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ABSTRACT

In the current scenario, where cyber-incidents occur daily, an effec-
tive Incident Management Process (IMP) and its assessment have
assumed paramount significance. While assessment models, which
evaluate the risks of incidents, exist to aid security experts during
such a process, most of them provide only qualitative evaluations
and are typically validated in individual case studies, predominantly
utilizing non-public data. This hinders their comparative quantita-
tive analysis, incapacitating the evaluation of new proposed solu-
tions and the applicability of the existing ones due to the lack of
baselines. To address this challenge, we contribute a benchmarking
approach and system, BenchIMP, to support the quantitative evalu-
ation of IMP assessment models based on performance and robust-
ness in the same settings, thus enabling meaningful comparisons.
The resulting benchmark is the first one tailored for evaluating
process-based security assessment models and we demonstrate its
capabilities through two case studies using real IMP data and state-
of-the-art assessment models. We publicly release the benchmark
to help the cybersecurity community ease quantitative and more
accurate evaluations of IMP assessment models.
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1 INTRODUCTION

In an increasingly interconnected and digital world, the impor-
tance of an effective Incident Management Process (IMP) cannot be
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overstated. Organizations are constantly exposed to a wide range
of potential incidents that can disrupt their operations, compro-
mise data security, and damage their reputation. These incidents
encompass a broad spectrum, from cyberattacks and data breaches
to natural disasters, accidents, and service interruptions. Setting
up the IMP is a critical procedure for any organization’s security
and operational strategy. It encompasses a structured approach to
identifying, managing, and resolving unexpected events (i.e., secu-
rity incidents) that can impact data and systems’ confidentiality,
integrity, and availability. If not properly managed, the IMP may
require significant time and resources to coordinate internally with
the team and analyze resources [19, 35]. For this reason, the ana-
lytical evaluation of the IMP, namely IMP assessment, has become
extremely important to identify and quantify the incident causes
and provide mitigation actions to improve the process.

Problem statement and contribution. Given the difficulty of
quantitatively assessing the IMP due to general and manual guide-
lines provided by security standards [10, 47], different works pro-
posed new assessment models to support an objective IMP assess-
ment [8, 25, 46]. On one side, the security standards do not provide a
systematic evaluation of the IMP assessment models. On the other
hand, given the lack of open-source data and methodologies to
test these approaches [17], these works suffer the limitation that
they have been tested and applied in extremely specific scenarios
(e.g., small healthcare anonymized networks [8]). This impedes the
ability to conduct comparative quantitative evaluations of these ap-
proaches, making their applicability challenging due to the absence
of objective criteria to choose one over the others.

While in other cybersecurity fields benchmarking approaches
caught on to address comparative analyses [5], to the best of the au-
thors” knowledge, a similar solution is missing for the assessment of
the IMP. To address this gap, this paper moves the first step toward
the quantitative evaluation of the IMP assessment. We contribute
BenchIMP, a benchmark system that supports security experts in
the comparative analysis of models for quantitative evaluation of
the IMP assessment, leveraging the notion of incident cost. It val-
idates the performance of assessment models and analyzes their
robustness considering different error scenarios and multiple ana-
lytical perspectives (e.g., different sources of human mistakes and
error magnitudes). BenchIMP supports multi-metric analysis for
a comprehensive quantitative objective evaluation in a fully auto-
mated system, not achievable with existing manual approaches. We
present two case studies using a real IMP log from an IT company
to show the capabilities of the proposed benchmark to evaluate a
new assessment model and enable a comparative analysis with the
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current state-of-the-art solutions for IMP assessment. In summary,
the paper contributes:

o The definition of benchmarking scope and requirements for
quantitative IMP assessment;

e The benchmark design and architecture for the evaluation
of IMP assessment models;

o The development and public release of BenchIMP, the bench-
marking system for the IMP assessment!;

e Two case studies showing the benefits for security asses-
sors, practitioners, and researchers in leveraging the enabled
quantitative assessment.

2 BACKGROUND

This section provides the fundamental definitions of the IMP and
how its assessment is performed. Then, we introduce the notion of
incident cost and assessment model.

Incident Management Process Assessment. Different standards
exist describing the IMP (e.g., ISO 27035 [27], ITIL [29], ENISA [22]),
which define five crucial phases for an effective process: planning
and preparation, where the organization establishes policies, com-
petent teams, and logging procedures; detection and reporting, in-
volving the identification and logging of potential incidents, such as
suspicious activities; incident analysis to categorize incidents based
on their impact and urgency; incident response providing necessary
mitigation actions, and finally incident closure.

Nowadays, various IT service management systems [45, 48] as-
sist organizations in executing the IMP. Thus, users open tickets to
report detected problems that may lead to incidents, and then the
ticketing system tracks the entire IMP lifecycle. The logged data in
this process is referred to as the incident management process log
(or simply IMP log), and it can be retrieved from these ticketing
systems or manually managed by security operators.

The IMP log is the necessary input to perform the IMP assess-
ment as it represents the actual execution of such a process [55]. In
this scenario, Incident Management Process Assessment is the task
of analyzing and evaluating the implementation of the IMP of an
organization. When performing this task, the assessor typically ex-
amines the IMP log and uses checklists to evaluate various security
requirements, such as process definition, process accountability,
and consistency between organizational plans [28]. Finally, she
estimates each requirement’s compliance level based on predefined
qualitative scales (e.g., compliant, partially compliant, not compli-
ant) and aggregates the results (e.g., average) to assess the overall
IMP. Let us note that this kind of assessment is qualitative and, as
such, does not express quantitative aspects such as, for example,
the cost arising from the bad execution of the IMP.

Incident costs and assessment models. Given the importance
of quantitatively indicating the incident impacts, one key element
concerning the assessment of the IMP revolves around incident
costs. It is not limited to just the financial outlays but encompasses
the effects of not adhering to security standards or the tangible ef-
forts to respond to incidents. The precise interpretation of incident

The benchmark code and results are available at https://github.com/Ale96Pa/
BenchIMP

costs varies depending on the particular purpose of the assessment.
However, the crucial point is that it serves as a measurable quan-
titative incident metric. An assessor is interested in quantifying
such costs to measure the incident impacts and design security
strategies accordingly. Thus, in the rest of the paper, we use the
encompassing term incident cost as a multi-dimensional quantifier
of any cost/impact related to incidents.

While the importance of incident costs to organizational assets
is recognized [35], there is no standard way to assess the cost of
the incidents because of its variability in different contexts. Thus, a
recent trend is the definition of models to evaluate the incident costs
using the IMP log [8, 15, 26, 42, 53], that we refer as IMP assessment
models. Their goal is to support the assessor in computing the
incident costs from the log features through data-driven solutions
to reduce the subjectivity of a purely human evaluation.

3 RELATED WORK

Due to the critical nature of security processes, different solutions
for supporting their execution have gained greater prominence in
recent years. Among them, Varela-Vaca et al. [52] and Bernardi et
al. [11] leverage process mining to provide assessment methodolo-
gies to calibrate and validate the performance scenario of (security)
processes. Similarly, Ganin et al. [23] bridge the gap between risk
assessment and management by combining threat, vulnerability,
and impact metrics to provide a comprehensive assessment, while
Battaglioni et al. [10] propose a probabilistic model to compute the
likelihood of occurrence of a cyber incident. Finally, Angelini et
al. [8] propose a framework to review and assess the cyber risk
assessment by leveraging security ontologies and attack graphs.

All these works underline the importance of supporting the
assessment of security processes. However, they are qualitative,
validated on specific use cases with no publicly available data (e.g.,
financial and hospital infrastructure), or require a great component
of human evaluation of the asset values prior to the assessment,
hindering objective comparison.

Benchmarking approaches in cybersecurity. A typical solution
in the literature consists of designing benchmarks to support the
quantitative evaluation of cybersecurity approaches, as they enable
objective comparability and validation in different contexts. For
example, Dumitras and Shou [20] propose a benchmark for mal-
ware detection approaches, leveraging comprehensive data sources,
including binary and URL reputation, telemetry, email spam, and
malware samples. Similarly, Wang et al. [54] develop a quantitative
assessment of the risks of adopting randomization techniques for
hardening outdated binaries during the binary-rewriting process.
In the field of web security, Tukaram et al. [9] define an inventory
of rules for authentication, encryption, availability, and a set of
recommendations for microservices. Similarly, Oliveira et al. [37]
introduce a benchmark for assessing and comparing the security
of web service frameworks to support their comparison according
to multiple attributes such as memory usage and throughput.
Different benchmarks are also proposed for IoT security, as Al-
makhdhub et al. [5] who introduce a benchmark suite and evalu-
ation framework for IoT security in terms of performance, mem-
ory usage, and energy consumption. Likewise, De Ruck et al. [18]
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present a platform that generates customized Linux-based firmware
benchmarks representative of the manufacturers’ devices.

Finally, other benchmarks are developed for cyber-physical sys-
tems, such as Luna et al. [34], who propose a benchmark for Cloud
Security Level Agreements with respect to user-defined require-
ments, and Amin et al.[7] who introduce a game-theoretic frame-
work to benchmark the risks that arise from reliability failures.

As shown, benchmarking is used in different security domains,
mostly specialized and tailored towards technical approaches (e.g.,
malware detection, IoT), while no solution exists that copes in
a similar way with security processes. This paper presents the
first contribution in this direction, informing the methodology for
creating a benchmark for the IMP from these works.

3.1 Quantitative IMP Assessment

Although no benchmark exists for IMP assessment, some efforts
are present in the literature to evaluate some of its components.
Among them, Alam et al. [3] address the data collection problem by
proposing a framework for incident data based on a deep-learning
solution to label incident categories of the collected data.

Other works focus on incident analysis, as Peng et al. [39] with
an IM framework that integrates heterogeneous data and leverages
data mining to support multi-criteria decision-making for incident
response. Similarly, Piegorsch et al. [40] present an experimental
evaluation of analytic technologies for risk and vulnerability as-
sessment, using a multi-metric approach to evaluate vulnerabilities
based on societal, hazard, and environmental indicators.

Finally, other solutions concentrate on incident modeling, as Jain
et al. [31] that systematically integrates modeling and simulation
tools to address a comprehensive incident response, including dif-
ferent contexts (from healthcare to natural disasters). In addition,
Shaked et al. [46] and Riviera-Ortiz et al. [42] propose two model-
based approaches to designing cyber security incident response
playbooks and support logging procedures, respectively.

Contrary to our proposal, these works mostly address data man-
agement problems rather than security assessment. In fact, they do
not propose solutions that support quantifiable and comparative
analyses; rather, they concentrate on data collection, integration,
and modeling due to their heterogeneous format.

4 BENCHMARK DESIGN

In this section, we describe the proposed approach for benchmark-
ing IMP assessment models. First, we introduce the benchmark
scope, formalizing the requirements that a benchmark should ad-
dress to support the quantitative evaluation of IMPs. We then de-
scribe the design choices and the benchmark components.

4.1 Benchmark Scope and Requirements

To describe the benchmark scope and elicit its requirements, we
present a motivating example.

Motivating example. Let us consider an organization that wants
to get certification from ISO. For this purpose, it has defined its
own assessment model that penalizes more severely the incidents
that are non-compliant with ISO 27035 [27] to evaluate the incident
costs accordingly. The reference process is reported in Fig. 1: it
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Figure 1: Incident Management Process from ISO 27035:2013.

starts with the detection of an incident followed by its activation
(i.e., the opening of a ticket). Then, it is either analyzed internally
or delegated to a third-party company and, based on the analysis,
mitigation actions are put in place to resolve the incident or mark it
as a false alarm. Finally, the incident is notified to all involved users
and closed. Beyond the ISO 27035 process, the assessor has the IMP
log with all the activities, personnel, and resources involved during
the process in the last two years.

An assessor who evaluates the IMP of the organization must con-
sider the IMP log and the developed assessment model, manually
determine if the organization’s model correctly assesses the inci-
dents, and investigate the log (that, as in this case, can be very large).
Although different log analysis tools exist [16], they do not corre-
late the log data to the assessment model. Thus the assessor should
make a great effort to decide whether the assessment model is per-
forming correctly. This task can be cumbersome, time-consuming,
and error-prone because the assessor has no comparable methods
to objectively evaluate the IMP assessment model.

Scope and requirements. Starting from the motivating example,
we identify the benchmark scope as composed of three main use
cases in the context of quantitative IMP assessment. They focus on
the incident cost, as it is one of the main parameters driving the
design of response strategies [43].

1) Evaluation of an IMP assessment model: the IMP assessment
is based on the computation of incident costs, characterizing one
or more features of the incidents. The assessment model used to
assign costs to incidents may vary depending on the context, thus
an assessor must provide an objective evaluation of the model,
possibly compared with state-of-the-art solutions, to choose the
most fitting one.

2) Robustness of the IMP assessment model: the IMP log may
present different mistakes introduced by security operators [47]
or errors coming from automated data collection (e.g., inaccurate
sensors). Thus, the assessor must be supported by a quantitative in-
dication of the robustness of the assessment models in the presence
of errors in the log, where their nature and distribution resemble
realistic scenarios [50].

3) Indication of relevant incident features: the log features play a
central role in the IMP; therefore, the assessment must be supported
by the analysis of their influence on the performance and robustness
of the assessment models. This supports the assessor in designing
mitigation actions accordingly (e.g., if s/he finds that the root cause
of low robustness is the incident priority feature, then a possible
process mitigation is more training in labeling incident priority).

Taking into account these general use cases, we defined a set
of seven fine-grained requirements for the design of a benchmark,
both specific for IMP assessment (R1-R4) and general for any bench-
marking system according to existing guidelines (R5-R7) [21, 30].
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Figure 2: Benchmarking architecture. The necessary input is the IMP log, which is potentially augmented and sampled to
accommodate fairness and scalability settings, respectively. We refer to enriched log as the log extended with the incident costs.
Noise emulates potential errors in the input log to finally evaluate the performance and robustness of IMP assessment models.

R1: Quantifiable IMP assessment: The benchmark must pro-
vide a quantitative validation of the IMP assessment models that
evaluate the incident costs based on IMP log features.

R2: Comparative analysis: The benchmark must provide com-
parative analyses with baseline assessment models.

R3: Performance of assessment models: The benchmark
must be capable of providing suitable metrics that measure the
performance of assessment models.

R4: Robustness of assessment models: The benchmark must
be capable of providing suitable metrics that measure the robustness
of assessment models to potential errors in the input log.

R5: Fairness: The benchmark must provide a fair assessment
for different IMP logs.

R6: Extensibility: The benchmark should be easy to extend and
use with any compatible system and input.

R7: Scalability: The workloads should be scalable to accommo-
date benchmarking with higher workloads to manage (i.e., more
logs or assessment models) or on increasingly powerful hardware.

4.2 Benchmark Architecture

Fig. 2 presents the benchmark architecture with its components.
The only necessary input is an IMP log containing data about the in-
cident activities with their timestamps; additional incident features
may be present and used to calculate the incident costs (e.g., impact,
priority, involved personnel). Let us remark that while different
works leverage technical logs [16, 42], the proposed benchmark
system requires a process log, as the focus is on IMP assessment.
The other input is the IMP assessment model(s) assigning costs
to the incidents according to predefined criteria that may change
depending on the context. While the benchmark mandates only the
presence of the IMP log, it is agnostic on the presence of additional
inputs. In this latter case, the benchmark integrates state-of-the-art
assessment models [19, 33, 36, 43].

4.2.1 IMP Log Augmentation (Fig. 2.A). While in the literature there
are different assessment models for IMP, one of the most critical
challenges in the domain of security processes is the lack of log
data since most of them are usually not shared publicly. To over-
come this limitation, we introduce a log augmentation module that
generates synthetic logs from real ones, considering reasonably re-
alistic constraints to enable comparisons among different scenarios
(addresses R5). The dotted arrows in Fig. 2 indicate that it is an
optional module for cases where the user is not interested in testing

more scenarios or focuses only on her own logs. For example, if an
analyst wants to study the behavior of an assessment model under
conservative assessment, then the actual log can be augmented by
overestimating the incident impacts. It is the case when the impact
is evaluated according to a categorical scale (i.e., low-medium-high)
and the medium impact is overestimated to high [8].

4.2.2 Incident Cost Computation (Fig. 2.B). In the preprocessing
phase, the benchmark calculates the incident costs using state-of-
the-art assessment models (addresses R1, R2) and the additional
ones given in input (addresses R5, R6). Given that incident logs
may be very large, it is possible to configure a sampling mecha-
nism to run the benchmark on a subset of the incidents, making
the approach more scalable in terms of space and time resources
(addresses R7). In Fig. 2, the sampling module is represented with
dotted lines to indicate it is an optional configuration, while by
default the benchmark runs on the whole input log. For example,
let us consider the IMP of the motivating example and the incident
execution of Table 1.

Incident ID Timestamp Activity Operator Impact
INC001 01-02-2016 18:42  detection monitor 7
INCO001 01-02-2016 19:12  activation desk 7
INCo001 01-02-2016 20:01 resolution  assessor 7
INCO001 01-02-2016 20:11 closure desk 7

Table 1: Example of an incident execution.

For the sake of example, let us consider an assessment model that
calculates incident costs based on man-hours, and each operator in
Table 1 works as a single person (i.e., no team). Then, the incident
INCO001 has a cost of 1.48, corresponding to the incident duration.

4.2.3 Noising (Fig. 2.C). The noising phase has the goal of introduc-
ing noise in the input log according to policies emulating realistic
errors during the IMP (addresses R4). For example, a possible noise
policy is decreasing the incident priority to emulate its underesti-
mation from the assessor. According to the existing literature on
log data quality [13, 32], we considered three noising policies:

(i) missing data: it represents the case in which the operator
does not fill the log entries, or the automatic data collection system
crashes or presents incomplete information. From a practical per-
spective, it is obtained by replacing the values of the log features



with null values. In the example of Table 1, missing data may be
emulated with null values for the impact.

(ii) imprecise data: it represents the case in which the data collec-
tion system or the operator inserts a wrong value for a log feature,
but it is still included in the feature domain, making the information
inaccurate. To emulate this error, we replace the values of the log
features with other values that are within the feature domain. The
domain of a feature is the range of values that the feature has in the
original log. In the example of Table 1 and assuming that incident
impact is defined in the range [0,10], the imprecise value could be
another value, different from 7 in the range [0,10].

(iii) incorrect data: it represents the case in which the operator
inserts a wrong value or the data collection system is not reliable.
Thus the error significantly impacts the log quality making the
information incorrect. We emulate it by replacing the value of the
log features with a different one out of the feature domain. In the
example of Table 1 and assuming that incident impact is defined
in the range [0,10], an incorrect incident impact may be a negative
value or a value bigger than 10.

Based on these three noising policies, the noising is configured
according to two parameters: the number of log entries to noise and
the noise magnitude, which is the maximum difference between
the noised data and the original one. For example, a feature f with
value v that becomes dirty with 50% of imprecise noise magnitude
corresponds to assign to f the value v + 50% - v, with the sign
assigned randomly.

4.2.4 Noising Validation (Fig. 2.D). The noising phase may have
different sources of randomness such as the selection of the log
entries to which add noise. For this reason, the benchmark provides
a noising validation module (Fig. 2.D) with a twofold objective.
First, it verifies that the number of dirty entries corresponds to the
noise configuration settings. For example, different types of noise
could affect the same log entry, resulting in fewer dirty entries
with respect to the configured ones. Secondly, it checks that the
introduced noise meets the constraints of the configured magnitude.
For example, a feature might be defined in the domain of values
[0,10] (e.g., incident priority). If an instance of the feature is 10, then
an imprecise noise with a magnitude greater than 10% may result
in a violation of the domain. This means the imprecise data would
become incorrect, thus changing the noising policy.

noise
configuration {,@:} «
noised > Noise Magnitude N
| validation recompute
°9 passed noising

Noise Entries
Validation

Validation

Figure 3: Noising validation component: it validates the noise
entry accuracy and noise magnitude accuracy.

As shown in Fig. 3, the noising validation module takes as inputs
the noise configuration settings (i.e., the number of dirty log entries
and maximum magnitude and the set of features to noise) and the
actual noised log. The output is an indication of the accuracy of
the noising for each policy, based on which the benchmark either

continues with the evaluation or automatically corrects the noising
log to reach the requested level of noise.

More formally, the first step is the validation of the number of
noised entries with respect to the configuration setting. We refer to
noise entry accuracy, accNg, as a measure to validate the number of
noised entries. Let N = {missing, imprecise, incorrect} be the set
of types of noise. Let E,, be the number of log entries with noise
be the number of entries to be noised

of type n € N. Let E¢op fig
according to configuration parameters. Then:
E
aceNp = M (1)
Econfig

Let us note that by definition of the noising module, the following
constraint is always respected: X.,en En < Econfig- Thus, based
on the value of the noise entry accuracy, we define two validation
thresholds (¢, t2) such that:

(i) if &4 < aceygp < 1, the noise is strongly valid because it
respects the configured noise parameter;

(ii) if t2 < accNE < t1, the noise is valid, because a fewer number
of entries than the configured ones are noised (e.g., due to the same
entry noised with different types of noise);

(iii) if accyg < t2, the noise is invalid because the number of

noised entries is too far from the configured one.
If the value of accyE is strongly valid or valid, then the noising
validation is passed (in the second case an operator could look at
detailed results to understand potential causes for the misalign-
ment between the requested noise level and the obtained one);
otherwise, the noising is rejected. In this latter case, the system
performs another noising by detecting the already noised entries
to not overwrite them. This reflects the configured parameters, al-
though losing part of its randomness. The rationale of this choice
is to converge more rapidly by correcting the existing run instead
of launching a new one.

The second validation step has the goal of checking that the
random noise introduced for imprecise data does not overcome
the features’ domain, becoming incorrect data. In the example of
Table 1, if the imprecise noise has magnitude +50%, the impact
becomes 10.5 which is incorrect since it is out of the domain [0,10].
We refer to noise magnitude accuracy, accypy, as a measure of this
validation:

aceny = €actual ) )
€configured

where eacpuqr and econfigured are respectively the number of
actual entries with imprecise data and the configured ones. By
design of the noising module egcrya1 < €configured- As for noise
entry accuracy, accy s indicates the valid, almost valid, and invalid
noise according to the same thresholds. In the case of rejection, the
next iteration of noising reverses the sign of the magnitude of the
entries noised with imprecise data with out-of-domain values. The
rationale for this choice is the greedy convergence of the noised
log to the nosing configuration. In this way, the next imprecise
noised values will fall within the feature domain range. Let us note
that neither the noising nor the noising validation modules should
strictly depend on the log feature values because we do not make
any assumption about the noise source to emulate the presence of
error in the log without bias.



4.2.5 IMP Assessment (Fig. 2.E). This module has the goal of run-
ning each assessment model compared with all the state-of-the-art
models integrated into the system, and considered one by one as
ground truth (GT) to validate the model under analysis. Under the
assumption that different state-of-the-art assessment models cap-
ture different scenarios of incident costs, this module supports the
assessor in understanding the relations between different assess-
ment models. The comparison is measured according to the current
state-of-the-art error metrics for comparing observations:

(i) Mean Absolute Error (MAE) [12], measuring the average
absolute difference between estimated and actual cost values;

(ii) Mean Squared Error (MSE) [12], measuring the average
squared difference between the estimated and actual cost values;

(iii) Median Absolute Deviation (MAD) [44], which measures
the variability of a univariate sample of data.

Considering the example of Table 1, one assessment model can
calculate the costs based on man-hours, resulting in a cost equal
to 1.48. Another assessment model may consider only the impact,
resulting in a cost equal to 7. The above metrics measure the differ-
ence in the distribution between the costs assigned according to the
different cost models (possibly normalized). The benchmark runs
the assessment models both on the original input log (addresses
R2, R3) and the noised one (addresses R2, R4). Let us remark that
further customized assessment models as well as ground truths can
be added to the benchmark at will, making it extensible — i.e., the
process will be repeated for the added models considering added
GTs — (addresses R6).

4.2.6  Evaluation and Analysis (Fig. 2.F). After the IMP assessment
module computed the assessment models and gathered error met-
rics from each of them, these metrics collectively represent the
performance. By performance of an assessment model, we mean its
accuracy in the validation with the ground truths (i.e., state-of-the-
art models), indicating how much its distribution is coherent with
already validated (and thus more trusted) solutions — GT, manually
or automatically obtained — (addresses R3). Given the potential
discrepancy that the error metrics taken may introduce if consid-
ered singularly (e.g., the most accurate model could be different
if considering MSE and MAD), we define a unique measure that
considers all the error metrics to give a comprehensive score for the
performance of the models. Formally, given an assessment model m
evaluated with ground truth g and given T = {MAE, MSE, MAD}
the set of error metrics, then the Multi-Metric Rank (MMR) is:

MMR(m,g) = " ar - (1= 5tmg), 6)
teT

where st m g is the error metric ¢ for the model m with ground
truth g, and a; € [0, 1] is the weight of error ¢ in the multi-metric
rank configurable such that } ;. @; = 1. Finally, the MMR is
normalized with min-max normalization [12] to define a ranking
among the assessment models; a higher MMR corresponds to a
better performance.

As a final evaluation, we compare the assessment models run
with the noised log and the original one to quantify their robustness
(addresses R4). By robustness of an assessment model, we mean
its ability to cope with wrong inputs, keeping the level of perfor-
mance consistent even in the presence of errors in the IMP log.

More specifically, for assessment models to be considered robust,
the error metric resulting from noised input has to be consistent
with the same error metric resulting from original input [56], thus
measuring the performance degradation in relation to wrong input
logs. According to this definition, we evaluate the robustness of an
assessment model m as:

|MAEoriginaI — MAEpoise|

max(MAEoriginal’ MAEnoise) ’

where MAEyyging; and MAEpoise are the MAE error metrics of
model m with original and noised input respectively. The rationale
of the MAE choice among the possible error metrics is that it avoids
mutual cancellation of the positive and negative errors and repre-
sents the distance better than the MSE and MAD. Let us note that
this definition of robustness does not consider log features because
they affect the performance and they are captured by MAE, MSE,
and MAD metrics. In contrast, robustness measures the variability
of the performance.

RB(m) =1-( (4)

5 THE BENCHIMP SYSTEM

In this section, we describe BenchIMP, the system that implements
the proposed benchmarking approach for the quantitative evalu-
ation of IMP assessment. We discuss the system details for each
component of the benchmark architecture (see Fig. 2). All compo-
nents use scientific Python as implementation technology [51].

Input. BenchIMP takes as input one or more IMP logs (in CSV
or XES format) that must contain the incident IDs, activities for
each incident, and their timestamp as minimum requirements. Ad-
ditional log features (i.e., number of employees involved in each
incident, priority, urgency, and impact) may be present for more
comprehensive assessment models. The other input is one or more
IMP assessment models, which are software modules that compute
the cost of each incident based on the IMP log features.

Concerning the logs, BenchIMP has integrated two logs com-
ing from real implementations of the IMP [6, 41]. They are open-
source datasets and, to the best of the authors’ knowledge, are
the only ones freely available. The former is from the UCI ma-
chine learning repository and collects data from the audit system
of the ServiceNow ™ [45] platform used by an IT company?, con-
taining 24918 incidents. The latter is from 4TU ResearchData and
collects data concerning a ticketing IMP of the Help desk of an
Italian software company?, containing 4580 incidents. Both of them
are anonymized for privacy issues and, for each incident, report
descriptive features related to the IMP (i.e., for each incident, its
identifier, the different phases it is composed of, the timestamp,
and the identifier of the people in charge of each phase), incident
classification (i.e., incidents priority, category, and location), and
incident diagnosis (i.e., impacted Service Level Agreement and the
number of times the caller rejected the resolution).

Concerning the assessment models, BenchIMP integrates four of
them to represent the current state-of-the-art of IMP assessment:

M1 [33]: The cost components are based on losses in revenue,
additional expenses, and intangible costs of each incident, and then
related to process metrics (e.g., penalty payments). The cost of an

Zhttps://doi.org/10.24432/C57S4H
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incident is the sum of its additional expenses, that is C = t,44* Padd:
where t,454 and p,44 are the working duration and the number of
people involved in extra-work for solving the incident.

M2 [36]: The cost is estimated with the potential loss due to SLA
violations as a function of the duration of each incident. The loss is
the rate at which it is instantaneously accumulated at any given
instant time, considering the priority of each process. Formally,
Lossk = ZVi\BP,-eBPk 2jwi /terji. ﬁ{c(t + 5f)dt, where Loss is the

cost due to SLA violations.

M3 [19]: The cost is associated with process resources through
the cost of person-hours employed per process instance, thus the
cost is C(T) = 3; t; = p;, where t; and p; are respectively the time
and the number of people involved in the activity i of incident T.

M4 [43]: The cost computation is modeled as a linear regression
problem to define the cost in relation to organization revenue (or
the number of employees), compromised records, concurrency of
incidents, and their impacts.

Log augmentation. Given the potential limitation of running
the benchmark on only two datasets, the log augmentation mod-
ule provides automatic support to generate synthetic realistic IMP
logs. To this aim, BenchIMP leverages the mixup strategy for data
augmentation [49, 57]. It consists of training a neural network on
convex combinations of pairs of examples and their labels, so as to
regularize the neural network to favor linear behavior in-between
training examples. The rationale for this choice is that it presents
improved generalization error compared to other state-of-the-art
techniques for tabular datasets, such as the IMP log. Furthermore,
mixup helps to combat the memorization of corrupt labels, sensi-
tivity to adversarial examples, and instability in adversarial train-
ing [57]. BenchIMP trains the neural network on the features used
by the input assessment models and uses them, one by one, as
prediction labels. In this way, it builds one dataset per incident
feature by augmenting the original logs and potentially re-training
the neural networks with different samples to reach a configurable
minimum number [ of logs (by default [ = 10 in BenchIMP).

Sampling. For the optional sampling of the input logs, BenchIMP
leverages random sampling of the incidents with a configurable
sampling rate. The rationale of the random sampling is due to its
good trade-off between the decrease of computation time and the
accuracy of the represented samples [1]. However, different sam-
pling algorithms may be added and configured. Let us remark that
sampling is not applied by default.

Noising configuration. BenchIMP performs different configu-
rations of noising, progressively varying the number of dirty log
entries and the magnitude of imprecise and incorrect data. We vary
the percentage of noised entries from 0 to 50% of the entire log,
while the magnitude from 0 to 50% for imprecise data and from 100%
to 150% for incorrect data. These values result from the assumption
that considering an incident log with more than 50% of errors is
unrealistic: it would be assumable as randomly choosing its feature
values, for which no guarantees of correctness could be provided.

5.1 The Resulting Benchmark

We run BenchIMP in a Linux server with Intel(R) Xeon(R) Gold
6248 CPU 2.50GHz and 256 GB RAM. It has been used to compute
a publicly available benchmark? that, according to the described
BenchIMP configurations, has the following settings:

o There are [ = 10 IMP logs;

o There are g = 4 assessment models as baseline solutions;

e We select f = 5 log features that are noised, according to
the ones used by the assessment models: incident duration,
activities duration, incident priority, number of employees
involved in the incident, and incident impact. We consider
any combination of them for a total of 2/ combinations.

e There are n = 3 types of noise: missing, imprecise, and

incorrect data, as provided by the benchmarking design (see

Section 4.2). We considered any combination of them (noise

with a single type, noise with any two of the types, and noise

with all three types), for a total of 2" combinations.

We vary the percentage of noised entries of the original IMP

log from 0 to 50% of the total number of log entries, with a

step of 5%, for a total of m = 10 different configurations.

We vary the magnitude of noise from 0 to 50% for imprecise

data, and from 100% to 150% for incorrect data, both with

steps of 5%, for a total of p = 10 different configurations
that, considering all combinations between imprecise and
incorrect data, results in 2P different percentages.

Given any combination of the above parameters, the benchmark
considers [ - g - of con . m . 2P experiments, corresponding to
104,857,600 experiments, for evaluating the performance and ro-
bustness of an assessment model. The benchmark can be used by
several stakeholders, such as researchers and security practitioners,
to quantitatively evaluate IMP assessment models, their perfor-
mance and robustness, and support decisions to implement in their
operational environment (e.g., Security Operation Centers).

6 CASE STUDIES

This section presents two case studies showing how BenchIMP can
be employed with different benefits. To present its capabilities, we
leverage the motivating example of Section 4 that refers to the ISO
27035 process and a real IMP log [6]. The first case study shows how
to evaluate a new assessment model, while the second one shows
how BenchIMP can support the recommendation of assessment
models according to an assessor’s requirements.

6.1 Assessment model evaluation

The persona of the first case study is a security analyst who de-
signed a novel IMP assessment model, and the goal is to evaluate
the new assessment model’s performance and robustness to validate it
with the current state-of-the-art IMP. We considered one of the most
recent assessment models proposed in the literature for the IMP [15]
adjusted to measure the costs of incidents based on compliance
with security standards [2]: it is a real assessment model currently
employed in a compliance assessment system [38]. It leverages
Extra-Trees Regression (ETR) [24], an ensemble technique that cre-
ates different decision trees, in which each node is a given incident

“https://github.com/Ale96Pa/BenchIMP
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Figure 4: Accuracy of the (a) number and (b) magnitude of the noised log entries, and (c) the result after the mitigation.

feature and the tree minimizing the Gini impurity [14] is used to
estimate the incident costs. In the following, we refer to this model
as ETR, and an analyst seeks to evaluate it for potential integration
into her organization.

6.1.1  Performance analysis. The performance evaluation is the first
step for the ETR quantitative assessment. To this aim, the analyst
leverages the multi-metric rank (MMR) as a performance measure,
considering MSE, MAE, and MAD metrics together, as reported
in Fig. 5a. It supports the analyst in having a unique indication
of the performance of the proposed assessment model. Indeed, it
shows that ETR has a median MMR of 0.98, which is a high value
given that it is defined between 0 (bad performance) and 1 (good
performance) as described in Section 4.2.6. It corresponds to the
aggregated measure of the state-of-the-art error metrics against all
the existing assessment models used as ground truths as described
in Section 5. Their analysis is shown in Fig. 5b, where each boxplot
represents the distribution of MAE, MSE, and MAD, respectively. A
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(a) Multi-Metric Rank. (b) Error metrics.
Figure 5: Distribution of the (a) Multi-Metric Rank and (b)
error metrics for the ETR assessment model.

relevant aspect is that the proposed ETR has excellent performance
when considering MSE with a median error of 0.005 and little vari-
ability (small size of the box), while it has higher variability when
considering MAE, although the median value of 0.04 is still low.
This indicates that the ETR model has a good performance when
compared with the state-of-the-art models, and the analyst can
conclude that it is a good model for her organization because it is

coherent with the current assessment models and, at the same time,
customized for the organization’s needs. Without the benchmark,
the analyst requires more effort to have a quantitative indication
of how much the proposed model differs from the existing (and
already validated) ones, which measure extra expenses, resources,
and SLA violations of the IMP. Beyond the good performance of
ETR, the analyst must evaluate its robustness to error in the log.

6.1.2 Noising Validation. The next step is the robustness analy-
sis to determine how much ETR can tolerate potential (human or
machine) errors in the IMP log. Before this, the analyst must first
investigate the correctness of the introduced noise. Fig. 4a reports
the distribution of the noise entry accuracy according to the dif-
ferent benchmark experiments. Although the median is high (i.e.,
median accuracy of 0.99), it is worth noting that more than 25% of
the experiments have an accuracy of 0.85, while 21 experiments
(outliers in the boxplot) can even reach an accuracy lower than
0.65. This results from the random selection of the entries to be
noised and the fact that the same entry can be noised with more
than one type of error for different log features. Similarly, Fig. 4b
shows the distribution of the magnitude accuracy. As expected,
the missing and incorrect noise are 100% accurate because their
magnitude randomness does not affect the features’ domain. On
the contrary, for the imprecise noise, almost 50% of the cases show
an accuracy lower than 0.95, with 25% of them being lower than
0.8 and 48 experiments (outliers in the boxplot of Fig. 4b) reaching
an accuracy of 0.45.

It should be noted that in all the cases, the median accuracy
is 0.99. However, in some scenarios (e.g., critical infrastructures,
budget-constrained scenarios), the presence of outliers with very
low accuracy may not be tolerated for the robustness evaluation.
For this reason, the analyst leverages the correction mechanism em-
ployed in BenchIMP (see Section 4.2.4) to adjust the number of dirty
entries according to the configuration parameters. The resulting
accuracy metrics after the correction are reported in Fig. 4c. After
the second run of the noising procedure, we get 100% of noise entry
accuracy and noise magnitude accuracy because the correction is
deterministic and limits the errors introduced by the randomness.
This shows how the noise management of the framework allows
for fast convergence to the desired noise levels for a generic noise
configuration.



6.1.3  Robustness analysis. Once the introduced noise is properly
validated, the next step is the robustness evaluation of the assess-
ment model. Fig. 6 reports the robustness distribution according
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Figure 6: Robustness analysis according to missing, imprecise,
and incorrect data for ETR assessment model.

to the types of errors analyzed separately, i.e., considering only a
single type of data noise. This analysis makes it noticeable that the
incorrect data noise causes a median robustness degradation of 20%
and a mean degradation of 50%. This is much higher than missing
and imprecise noises, which have a median robustness close to 1.
We may expect this result since imprecise data results in out-of-
domain feature values that lead to excessively low/high incident
costs. This indicates that an important policy is to avoid imprecise
data, and the analyst may implement this policy, for example, by
assigning constraints to the log features during the IMP. However,
cases with only one type of noise in isolation may be unrealistic
and unrepresentative. For this reason, the next analysis considers
the impact of the different types of noise in their combined pres-
ence. Fig. 7 reports the trend of the robustness distribution to the
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Figure 7: Robustness trend on the increasing percentage of
data noise in the presence of missing, incorrect, and impre-
cise noise for the ETR assessment model.

percentage of data noise, including all types of noise. It shows the
robustness degradation of ETR when increasing the amount of noise
in the log, reaching a robustness score of 0.3 in the worst cases. In
particular, there is an evident degradation of the median robustness
when the IMP log is noised for more than 40%. This means that the
proposed assessment model is good only in scenarios where the

analyst can consider the IMP log at least 40% accurate; otherwise,
its estimations may begin to degrade.

To further investigate the robustness and its degradation, the an-
alyst studies the features that mostly impact the assessment model
robustness to refine it eventually. Fig. 8 reports the distribution of
the ETR model robustness according to incident duration, priority,
number of involved employees, impact, and urgency, which are
the log features used by the assessment model. The boxplots indi-
cate that the number of employees feature has the highest impact,
degrading the median robustness to 0.65, while the other features
do not significantly impact it (median values of 0.99). This means
that the number of employees is a critical feature for ETR, and this
indicates to the analyst that a possible improvement of the assess-
ment model may be weighting the features differently (eventually
excluding some of them as being unreliable) to make it more robust.
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Figure 8: Robustness distribution analysis with the presence
of noise for the different IMP log features of the ETR assess-
ment model.

With this last analysis, the analyst can conclude that the ETR
model has very good performance with a median MMR of 0.98 and
high robustness to missing and imprecise errors with median values
of 0.95. However, it can be further improved to better tolerate the
incorrect errors in the IMP log by assigning a lower weight to the
number of employees feature.

6.2 Recommendation of Assessment Models

The persona of the second case study is a security assessor who
wants to adopt an existing assessment model for her IMP, and the
goal is to support the assessor in choosing the assessment model that
best suits her needs by exploiting comparative analysis. For the sake of
this case study, we consider the four assessment models integrated
in BenchIMP. Let us remember that model M1 penalizes the extra
activities in the process, M2 assigns costs to SLA violations, M3
evaluates the expenses of the involved resources, and M4 models
a linear regression solution. As a first step, the assessor compares
the performance of the different assessment models according to
the MMR (Fig. 9).

Looking at Fig. 9, models M1 and M4 present the highest MMR
and also the more stable errors, with most of the values between 0.97
and 0.99. Indeed, a higher MMR indicates that the model presents
fewer errors when compared with all the other ones. In contrast,
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Figure 9: Comparison of the performance of the assessment
models through the Multi-Metric Rank (MMR).

the M3 model shows a great variability of the MMR: this can be
attributed to the fact that the log features used in this model (i.e.,
incident expenses) are heterogeneous values that may not be en-
tirely representative of the process workflow. In addition, model
M2 presents the lowest MMR, indicating that it is more prone to
errors. Thus, from the performance analysis, the best candidates
for the assessor are M1 and M4 models.

The next step of the analysis aims to study the robustness of
the assessment models under analysis, reported in Fig. 10. It shows
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Figure 10: Comparison of the robustness of the assessment
models.

the robustness degradation of all the assessment models when in-
creasing the amount of noise in the log. An interesting aspect is
that model M4 has the worst robustness trend, with degradation
visible already with 10% of noise in the log. In contrast, model M1
has the best robustness, with a high median (equal to 0.9) even in
the case of maximum noise. In addition, most of the degradation
comes after 40%. Thus, the assessor can conclude that the most fit-
ting assessment model for her needs is M1 for its best performance
and robustness. BenchIMP could even be used to instrument an
automatic recommendation system leveraging its data, asking the
assessor to specify acceptable thresholds for performance, robust-
ness, and log features available, in order to recommend the best
assessment models respecting the specified constraints or looking
for sub-optimal solutions.

In summary, these case studies showed how BenchIMP supports
security practitioners and researchers in the quantitative analysis
of the performance and robustness of a newly proposed assessment
model for IMP. It also allows comparability among different models,

supporting the identification of the most appropriate assessment
model to use for an IMP log. Without the proposed benchmark,
the assessor or researcher could have validated the assessment
models only in a specific scenario, requiring much effort to compare
different assessment models.

7 LIMITATIONS AND OPPORTUNITIES

This paper proposed a benchmarking approach, a system that im-
plements it, and the resulting benchmark for IMP assessment. To
the best of the authors’ knowledge, it is the first contribution that
allows for quantitatively evaluating and comparing IMP assessment
models. The case studies showed the benefits of using BenchIMP:
(i) quantitatively and objectively evaluate the performance of an
assessment model; (ii) accurately emulate human and process errors
of the data collection; (iii) quantitatively evaluate the robustness of
the assessment models to errors in the log; (iv) support the decision-
making on the best assessment models based on their performance
and robustness; (v) enable comparability and reproducibility of the
assessment model validation.

In this section, we first report on some of the limitations of the
proposed approach. A current limitation is the BenchIMP exten-
sibility. BenchIMP has been designed to be easily extended with
different input logs, assessment models, and adjustable analytical
parameters. However, to add these elements, the user must down-
load the benchmark code, add the custom components, change the
configuration file, and launch the benchmark. We plan for future
work to provide a more user-friendly solution that supports users on
the incremental extension of the benchmark and its customization.

Another limitation concerns the high computation cost of both
space and time necessary to run all the experiments in the bench-
mark. We mitigated this problem by providing a sampling module
to support incremental computation. Further solutions are currently
being investigated and tested, such as the application of distributed
and parallel computing.

Beyond limitations, the proposed benchmark opens up novel
opportunities for development and research.

Benchmark generality. Although we modeled the benchmark,
the quantitative validation, and the case studies in the context of
IMP, we believe they can be easily generalized to other security
processes by suitably formatting the input log and retrieving the
appropriate assessment models from the literature. The input log
must be an event log, i.e. containing trace IDs, activities, and their
timestamps. Additional features for the traces should be present
to compute their cost (e.g., the resources involved during the pro-
cess). The assessment models must use features of the input log to
compute the costs. For example, in the case of Intrusion Detection
Systems (IDS), the log includes the set of the collected alerts for
each target host. The alerts in the same host can be modeled as
different activities (i.e., different steps of an attack). There exist
different models in the literature to assess detection features that
can be used as state-of-the-art assessment models [4, 55]. Thus, by
leveraging the benchmark, the assessor can determine the perfor-
mance and robustness of these models and use the most appropriate
to evaluate IDSs. In such a case, the introduced noise may emulate



the possible IDS malfunctioning (e.g., crashed, imprecise, or incor-
rect sensors). We foresee efforts from ourselves and other authors
to correctly apply the benchmarking approach to create specific
benchmarks for the other security processes not discussed in this
work.

Benchmark extensibility. According to the general benchmark
system requirements [21, 30], the proposed benchmark is highly
customizable and easy to configure and put into action thanks to
its modularity. Concerning customization, the assessor can use
different features of the input log to model the assessment models.
In particular, they do not necessarily need to be state-of-the-art
models, but even private/third-party ones can be used. This enables
the usage of this benchmark in different public and private contexts
and supports security researchers in validating novel assessment
models for security processes. On the other hand, one can use the
benchmark with default configurations (as presented for BenchIMP),
or s/he can easily configure other benchmark parameters, that are
the number of cores to run the benchmark (for scalability), and
noising parameters, sampling rates, log features used by the models,
and error metrics for the multi-metric analysis.

8 CONCLUSION

This paper presented a first step toward the usage of benchmark-
ing approaches for the quantitative and comparable evaluation of
IMP assessment models. We presented a set of requirements and a
general approach for benchmarking it. This reduces the potential
subjective bias introduced by manual assessment approaches. We
contributed BenchIMP, the first benchmark system performing IMP
assessment, allowing the comparative analysis of state-of-the-art
solutions for the estimation of incident costs and supporting the de-
velopment of new models for this task. Finally, we showed the usage
of BenchIMP in two case studies highlighting the benefits enabled
by our proposal. On the one hand, it supports security researchers
and practitioners in validating newly proposed assessment mod-
els for IMP, as BenchIMP defines how to evaluate performance
and robustness quantitatively. On the other hand, it helps security
assessors and decision-makers select the assessment models that
best support their IMP. For these reasons, BenchIMP is publicly
accessible®.

We plan as future work to develop a platform in which security
practitioners can upload and share the results of their assessment
models used in the benchmark. We also plan to leverage this plat-
form to involve real stakeholders to enhance the usability of the
benchmark and its further extension to foster its adoption.
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