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Abstract

In this work we study a Hebbian neural network, where neurons are
arranged according to a hierarchical architecture such that their couplings
scale with their reciprocal distance. As a full statistical mechanics solution
is not yet available, after a streamlined introduction to the state of the
art via that route, the problem is consistently approached through signal-
to-noise technique and extensive numerical simulations. Focusing on the
low-storage regime, where the amount of stored patterns grows at most
logarithmical with the system size, we prove that these non-mean-field
Hopfield-like networks display a richer phase diagram than their classi-
cal counterparts. In particular, these networks are able to perform serial
processing (i.e. retrieve one pattern at a time through a complete rear-
rangement of the whole ensemble of neurons) as well as parallel processing
(i.e. retrieve several patterns simultaneously, delegating the management
of different patterns to diverse communities that build network). The
tune between the two regimes is given by the rate of the coupling decay
and by the level of noise affecting the system.
The price to pay for those remarkable capabilities lies in a network’s ca-
pacity smaller than the mean field counterpart, thus yielding a new budget
principle: the wider the multitasking capabilities, the lower the network
load and viceversa. This may have important implications in our under-
standing of biological complexity.

1 Introduction

Statistical mechanics constitutes a powerful technique for the understanding
of neural networks [11, 20], however overcoming the mean-field approximation
is extremely hard (even beyond neural networks). Basically, the mean-field
approximation lies in assuming that each spin/neuron Si in a network dialogues
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with all the other spin/neurons with the same strength 1. For instance, if we
consider a ferromagnetic model, once introduced N spins Si = ±1, i ∈ (1, ..., N),
we have the two extreme scenarios of a nearest-neighbor model like the Ising
lattice, whose Hamiltonian can be written as

HIsing = −
∑
〈i,j〉

JSiSj , (1)

where, crucially, the sum runs over all the couples 〈i, j〉 of adjacent sites, and
the mean-field Curie-Weiss model, whose Hamiltonian can be written as

HCurie-Weiss = −
N,N∑
i<j

JSiSj , (2)

where the sum runs over all the N(N −1)/2 spin couples irrespective of any no-
tion of distance; this is equivalent to think of spins interacting through nearest
neighbor prescriptions but as they were embedded in an N -dimensional space.
Clearly, solving the statistical mechanics of the latter model is much simpler with
respect to the former. The main route toward finite-dimensional descriptions
has been paved by physicists in the study of condensed matter2. Indeed, incred-
ible efforts have been spent from the 70s in working out the renormalization-
group [36], namely a technique which allows inferring the properties of three-
dimensional ferromagnets starting from mean-field descriptions, but a straight
solution of the Ising model in dimensions 3 is still out of the current mathemat-
ical reach3.

Actually, in the last decade some steps forward toward more realistic sys-
tems have been achieved merging statistical mechanics [23, 22, 29] and graph
theory [16, 10, 35]. In particular, mathematical methodologies were developed
to deal with spin systems embedded in random graphs, where the ideal, full
homogeneity among spins is lost [1, 2]. Thus, networks of neurons arranged
according to Erdös-Rényi [7], small-world [3], or scale-free [34] topologies were
addressed, yet finite-dimensional networks were still out of debate.

Focusing on neural networks, it should be noted that, beyond the difficulty
of treating non-trivial topologies for neuron architecture, one has also to cope
with the complexity of their coupling pattern, meant to encode the Hebbian
learning rule. The emerging statistical mechanics is much trickier than that
for ferromagnets; indeed neural networks can behave either as ferromagnets
or as spin-glasses, according to the parameter settings: their phase space is
split into several disconnected pure states, each coding for a particular stored
pattern, so to interpret the thermalization of the system within a particular
energy valley as the spontaneous retrieval of the stored pattern associated to
that valley. However in the high-storage limit, where the amount of patterns

1Notice that this situation corresponds to a system embedded in a fully-connected (i.e.
complete graph) topology. However, situations where we introduce some degree of dilution
(e.g. Erdös-Rényi graph), yet preserving the homogeneity of the structure and an extensive
coordination number, can be looked and treated as mean field models.

2In that context the long-range interactions are unacceptable because the involved cou-
plings are of electromagnetic nature, hence displaying power-law decay with the distance.

3It is worth mentioning that the Wilson-Kadanoff renormalization equations [37, 38, 39]
turn out to be exact in models with power law interactions as those built on the hierarchical
lattice that we are going to consider.
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scales linearly with the number of neurons, neural networks approach pure spin-
glasses (loosing retrieval capabilities at the blackout catastrophe [11]) and, as a
simple Central Limit argument shows [15], when the amount of patterns diverge
faster that the amount of neurons they become purely spin glasses. For the
sake of exhaustiveness we also stress that, even in the retrieval region, neural
networks are exactly linear combinations of two-party spin glasses [13, 14]: due
to the combination of such difficulties, neural networks on a finite dimensional
topology have not been extensively investigated so far.

However, very recently, a non-mean-field model, where a topological dis-
tance among spins can be defined and couplings can be accordingly rescaled,
turned out to be, to some extent, treatable also for complex systems such as
spin-glasses [19, 31]. More precisely, spins are arranged according to a hierarchi-
cal architecture as shown in Fig. 1: each pair of nearest-neighbor spins form a
“dimer” connected with the strongest coupling, then spins belonging to nearest
“dimers” interact each other with a weaker coupling and so on recursively [32].
In particular, the Sherrington-Kirkpatrick model for spin-glasses defined on the
hierarchical topology has been investigated in [18]: despite a full analytic for-
mulation of its solution still lacks, renormalization techniques, [19, 30], rigorous
bounds on its free-energies [17] and extensive numerics [27, 28] can be achieved
nowadays and they give extremely sharps hints on the thermodynamic behavior
of systems defined on these peculiar topologies.

Remarkably, as we are going to show, when implementing the Hebb prescrip-
tion for learning on these hierarchical networks, an impressive phase diagram,
much richer than the mean-field counterpart, emerges. More precisely, neurons
turn out to be able to orchestrate both serial processing (namely sharp and
extensive retrieval of a pattern of information), as well as parallel processing
(namely retrieval of different patterns simultaneously).

The remaining of the paper is structured as follows: in the next subsections
we provide a streamlined description of mean-field serial and parallel processors,
and we introduce the hierarchical scenario. Then, we split in three sections
our findings according to the methods exploited for investigation: statistical
mechanics, signal-to-noise technique and extensive numerical simulations. All
these approaches consistently converge to the scenario outlined above. Seeking
for clarity and completeness, each technique is first applied to a ferromagnetic
hierarchical mode (which can be thought of as a trivial one-pattern neural net-
work and acts as a test-case) and then for a low-storage hierarchical Hopfield
model.

1.1 Mean-field processing: Serial and parallel processors.

Probably the most famousmodel for neural networks is the Hopfield model pre-
sented in his seminal paper dated 1982 [26], counting nowadays more than
twenty-thousand citations (Scholar). This is a mean-field model, where neu-
rons are schematically represented as dichotomic Ising spins (state +1 repre-
sents firing while state −1 stands for quiescence) interacting via a (symmetric
rearrangement of) the Hebbian rule for learning as masterfully shown by the
extensive statistical-mechanical analysis that Amit, Gutfreund and Sompolin-
sky performed on the model [11, 12].
More formally, once introduced N neurons/spins Si, i ∈ (1, ..., N), and p
quenched patterns ξµ, with µ ∈ (1, ..., p), whose entries are drawn once for
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Figure 1: Schematic representation of the hierarchical topology, that underlies
the system under study: green spots represent nodes where spins/neurons live,
while different colors and thickness for the links mimic different intensities in
their mutual interactions: the brighter and thinner the link, the smaller the
related coupling.

all from the uniform distribution

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1), (3)

the Hopfield model is then captured by the following Hamiltonian HHopfield(S|ξ)

HHopfield(S|ξ) = − 1

N

N∑
i<j

(
p∑

µ=1

ξµi ξ
µ
j

)
SiSj . (4)

Before proceeding with the description of the Hopfield model, it is very instruc-
tive to make a step beside and revisit the ferromagnetic system described by the
Curie-Weiss Hamiltonian (eq. 2). The order parameter for the latter is given
by the magnetization m(S) defined as

m(S) =
1

N

N∑
i=1

Si, (5)

which, indeed, can distinguish between a paramagnetic/disordered phase (m =
0) and a ferromagnetic phase characterized by spontaneous magnetization (m 6=
0). Moreover, we can write eq.(2) also in terms of m as

HCurie-Weiss(S) = − 1

N

N,N∑
i<j

SiSj ∼ −
N

2
m2, (6)

where a sub-leading term
∑
i(Si)

2/(2N) = 1/2 has been neglected and we set
J = 1.
Restricting ourselves to the zero noise limit (for simplicity as entropy maximiza-
tion can be discarded), following the minimum energy principle we see that the
system tends to rearrange in such a way that |m| → 1, corresponding to the
configurations S = (+1,+1, ...,+1) or S = (−1,−1, ...,−1). If we read such a
state as a neural configuration we would have a pathological state corresponding
to all spins firing or quiescent. This point can be easily overcome by introducing
the so-called Mattis gauge, namely by replacing Si → ξ1

i Si, where the set {ξ1}

4



may be drawn e.g., according to (3). Via the Mattis gauge the Hamiltonian (2)
can be rewritten as

HMattis(S|ξ) = −
N,N∑
i<j

ξ1
i ξ

1
jSiSj = −N

2
m2

1, (7)

where m1 is the Mattis magnetization defined as

m1 =
1

N

N∑
i=1

ξ1
i Si. (8)

Reasoning exactly as before, in the low noise limit, following thermodynamic
prescriptions, the system relaxes to the state with |m1| → 1, corresponding to a
spin configuration S parallel (or anti-parallel) to the pattern ξ1. The relaxation
to such a minimum (which now for a Shannon-McMillan argument is also the
most likely and has only, on average, one half of the neurons firing) is seen as
the retrieval of the (unique) stored pattern encoded by the string ξ1.
Now, enhancing the network capability, in such a way that the stored patterns
are p > 1, requires to abandon the ferromagnetic context as the system must be
able to develop several free energy minima, each corresponding to the retrieval
of a different pattern. This passage is formally straightforward: one simply
introduces a sum over the patterns labelled as µ = 1, ..., p in the Mattis Hamil-
tonian, thus obtaining the Hopfield Hamiltonian (4).
When p is large, that is comparable with the system size (thus in the so-called
high-storage regime where p scales as N , p = αN with α ∈ R+), and as N ap-
proaches infinity (as we deal with the so-called thermodynamic limit N → ∞),
for α > αc ∼ 0.14, retrieval properties are lost (and, for p→∞ quicker than N
the Hebbian coupling approaches a standard Gaussian N [0, 1]), hence the model
collapses to the Sherrington-Kirkpatrick model for spin-glasses [11, 15]. In this
regime neural capabilities are lost due the presence of too much disorder that
splits the phase space into an amount of minima that scales exponentially with
the system size [29]. In the present paper we will work away from this black out
limit focusing on the low storage scenario, where p is either finite or growing
much slower than N (e.g. logarithmical), in such a way that limN→∞(p/N)→ 0.

As mentioned above, as long as the noise is low enough, the system can relax
in a (free) energy minimum: for the Hopfield model decribed by (4) there exist
overall 2p absolute minima corresponding to the configurations Si = ξµi for all
i = 1, ..., N ; each minima encodes for the retrieval of a different pattern and
the factor 2 accounts for gauge symmetry Si → −Si. The relaxation to the
minimum corresponding to the, say, k-th pattern is evidenced by mk 6= 0 and
mi = 0,∀i 6= k (the latter holding on the average as patterns ξ’s are orthogonal
-in the thermodynamic limit-). The particular minimum selected depends on
the external field (if present) and on the initial state of the system.
We stress that, since each pattern is built of by N bits of information ξµi = ±1,
its retrieval involves the coordination of the whole network and the system can
only retrieve patterns singularly, that is, one pattern at a time. For this reason
this kind of processing is referred to as serial.
This feature can be overcome and the neural network made able to perform par-
allel retrieval, thus giving rise to the so called multitasking associative network
[4], by allowing for blank entries in the Hebbian kernel, that is, pattern entries
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are extracted once for all from

P (ξµi ) =

[
1 + a

2
δ(ξµi − 1)

1 + a

2
δ(ξµi + 1)

]
+ aδ(ξµi ), (9)

where a ∈ [−1,+1] tunes the amount of null-entries in the bit-strings.
Let us try to infer the effects of (9) on the retrieval process by focusing for sim-
plicity on a simple case withN = 8 and two toy-patterns ξ1 = (+1,+1,+1,+1, 0,
0, 0, 0) and ξ2 = (0, 0, 0, 0,−1,−1,−1,−1), and with the external field (the
stimuli) pointing to the first minimum. In suitable regions of phase space
(where the network retrieves), the system will try to align with the first pat-
tern, such that the first four neurons will be all firing. The remaining neurons do
not receive any information from the pattern ξ1, nevertheless, as the Hopfield
Hamiltonian is a quadratic form in the Mattis magnetizations, (free)-energy
minimization is better achieved if the remaining neurons align with the sec-
ond pattern (instead of random reshuffling), such that the final state will be
S = (+1,+1,+1,+1,−1,−1,−1,−1), and we say that the system has sponta-
neously perfectly retrieved the two patterns. An analogous behavior emerges
for arbitrary p patterns: the system tends to relax to a state where the Mattis
magnetizations related to a subset of patterns are strictly non zero. The perfor-
mance of this network crucially depends on how a is tuned as analyzed in details
in [1, 2, 5, 6] for the low-storage and the high-storage regimes, respectively.

1.2 The neural network on a hierarchical topology

We now start our investigation of a neural network embedded in the hierarchical
topology depicted in Fig. 1. As mentioned, two main difficulties are interplaying:
the complexity of the emergent energy landscape (essentially due to frustration
in the coupling pattern) and the non-mean-field nature of the model (essentially
due to the inhomogeneity of the network architecture). It is therefore safer to
proceed by steps discussing first the hierarchical ferromagnet (hence retaining
only the second difficulty), known as Dyson hierarchical model (DHM). Then,
via the Mattis gauge we reach a Mattis hierarchical model (MHN) and finally
we extend to the Hopfield hierarchical model (HHM).

The Dyson hierarchical model [21] is a system made of N binary (Ising)
spins Si = ±1, i = 1, ..., N in mutual interaction and built recursively in such a
way that the system at the (k + 1)-th iteration contains N = 2k+1 spins and is
obtained by taking two replicas of the system at the k-th iteration (each made
of 2k spins) and connecting all possible couples with overall

(
N
2

)
couplings equal

to −J/2σ(k+1), J and σ being real scalars tuning the interaction strength: the
former acts uniformly over the network, the latter triggers the decay with the
“distance” among spins. The resulting Hamiltonian can be written recursively
as

HDyson
k+1 (S|J, σ) = HDyson

k (S1|J, σ) +HDyson
k (S2|J, σ)− J

22σ(k+1)

2k+1∑
i<j

SiSj , (10)

where S1 = {Si}2
k

i=1 and S2 = {Sj}2
k+1

i=2k+1, while HDyson
0 ≡ 0.

Before proceeding it is worth stressing that the parameters J and σ are
bounded as J > 0 and σ ∈ ( 1

2 , 1): the former trivially arises from the ferro-
magnetic nature of the model which makes neighboring spin to “imitate” each
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other, while the latter can be understood by noticing that for σ > 1 the inter-
action energy goes to zero in the thermodynamic limit4, while for σ < 1

2 the
interaction energy is no longer linearly-additive implying thermodynamic insta-
bility5. Moreover, this model is intrinsically non-mean-field because a notion
of metrics, or distance, has been implicitly introduced: two nodes are said to
be at distance d if they get first connected at the d-th iteration. In general,
calling dij the distance between the spins i, j, (thus dij = 1, ..., k + 1), we can
associate to each couple a distant-dependent coupling Jij and rewrite (10) in a
more familiar form as

HDyson
k+1 (S|J, σ) = −

∑
i<j

JijSiSj , (11)

where

Jij =

k+1∑
l=dij

J

22σl
= J

4σ−dijσ − 4−kσ−σ

4σ − 1
. (12)

The next step is to gauge the spins à la Mattis, namely, once extracted quenched
values for the pattern entries (ξµi )µ=1 from the distribution

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1), (13)

we replace Si with ξ1Si. This results in the following hierarchical Mattis model

HMattis
k+1 (S|J, σ) = −

∑
i<j

Jijξ
1
i ξ

1
jSiSj . (14)

Finally, summing over p patterns, we obtain the Hopfield hierarchical model
(HHM) that reads as (for J = 1)

HHopfield
k+1 (S|ξ, σ) = HHopfield

k (S1|ξ, σ) +HHopfield
k (S2|ξ, σ)

− 1

2

1

22σ(k+1)

p∑
µ=1

2k+1∑
i,j=1

ξµi ξ
µ
j SiSj , (15)

with HHopfield
0 ≡ 0 and σ still within the previous bounds, i.e. σ ∈ ( 1

2 , 1). As
anticipated, here we restrict the analysis to low storage limit only: recalling
N = 2k+1, we can fix p finite at first so to move straightforwardly from the
DHM to the HHM (as the notion of distance is preserved) and, posing

Jij =
4σ−dijσ − 4−kσ−σ

4σ − 1

p∑
µ=1

ξµi ξ
µ
j , (16)

4The sum
∑2k+1

i<j brings a contribution scaling like 22(k+1) ∼ N2, while the pre-factor

scales as 2−2σ(k+1) ∼ N−2σ , thus, when σ > 1 the internal energy (the thermodynamical
expectation of the Hamiltonian normalized over the system size) is overall vanishing in the
thermodynamic limit k →∞.

5The sum
∑2k+1

i<j brings a contribution scaling like 22(k+1) ∼ N2, while the pre-factor

scales as 2−2σ(k+1) ∼ N−2σ , thus, when σ < 1
2

the intensive energy is overall divergent in
the thermodynamic limit k →∞.
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we can write equivalently the Hamiltonian (15) in the more compact form

HHopfield
k+1 (S|ξ, σ) = −

2k+1∑
i<j

JijSiSj . (17)

Thus in the HHM the Hebbian prescription is coupled with (or ”weighted by”
[8, 33]) a function of the neuron’s distance.

In the following, in order to analyze in depth the system performance and
the properties of hierarchical retrieval, we tackle the problem from different
perspectives, each developed in a dedicated section. In particular, the next
setion is devoted to the statistical mechanical route, fo which we report only
results (as the methodologies underlying such achievements are still extremely
technical and have been presented to the pertinent Community [9]). As through
this path a full analytical solution still lacks, further investigations must be
addressed: indeed in Sec.3 we largely exploit outcomes from signal-to-noise
studies, while numerical simulations are presented in section 4.

2 Insights from statistical mechanics

Here we summarize findings that can be achieved by suitably extending inter-
polation techniques [24, 25] beyond the mean-field paradigm: it is important to
stress once more that, as this strand gives only (not-mean-field) bounds on the
free energy (and not the full solution), the self-consistencies that result are not
the true self-consistencies of the model, thus motivating the next Sections.

2.1 Pure/Ferromagnetic and Parallel/Mixed free energies
in the Dyson model

As the Hamiltonian Hk+1(S|J, σ) is given (see eq. 10) and the noise level β−1 =
T (where T stands for noise for historical reasons) introduced, it is possible to
define the partition function Zk+1(β, J, σ) at finite volume k + 1 as

Zk+1(β, J, σ) =
∑
{S}

exp [−βHk+1(S|J, σ)] , (18)

and the related free energy fk+1(β, J, σ), namely the intensive logarithm of the
partition function, as

fk+1(β, J, σ) =
1

2k+1
log
∑
{S}

exp

−βHk+1(~S) + h

2k+1∑
i=1

Si

 , (19)

where the sum runs over all possible 22k+1

spin configurations. Note that the
usual free energy f̃ is related to f by f̃(β) = −βf(β), hence we will find ther-
modynamic equilibria checking the maxima of f(β) and not the minima.
We are interested in an explicit expression of the infinite volume limit of the
intensive free energy, defined as

f(β, J, σ) = lim
k→∞

fk+1(β, J, σ), (20)

8



in terms of suitably introduced magnetizations m, that act as order parameters
for the theory. In fact, as the free energy is just the difference between the inter-
nal energy E of the system (i.e. the mean-value of the Hamiltonian) weighted
by β, and the entropy S, namely f(β, J, σ) = −βE(β, J, σ) +S(β, J, σ), extrem-
ization of the free-energy over the order parameters equals to imposing thermo-
dynamic prescriptions (i.e. minimum energy and maximum entropy principles)
and therefore allows us to get a description of the thermodynamic equilibria of
the system in terms of the self-consistencies for these m’s.
To this task we introduce the global magnetization m, defined as the limit
m = limk→∞mk+1 where

mk+1 =
1

2k+1

2k+1∑
i=1

Si, (21)

and, recursively and with a little abuse of notation, level by level (over k levels)
the k magnetizations ~ma, ..., ~mk, as the same k → ∞ limit of the following
quantities (we write explicitly only the two upper magnetizations related to the
two main clusters left and right -see Fig.1-):

m1
k =

1

2k

2k∑
i=1

Si, m2
k =

1

2k

2k+1∑
i=2k+1

Si, (22)

and so on. The thermodynamical averages are denoted by the brackets 〈·〉 such
that, e.g. for the observable mk+1(β, J, σ), we can write

〈mk+1(β, J, σ)〉 =

∑
σmk+1e

−βHk+1(~S|J,σ)

Zk+1(β, J, σ)
, (23)

and clearly 〈m(β, J, σ)〉 = limk→∞〈mk+1(β, J, σ)〉.
Starting with the pure ferromagnetic case, which mirrors here the serial retrieval
of a single pattern in the Hopfield counterpart, its free energy can be bounded
as (see also [17])

f(h, β, J, σ) ≥ sup
m

{
log 2 + log cosh

[
h+ βmJ(C2σ−1 − C2σ)

]
− βJ

2
(C2σ−1 − C2σ)m2

}
,

(24)

where

C2σ =
1

22σ − 1
, (25)

C2σ−1 =
1

22σ+1 − 1
. (26)

Now, let us suppose that, instead of a global ordering, the system can be ef-
fectively split in two parts (the two largest communities called left and right
in Fig.1), with two different magnetizations mleft = m1 and mright = m2; we
also assume mleft = −mright. Through the interpolative route we approach a
bound for the free energy related to such a mixed state. We stress the fact that
the upper link, connecting the two communities with opposite magnetization,

9



remains and it gives a contribute m in the system as (see also [9])

fk+1 ≥ 1

2
log cosh

{
h+ βJ

[
m(2(k+1)(1−2σ)) +m1

(
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ

)]}

+
1

2
log cosh

{
h+ βJ

[
m(2(k+1)(1−2σ)) +m2

(
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ

)]}

− βJ

2

[(
k∑
l=1

2l(1−2σ) −
k+1∑
l=1

2−2lσ

)(
m2

1 +m2
2

2

)
− 2(k+1)(1−2σ)m2

]
+ log 2. (27)

Notice that, thanks to the gauge simmetry Si → −Si, the state considered mir-
rors the parallel retrieval of two patterns in the Hopfield counterpart. Identifying
m1 = m2 = m we recover the previous bound as expected, and, quite remark-
ably, in the thermodynamic limit the two free energies assume the same values,
thus serial and parallel retrieval are both equally accomplished by the network.
Imposing thermodynamic stability we obtain the following self-consistencies

m1,2 = tanh(h+ βJm1,2(C2σ−1 − C2σ)), (28)

whose behavior is depicted in Fig. 2.

2.2 Serial versus parallel retrieval in Hopfield hierarchical
model

Guided by the ferromagnetic model just described, we now turn to the hierar-
chical Hopfield model (HHM) and start its analysis from a statistical mechanical
perspective, namely we infer the thermodynamic behavior of a system described
by the following recursive Hamiltonian

HHHM
k+1 (S|ξ, σ) = HHHM

k (S1|ξ, σ) +HHHM
k (S2|ξ, σ) (29)

− 1

2

1

22σ(k+1)

p∑
µ=1

2k+1∑
i,j

ξµi ξ
µ
j σiσj .

To this task, we introduce suitably p Mattis magnetizations (or Mattis overlaps),
over the whole system, as

mµ =
1

2k+1

2k+1∑
i=1

ξµi Si, µ ∈ [1, p]. (30)

Even in this context, the definition above can account for the state of inner
clusters by the sum over the (pertinent) spins. For instance, focusing on the
two larger communities we have the 2p Mattis magnetizations

mµ
left =

1

2k

2k∑
i=1

ξµi Si, mµ
right =

1

2k

2k+1∑
i=2k+1

ξµi Si, (31)

with µ ∈ [1, p]. Again, we will not enter in the mathematical details concerning
non-mean-field bounds for the model free energy (as they can be found in [9]),
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while we streamline directly the physical results.
Still mirroring the previous section, we are interested in obtaining a bound
limiting the free energy of the HHM, the latter being defined as the k → ∞
limit of fk+1, whose expression reads

fk+1(β, {hµ}, σ) =
1

2k+1
log
∑
{S}

exp

−βHk+1(~S) +

p∑
µ=1

hµ
2k+1∑
i=1

Si

 , (32)

where we accounted also for p external stimuli hµ.
The non-mean field bound for serial processing free energy reads as

f(β, {hµ}, p) ≥ sup
m

[log 2 +
〈

log cosh
( p∑
µ=1

[
hµ + βmµ(C2σ−1 − C2σ)

]
ξµ
)〉

ξ

− β

2

p∑
µ=1

〈(mµ)2〉ξ(C2σ−1 − C2σ)], (33)

with optimal order parameters fulfilling

〈mµ〉ξ = 〈ξµ tanh[β

p∑
ν=1

[hν + (C2σ−1 − C2σ)mν ] ξν ]〉ξ,

and whose critical noise is βNMF
c = C2σ−1−C2σ, where the index NMF stresses

that the estimate was obtained through a non mean field bound of the free en-
ergy.
Of course we can assume again that the two different families of Mattis magne-
tizations ({mµ

1,2}
p
µ=1) (those playing for the two inner blocks of spins left and

right lying under the k + 1-th level) behave independently as the higher links
connecting them go to zero quickly for k → ∞ and we can start the interpola-
tive machine: following this way we generalize the serial processing analysis to
a two-pattern parallel retrieval analysis, which results in the following bound
for the related free energy:

f(β, {hµ}, p) ≥ sup
{mµ1,2}

[log 2 +
1

2

〈
log cosh

{ p∑
µ=1

[
hµ + βmµ

1

( k∑
l=1

2l(1−2σ)

−
k∑
l=1

2l(−2σ)
)

+ βmµ2(k+1)(1−2σ)
]
ξµ
}〉

ξ
+

1

2

〈
log cosh

{ p∑
µ=1

[
hµ + βmµ

2

×[

k∑
l=1

2l(1−2σ) −
k∑
l=1

2l(−2σ)] + βmµ2(k+1)(1−2σ)
]
ξµ
}〉

ξ
− β

2

[ k∑
l=1

2l(1−2σ)

−
k∑
l=1

2l(−2σ)
]
·
p∑

µ=1

〈(mµ
1 )2〉ξ + 〈(mµ

2 )2〉ξ
2

2
− β

2
2(k+1)(1−2σ)

p∑
µ=1

〈(mµ)2〉ξ,

Here we do not investigate further the parallel retrieval of larger ensembles of
patterns, as the way to proceed is identical to the outlined one, but we simply
notice that, if we want the system to handle M patterns, hence we assume it

11



effectively splits M times into sub-clusters until the k + 1 −M level, then the
procedure keeps on working as long as

lim
k→∞

k+1∑
l=k+1−M

2l(1−2σ)

p∑
µ=1

mµ
l = 0. (34)

Since the magnetizations are bounded, in the worst case we have

k+1∑
l=k+1−M

2l(1−2σ)

p∑
µ=1

mµ
l ≤ p

k+1∑
l=k+1−M

2l(1−2σ)

≤ p

∞∑
l=k+1−M

2l(1−2σ) ∝ 2(1−2σ)(k+1−M)p. (35)

If we want the system to handle up to p patterns, we need p different blocks of
spins and then M = log(p).
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Figure 2: Main plots: numerical solutions of the non-mean-field self-consistent
equations for the parallel state (left panel) and for the pure state (right panel) of
the Dyson model (see Eq. 28) obtained for different values of σ (as explained by
the legend) and plotted versus a rescaled noise. Note that by rescaling the noise
the dependence on σ is lost and all curves are collapsed. Insets: comparison
between the numerical solutions of the non-mean-field self-consistent equations
(dashed line) and of the mean-field self-consistent equations (solid line) as a
function of the noise and for fixed σ = 1 (see Eq. 28). Notice that for the
Hopfield hierarchical model, numerical solutions for the Mattis magnetizations
pertaining to the pure and to the mixed states are the same.

3 Insights from signal-to-noise techniques

Results from statistical mechanics gave stringent hints on the network’s behav-
ior, however they act as bounds only.
This requires further inspection via other techniques: the first route we exploit
is signal-to-noise. Through the latter, beyond generally confirming the predic-
tions obtained via the first path, we obtain sharper statements regarding the

12



evolution of the Mattis order parameters. These two approaches are comple-
mentary: while statistical mechanics describes the system with N → ∞ and
β < ∞, with the signal-to-noise technique we inspect the regime N < ∞ and
β →∞.

3.1 A glance at the fields in the Dyson network

Plan of this Section is to look at the dynamically stable configurations of the
neurons, that is to say, we investigate the configurations (global and local min-
ima) that imply each neuron Si to be aligned with its corresponding field hi[S],
i.e. Si hi[S] > 0,∀i. This approach basically corresponds to a negligible-noise
statistical mechanical analysis but it is mathematically much more tractable.
We can rearrange the Dyson Hamiltonian in a useful form for such an investi-
gation as follows

HDyson
k+1 ({S1...S2k+1}) = −J

2

k+1∑
µ=1

2k+1∑
i=1

Si

k+1∑
l=µ

(
1

22σ

)l ∑
{j}:dij=µ

Sj , (36)

thus, highlighting the field hi insisting on the spin Si we can write

HDyson
k+1 [{S1...S2k+1}] = −

2k+1∑
i=1

Sihi[S], (37)

hi[S] = J

k+1∑
µ=1

k+1∑
l=µ

(
1

22σ

)l ∑
{j}:dij=µ

Sj . (38)

While Glauber dynamics will be discussed in Sec. 4 (dedicated to numerics),
we just notice here that the microscopic law governing the evolution of the
system can be defined as a stochastic alignment to local field hi[S].

Si(t+ δt) = sign {tanh [βhi [S (t))] + ηi(t)} ,

where the stochasticity lies in the independent random numbers ηi(t), uniformly
distributed over the interval [−1, 1] and tuned by β. The latter continues to rule
the noise level even dynamically as it amplifies, or suppresses, the smoothness
of the hyperbolic tangent; in particular, in the noiseless limit β →∞ we get

Si(t+ δt) = sign [hi (S(t))] . (39)

This is crucial for checking the stability of a state as, if Sihi[S] > 0 ∀ i ∈ [1, N ],
the configuration {S} is dynamically stable (at least for β → ∞, as in the
presence of noise there is a β-dependent probability to fluctuate away).

We keep the previous ensemble of non-independent order parameters mn
i

defined in detail as

mn
i [S] =

1

2n

2n×i∑
j=2n×i−(2n−1)

Sj with i = 1, 2, ..., 2k+1−n and n = 0, 1, 2, ...k+ 1,

(40)
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namely

m0
i = Si with i = 1, 2, .., 2k+1,

m1
i = 1

2

∑2i
j=2i−1 Sj with i = 1, 2, .., 2k → m1

1 = 1
2

∑2
j=1 Sj ,

m2
i = 1

22

∑22i
j=22i−(22−1) Sj with i = 1, 2, .., 2k−1 → m2

1 = 1
4

∑4
j=1 Sj ,

.....

mk+1
1 = 1

2k+1

∑2k+1

j=1 Sj .

From Eq. 38, we get the following fundamental expression for the fields

hi[S] =

J k+1∑
µ=1

k+1∑
l=µ

1

22σ

l
 2µ−1mµ−1

f(µ,i), (41)

where we used the relation mµ−1
f(µ,i) =

∑
{j}:dij=µ Sj . Thus the order parameters

mµ−1
f(µ,i) represent the magnetizations assumed by spins that lie at distance µ

from Si. Note that the function f(µ, i) can be estimated through the floor
function b·c (e.g., b3.14c = 3) as

f(µ, i) =
⌊ i+ (2µ−1 − 1)

2µ−1

⌋
+ (−1)(b i+(2µ−1−1)

2µ−1 c+1).

Finally, we notice that the largest value allowed for a field -away from the
boundary value σ = 1/2- for large k approaches a plateau (whose boundaries -in
the (k, σ) plane- are important for finite-size-scaling during numerical analysis),
hence we can easily check the right field normalization

Q(σ, k + 1) =

k+1∑
µ=1

J(µ, k + 1, σ)2µ−1 =

= J
2−2(k+1)σ

(
22(k+2)σ − 2k+2σ+2 + 2k+2 + 4σ − 2

)
−3× 4σ + 16σ + 2

, (42)

as Q(σ, k) represents the largest value allowed by a field.
Note that in the thermodynamic limit

lim
k→∞

Q(σ, k) = Q(σ) = J
22σ

−3× 4σ + 42σ + 2
, (43)

that is Q is always bounded whenever σ > 1
2 .

3.2 Metastabilities in the Dyson network: Noiseless case.

We can now proceed to the stability analysis explaining in details a few test
cases that show how to proceed for any other case of further interest:
[a] the global ferromagnetic state, i.e. Si = +1, i ∈ (1, ..., 2k+1).
[b] the parallel/mixed state, i.e. the first half of spins up and the second half
down, thus Si = +1, i ∈ (1, ..., 2k) and Si = −1, i ∈ (2k + 1, ..., 2k+1).
[c] the dimer, i.e. S1 = S2 = +1 while Si = −1 for all i 6= (1, 2).
[d] the square, i.e. S1 = S2 = S3 = S4 = +1 while Si = −1 for all i > 4.

Let us go through each case analysis separately:
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• [a] The global ferromagnetic state Si = +1 ∀i ∈ [1, 2k+1] ⇒ mn
i [S] =

1 ∀i, n has fields

⇒ hi[S] = J
4−(k+1)σ

[
22(k+2)σ − 2k+2+2σ + 2k+2 + 4σ − 2

]
−3× 4σ + 16σ + 2

,(44)

⇒ hi[S] > 0 ∀k, σ ∈ (1/2, 1). (45)

Thus, the configuration Si = +1 ∀i ∈ [1, 2k+1] is stable in the noiseless
limit ∀σ ∈ [ 1

2 , 1]. In the thermodynamic limit k →∞ we have

hi[S] = J
4σ

−3× 4σ + 16σ + 2
.

To address network’s behaviour in the presence of noise, fixing J = 1
without loss of generality, we can look at the solution of the following
equation

tanh(βhi[S]) ' 1⇒ tanh

(
β

4σ

−3× 4σ + 16σ + 2

)
' 1. (46)

This allows to find the curve βno errors
c (σ) versus σ (shown in Fig.3). In

fact, we know that, at the time t+ δt, the system obeys the dynamics

Si(t+ δt) = sign(tanh(βhi(S)) + ηi),

where ηi is a random variable, whose value is uniformly distributed in
[−1, 1]. Imposing tanh(βhi) ' 1 we ask that |hi| � 1, so the sign of the
right hand side member of the equation is positive, thus the sign of Si at
the time t+ δt is the same of the field hi at the time t. Then, fixed σ, for
every β > βno errors

c (σ) the state Si = +1 ∀i ∈ [1, 2k+1] is stable without
errors.

• [b] The parallel/mixed state Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈ [2k +
1, 2k+1] has fields

⇒ hj [S] = J
4−(k+1)σ

(
22(k+2)σ + 2k+1+2σ − 2k+1+4σ + 4σ − 2

)
−3× 4σ + 16σ + 2

= −hi[S] > 0 ∀ k + 1 ≥ 2, (47)

⇒ lim
k→∞

hj [S] = J
1

21−2σ + 4σ − 3
, (48)

thus the configuration Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈ [2k + 1, 2k+1]
is stable in the noiseless limit ∀ k + 1 > 2, σ ∈ (1/2, 1). Using the same
arguments of the previous case, fixing J = 1 without loss of generality, to
infer network’s behaviour in the presence of the noise we can look at the
solution of the following equation

tanh(βhi[S]) ' 1⇒ tanh

(
β

1

21−2σ + 4σ − 3

)
' 1. (49)

This allows to find the curve βno-errors
c (σ) versus σ (see Fig.3). Then,

fixed σ, for every β > βno-errors
c (σ) the state Sj = 1 Si = −1 ∀j ∈
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[1, 2k] ∀i ∈ [1 + 2k, 2k+1] is stable without errors. So we can see how, in
the thermodynamic limit, the state with all spins aligned Sj = +1 ∀j ∈
[1, 2k+1] and the state with half spins pointing upwards and half pointing
downwards Sj = +1 ∀j ∈ [1, 2k] Si = −1 ∀i ∈ [1 + 2k, 2k+1] are both
robust. For an arbitrary finite value of k it is possible to solve numerically
eq. 49 to get an estimate for βno-errors

c (σ) versus σ: in Figure 3 βno-errors
c (σ)

is plotted for the state Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈ [1 + 2k, 2k+1]
and the state Si = +1 ∀i ∈ [1, 2k+1].

• [c] The dimer Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈ [3, 2k+1] has fields

h1[S] = h2[S] =
2−2σ(k+1)(22σ(k+2) + 2k+2+2σ − 41+(k+1)σ − 2k+2 − 3× 4σ + 6)

(−3× 4σ + 16σ + 2)
,

lim
k→∞

h1[S] = lim
k→∞

h2[S] = 2 · 4σ − 4

−3× 4σ + 16σ + 2
< 0 ∀σ ∈ (1/2, 1).

Therefore, the configuration Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈ [3, 2k+1],
in the thermodynamic limit, is unstable ∀ σ ∈ (1/2, 1).

• [d] The square Sj = 1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1] has fields

hj [S, k] = −
21−2(k+1)σ

(
−2k+1+2σ + 22kσ+1 + 2k+1 + 22σ+1 − 4

)
−3× 4σ + 16σ + 2

− −3× 4−(k+1)σ + 21−2σ + 1

1− 4σ
, (50)

hj [S, k + 1] =

(
22(k+3)σ − 2k+2+2σ + 2k+2+4σ − 22(k+1)σ+3 + 7× 22σ+1 − 7× 16σ

)
(−3× 4σ + 16σ + 2)/(2−2(k+2)σ)

thus

lim
k→∞

hj [S] =
4−σ (16σ − 8)

−3× 4σ + 16σ + 2
=

{
> 0, if σ > 3

4

< 0, if σ < 3
4

.

Therefore, the configuration Sj = +1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1]
in the limit (k →∞) for T = 0 is stable ∀ σ ∈ ( 3

4 , 1)

It is worth noticing that beyond the extensive meta-stable states (e.g. the
parallel/mixed one) already suggested by the statistical mechanical route, stabil-
ity analysis predicts that tighley connected modules (e.g. octangon, esadecagon,
...) with spins anti-aligned with respect to the bulk get dynamically stable in
the thermodynamic limit: these motifs in turn are able to process small amount
of information and an analysis of their capabilities can be found in [1, 2], and
their robusting is due to their intrinsic loopy structure.

3.3 Signal analysis for the Hopfield Hierarchical model

Let us now consider the Hopfield hierarchical model (see eq.29). As we are
interested in obtaining an explicit prescription for the fields experienced by the
neurons, we can rewrite its Hamiltonian in terms of neural distance dij as

Hk+1(S|ξ, σ) =
∑
i<j

SiSj

[ k+1∑
l=dij

(
−1

22σl
)
] p∑
µ=1

ξµi ξ
µ
j (51)
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Figure 3: Phase diagram for the perfect retrieval accomplished by a pure state
(Si = +1 ∀i = 1, ..., 2k+1) and parallel state (Si = +1 ∀i = 1, ..., 2k and Si = −1
∀i = 2k + 1, ..., 2k+1). The line separating different regions corresponds to
numerical solution of βno errors

c [σ] versus σ, obtained from (46) and (49) for
different values of k (10, 15, 20, 100 respectively). In yellow, the area where
both the pure and parallel states are perfectly retrieved, while in blue the area
where none of them is retrieved. The red line represents the area where only
the pure state is stable: this region vanishes as k gets larger (namely in the
thermodynamic limit), hence confirming that the pure and the mixed state are
both global minima.

or inverting the order of the sums

Hk+1(S|ξ, σ) = −
p∑

µ=1

2k+1∑
i=1

Si

[ k+1∑
l=µ

(
1

22σ
)l
] ∑
{j}:dij=µ

Sj

p∑
ν=1

ξνi ξ
ν
j ,

such that, paying attention to the fields we can write

Hk+1(S|ξ, σ) = −
2k+1∑
i=1

Sihi[S], (52)

hi[S] =

p∑
µ=1

[ k+1∑
l=µ

(
1

22σ
)l
] ∑
{j}:dij=µ

Sj

p∑
ν=1

ξνi ξ
ν
j . (53)

Mirroring the analysis carried on for the Dyson model, we introduce an ensemble
of non-independent Mattis-like order parameters as

mµ,n
i [S] =

1

2n

i×2n∑
j=i×2n−(2n−1)

Sjξ
µ
j with i = 1, 2, ..., 2k+1−n, n = 0, 1, 2, ..., k+1

(54)
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⇢

Figure 4: Stability and instability zones for various configurations in the plane
(ρ,k) when β → 0, obtained by solving the inequality Sihi(σ, k, [S]) > 0. In
particular in the figure, the square represents the configuration Si = +1 ∀i ∈
[1, 4] and Si = −1 ∀i ∈ [5, 2k+1], the octagon the configuration Si = +1 ∀i ∈
[1, 8] and Si = −1 ∀i ∈ [9, 2k+1], and the esadecagon the configurationt Si = +1
∀i ∈ [1, 16] and Si = −1 ∀i ∈ [17, 2k+1]. In red we can see the region where all of
them are stable, in yellow the region where only the octagon and the esadecagon
are stable, in green the region where only the esadecagon is stable, while in blue
none of these reticular animals is stable.

so that

mµ,0
i = Siξ

µ
i with i = 1, 2, .., 2k+1

mµ,1
i = 1

2

∑2i
j=2i−1 Sjξ

µ
j with i = 1, 2, .., 2k → mµ,1

1 = 1
2

∑2
j=1 Sjξ

µ
j

mµ2n
i = 1

22

∑22i
j=22i−(22−1) Sjξ

µ
j with i = 1, 2, .., 2k−1 → mµ,2

1 = 1
4

∑4
j=1 Sjξ

µ
j

.....

mµ,k+1
1 = 1

2k+1

∑2k+1

j=1 Sjξ
µ
j .

As we saw for the Dyson case, this allows writing the fields as

hi[S] =

p∑
ν=1

ξνi

k+1∑
d=1

[ k+1∑
l=d

(
1

22σ
)l
]
2d−1mν,d−1

f(d,i) =

p∑
ν=1

ξνi

k+1∑
d=1

J(d, k+1, σ)2d−1mν,d−1
f(d,i) ,

where

J(d, k + 1, σ)2µ−1 =
4σ−dσ − 4−kσ−σ

4σ − 1
2d−1. (55)

The microscopic evolution of the system is defined as a stochastic alignment to
local field hi[S]:

Si(t+ δt) = sign{tanh[βhi[S(t)]] + ηi(t)}, (56)
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where the stochasticity lies in the independent random numbers ηi(t) uniformly
drawn over the interval [−1, 1]. In the noiseless limit β →∞ we have

Si(t+ δt) = sign[hi[S(t)]] (57)

and so if Sihi[S] > 0 ∀ i ∈ [1, N ], the configuration [S] is dynamically stable.

3.4 Signal to noise analysis for serial retrieval

Using equations (52) and (54) and posing Si = ξµi in order to check the robust-
ness of the serial pure-state retrieval (of the test pattern µ), we can write

ξµi hi[S] = ξµi

p∑
ν=1

ξνi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (58)

=

k+1∑
d=1

J(d, k + 1, σ)2d−1 + ξµi

p∑
ν 6=µ

ξνi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j .

We can decompose the previous equation into two contributions, a stochastic
noisy term R(ξ) and a deterministic signal I as

ξµi hi[S] = I +R(ξ) (59)

The signal term I is positive because

I =

k+1∑
d=1

J(d, k + 1, σ)2d−1 ≥ 0, (60)

while the noise R(ξ) has null average (the latter being denoted by standard
brackets), namely

R(ξ) = ξµi

p∑
ν 6=µ

ξνi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (61)

〈R(ξ)〉ξ = 0. (62)

Thus, in order to see the regions of the tunable parameters σ, k + 1 where the
signal prevails over the noise and the network accomplishes retrieval, we need
to calculate the second moment of the noise over the distribution of quenched
variables ξ so to compare the signal amplitudes of I and |

√
〈R2(ξ)〉ξ|:

〈R2(ξ)〉ξ =
〈[ p∑

ν 6=µ
ξνi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

]
×

×
[ p∑
η 6=µ

ξηi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξηj ξ
µ
j

]〉
ξ
. (63)
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Neglecting off-diagonal terms (as they have null average), we get the follow-
ing expressions for 〈R2(ξ)〉ξ:

〈R2(ξ)〉ξ =
〈 p∑
ν 6=µ

(ξνi )2

( k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2〉
ξ

= (64)

=

〈
p∑

ν 6=µ

( k+1∑
d=1

(
4σ−dσ − 4−(k+1)σ

4σ − 1
)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉
ξ

,

where we used (ξνi )2 = 1 ∀i, ν. Once again, as the ξ’s are symmetrically dis-
tributed, only even order terms give contributions, thus we can safely neglect
off-diagonal terms and write again

〈R2(ξ)〉ξ = (p− 1)

k+1∑
d=1

〈(4σ−dσ − 4−kσ−σ

4σ − 1

) ∑
j:dij=d

ξνj ξ
µ
j

2〉
ξ

, (65)

= (p− 1)

k+1∑
d=1

(
4σ−dσ − 4−kσ−σ

4σ − 1

)2

〈
∑

j:dij=d,

∑
k:dik=d

ξνj ξ
µ
j ξ

ν
kξ
µ
k 〉ξ.

Therefore

〈R2(ξ)〉ξ = (p− 1)

k+1∑
d=1

J(d, σ, k + 1)22d−1. (66)

Exploiting the approximation 〈|x|〉 ∼ |
√
〈x2〉|, we can simplify the previous

expression into

〈|R(ξ)|〉 ∼
√
〈R2(ξ)〉ξ =

√√√√(p− 1)

k+1∑
d=1

J(d, σ, k + 1)22d−1, (67)

where we consider the positive branch of the serial retrievl only. We are now
ready to check the stability of the pure retrieval: as long as

I >
√
〈R2(ξ)〉ξ ⇒ ξµi hi[S] = I +R(ξ) > 0, (68)

the pure state is stable. Hence we need to calculate explicitly

√
〈R2(ξ)〉ξ =

√
(p− 1)16−kσ

(4σ − 2) (4σ − 1)
2

(16σ − 2)
·
√

Ψ1 + Ψ2,

where

Ψ1 = (4σ − 2)42(k+1)σ − 3× 2k+2σ+1,

Ψ2 = 2k+6σ+1 − (16σ − 2)22(k+1)σ+1 + 2k+2 − 64σ + 22σ+1 + 24σ+1 − 4.

The expression for the signal is much simpler, resulting in

I =
4−(k+1)σ

(
−2k+2σ+2 + 4(k+2)σ + 2k+2 + 4σ − 2

)
−3× 4σ + 16σ + 2

. (69)
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Imposing I =
√
〈R2(ξ)〉ξ and solving for the variable p, we find the critical load

allowed by the network, namely the function Pc(σ, k), whose behavior is shown
in Fig.5:

I =
√
〈R2(ξ)〉ξ ⇒ Pc(σ, k). (70)

Now, imposing the relation

Pc(σ, k) = k

and solving numerically with respect to σ, we can plot the maximum value
σmax(k) that the variable σ can reach such that the storage P = k produces
retrievable patterns, as shown in Figure 5.
In the thermodynamic limit we get

I −
√
〈R2(ξ)〉 =

22σ

−3× 4σ + 16σ + 2
−

√
(p− 1)22σ√

(4σ − 1) (16σ − 2)
, (71)

Pc(σ) =
(4σ − 1) (16σ − 2)

(−3× 4σ + 16σ + 2)
2 + 1. (72)

3.5 Signal to noise analysis for parallel retrieval

Fixing Si = ξµi ∀i ∈ [1, 2k] and Si = ξγi ∀i ∈ [1 + 2k, 2k+1] for µ 6= γ, namely
selecting µ and γ as test patterns to retrieve, we set the system in condition to
handle contemporarily two patterns, the former managed by the first half of the
neurons, the latter by the second half. The robustness of this state is addressed
hereafter following the same prescription outlined so far. Namely, being

Sihi[S] = Si

p∑
ν=1

ξνi

k+1∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj Sj , (73)

if i ∈ [1, 2k] we have

Sihi(S) = ξµi

p∑
ν=1

ξνi

( k∑
d=1

J(d, k+1, σ)
∑

j:dij=d

ξνj ξ
µ
j +J(k+1, k+1, σ)

∑
j:dij=k+1

ξνj ξ
γ
j

)
,

while if i ∈ [2k + 1, 2k+1], the same equation still holds provided we replace
µ with γ and γ with µ, hence hereafter we shall consider only one of the two
cases as they are symmetrical. Again, we can decompose the above expression
in the sum of a constant, positive term -that plays as the signal- I > 0, and a
stochastic term for the noise R(ξ), namely we can write

Sihi[S] = I +R(ξ), (74)

I =

k∑
d=1

(
J(d, k + 1, σ)2d−1

)
,

R(ξ) = J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξµj ξ
γ
j

+ ξµi

p∑
ν 6=µ

ξνi
( k∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j + J(k + 1, k + 1, σ)

∑
j:dij=k+1

ξνj ξ
γ
j

)
.
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In order to get a manageable expression for the noise, it is convenient to
reshuffle R(ξ) distinguishing four terms such that

R(ξ) = a+ b+ c+ d, (75)

where

a = J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξµj ξ
γ
j , (76)

b = ξµi

p∑
ν 6=µ

ξνi

k∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (77)

c = ξµi

p∑
ν 6=µ
ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j , (78)

d = ξµi ξ
γ
i J(k + 1, k + 1, σ)2k. (79)

As µ 6= γ, we have that 〈R(ξ)〉ξ = 0, while 〈R2(ξ)〉ξ turns out to be

〈R2(ξ)〉ξ = 〈a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc+ bd+ cd)〉ξ. (80)

Let us consider these terms separately: skipping lenghty, yet straightforward
calculations, we obtain the following expressions

〈a2〉ξ =
〈
J2(k + 1, k + 1, σ)

∑
j:dij=k+1

∑
n:din=k+1

ξµj ξ
γ
j ξ
µ
nξ

γ
n

〉
ξ

= J2(k + 1, k + 1, σ)× 2k. (81)

〈b2〉ξ =

〈(
ξµi

p∑
ν 6=µ

ξνi

k∑
d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉
ξ

= (p− 1)

k∑
d=1

J2(d, k + 1, σ)2d−1. (82)

〈c2〉ξ =

〈(
ξµi

p∑
ν 6=µ&ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j

)2
〉
ξ

= (p− 2)J2(k + 1, k + 1, σ)2k. (83)

〈d2〉ξ =

〈(
ξµi ξ

γ
i J(k + 1, k + 1, σ)2k

)2
〉
ξ

= J2(k + 1, k + 1, σ)22k, (84)

and, since a and b and, analogously, b and c, are defined over different blocks
of spins, clearly

〈2ab〉ξ = 0, (85)

〈2bc〉ξ = 0, (86)

〈2bd〉ξ = 0. (87)
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As a result, rearranging terms opportunely we finally obtain

〈R2(ξ)〉ξ = 4−2kσ
([4k (4σ − 1)

2
+ 2k (4σ − 1)

2
+ 2k(p− 2) (4σ − 1)

2
]

(4σ − 1)
2

+ (2((−3× 2k+2σ+1 + 2k+6σ+1 + 2k+2 + 22σ+1 + 24σ+1 −
+ (4σ − 2)42(k+1)σ − (16σ − 2)22(k+1)σ+1) +

− 64σ)(p− 1))((4σ − 2)(16σ − 2))−1
)
,

while the signal term reads as

I =
2−2kσ−1

(
−2k+2σ − 2k+4σ + 22(k+1)σ+1 + 2k+1 + 22σ+1 − 4

)
−3× 4σ + 16σ + 2

. (88)

Imposing I =
√
〈R2(ξ)〉ξ, and solving with respect to the variable p we can

outline the function Pc(σ, k + 1) that returns the maximum allowed load the
network may afford accomplishing parallel retrieval and whose behavior is shown
in Fig.5:

I =
√
〈R2(ξ)〉ξ ⇒ Pc(σ, k + 1). (89)
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Figure 5: Upper panel (serial retrieval): On the left we show the maximum
value of storable patterns Pc as a function of k and of σ (as results from Eq. 72)
for the pure state in order to have signal’s amplitude greater than the noise
(i.e. retrieval). Note the logarithmic scale for Pc highlighting its wide range of
variability. On the right we show the maximum value of the neural interaction
decay rate σ′(k) versus k allowed to the couplings under the storage constraint
k = p and the pure state perfect retrieval constraint, in the β →∞ limit.
Lower panel (parallel retrieval): On the left there is the maximum value of
storable patterns Pc as a function of k and of σ (as results from Eq. 91) for
th parallel state in order to have signal’s amplitude greater than the noise (i.e.
retrieval). Note the logarithmic scale for Pc highlighting its wide range of vari-
ability. On the right there is the maximum value of the neural interaction decay
rate σ′(k) versus k allowed to the couplings under the storage constraint k = p
and the parallel state perfect retrieval constraint, in the β →∞ limit.
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Figure 6: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] results of the simula-
tions for DHM for σ = 0.99 and N = 2k+1, k + 1 = 8, 10, 12 are plotted. In the
left panel, the rescaled magnetic susceptibility 2k+1(〈m2〉 − 〈m〉2) is plotted vs

β (one over the noise). In the right panel the magnetization 〈m〉 = 〈 1
N

∑N
i=1 Si〉

is plotted vs β (one over the noise).

3.6 Insights from numerical simulations

Aim of this Section is to present results from extensive numerical simulations
to check the stability of parallel processing over the finite-size effects that is not
captured by statistical mechanics or that can be hidden in the signal-to-noise
analysis . Further this allows checking that the asymptotic behavior (in the
volume) of the network is in agreement with previous findings.
All the simulations were carried out according to the following algorithm.

1. Building the matrix coupling, pattern storage.
Once extracted randomly from a uniform prior over±1 p patterns of length
k + 1, and defined the distance between two spins i and j as dij we build
the matrix J, for the HHM, as

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1

p∑
µ=1

ξµi ξ
µ
j , for i = 1, · · · 2k+1, j = 1, · · · , 2k+1,

(90)
while for the DHM we use the form:

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1
, for i = 1, · · · 2k+1 and j = 1, · · · , 2k+1, (91)

where k + 1 is the number of levels of the hierarchical construction of the
network, and σ ∈ ( 1

2 , 1].

2. Initialize the network.
We used different initializations to test the stability of the resulting sta-
tionary configuration:

-Pure retrieval: We initialize the network in an assumed fixed point of the
dynamics, namely Si = ξµi with i = 1, ...2k+1 and µ = 1 for the HHM,
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Figure 7: Starting from the state Si = +1, Sj = −1 ∀i ∈ [1, 2k] and
∀j ∈ [2k + 1, 2k+1] results of the simulations for DHM for σ = 0.99 and
N = 2k+1 are plotted. In the left panel, the rescaled magnetic susceptibility
2k+1[(〈m2

1〉−〈m1〉2)+(〈m2
1〉−〈m1〉2] is plotted vs β (i.e. one over the noise) for

k + 1 = 8, 10, 12. In the right panel, the magnetizations 〈m1〉 = 〈 1
2k

∑2k

i=1 Si〉
and 〈m2〉 = 〈 1

2k

∑2k+1

i=1+2k Si〉 are plotted vs β (i.e. one over the noise) for
k + 1 = 8, 10, 12.

while Si = +1 with i = 1, ...2k+1 in the DHM case, and we check the
equilibrium as reported in Fig[ 6].

-Parallel retrieval: Since we study the multitasking features shown by this
hierarchical network, we can also assign different types of initial conditions
with respect to the pure state, e.g.

i) For the DHM, starting from the lowest energy level ( after the stan-
dard one Si = 1 ∀i) we chose Si = +1 for i = 1, ..., 2k and Si = −1
for i = 2k + 1, ..., 2k+1 (viceversa is the same, and we check the equi-
librium as reported in Fig[ 7]);

ii) For the HHM, looking for multitasking features, we set in the case
p = 2, we set Si = ξ1

i for i = 1, ..., 2k and Si = ξ2
i i = 2k +

1, ..., 2k+1(Fig[ 10]); In the case p = 4 we set Si = ξµi ∀i ∈
[
1 +

(µ−1)N
4 , µN4

]
and µ ∈ [1, 4](Fig[ 9])

In this way, we have two or four communities (sharing the same size)
building the network with a different order parameter.

3. Evolution: Glauber dynamics.
The evolution of the spins follows a standard random asynchronous dy-
namics [20] and the state of the network is updated according to the field
acting on the spins at every step of iteration, that is,

Si(t+ 1) = sign{tanh[βhi(S(t)] + η(t)}, for β = T−1

where η(t) is the noise introduced as a random uniform contribution over
the real interval [−1, 1] in every step.
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For each noise the stationary mean values of the order parameters have
been measured mediating over O(103) different realizations. For the HHM
the average of the order parameters is performed over the quenched vari-
ables. For DHM, to better highlight the stability of the parallel configura-
tion, Si = +1 for i = 1, ..., 2k, Si = −1 for i = 2k+1, ..., 2k+1 and to break
the Gauge invariance, during half of the relaxation period to equilibrium
a small positive field is applied to the system.
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Figure 8: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] with σ = 0.99 for

the DHM and k + 1 = 8, 10, 12. Binder cumulant 1 − 〈m4〉
3〈m2〉2 versus noise 1

β

for k + 1 = 8, 10, 12. Plotting the binder cumulant for different values of k + 1
permits to find the critical noise of this state.

4. Results.
It is worth noting that -at difference with paradigmatic prototypes for
phase transitions (i.e. the celebrated Curie-Weiss model), as we can see
from figures [ 6, 7, 8], in these models we studied here the critical noise
level approaches its asymptotic value (obtained by analytical arguments
in the thermodynamic limit) from above (i.e. from higher values of βs).
This happens because the intensities of couplings are increasing functions
(clearly upper limited) of the size of the system. As can be inferred from
fig[ 7] (where we present results regarding simulations for the DHM at
σ = 0.99, k + 1 = 8, 10, 12 [Si = +1, Sj = −1 ∀i ∈ [1, 2k] and ∀j ∈
[2k + 1, 2k+1]]), the stability of the parallel configuration (in the low noise
region) is confirmed and, as expected from theoretical arguments, the noise
region in which this configuration is stable increases with the size of the
system up to coincide with that of the pure state. Also in the HHM case
(figures [ 9, 10]) the stability of parallel configurations is verified (in the
low noise region) for system’s configurations shared by the two and four
communities.
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Figure 9: . Starting from the state Si = ξ1
i , Sj = ξ2

j , Sn = ξ3
n, Sl = ξ4

l

∀i ∈ [1, 2k−1],∀j ∈ [2k−1 + 1, 2k],∀n ∈ [2k + 1, 3
22k],∀l ∈ [ 3

22k + 1, 2k+1] results
of the simulations for HHM for σ = 0.99 and N = 2k+1 are plotted. The Mattis

order parameters 〈mµ
i 〉 = 〈 1

2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉 for i, µ ∈ [1, 4] are plotted

vs noise,from left we have k+ 1 = 8, 10, 12. Same colors correspond to the same
pattern µ, while same symbols correspond to the same index i.
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Figure 10: . Starting from the state Si = ξ1
i , Sj = ξ2

j ∀i ∈ [1, 2k],∀j ∈ [2k +

1, 2k+1] results of the simulations for HHM for σ = 0.99 and N = 2k+1 are

plotted. The Mattis order parameters 〈mµ
i 〉 = 〈 1

2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉 for

i, µ ∈ [1, 2] are plotted vs noise,from left we have k + 1 = 8, 10, 12.

4 Conclusions and outlooks

Comprehension of biological complexity is one of the main aim of this century’s
research: the route to pave is long and scattered over countless branches. Re-
stricting to neural networks, due to prohibitive constraints when dealing with
statistical mechanics beyond the mean field approximation (where each notion
of distance or metrics for a space where to embed neurons is lost), their theory
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has been largely developed without investigating the crucial degree of freedom
of neural distance. However, research is nowadays capable of investigations to-
wards more realistic and/or better performing models: indeed, while the mean-
field scenario, mainly split among Hopfield network for retrieval and Boltzmann
machines for learning, has been so far understood (not completely at the rigor-
ous level but at least largely), investigation of the non-mean-field counterpart
is only at the beginning.
In this work we tackled the problem of studying information processing (re-
trieval only) on hierarchical topologies, where neurons interact with an Hebbian
strength (or simply ferromagnetically in their simplest implementation, namely
the Dyson model) that decays with their reciprocal distance. While a full sta-
tistical mechanical treatment is not yet achievable, stringent bounds for its free
energy -intrinsically of non-mean-field nature- are however available and return
a survey of network capabilities by far richer than the corresponding mean-
field counterpart (the Hopfield model within the low storage regime). Indeed
these network are able to retrieve one pattern at a time accomplishing an ex-
tensive reorganization of the whole neuronal state -mirroring serial processing
as in standard Hopfield networks- but they are also able to switch to multitask-
ing behavior handling multiple patterns at once -without falling into spurious
states-, hence performing as parallel processors.
Remarkably, as far as the low storage regime is concerned, this defragmentation
into cliques -crucial for parallel processing- returns a phase space that shares
huge similarities with the multitasking associative networks [4].
However, as theorems that definitively confirm this scenario are not yet fully
available, to give robustness to the statistical mechanics predictions, we per-
formed a signal-to-noise analysis checking whether those states -candidate by
the first approach to mimic parallel retrieval- are indeed stable beyond the pure
state related to serial processing and remarkably we found huge regions of the
tunable parameters (strength of the interaction decay σ and noise level β) where
indeed those states are extremely robust.
Clearly, as standard in thermodynamics, nothing is for free and even for this
richness of behaviors there is a price to pay: emergent multitasking features
in not-mean-field models require a substantial drop in network’s capacity thus
implying a new balance required by associative networks beyond the mean-field
scenario.
While a satisfactory picture beyond such a mean-field paradigm is still far, but
we hope that this work may act as one of the first steps toward this direction.
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