an object pX, τq in Z rpU -Modq, see Appendix A
for more details and all notation used in what follows.

A cochain complex computing Ext‚

U pX,Zq is given by
`
C‚pU,X,Zq, δ

˘
, where

CnpU,X,Zq – HomU pBarnpU,Xq, Zq, (2.3)

and

BarnpU,Xq – p§UŽ qbAopn`1 bAop XŽ ,

with Bar´1pU,Xq – X , is the bar resolution of the left U -module X , seen as
a right A-module XŽ as in (A.3), with differential d “

řn
i“0p´1qidi induced by

the multiplication in U in the first n´ 1 faces di and the left U -action

L : Bar0pU,Xq “ §U bAop XŽ Ñ X “ Bar´1pU,Xq, ubAop x ÞÑ ux (2.4)

on X that induces the last face map dn. In a standard fashion, we then simply
have δ – d˚. Observe that the tensor product used in the bar resolution is not
the monoidal one (A.4) of U -Mod (in which factorwise multiplication would not
be defined), but rather BarnpU,Xq P U -Mod by left multiplication on the first
tensor factor.

The Hochschild case for an associative k-algebra A and hence Schwede’s
construction in [Schw] is reobtained by setting U “ Ae as well as X “ Z “ A

in what follows.
To connect the context of a left bialgebroid to our general observations in

§1, let us write down in detail what the concrete setting is here: for two exten-
sions E in Ext

p
U pX,Zq and F in Ext

q
U pX,Zq, respectively, consider chain maps

φ : BarpU,Xq Ñ E and ψ : BarpU,Xq Ñ F over the identity of X . With respect to
the bar resolution, Diagram (1.11) then takes the form

0
d // BarppU,Xq

d //

φp

��

Barp´1pU,Xq
d //

φp´1

��

. . .
d // Bar0pU,Xq

L //

φ0

��

X // 0

0
d // Z

iE // Ep´1

d // . . .
d // E0

pE // X // 0

(2.5)

where L is the left U -action on X as in (2.4); likewise for ψ and F.
Observe that with respect to the differential δ “ d˚ of the cochain complex

CnpU,X,Zq from (2.3), the commutativity of this diagram can be expressed as

iE ˝ φp “ φp´1 ˝ d “ δφp´1, d ˝ φj “ φj´1 ˝ d “ δφj´1, (2.6)

for j “ 1, . . . , p´1, and likewise for ψ. In particular, the first square in Diagram
(2.5) implies that

φp ˝ d “ δφp “ 0, (2.7)

that is, φp is a cocycle (and likewise for ψq), whereas the last square reads

pE ˝ φ0 “ L. (2.8)
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2.2. The external cup product. As above, let pZ, σq be an object in the left
weak centre Z ℓpU -Modq » U

U
YD and pX, τq an object in the right weak centre

Z rpU -Modq » UYD
U , and consider again two extensions

E : 0 Ñ Z
iEÝÑ Ep´1

d
ÝÑ . . .

d
ÝÑ E0

pEÝÑ X Ñ 0,

F : 0 Ñ Z
iFÝÑ Fq´1

d
ÝÑ . . .

d
ÝÑ F0

pFÝÑ X Ñ 0,

of U -modules, along with two families of morphisms φj P CjpU,X,Ejq for j “
0, . . . , p and ψi P CipU,X, Fiq for i “ 0, . . . , q as in Diagram 2.5.

For these, one can define a sort of 1-product, or external cup product

Yb : CjpU,X,Ejq b CipU,X, Fiq Ñ Cj`ipU,X bA X,Ej bA Fiq

for i “ 1, . . . , p and j “ 1, . . . , q, by defining

pφj Yb ψiqpu0, . . . , uj`i,m bA m
1q

– φj
`
u0p1q, . . . , u

j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i
p2q m

1qr0s

˘

bA ψi
`
u0p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i
p2q m

1qr1s, u
j`1

p1q , . . . , u
j`i
p1q ,m

˘
,

(2.9)

where the Sweedler notation in square brackets refers to the right U -coaction
on X , see §A.2.4 for notational details.

Remark 2.1. Observe that

Cj`ipU,X bA X,Ej bA Fiq Ă Cj`i
`
U,X bA X,MolochpE,Fq

˘

for i, j ě 0, so we may regard Yb as a map into the latter. In other words,
given two chain maps φ and ψ as above, the operation Yb defines a collection
of linear morphisms

pφYb ψqk : BarkpU,X bA Xq Ñ MolochpE,Fqk, k ě 0,

which we extend to degree ´1 by setting pφYb ψq´1 – τ : X bA X Ñ X bA X .

Remark 2.2. By functoriality of the tensor product and the (left-right) YD
condition (A.6), it is not difficult to see that the map τ‚ : Bar‚pU,X bA Xq Ñ
Bar‚pU,X bA Xq is a morphism of complexes, where τ´1 “ τ .

Lemma 2.3. Let φj P CjpU,X,Ejq and ψi P CipU,X,Zq and as before let δ “ d˚

be the pullback of the differential of the bar resolution. Then δ is a derivation

of the external cup product (2.9), that is, the graded Leibniz rule

δpφj Yb ψiq “ δφj Yb ψi ` p´1qjφj Yb δψi (2.10)

holds for any i, j ě 0.

Proof. This is a direct verification using (2.9), the explicit form of the differen-
tial in the bar resolution as described below (2.3), the fact that the coproduct
is a ring morphism, along with the monoidal structure (A.4) in U -Mod and X
as an object in the weak right centre of U -Mod, that is, that the (left-right) YD
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condition (A.6) is true. Indeed, one has
`
δpφj Yb ψiq

˘
pu0

, . . . , u
j`i`1

,m bA m
1q “ pφj Yb ψiq

`
dpu0

, . . . , u
j`i`1

,m bA m
1q
˘

“
j`iř
k“0

p´1qkpφj Yb ψiqpu0, . . . , ukuk`1, . . . , uj`i`1,m bA m
1q

` p´1qj`i`1pφj Yb ψiqpu0
, . . . , u

j`i
, u
j`i`1

p1q m bA u
j`i`1

p2q m
1q

“
jř

k“0

p´1qkφj
`
u0

p1q, . . . , u
k
p1qu

k`1

p1q , . . . , u
j`1

p1q , pu
j`2

p2q ¨ ¨ ¨uj`i`1

p2q m1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ukp2qu
k`1

p2q ¨ ¨ ¨uj`1

p2q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`2

p1q , . . . , u
j`i`1

p1q ,m
˘

`
j`iř

k“j`1

p´1qkφj
`
u0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨ukp2qu
k`1

p2q ¨ ¨ ¨uj`i`1

p2q m1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨ukp2qu
k`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`1

p1q , . . . , u
k
p1qu

k`1

p1q . . . , u
j`i`1

p1q ,m
˘

` p´1qj`i`1
φj
`
u
0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`1

p1q , . . . , u
j`i
p1q , u

j`i`1

p1q m
˘

On the other hand,

pδφj Yb ψiqpu0
, . . . , u

j`i`1
,m bAm

1q

“ δφj
`
u
0

p1q, . . . , u
j`1

p1q , pu
j`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨uj`1

p2q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`2

p1q , . . . , u
j`i`1

p1q , m
˘

“
jř

k“0

p´1qkφj
`
u0

p1q, . . . , u
k
p1qu

k`1

p1q , . . . , u
j`1

p1q , pu
j`2

p2q ¨ ¨ ¨uj`i`1

p2q m1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨uj`1

p2q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`2

p1q , . . . , u
j`i`1

p1q , m
˘

` p´1qj`1
φj
`
u
0

p1q, . . . , u
j

p1q, u
j`1

p1q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨uj`1

p2q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`2

p1q , . . . , u
j`i`1

p1q , m
˘

“
jř

k“0

p´1qkφj
`
u0

p1q, . . . , u
k
p1qu

k`1

p1q , . . . , u
j`1

p1q , pu
j`2

p2q ¨ ¨ ¨uj`i`1

p2q m1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ukp2qu
k`1

p2q ¨ ¨ ¨uj`1

p2q puj`2

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`2

p1q , . . . , u
j`i`1

p1q ,m
˘

` p´1qj`1
φj
`
u
0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1su

j`1

p1q , u
j`2

p1q , . . . , u
j`i`1

p1q ,m
˘
,

where the Yetter-Drinfel’d condition (A.6) was used in the last step for the last
summand. Moreover,

p´1qjpφj Yb δψiqpu0
, . . . , u

j`i`1
, mbA m

1q

“ p´1qjφj
`
u
0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨ uj`i`1

p2q m
1qr0s

˘

bA δψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`1

p1q , . . . , u
j`i`1

p1q ,m
˘

“ p´1qjφj
`
u
0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨ uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1su

j`1

p1q , u
j`2

p1q . . . , u
j`i`1

p1q ,m
˘

`
iř

k“1

p´1qk`jφj
`
u0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i`1

p2q m1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨ uj`i`1

p2q m
1qr1s, u

j`1

p1q , . . . , u
k`j
p1q u

k`j`1

p1q , . . . , u
j`i`1

p1q ,m
˘

` p´1qj`i`1
φj
`
u
0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr0s

˘

bA ψi
`
u
0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i`1

p2q m
1qr1s, u

j`1

p1q , . . . , u
k`j`1

p1q , u
j`i`1

p1q m
˘
.

By reindexing the second sum right above and subsequently comparing the
three explicit expressions just obtained for δpφj Ybψiq, as well as δφj Ybψi and
p´1qjφj Yb δψi, one confirms that Eq. (2.10) is true. �
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2.3. A cocycle representative for the cup product. We now have the tech-
nical prerequisites to explicitly illustrate the path indicated in §1.7. As a start,
we need to prove:

Lemma 2.4. If φ : BarpU,Xq Ñ E and ψ : BarpU,Xq Ñ F are chain maps as

above, then the collection of maps pφYb ψqk : BarkpU,XbAXq Ñ MolochpE,Fqk
from Remark 2.1 induced by the external cup product (2.9) defines a τ -twisted

cocycle representative φYb ψ : BarpU,X bA Xq Ñ MolochpE,Fq.

Proof. This is a direct consequence of Lemma 2.3 and the Leibniz rule (2.10):
to start with, let us prove, for k “ 1, . . . , p` q, that the diagram

BarkpU,X bA Xq
d //

ř
j`i“k

pφj Yb ψiq

��

Bark´1pU,X bA Xq

ř
j`i“k´1

pφj Yb ψiq

��À
j`i“k

Ej bA Fi
d //

À
j`i“k´1

Ej bA Fi

commutes, where i, j ě 0. Indeed, by means of (2.6), one has

d ˝
`ř
j`i“k

φj Yb ψi
˘

“
ř

j`i“k

`
pd ˝ φjq Yb ψi ` p´1qjφj Yb pd ˝ ψiq

˘

“
ř

j`i“k

`
δφj´1 Yb ψi ` p´1qjφj Yb δψi´1

˘
.

On the other hand, using the Leibniz rule (2.10), we compute
`ř

j`i“k´1

φj Yb ψi
˘

˝ d “
ř

j`i“k´1

δ
`
φj Yb ψi

˘

“
ř

j`i“k´1

`
δφj Yb ψi ` p´1qjφj Yb δψi

˘

“
ř

j`i“k

δφj´1 Yb ψi ` p´1qj
ř

j`i“k

φj Yb δψi´1,

which proves the commutativity of the diagram above; for k ą p or k ą q, this
also needs the cocycle condition (2.7). In lowest degree, i.e., for k “ 0, we obtain
the diagram

Bar0pU,X bA Xq
L //

φ0 Yb ψ0

��

X bA X

τ

��

E0 bA F0

pEbApF // X bA X

where τ is the braiding as in (2.2). By virtue of (2.8), this reduces to the claim
L Yb L “ τ ˝ L. Indeed, with (2.9) and the (left-right) YD condition (A.6), we
directly have

pLYb Lqpu0,mbA m
1q “ Lpu0p1q,m

1
r0sq bA Lpu0p2qm

1
r1s,mq “ u0p1qm

1
r0s bA u

0
p2qm

1
r1sm

“ pu0p2qm
1qr0s bA pu0p2qm

1qr1su
0
p1qm

“ τpu0p1qmbA u
0
p2qm

1q

“ pτ ˝ Lqpu0,mbA m
1q,

using the monoidal structure (A.4) in the last step. �
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Remark 2.5. For the external cup product of two 0-cocycle representatives
E : X Ñ Z resp. F : X Ñ Z, the statement of Lemma 2.4 amounts to the com-
mutativity of

Bar0pU,X bA Xq
L //

φ0 Yb ψ0

��

X bA X

τ

��

Z bA Z X bA X
EbAF

oo

which again is a consequence of the YD condition (A.6), where φ0 “ E ˝ L resp.
ψ0 “ F ˝ L are as in (1.10). Equivalently, this is the commutativity of

Bar0pU,X bA Xq
L //

φ0 Yb ψ0

��

X bA X

pEbAFq˝τ

��

Z bA Z Z bA Z

expressing that φ0 Yb ψ0 is a τ -twisted 0-cocycle representative, see Eq. (1.13).

Corollary 2.6. Let λE,F : MolochpE,Fq Ñ pE bA Zq#pX bA Fq be the morphism

of complexes from Eq. (1.6). Then

λE,Fpφ Yb ψq ˝ τ‚ : BarpU,X bA Xq Ñ pE bA Zq#pX bA Fq

is a τ2-twisted cocycle representative.

Proof. Immediate from Lemma 2.4 and Remark 1.4. �

Assuming from now on that X is a comonoid in Z rpU -Modq with comulti-
plication ∆X : X Ñ XbAX and Z a monoid in Z

ℓpU -Modq with multiplication
µ : Z bA Z Ñ Z, our next step consists in giving explicit formulæ for a cocycle
representative for the object µ#H#∆X in Ext‚

U pX,Zq, starting from a cocycle
representative ξ for an object H in Ext‚

U pX bA X,Z bA Zq.

Lemma 2.7. Let pZ, µq be a monoid in Z ℓpU -Modq and pX,∆Xq a comonoid in

Z rpU -Modq, let H P ExtrU pXbAX,ZbAZq, and ξ : BarpU,XbAXq Ñ H be a co-

cycle representative for H. Then a cocycle representative for µ#H#∆X is given by

ξ̃k –

$
’’’’’’&
’’’’’’%

idX for k “ ´1,`
ξ0 ˝ pid bAop ∆Xq, L

˘
for k “ 0,

ξk ˝ pidk`1 bAop ∆Xq for 1 ď k ď r ´ 2,`
0, ξr´1 ˝ pidr bAop ∆Xq

˘
for k “ r ´ 1,

µ ˝ ξr ˝ pidr`1 bAop ∆Xq for k “ r,

where p , q indicates the projection onto the quotient Z\Hr´1 Ñ Z\ZbAZ Hr´1,

and where we abbreviated id
k

– id
bAopk
U

.

Proof. We start by computing a cocycle representative for H#∆X , using the bar
resolutions for X and X bAX , respectively. Following the general prescription
in §1.6, we are to consider the commutative diagram

Barr`1pU,Xq //

id
r`2bAop∆X

��

BarrpU,Xq //

id
r`1bAop∆X

��

Barr´1pU,Xq //

id
rbAop∆X

��

. . .

Barr`1pU,X bA Xq //

��

BarrpU,X bA Xq //

ξr

��

Barr´1pU,X bA Xq //

ξr´1

��

. . .

0 // Z bA Z // Hr´1
// . . .
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. . . // Bar1pU,Xq //

id
2bAop∆X

��

Bar0pU,Xq
((

idbAop∆X

��

Bar0pU,Xq //

L˝pidbAop∆Xq

��

// X

∆X

��

// 0

. . . // Bar1pU,X bA Xq //

ξ1

��

Bar0pU,X bA Xq

ξ0

��

// X bA X X bA X // 0

. . . // H1
//// H0

//
55

X bA X X bA X // 0

Note that the commutativity of the upper two rows depends on the fact that X
is a comonoid in U -Mod, that is, explicitly from (A.16). From this diagram we
obtain the representative cocycle

Barr`1pU,Xq //

��

BarrpU,Xq //

ξr˝pidr`1bAop∆Xq

��

Barr´1pU,Xq //

ξr´1˝pidrbAop∆Xq

��

. . .

0 // Z bA Z // Hr´1
// . . .

. . . // Bar1pU,Xq //

ξ1˝pid2bAop∆Xq

��

Bar0pU,Xq //

pL,ξ0˝pidbAop∆Xqq

��

X // 0

. . . // H1
p0,dq

// X ˆXbAX H0
// X // 0.

Next, to compute a cocycle representative for µ#H#∆X , we consider the com-
mutative diagram

Barr`1pU,Xq //

ζ1

��

BarrpU,Xq
**

ζ0

��

BarrpU,Xq //

ξr˝pidr`1bAop∆Xq

��

Barr´1pU,Xq

ξr´1˝pidrbAop∆X q

��

// . . .

P
ZbAZ
1

��

// P
ZbAZ
0

//

��

Z bA Z

µ

��

iH

// Hr´1
//

p0,idq

��

. . .

0 // Z
44

Z
p´id,0q

// Z \ZbAZ Hr´1
// . . .

. . . // Bar1pU,Xq //

ξ1˝pid2bAop∆X q

��

Bar0pU,Xq //

pξ0˝pidbAop∆Xq,Lq

��

X // 0

. . . // H1
// H0 ˆXbAX X // X // 0

. . . // H1
// H0 ˆXbAX X // X // 0,

to see that µ#G#∆X is represented by the cocycle

Barr`1pU,Xq //

��

BarrpU,Xq //

µ˝ξr˝pidr`1bAop∆Xq

��

Barr´1pU,Xq

p0,ξr´1˝pidrbAop∆Xqq

��

// . . .

0 // Z // Z \ZbAZ Hr´1
// . . .
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. . . // Bar1pU,Xq //

ξ1˝pid2bAop∆Xq

��

Bar0pU,Xq //

pξ0˝pidbAop∆Xq,Lq

��

X // 0

. . . // H1
// H0 ˆXbAX X // X // 0,

from which the explicit expression for ξ̃ can be read off in all degrees. �

Remark 2.8. For r “ 2, the statement of Lemma 2.7 has to be understood
without the middle line, i.e.,

ξ̃k –

$
’’’&
’’’%

idX for k “ ´1,`
ξ0 ˝ pid bAop ∆Xq, L

˘
for k “ 0,`

0, ξ1 ˝ pid2 bAop ∆Xq
˘

for k “ 1,

µ ˝ ξ2 ˝ pid3 bAop ∆Xq for k “ 2.

(2.11)

If r “ 1, the two central lines of (2.11) are merged and one has

ξ̃k –

$
’&
’%

idX for k “ ´1,`
0, ξ0 ˝ pid bAop ∆Xq, L

˘
for k “ 0,

µ ˝ ξ1 ˝ pid2 bAop ∆Xq for k “ 1,

(2.12)

where ξ̃0 is now taking values in

Z \ZbAZ H0 ˆXbAX X.

Here we are omitting the parentheses thanks to the natural isomorphism of
U -modules pZ \ZbAZ H0q ˆXbAX X » Z \ZbAZ pH0 ˆXbAX Xq. Finally, for
r “ 0 one removes the central line of (2.12), obtaining

ξ̃k –

#
H for k “ ´1,

µ ˝ ξ0 ˝ pid bAop ∆Xq for k “ 0,

where H : X bA X Ñ Z bA Z is the element in Ext0U pX bA X,Z bA Zq of which
ξ is a 0-cocycle representative.

The above Lemma 2.7 suggests the following.

Definition 2.9. Let X and Z be as before and let H P ExtrU pX bA X,Z bA Zq
as well as G – µ#H#∆X . Define the graded linear map

Φ‚ :
rÀ

k“´1

Hom
`
BarkpU,X bA Xq, Hk

˘
Ñ

rÀ
k“´1

Hom
`
BarkpU,Xq, Gk

˘

as follows:

Φkpξq –

$
’’’’’’&
’’’’’’%

0 for k “ ´1,`
ξ0 ˝ pid bAop ∆Xq, 0

˘
for k “ 0,

ξk ˝ pidk`1 bAop ∆Xq for 1 ď k ď r ´ 2,`
0, ξr´1 ˝ pidr bAop ∆Xq

˘
for k “ r ´ 1,

µ ˝ ξr ˝ pidr`1 bAop ∆Xq for k “ r,

(2.13)

for any ξ P
Àr

k“´1 Hom
`
BarkpU,X bA Xq, Hk

˘
.
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Remark 2.10. Following Remark 2.8, for r “ 2, this has to be understood
without the middle line, i.e.,

Φkpξq –

$
’’’&
’’’%

0 for k “ ´1,`
ξ0 ˝ pid bAop ∆Xq, 0

˘
for k “ 0,`

0, ξ1 ˝ pid2 bAop ∆Xq
˘

for k “ 1,

µ ˝ ξ2 ˝ pid3 bAop ∆Xq for k “ 2.

(2.14)

If r “ 1, the two central lines of (2.14) are merged and one has

Φkpξq –

$
’&
’%

0 for k “ ´1,`
0, ξ0 ˝ pid bAop ∆Xq, 0

˘
for k “ 0,

µ ˝ ξ1 ˝ pid2 bAop ∆Xq for k “ 1,

(2.15)

where Φ0pξq takes values in Z \ZbAZ H0 ˆXbAX X . Finally, for r “ 0 one
removes the central line of (2.15) to obtain

Φkpξq –

#
0 for k “ ´1,

µ ˝ ξ0 ˝ pid bAop ∆Xq for k “ 0,

Remark 2.11. In terms of the linear map Φ from Definition 2.9, Lemma 2.7
can be stated by saying that if ξ : BarpU,X bA Xq Ñ H is a cocycle representa-
tive for H P ExtrU pX bA X,Z bA Zq, with r ą 0, then

p0, . . . , 0, pL, 0q, idXq ` Φpξq

is a cocycle representative for G “ µ#H#∆X P ExtrU pX,Zq.

Lemma 2.12. If ξ : BarpU,XbAXq Ñ H is an f -twisted cocycle for the extension

H P ExtrU pXbAX,ZbAZq, with r ą 0, then p0, . . . , 0, pL, 0q, idXq`Φpξq is a cocycle

representative for µ#H#pf ˝ ∆Xq P ExtrU pX,Zq.

Proof. Immediate from Remarks 1.5 & 2.11. �

Corollary 2.13. Let ξ : BarpU,X bA Xq Ñ H be an f -twisted cocycle for the

extension H P ExtrU pX bA X,Z bA Zq, with r ą 0, such that f ˝ ∆X “ ∆X . Then

p0, . . . , 0, pL, 0q, idXq`Φpξq is a cocycle representative for µ#H#∆X P ExtrU pX,Zq.

If we additionally assume from now on that X is a braided cocommutative

comonoid in Z rpU -Modq, by summing up we obtain the following proposition,
which we give for strictly positive degrees leaving to the reader the easy task
of deriving the corresponding statement for 0-cocycles.

Proposition 2.14. Let Z be as before and X a braided cocommutative comon-

oid in Z rpU -Modq, let E P Ext
p
U pX,Zq and F P Ext

q
U pX,Zq, with p, q ą 0, and

let φ : BarpX,Uq Ñ E and ψ : BarpX,Uq Ñ F be cocycle representatives for E and

F, respectively. Moreover, let φ Yb ψ : BarpU,X bA Xq Ñ MolochpE,Fq be the

τ -twisted cocycle representative from Lemma 2.4, and let λE,F : MolochpE,Fq Ñ
pX bA Fq#pE bA Zq be the morphism of complexes from Eq. (1.6). Then

p0, . . . , 0, pL, 0q, idXq ` ΦpλE,Fpφ Yb ψq ˝ τ‚qq

is a cocycle representative for E Y F “ µ#pE bA Zq#pX bA Fq#∆X.

Proof. Corollary 2.6 states that λE,Fpφ Yb ψq ˝ τ‚ : BarpU,X bA Xq Ñ pE bA

Zq#pXbAFq is a τ2-twisted cocycle representative. By assumption τ ˝∆X “ ∆X

as in (A.19), therefore τ2 ˝ ∆X “ ∆X, and one concludes by Corollary 2.13. �
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Definition 2.15. Let E P Ext
p
U pX,Zq resp. F P Ext

q
U pX,Zq be extensions

of length p resp. q, with cocycle representatives φ : BarpX,Uq Ñ E resp.
ψ : BarpX,Uq Ñ F. The cocycle representative φY ψ for E Y F is defined as

φY ψ – p0, . . . , 0, pL, 0q, idXq ` Φ‚

`
λE,Fpφ Yb ψq ˝ τ

˘

for any p, q ě 0.

Remark 2.16. By expanding the above definition, one sees that the top degree
component of φY ψ is, for any p, q ě 0, given by

pφY ψqp`qpu0, . . . , up`q,mq “ Φp`qpλE,FpφYb ψq ˝ τqpu0, . . . , up`q,mq

“ µ ˝ pφp Yb ψqq ˝ τp`q ˝ pidp`q`1 bAop ∆Xqpu0, . . . , up`q,mq

“ φp
`
u0p1q, . . . , u

p

p1q, pu
p`1

p2q ¨ ¨ ¨up`q
p2q mp2qqr0s

˘

¨Z ψq
`
u0p2q ¨ ¨ ¨upp2qpup`1

p2q ¨ ¨ ¨up`q
p2q mp2qqr1s, u

p`1

p1q , . . . , u
p`q
p1q ,mp1q

˘
,

(2.16)

when inserting the external cup product (2.9), the edge morphism λE,F as in
(1.6), the top degree of Φ as in (2.13), and the braided cocommutativity (A.19)
on X .

2.4. The cup product as internal operadic composition. Before finding,
in the spirit of §1.7, a second cocycle representative for E Y F, we would like
to understand how to reproduce the cup product from Eq. (2.16) from more
operadic ideas. To this end, we need to give both an external as well as an
internal operadic vertical composition first.

2.4.1. The external operadic composition. As said, let us introduce an, in a
sense, 2-product, or (partial) external operadic composition

˝b

i : C
jpU,X,Ejq b CqpU,X,Zq Ñ Cj`q´1pU,X bA X,Ej bA Zq,

where j “ 1, . . . , p and i “ 1, . . . , j, as follows:

pφj ˝b

i ψqqpu0
, u

1
, . . . , u

p`q´1
,m bA m

1q –

φj
`
u
0

p1q, . . . , u
i´1

p1q , ψq
`
1, u

i
p1q, . . . , u

i`q´1

p1q ,

pui`qp2q ¨ ¨ ¨up`q´1

p2q m
1qr0s

˘
p´1q

u
i
p2q ¨ ¨ ¨ ui`q´1

p2q pui`qp2q ¨ ¨ ¨up`q´1

p2q m
1qr1s, u

i`q
p1q , . . . ,

u
p`q´1

p1q ,m
˘

bA u
0

p2q ¨ ¨ ¨ui´1

p2q ψq
`
1, u

i
p1q, . . . , u

i`q´1

p1q , pui`qp2q ¨ ¨ ¨up`q´1

p2q m
1qr0s

˘
p0q
.

(2.17)

Denote by

φj ¯̋
b ψq –

jř
i“1

p´1qpi´1qpq´1qφj ˝b

i ψq (2.18)

the full external operadic composition (or external Gerstenhaber product). For
a zero cochain, that is, for j “ 0, put φ0 ¯̋b ψq – 0. The commutator with
respect to this Gerstenhaber product will be denoted by

rψq, φps¯̋
b

– ψq ¯̋
b φp ´ p´1qpp´1qpq´1qφp ¯̋

b ψq.

Remark 2.17. Observe that it is, a priori, not so clear how to generalise (2.17)
to a map

CjpU,X,Ejq b CipU,X, Fiq Ñ Cj`i´1pU,X bA X,Ej bA Fiq

for 0 ď i ă q as there is in general no reason why, apart from Fq “ Z, also the
U -modules Fi for i ‰ q should be U -comodules as well.
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2.4.2. The internal operadic composition. Precomposing resp. postcomposing
the partial external operadic composition (2.17) in case j “ p with the comul-
tiplication ∆X on X and the multiplication µ on Z, respectively, gives a true
(partial) (internal) operadic composition on the family

Opnq – CnpU,X,Zq “ HomU pBarnpU,Xq, Zq (2.19)

of k-modules. This results into a map

Oppq b Opqq Ñ Opp ` q ´ 1q

explicitly given for any φp P Oppq, ψq P Opqq, any uj P U , and m P X by

pφp ˝i ψqqpu0
, u

1
, . . . , u

p`q´1
, mq –

φp
`
u
0

p1q, . . . , u
i´1

p1q , ψq
`
1, u

i
p1q, . . . , u

i`q´1

p1q ,

pui`qp2q ¨ ¨ ¨up`q´1

p2q mp2qqr0s

˘
p´1q

u
i
p2q ¨ ¨ ¨ui`q´1

p2q pui`qp2q ¨ ¨ ¨up`q´1

p2q mp2qqr1s, u
i`q
p1q , . . . ,

u
p`q´1

p1q ,mp1q

˘
¨Z
`
u
0

p2q ¨ ¨ ¨ui´1

p2q ψq
`
1, u

i
p1q, . . . , u

i`q´1

p1q , pui`qp2q ¨ ¨ ¨up`q´1

p2q mp2qqr0s

˘
p0q

˘
,

(2.20)

for any i “ 1, . . . , p. Observe that the full structure of Z and X is used here:
being left U -modules, being (left resp. right) U -comodules, and having a multi-
plication on Z resp. a comultiplication on X . That (2.20) indeed defines partial
composition maps in an operad in the standard sense (cf. Appendix A.3) will
not be proven before §2.7 under the three assumptions that X is a (braided) co-
commutative comonoid in Z rpU -Modq and Z a (braided) commutative monoid
in Z ℓpU -Modq such that pX,Zq yields a commuting pair.

Analogously to (2.18), let us introduce the full (internal) operadic composi-
tion by defining

φj ¯̋ψq –

jř
i“1

p´1qpi´1qpq´1qφj ˝i ψq, (2.21)

which, again, might be called the (internal) Gerstenhaber product.
For the sake of illustration, we list a couple of special instances: for arbitrary

Z and X “ A, the base algebra itself, one obtains:

pφp ˝i ψqqpu0
, u

1
, . . . , u

p`q´1q

“ φp
`
u
0

p1q, . . . , u
i´1

p1q , ψqp1, uip1q, . . . , u
i`q´1

p1q qp´1qu
i
p2q ¨ ¨ ¨ui`q´1

p2q , u
i`q

, . . . , u
p`q´1

˘

¨Z
`
u
0

p2q ¨ ¨ ¨ui´1

p2q ψqp1, uip1q, . . . , u
i`q´1

p1q qp0q

˘
.

(2.22)

For example, for p “ q “ 1, this would be

pφp ˝1 ψqqpu, vq “ φp
`
up1q, ψqp1, vp1qqp´1qvp2q

˘
¨Z

`
up2qψqp1, vp1qqp0q

˘
. (2.23)

On the other hand, let Z “ A and X be arbitrary. Then (2.20) reduces to

pφp ˝i ψqqpu0
, u

1
, . . . , u

p`q´1
,mq “

φp
`
u
0
, . . . , u

i´1
, ψq

`
1, u

i
p1q, . . . , u

i`q´1

p1q ,

pui`qp2q ¨ ¨ ¨up`q´1

p2q mp2qqr0s

˘
Ż u

i
p2q ¨ ¨ ¨ui`q´1

p2q pui`qp2q ¨ ¨ ¨up`q´1

p2q mp2qqr1s, u
i`q
p1q , . . . , u

p`q´1

p1q ,mp1q

˘
.

Finally, if both X “ Z “ A equal the base algebra itself, that is, the unit object
in the monoidal category U -Mod, we obtain

pφp ˝i ψqqpu0
, u

1
, . . . , u

p`q´1q “

φp
`
u
0
, . . . , u

i´1
, ψq

`
1, u

i
p1q, . . . , u

i`q´1

p1q

˘
Ż u

i
p2q ¨ ¨ ¨ui`q´1

p2q , u
i`q

, . . . , u
p`q´1

˘
,

which is sort of the nicest and makes it clear why people never bothered about
introducing more general coefficients. Again, in case of the bialgebroid pU,Aq “
pAe, Aq and X “ Z “ A, employing the explicit bialgebroid structure of Ae as
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quoted in (A.2), this reduces to the classical Gerstenhaber insertion operations
as they originally appeared in [Ge], that is,

pφp ˝i ψqqpa1, . . . , ap`q´1q “ φp
`
a
1
, . . . , a

i´1
, ψqpai, . . . , ai`q´1q, ai`q, . . . , ap`q´1

˘
,

where now the commata mean a tensor product over k instead of overAop, and
where we identified HomAe

`
pAeqbAopn`1, A

˘
» HomkpAbkn, Aq.

2.4.3. The internal cup product. Introducing a special element µ P Op2q,

µpu0, u1, u2,mq – εXpu0u1u2mq,

the multiplication, which will again serve in §2.7, one can define the (internal)

cup product

Y : Oppq b Opqq Ñ Opp ` qq,

in the customary way, i.e.,

φp Y ψq “ pµ ˝2 ψqq ˝1 φp. (2.24)

For φp P Oppq, ψq P Opqq, any uj P U and m P X this explicitly comes out as

pφp Y ψqqpu0, . . . , up`q,mq

“ φp
`
u0p1q, . . . , u

p

p1q, pu
p`1

p2q ¨ ¨ ¨up`q
p2q mp2qqr0s

˘

¨Z ψq
`
u0p2q ¨ ¨ ¨upp2qpup`1

p2q ¨ ¨ ¨up`q
p2q mp2qqr1s, u

p`1

p1q , . . . , u
p`q
p1q ,mp1q

˘
.

(2.25)

Remark 2.18. Observe that this is now the same formula as the one obtained
by a different approach in (2.16), with the striking difference that here one
does not need to start from the assumption of dealing with cocycles; indeed, in
Eq. (2.25) above, both φp and ψq are merely cochains.

Remark 2.19. As already hinted at in Remark 2.17, observe again that as
in (2.24) analogously writing φj Yb ψi “ pµ ˝b

2 ψiq ˝b

1 φj for the external cup
product (2.9) in terms of the external operadic operation (2.17) does not make
sense, and therefore (2.9) had to be defined, sort of, by hand.

Let us again discuss some special cases: for arbitrary Z and X “ A,
Eq. (2.25) reduces to

pφp Y ψqqpu0, . . . , up`qq “ φp
`
u0p1q, . . . , u

p

p1q

˘
¨Z ψq

`
u0p2q ¨ ¨ ¨upp2q, u

p`1, . . . , up`q
˘
,

which, from a slightly different viewpoint, precisely reflects the DG coalgebra
structure of the bar resolution, whereas for arbitrary X and Z “ A, Eq. (2.25)
by replacing the multiplication in Z with the product in A does not really sim-
plify. In case Z “ X “ A, we therefore obtain

pφp Y ψqqpu0, . . . , up`qq “ φppu0p1q, . . . , u
p

p1qqψqpu0p2q ¨ ¨ ¨upp2q, u
p`1, . . . , up`qq,

which, again, in case pU,Aq “ pAe, Aq reduces to the well-known cup product
from [Ge], that is

pφp Y ψqqpa1, . . . , ap`qq “ φppa1, . . . , upqψqpap`1, . . . , ap`qq,

where, once more, the commata mean a tensor product over k instead of over
Aop, and where we identified HomAe

`
pAeqbAopn`1, A

˘
» HomkpAbkn, Aq.
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2.5. A second cocycle representative for E Y F. As in §1.7, we are now
going to construct a second cocycle representative for E Y F, see Proposition
2.24, that in the next subsection will turn out to be homotopic to the one from
Definition 2.15. For this, in particular, we need to find the, sort of, correction
term ǫ along with a couple of technical lemmata.

As above, for the whole section, let E P Ext
p
U pX,Zq and F P Ext

q
U pX,Zq, with

p, q ą 0, and let φ : BarpX,Uq Ñ E and ψ : BarpX,Uq Ñ F be chain maps, i.e.,
cocycle representatives for E and F, respectively.

By switching the rôles of E and F in Remark 2.1 and in Lemma 2.4, we
immediately obtain the following.

Lemma 2.20. If φ, ψ are chain maps as above, then the collection of maps

pψ Yb φqk : BarpU,X bA Xq Ñ MolochpF,Eqk induced by the external cup

product defines a τ -twisted cocycle representative ψ Yb φ : BarpU,X bA Xq Ñ
MolochpF,Eq.

Let us introduce the (doubly) braided cup commutator

rφj , ψqsYb,σ,τ – pφj Yb ψqq ˝ τj`q ´ p´1qjqσ ˝ pψq Yb φjq, (2.26)

where we wrote
τk – pUbAopk`1 bAop τq (2.27)

in order to enhance notational beauty. In this sense, τ´1 – τ .

Lemma 2.21. Let φj P CjpU,X,Ejq and ψq P CqpU,X,Zq and as before let

δ “ d˚ be the pullback of the differential of the bar resolution. If pX,Zq is a

commuting pair in the sense of Eq. (A.9), then the homotopy formula

p´1qqjrφj , ψqsYb,σ,τ “ p´1qqφj ¯̋
b δψq ´ p´1qqδpφj ¯̋

b ψqq ´ δφj ¯̋
b ψq (2.28)

holds, where σ and τ are the left resp. right braidings from (2.1) resp. (2.2). For

j “ 0, Eq. (2.28) reduces to

rφ0, ψqsYb,σ,τ “ ´δφ0 ˝b

1 ψq. (2.29)

Proof. This essentially works by writing down and comparing all appearing
terms one by one, not dissimilar to the operadic case; which is a tedious but
straightforward computation, we only indicate here a couple of decisive steps.

To this end, note if δ “
řj`1

k“0p´1qkδk is the decomposition of the differential
δ “ d˚ into its cofaces δk, then one directly checks that

ppφj Yb ψqq ˝ τj`qqpu0, . . . , uj`q,m bA m
1q

(A.8)
“ pφj Yb ψqqpu0, . . . , uj`q ,m1

r0s bA m
1
r1smq

(2.9)
“ φj

`
u0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1smqr0s

˘

bAψq
`
u0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1smqr1s, u

j`1

p1q , . . . , u
j`q
p1q ,m

1
r0s

˘

“ φj
`
u0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1smqr0s

˘

bAu
0

p2q ¨ ¨ ¨ ujp2qpuj`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1smqr1sψq

`
1, u

j`1

p1q , . . . , u
j`q
p1q ,m

1
r0s

˘

(A.10)
“ φj

`
u0

p1q, . . . , u
j

p1q, ψq
`
1, u

j`1

p1q , . . . , u
j`q
p1q ,m

1
r0s

˘
p´1q

u
j`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1sm

˘

bAu
0

p2q ¨ ¨ ¨ ujp2qψq
`
1, u

j`1

p1q , . . . , u
j`q
p1q , m

1
r0s

˘
p0q

“ δj`1φj
`
u0

p1q, . . . , u
j

p1q, ψq
`
1, u

j`1

p1q , . . . , u
j`q
p1q ,m

1
r0s

˘
p´1q

u
j`1

p2q ¨ ¨ ¨uj`q
p2q m

1
r1s,m

˘

bAu
0

p2q ¨ ¨ ¨ ujp2qψq
`
1, u

j`1

p1q , . . . , u
j`q
p1q , m

1
r0s

˘
p0q

(2.17)
“ ppδj`1φjq ˝b

j`1
ψqqpu0, . . . , uj`q, mbA m

1q,

where the fact that pX,Zq is a commuting pair was used in the fourth step;
that is,

pφj Yb ψqq ˝ τj`q “ pδj`1φjq ˝b

j`1 ψq, (2.30)
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in analogy to the operadic case. On the other hand,

σ
`

pψq Yb φjqpu0, . . . , uq`j ,m bA m
1q
˘

(2.9)
“ σ

`
ψq

`
u0

p1q, . . . , u
q

p1q, pu
q`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘

bAφj
`
u0

p2q ¨ ¨ ¨uqp2qpuq`1

p2q ¨ ¨ ¨ uq`j
p2q m

1qr1s, u
q`1

p1q , . . . , u
q`j
p1q ,m

˘˘
(A.7)
“ ψq

`
u0

p1q, . . . , u
q

p1q, pu
q`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p´1q

φj
`
u0

p2q ¨ ¨ ¨uqp2qpuq`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr1s,

u
q`1

p1q , . . . , u
q`j
p1q , m

˘
bA ψq

`
u0

p1q, . . . , u
q

p1q, pu
q`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p0q

(A.5)
“ φj

`
u0

p1qψq
`
1, u1

p1q, . . . , u
q

p1q,

puq`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p´1q

u1

p2q ¨ ¨ ¨uqp2qpuq`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr1s, u
q`1

p1q , . . . ,

u
q`j
p1q ,m

˘
bA u

0

p2qψq
`
1, u1

p1q, . . . , u
q

p1q, pu
q`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p0q

“ δ0φj
`
u0

p1q, ψq
`
1, u1

p1q, . . . , u
q

p1q,

puq`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p´1q

u1

p2q ¨ ¨ ¨uqp2qpuq`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr1s, u
q`1

p1q , . . . ,

u
q`j
p1q ,m

˘
bA u

0

p2qψq
`
1, u1

p1q, . . . , u
q

p1q, pu
q`1

p2q ¨ ¨ ¨uq`j
p2q m

1qr0s

˘
p0q

(2.17)
“ ppδ0φjq ˝b

1
ψqqpu0, . . . , uq`j ,m bA m

1q,

using the U -linearity of both ψq and φj , and where in the third step we used
the fact that the braiding σ is morphism in U -Mod. Hence,

σ ˝ pψq Yb φjq “ pδ0φjq ˝b

1 ψq, (2.31)

from which also (2.29) immediately follows.
With the two identities (2.30) and (2.31) at hand, verifying the homotopy

(2.28) becomes a feasible task and its full verification is left to the reader. �

Again by Remark 2.17, one cannot write down a version of the right hand
side of (2.28) with the positions of φj and ψq interchanged (as one could, up
to signs, in the standard operadic situation). Also, the left hand side, i.e., the
braided cup commutator (2.26) would not make sense with φj and ψq in oppo-
site order.

Lemma 2.22. Let φ : BarpU,Xq Ñ E and ψ : BarpU,Xq Ñ F be as above, and let

ǫkpφ, ψq : BarkpU,X bA Xq Ñ MolochpF,Eqk

for any k “ ´1, 0, . . . , p` q be defined by

ǫkpφ, ψq “

$
’’’’&
’’’’%

0 for k ă p,

´rψk´p, φpsYb,σ,τ

`p´1qpk`k`1pFk´p`1 bA iEq ˝ pψk´p`1 ¯̋
b φpq for p ď k ď p` q ´ 1,

´rψq, φpsYb,σ,τ for k “ p` q.

If pX,Zq is a commuting pair in the sense of Eq. (A.9), then ǫpφ, ψq : BarpU,XbA

Xq Ñ MolochpF,Eq is a 0-twisted cocycle representative.

Proof. By definition of 0-twisted cocycle representative, we have to show that ǫ
is a chain map with ǫ´1 “ 0. The last part of the statement is true by definition
of ǫ, so we have only to prove that ǫ is a chain map. To start with, let p ă k ď
p ` q ´ 1; the cases for k “ p ` q and k “ p will be proven separately. Observe
first that since d is a U -module map, we have from (2.1) and (2.2) that

pd bA Zq ˝ σ “ σ ˝ pZ bA dq,
pX bA dq ˝ τ “ τ ˝ pd bA Xq.

(2.32)
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Using again the notation τk “ pUbAopk bAop τq as in (2.27), we compute with
d ˝ iE “ 0, Eqs. (2.9), (2.26), and (2.6) as well as (2.32):

d ˝ ǫkpφ, ψq

“ d ˝
`

´ rψk´p, φpsYb,σ,τ ` p´1qpk`k`1pFk´p`1 bA iEq ˝ pψk´p`1 ¯̋
b φpq

˘

“ ´pd ˝ ψk´pq Yb φp ˝ τk´1 ` p´1qppk`1qσ ˝
`
φp Yb pd ˝ ψk´pq

˘

` p´1qk´p´1pFk´p bA iEq ˝ rψk´p, φpsYb,σ,τ

` p´1qpk`k`1pd bA iEq ˝ pψk´p`1 ¯̋
b φpq

“ ´pδψk´p´1q Yb φp ˝ τk´1 ` p´1qppk`1qσ ˝
`
φp Yb pδψk´p´1q

˘

` p´1qk´p´1pFk´p bA iEq ˝ rψk´p, φpsYb,σ,τ

` p´1qpk`k`1pFk´p bA iEq ˝ pδψk´p ¯̋
b φpq,

whereas, on the other hand, using the homotopy formula (2.28) and the fact
(2.10) that δ is a derivation of the cup product, along with δφp “ 0,

ǫk´1pφ, ψq ˝ d

“
`

´ rψk´p´1, φpsY,σ,τ ` p´1qppk´1q`kpFk´p bA iEq ˝ pψk´p ¯̋
b φpq

˘
˝ d

“ ´pδψk´p´1 Yb φpq ˝ τk ` p´1qpkσ ˝
`
pφp Yb ψk´p´1q ˝ d

˘

` p´1qppk´1q`kpFk´p bA iEq ˝
`
pψk´p ¯̋

b φpq ˝ d
˘

“ ´pδψk´p´1 Yb φpq ˝ τk ` p´1qppk`1qσ ˝ pφp Yb δψk´p´1q

` p´1qppk´1q`kpFk´p bA iEq ˝ δpψk´p ¯̋
b φpq,

which by the homotopy relation (2.28) for the braided cup commutator is the
same as before, hence d ˝ ǫkpφ, ψq “ ǫk´1pφ, ψq ˝ d for p ă k ď p` q´ 1. The case
k “ p` q is proven similar and left to the reader. As for the case k “ p, one has
to show that d ˝

`
rψ0, φpsYb,σ,τ ` pF1 bA iEq ˝ pψ1 ¯̋

b φpq
˘

“ 0. Indeed, with the
help of (2.29) and the fact that pdF bA ZqpF0 bA Zq “ 0 in MolochpF,Eq,

d ˝
`
rψ0, φpsYb,σ,τ ` pF1 bA iEq ˝ pψ1 ˝b

1 φpq
˘

“ pF0 bA iEq ˝ rψ0, φpsYb,σ,τ ` pd bA iEq ˝ pψ1 ˝b

1 φpq

“ pF0 bA iEq ˝ rψ0, φpsYb,σ,τ ` pF0 bA iEq ˝ pδψ0 ˝b

1 φpq

“ pF0 bA iEq ˝ rψ0, φpsYb,σ,τ ´ pF0 bA iEq ˝ rψ0, φpsYb,σ,τ “ 0,

which ends the proof. �

Corollary 2.23. Let ǫ be as in Lemma 2.22 and pX,Zq a commuting pair sub-

ject to the same assumptions as before, and let ̺F,E : MolochpF,Eq Ñ pZ bA

Eq#pF bAXq be the morphism of complexes obtained by switching the rôles of E

and F in (1.7). Then

̺F,Epψ Yb φ` ǫpφ, ψqq : BarpU,X bA Xq Ñ pZ bA Eq#pF bA Xq

is a τ -twisted cocycle representative, which implies that

pσ|τqE,F ˝ ̺F,Epψ Yb φ` ǫpφ, ψqq : BarpU,X bA Xq Ñ pE bA Zq#pX bA Fq

is a τ2-twisted cocycle representative.

Proof. From Lemmata 2.20 & 2.22 we have that ψ Yb φ` ǫpφ, ψq : BarpU,X bA

Xq Ñ MolochpF,Eq is a τ -twisted cocycle representative. By noticing that
p̺F,Eq´1 “ idXbAX and with the help of Remark 1.4, one proves the first state-
ment. The second is then obvious. �

Finally, reasoning as in the proof of Proposition 2.14, we obtain:
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Proposition 2.24. In the same notation as above,

p0, . . . , 0, pL, 0q, idXq ` Φ
`
pσ|τqE,F ˝ ̺F,Epψ Yb φ` ǫpφ, ψqq

˘

is as well a cocycle representative for EYF “ µ#pEbAZq#pXbAFq#∆X , where

Φ is defined in (2.13).

2.6. Brackets from homotopies. So far, in §2.3 and §2.5, we have exhibited
two representative cocycles for E Y F, namely φ Y ψ “ p0, . . . , 0, pL, 0q, idXq `
ΦpλE,Fpφ Yb ψq ˝ τ‚qq as well as p0, . . . , 0, pL, 0q, idXq ` Φppσ|τqE,F ˝ ̺F,Epψ Yb φ `
ǫpφ, ψqqq. We now want to produce an explicit homotopy between these two.
Writing

ηpφ, ψq – λE,F

`
pφYb ψq ˝ τ

˘
´ pσ|τqE,F ˝ ̺F,E

`
pψ Yb φ` ǫpφ, ψq

˘
, (2.33)

where pσ|τqE,F is the morphism of complexes defined in (1.8), this amounts to
exhibiting a homotopy between Φpηpφ, ψqq and zero.

Before we do so, let us give an explicit expression for η in (2.33):

Lemma 2.25. Under the standing assumptions, we have

pσ|τqF,E ˝ ̺E,Fpφ Yb ψq ´ λF,E

`
pψ Yb φq ˝ τ‚ ` ǫpφ, ψq

˘
“ 0,

as well as

ηpφ, ψq “ λE,F

`
pφYb ψq ˝ τ‚

˘
´ pσ|τqE,F ˝ ̺F,E

`
pψ Yb φ` ǫpφ, ψq

˘

“

$
’’’’’’&
’’’’’’%

0 for k ă q,

rφk´q , ψqsYb,σ,τ for q ď k ď p ` q ´ 2,

rφp´1, ψqsYb,σ,τ

`p´1qp`qσ ˝ pZ bA iEq ˝ pψq ¯̋
b φpq for k “ p` q ´ 1,

rφp, ψqsYb,σ,τ ` p´1qpqσ ˝ rψq, φpsYb,σ,τ for k “ p` q,

(2.34)

for any two chain maps φ : BarpU,Xq Ñ E and ψ : BarpU,Xq Ñ F as before.

Proof. Observe first that explicitly looking at the edge morphisms (1.6) and
(1.7) yields

̺
F,Eǫkpφ, ψq “

$
’&
’%

0 for k ă p` q ´ 1,

p´1qp`qpZ bA iEq ˝ pψq ¯̋
b φpq for k “ p` q ´ 1,

´p´1qpqrψq, φpsYb,σ,τ for k “ p` q,

(2.35)

as well as

λ
F,Eǫkpφ, ψq “

#
0 for k ă p,

´rψk´p, φpsYb,σ,τ for p ď k ď p` q.
(2.36)

Slightly less straightforward, one also has

ř
j`i“k

`
pσ|τq

F,E ˝ ̺
E,Fpφj Yb ψiq ´ λ

F,E

`
pψi Yb φjq ˝ τi`j

˘˘

“

#
0 for k ă p,

rψk´p, φpsYb,σ,τ for p ď k ď p` q,

(2.37)
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which is seen as follows: first, in case k ă p, one directly computes
ř

j`i“k

pσ|τ qF,E ˝ ̺E,F

`
pφj Yb ψiqpu0, . . . , ui`j ,m bA m

1q
˘

(2.9)
“

ř
j`i“k

pσ|τ qF,E ˝ ̺E,F

`
φj

`
u0

p1q, . . . , u
j

p1q, pu
j`1

p2q ¨ ¨ ¨uj`i
p2q m

1qr0s

˘

bAψi
`
u0

p2q ¨ ¨ ¨ujp2qpuj`1

p2q ¨ ¨ ¨uj`i
p2q m

1qr1s, u
j`1

p1q , . . . , u
j`i
p1q , m

˘˘
(1.7),(1.8)

“ τ ˝
`
φkpu0

p1q, . . . , u
k
p1q,m

1
r0sq bA pFψ0pu0

p2q ¨ ¨ ¨ukp2qm
1
r1s,mq

˘

(2.8)
“ τ ˝

`
φkpu0

p1q, . . . , u
k
p1q,m

1
r0sq bA Lpu0

p2q ¨ ¨ ¨ukp2qm
1
r1s,mq

˘

(2.4),(A.8)
“ pu0

p2q ¨ ¨ ¨ukp2qm
1
r1smqr0s bA pu0

p2q ¨ ¨ ¨ukp2qm
1
r1smqr1sφkpu0

p1q, . . . , u
k
p1q,m

1
r0sq,

whereas
ř

j`i“k

λF,E

``
pψi Yb φjq ˝ τi`j

˘
pu0, . . . , ui`j ,m bA m

1q
˘

(A.8)
“

ř
j`i“k

λF,E

`
pψi Yb φjqpu0, . . . , ui`j ,m1

r0s bA m
1
r1smq

˘

(2.9)
“

ř
j`i“k

λF,E

`
ψi
`
u0

p1q, . . . , u
i
p1q, pu

i`1

p2q ¨ ¨ ¨ui`jp2q m
1
r1smqr0s

˘

bAφj
`
u0

p2q ¨ ¨ ¨uip2qpui`1

p2q ¨ ¨ ¨ui`jp2q m
1
r1smqr1s, u

i`1

p1q , . . . , u
i`j
p1q ,m

1
r0s

˘˘
(1.6)
“ pFψ0

`
u0

p1q, pu
1

p2q ¨ ¨ ¨ukp2qm
1
r1smqr0s

˘

bAφk
`
u0

p2qpu1

p2q ¨ ¨ ¨ukp2qm
1
r1smqr1s, u

1

p1q, . . . , u
k
p1q,m

1
r0s

˘

(2.5),(2.4)
“ u0

p1qpu1

p2q ¨ ¨ ¨ukp2qm
1
r1smqr0s

bAφk
`
u0

p2qpu1

p2q ¨ ¨ ¨ukp2qm
1
r1smqr1s, u

1

p1q, . . . , u
k
p1q,m

1
r0s

˘

(A.6)
“ pu0

p2q ¨ ¨ ¨ukp2qm
1
r1smqr0s bA pu0

p2q ¨ ¨ ¨ukp2qm
1
r1smqr1sφk

`
u0

p1q, . . . , u
k
p1q,m

1
r0s

˘
,

where in the last step we also used the U -linearity of φk; hence, the same
expression as above and the claim follows. The case in which p ď k ď p ` q

again directly follows from how the edge morphisms are defined, see (1.6)–
(1.7), once more. Finally, one proves in an analogous way that

ř
j`i“k

`
λ

E,F

`
pφj Yb ψiq ˝ τj`i

˘
´ pσ|τq

E,F ˝ ̺
F,Epψi Yb φjq

˘

“

#
0 for k ă q,

rφk´q , ψqsYb,σ,τ for q ď k ď p` q.

(2.38)

Gathering Eqs. (2.35)–(2.38) yields the two claims in this lemma. �

Lemma 2.26. Let φ : BarpU,Xq Ñ E and ψ : BarpU,Xq Ñ F be as above, and let

ξkpφ, ψq : BarkpU,X bA Xq Ñ
`
pE bA Zq#pX bA Fq

˘
k

be the map given by

ξkpφ, ψq “

$
’’’’’’&
’’’’’’%

0 for k ă q

rφk´q , ψqsYb,σ,τ for q ď k ď p` q ´ 2

rφp´1, ψqsYb,σ,τ

`p´1qp`qpiE bA Zq ˝ pψq ¯̋
b φpq for k “ p` q ´ 1

0 for k “ p` q.

(2.39)

If pX,Zq is a commuting pair, then ξpφ, ψq is a homotopically trivial 0-twisted

cocycle for pE bA Zq#pX bA Fq. A homotopy between ξpφ, ψq and zero is given by

skpφ, ψq : BarkpU,X bA Xq Ñ
`
pE bA Zq#pX bA Fq

˘
k`1
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defined for any k “ ´1, 0, . . . , p ` q ´ 1 by

skpφ, ψq “

$
’’&
’’%

0 for k ă q,

p´1qqpk`1qφk´q`1 ¯̋
b ψq for q ď k ď p` q ´ 2,

p´1qp`qrψq, φps¯̋
b

for k “ p` q ´ 1.

(2.40)

Proof. The condition ξ´1 “ 0 is true by definition of ξ, so we only have to show
that ξ is a homotopically trivial morphism of complexes ξ : BarpU,X bA Xq Ñ
pE bA Zq#pX bA Fq, with homotopy given by spφ, ψq. This means we need to
show that ξk “ d ˝ sk ` sk´1 ˝ d “ rd, ssk, where we denote, somewhat ambigu-
ously, by d not only the differential on BarpU,X bAXq, but also the differential
of both extensions E and F as well as on pE bA Zq#pX bA Fq, analogously to
diagrams (2.5) and (1.5), respectively.

Note first that

d ˝ pφj ˝b

i ψqq “ δφj´1 ˝b

i ψq (2.41)

for any i “ 1, . . . , j, as follows from the precise form of the differential d on
the spliced extension pE bA Zq#pX bA Fq as in (1.5), along with (2.6). Now, for
k ă q, one clearly has rd, spφ, ψqsk “ 0. In case k “ q, we have with Eq. (2.41)

rd, spφ, ψqsq “ d ˝ sqpφ, ψqq “ ´d ˝ pφ1 ¯̋
b ψqq “ ´δφ0 ˝b

1 ψq “ rφ0, ψqsYb,σ,τ ,

where the last step follows from (2.29). Using (2.41) again, for q ` 1 ď k ď
p` q ´ 2 along with the homotopy formula (2.28), one immediately obtains

rd, spφ, ψqsk “ d ˝ skpφ, ψq ` sk´1pφ, ψq ˝ d

“ p´1qqpk`1qd ˝ pφk´q`1 ¯̋
bψqq ` p´1qqkpφk´q ¯̋

bψqq ˝ d

“ p´1qqpk`1qδφk´q ¯̋
bψq ` p´1qqkδpφk´q ¯̋

bψqq “ rφk´q, ψqsYb,σ,τ ,

whereas, for k “ p ` q ´ 1 we have, again with (2.41) in the third step,

rd, spφ, ψqsp`q´1 “ d ˝ sp`q´1pφ, ψq ` sp`q´2pφ, ψq ˝ d

“ p´1qp`qd ˝ rψq, φps¯̋
b

` p´1qpqδpφp´1 ¯̋
b ψqq

“ p´1qp`qd ˝ pψq ¯̋
b φpq ` p´1qpq

`
p´1qq´1δφp´1 ¯̋

b ψq ´ δpφp´1 ¯̋
b ψqq

˘

“ p´1qp`qpiE bA Zq ˝ pψq ¯̋
b φpq ` rφp´1, ψqsYb,σ,τ ,

where we interchangeably write d “ iE bA Z in the highest degree Z bA Z of
the spliced extension pE bA Zq#pX bA Fq. Finally, for k “ p` q, we have

sp`q´1pφ, ψq ˝ d “ p´1qp`qδrψq, φps¯̋
b

“ 0,

as δ is a derivation of rψq, φps¯̋
b

, which directly follows from (2.28), and since
both φp and ψq are cocycles. To sum up, ξ “ rd, ss in each degree, as desired. �

We add one final assumption, i.e., from now on not only the comonoid X in
Z rpU -Modq is supposed to be braided cocommutative but also the monoid Z

braided commutative in Z ℓpU -Modq. We can then formulate:

Lemma 2.27. Let the comonoid X P Z rpU -Modq be braided cocommutative

and let the monoid Z P Z
ℓpU -Modq be braided commutative such that pX,Zq

constitutes a commuting pair. Furthermore, let ξ, η : BarpU,X bA Xq Ñ pE bA

Zq#pX bA Fq be the 0-twisted cocycle representatives defined by (2.33) and in

(2.39), respectively. Then we have

Φpηpφ, ψqq “ Φpξpφ, ψqq.
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Proof. This is proven by a degree-wise comparison of the images of ξpφ, ψq as in
(2.39) resp. the explicit expression of ηpφ, ψq obtained in (2.34) under the map
Φ defined in Eq. (2.13).

To start with, for the top degree component of the former we have

Φp`qpξq “ µ ˝ ξp`q ˝ pidp`q`1 b ∆Xq : Barp`qpU,Xq Ñ Z, (2.42)

which is simply the zero map as seen from (2.39). In one degree less, that is, in
degree p` q ´ 1, with the help of (A.19), we read off

Φp`q´1pξq “
`
0, ξp`q´1 ˝ pidp`q b ∆Xq

˘

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X ` p´1qppiE bA Zq ˝ pψq ¯̋b φpq ˝ ∆X

˘
,

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X

˘
` p´1qp´1

`
µ ˝ pψq ¯̋b φpq ˝ ∆X, 0

˘
,

(2.43)

where rφp´1, ψqsYb,σ denotes the (simply) braided commutator in the sense of
(2.26), that is, with no τ present anymore (or the identity on X bA X). Here,
as before, p , q indicates the class

`
´ µpz bA z1q, 0

˘
“

`
0, piE bA Zqpz bA z1q

˘
(2.44)

for z, z1 P Z in the quotient Z \ZbAZ pEp´1 bA Zq.
On the other hand, the same considerations hold for Φ

`
ηpφ, ψq

˘
: here, from

an analogous expression as the one in (2.42) with ηp`q instead of ξp`q, it is
clear by means of (A.13) and (A.19) that the top degree is again the zero map.
As the lower degrees of ξ and η are the same except for (the second summand
in) degree p` q ´ 1, we are left with comparing this one:

`
0, ηp`q´1 ˝ pidp`q b ∆Xq

˘

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X ` p´1qpσ ˝ pZ bA iEq ˝ pψq ¯̋b φpq ˝ ∆X

˘
,

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X

˘
` p´1qp

`
0, piE bA Zq ˝ σ ˝ pψq ¯̋b φpq ˝ ∆X

˘˘

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X

˘
` p´1qp´1

`
µ ˝ σ ˝ pψq ¯̋b φpq ˝ ∆X , 0

˘

“
`
0, rφp´1, ψqsYb,σ ˝ ∆X

˘
` p´1qp´1

`
µ ˝ pψq ¯̋b φpq ˝ ∆X , 0

˘
,

by the identification (2.44), the naturality of σ, that is, piEbAZq˝σ “ σ˝pZbAiEq
as in (2.32), and finally the braided commutativity (A.13) again, which hence
coincides with the expression in (2.43). �

Definition 2.28. Let H P ExtrU pX bAX,Z bA Zq and let G “ µ#H#∆X . Define
the graded linear map

Ψ‚ :
r´1À
k“´1

HompBarkpU,X bA Xq, Hk`1q Ñ
r´1À
k“´1

HompBarkpU,Xq, Gk`1q

as follows:

Ψkpνq –

$
’’’&
’’’%

pν´1 ˝ ∆X , 0q for k “ ´1,

νk ˝ pidk`1 bAop ∆Xq for 0 ď k ď r ´ 3,

p0, νr´2 ˝ pidr´1 bAop ∆Xqq for k “ r ´ 2,

µ ˝ νr´1 ˝ pidr bAop ∆Xq for k “ r ´ 1,

(2.45)

for any ν P
Àr´1

k“´1 HompBarkpU,X bA Xq, Hk`1q.

Remark 2.29. For r ď 3, Eq. (2.45) is to be interpreted as in Remark 2.10.

Lemma 2.30. Under the same assumptions as in Lemma 2.27, consider two

elements ξ P
Àr

k“´1HompBarkpU,XbAXq, Hkq and ν P
Àr´1

k“´1HompBarkpU,XbA

Xq, Hk`1q subject to the property that ξ “ rd, νs. Then Φpξq “ rd,Ψpνqs.
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Proof. We will only consider the case r ą 3 here and leave the adaptation for
r ď 3 to the reader.

By the hypothesis ξ “ rd, νs we explicitly mean ξk “ dH ˝ νk ` νk´1 ˝ dBar, for
any k “ 0, . . . , r´1, along with ξr “ νr´1 ˝dBar as well as ξ´1 “ dH ˝ ν´1. Hence,
it is enough to show Ψk´1pνq ˝ dXBar “ Φkpν ˝ dXbAX

Bar q for k “ 0, . . . , r, along with
dG ˝ Ψkpνq “ ΦkpdH ˝ νq for k “ ´1, 0, . . . , r ´ 1.

The first of these statements follows directly, by looking at the explicit def-
inition of Φ and Ψ in (2.13) resp. (2.45), from the fact that X is a comonoid
in U -Mod, that is, from (A.16), which along with the monoidal structure (A.4)
implies

pidj bAop ∆Xq ˝ dXBar “ dXbAX
Bar ˝ pidj`1 bAop ∆Xq, (2.46)

for j “ 0, . . . , r, as already used in the proof of Lemma 2.7. This proves the case
for k “ 1, . . . , r, where for k “ r ´ 1 one uses that p0, νr´2 ˝ pidr´1 bAop ∆Xqq ˝

dXBar “ p0, νr´2 ˝ pidr´1 bAop ∆Xq ˝ dXBarq; Eq. (2.46) also already proves Φrpξq “
rd,Ψpνqsr in top degree. In case k “ 0,

Φ0pν ˝ dXbAX
Bar q “

`
0 ˝ dXbAX

Bar , ν´1 ˝ dXbAX
Bar ˝ pid b ∆Xq

˘

“ p0, ν´1 ˝ ∆X ˝ dXBarq “ Ψ´1pνq ˝ dXBar.

As for the second statement, first consider the degrees r ´ 1 and r ´ 2: as in
(1.3), and similar to the proof of Lemma 2.7, one has a commutative diagram

Z bA Z
iH //

µ
��

Hr´1

p0,idq
��

dH // Hr´2

id
��

Z
p´id,0q

// Z \ZbAZ Hr´1

dH˝pr2 // Hr´2

and hence, for G “ µ#H#∆X ,

dG ˝ Ψr´1pνq “ p´id, 0q ˝
`
µ ˝ νr´1 ˝ pidr bAop ∆Xq

˘

“ p0, idq ˝
`
iH ˝ νr´1 ˝ pidr bAop ∆Xq

˘

“
`
0, piH ˝ νr´1q ˝ pidr bAop ∆Xq

˘

“ Φr´1pdH ˝ νq,

considering that dH “ iH in highest degree. In degree r ´ 2, we compute

dG ˝ Ψr´2pνq “ pdH ˝ pr2q ˝
`
0, νr´2 ˝ pidr´1 bAop ∆Xq

˘

“ pdH ˝ νr´2q ˝ pidr´1 bAop ∆Xq

“ Φr´2pdH ˝ νq.

In degrees 1 ď k ď r´ 3, there is nothing to prove. As for the cases k “ ´1 and

k “ 0, recall from (1.2) that the sequence G1
dGÝÑ G0

pG

ÝÑ X is actually given by

H1

pdH,0q
// H0 ˆXbAX X

pr2 // X,

and therefore
dG ˝ Ψ0pνq “ pdH, 0q ˝

`
ν0 ˝ pid bAop ∆Xq

˘

“
`
dH ˝ ν0 ˝ pid bAop ∆Xq, 0

˘
“ Φ0pdH ˝ νq,

which proves the case k “ 0. Finally, for k “ ´1, one has:

pG ˝ Ψ´1pνq “ pr2 ˝ pν´1 ˝ ∆X , 0q “ 0 “ Φ´1pdH ˝ νq,

which ends the proof. �

As an immediate consequence we find:.
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Proposition 2.31. Let X,Z be as above and as before φ and ψ be two cocycle

representatives for E P Ext
p
U pX,Zq and F P Ext

q
U pX,Zq, respectively. Let

s‚pφ, ψq P
p`q´1À
k“´1

Hom
`
BarkpU,X bA Xq,

`
pE bA Zq#pX bA Fq

˘
k`1

˘

be the map defined by Eq. (2.40). Then

Φpηpφ, ψqq “
“
d,Ψpspφ, ψqq

‰
.

Proof. By Lemma 2.30 and Lemma 2.26, we have rd,Ψpspφ, ψqqs “ Φpξpφ, ψqq.
The conclusion then immediately follows from Lemma 2.27. �

As motivated at the end of §1.7, the following definition now makes sense:

Definition 2.32. The Gerstenhaber bracket of two cocycle representatives φ
and ψ as above is, up to a sign, defined as the top degree component of the
homotopy Ψp`q´1pspφ, ψqq. More precisely,

tφ, ψu – p´1qpqΨp`q´1pspφ, ψqq

This definition of the Gerstenhaber bracket can be completely made explicit:

Corollary 2.33. One has

tφp, ψqu “ φp ¯̋ψq ´ p´1qpp´1qpq´1qψq ¯̋φp, (2.47)

where ¯̋ is the full (internal) operadic composition defined in (2.21).

Proof. Analogously to what we saw in the proof of Lemma 2.7, the top degree
Ψp`q´1pspφ, ψqq is obtained by precomposing with id

p`q bAop ∆X and postcom-
posing with µ, that is, Ψp`q´1pspφ, ψqq “ µ ˝ sp`q´1pφ, ψq ˝ pidp`q bAop ∆Xq.
With the explicit form of s given in (2.40) along with the external and inter-
nal operadic compositions of Eqs. (2.17) and (2.20), respectively, the claim is
straightforward. �

Remark 2.34. Similarly to what was said in Remark 2.18, Eq. (2.47) now
makes sense even if one drops the assumption that φp and ψq are cocycles. In
fact, the internal operadic composition (2.21) only asks for cochains.

However, that this is a Gerstenhaber bracket indeed, that is, a graded Lie
bracket fulfilling a graded Leibniz rule with respect to the (internal) cup prod-
uct (2.25), will explicitly only follow from the results in the subsequent §2.7.

2.7. The Ext groups as a Gerstenhaber algebra. The explicit Gersten-
haber algebra structure on Ext‚

U pX,Zq is in a direct way obtained by adding
a multiplication to the operad O “ HomU pBar‚pU,Xq, Zq from Section 2.4.2,
along with an identity and a unit. Define µ P Op2q, 1 P Op1q, and e P Op0q as

µpu0, u1, u2,mq – εXpu0u1u2mq Ż 1Z,

1pu0, u1,mq – εXpu0u1mq Ż 1Z,

epu0,mq – εXpu0mq Ż 1Z.

(2.48)

The U -linearity of these maps follows directly from Eqs. (A.17) and (A.12), and
it is a straightforward check that µ ˝1 µ “ µ ˝2 µ as well as µ ˝1 e “ 1 “ µ ˝2 e.
We then have:

Theorem 2.35. Let pU,Aq be a left bialgebroid, Z P Z
ℓpU -Modq a braided

commutative monoid and X P Z rpU -Modq a braided cocommutative comonoid

such that pX,Zq constitutes a commuting pair in the sense of Definition A.2.

Then pO, µ, 1, eq defines an operad with multiplication, and its cohomology with

respect to the differential δφ – p´1qφ`1tµ, φu, which coincides with Ext‚

U pX,Zq
if UŽ is projective over A, becomes a Gerstenhaber algebra.
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Proof. The proof is a cumbersome but straightforward explicit computation
that consists in verifying the associativity (A.21) for the partial compositions
on O defined in (2.20).

Let φp P Oppq, ψq P Opqq, and χr P Oprq. We provide a detailed proof for
the case j ă i only, the other cases being completely analogous and left to the
reader. We have to show that

ppφp ˝i ψqq ˝j χrqpu0, . . . , up`q`r´2,mq

“ ppφp ˝j χrq ˝i`r´1 ψqqpu0, . . . , up`q`r´2,mq.
(2.49)

For better readability in later computations, let us introduce the following
shorthand notation:

uri,js :“ pui, . . . , ujq, upi,jq :“ ui ¨ ¨ ¨uj ,

for i ď j. We will be dealing with the following intervals:

I1 :“ r0, j ´ 1s

I2 :“ rj, j ` r ´ 1s

I3 :“ rj ` r, i` r ´ 2s

I4 :“ ri` r ´ 1, i` q ` r ´ 2s

I5 :“ ri` q ` r ´ 1, p` q ` r ´ 2s.

To keep notation even shorter, let us moreover set

uI1 :“ ur0,j´1s, upI1q :“ up0,j´1q,

and similar for the intervals I2 to I5. Finally, we will write Ii,j for Ii Y Ij , and
so on. As a first step, we fully expand the left hand side of (2.49):

ppφp ˝i ψqq ˝j χrqpu0, u1, . . . , up`q`r´2,mq

“
`
φp ˝i ψq

˘`
uI1p1q, χr

`
1, uI2p1q, pu

pI3,4,5q

p2q mp2qqr0s

˘
p´1q

u
pI2q
p2q pu

pI3,4,5q

p2q mp2qqr1s, u
I3,4,5
p1q ,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q, pu

I3,4,5
p2q mp2qqr0s

˘
p0q

˘

“ φp
`
uI1p1q, χr

`
1, uI2p1q, pu

pI3,4,5q

p3q mp3qqr0s

˘
p´2q

u
pI2q
p2q pu

pI3,4,5q

p3q mp3qqr1s, u
I3
p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q, pu

pI3,4,5q

p3q mp3qqr0s

˘
p´1q

u
pI2q
p3q pu

pI3,4,5q

p3q mp3qqr2su
pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘

¨Z
`
u

pI1q
p3q χr

`
1, uI2p1q, pu

pI3,4,5q

p3q mp3qqr0s

˘
p0q

˘
.

Now, we manipulate this expression using the identity

φp
`
up1q, zp´2qv

1, . . . , vp,m
˘

¨Z pup2qzp´1qz
1q ¨Z pup3qzp0qq

“ φp
`
up1q, zp´1qv

1, . . . , vp,m
˘

¨Z pup2qzp0qq ¨Z pup3qz
1q

for any u, v0, . . . , vp´1 P U , m P X , and z, z1 P Z, that follows as an immediate
consequence of (A.15), to obtain:
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φp
` up1q

uI1p1q,

zp´2q

χr
`
1, uI2p1q, pu

pI3,4,5q
p3q mp3qqr0s

˘
p´2q

u
pI2q
p2q pu

pI3,4,5q
p3q mp3qqr1s, u

I3
p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
` up2q

u
pI1q
p2q

zp´1q

χr
`
1, uI2p1q, pu

pI3,4,5q
p3q mp3qqr0s

˘
p´1q

z1

u
pI2q
p3q pu

pI3,4,5q
p3q mp3qqr2su

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘

¨Z
` up3q

u
pI1q
p3q

zp0q

χr
`
1, uI2p1q, pu

pI3,4,5q

p3q mp3qqr0s

˘
p0q

˘

“ φp
` up1q

uI1p1q,

zp´1q

χr
`
1, uI2p1q, pu

pI3,4,5q

p3q mp3qqr0s

˘
p´1q

u
pI2q
p2q pu

pI3,4,5q

p3q mp3qqr1s, u
I3
p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
` up2q

u
pI1q
p2q

zp0q

χr
`
1, uI2p1q, pu

pI3,4,5q
p3q mp3qqr0s

˘
p0q

˘

¨Z
` up3q

u
pI1q
p3q

z1

u
pI2q
p3q pu

pI3,4,5q
p3q mp3qqr2su

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘
.

Next, we use that the the YD condition (A.6) implies

pup2qmqr0s bA pup2qmqr1s bA pup2qmqr2sup1q

“ pup1qmr0sqr0s bA pup1qmr0sqr1s bA up2qmr1s
(2.50)

for any u P U and m P X , to obtain:

φp
`
uI1p1q, χr

`
1, uI2p1q,

pup2qmqr0s

pu
pI3q
p3q u

pI4,5q

p3q mp3qqr0s

˘
p´1q

u
pI2q
p2q

pup2qmqr1s

pu
pI3q
p3q u

pI4,5q

p3q mp3qqr1s, u
I3
p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

pup2qmqr0s

pu
pI3q
p3q u

pI4,5q

p3q mp3qqr0s

˘
p0q

˘

¨Z
`
u

pI1,2q

p3q

pup2qmqr2sup1q

pu
pI3q
p3q u

pI4,5q

p3q mp3qqr2su
pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘

“ φp

´
uI1p1q, χr

`
1, uI2p1q,

pup1qmr0sqr0s

`
u

pI3q
p2q pu

pI4,5q

p3q mp3qqr0s

˘
r0s

˘
p´1qu

pI2q
p2q

pup1qmr0sqr1s

`
u

pI3q
p2q pu

pI4,5q

p3q mp3qqr0s

˘
r1s
, uI3p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

¯

¨Z

´
u

pI1q
p2q χr

`
1, uI2p1q,

pup1qmr0sqr0s

`
u

pI3q
p2q pu

pI4,5q

p3q mp3qqr0s

˘
r0s

˘
p0q

¯

¨Z
`
u

pI1,2q

p3q

up2qmr1s

u
pI3q
p3q pu

pI4,5q

p3q mp3qqr1s ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘
.

Finally, we use that for all x P X and z P Z one has

xr0s bA xr1sz “ zp´1qxbA zp0q



BRACKETS AND PRODUCTS FROM CENTRES IN EXTENSION CATEGORIES 39

in X bA Z, as follows from the explicit expressions for the braidings (A.8) and
(A.7), respectively. This implies

zp´1q bA xr0s bA xr1szp0q “ zp´2q bA zp´1qxbA zp0q

as elements in U bA X bA Z, and so we obtain:

φp

´
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q

xr0s

pu
pI4,5q

p3q mp3qqr0s

˘
r0s

˘
p´1qu

pI2q
p2q

`
u

pI3q
p2q

xr0s

pu
pI4,5q

p3q mp3qqr0s

˘
r1s
, uI3p1q,

zp´1q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

¯

¨Z

´
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q

xr0s

pu
pI4,5q

p3q mp3qqr0s

˘
r0s

˘
p0q

¯

¨Z
`
u

pI1,2,3q

p3q

xr1s

pu
pI4,5q

p3q mp3qqr1s

zp0q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘

“ φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q

zp´1q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

x

u
pI4,5q

p3q mp3q

˘
r0s

˘
p´1q

u
pI2q
p2q ¨

`
u

pI3q
p2q

zp´1q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

x

u
pI4,5q

p3q mp3q

˘
r1s
,

uI3p1q,

zp´2q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´2q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q

zp´1q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

x

u
pI4,5q

p3q mp3q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q

zp0q

ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘
.

For the right hand side of (2.49) we perform a similar computation. First, let
us expand

ppφp ˝j χrq ˝i`r´1 ψqqpu0, u1, . . . , up`q`r´2,mq

“
`
φp ˝j χr

˘`
u
I1,2,3
p1q , ψq

`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p´1q

u
pI4q
p2q pu

pI5q
p2q mp2qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1,2,3q

p2q ψq
`
1, uI4p1q, pu

pI5q
p2q mp2qqr0s

˘
p0q

˘

“ φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q pu

pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r0s

˘
p´1q

u
pI2q
p2q

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q pu

pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r1s
,

uI3p1q, ψq
`
1, uI4p1q, pu

pI5q
p3q mp3qqr0s

˘
p´2q

u
pI4q
p2q pu

pI5q
p3q mp3qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q pu

pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q ψq
`
1, uI4p1q, pu

pI5q
p3q mp3qqr0s

˘
p0q

˘
.

Using (2.50) again, we have
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φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup2qmqr0s

pu
pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q

pup2qmqr2sup1q

pu
pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r0s

˘
p´1q

u
pI2q
p2q

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup2qmqr0s

pu
pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q

pup2qmqr2sup1q

pu
pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r1s
, uI3p1q,

ψq
`
1, uI4p1q,

pup2qmqr0s

pu
pI5q
p3q mp3qqr0s

˘
p´2q

u
pI4q
p2q

pup2qmqr1s

pu
pI5q
p3q mp3qqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup2qmqr0s

pu
pI5q
p3q mp3qqr0s

˘
p´1q

u
pI4q
p3q

pup2qmqr2sup1q

pu
pI5q
p3q mp3qqr2su

pI5q
p2q mp2q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q ψq
`
1, uI4p1q,

pup2qmqr0s

pu
pI5q
p3q mp3qqr0s

˘
p0q

˘

“ φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup1qmr0sqr0s

pu
pI5q
p2q mp3qr0sqr0s

˘
p´1q

u
pI4q
p3q

up2qmr1s

u
pI5q
p3q mp3qr1s mp2q

˘
r0s

˘
p´1q

u
pI2q
p2q

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup1qmr0sqr0s

pu
pI5q
p2q mp3qr0sqr0s

˘
p´1q

u
pI4q
p3q

up2qmr1s

u
pI5q
p3q mp3qr1s mp2q

˘
r1s
, uI3p1q,

ψq
`
1, uI4p1q,

pup1qmr0sqr0s

pu
pI5q
p2q mp3qr0sqr0s

˘
p´2q

u
pI4q
p2q

pup1qmr0sqr1s

pu
pI5q
p2q mp3qr0sqr1s, u

I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q,

pup1qmr0sqr0s

pu
pI5q
p2q mp3qr0sqr0s

˘
p´1q

u
pI4q
p3q

up2qmr1s

u
pI5q
p3q mp3qr1s mp2q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q ψq
`
1, uI4p1q,

pup1qmr0sqr0s

pu
pI5q
p2q mp3qr0sqr0s

˘
p0q

˘
.

Finally, using

xp2qr0s bA xp2qr1sxp1q “ xp1q bA xp2q,

that is, the braided cocommutativity of X from (A.20), we obtain:

φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp2qr0s

mp3qr0sqr0s

˘
p´1q

u
pI4,5q

p3q

xp2qr1sxp1q

mp3qr1smp2q

˘
r0s

˘
p´1q

u
pI2q
p2q

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp2qr0s

mp3qr0sqr0s

˘
p´1q

u
pI4,5q
p3q

xp2qr1sxp1q

mp3qr1smp2q

˘
r1s
, uI3p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q

xp2qr0s

mp3qr0sqr0s

˘
p´2q

u
pI4q
p2q pu

pI5q
p2q

xp2qr0s

mp3qr0sqr1s, u
I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp2qr0s

mp3qr0sqr0s

˘
p´1q

u
pI4,5q
p3q

xp2qr1sxp1q

mp3qr1smp2q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q ψq
`
1, uI4p1q, pu

pI5q
p2q

xp2qr0s

mp3qr0sqr0s

˘
p0q

˘
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“ φp
`
uI1p1q, χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp1q

mp2qqr0s

˘
p´1q

u
pI4,5q
p3q

xp2q

mp3q

˘
r0s

˘
p´1q

u
pI2q
p2q

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp1q

mp2qqr0s

˘
p´1q

u
pI4,5q
p3q

xp2q

mp3q

˘
r1s
, uI3p1q,

ψq
`
1, uI4p1q, pu

pI5q
p2q

xp1q

mp2qqr0s

˘
p´2q

u
pI4q
p2q pu

pI5q
p2q

xp1q

mp2qqr1s, u
I5
p1q,mp1q

˘

¨Z
`
u

pI1q
p2q χr

`
1, uI2p1q,

`
u

pI3q
p2q ψq

`
1, uI4p1q, pu

pI5q
p2q

xp1q

mp2qqr0s

˘
p´1q

u
pI4,5q

p3q

xp2q

mp3q

˘
r0s

˘
p0q

˘

¨Z
`
u

pI1,2,3q

p3q ψq
`
1, uI4p1q, pu

pI5q
p2q

xp1q

mp2qqr0s

˘
p0q

˘
,

which is the same as the left hand side of (2.49) computed a moment or two
ago (and if it is not, it is merely a typo); hence, this proves the first line of the
partial operadic associativity (A.21). Verifying the second line in (A.21) is left
to the reader, and the third line is actually redundant as it says the same as
the first (but the associativity properties are easier to read or memorise written
this way). This concludes the proof that O is an operad with multiplication.

That the differential δ on the complex (2.19) can be expressed as δφ “
p´1qφ`1tµ, φu additionally uses the property (A.18). That an operad with multi-
plication induces a Gerstenhaber structure on cohomology follows from a well-
known (by now) classical result [GeSch], cf. Appendix §A.3. �

3. EXAMPLES

3.1. Hopf algebra cohomology and adjoint (co)representations. It is a
standard result that any Hopf algebraH can be seen as a braided commutative
monoid in H

H
YD when using the left adjoint action H b k H Ñ H, h b k g ÞÑ

hp1qgSphp2qq and the coproduct inH as coaction, a situation we denote by adpHq.
Hence, Theorem 2.35 implies that the cohomology groups Ext‚

Hpk, adpHqq form
a Gerstenhaber algebra, a fact already noted in [Ko, Ex. 3.5]. What is more, in
loc. cit. it has been shown that the customary k-module isomorphism

Ext‚

Hpk, adpHqq “ Ext‚

HepH,Hq

that follows by applying [CaEi, Thm. VIII.3.1] is not only an isomorphism on
the level of chains, but remarkably enough also an isomorphism of Gersten-
haber algebras, where the right hand side as the Hochschild cohomology of H
seen as a k-algebra is a Gerstenhaber algebra by the primordial construction
in [Ge].

If the antipode of H is invertible, then an equally standard result says that
H is a braided cocommutative comonoid in HYD

H by means of the right adjoint
coaction H Ñ H b kH, h ÞÑ hp2q b k hp3qS

´1php1qq and by the action given by the
multiplication inH , a situation we denote by coadpHq. Hence, Ext‚

HpcoadpHq, kq
by Theorem 2.35 becomes a Gerstenhaber algebra as well. It would be interest-
ing to see whether these coadjoint action examples are related by any means
to Hochschild cohomology (with nontrivial coefficients) as happens in the case
of the adjoint action above.

As a final remark, putting both the adjoint and the coadjoint action to-
gether, one might be tempted to say that the groups Ext‚

HpcoadpHq, adpHqq
form a Gerstenhaber algebra. Yet, Theorem 2.35 requires pcoadpHq, adpHqq
to be a commuting pair for this to be true, and this only happens if H is si-
multaneously commutative and cocommutative. But then the adjoint and the
coadjoint actions are trivial and so is Ext‚

HpcoadpHq, adpHqq, which means that
Ext‚

HpcoadpHq, adpHqq is indeed a Gerstenhaber algebra, but a trivial one.
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3.2. Generalised Drinfel’d and Heisenberg doubles. By means of a (not
necessarily nondegenerate) Hopf pairing ϕ : H b k G Ñ k between arbitrary
Hopf algebras H and G, one can construct a generalised Drinfel’d double
DpH,Gq that can be seen as a bicrossed product H ’ G on the underlying
vector space H b k G, see [Ka, §X.2] or [KaRoTu, Thm. 3.2] for full details, we
only give a few hints here in a slightly different convention.

The Hopf pairing allows for a right H-action on G, resp. for a left G-action
on H , given by

Gb k H Ñ G, g b k h ÞÑ g 2 h – ϕph, gp2qqgp1q,

G b k H Ñ H, g b k h ÞÑ g 3 h – ϕpS´1php1qq, gqhp2q,
(3.1)

respectively. The generalised Drinfel’d double DpH,Gq “ H ’ G is then a Hopf
algebra when equipped with the coproduct, resp. counit, given by the standard
coproduct, resp. counit, on the tensor product of H and G, and the product

ph b k gq ¨ ph1 b k g
1q – hpgp1q 3 h1

p1qq b k pgp2q 2 h1
p2qqg1,

making the two Hopf algebras H and G Hopf subalgebras by means of the
canonical injection. In contrast to the classical construction that uses H “
pGopq˚ if G is finite dimensional, DpH,Gq is not necessarily a braided Hopf
algebra but is so if both H,G are finite dimensional and the braiding ϕ is non-
degenerate (which is, of course, the case for the canonical pairing between G

and its dual G˚ but, for example, not so if one uses the trivial pairing induced
by the two counits of two arbitrary Hopf algebras H and G).

In the same spirit, one can define a generalised Heisenberg double HpH,Gq
as a generalisation of both the Heisenberg algebra and the Heisenberg double
for H “ G˚ in case of finite dimensions. This is essentially the smash product
H#G with respect to the left action from (3.1), that is, the tensor productHb k

G with product

phb k gq ¨ ph1 b k g
1q – hpgp1q 3 h1q b k gp2qg

1.

Along the lines of the customary case for H “ G˚, as for example spelled out in
[Se], one can define a left action, resp. a left coaction, on the Heisenberg double
H#G of, resp. over, the Drinfel’d double H ’ G that turn H#G into a braided
commutative monoid in the category of left-left Yetter-Drinfel’d modules over
H ’ G, and hence the cohomology groups

Ext‚

DpH,Gqpk,HpH,Gqq “ Ext‚

H’Gpk, H#Gq

carry the structure of a Gerstenhaber algebra.
Infinite dimensional versions of the Heisenberg double appear, for example,

in [MeŠkSt] in the study of noncommutative phase spaces of Lie type as be-
ing isomorphic to Upgq#Upgq˚ » Upgq#Ŝpg˚q, where on the right one uses a
suitable completion of the symmetric algebra. Other applications include the
extension of the Hall algebra formalism to derived categories of an abelian
category as in [Kap].

3.3. Crossed product bialgebroids. If H is a k-bialgebra and Z a braided
commutative monoid in HYD

H, the smash product Z#H is a left bialgebroid

over Z as shown in [BrzMi, Thm. 4.1]. As Z is the monoidal unit in the category
of left Z#H-modules, this hence implies that Ext‚

Z#HpZ,Zq is a Gerstenhaber
algebra as any base algebra of a bialgebroid U is trivially a braided commuta-
tive monoid in U

U
YD.

On the other hand, if H is in addition a Hopf algebra with invertible an-
tipode S, by turning the rightH-coaction on Z into a left one by using S and the
left H-action into a left Hop-action by means of S´1, the opposite algebra Zop
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becomes a braided commutative monoid in Hop

HopYD, and hence Ext‚

Hop pk, Zopq is
a Gerstenhaber algebra as well by Theorem 2.35.

Moreover, one has a k-module isomorphism between the cochain complexes
computing Ext‚

Z#HpZ,Zq and Ext‚

Hoppk, Zopq, which we indicate here for short-
ness in exposition and better readability in degree two only:

η : HomZop

`
pZ#Hq bV op pZ#Hq, Z

˘ »
Ñ Hom kpH b k H,Z

opq,

f ÞÑ
 
h b k h

1 ÞÑ f
`
p1#hq bV op p1#h1q

˘ (
,

with inverse

f̃ ÞÑ
 

pz#hq bV op pz1#h1q

ÞÑ f̃
`
S
`
zr1sphp1qz

1
r0sqr1s

˘
hp2qz

1
r1s b k Spz1

r2sqh
1
˘

¨Z zr0s ¨Z php1qz
1
r0sqr0s

(
,

where we used the definition of the bialgebroid cochain complex in (2.19) along
with the target map on the left Z-bialgebroid Z#H given by the right H-
coaction z ÞÑ zr0s b k zr1s, as detailed in [BrzMi, Thm. 4.1].

Moreover, one can show that η and its inverse are chain maps (easy for η,
naturally more involved for its inverse) and hence one has

Ext‚

Z#HpZ,Zq » Ext‚

Hop pk, Zopq. (3.2)

Finally, the induced isomorphism (3.2) can be, with some effort, shown to be an
isomorphism of Gerstenhaber algebras, the detailed exposition of which being,
however, not within the scope of this article.

APPENDIX A. CENTRES, BIALGEBROIDS, AND OPERADS

A.1. Centres in monoidal categories. The following standard definition
can be found, e.g., in [Sch, Def. 4.3] or [EtGeNiOs, Def. 7.13.1]:

Definition A.1. The left weak centre Z ℓpC q of a monoidal category pC ,b, 1q is
the category whose objects are pairs pZ, σZ,´q, where Z P C , such that

σZ,M : Z bM Ñ M b Z

is natural in M P C and such that σZ,MbM1 “ pM b σZ,M1 qpσZ,M b M 1q holds
for all M,M 1 P C (which amounts to a hexagon axiom if involving associators),
along with σZ,1 “ idZ.

The left weak centre is a monoidal category again, in particular a braided
one. At times, we only write pZ, σq instead of pZ, σZ,´q for objects in Z ℓpC q.

Likewise, one defines the right weak centre Z rpC q of a monoidal category C

as the category with objects pX, τ´,Xq, where this time

τM,X : M bX Ñ X bM

is natural in M P C , subject to analogous conditions as above.

Definition A.2. A commuting pair in a monoidal category C is a pair pX,Zq P
Z rpC q ˆ Z ℓpC q such that

σZ,X “ τZ,X

holds as maps Z bX Ñ X b Z.

Remark A.3. Since we wanted to deal with left and right centres and hence
involve two different braided monoidal categories, the above definition is a
slight variation of the following more standard one: in a braided monoidal cat-
egory pZ , σq, a pair pX,Zq of its objects is called a commuting pair or a pair
of commuting objects if σZ,X ˝ σX,Z “ idXbZ. For example, the braided tensor

product algebra (see [Bae, Lem. 2]) of two braided commutative monoids X,Z
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in pZ , σq is not necessarily braided commutative again but is so if pX,Zq is a
commuting pair, see op. cit., Lemma 3. See Remark A.4 for further discussion.

A.2. Left bialgebroids, their (co)modules, and centres. In this subsec-
tion, we gather all the necessary material on bialgebroids, their modules, their
comodules, the left and right weak centres in question and how explicitly com-
muting pairs translate to this context.

A.2.1. Bialgebroids. A left bialgebroid pU,A,∆, ε, s, tq, or pU,Aq for short, is a
generalisation of a k-bialgebra to a bialgebra object over a noncommutative
base ring A (typically a k-algebra), and consists of a k-algebra U which is si-
multaneously an Ae-ring and an A-coring that are compatible in mostly the
standard way, at least formally. In particular, one has a ring homomorphism
resp. antihomomorphism s, t : A Ñ U (source resp. target) inducing four com-
muting A-module structures on U

a § b Ż u Ž c đ d – tpcqspbquspdqtpaq (A.1)

for u P U, a, b, c, d P A, abbreviated by symbols like §ŻUŽđ or similar, depending
on the relevant action(s) in a specific situation. Also introduce the Ae-ring

U ˆA U –

 ř
iui b vi P UŽ bAŻU |

ř
ia § ui b vi “

ř
iui b vi đ a, @a P A

(

the Sweedler-Takeuchi product, which allows to define on U a comultiplication

∆: U Ñ U ˆA U Ă UŽ bA ŻU , u ÞÑ up1q bA up2q,

along with a counit ε : U Ñ A subject to certain identities that at some points
differ from those in the bialgebra case, see [Ta] for the original construction.

A.2.2. Example. The simplest example of a (noncommutative noncocommuta-
tive) left bialgebroid is given by pAe, Aq, where Ae

– AbkA
op is the enveloping

algebra of an associative k-algebra A (which, in particular, allows to consider
Schwede’s approach in [Schw] as a special case of our results in the main text).
Its structure maps are, for any a, b P A, given by

∆pa bk bq “ pabk 1q bA p1 bk bq, εpabk bq “ ab,

spaq “ abk 1, tpaq “ 1 bk a,
(A.2)

along with the factorwise multiplication on A bk A
op for the product.

A.2.3. Bialgebroid modules and comodules. A left U -moduleM over a left bial-
gebroid pU,Aq is a left module over the underlying ring U . The category of left
U -modules will be denoted by U -Mod and we usually write all U -actions just
by juxtaposition. The forgetful functor U -Mod Ñ Ae-Mod is induced by

a Żm Ž b – spaqtpbqm, @ a, b P A, m P M, (A.3)

with respect to which one forms the tensor product M bAM
1 of left U -modules,

and which, similar to the bialgebra case, is a left U -module again by

upmbA m
1q – ∆puqpm bA m

1q “ up1qm bA up2qm
1, (A.4)

for u P U, m P M, m1 P M 1. In other words, U -Mod is a (strict) monoidal
category with bA as monoidal product and A as its unit object.

A left (and analogously right) comodule over a left bialgebroid pU,Aq is a
comodule over the underlying A-coring [BrWi, §3]: a left A-module M along
with a coassociative and counital coaction λ : M Ñ UŽbAM, m ÞÑ mp´1qbAmp0q,
which, by defining the right A-action ma – εpmp´1q đ aqmp0q for all a P A on M ,
effectively corestricts to a map λ :M Ñ UŽ ˆAM, where

UŽ ˆA M –

 ř
iui bmi P UŽ bAM |

ř
ia § ui bmi “

ř
iui bmia, @a P A

(
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is a subspace in UŽ bA M . The left coaction is A-bilinear in the sense of
λpambq “ a Ż mp´1q đ b bA mp0q for all m P M , a, b P A. Again, the cate-
gory U -Comod of left U -comodules (resp. the category Comod-U of right U -
comodules) is a (strict) monoidal category with monoidal product bA and unit
object A.

A.2.4. A left-left Yetter Drinfel’d (YD) module Z over a left bialgebroid pU,Aq
is simultaneously a left U -module (with action denoted by juxtaposition) and a
left U -comodule with coaction λ : Z Ñ UŽ bA Z, z ÞÑ zp´1q bA zp0q such that the
two forgetful functors U -Mod Ñ Ae-Mod and U -Comod Ñ Ae-Mod induce
the same A-bimodule structure on Z, and such that

up1qzp´1q bA up2qzp0q “ pup1qzqp´1qup2q bA pup1qzqp0q (A.5)

holds for all u P U and z P Z, the corresponding category of which is braided
monoidal (see below) with respect to bA, unit object given by the base algebra
A, and denoted by U

U
YD.

A.2.5. Likewise, a left-right Yetter Drinfel’d (YD) module X over a left bialge-
broid pU,Aq is simultaneously a left U -module (with action denoted by juxtapo-
sition) and a right U -comodule with coaction ̺ : X Ñ XbA ŻU , x ÞÑ xr0s bA xr1s

such that the two forgetful functors U -Mod Ñ Ae-Mod and Comod-U Ñ
Ae-Mod induce the same A-bimodule structure on X , and such that

up1qxr0s bA up2qxr1s “ pup2qxqr0s bA pup2qxqr1sup1q (A.6)

holds for all u P U and x P X , the corresponding category of which is braided
monoidal (see below) with respect to bA, unit object given by the base algebra
A, and denoted by UYD

U .

A.2.6. Observe that, in contrast to bialgebras, there are no right-left or right-
right YD modules over left bialgebroids.

A.2.7. Weak centres and commuting pairs for left bialgebroids. As mentioned
at the beginning of §2.1, a well-known fact [Sch, Prop. 4.4] establishes
an equivalence of braided monoidal categories between the left weak cen-
tre Z ℓpU -Modq of the monoidal category U -Mod in the sense of Definition
A.1, and the category U

U
YD, and analogously between the right weak centre

Z
rpU -Modq and UYD

U : as for the first case, assign to any Z P U

U
YD its under-

lying left module Z P U -Mod along with the left braiding

σ “ σZ,M : Z bAM Ñ M bA Z, z bA m ÞÑ zp´1qmbA zp0q (A.7)

for any M P U -Mod, to form an object pZ, σq in Z
ℓpU -Modq. Much the same

way, assign to any X P UYD
U its underlying left module X P U -Mod along

with the right braiding

τ “ τM,X : M bA X Ñ X bAM, m bA x ÞÑ xr0s bA xr1sm (A.8)

for any M P U -Mod, to give an object pX, τq in Z rpU -Modq.
A pair pX,Zq of objects in Z rpU -Modq ˆ Z ℓpU -Modq resp. UYD

U ˆ U

U
YD is

then called a commuting pair in the sense of Definition A.2 if

τZ,X “ σZ,X (A.9)

holds, or, if for all x P X and z P Z

xr0s bA xr1sz “ zp´1qxbA zp0q (A.10)

is true, using explicitly the braidings (A.8) and (A.7), respectively.
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Remark A.4. If the braiding (A.7) is invertible, which happens if more struc-
ture is present as, for example, if a bialgebra is a Hopf algebra with invertible
antipode, one sets τM,Z “ σ´1

M,Z, and left and right weak centres are equivalent
as braided monoidal categories, which we then refer to simply as the centre,
also called the Drinfel’d centre and denoted here by Z1pU -Modq.

As a braided monoidal category this has a centre again (the centre of a cen-
tre, so to speak), sometimes referred to as Müger or Rehren centre, defined
by those objects Z in Z1pU -Modq for which σZ,M “ σ´1

M,Z for all M P U -Mod,
and denoted Z2pU -Modq, see [Mü, Def. 5.12] or [Reh] for more information.
The category Z2pU -Modq is obviously symmetric monoidal (and can be de-
fined for any monoidal category C ). By mere definition, each pair of objects
in Z2pU -Modq yields a commuting pair in the sense of (A.9) but at least for
C “ U -Mod not very interesting ones: these are essentially A-modules (or
direct sums thereof) as is the case if U were a Hopf algebra over A “ k.

However, the notion of commuting pairs is more general: for example, both
pM,Aq and pA,Nq for arbitrary M,N P Z1pU -Modq obviously are commuting
pairs, but not necessarily in Z2pU -Modq. Slightly less trivial, for a cocom-

mutative left bialgebroid, each M P U -Mod can be made into a (left-left) YD
module by means of the trivial left coaction and hence each pair pM,Nq of left
U -modules yields a pair of commuting objects.

A.2.8. Braided commutative monoids in U

U
YD. A braided commutative monoid

in U

U
YD is, roughly speaking, an object Z that has four properties: it is a (left-

left) YD module, it is a left U -module algebra, a left U -comodule algebra, and
finally it is braided commutative.

More in detail, writing the action and coaction of an object Z P U

U
YD as in

§A.2.4, assume that pZ, µ, 1Zq with multiplication z ¨Z z
1

– µpz, z1q and unit 1Z

is an A-ring. Being a left U -module algebra then explicitly means

upz ¨Z z
1q “ pup1qzq ¨Z pup2qz

1q, (A.11)

along with

u1Z “ εpuq Ż 1Z. (A.12)

On the other hand, pZ, µ, 1Zq also being a left U -comodule algebra implies

λZpz ¨Z z
1q “ λZpzqλZpz1q “ zp´1qz

1
p´1q bA zp0q ¨Z z

1
p0q,

along with λZp1Zq “ 1U bA 1Z. Moreover,

µ ˝ σ “ µ, (A.13)

which says that pZ, µ, 1Zq is supposed to be braided commutative; explicitly,

z ¨Z z
1 “ pzp´1qz

1q ¨Z zp0q. (A.14)

Observe that it is precisely (and tautologically) the YD condition (A.5) on Z

that guarantees (A.14) to be well-defined, even when thinking of U -modules:

upz ¨Z z
1q “ up1qz ¨Z up2qz

1 (A.14)
“ pup1qzqp´1qup2qz

1 ¨Z pup1qzqp0q

(A.5)
“ up1qzp´1qz

1 ¨Z up2qzp0q “ u
`
pzp´1qz

1q ¨Z zp0q

˘
.

(A.15)

Note that there is no relation whatsoever to whether the multiplication µ

in Z itself is commutative or not: for example, the base algebra A in a left
bialgebroid itself is a braided commutative monoid in U

U
YD but not necessarily

commutative as a k-algebra.
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A.2.9. Braided cocommutative comonoids in UYD
U . In much the same way as

in §A.2.8, a braided cocommutative comonoid in UYD
U (equivalently, a braided

commutative monoid in pUYD
Uqop) is again an object equipped with four prop-

erties: it is a (left-right) YD module, it is a left U -module coalgebra as well as
a right U -comodule coalgebra, and finally it is braided cocommutative.

More precisely, writing the action and coaction on an object X P UYD
U as

in §A.2.5, assume that pX,∆X , εXq is an A-coring with coproduct ∆X : X Ñ
X bA X, x ÞÑ xp1q bA xp2q and counit εX : X Ñ A. Being a left U -module
coalgebra then explicitly means

∆Xpuxq “ ∆puq∆Xpxq “ up1qxp1q bA up2qxp2q, (A.16)

along with
εXpuxq “ εpu đ εXpxqq. (A.17)

On the other hand, pX,∆X, εXq is also a right U -comodule coalgebra, which
means p∆X bA Uq ˝ ̺X “ ̺XbAX ˝ ∆X, and which amounts to

xr0sp1q bA xr0sp2q bA xr1s “ xp1qr0s bA xp2qr0s bA xp2qr1sxp1qr1s,

for any x P X , along with

t
`
εXpxq

˘
“ εXpxr0sq Ż xr1s. (A.18)

Finally, braided cocommutativity manifests as

τ ˝ ∆X “ ∆X , (A.19)

or, explicitly,
xp2qr0s bA xp2qr1sxp1q “ xp1q bA xp2q. (A.20)

A.3. Operads and Gerstenhaber algebras. A (non-Σ) operad O in the cate-
gory of k-modules is a family tOpnquně0 of k-modules with k-bilinear operations
˝i : Oppq b Opqq Ñ Opp ` q ´ 1q, i “ 1, . . . , p, subject to

ϕ ˝i ψ “ 0 if p ă i or p “ 0,

pϕ ˝i ψq ˝j χ “

$
’&
’%

pϕ ˝j χq ˝i`r´1 ψ if j ă i,

ϕ ˝i pψ ˝j´i`1 χq if i ď j ă q ` i,

pϕ ˝j´q`1 χq ˝i ψ if j ě q ` i.

(A.21)

In the main text, especially in §2.4.1, these operations are referred to as
internal operadic composition, in contrast to the external one dealt with in §2.2.
Call an operad unital if there is an identity 1 P Op1q such that ϕ˝i1 “ 1˝1ϕ “ ϕ

for all ϕ P Oppq and i ď p, and call it with multiplication if there exists a
multiplication µ P Op2q and a unit e P Op0q such that µ ˝1 µ “ µ ˝2 µ as well as
µ ˝1 e “ µ ˝2 e “ 1. Such an object will be denoted by the triple pO, µ, eq. It is
then a standard result (see [GeSch]) that pO, µ, eq defines a cocyclic k-module
the cohomology H‚pOq of which yields a Gerstenhaber algebra.
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