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Abstract. We prove global Lipschitz stability for inverse source and coe�-
cient problems for first-order linear hyperbolic equations, the coe�cients of
which depend on both space and time. We use a global Carleman estimate,
and a crucial point, introduced in this paper, is the choice of the length of
integral curves of a vector field generated by the principal part of the hyper-
bolic operator to construct a weight function for the Carleman estimate. These
integral curves correspond to the characteristic curves in some cases.

1. Introduction

Let d 2 N, ⌦ ⇢ Rd be a bounded domain with Lipschitz boundary @⌦, T > 0,
and Q := ⌦⇥ (0, T ). For a, b 2 Rd, we denote by a · b the inner product on Rd. We
define the first-order partial di↵erential operator P such that

Pu := A0(x, t)@tu+A(x, t) ·ru,

where A0 2 C1(Q)\L1(⌦⇥(0,1)) is a positive function, and A = (A1, · · · , Ad) 2
C2(Q;Rd) is a vector-valued function onQ. In this paper, we obtain global Lipschitz
stability results for three inverse problems for equations with the principal part of
type P .

State of the art. The arguments of this paper are based on the Carleman estimates,
which were introduced by Carleman in [8] to prove unique continuation properties
for elliptic partial di↵erential equations with not necessarily analytic coe�cients,
and the Bukhgeim–Klibanov method introduced in [4]. The methodology using the
Carleman estimates is widely applicable to not only inverse problems and unique
continuation (e.g., [2], [18], [19], [24], [25], [30], and [40]), but also control theory
(e.g., [7], [9], [13], [14], [31], and [34]) for various partial di↵erential equations.

Now, we describe some results concerned with the operator P . For the radiative
transport equation having the principal part of type

@tu(x, v, t) + v ·ru(x, v, t), (x, v, t) 2 ⌦⇥ Sd�1 ⇥ (0, T ),

where Sd�1 := {v 2 Rd | |v| = 1} is a set of a velocity field, Klibanov and Pamyat-
nykh [26] and [27] proved the Carleman estimates and global uniqueness theorem
for inverse coe�cient problem of determining a zeroth-order coe�cient. In [26]
and [27], the weight function for the Carleman estimate was independent of the
principal parts:

'(x, t) = |x� x0|2 � �t2,
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where x0 2 Rd and � > 0 were fixed. For the same weight function used for
transport equations with space-dependent first-order coe�cients, see also Gaitan
and Ouzzane [15]. Machida and Yamamoto [32] and [33] also proved global Lipschitz
stability for inverse coe�cient problems, where they took a linear function as the
weight function for the Carleman estimate:

'(x, t) = � · x� �t,

where � 2 Rd and � > 0 were fixed. Recently, Lai and Li [29] proved Lipschitz
stability for inverse source and coe�cient problems of determining a zeroth-order
coe�cient under the assumption that there existed a suitable weight function for
the Carleman estimate.

For first-order hyperbolic operators of type P with a variable principal part,
Gölgeleyen and Yamamoto [16] proved Lipschitz stability and conditional Hölder
stability for inverse source and inverse coe�cient problems, where they assumed
the existence of a suitable weight function ' = '(x, t) for the Carleman estimate
satisfying

min
(x,t)2Q

P'(x, t) > 0

when A0 ⌘ 1 and A = A(x). In the same time-independent case, Cannarsa,
Floridia, Gölgeleyen, and Yamamoto [5] proved local Hölder stability for inverse
coe�cient problems of determining the principal part and a zeroth-order coe�cient,
where they took a function

'(x, t) = A(x) · x� �t

as the weight function for the Carleman estimate, and determined the coe�cients
up to a local domain, depending on the weight function, from local boundary data.
In the same time-independent case, we also mention that Gaitan and Ouzzane [15]
proved global Lipschitz stability for inverse coe�cient problem of determining a
zeroth-order coe�cient via the Carleman estimate.

In these results mentioned above, in general, one must impose some assumptions
on the principal parts and weight functions to guarantee the Carleman estimates
that is not needed in this paper. Moreover, we must note that these results were
all for first-order equations with coe�cients independent of time t. However, equa-
tions with time-dependent principal parts of type P often appear in mathematical
physics, for example, the conservation law of mass in time-dependent velocity fields,
and the mathematical analysis for such equations is needed (e.g., Taylor [39, Section
17.1] and Evans [11, Section 11.1]). In regard to first-order hyperbolic equations
having time-dependent principal parts, although the theory about direct problems
for the above equations is quite complete, there are some open questions for in-
verse problems due to the major di�culties in dealing with time-dependent coef-
ficients. About inverse problems and time-dependent principal parts, we mention
Cannarsa, Floridia, and Yamamoto [6] that proved an observability inequality for
a non-degenerate case. Floridia and Takase [12] proved the observability inequality
for a degenerate case, which was motivated by applications to inverse problems.
In both papers, they dealt with the case A0 ⌘ 1 and A = A(t). For more ref-
erences regarding inverse problems and controllability for conservation laws with
time-dependent coe�cients, see [17], [22], [23], and [28]. Regarding inverse prob-
lems for nonlinear first-order equations, readers are referred to Esteve and Zuazua
[10], which studies Hamilton–Jacobi equations (see also Porretta and Zuazua [34]).
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For the second-order hyperbolic equations with time-dependent coe�cients, the
literature about inverse problems is more extensive. In this context, Jiang, Liu, and
Yamamoto [20], and Yu, Liu, and Yamamoto [41] proved the local Hölder stability
for inverse source and coe�cient problems in the Euclidean space assuming the
Carleman estimates existed. Takase [38] proved local Hölder stability for the wave
equation and obtained some su�cient conditions for the Carleman estimate by
using geometric analysis on Lorentzian manifolds.

Finally, we note that, on the well-posedness by the method of characteristics of
first-order hyperbolic equations with principal parts of type P , readers are referred
to John [21, Chapter 1], Rauch [35, Chapter 1], Evans [11, Chapter 3], and Bressan
[3]. In addition to that, for symmetric hyperbolic systems, readers are referred to
Rauch [35, Chapter 2], Ringström [36, Chapter 7], and Taylor [39, Section 16.2].

Purpose of this paper. Although a large number of studies have been made on in-
verse problems for first-order equations, as already mentioned, what seems to be
lacking is analysis for equations with time-dependent coe�cients. In this paper
we investigate equations with coe�cients depending on both space and time. The
important point we want to make is the decisive way to choose the weight function
in the Carleman estimate for applications to inverse problems. Indeed, the weight
function of our Carleman estimate (see Proposition 3.1 and Lemma 3.2) is linear
in t, which is similar to Machida–Yamamoto [32], Gölgeleyen–Yamamoto [16], and
Cannarsa–Floridia–Yamamoto [6]. However, the novelty is that the spatial term
of the weight function in our Carleman estimate is the length of integral curves of
the vector-valued function A(·, 0), which is di↵erent from the ones in all the above
results ([6], [12], [15], [16], [26], [27], and [32]) and a new attempt. Owing to the
choice, we need not assume any assumptions on A to guarantee the Carleman es-
timates like in [16] and [5], but assume only the finiteness of the length of integral
curves (see Definition 2.4 and (2.2)). We remark that these integral curves corre-
spond to the characteristic curves in the case A0 ⌘ 1 and A = A(x). In addition,
we note that thanks to the above linearity with respect to t, we do not need to
extend the solution to (�T, 0), which enables us to apply the Carleman estimate to
inverse problems for wider functional space of time-dependent coe�cients A0 and
A.

Structure of this paper. The main results in this paper are global Lipschitz stability
for the inverse source problem (Theorem 2.11), inverse coe�cient problem to deter-
mine the zeroth-order coe�cient (Theorem 2.12), and inverse coe�cient problem
to determine the time-independent principal part (Theorem 2.13). After describing
some settings, we present them in section 2. In section 3, we establish the global
Carleman estimate (Proposition 3.1), which is the main tool to prove the main
results, under the assumption that a suitable weight function exists. After that,
we prove the existence of such a weight function by taking the length of integral
curves generated by the vector-valued function A(·, 0) (Lemma 3.2). In addition,
in section 3, we introduce energy estimates needed to prove the main results. In
section 4, we show the proofs of the main results. In Appendix, we give the proofs
of auxiliary and original results.
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2. Preliminary and statements of main results

Before showing main results, we describe some definitions and settings needed
to present them.

Definition 2.1. For a vector-valued function X 2 C2(⌦;Rd) and x 2 ⌦, a C2

curve c : [�⌘1, ⌘2] ! ⌦ for some ⌘1 � 0 and ⌘2 � 0 with ⌘1 + ⌘2 > 0 is called an

integral curve of X through x if it solves the following initial problem for ordinary

di↵erential equations
8
<

:
c0(�) :=

dc

d�
(�) = X(c(�)), � 2 [�⌘1, ⌘2],

c(0) = x.

Remark 2.2. If cx denotes the integral curve of X through x, then cx(�) is C2

with respect to x 2 ⌦.

Definition 2.3. Let a, b 2 R with a < b. An integral curve c : [a, b] ! ⌦ is called

maximal if it cannot be extended in ⌦ to a segment [a� ⌘1, b+ ⌘2] for some ⌘1 � 0
and ⌘2 � 0 with ⌘1 + ⌘2 > 0.

Definition 2.4. A vector-valued function X 2 C2(⌦;Rd) is called dissipative

if the maximal integral curve cx of X through x is defined on a finite segment

[��(x),�+(x)] and �� 2 C(⌦) \H2(⌦).

Remark 2.5. If X 2 C2(⌦;Rd) is dissipative, then cx(��(x)), cx(�+(x)) 2 @⌦,
where cx is the maximal integral curve of X through x.

Figure 1. cx is the maximal integral curve of X through x.

The terminology dissipative for vector fields seems not to be widely-used. How-
ever, the authors use this terminology on the analogy of CDRM (compact dissi-
pative Riemannian manifold) used in a setting of integral geometry problems for
tensor fields. In this subject, CDRM is equivalent to the absence of a geodesic of
infinite length in a compact Riemannian manifold with strictly convex boundary
(e.g., [37, Chapter 4]).

We assume the followings on the vector-valued function A 2 C2(Q;Rd):

(2.1) 9⇢ > 0 s.t. min
(x,t)2Q

|A(x, t)| � ⇢ ;

9t⇤ 2 [0, T ) s.t. A(·, t⇤) is dissipative.
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Without loss of generality, we assume t⇤ = 0 in the above, i.e.,

(2.2) A(·, 0) is dissipative
because it su�ces to consider the change of variables t̃ := t � t⇤ and Ã(·, t̃) :=
A(·, t̃+ t⇤).

Remark 2.6. In the case A0 ⌘ 1 and A = A(x), (2.2) means that any maximal

characteristic curves have finite length.

Example 2.7. Let d = 2 and Br := {(x, y) 2 R2 | x2 + y2 < r2} for r > 0. Then,

X(x, y) :=

✓
�x
�1

◆
on ⌦ = Br \ {y > 0} is dissipative because we see �� is smooth

on ⌦. However, Y (x, y) :=

✓
�y
x

◆
on Br \B r

2
is not dissipative because we can not

define ��.

Figure 2. Pictures of X (left) and Y (right).

Under the assumption (2.2), we can give the following notations. For a fixed
x 2 ⌦, let cx : [��(x),�+(x)] ! ⌦ be the maximal integral curve of A(·, 0) through
x, i.e., cx satisfies

(
c0
x
(�) = A(cx(�), 0), � 2 [��(x),�+(x)],

cx(0) = x.

Since cx is a rectifiable curve by (2.2), we can define the function '0 on ⌦ as the
length of the arc of the maximal integral curves defined on [��(x), 0]:

(2.3) '0(x) :=

Z 0

��(x)
|c0

x
(�)|d�,

the integral of which is independent of a choice of parameters.

Lemma 2.8. Let A 2 C2(Q;Rd) be a vector-valued function. Assume (2.1) and

(2.2). Then, the function '0 defined by (2.3) is in the class C(⌦) \H2(⌦).

Proof. It follows from Definition 2.4 and Remark 2.2. ⇤
To prove the global Lipschitz stability for inverse problems for the hyperbolic

equations, the observation time should be given large enough for the solutions to
reach the boundaries owing to the finite propagation speeds (see Bardos, Lebeau,
and Rauch [1]). Then, we define the following quantities to describe this situation
mathematically.
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For the positive function A0 2 C1(⌦)\L1(⌦⇥ (0,1)) and '0 defined by (2.3),
we define the positive number

(2.4) T0 :=

⇣
sup

x2⌦,t>0
A0(x, t)

⌘⇣
max
x2⌦

'0(x)
⌘

⇢
.

Moreover, considering inverse problems for the hyperbolic equation with time-
dependent principal part, we will assume

(2.5) 9C > 0 s.t. 8⇠ 2 Rd, 8(x, t) 2 Q, |@tA(x, t) · ⇠|  C|A(x, t) · ⇠|.
The condition (2.5) will be decisive in the the energy estimate given in Lemma 3.3
and in the proofs of Theorem 2.11 and Theorem 2.12.

Remark 2.9. When d = 1, (2.1) implies (2.5).

If a non-vanishing vector valued function A satisfies (2.5), then A has the fol-
lowing structure.

Proposition 2.10. If a vector-valued function A 2 C2(Q;Rd) satisfies (2.1) and

(2.5), then A can be represented by

A(x, t) = A(x, 0)e
R t
0 �(x,s)ds, (x, t) 2 Q

for some function � 2 C1(Q).

The proof of Proposition 2.10 is presented in Appendix. Proposition 2.10 is
decisive in the realization of a weight function for the Carleman estimate, which
will be given in Lemma 3.2.

Now, we define some notations. Set

⌃+ := {(x, t) 2 @⌦⇥ (0, T ) | A(x, t) · ⌫(x) > 0},
where we recall ⌫ is the outer unit normal to @⌦. Moreover, we set ⌃� := (⌃+)c =
(@⌦⇥ (0, T )) \ ⌃+.

We use the notations H0(⌦) := L2(⌦), H0(0, T ;H1(⌦)) := L2(0, T ;H1(⌦)), and
@0
t
w = w for a function w throughout this paper to avoid notational complexity.

2.1. Inverse source problems. We consider the initial boundary value problem
8
><

>:

Pu+ p(x, t)u = R(x, t)f(x) in Q,

u = 0 on ⌃�,

u(·, 0) = 0 on ⌦,

(2.6)

where p 2 W 1,1(0, T ;L1(⌦)), R 2 H1(0, T ;L1(⌦)), and f 2 L2(⌦). Given A0,
A, p, and R, we consider the inverse source problem to determine the source term
f in ⌦ by observation data u on ⌃+.

Theorem 2.11. Let A0 2 C1(Q) \ L1(⌦⇥ (0,1)) satisfying min
(x,t)2Q

A0(x, t) > 0,

and A 2 C2(Q;Rd) satisfying (2.1), (2.2), and (2.5). Let p 2 W 1,1(0, T ;L1(⌦)),
R 2 H1(0, T ;L1(⌦)), and f 2 L2(⌦) satisfying

(2.7) 9m0 > 0 s.t. |R(x, 0)| � m0 a.e. x 2 ⌦.

Assume

(2.8) T0 < T,
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where T0 is defined by (2.4), and there exists a function u satisfying (2.6) in the

class

u 2
2\

k=1

Hk(0, T ;H2�k(⌦)).

Then, there exists a constant C > 0 independent of f and u such that

kfkL2(⌦)  C
1X

k=0

k@k

t
ukL2(⌃+).

2.2. Inverse coe�cient problems. We consider the initial boundary value prob-
lem

8
><

>:

Pu+ p(x, t)u = 0 in Q,

u = g on ⌃�,

u(·, 0) = ↵ on ⌦,

(2.9)

where p 2 W 1,1(0, T ;L1(⌦)), g 2
2\

k=1

Hk(0, T ;H
3
2�k(@⌦)), and ↵ 2 H1(⌦) sat-

isfying the compatibility conditions. In the following two subsections, we present
two nonlinear inverse coe�cient problems.

2.2.1. Zeroth-order coe�cient. Given A0, A, g, and ↵, we consider the inverse
coe�cient problem to determine the time-independent zeroth-order coe�cient p =
p(x) in ⌦ by observation data on ⌃+.

For a fixed M > 0, define the conditional set

D(M) := {p 2 L1(⌦) | kpkL1(⌦)  M}.

Theorem 2.12. Let M > 0 be fixed, A0 2 C1(Q) \ L1(⌦ ⇥ (0,1))satisfying
min

(x,t)2Q

A0(x, t) > 0, and A 2 C2(Q;Rd) satisfying (2.1), (2.2), and (2.5). Let

pi 2 D(M) for i = 1, 2, g 2
2\

k=1

Hk(0, T ;H
3
2�k(@⌦)), and ↵ 2 H1(⌦) satisfying

(2.10) 9m0 > 0 s.t. |↵(x)| � m0 a.e. x 2 ⌦.

Assume T0 < T , where T0 is defined by (2.4), and for i = 1, 2 there exist functions

ui satisfying (2.9) with p = pi in the class

ui 2
2\

k=1

Hk(0, T ;H2�k(⌦))

such that

u2 2 H1(0, T ;L1(⌦)) and ku2kH1(0,T ;L1(⌦))  M.

Then, there exists a constant C > 0 independent of pi 2 D(M) for i = 1, 2 such

that

kp1 � p2kL2(⌦)  C
1X

k=0

k@k

t
u1 � @k

t
u2kL2(⌃+).
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2.2.2. First-order coe�cients. We consider (2.9) with the time-independent prin-
cipal coe�cients A0 and A, more precisely, with A0 2 C1(⌦) and A 2 C2(⌦;Rd).
Given p, finitely many initial values ↵, and boundary values g, we consider the
inverse coe�cient problem to determine the time-independent coe�cients A0 and
A simultaneously by finitely many observation data on ⌃+.

Let ⇢ > 0 be fixed. We will assume that the unknown coe�cients A0 and A
satisfy the following condition:

(2.11)

⇣
max
x2⌦

A0(x)
⌘⇣

max
x2⌦

'0(x)
⌘

⇢
< T,

where '0 is defined by (2.3).
For A 2 C2(⌦;Rd), set

�+,A := {x 2 @⌦ | A(x) · ⌫(x) > 0}
and ��,A := @⌦ \ �+,A.

For fixed M > 0, ⇢ > 0, and a subset � ⇢ @⌦, define the conditional set

D(M, ⇢,�)

:=

8
>><

>>:
(A0, A) 2 C1(⌦)⇥ C2(⌦;Rd)

��������

8
>><

>>:

kA0k
C1(⌦) + kAk

C2(⌦;Rd)  M,

min
x2⌦

A0(x) � ⇢, min
x2⌦

|A(x)| � ⇢,

(2.2), (2.11), and �+,A ⇢ � hold.

9
>>=

>>;
.

Theorem 2.13. Let M > 0, ⇢ > 0, � ⇢ @⌦ be a subset, and (A0
i
, Ai) 2 D(M, ⇢,�)

for i = 1, 2. Let p 2 W 1,1(0, T ;L1(⌦)), gm 2
2\

k=1

Hk(0, T ;H
3
2�k(@⌦)), and

↵m 2 W 1,1(⌦) for m = 1, . . . , d+ 1 satisfying

(2.12) 9m0 > 0 s.t. |p(x, 0)|
����det

✓
↵1(x) · · · ↵d+1(x)
r↵1(x) · · · r↵d+1(x)

◆���� � m0 a.e. x 2 ⌦.

Assume that for i = 1, 2 and m = 1, . . . , d+ 1 there exist functions ui,m satisfying

(2.9) with P = Pi := A0
i
@t +Ai ·r, g = gm, and ↵ = ↵m in the class

ui,m 2
2\

k=1

Hk(0, T ;W 2�k,1(⌦))

such that for all m = 1, . . . , d+ 1,
2X

k=1

ku2,mkHk(0,T ;W 2�k,1(⌦))  M.

Then, there exists a constant C > 0 independent of (A0
i
, Ai) 2 D(M, ⇢,�) for

i = 1, 2 such that

dX

µ=0

kAµ

1 �Aµ

2kL2(⌦)  C
d+1X

m=1

ku1,m � u2,mkH1(0,T ;L2(�)).

3. Carleman estimate and energy estimates

In this section, we introduce the Carleman estimate and energy estimates needed
to prove the main results.
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3.1. Carleman estimate. In this subsection, we prove the global Carleman esti-
mate for the operator P + p(x, t)·, where p 2 L1(Q). In section 3.1.1, we present
the general statement for the Carleman estimate assuming the existence of a suit-
able weight function ' satisfying some su�cient conditions. In section 3.1.2, we
construct such a weight function satisfying the su�cient conditions using '0 defined
by (2.3).

3.1.1. General statements. To obtain the local in time Carleman estimate, we first
assume the existence of a function ' 2 H2(Q) satisfying

(3.1) 9� > 0 s.t. P'(x, t) � � a.e. (x, t) 2 Q.

Proposition 3.1. Let A0 2 C1(Q) satisfying min
(x,t)2Q

A0(x, t) > 0, A 2 C1(Q;Rd),

and p 2 L1(Q). Assume that there exists a function ' 2 H2(Q) satisfying (3.1).
Then, there exist constants s⇤ > 0 and C > 0 such that

s2
Z

Q

e2s'|u|2dxdt+ s

Z

⌦
e2s'(x,0)|u(x, 0)|2dx(3.2)

 C

Z

Q

e2s'|(P + p(x, t))u|2dxdt+ Cs

Z

⌃+

e2s'|u|2dSdt

+ Cs

Z

⌦
e2s'(x,T )|u(x, T )|2dx

holds for all s > s⇤ and u 2
1\

k=0

Hk(0, T ;H1�k(⌦)), where dS denotes the area

element of @⌦.

Proof. It su�ces to prove Proposition 3.1 when p ⌘ 0 due to the su�ciently large
parameter s. Let z := es'u and Psz := es'P (e�s'z) for s > 0. Then, we obtain

Psz = Pz � sP'z,

which implies

kPszk2L2(Q) = kPzk2
L2(Q) + 2(Pz,�sP'z)L2(Q) + ksP'zk2

L2(Q)

� ksP'zk2
L2(Q) + 2(Pz,�sP'z)L2(Q)

= s2
Z

Q

|P'|2|z|2dxdt� s

Z

Q

P'
⇣
A0@t(|z|2) +A ·r(|z|2)

⌘
dxdt

� s2
Z

Q

�2|z|2dxdt+ s

Z

Q

h
@t((P')A0) +r · ((P')A)

i
|z|2dxdt� B,

by our assumption (3.1), where

B := s

Z

⌦

h
(P')A0|z|2

it=T

t=0
dx+ s

Z

@⌦⇥(0,T )
P'(A(x, t) · ⌫(x))|z|2dSdt.

Therefore, there exists C > 0 such that

C

Z

Q

s2
h
1 +O

✓
1

s

◆i
|z|2dxdt  kPszk2L2(Q) + B

as s ! +1. By choosing s > 0 large enough, we complete the proof. ⇤
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3.1.2. Realization of weight functions. We construct the weight function ' 2 C(Q)\
H2(Q) depending on the vector field generated by the coe�cients A, and satisfying
(3.1).

Lemma 3.2. Let A0 2 C(Q) \L1(⌦⇥ (0,1)) satisfying min
(x,t)2Q

A0(x, t) > 0, and

A 2 C2(Q;Rd) be given functions satisfying (2.1), (2.2), and (2.5). Then, for an

arbitrary real number � > 0 independent of T satisfying

(3.3) 0 < � <
⇢

sup
x2⌦,t>0

A0(x, t)
,

the function ' defined by

(3.4) '(x, t) := '0(x)� �t, (x, t) 2 Q,

with '0 defined by (2.3), is in the class ' 2 C(Q) \H2(Q) and satisfies (3.1).

Proof. It is obvious that ' 2 C(Q)\H2(Q) by Lemma 2.8. We prove that ' defined
by (3.4) satisfies (3.1). It follows that

P'(x, t) = A(x, t) ·r'0(x)� �A0(x, t)(3.5)

� A(x, t) ·r'0(x)� � sup
x2⌦,t>0

A0(x, t).

For a fixed x 2 ⌦, let cx : [��(x),�+(x)] ! ⌦ be the maximal integral curve with
cx(0) = x of A(·, 0). For a su�ciently small ⌘ 2 [��(x),�+(x)], we set x⌘ := cx(⌘).
Because we can verify

8
<

:

d

d�

�
cx(� + ⌘)

�
= c0

x
(� + ⌘) = A(cx(� + ⌘), 0),

cx(0 + ⌘) = x⌘,

we have cx⌘ (�) = cx(�+ ⌘) by the uniqueness of the solution to the initial problem
of the ordinary di↵erential equation. Hence, ��(x⌘) = ��(x)� ⌘ holds. Therefore,
we obtain

'0(cx(⌘)) = '0(x⌘) =

Z 0

��(x⌘)
|c0

x⌘
(�)|d� =

Z 0

��(x)�⌘

|c0
x
(�+⌘)|d� =

Z
⌘

��(x)
|c0

x
(�)|d�.

Di↵erentiating both sides with respect to ⌘ and substituting ⌘ = 0 yield

c0
x
(0) ·r'0(cx(0)) = |c0

x
(0)| = |A(x, 0)|.

Therefore, by (2.5), Proposition 2.10, and (2.1), we obtain

A(x, t) ·r'0(x) = A(x, 0) ·r'0(x)e
R t
0 �(x,s)ds(3.6)

= c0
x
(0) ·r'0(cx(0))e

R t
0 �(x,s)ds

= |A(x, 0)|e
R t
0 �(x,s)ds

= |A(x, t)| � ⇢.

Applying (3.6) to (3.5) yields

P'(x, t) � ⇢� � sup
x2⌦,t>0

A0(x, t) > 0

for almost all (x, t) 2 Q.
⇤
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3.2. Energy estimates. The following Lemma 3.3 is the energy estimate for the
first-order hyperbolic equations with the time-dependent principal part needed to
prove Theorem 2.11 and Theorem 2.12. Moreover, we describe Lemma 3.4, which
is the energy estimate for first-order hyperbolic equations with time-independent
principal part needed to prove Theorem 2.13. Their proofs are presented in Ap-
pendix.

For a positive function A0 2 C1(Q) and u 2
2\

k=1

Hk(0, T ;H2�k(⌦)), we define

the quantity

E(t) :=

Z

⌦

�
A0(x, t)|@tu(x, t)|2 + |u(x, t)|2

⌘
dx, t 2 [0, T ].

Lemma 3.3. Let A0 2 C1(Q) satisfying min
(x,t)2Q

A0(x, t) > 0, A 2 C1(Q;Rd),

p 2 W 1,1(0, T ;L1(⌦)), R 2 H1(0, T ;L1(⌦)), and f 2 L2(⌦). Then, there exists

a constant C > 0 independent of u and f such that

(3.7) E(t)  C
⇣
k@tA ·ruk2

L2(Q) + kfk2
L2(⌦)

⌘

holds for all t 2 [0, T ] and u 2
2\

k=1

Hk(0, T ;H2�k(⌦)) satisfying (2.6).

Moreover, if we assume (2.5), then there exists a constant C > 0 independent of

u and f such that

(3.8) E(t)  Ckfk2
L2(⌦)

holds for all t 2 [0, T ] and u 2
2\

k=1

Hk(0, T ;H2�k(⌦)) satisfying (2.6).

Lemma 3.4. Let ` 2 N be a fixed number, A0 2 C1(⌦) satisfying min
x2⌦

A0(x) >

0, A 2 C1(⌦;Rd), p 2 W 1,1(0, T ;L1(⌦)), R 2 H1(0, T ;L1(⌦;R`)), and F 2
L2(⌦;R`). Let us consider the initial boundary value problem

8
><

>:

A0(x)@tu+A(x) ·ru+ p(x, t)u = R(x, t) · F (x) in Q,

u = 0 on ��,A ⇥ (0, T ),

u(·, 0) = 0 on ⌦.

(3.9)

Then, there exists a constant C > 0 independent of u and F such that

(3.10) E(t)  CkFk2
L2(⌦;R`))

holds for all t 2 [0, T ] and u 2
2\

k=1

Hk(0, T ;H2�k(⌦)) satisfying (3.9).

4. Proofs of main results

Using several estimates introduced in section 3, we prove the three main theorems
in the subsequently sections.
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4.1. Proof of Theorem 2.11.

Proof of Theorem 2.11. By our assumption (2.8), we can take 0 < � <
⇢

sup
x2⌦,t>0

A0(x, t)

independent of T satisfying

(T0 <)

max
x2⌦

'0(x)

�
< T.

Then, there exists  > 0 such that

(4.1) max
x2⌦

'0(x)� �T < �.

Henceforth, by C > 0 we denote a generic constant independent of u which may
change from line to line, unless specified otherwise. Applying the Carleman estimate

(3.2) of Proposition 3.1 to @tu 2
1\

k=0

Hk(0, T ;H1�k(⌦)) yields

s2
Z

Q

e2s'|@tu|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)f(x)|2dx(4.2)

 C

Z

Q

e2s'|(P + p(x, t))@tu|2dxdt+ Cs

Z

⌃+

e2s'|@tu|2dSdt

+ Cs

Z

⌦
e2s'(x,T )|@tu(x, T )|2dx.

Since we obtain

(P + p(x, t))@tu = @t
⇣
A0(x, t)@tu+A(x, t) ·ru+ p(x, t)u

⌘

� @tA
0(x, t)@tu� @tA(x, t) ·ru� @tp(x, t)u

= @tR(x, t)f(x)� @tA
0(x, t)@tu� @tA(x, t) ·ru� @tp(x, t)u,

we have

|(P + p(x, t))@tu|2  C
⇣
|@tRf |2 + |@tu|2 + |@tA(x, t) ·ru|2 + |u|2

⌘
(4.3)

 C
⇣
|@tRf |2 + |@tu|2 + |A(x, t) ·ru|2 + |u|2

⌘
,

where we used the assumption (2.5) to obtain the second inequality. Therefore,
applying the equation in (2.6) to the above estimate (4.3) yields

(4.4) |(P + p(x, t))@tu|2  C
⇣
|@tRf |2 + |Rf |2 + |@tu|2 + |u|2

⌘
.

Furthermore, applying (4.1) and the energy estimate (3.8) of Lemma 3.3 yields

s

Z

⌦
e2s'(x,T )|@tu(x, T )|2dx  Cse�2s

Z

⌦
A0(x, T )|@tu(x, T )|2dx(4.5)

 Cse�2skfk2
L2(⌦).
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Applying (4.4) and (4.5) to (4.2) and choosing s > s⇤ large enough yield

s2
Z

Q

e2s'|@tu|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)f(x)|2dx(4.6)

 C

Z

Q

e2s'
⇣ 1X

k=0

|@k

t
R|2
⌘
|f |2dxdt+ C

Z

Q

e2s'|u|2dxdt

+ Cs

Z

⌃+

e2s'|@tu|2dSdt+ Cse�2skfk2
L2(⌦).

In regard to the left-hand side of (4.6), using (2.7), for some C > 0 we obtain

(4.7) s2
Z

Q

e2s'|@tu|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)f(x)|2dx � Cskes'0fk2

L2(⌦).

In regard to right-hand side of (4.6), applying the Carleman estimate (3.2) of

Proposition 3.1 to u 2
2\

k=1

Hk(0, T ;H2�k(⌦)) and then using (4.1) and the energy

estimate (3.8) yield

Z

Q

e2s'|u|2dxdt(4.8)

 C

s2

Z

Q

e2s'|Rf |2dxdt+ C

s

Z

⌃+

e2s'|u|2dSdt

+
C

s

Z

⌦
e2s'(x,T )|u(x, T )|2dx

 C

s2

Z

Q

e2s'|Rf |2dxdt+ C

s

Z

⌃+

e2s'|u|2dSdt+ C

s
e�2skfk2

L2(⌦).
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Applying (4.7) and (4.8) to (4.6) and choosing su�ciently large s > s⇤ yield

skes'0fkL2(⌦)

 C

Z

Q

e2s'
⇣ 1X

k=0

|@k

t
R|2
⌘
|f |2dxdt+ C

s

Z

⌃+

e2s'|u|2dSdt

+ CseCsk@tuk2L2(⌃+) + Cse�2skfk2
L2(⌦)

 C

Z

Q

e2s'
⇣ 1X

k=0

|@k

t
R|2
⌘
|f |2dxdt+ CseCs

1X

k=0

k@k

t
uk2

L2(⌃+)

+ Cse�2skfk2
L2(⌦)

= C

Z

⌦

 Z
T

0
e�2s('0(x)�'(x,t))

⇣ 1X

k=0

k@k

t
R(·, t)k2

L1(⌦)

⌘
dt

!
e2s'0 |f |2dx

+ CseCs

1X

k=0

k@k

t
uk2

L2(⌃+) + Cse�2skfk2
L2(⌦)

= C

Z

⌦

 Z
T

0
e�2�ts

⇣ 1X

k=0

k@k

t
R(·, t)k2

L1(⌦)

⌘
dt

!
e2s'0 |f |2dx

+ CseCs

1X

k=0

k@k

t
uk2

L2(⌃+) + Cse�2skfk2
L2(⌦)

 o(1)kes'0fk2
L2(⌦) + CseCs

1X

k=0

k@k

t
uk2

L2(⌃+) + Cse�2skes'0fk2
L2(⌦)

= o(1)kes'0fk2
L2(⌦) + CseCs

1X

k=0

k@k

t
uk2

L2(⌃+)

as s ! +1 by the Lebesgue dominated convergence theorem. Choosing s > s⇤
large enough yields

kes'0fkL2(⌦)  CeCs

1X

k=0

k@k

t
ukL2(⌃+).

Since '0(x) � 0 for all x 2 ⌦, kes'0fkL2(⌦) � kfkL2(⌦) holds. Then, we complete
the proof. ⇤
4.2. Proof of Theorem 2.12.

Proof of Theorem 2.12. We show that Theorem 2.12 comes down to Theorem 2.11.
Setting

v := u1 � u2, R := �u2, f := p1 � p2,

we obtain 8
><

>:

Pv + p1(x)v = R(x, t)f(x) in Q,

v = 0 on ⌃�,

v(·, 0) = 0 on ⌦,

and (2.7) is satisfied due to the assumption (2.10). Therefore, by Theorem 2.11,
the proof is completed. ⇤
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4.3. Proof of Theorem 2.13.

Proof of Theorem 2.13. By our assumption (2.11), we can take 0 < � <
⇢

max
x2⌦

A0
1(x)

independent of T satisfying
⇣
max
x2⌦

A0
1(x)

⌘⇣
max
x2⌦

'0(x)
⌘

⇢
<

max
x2⌦

'0(x)

�
< T.

Then, there exists  > 0 such that

(4.9) max
x2⌦

'0(x)� �T < �.

Henceforth, by C > 0 we denote a generic constant independent of u which may
change from line to line, unless specified otherwise. For m = 1, . . . , d+ 1, setting

vm := u1,m � u2,m, f1 := A0
1 �A0

2, f2 := A1 �A2,

and

F :=

✓
f1
f2

◆
2 L2(⌦;Rd+1),

Rm :=
�
�@tu2,m �@x1u2,m · · · �@xdu2,m

�
2 H1(0, T ;L1(⌦;Rd+1)).

Thus, we obtain
8
><

>:

P1vm + p(x, t)vm = Rm(x, t)F (x) in Q,

vm = 0 on ⌃�,

vm(·, 0) = 0 on ⌦,

where the product in the right-hand side of the equation is a product of matrices.
Applying the Carleman estimate (3.2) of Proposition 3.1 with P = P1 to

@tvm 2
1\

k=0

Hk(0, T ;W 1�k,1(⌦)) ⇢
1\

k=0

Hk(0, T ;H1�k(⌦))

yields

s2
Z

Q

e2s'|@tvm|2dxdt+ s

Z

⌦
e2s'(x,0)|Rm(x, 0)F (x)|2dx

 C

Z

Q

e2s'|(P1 + p(x, t))@tvm|2dxdt+ Cs

Z

�+,A1⇥(0,T )
e2s'|@tvm|2dSdt

+ Cs

Z

⌦
e2s'(x,T )|@tvm(x, T )|2dx.

Summing up with respect to m = 1, . . . , d+ 1 yields

s2
Z

Q

e2s'|@tv|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)F (x)|2dx(4.10)

 C

Z

Q

e2s'|(P1 + p(x, t))@tv|2dxdt+ Cs

Z

�+,A1⇥(0,T )
e2s'|@tv|2dSdt

+ Cs

Z

⌦
e2s'(x,T )|@tv(x, T )|2dx,
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where we define

v :=

0

B@
v1
...

vd+1

1

CA , R :=

0

B@
R1
...

Rd+1

1

CA , (P1 + p(x, t))@tv :=

0

B@
(P1 + p(x, t))@tv1

...
(P1 + p(x, t))@tvd+1

1

CA .

Since we obtain

(P1 + p(x, t))@tvm = @t
⇣
A0

1(x)@tvm +A1(x) ·rvm + p(x, t)vm
⌘
� @tp(x, t)vm

= @t(RmF )� @tp(x, t)vm

for each m = 1, . . . , d+ 1, we have

(4.11) |(P1 + p(x, t))@tv|2  C
⇣
|@tRF |2 + |v|2

⌘
.

Furthermore, applying (4.9) and the energy estimate (3.10) of Lemma 3.4 for m =
1, . . . , d+ 1 yields

s

Z

⌦
e2s'(x,T )|@tvm(x, T )|2dx  Cse�2s

Z

⌦
A0

1(x, T )|@tvm(x, T )|2dx

 Cse�2skFk2
L2(⌦;Rd+1),

which implies

(4.12) s

Z

⌦
e2s'(x,T )|@tv(x, T )|2dx  Cse�2skFk2

L2(⌦;Rd+1).

Applying (4.11) and (4.12) to (4.10) and choosing s > s⇤ large enough yield

s2
Z

Q

e2s'|@tv|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)F (x)|2dx(4.13)

 C

Z

Q

e2s'|@tRF |2dxdt+ C

Z

Q

e2s'|v|2dxdt

+ Cs

Z

�⇥(0,T )
e2s'|@tv|2dSdt+ Cse�2skFk2

L2(⌦;Rd+1).

In regard to the left-hand side of (4.13), we obtain

s2
Z

Q

e2s'|@tv|2dxdt+ s

Z

⌦
e2s'(x,0)|R(x, 0)F (x)|2dx(4.14)

� Cskes'0Fk2
L2(⌦;Rd+1)

for some C > 0 by (2.12). Indeed, by min
x2⌦

A0
2(x) � ⇢ > 0, it follows that

| detR(x, 0)| =
����det

✓
@tu2,1(x, 0) · · · @tu2,d+1(x, 0)
ru2,1(x, 0) · · · ru2,d+1(x, 0)

◆����

� C

����det
✓
A2 ·r↵1 + p(x, 0)↵1 · · · A2 ·r↵d+1 + p(x, 0)↵d+1

r↵1 · · · r↵d+1

◆����

= C

����det
✓
p(x, 0)↵1 · · · p(x, 0)↵d+1

r↵1 · · · r↵d+1

◆����

= C|p(x, 0)|
����det

✓
↵1(x) · · · ↵d+1(x)
r↵1(x) · · · r↵d+1(x)

◆���� � m0 a.e. x 2 ⌦.
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In regard to the right-hand side of (4.13), applying the Carleman estimate (3.2) of

Proposition 3.1 to vm 2
2\

k=1

Hk(0, T ;W 2�k,1(⌦)) for each m = 1, . . . , d + 1 and

then using (4.9) and the energy estimate (3.10) of Lemma 3.4 yield
Z

Q

e2s'|v|2dxdt(4.15)

 C

s2

Z

Q

e2s'|Rf |2dxdt+ C

s

Z

�+,A1⇥(0,T )
e2s'|v|2dSdt

+
C

s

Z

⌦
e2s'(x,T )|v(x, T )|2dx

 C

s2

Z

Q

e2s'|Rf |2dxdt+ C

s

Z

�⇥(0,T )
e2s'|v|2dSdt

+
C

s
e�2skFk2

L2(⌦;Rd+1).

Applying (4.14) and (4.15) to (4.13) and choosing su�ciently large s > s⇤ yield

skes'0Fk2
L2(⌦;Rd+1)

 C

Z

Q

e2s'|@tRF |2dxdt+ C

s2

Z

Q

e2s'|Rf |2dxdt+ C

s

Z

�⇥(0,T )
e2s'|v|2dSdt

+ Cs

Z

�⇥(0,T )
e2s'|@tv|2dSdt+ Cse�2skFk2

L2(⌦;Rd+1)

 C

Z

Q

e2s'
⇣ 1X

k=0

|@k

t
RF |2

⌘
dxdt+ CseCskvkH1(0,T ;L2(�;Rd+1))

+ Cse�2skFk2
L2(⌦;Rd+1)

= C

Z

⌦

 Z
T

0
e�2�ts

⇣ 1X

k=0

k@k

t
R(·, t)k2

L1(⌦;R(d+1)⇥(d+1))

⌘
dt

!
e2s'0 |F |2dx

+ CseCskvk2
H1(0,T ;L2(�;Rd+1)) + Cse�2skFk2

L2(⌦;Rd+1)

 o(1)kes'0Fk2
L2(⌦;Rd+1) + CseCskvk2

H1(0,T ;L2(�;Rd+1)) + Cse�2skes'0Fk2
L2(⌦;Rd+1)

= o(1)kes'0Fk2
L2(⌦;Rd+1) + CseCskvk2

H1(0,T ;L2(�;Rd+1))

as s ! +1 by the Lebesgue dominated convergence theorem. Choosing s > s⇤
large enough yields

kes'0Fk2
L2(⌦;Rd+1)  CeCskvk2

H1(0,T ;L2(�;Rd+1))

Since '0(x) � 0 for all x 2 ⌦, kes'0Fk2
L2(⌦;Rd+1) � kFk2

L2(⌦;Rd+1) holds. Then, we
complete the proof. ⇤

5. Appendix

In Appendix, we prove Proposition 2.10, Lemma 3.3, and Lemma 3.4.
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5.1. Proof of Proposition 2.10.

Proof of Proposition 2.10. When d � 2, we note that there exists a vector-valued
function A?(x, t) 6= 0 for each (x, t) 2 Q such that

A(x, t) ·A?(x, t) = 0

due to (2.1). Applying (2.5) to ⇠ = A?(x, t) yields

8(x, t) 2 Q, @tA(x, t) ·A?(x, t) = 0,

which implies that there exists a function � 2 C1(Q) such that

8(x, t) 2 Q, @tA(x, t) = �(x, t)A(x, t).

Therefore, A(x, t) is represented by

A(x, t) = A(x, 0)e
R t
0 �(x,s)ds.

When d = 1, noting Remark 2.9, setting

�(x, t) :=
@tA(x, t)

A(x, t)

completes the proof. ⇤

5.2. Proof of Lemma 3.3.

Proof of Lemma 3.3. Di↵erentiating the equation in (2.6) with respect to t yields

A0(x, t)@2
t
u+ @tA

0(x, t)@tu+A(x, t) ·r@tu

+@tA(x, t) ·ru+ p(x, t)@tu+ @tp(x, t)u = @tR(x, t)f(x).

Multiplying 2@tu to the above equality and integrating over ⌦ yield
Z

⌦
A0(x, t)@t(|@tu|2)dx+

Z

⌦
2@tA

0(x, t)|@tu|2dx+

Z

⌦
A(x, t) ·r(|@tu|2)dx

+

Z

⌦
2@tu(@tA(x, t) ·ru)dx+

Z

⌦
2p(x, t)|@tu|2dx+

Z

⌦
2@tp(x, t)u@tudx

=

Z

⌦
2@tu@tR(x, t)f(x)dx.

Integration by parts yields

d

dt

Z

⌦
A0(x, t)|@tu|2dx

= �
Z

⌦
(@tA

0(x, t) + 2p(x, t))|@tu|2dx+

Z

⌦
(r ·A(x, t))|@tu|2dx

�
Z

⌦
2@tu(@tA(x, t) ·ru)dx�

Z

⌦
2@tp(x, t)u@tudx+

Z

⌦
2@tu@tRfdx

�
Z

@⌦
(A(x, t) · ⌫)|@tu|2dS

 C

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tA(x, t) ·ru|2dx+

Z

⌦
|@tRf |2dx

◆

�
Z

@⌦
(A(x, t) · ⌫)|@tu|2dS.
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Adding
d

dt

Z

⌦
|u|2dx to the both sides of the above estimate, we obtain

d

dt

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx

◆
(5.1)

 C

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tA(x, t) ·ru|2dx

+

Z

⌦
|@tRf |2dx

◆
+

Z

⌦
2|u||@tu|dx�

Z

@⌦
(A(x, t) · ⌫)|@tu|2dS

 C

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tA(x, t) ·ru|2dx

+

Z

⌦
|@tRf |2dx

◆
�
Z

@⌦
(A(x, t) · ⌫)|@tu|2dS,

which implies

d

dt

✓
e�Ct

Z

⌦

⇣
A0(x, t)|@tu|2 + |u|2

⌘
dx

◆

 e�Ct

✓
C

Z

⌦

⇣
|@tA(x, t) ·ru|2 + |@tRf |2

⌘
dx�

Z

@⌦
(A(x, t) · ⌫)|@tu|2dS

◆
.

Integrating over (0, t) for t  T yields

E(t)  C

✓
E(0) +

Z

Q

|@tA(x, t) ·ru|2dxdt+
Z

⌦
|f |2dx

◆
.

Since, using the equation (2.6), we obtain

(5.2) E(0)  C

Z

⌦
|f |2dx,

we prove (3.7).
Moreover, if we assume the assumption (2.5), then there exists C > 0 such that

for all (x, t) 2 Q,

|@tA(x, t) ·ru|2  C|A(x, t) ·ru|2.
Therefore, applying the above inequality to (5.1) and using the equation in (2.6)
yield

d

dt

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx

◆

 C

✓Z

⌦
A0(x, t)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tRf |2dx+

Z

⌦
|Rf |2dx

◆

�
Z

@⌦
(A(x, t) · ⌫)|@tu|2dS,

which implies

d

dt

✓
e�Ct

Z

⌦

⇣
A0(x, t)|@tu|2 + |u|2

⌘
dx

◆

 e�Ct

 
C

Z

⌦

⇣ 1X

k=0

|@k

t
R|2
⌘
|f |2dx�

Z

@⌦
(A(x, t) · ⌫)|@tu|2dS

!
.
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Integrating over (0, t) for t  T yields

E(t)  C

✓
E(0) +

Z

⌦
|f |2dx

◆
.

By (5.2), we complete the proof. ⇤

5.3. Proof of Lemma 3.4.

Proof of Lemma 3.4. Di↵erentiating the equation with respect to t yields

A0(x)@2
t
u+A(x) ·r@tu+ p(x, t)@tu+ @tp(x, t)u = @tR(x, t) · F (x).

Multiplying 2@tu to the above equation and integrating over ⌦ yield
Z

⌦
A0(x)@t(|@tu|2)dx+

Z

⌦
A(x) ·r(|@tu|2)dx

+

Z

⌦
2p(x, t)|@tu|2dx+

Z

⌦
2@tp(x, t)u@tudx =

Z

⌦
2@tu@tR(x, t) · F (x)dx.

Integration by parts yields

d

dt

Z

⌦
A0(x)|@tu|2dx

=

Z

⌦
(r ·A(x)� 2p(x, t))|@tu|2dx�

Z

⌦
2@tp(x, t)u@tudx+

Z

⌦
2@tu@tR · Fdx

�
Z

@⌦
(A(x) · ⌫)|@tu|2dS

 C

✓Z

⌦
A0(x)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tR · F |2dx

◆
�
Z

@⌦
(A(x) · ⌫)|@tu|2dS.

Adding
d

dt

Z

⌦
|u|2dx to the both sides of the above estimate, we obtain

d

dt

✓Z

⌦
A0(x)|@tu|2dx+

Z

⌦
|u|2dx

◆

 C

✓Z

⌦
A0(x)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tR · F |2dx

◆
+

Z

⌦
2|u||@tu|dx

�
Z

@⌦
(A(x) · ⌫)|@tu|2dS

 C

✓Z

⌦
A0(x)|@tu|2dx+

Z

⌦
|u|2dx+

Z

⌦
|@tR · F |2dx

◆
�
Z

@⌦
(A(x) · ⌫)|@tu|2dS,

which implies

d

dt

✓
e�Ct

Z

⌦

⇣
A0(x)|@tu|2 + |u|2

⌘
dx

◆

 e�Ct

✓
C

Z

⌦
|@tR · F |2dx�

Z

@⌦
(A(x) · ⌫)|@tu|2dS

◆
.

Integrating over (0, t) for t  T yields

E(t)  C

✓
E(0) +

Z

⌦
|F |2dx

◆
.
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Since, using the equation in (3.9), we obtain

E(0)  C

Z

⌦
|F |2dx,

we prove (3.10). ⇤
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Applied Analysis, issued by CNRS, MPI, and IN�AM, during the IN�AM Intensive
Period-2019, “Shape optimization, control and inverse problems for PDEs”, held in
Napoli in May-June-July 2019.

This paper owes much to the thoughtful and helpful comments of Professor
Piermarco Cannarsa (University of Rome “Tor Vergata”) and Professor Masahiro
Yamamoto (The University of Tokyo). In particular, we thank Prof. Cannarsa to
have suggested to us that the inequality (2.5) imply a precise exponential structure
for the coe�cient A(x, t) (that we showed in Proposition 2.10). Moreover, we are
extremely grateful to Prof. Yamamoto to have fully read a draft of this paper and
to have given us a lot of pieces of advice to make it more clear and readable.

References

[1] C. Bardos, G. Lebeau, and J. Rauch. Sharp su�cient conditions for the observation, control,
and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065,
1992.

[2] M. Bellassoued and M. Yamamoto. Carleman Estimates and Applications to Inverse Prob-
lems for Hyperbolic Systems. Springer Japan, Tokyo, 2017.

[3] A. Bressan. Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Prob-
lem. Oxford lecture series in mathematics and its applications. Oxford University Press, 2000.

[4] A. L. Bukhgeim and M. V. Klibanov. Global uniqueness of class of multidimensional inverse
problems. Soviet Math. Dokl., 24(2):244–247, 1981.

[5] P. Cannarsa, G. Floridia, F. Gölgeleyen, and M. Yamamoto. Inverse coe�cient problems for
a transport equation by local Carleman estimate. Inverse Problems, 35(10):22pp, 2019.

[6] P. Cannarsa, G. Floridia, and M. Yamamoto. Observability inequalities for transport equa-
tions through Carleman estimates. Springer INdAM Series, 32:69–87, 2019.

[7] P. Cannarsa, P. Martinez, and J. Vancostenoble. Global Carleman Estimates for Degenerate
Parabolic Operators with Applications, volume 239. Memoirs of the American Mathematical
Society, Providence, 2016.
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