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Abstract

We study a system of charged, noninteracting classical particles moving in a Poisson distri-
bution of hard-disk scatterers in two dimensions, under the effect of a magnetic field perpen-
dicular to the plane. We prove that, in the low-density (Boltzmann-Grad) limit, the particle
distribution evolves according to a generalized linear Boltzmann equation, previously derived
and solved by Bobylev et al. [4, 5, 6]. In this model, Boltzmann’s chaos fails, and the kinetic
equation includes non-Markovian terms. The ideas of [13] can be however adapted to prove
convergence of the process with memory.

Résumé

Nous étudions un système de particules classiques chargées, qui n’interagissent pas, se déplaçant
dans une distribution de Poisson de disques durs en deux dimensions, sous l’effet d’un champ
magnétique perpendiculaire au plan. Nous montrons que, dans la limite de densité faible
(Boltzmann-Grad), la distribution des particules évolue selon une équation de Boltzmann
linéaire généralisée, déjà obtenue et résolue par Bobylev et al. [4, 5, 6]. Dans ce modèle, le
chaos de Boltzmann n’est pas vérifié et l’équation cinétique inclut des termes non markoviens.
Les idées de [13] peuvent cependant être adaptées pour prouver la convergence du processus
avec mémoire.

Keywords: Lorentz gas; magnetic field; generalized Boltzmann equation; low-density limit;
non-Markovian process; memory terms.

1 Introduction

We consider a uniform Poisson distribution of hard disks (scatterers, obstacles) of radius ε > 0
in R2 and denote by c1, c2, · · · ∈ R2 their centers. Given µ > 0, the probability of finding N
obstacles in a bounded measurable set A ⊂ R2 and with positions c1, . . . , cN is

PN,A ( dcN ) = e−µ|A |
µN

N !
dcN , (1.1)

where |A | is the Lebesgue measure of A and cN = (c1, . . . , cN ), dcN = dc1 . . . dcN .
One point particle is moving in the plane and bouncing among the obstacles, which keep

their positions fixed. We refer to the classical Lorentz model for electron conduction in a
random array of ions [17]. This model has a long history both in the physics and in the
mathematical literature, see e.g. [15, 9, 25, 26]. In particular, it was considered by Gallavotti
to give the first rigorous proof of the Boltzmann limit conjecture, as formulated by Grad
[13, 14]; see [24, 18, 3, 10, 1, 23, 19] for related results and subsequent developments. These
works focus on the low-density (Grad) regime in which the intensity µ in Eq. (1.1) is rescaled
as

µε = ε−1µ
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and ε→ 0+. We will denote below by Pε,Eε the corresponding rescaled probability measure
and expectation.

In the present paper the particle moves, between one collision and the next, under the
action of a uniform, constant, magnetic field orthogonal to the plane. It is therefore subject to
a force F (v) = −Bv⊥ where B > 0 is the magnitude of the magnetic field and v⊥ = (v2,−v1),
being v = (v1, v2) the velocity of the particle. To simplify notation, we set µ = 1 and assume
that the particle has charge q = −1, mass m = 1 as well as velocity of modulus |v| = 1.
At contact with an obstacle, the particle is reflected elastically. Between two consecutive
scatterers it moves counterclockwise with constant angular velocity Ω = −qB/m = B and
performs an arc of circle of Larmor radius R = |v|/B = 1/B (see Figure 6). The cyclotron
period is T = 2π/Ω = 2π/B. For slight modifications of this model, a Markovian equation
has been derived rigorously in [20].

Figure 1: Lorentz gas with magnetic field

At finite densities, the transverse magnetic field produces a rich phenomenology due to the
formation of traps consisting of Larmor orbits or clusters of scatterers ([16]). Moreover, the
magnetic field affects the derivation of the Boltzmann equation in the limit of Grad. Indeed,
Bobylev et al. have shown that both closed orbits and a certain class of recollisions are not
negligible in this limit.

The following simple computation turns out to provide a good heuristic argument. Con-
sider the probability of performing a complete cyclotron orbit starting from a given position
and velocity (x, v) ∈ R2 × S1 (where S1 is the unit circle) without ever hitting any obstacle
(circling particle). One easily gets

Pε({C }) = e−µε|Aε(R)| = e−4πR = e−2T (1.2)

where C is the event such that zero obstacles appear in the annulus Aε(R) of radii (R−ε,R+ε).
Namely in the limit ε→ 0, there is a non vanishing probability for the particle to be a circling
particle, simply due to the fact that the mean free path in the low-density regime is finite.
Clearly this event is not described by the standard Boltzmann equation. More interestingly
we will see that, with high probability, if there is one collision with an obstacle, there will
follow infinitely many collisions with new obstacles. But the same computation as in (1.2)
shows that, after a collision, there is a finite probability of returning to a scatterer, via a
cyclotron orbit, for additional encounter (recollision). A non-Markovian structure is therefore
not surprising, and the Boltzmann chaos breaks down as the absence of correlations prior to
a collision fails.

In order to take into account these effects, a linear kinetic evolution equation with memory,
called generalized Boltzmann equation, has been derived and studied in [4, 5, 6]. In the case
of hard disks, it reads

Dtf
G(t, x, v) =

[t/T ]∑
k=0

e−2kT

∫
S1

dn (v · n)+ [σn − 1] fG(t− kT, S(k)
n (x, v)) , t > 0 . (1.3)
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Here
Dt := (∂t + v · ∇x − (v ×B) · ∇v)

is the generator of the free cyclotron motion with frequency Ω = B and [t/T ] is the number of
cyclotron periods T completed before time t > 0, being [x] the integer part of x. The symbol
(·)+ denotes the positive part, and n ∈ S1 is the scattering vector (see Figure 2). In the gain
term the operator σn is defined by

σnφ(x, v) = φ(Sn(x, v))

for arbitrary functions φ, with the scattering map Sn given by

Sn(x, v) := (x, v′) ≡ (x, v − 2(v · n)n) . (1.4)

The precollisional velocity v′ = v−2(v ·n)n becomes v after the elastic collision with the hard
disk. Note that v′ · n ≤ 0. In the loss term, v is precollisional with respect to −n. Finally,
S

(k)
n (x, v) := (x,Rkθ(v)), having denoted by Rα the α-rotation

Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)
, (1.5)

and by θ the scattering angle formed by v−2(v·n)n with respect to v. In particular, S
(1)
n = Sn.

Figure 2: Scattering

Only for t < T , the unknown fG should be interpreted as the probability density f =
f(t, x, v) of finding a test particle at time t in position x with velocity v. In fact, it is natural
to split the total distribution function f into two parts, f = fC+fW , corresponding to circling
particles and wandering particles respectively. The particle is trapped in a free cyclotron orbit
of period T with probability e−2T (circling particle). With probability 1−e−2T , it collides with
some obstacle before time T , and in that case it will collide with arbitrarily many different
obstacles as predicted by (1.3) (wandering particle). We therefore have

fG(t, x, v) =

{
f(t, x, v) = fC(t, x, v) + fW (t, x, v) if 0 < t < T
fW (t, x, v) if t > T

.

While
∫

R2×S1 f(t) = 1 for all times, one has that∫
R2×S1

fG(t) =

{
1 if 0 < t < T
1− e−2T if t > T

. (1.6)

This renormalization condition has to be used in order to solve Eq. (1.3) properly, as we will
do in Section 3 below.

The generalized Boltzmann equation is the forward equation of a process in which recolli-
sions with a given scatterer (i.e. returns to the same collision point) happen with probability
1; but only if no other scatterer has been hit in the meantime. The admissible recollisions in
the limiting process are therefore chains of subsequent self-recollisions, i.e. subsequent colli-
sions with the same obstacle, in which the scattering angle keeps always the same value (see
Def. 2.4 and Fig. 4 below). The sum over k in (1.3) takes into account the number of such
possible recollisions, each one weighted by a factor e−2T (cf. (1.2)).
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Despite the fact that memory terms appear in the equation, the low-density limit signifi-
cantly simplifies the phenomenology, as explained in [4]. The test particle is either a circling
particle or a wandering particle, and it cannot be trapped in clusters of a finite number of
scatterers.

In this paper we address the question whether the generalized Boltzmann Eq. (1.3) can
be derived rigorously. Our aim is to provide an affirmative answer. We shall actually prove
convergence of the particle process to the linear process governed by Eq. (1.3).

We denote by γtcN ,ε(x, v), t ∈ R the Hamiltonian flow, solution to the Newton equations
for a particle with initial configuration (x, v), in a given sample cN of obstacles of radius
ε (cf. the formal definition (2.2)-(2.3) below). For a given initial datum f0 = f0(x, v), the
particle distribution function at time t > 0 is

fε(t, x, v) := Eε[f0(γ−tcN ,ε(x, v))1{mini |x−ci|>ε}] . (1.7)

Furthermore for t > 0, we denote the path space of the particle in [0, t] by

Πt =
⋃
m≥0

Πt,m , (1.8)

where Πt,0 is the circling-path space (see Eq. (1.2)) and, for m ≥ 1, the m−obstacle path
space is defined by

Πt,m :=
{

(t1, n1, · · · , tm, nm)
∣∣ 0 ≤ t1 ≤ · · · ≤ tm ≤ t , ni ∈ S1} . (1.9)

The collection (t1, n1, · · · , tm, nm) provides the ingredients to describe the process, namely:
the impact times with new obstacles encountered by a particle starting from (x0, v0) at time
zero, and the scattering vectors at the moment of the encounter (cf. Definition 2.3 below).

The path measure on Πt induced by the probability Pε, conditioned to the initial config-
uration (x0, v0) ∈ R2 × S1 (|ci − x0| ≥ ε ∀i), will be indicated by P

(x0,v0)
ε,t . To fulfil (1.6), we

cutoff circling particles after the first Larmor period, i.e. we set P
(x0,v0)
ε,t (Πt,0) = 0 for t > T .

We shall fix (x0, v0) from now on, and refer to the random trajectory (ζε(s))s∈[0,t] starting
from (x0, v0) as the Lorentz process (cf. Definition 2.1 below).

Since ζε has jumps in velocity, we work in the path space D
(
[0, t],R2 × S1

)
of piecewise

continuous functions equipped with the Skorokhod topology (see [2]). Let (ζ(s))s∈[0,t] be the

generalized Boltzmann process inD
(
[0, t],R2 × S1

)
with forward equation (1.3)-(1.6), starting

from (x0, v0) (cf. Definition 3.3 below). Informally, this Boltzmann process is described as
follows. Pick a point in Πt (say, t > T ). If m = 0, the particle is trapped on a Larmor orbit.
Otherwise if m ≥ 1, then necessarily t1 ≤ T and at time t1 a Boltzmann-type collision occurs
with scattering vector n1 and scattering angle θ1. From that time on, new Boltzmann-type
collisions will occur at times t2, t3 · · · with scattering determined by n2, n3 · · · . In between
these collisions, the process will keep moving on Larmor orbits, coming back to the ith collision
point [|ti+1 − ti|/T ] times. Each of such revisits is a self-recollision, leading to a scattering of
the same angle θi, and making the particle jump to a correspondingly rotated orbit (see also
Figure 6 below).

Our main result states the convergence of the Lorentz process to the generalized Boltzmann
process in the annealed setting, i.e. averaging over the random (Poisson) placement of the
scatterers.

Theorem 1.1 For all t > 0, we have that

lim
ε→0
{s→ ζε(s)}s∈[0,t] = {s→ ζ(s)}s∈[0,t] (1.10)

in the sense of weak convergence of path measures on D
(
[0, t],R2 × S1

)
.

For any probability density f0 ∈ C(R2×S1), the particle density distribution fε(t) defined
in (1.7) satisfies

lim
ε→0
‖fε(t)− f(t)‖L1(R2×S1) = 0 , (1.11)

where f is the unique mild solution to (1.3)-(1.6) in C(R2 × S1) with initial datum f0.
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Our purpose is to present a simple argument. To this end:
(i) We have considered only scatterer configurations which interact with the particle as hard
disks. The method works as well for more general short range potentials, however additional
difficulties arise from a strictly positive (for ε > 0) scattering time and from singularities in
the differential cross-section. Notice that, for smooth potentials, the differential cross section
depends also on B as soon as ε > 0.
(ii) Theorem 1.1 is stated without any explicit rate of convergence. We leave an analysis of
the corrections to future work.
(iii) A more general class of scatterer distributions, not necessarily Poisson, could be discussed
as we do in this paper, with minor changes. We refer to [25] for the required assumptions.

The proof of Theorem 1.1 is based on an extension of the arguments in [13, 14]. The
basic ingredient is a suitable parametrization in terms of impact times and impact vectors,
coupling the Lorentz process with the limiting process. The main difference here is that we
need to deal with memory terms which do not vanish in the limit and that are characterized
geometrically in terms of self-recolliding trajectories. We therefore need additional care in the
coupling process and in its link with the formula (1.3).

We conclude the introduction by recalling that, in the case of periodic (deterministic)
configurations of scatterers, the validity of the Boltzmann equation in the limit of Grad is
known to fail [7, 8, 22, 21]. The model considered in this paper is an instance of the fact
that the background randomness may be not enough to ensure a Markov property, and that
an external force field can strongly affect the asymptotic behaviour. Other examples of this
feature have been studied in [11, 12].

Finally, as a word of warning concerning the “non-Markovian” effects we are referring to
(a terminology that we inherit from [4, 5, 6]), we wish to stress that an underlying Markovian
process still exists, given by the sequence of path segments between different encountered
obstacles. Our method exploits this fact by working on the path space Πt parametrizing
“fresh” collisions. The proposed Lorentz model can be therefore regarded as a simple way to
add memory (of unbounded order) on top of this Markovian structure. As further noticed in
[5], it is possible to recover an analogous result by considering the classical random Lorentz
Gas (without magnetic field) on the S2 sphere.

The paper is organized as follows: Section 2 contains a preliminary description of the
mechanical process; the generalized Boltzmann process governed by Eq. (1.3) is studied in
Section 3; Section 4 is devoted to the proof of Theorem 1.1.

2 The Lorentz process

The particle motion takes place along cyclotron (circular) orbits and collisions make the
particle pass from one orbit to the next. That is, as a result of the particle colliding, the
center of the cyclotron orbit jumps to a different position.

Consider for instance the case of three subsequent collisions with the same obstacle: see
Figure 3. Let the initial cyclotron orbit be the one labelled by 1. In the first encounter with
the hard disk, the particle is scattered over an angle θ and switches to the cyclotron orbit
labelled by 2. From the symmetry of the event it is clear that the cyclotron orbit 2 has its
center at the same distance ∆ε from the center of the scatterer as the orbit 1. Consequently,
the orbit 2 intersects the scatterer in precisely the same way as the orbit 1, only rotated by
an angle 2βε along the circumference of the disk (see Definition 2.5 below).

As observed in [5], with probability 1, during a long sequence of self-recollisions, the orbits
will densely fill a ring shaped area around the scatterer with outer radius ∆ε +R. Moreover,
in the Boltzmann-Grad limit an important simplification arises: on the length scale set by the
size of the scatterer, the cyclotron orbits degenerate into a straight line, and the accumulated
scattering angle after k self-recollisions equals exactly (k + 1)θ.

We turn now to a more formal description.

Definition 2.1 (Lorentz process) Given ε > 0, (x0, v0) ∈ R2 × S1 and a random config-
uration of scatterers cN such that mini |ci − x0| ≥ ε, the Lorentz process t → ζε(t) starting
from (x0, v0) is given by

ζε(t) ≡ (ξε(t), ηε(t)) = γtcN ,ε(x0, v0) , t ∈ R , (2.1)
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Figure 3: A trajectory with one collision and two self-recollisions

where γtcN ,ε is defined almost surely on

ΛεcN := {(x, v) ∈ R2 × S1 | min
i
|x− ci| > ε}

by 
ξ̇ε(t) = ηε(t)

η̇ε(t) = −B (ηε(t))⊥

(ξε(0), ηε(0)) = (x0, v0)

, (2.2)

with the boundary conditions on ∂ΛεcN :

ηε −→ (ηε)′ = ηε − 2

(
ηε ·

(
ξε − ci
ε

))
ξε − ci
ε

if |ξε − ci| = ε . (2.3)

The case N = 0 corresponds to the collisionless flow (ξε(t), ηε(t)) = γt∅,ε(x0, v0) ≡ γt0(x0, v0)

defined by (2.2) over R2 × S1 with no boundary conditions.

Notice that, with probability zero, the particle can hit two obstacles simultaneously: in which
case the process is ill-defined. Otherwise, (2.3) is an involution from ∂Λε−ci to ∂Λε+ci where

∂Λε±ci := {(x, v) ∈ ∂Λεci | ± v · (x− ci) ≥ 0} .

The so defined process moves on a (possibly finite, possibly infinite) sequence of Larmor orbits
of radius R = 1/B.

Almost surely, each trajectory in [0, t] is in one-to-one correspondence with a finite collec-
tion of impact times and vectors, which we introduce next. We first single out the obstacles
responsible for collisions.

Definition 2.2 (Internal and external obstacle) An obstacle is internal if its center ci
is such that

inf
t≥0
|ξε(t)− ci| = ε,

while it is external if
inf
t≥0
|ξε(t)− ci| > ε .

Definition 2.3 (Impact time and impact vector) The impact time of an internal obsta-
cle with center ci is defined as

ti := sup

{
τ > 0

∣∣∣ inf
0≤t≤τ

|ξε(t)− ci| > ε

}
.
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The impact vector of an internal obstacle with center ci is defined as

ni :=
ξε(ti)− ci

ε
∈ S1 .

We say that internal obstacles are ordered if 0 < t1 < t2 · · · .

The phenomenon preventing molecular chaos, namely the statistical independence in the
limit, are the so-called recollisions, defined as follows.

Definition 2.4 (Recollision) Collisions occurring at times different from impact times are
called recollisions. A recollision with a scatterer labelled by i at time τ is a self-recollision if
the last scattered obstacle before τ is i itself.

Figure 4: Self-recollision: if no new obstacle is encountered in a Larmor period T , then the
trajectory recollides with the last scattered obstacle.

As mentioned above, we will prove that self-recollisions are not negligible in the limit
ε→ 0. It is therefore important to track this class of recollisions precisely. The following map
describes the jumps in position and velocity, leading to a self-recollision.

Definition 2.5 (Self-recollision map) Let ci ∈ R2 be the center of an internal scatterer.
The self-recollision map is the ε-dependent map Sε : ∂Λε−ci → ∂Λε−ci defined by (cf. (1.5))

Sε(ci + ε ni, v) :=
(
ci + εR2βε

i
(ni) , Rθεi (v)

)
, ni ∈ S1 , v · ni ≤ 0

where:
(i) βεi > 0 is given by

cosβεi =
(∆ε

i )
2 −R2 + ε2

2∆ε
i ε

,

with ∆ε
i := |q − ci| ∈ [R − ε,R + ε] where q is the center of the Larmor orbit spanned by a

particle in (ci + εni, v);
(ii) θεi ∈ (−π, π] is given by

θεi = θi − 2αεi

with θi the scattering angle of the collision in (ci + εni, v) (formed by v − 2(v · ni)ni with
respect to v) and

sinαεi =
ε

R
sinβεi .

See Figure 3 and Figure 5 for the main ingredients appearing in the above definition. Observe
that

Rθεi (v) ·R2βε
i

(ni) = v · ni ≤ 0 ,

hence the map Sε leads to a further collision with the obstacle, with scattering angle θi.

7



Figure 5: Geometry of a self-recollision.

Since θεi → θi as ε tends to 0 and the scatterer degenerates into a point, the self-recollision
map converges to the standard scattering map with unchanged position (cf. Eq. (1.4)):

lim
ε→0

Sε(ci + ε ni, v) = Sni(ci, v) .

Actually since θεi = θi +O(ε), one has that

Sε(ci + ε ni, v) = Sni(ci, v) +O(ε) . (2.4)

Further details on this map and a discussion in the (more complicated) case of smooth inter-
actions can be found in [20].

In a pictorial language, we can say that a self-recollision process around an obstacle has
a trajectory spanning a daisy shape around it. Each self-recollision corresponds to one daisy
petal.

Definition 2.6 (Daisy) Let ζε(t) be a Lorentz process with ordered internal obstacles cen-
tered in c1, c2, · · · . A daisy around the internal obstacle labelled by i is the region

Dε
i :=

{
x ∈ R2

∣∣∣ inf
s∈(0,ti+1−ti)

|x− γsci,ε (ζε(ti)) | < ε , min
j=i,i+1

|x− cj | > ε
}
.

The stem of the first daisy is

Dε
0 :=

{
x ∈ R2

∣∣∣ inf
s∈(0,t1)

|x− γs0,ε ((x0, v0)) | < ε , |x− c1| > ε
}
.

Note that in the definition of Dε
i we used the 1-obstacle flow γci,ε instead of (2.1), to describe

the trajectory in (ti, ti+1). This means that we are disregarding recollisions with different
obstacles which might be present in the Lorentz process and deviate the trajectory from the
daisy. We will however prove in Section 4 that these recollisions have vanishing probability
as ε→ 0.

3 The generalized Boltzmann process

Our purpose in this section is to solve the generalized Boltzmann equation (1.3)-(1.6), intro-

duced in [4], and find an explicit formula for the path measure P
(x0,v0)
t of the corresponding

process. In particular, we search for a solution representation which can be coupled effectively
with the Hamiltonian flow. This requires a discussion on the memory terms.

The main result of this section is Proposition 3.2 below. Before stating the result, we need
new notations to describe the limiting trajectories. These are collected in the next definition.
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We denote here by (ξ0(s), η0(s))s∈R =
(
γ−t0+s

0 (x, v)
)
s∈R

the collisionless flow with starting

configuration (x, v) ∈ R2 × S1 at time t0 ∈ R, defined on R2 × S1 and for any t0 ∈ R as the
solution of the following system of ODEs

ξ̇0(s) = η0(s)

η̇0(s) = −B (η0(s))⊥

(ξ0(t0), η0(t0)) = (x, v)

. (3.1)

In order to solve the Boltzmann equation we only need a backward flow, however we shall
define both a backward and a forward flow, for future convenience.

Figure 6: Generalized (forward) Boltzmann flow; m = 5, k4 = 3, ki = 0 for i 6= 4. The
self-recollision orbits are ordered as in Figure 3.

Definition 3.1 (Boltzmann flow) A generalized Boltzmann flow ζm(s) in D
(
R,R2 × S1

)
with starting configuration (x, v) ∈ R2×S1 at time t0 ∈ R, and m ∈ N obstacles (or collisions,
modulo possible self-recollisions), is

ζm(s) ≡ (ξm(s), ηm(s)) = γ−t0+s
m (x, v) , s ∈ R , (3.2)

where γ−t0+s
m is constructed as follows.

For all m, γ0
m(x, v) = (x, v). The flow γ−t0+s

0 is already defined by (3.1). The flows
γ−t0+s
m (x, v), m ≥ 1, are defined iteratively.

1 Choose t1 such that 0 ≤ t1 − t0 ≤ T if s > t0, and 0 ≤ t0 − t1 ≤ T if s < t0. Apply γ0

to the configuration (x, v), up to the time t1 (forward Larmor orbit if s > t0, backward
Larmor orbit if s < t0): this defines ζm(s) = (ξm(s), ηm(s)) for s from t0 up to t1.

2 Start with the configuration obtained in the previous step (i ≥ 1). This configuration is
ζm(t−i ) if s > t0, or ζm(t+i ) if s < t0. Choose ni ∈ S1 such that ni ·ηm(t−i ) ≤ 0 if s > t0,
or ni · ηm(t+i ) ≥ 0 if s < t0. Apply the scattering map Sni , which rotates the velocity of
an angle θi: this defines a configuration ζm(t+i ) if s > t0, or ζm(t−i ) if s < t0, which is
the starting point for the following step.

3 Choose ti+1 such that (ti+1 − ti)(s− t0) ≥ 0. Set

ki := [|ti+1 − ti|/T ] . (3.3)

Apply γ0 until the first Larmor orbit is completed (at time ti +T or ti−T , for s > t0 or
s < t0 respectively), then rotate the velocity of an angle θi: repeat this step for ki times
up to time ti±kiT . This describes ki Larmor orbits rotated of the same scattering angle
around the point ξm(ti) (self-recollisions of the Boltzmann flow).

4 Apply γ0 from the time ti ± kiT up to the time ti+1. Return to item 2.
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If the condition on the sign of ni · ηm(t−i ) is not respected, we extend the above definition by
setting θi = 0.

Note that the generalized Boltzmann flow with m obstacles restricted to [0, t] is everywhere
defined on Πt,m, for all t (cf. (1.9)).

Let χ(A) denote the characteristic function of the set A, and a ∧ b = min(a, b).

Proposition 3.2 Let fC be the density of circling particles

fC(t, x, v) := e−2t∧T f0(γ−t∧T0 (x, v))

where we use Eq. (3.1) in the case t0 = t. Furthermore define

fG(t, x, v) := χ({t < T}) fC(t, x, v)

+ e−2t

∫ t

(t−T )∧0

dt1

∫
S1

dn1

∑
m≥1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm

∫
(S1)m−1

dn2 · · · dnm

·

[
m∏
i=1

(
ni · ηm(t+i )

)
+

]
f0(γ−tm (x, v)) ,

(3.4)

where we set tm+1 = 0 in the definition of γm (Def. 3.1). Then, fG is the unique mild solution
to (1.3)-(1.6) in C(R2 × S1) with initial datum f0.

Eq. (3.4) provides an explicit solution. As required, the solution coincides with the solution
of the true Boltzmann equation with magnetic field only for t < T : it is in this case identical
to the formula obtained in [13], except for the fact that straight line trajectories are replaced
by arcs of Larmor orbits. For t > T , the non-Markovian character arises, and self-recollisions
are possible as described in item 3 in Definition 3.1.

Note that, exactly as in [13], Eq. (3.4) has a simple probabilistic interpretation as integral
over paths. The right hand side of the first line describes the circling particles, while the second
and third lines describe the wandering particles. Once the particle hits the first obstacle, it
will be wandering forever: the subsequent obstacles can be encountered at arbitrary times.
For this reason, there is no constraint (apart from the order) in the integrals over t2, · · · , tm.
For further analysis of the solution we refer to [4, 5, 6].

Proof of Proposition 3.2. We start by rewriting Eq. (1.3) as follows:

∂tf
G(t, x, v) =

(
− v · ∇x + (v ×B) · ∇v − 2

)
fG(t, x, v)

+

∫
S1

dn (n · v)+ f
G(t, Sn(x, v))

+
∑
k≥1

χ ({t− kT ≥ 0}) e−2kT

∫
S1

dn (n · v)+

·
{
fG(t− kT, S(k+1)

n (x, v))− fG(t− kT, S(k)
n (x, v))

}
.

Imposing (1.6), we write the Duhamel formula for 0 < t < T (standard Boltzmann equation)
and then for t > T (Boltzmann equation with memory) with the new initial data

fG(T+, x, v) := fG(T−, x, v)− fC(T, x, v)

where the notation T+, T− in the argument indicates that the limit t→ T is taken from the
future, past, respectively. For all positive t 6= T :

fG(t, x, v) = χ({t < T})e−2tf0(γ−t0 (x, v))

+

∫ t

0

ds

∫
dn (n · η0(s))+ e

−2(t−s)fG(s, Snγ
−t+s
0 (x, v))

+
∑
k≥1

∫ t

kT∧t
ds e−2(t−(s−kT ))

∫
dn (n · η0(s))+

·
{
fG(s− kT, S(k+1)

n γ−t+s0 (x, v))− fG(s− kT, S(k)
n γ−t+s0 (x, v))

}
.

10



Here and afterwards we use the shortened notation
∫

=
∫
S1 .

The latter equation contains negative terms but, with the help of simple changes of vari-
ables, we can rewrite it as a sum of positive contributions:

fG(t, x, v) = χ({t < T}) e−2t f0(γ−t0 (x, v))

+

∫ t

0

ds

∫
dn (n · η0(s))+ e

−2(t−s)fG(s, Snγ
−t+s
0 (x, v))

+

[t/T ]∑
k=1

∫ t−kT

0

ds e−2(t−s)
∫
dn (n · η0(s))+{

fG(s, S(k+1)
n γ−t+s0 (x, v))− fG(s, S(k)

n γ−t+s0 (x, v))
}

= χ({t < T}) e−2t f0(γ−t0 (x, v))

+

∫ t

(t−T )∧0

ds

∫
dn (n · η0(s))+ e

−2(t−s)fG(s, Snγ
−t+s
0 (x, v))

+

∫ (t−T )∧0

0

ds e−2(t−s)
∫
dn (n · η0(s))+ f

G(s, S(2)
n γ−t+s0 (x, v))

+

[t/T ]∑
k=2

∫ t−kT

0

ds e−2(t−s)
∫
dn (n · η0(s))+{

fG(s, S(k+1)
n γ−t+s0 (x, v))− fG(s, S(k)

n γ−t+s0 (x, v))
}

= χ({t < T}) e−2t f0(γ−t0 (x, v))

+

∫ t

(t−T )∧0

ds

∫
dn (n · η0(s))+ e

−2(t−s)fG(s, Snγ
−t+s
0 (x, v))

+

∫ (t−T )∧0

(t−2T )∧0

ds e−2(t−s)
∫
dn (n · η0(s))+ f

G(s, S(2)
n γ−t+s0 (x, v)) +

∫ (t−2T )∧0

(t−3T )∧0

· · · .

Equivalently, using that γ−t+s0 = γ−t+s−kT0 for all k ∈ N and that S
(k1+1)
n1 γ−t+t10 (x, v) =

γ−t+t1−k1T1 (x, v) (cf. Definition 3.1),

fG(t, x, v) = χ({t < T}) e−2t f0(γ−t0 (x, v))

+

∫ t

(t−T )∧0

dt1

∫
dn1

(
n1 · η0(t+1 )

)
+
e−2(t−t1)

[t/T ]∑
k1=0

e−2k1T fG(t1 − k1T, γ
−t+t1−k1T
1 (x, v)) .

(3.5)

Notice that, in the backward flow appearing in the last line, the first collision takes place at
t1 ∈ (t − T, t), with rotation of the velocity of an angle θ1 determined by n1; and after that
collision (going backward) the trajectory performs a sequence of k1 Larmor orbits, each one
followed by a self-recollision with the same rotation θ1.

It is now enough to iterate Eq. (3.5).
In the first iteration, for any t1, n1, k1 appearing in (3.5) we write

fG(t1 − k1T, γ
−t+t1−k1T
1 (x, v))

= χ({t1 − k1T < T}) e−2(t1−k1T ) f0(γ−t1+k1T
0 γ−t+t1−k1T1 (x, v))

+

∫ t1−k1T

(t1−(k1+1)T )∧0

dt2 · · · . (3.6)

Note that the constraint

χ({0 < t1 − k1T < T})χ({(t− T ) ∧ 0 < t1 < t}) 6= 0

implies that either k1 = [t/T ]− 1 or k1 = [t/T ]. Hence, when replaced into (3.5), the term in
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the second line of (3.6) produces a contribution∫ t

(t−T )∧0

dt1

∫
dn1

(
n1 · η0(t+1 )

)
+
e−2t

·
[t/T ]∑
k1=0

χ({0 < t1 − k1T < T})f0(γ−t1+k1T
0 γ−t+t1−k1T1 (x, v))

= e−2t

∫ t

(t−T )∧0

dt1

∫
dn1

(
n1 · η0(t+1 )

)
+
f0(γ−t1 (x, v)) ,

where γ−t1 is the backward flow with first collision specified by (t1, n1), and with [t/T ]− 1 or
[t/T ] self-recollisions.

Using the Boltzmann backward flow from t0 = t up to time zero and with m = 0, 1, 2, the
first iteration of Eq. (3.5) can be written as follows:

fG(t, x, v) = χ({t < T}) e−2t f0(γ−t0 (x, v))

+ e−2t

∫ t

(t−T )∧0

dt1

∫
dn1

(
n1 · η1(t+1 )

)
+
f0(γ−t1 (x, v))

+

∫ t

(t−T )∧0

dt1

∫
dn1

(
n1 · η1(t+1 )

)
+
e−2(t−t1)

[t/T ]∑
k1=0

e−2k1T

·
∫ t1−k1T

(t1−(k1+1)T )∧0

dt2

∫
dn2

(
n2 · η2(t+2 )

)
+
e−2(t1−k1T−t2)

[(t1−k1T )/T ]∑
k2=0

e−2k2T

· fG(t2 − k2T, γ
−t+t2−k2T
2 (x, v)) .

Similarly, after the second iteration the sum over k2 produces at most two non-zero terms
and the sum over k1 can be performed:

[t/T ]∑
k1=0

∫ t1−k1T

(t1−(k1+1)T )∧0

dt2 (· · · ) =

∫ t1

0

dt2 (· · · ) ,

which eliminates the constraints on t2.
The final formula is obtained after infinitely many iterations, thus concluding the proof.

�

We conclude by constructing the Boltzmann process. We indicate by σ (Πt) the Borel
σ-field on Πt (cf. (1.8)-(1.9)). For any A ∈ σ (Πt), we denote by Am the restriction of A to
Πt,m.

Definition 3.3 (Boltzmann process) Given (x0, v0) ∈ R2×S1, the generalized Boltzmann
process t→ ζ(t) starting from (x0, v0) is the jump process in D

(
[0, t],R2 × S1

)
defined by the

path measure

P
(x0,v0)
t (A) = e−2tχ({t < T}) δA0,Πt,0 + e−2t

∑
m≥1

∫
Am

χ({t1 < T})

[
m∏
i=1

(
ni · ηm(t−i )

)
−

]
,

(3.7)

A ∈ σ (Πt), where the (forward) Boltzmann flow (3.2) in [0, t] is computed with t0 = 0,
(x, v) = (x0, v0) and tm+1 = t. We shall say that the “obstacles” 1, 2, · · · ,m of the Boltzmann
process are placed in ξm(t1), · · · , ξm(tm).

It remains to make the link with Eq. (3.4), which is expressed in terms of the backward
(adjoint) flow. To do that, we write

fG(t, x, v) =

∫
R2×S1

dx′dv′δ
(
(x′, v′)− (x, v)

)
fG(t, x′, v′) ,
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insert (3.4) into the right hand side, and perform the change of variables:(
x′, v′, t1, n1, · · · , tm, nm

)
→ (ξm(0), ηm(0), t1 − k1T,Rk1θ1(n1), · · · , tm − kmT,Rkmθm(nm))

where ki = [(ti − ti+1) /T ] and θi are the scattering angles in the backward Boltzmann flow.
Notice that, by symmetry and by the scattering rule,(

ni · ηm(t+i )
)

+
=
(
Rkiθi(ni) · ηm(t−i − kiT )

)
− .

The new variables are those of the forward Boltzmann flow. Renaming these integration
variables (x0, v0, t1, n1, · · · , tm, nm), and using (3.7), we get

fG(t, x, v) =

∫
R2×S1

dx0 dv0 f0(x0, v0)
∑
m≥0

∫
Πt,m

dP
(x0,v0)
t δ ((ξm(t), ηm(t))− (x, v)) . (3.8)

4 Proof of Theorem 1.1

The outline of the proof is standard. There are three main steps. We first eliminate suitable
events of probability zero (Lemma 4.2); secondly, we parametrize the Lorentz process (cf.
Definition 2.1) in terms of impact times and impact vectors (Lemma 4.4); and finally we show
that, away from the excluded set, the differences with respect to the Boltzmann process (cf.
Definition 3.3) are negligible (Lemma 4.5).

Definition 4.1 (Pathologies) Let (ξm(s))s∈[0,t] be the generalized Boltzmann flow given as
in Definition 3.1. The pathological subset of Πt is given by

Nt =
⋃
m≥1

Nt,m

with

Nt,m :=
{

(t1, n1, · · · , tm, nm) ∈ Πt,m

∣∣∣ t1 < T , ni · ηm(t−i ) ≤ 0 ∀i and,

for some j = 1, · · · ,m, (ξm(s))s∈[0,t] crosses ξm(tj) more than 1 + kj times
}
.

Here we used (3.3), and the convention tm+1 = t to construct (3.2).

Lemma 4.2 Let P
(x0,v0)
t be the path measure for the generalized Boltzmann process defined

in (3.7). We have P
(x0,v0)
t (Nt) = 0 .

Proof. Definition 4.1 implies that one of the following two events happens:

(R) the Boltzmann process returns to a collision point after having collided with a different
obstacle (recollision):

inf
s∈[tj+1,t]

|ξm(s)− ξm(tj)| = 0 ;

(I) the Boltzmann process encounters a new obstacle in a point already visited in the past
(interference):

inf
s∈[0,tj−1+kj−1T ]

|ξm(s)− ξm(tj)| = 0 .

Suppose that the infimum in (R) is attained first at time τ . Either tj+1 = tj + kjT , or
τ > tj+1. Assume the latter condition and that the last obstacle encountered before time τ
is j′ ≥ j + 1. Given tj′ and a previous history, (R) can happen only for a finite number of
values of nj′ . This follows from the fact that the self-recollision path around j′ is made of a
finite number of orbits (which rotate rigidly with the impact vector).

Similarly (I) can happen only for a finite number of collision times tj , with the following
exception: j ≥ 2 and the path in [tj−1, tj ] is periodic. In the latter case, a continuous interval
of collision times can realize the condition. A self-recollision path is periodic if and only if the
scattering angle (hence nj−1) is a rational fraction of 2π. Namely, the magnetic field generates
a dense set of periodic trajectories (of period T, 2T, 3T, · · · ), with repeated encounters with a
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single obstacle. On the other hand, such a periodic trajectory is completed only if its period
is smaller than tj − tj−1. This is possible for kj−1 values of the scattering angle.

The above reasonings show that Nt,m has dimension lower than Πt,m and |Nt,m| = 0 .

Since P
(x0,v0)
t is absolutely continuous, the lemma is proved. �

By Lemma 4.2, it is enough to prove

lim
ε→0

P
(x0,v0)
ε,t = P

(x0,v0)
t . (4.1)

on compact sets outside Nt.
We turn now to the Lorentz process, and write down the explicit formula for the path

measure. We shall assume m ≥ 1 from now on, as in the case m = 0 the proof of the theorem
is straightforward. The following definition of Lorentz flow is similar in spirit to Definition
3.1. The definition is such that, if the number of internal obstacles in [0, t] is m, the Lorentz
trajectory is given by the flow almost surely.

Definition 4.3 (Lorentz flow) The Lorentz flow with m obstacles and starting configura-
tion (x0, v0) is the Skorokhod trajectory

ζεm(s) ≡ (ξεm(s), ηεm(s)) , s ∈ [0, t] (4.2)

constructed as follows.
Start from ζεm(0) = (x0, v0) ∈ R2×S1 for all m. We require t1 < T and apply the following

rule, iteratively on i = 1, 2, · · · ,m (with t0 = 0):

• choose (ti, ni) such that ti−1 < ti < t, and such that neither (ζεm(s))s∈[0,ti−1], nor

ζεm(s) := γsci−1,ε ((x0, v0)) s ∈ [ti−1, ti) ,

intersect the open ball with center ξε(ti) − εni; then set ci := ξε(ti) − εni, place a new
obstacle in ci and apply the scattering ζεm(t+i ) = Sni

(
ζεm(t−i )

)
(cf. (2.3)).

The iteration is concluded in the last time interval by ζεm(s) := γscm,ε ((x0, v0)) for s ∈ [tm, t].

We call Π
ε,(x0,v0)
t,m the set of admissible values (t1, n1, · · · , tm, nm) ∈ Πt,m, according to the

iteration.

Recalling condition (I), we remark that

lim
ε→0

{
0 < t1 < · · · tm < t , t1 < T , ni · ηm(t−i ) ≤ 0 ∀i

}
\Π

ε,(x0,v0)
t,m ⊂ Nt,m . (4.3)

Lemma 4.4 Let A ∈ σ(Πt) have non-empty component Am ∈ Πt,m for only one value of
m ≥ 1. Assume that A is compact in Πt,m \Nt,m. Then the path measure for the Lorentz
process is given by

P
(x0,v0)
ε,t (A) =

∫
Aε

m

dt1dn1 · · · dtmdnm χ({t1 < T})

[
m∏
i=1

(
ni · ηεm(t−i )

)
−

]
e−ε
−1|T ε|

1− πε (4.4)

where
Aεm ≡ Aε,t,(x0,v0)

m := Am ∩Π
ε,(x0,v0)
t,m (4.5)

and

T ε ≡ T ε,t,(x0,v0)
m :=

{
x ∈ R2

∣∣∣ inf
s∈[0,t]

|x− ξεm(s)| ≤ ε
}
.

Proof. Using the notation introduced in (2.1), the Lorentz process is

ζε(s) = (ξε(s), ηε(s)) = γscN ,ε(x0, v0) , s ∈ [0, t] .

Since we restrict to the m−obstacle path space, if we rename c1, · · · , cm the centers of the
internal obstacles in [0, t] (cf. Def. 2.2), we can write

ζε(s) = γscm,ε(x0, v0) , s ∈ [0, t] .
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These internal obstacles can be chosen in N(N − 1) · · · (N −m+ 1) ways.
If A ⊂ R2 is any bounded measurable set such that the Lorentz process stays inside A in

the time-interval [0, t], we then have that

P
(x0,v0)
ε,t (A) =

e−ε
−1|A |

1− πε ε−m
∫

A m

dcm χ ({(t1, n1, · · · , tm, nm) ∈ Am})χ({t1 < T})

·
∑
m′≥0

ε−m
′

m′!

∫
A m′

dc′m′
m′∏
i=1

χ

({
inf

s∈[0,t]
|c′i − ξε(s)| > ε

})
,

where (t1, n1, · · · , tm, nm) is the collection of impact times and impact vectors according to
Definition 2.3. Notice that the right hand side of (1.1) has been used with µ = ε−1 and
renormalized by a factor (1− πε)−1, in such a way to ensure |ci − x0| ≥ ε for all i.

In a more compact form,

P
(x0,v0)
ε,t (A) =

ε−m

1− πε

∫
Ãε

m

dcm χ({t1 < T}) e−ε
−1|T̃ ε| (4.6)

with

Ãεm ≡ Ãε,t,(x0,v0) :=
{

cm ∈ A m
∣∣∣ (t1, n1, · · · , tm, nm) ∈ Am

}
,

T̃ ε ≡ T̃ ε,t,(x0,v0)
cm :=

{
x ∈ R2

∣∣∣ inf
s∈[0,t]

|x− ξε(s)| ≤ ε
}
.

Note now that, by construction, we can replace Am in the above formulas with Aεm ⊂ Am.
Indeed Aεm is defined as the subset for which there actually exists a mechanical trajectory
with m obstacles, having impact times and impact vectors in Am. This forbids values of
(ti, ni) such that the obstacle centered in ci would overlap with points already visited in the
past.

We are ready to perform the change of variables

Ãεm 3 (c1, · · · , cm) −→ (t1, n1, · · · , tm, nm) ∈ Aεm

inside (4.6). A standard computation of the Jacobian determinant leads then to (4.4). �

Next we discuss the convergence of (4.2) to (3.2).

Lemma 4.5 Let t > 0 and m ≥ 1. Let Am ∈ Πt,m \Nt,m be a compact set. Then there exists
a constant C > 0 such that, if ε is small enough, for any admissible path (t1, n1, · · · , tm, nm)
in Am, the Lorentz flow does not allow recollisions and

sup
s∈[0,t]

|ξεm(s)− ξm(s)| ≤ C [t/T ] ε , max
i=1,··· ,m

|ηεm(t−i )− ηm(t−i )| ≤ C [t/T ] ε .

Notice that the estimates are uniform in m and that [t/T ] is a bound on the maximal number
of self-recollisions.

Proof. We introduce a stopping time τε, defined as the first time such that the Lorentz
process has a recollision which is not a self-recollision (cf. Def. 2.4). By definition, τε > t1
and ζεm(s) = ζm(s) for s ∈ [0, t1]. Moreover for s ∈ [0, τε), the differences between ζεm(s) and
ζm(s) are exclusively due to the self-recollisions, which we discuss next.

Each self-recollision orbit in the Lorentz flow differs of an errorO(ε) from the corresponding
orbit of the Boltzmann flow, according to (2.4). Notice that also the self-recollision times
differ, in the two flows, of an amount O(ε) (the Lorentz process jumps to a new orbit slightly
before the Boltzmann process). During this discrepancy of times, a big difference between
the velocities is generated. What is important is that, for ε small, the time discrepancies
in self-recollisions with the obstacle i are all smaller than (ki + 1)T − (ti+1 − ti): thus the
total number of self-recollisions in the Lorentz process is ki, exactly as in the Boltzmann flow.
Since the total number of collisions is finite, it follows that:

(a) the difference between ηεm(t−i ) and ηm(t−i ) is O(ε) for all i with ti < τε;
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(b) the distance between ξεm(s) and ξm(s) is O(ε) for s ∈ [0, τε). In particular, cj = ξεm(tj)−
εnj is O(ε) away from ξm(tj) if tj < τε.

As Am is compact outside Nt,m, the Boltzmann process has the following property: there
exists a δ > 0 such that each arc of Larmor orbit keeps a distance larger than δ from the
obstacles which are not at the extremal points of the arc. In formulas:

min
j=2,··· ,m

inf
s∈[0,t1]

|ξm(s)− ξm(tj)| > δ ,

min
i,j=1,··· ,m

j 6=i

inf
s∈[ti,ti+kiT ]

|ξm(s)− ξm(tj)| > δ ,

min
i,j=1,··· ,m
j 6=i,i+1

inf
s∈[ti+kiT,ti+1]

|ξm(s)− ξm(tj)| > δ .

This and the above remark (b) on self-recollisions imply that, for ε small enough,

min
i=1,··· ,m
j=1,··· ,i−1

inf
s∈[ti,t]

|ξεm(s)− cj | > δ/2 > ε .

Which proves τε > t. �

End of the proof of Theorem 1.1. Our purpose is to compare formulas (4.4) and (3.7). Remind
that the sums over m are absolutely convergent (uniformly in ε) for arbitrary sequences Am.
Therefore it is enough to prove convergence of (4.4) to the m-th term in (3.7).

Observe that, under the assumptions of Lemma 4.5, the region T ε reduces to a union of
m daisies, plus a first stem:

T ε =

m⋃
i=0

Dε
i ,

having used Definition 2.6 with tm+1 = t.
Since |Dε

i | ≤ 2ε (ti+1 − ti) we deduce from Lemma 4.2, (4.3), (4.5), (4.4), Lemma 4.5 and
(3.7) that

lim
ε→0

P
(x0,v0)
ε,t (A) ≥ lim

ε→0
e−2t

∫
Aε

m

χ({t1 < T})

[
m∏
i=1

(
ni · ηεm(t−i )

)
−

]
= P

(x0,v0)
t (A) ,

by dominated convergence. Using the normalization condition

P
(x0,v0)
ε,t (Πt) = P

(x0,v0)
t (Πt) = 1− e−2T δt>T ,

and Lemma 4.2, we finally obtain Eq. (1.10). Eq. (1.11) follows from (1.7) and (3.8). �
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