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We study the probabilistic properties of the fractional Ornstein–Uhlenbeck process, which is a relevant 

framework for volatility modeling in continuous time. First, we compute an expression for its variance for 

any value of the Hurst parameter, H ∈ (0, 1). Second, we derive the density of the process and we calculate 

the probability of its supremum to be above a given threshold. We provide a number of illustrations 

based on fractional stochastic volatility models, such as those of Comte and Renault (1998), Bayer et al. 

(2016) and Gatheral et al. (2018). Finally, the empirical analysis, based on the realized variance series of 

S&P500, shows the usefulness of these theoretical results for risk management purposes, especially when 

a characterization of the volatility tail risk is needed. 
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1. Introduction 

The volatility of asset returns is a key ingredient in a number 

of financial applications, including option pricing and risk man- 

agement. Therefore, a proper characterization of its probabilistic 

properties is at the core of any well posed analysis of finan- 

cial risks. In this paper, we provide expressions for the variance 

and the distribution of a class of fractional mean reverting pro- 

cesses, which are popular modeling frameworks for the dynamics 
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of volatility of financial assets, see Comte and Renault (1998) and 

Gatheral et al. (2018) among others. We also derive an expression 

for the probability of their supremum being larger than a given 

threshold. This turns out to be of potential relevance in risk man- 

agement applications, when the goal is to assign a probability to 

extremely high volatility events based on a precise characterization 

of the decay of the right tail of the volatility density. 

The phenomenon of mean-reversion has been widely docu- 

mented for both financial time-series, such as interest rates and 

volatility, and for macroeconomic aggregates, e.g. inflation. In em- 

pirical finance, Tan (1997) proposes mean-reverting principal com- 

ponent analysis for portfolio optimization to manage beta against 

alpha and Engle and Patton (2001) detect mean reversion in stocks’ 

volatility. Filipovic (2007) finds evidence of mean reversion in 

energy stocks while Avellaneda and Lee (2010) study a statisti- 

cal arbitrage strategy in U.S. equities driven by a mean revert- 

ing model that represents an effective barometer to monitor real- 

time risks and opportunities. From the methodological point of 

view, Vasicek (1977) is the first one to propose a continuous- 

time model allowing for mean reversion in interest rates. Sub- 

sequently, Cox et al. (1985) eliminate the main drawback of the 

Vasicek model, that is a non-null probability of negative values. 

Hull and White (1990) introduce time-inhomogeneous extensions 

capable of fitting any given initial forward rate curve and similar 

extensions for short rate models are in Bjork and Hyll (20 0 0) and 
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Brigo and Mercurio (2001) . More recently, Kwona (2007) intro- 

duces an extension of time-inhomogeneous affine term structure 

models with mean-reversion in the level. Applications, other than 

to interest rates, are to stochastic models that describe the mean 

reverting behavior of volatility, see Heston (1993) , and of volatil- 

ity of volatility, see Kaeck and Alexander (2013) . On the other 

hand, a striking evidence emerging from the analysis of observ- 

able quantities such as the realized variance, formally defined by 

Barndorff-Nielsen and Shephard (2002a,b) , is that the volatility of 

stock returns, although being a mean-reverting process, is charac- 

terized by long-range dependence or long-memory. For instance, 

Andersen et al. (2001a) and Andersen et al. (2003) report evi- 

dence of stationary long memory in the realized variance series. 

The same type of long range dependence is found in time series 

of interest rates ( Lai, 2004 ) and exchange rates ( Andersen et al., 

2001b ). This empirical evidence challenges the classical framework 

for the analysis of mean-reverting processes, which is based on a 

diffusive component driven by the standard Brownian motion. 

To comply with the empirical evidence of long-memory 

in volatility, Comte and Renault (1998) propose a version of 

the Ornstein–Uhlenbeck (OU henceforth) process for the log- 

arithm of the instantaneous variance, where the innovations 

are driven by the fractional Brownian motion introduced by 

Kolmogorov (1940) and further analyzed in Mandelbrot and 

Van Ness (1968) . The dynamic properties of the innovations of 

the fractional Brownian motion are defined is terms of the so- 

called Hurst exponent, H , which is bounded between 0 and 1. 

Comte and Renault (1998) find that long-memory in volatility 

is consistent with a value of the H parameter above 0.5. As in 

Gatheral et al. (2018) , we name this model fractional stochastic 

volatility (FSV) model. More recently, Rossi and Santucci de Mag- 

istris (2014) have shown that the integrated variance, and hence 

also realized variance, inherit the same degree of fractional inte- 

gration as the instantaneous variance generated by the FSV model. 

A recent strand of the literature, see Gatheral et al. (2018) , has 

shown empirical evidence that volatility models should incorporate 

a roughness term (irregular behavior at short time scales), which 

is associated with a fractional Brownian motion with Hurst ex- 

ponent smaller than 0.5. This entails that the innovations to the 

log-variance are antipersistent, from which the notion of rough 

volatility. For this reason, Gatheral et al. (2018) name their model 

rough fractional stochastic volatility (RFSV). An alternative ver- 

sion of the fractional OU process has been recently adopted in 

Bayer et al. (2016) with the purpose of pricing VIX options under 

the constraint of rough stochastic volatility. 

Despite the evident appeal of continuous-time stochastic mod- 

els driven by the fractional Brownian motion, probability den- 

sity functions and probability of the supremum for these type of 

mean reverting processes have not been investigated yet in lit- 

erature. The contribution of this paper is to derive the distribu- 

tion of fractional mean reverting processes and of their supre- 

mum. Earlier results about the limiting distribution of the supre- 

mum of a sequence of random variables are in Gnedenko (1943) . 

Recently, Embrechts and Puccetti (2006a) , Embrechts and Puc- 

cetti (2006b) provide bounds on the distribution function of the 

sum of risks, when no information on the structure of depen- 

dence of the random vector is available. Bounds on risk measures 

for risk aggregation with dependence uncertainty are studied in 

Bernard et al. (2014) and Bernard and Vanduffel (2015) , whereas 

a theoretical foundation for the measurement of tail risk is pro- 

vided in Kou and Peng (2016) . A main task in risk management is 

to look for bounds for the financial variables constituting the port- 

folio with primary interest in managing risk levels within defined 

tolerance thresholds without being over controlled or forgoing de- 

sirable opportunities. For instance, Chen and Tu (2013) computes 

the Value-at-risk (VaR) of an hedged portfolio with a mix of fixed 

and floating rate debt for which bounds on the underlying yield 

rates are of crucial importance. 

Our theoretical findings are based on the fractional version of 

the OU process, fOU henceforth, which encompasses both the FSV 

and the RFSV models in the stochastic volatility context. In par- 

ticular, in Proposition 1 we provide an expression for the variance 

of the fOU for any value of H ∈ (0, 1). We use this result to de- 

rive the density of the fOU process in Lemma 1 . Furthermore, we 

adapt the results of Nourdin (2012) to the fOU context providing 

the probability of the supremum of the fOU being larger than a 

given threshold ( Proposition 2 ). We outline a number of exam- 

ples to illustrate our theoretical results. The examples are based 

on the FSV and RFSV specifications, where for the latter the pa- 

rameters are calibrated on the S&P 500 volatility series under the 

restriction of Hurst parameter below 1/2. Furthermore, we also ex- 

tend Proposition 2 to the case of the rough Bergomi model by 

Bayer et al. (2016) , which leads to the derivation of the probability 

of the supremum in the context of VIX options. Finally, we em- 

pirically illustrate the usefulness of our theoretical results for risk 

management purposes and we estimate the parameters of the fOU 

process by indirect inference based on the time series of the RV of 

SPX and we compute the density of the daily volatility. Given this 

density, we can compute relevant quantities like the Volatility-at- 

risk , that is the analogous of the VaR in the volatility context. 

The paper is organized as follows. After a brief description of 

the fOU process, Section 2 provides the theoretical background of 

this paper, with examples based on well known stochastic volatil- 

ity models under fractionality. Subsequently, Section 3 reports the 

findings of the empirical analysis of the fOU process in the con- 

text of stochastic volatility modeling and tail volatility risk. Finally, 

Section 4 concludes. 

2. Theoretical background 

Here and throughout the paper every random object is de- 

fined on the appropriate probability space (�, F , P ) . The (one- 

dimensional) fOU process X H = { X H (t) , t ≥ 0 } driven by the frac- 

tional Brownian motion is the solution to the SDE 

dX 

H (t) = a 
(
t , X 

H (t ) 
)
d t + b 

(
t , X 

H (t ) 
)
d B 

H (t) , t > 0 , 

X 

H 
0 = x 0 , (1) 

where a ( t, X 

H ( t )) and b ( t, X 

H ( t )) � = 0 are real-valued functions as- 

sumed to posses derivatives and B H ( t ) is a standard fractional 

Brownian motion with Hurst parameter H ∈ (0, 1), see for an in- 

troduction ( Mandelbrot and Van Ness, 1968 ). In the case with 

b 
(
t , X H (t ) 

)
= η constant and a 

(
t , X H (t ) 

)
= θ

(
m − X H (t) 

)
with the 

speed of mean reversion parameter θ > 0, and m real number. The 

solution of Eq. (1) starting at X H (0) = x (0) is 

X 

H (t) = m + x 0 e 
−θt + ηe −θt 

∫ t 

0 

e θs dB 

H (s ) , (2) 

where the mean of the process in (2) is μ(t) := E [ X H (t)] = m + 

x 0 e 
−θt , see Cheridito et al. (2003) . The following proposition pro- 

vides an explicit formula for the variance of the fOU. 

Proposition 1 (Variance of fOU) . Let X 

H ( t ) be a fOU process as in 

(2) for H ∈ (0, 1) . Then, the variance of X ( t ) H is 

V ar[ X 

H (t)] = η2 t 2 H − θη2 e −θt 

∫ t 

0 

e θu (t 2 H + u 

2 H − | t − u | 2 H ) du 

+ θ2 η2 e −2 θt 1 

2 

∫ t 

0 

∫ t 

0 

e θu e θv (u 

2 H + v 2 H − | u − v | 2 H ) d ud v . (3) 

Proof. The proof is in Appendix A . �
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Fig. 1. Variance of fOU. The plot reports the variance of X H ( t ) as a function of H ∈ [0.0 0 01, 0.9999] (x-axis), when X H ( t ) follows the fOU process with different values of 

θ = [0 . 01 , 0 . 75 , 1 . 5] . The other parameters of the model are η = 0 . 3 and m = −5 . 

Fig. 2. Density of fOU. The plot reports the density of X H ( t ) when the latter follows the fOU process with different values of H = [0 . 0 0 01 , 0 . 5 , 0 . 98] . The other parameters of 

the model are η = 0 . 3 , μ = −5 and θ = 1 . 5 . 

Fig. 1 plots the variance of X H t as a function of H , showing that 

the variance of the fOU is inversely related with H . Notably, the 

integrals in (3) are not available in closed form and need to be 

computed by numerical integration. 1 Furthermore, the variance de- 

creases with the speed of mean reversion, being close to the vari- 

ance of a fractional Brownian motion for θ ≈ 0. 

Proposition 1 allows us to explicitly derive the probability dis- 

tribution function of the fOU process. 

Lemma 1. (Density of fOU process) Let X 

H ( t ) be a fOU process as 

in (2) . Then X H (t) ∼ N ( μ(t ) , ς(t ) ) , with μ(t) := E [ X H (t)] = m + 

x 0 e 
−θt and ς(t) := V ar[ X H (t)] . 

Proof. The fOU process is a linear combination of a Gaussian pro- 

cesses - the fractional Brownian motion - and it is therefore Gaus- 

1 We adopt the MATLAB command int ( · ) that uses the quadrature method 

to evaluate the integral. This is a more accurate alternative than the trapezoidal 

method studied in Delves and Lyness (1967) . 

sian. The mean μ(t) = m + x 0 e 
−θt is readily checked, and the vari- 

ance ς(t) := V ar[ X H (t)] is computed in Proposition 1 . �

Fig. 2 shows the density of X 

H ( t ) computed for different values 

of the Hurst parameter, H . The figure highlights the Gaussian shape 

of the density of X 

H ( t ) as well as the decreasing variance as H in- 

creases. 

2.1. Supremum of the fOU process 

We now turn the attention to the asymptotic behavior of the 

supremum of the fOU process. 

Proposition 2 (Distribution of the supremum of the fOU pro- 

cess) . Let X H = { X H (t) , t ∈ [0 , 1] } be a fOU process on the interval 

[0,1]. Define M 

H = sup X H be the supremum of X 

H ( t ) on the interval 

[0,1]. It follows that 

lim 

x →∞ 

P (M 

H ≥ x ) = exp 

(
− x 2 

2 V ar[ X 

H (1)] 

)
. 

Proof. The proof is in Appendix B . �



4 G. Morelli and P. Santucci de Magistris / Journal of Banking and Finance 108 (2019) 105654 

Fig. 3. Probability of the supremum of the fOU process. The plot reports the tail probability of M 

H = sup X H , when X H follows the fOU process with different values of 

H = [0 . 01 , 0 . 5 , 0 . 99] . The other parameters of the model are η = 1 . 5 , μ = −5 and θ = 0 . 3 . 

Fig. 4. Probability of the supremum of FSV and RFSV model. The plot reports the tail probability of M 

H (t) = sup σ (t) , when log σ ( t ) follows the FSV (Panel a) and the RFSV 

(Panel b) processes with parameter values calibrated as in Comte and Renault (1998) and Gatheral et al. (2018) . The parameters of the RFSV model are ν = 0 . 3 , m = −5 and 

κ = 1 , H = 0 . 8 . The parameters of the RFSV model are ν = 0 . 3 , m = −5 and κ = 5 × 10 −4 , H = 0 . 14 . On the x-axis volatility is expressed in annualized percentage terms. 

Proposition 2 derives the probability of the supremum of the 

fOU process as an explicit function of its variance computed in 

Proposition 1 . Such limit is reported in Fig. 3 for changing values 

of the quantile x on the right tail. The figure shows that, ceteris 

paribus, the smaller the H , the higher the probability associated to 

events on the right tail. 

As an illustration, we consider the modeling frame- 

work adopted both in Comte and Renault (1998) and 

Gatheral et al. (2018) , who propose the FSV and RFSV models 

respectively. Specifically, the volatility is modeled as 

σ (t) = exp Y H (t) , t > 0 

where Y H ( t ) is a fOU process satisfying 

dY H (t) = κ
(
m − Y H (t) 

)
d t + νd W 

H (t) , (4) 

m ∈ R , ν and κ are positive parameters and W 

H ( t ) denotes the 

fractional Brownian motion of Hurst parameter H > 1/2 (FSV) 

and H < 1/2 (RFSV). Fig. 4 shows the probability of the supre- 

mum of the FSV model and of the RFSV model. The param- 

eters are calibrated according to those reported in Comte and 

Renault (1998) and Gatheral et al. (2018) , which are based 

on S&P 500 volatility series. In particular, in Comte and Re- 

nault (1998) H > 1/2 and θ 
 0, meaning that the speed of mean 

reversion is rather strong but the innovations to the (log) volatil- 

ity are persistent. Instead, in the setting of Gatheral et al. (2018) , 

H < 1/2 but κ � 1/ T , that is κ = 0 . 0 0 05 . In the context of RFSV 

the variance of Y H t can be approximated with that of the frac- 

tional Brownian motion, that is V ar[ Y H (t)] ≈ ν2 t 2 H , see Bayer et al. 

(2016 , p.899). In other words, the trajectory of volatility are mostly 

governed by the fractional Brownian motion, which is associated 

with antipersistent innovations when H < 1/2. In particular, the 

value of H in the RFSV is 0.14, while the speed of mean reversion, 

κ , is tight to zero, thus signaling an almost absent role of the mean 

reverting term, which is in line with the findings in Rossi and San- 

tucci de Magistris (2014) . With this setup, the probability that the 

supremum of volatility is above 22% on annual basis is 5.6%, while 

the same probability reduces to 0.09% when adopting the FSV. This 

difference is due to the more erratic (rough) behavior of volatility 

in the RFSV model, rather than in the FSV specification. 

Finally, Fig. 5 shows the density of σ ( t ) for both the FSV and 

RFSV models. The density is lognormal in both cases, as a conse- 

quence of Proposition 1 . The distribution of FSV is more concen- 
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Fig. 5. Density of σ ( t ). The plot reports the density of σ (t) = exp X H (t) , when X H ( t ) follows the fOU process. The parameters of the RFSV model are ν = 0 . 3 , m = −5 and 

κ = 1 , H = 0 . 8 . The parameters of the RFSV model are ν = 0 . 3 , m = −5 and κ = 5 × 10 −4 , H = 0 . 14 . On the x-axis volatility is expressed in annualized percentage terms. 

trated around the mean, and it gives a probability of 1.55% to the 

event that σ ( t ) is above 15% on an annual basis. On the contrary, 

the density of σ ( t ) in the RFSV case is more dispersed and it as- 

signs a probability of 12.6% to the same event. 

2.1.1. Supremum in the rBergomi model 

The range of applicability of Proposition 2 extends beyond the 

fOU framework. Therefore, as a further application of Proposition 2 , 

we compute the probability of the supremum of the square VIX 

following the rough volatility model studied in Bayer et al. (2016) . 

VIX measures the one-month ahead risk-neutral market expecta- 

tion of the level of volatility of S&P 500 index and it is often re- 

ferred to as the fear index. Thus, being able to compute the dis- 

tribution for the supremum of the (square) VIX might be rele- 

vant for risk management purposes. Bayer et al. (2016) exploit the 

rough volatility model of Gatheral et al. (2018) as option pricing 

model. In particular, they introduce a generalization of the model 

of Bergomi (2005) , which they refer to as rough Bergomi (rBer- 

gomi), see also Jacquier et al. (2018) and Sauri (2019) . In the rBer- 

gomi framework, the instantaneous variance is modeled as 

v (t) = v 0 exp 

(
Z(t ) − ψ 

2 

2 

t 2 ϑ+1 

)
, v 0 > 0 , t > 0 (5) 

where ψ is a positive parameter, ϑ ∈ (−1 / 2 , 0) and Z is a 

Holmgren-Riemann-Liouville fractional Brownian motion defined 

by 

Z(t) = 

∫ t 

0 

K ϑ (s, t) dW (s ) , for any t ≥ 0 , (6) 

with W ( t ) standard Brownian motion and the integrand 

K ϑ (s, t) = ψ 

√ 

2 ϑ + 1 (t − s ) ϑ , for any 0 ≤ s < t. 

We follow Bayer et al. (2016 , p. 888) in that the instantaneous 

variance defined in (5) is equivalent to the one generated by the 

rough fOU process as in Gatheral et al. (2018) . Model calibration is 

achieved in Bayer et al. (2016) by examining the term structure of 

VIX options. We denote the terminal value of the VIX futures by √ 

ζ (T ) and its square 

ζ (T ) = 

1 

τ

∫ T 

t 

E [ v (u ) |F(t)] du, (7) 

where τ = T − t . Bayer et al. (2016) obtain an approximation of the 

variance of log 
√ 

ζ (T ) conditional on F(t) , that is 

V ar[ log 
√ 

ζ (T ) |F(t)] ≈ 1 

4 

ψ 

2 (τ ) 2 H f H 
(

1 

1 − t 

)
, (8) 

Fig. 6. Probability of the supremum of the square VIX in the rBergomi model. The 

plot reports the tail probability of M 

ζ = sup log ζ (t) , where ζ ( t ) is given by the 

rBergomi model as in Bayer et al. (2016) for different values of H . The parameters 

of the model are ψ = 3 . 5 , v 0 = −10 and ϑ = 5 × 10 −4 , H = 0 . 10 , 0 . 15 . On the x-axis 

is expressed in the square VIX scale and it is in annualized percentage terms. 

where V ar[ log 
√ 

ζ (T ) |F(t)] is nothing else that the square of the 

VVIX index for a τ horizon. The following lemma provides the dis- 

tribution of the supremum of log ζ ( t ) in the rBergomi model. 

Lemma 2 (Supremum of the log-square VIX in the rBergomi 

model) . Let v ( t ) follow the rBergomi model in (5) . Let ζ = { ζ (t) , t ∈ 

[0 , 1] } denote value of the square VIX futures as defined in (7) . Define 

M 

ζ = sup log ζ the supremum of the log-square VIX, then 

lim 

x →∞ 

P (M 

ζ ≥ x ) = exp 

( 

− x 2 

2 ψ 

2 (1 − t) 2 H f H 
(

1 
1 −t 

)
) 

, 

where f H 
(

1 
1 −t 

)
= D 

2 
H (1 − t) 

∫ 1 
0 

[
( 2 −t 

1 −t − x ) 1 / 2+ H − (1 − x ) 1 / 2+ H ]2 
dx, 

with D H = 

√ 

2 H 
H+1 / 2 . 

Proof. As noted by Bayer et al. (2016 , p.895), the VIX payoff

and its square ζ ( T ) are log-normally distributed. Hence proof of 

Proposition 2 applies to the process {log ζ ( t ), t ∈ [0, 1]}. The ex- 

pression for the variance of log ζ ( t ) is derived in Bayer et al. (2016 , 

p.896), that is V ar[ log ζ (T ) |F(t)] = ψ 

2 (1 − t) 2 H f H 
(

1 
1 −t 

)
. �
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Fig. 7. Time series of RV of S&P 500 based on sampling log-returns over 5 minutes intervals and its ACF. 

As an illustration, Fig. 6 reports the probability of the supre- 

mum of the log-square VIX in the rBergomi model, when 

the parameters are calibrated according to those reported in 

Bayer et al. (2016) , which are based on VIX series. The figure shows 

that the probability of the supremum is an increasing function of 

H . For instance, with H = 0 . 10 the rBergomi model assigns a proba- 

bility of 1.3% to the event of the supremum of the square VIX being 

larger than 400, while the same probability increases to 5% when 

H = 0 . 15 . Given that the highest daily level of VIX ever recorded 

was 89.53% on October 24, 2008, the rBergomi model assigns an 

infinitesimal probability to the event of the supremum of VIX be- 

ing above this threshold. 

3. Empirical analysis 

3.1. Density of the fOU volatility model 

The theoretical results presented in Section 2 are applied to 

the fractional stochastic volatility (FSV) process, see Comte and Re- 

nault (1998) . We consider the following FSV 

dS(t) 

S(t) 
= μ(t) dt + σ (t) dW (t) 

σ (t) = exp X 

H (t) (9) 

dX 

H (t) = θ
(
m − X 

H (t) 
)
d t + ηd B 

H (t) , t > 0 

where S ( t ) is the underlying asset price, μ( t ) is a suitable drift term 

in price, W ( t ) is a standard Brownian motion possibly correlated 

with B H ( t ), σ ( t ) is the volatility process, and X 

H ( t ) follows a fOU 

process. 

We now provide an empirical illustration of the theoretical 

results presented in Sections 2 and 2.1 based on the stochas- 

tic volatility model in (9) . We estimate the parameters of the 

SV model in (9) based on intradaily returns, r t,l , 
2 of S&P 500 

from April 28, 2011 to April 21, 2015, for a total of T = 10 0 0 

day. The time series of RV t = 

∑ L 
l=1 r 

2 
t,l 

is computed with returns 

sampled at 5-minute frequencies, that is l = 1 , . . . , L with L = 78 . 

Liu et al. (2015) find limited empirical support that the 5-minute 

RV is outperformed by other (more refined) measures of integrated 

variance. Furthermore, we can consider 5- minute RV not to be 

contaminated by the market microstructure noise features, such as 

bid-ask bounce and decimalization effects. The dynamics of the RV 

series is reported in Fig. 7 together with its sample autocorrela- 

2 The subscript t denotes the observation day, and the subscript l denotes the 

intradaily period. 

tion function (ACF). The RV series displays the changing regime of 

volatility, where the latter reaches high levels towards the end of 

2011 due to the sovereign debt crisis in Europe, and it is relatively 

low during the rest of the period. This switching behavior leads to 

high persistence as it is emphasized by the slow decay rate of the 

ACFs, and it is consistent with long memory in volatility as mea- 

sured by values of H > 1/2. 

We estimate the parameters of model (9) by means of indirect 

inference, see Corsi and Renò (2012) and Rossi and Santucci de 

Magistris (2018) . In particular, we simulate S trajectories of daily 

RV from the model in (9) 3 and we find the p × 1vector of pa- 

rameters ζ = [ θ, m, η, H] ′ , which minimizes the following criterion 

function 
T ( ζ ), that is 

ˆ ζST = arg min 

ζ

T (ζ ) = arg min 

ζ
( ̂  βT − ˆ βST (ζ )) ′ �T ( ̂  βT − ˆ βST (ζ )) (10) 

with 

ˆ βST (ζ ) = 

1 
S 

∑ S 
s =1 

ˆ βs 
T 

being the q × 1 vector of estimates of the 

auxiliary model parameters based on the simulated paths, while 
ˆ βT are the estimates of the auxiliary model parameters based on 

the observed sample. The matrix �T is a weighting matrix, and it is 

chosen to maximize the asymptotic efficiency of the estimator ˆ ζST . 

Under the set of assumptions outlined in Gouriéroux et al. (1993) , 
ˆ ζST is consistent and asymptotically Gaussian. As auxiliary model, 

we chose the heterogeneous autoregression (HAR) of Corsi (2009) , 

RV ∗t = γ0 + γ1 log RV ∗t−1 + γ2 RV 
∗
t−1 , 5 + γ3 RV 

∗
t−1 , 10 + γ4 RV 

∗
t−1 , 22 + ε t , 

(11) 

where RV ∗t = log RV t , RV 
∗
t−1 , 5 = 

1 
5 

∑ 5 
i =1 log RV ∗

t−1 −i 
, RV 

∗
t−1 , 10 = 

1 
10 

∑ 10 
i =1 log RV ∗

t−1 −i 
and RV 

∗
t−1 , 22 = 

1 
22 

∑ 22 
i =1 log RV ∗

t−1 −i 
are the 

weekly, bi-weekly and monthly averages of log RV t . Notably, the 

HAR has a long autoregressive structure, that is an AR(22) with 

linear restrictions on the parameters, which mimics the long- 

memory features of log RV t . Furthermore, the HAR parameters, 

β = [ γ0 , γ1 , γ2 , γ3 , γ4 , σ
2 
ε ] 

′ , can be estimated by OLS. Hence, the 

HAR is a natural candidate to be a good auxiliary model in this 

context. Indeed, the long memory features generated by the 

fractional Brownian motion can be well approximated by the 

superposition of volatility factors, Corsi (2009) , or by a stochastic 

volatility level parameter, as in Kaeck and Alexander (2012) . 

Since the number of auxiliary parameters ( q = 6 ) is larger than 

the number of structural parameters in ζ ( p = 4 ), the weighting 

3 The trajectories of the fractional Brownian motion are generated by fast Fourier 

transform, see Kroese and Botev (2015) . 
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Fig. 8. Simulated time series of RV and its ACF for FSV and RFSV models. 

Table 1 

Parameter estimates by indirect inference. The left panel reports the estimates of the FSV model 

of Comte and Renault (1998) . The right panel repots the estimates of the RFSV model of 

Gatheral et al. (2018) . 

FSV RFSV 

ζ Est . Std.Err . t − Stat P − v al Est . Std.Err . t − Stat P − v al

θ 9.9569 0.5104 19.5072 0.0000 0.0005 – – –

m −5.2410 0.0026 −1985.16 0.0000 −5.5263 0.0330 −167.652 0.0000 

η 0.9783 0.0496 19.7345 0.0000 7.4175 0.0234 316.399 0.0000 

H 0.9276 0.0016 583.136 0.0000 0.0236 0.0002 102.444 0.0000 

matrix �T must be optimally chosen, and it is set as the inverse 

of the covariance matrix of the OLS estimates of β . The parameter 

estimates are reported in Table 1 . 

All parameters are strongly significant. The estimated value of 

H is close to the upper bound, while we have a strong mean- 

reversion effect as measured by the θ parameter estimated above 

9.9. These parameter estimates are rather different from those of 

the RFSV model, which restrict the parameter H to be smaller than 

0.5 (and around 0.14), but set the speed of mean-reversion very 

close to zero. This means that, with a negligible mean reversion 

term, the dynamics of σ ( t ) are mostly governed by the fractional 

Brownian motion only with antipersistent innovations H < 1/2, see 

the discussion in Rossi and Santucci de Magistris (2014) and 

Bennedsen et al. (2016) . Instead, with a strong mean-reversion ef- 

fect the innovations to the volatility process can be persistent, that 

is H > 1/2. In other words, the innovation to the log volatility pro- 

cess are long memory, while the estimates of the long-mean are 

associated to an average value of daily volatility around 0.78%, that 

is 12.48% on an annual basis. Fig. 8 shows a simulated trajectory of 

RV based on the. The simulated RV series replicates the main fea- 

tures of the observed one, including the long-memory features as 

emerges also from the ACF. 

Furthermore, the implied density of the volatility, σ ( t ), is re- 

ported in Fig. 9 for the FSV. The long right tail of the distribution 

of σ ( t ) assigns non-negligible probability to high-values of volatil- 

ity. For instance, the probability that volatility is above 35% on an- 

nual basis is around 0.7% in the FSV model, and around 2.4% in 

the RFSV model. The FSV ad RFSV models allow us to estimate the 

volatility-at-risk, namely the VolaR see Caporin et al. (2017) , that 

is the analogous of the value-at-risk (VaR) in the volatility context, 
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Fig. 9. Density of σ ( t ) based on the estimates. The plot reports the density of σ (t) = exp X H (t) , when X H ( t ) follows the FSV and RFSV processes, respectively. On the x-axis 

volatility is expressed in annualized percentage terms. 

i.e. the risk of extreme high volatility. In other words, the VolaR is 

the value satisfying 

P (σ (t) > VolaR (α)) = α, (12) 

which is nothing else than the quantile at the 1 − α% (on the right- 

tail) of the log-normal distribution. For instance, when α = 0 . 05 

the VolaR is set to 0.0138 (FSV) and 0.0165 (RFSV), which means 

that the models assign a probability of 5% to the event that the 

volatility is above 21.91% and 26.19%, respectively on annual ba- 

sis. When α = 0 . 01 the VolaR is set to 0.0205 (FSV) and 0.0298 

(RFSV), which means that the models assign a probability of 1% to 

the event that the volatility is above 32.54% and 47.31%, respec- 

tively on annual basis. 

4. Conclusion 

This paper analyzed the properties of a class of processes that 

posses the mean reverting property, which is suitable to model 

many financial and macroeconomic variables. We computed the 

variance of the fOU process and derived the probability for its 

supremum. We considered three examples of the fOU model in 

the context of stochastic volatility under fractionality. In particular, 

we looked at FSV model of Comte and Renault (1998) , the RFSV 

of Gatheral et al. (2018) , and the rBergomi model introduced in 

Bayer et al. (2016) . The range of applicability of the results of the 

present paper is rather wide. From a macro-prudential perspective, 

society relies on the stability of the financial sector. The recent fi- 

nancial crisis led to recession and sovereign debt crises and high- 

lighted the strong impact that risky rates have on the financial sta- 

bility. Central banks, financial institutions, risk managers as well as 

most of the agents operating in the financial market need informa- 

tion on the maximum value that volatility (or interest rates) can 

reach, in order to manage their risks, to hedge financial assets and 

to construct portfolios of bonds and equities. 

Appendix A. Proof of Proposition 1 

Proof. In order to derive the theorem, we use the following two 

results on the fractional Brownian motion established in Cheridito 

et al. (2003) . 

i) Let B H (t) = { t ∈ R } be a fractional Brownian motion with Hurst 

parameter H ∈ (0, 1). Let −∞ ≤ a ≤ ∞ and λ, η > 0. Then for al- 

most all ω ∈ � and for all t > a , ∫ t 

a 

e λu dB 

H (u ) = e λt B 

H (t) − e λa B 

H (a ) − λ

∫ t 

a 

e λu B 

H (u ) du. (13) 

Hence, the variance ς(t) := V ar[ X H (t)] of the fOU process is 

ς(t) = E 

(
[ ηe −θt 

∫ t 

0 

e θu dB H (u )] 2 
)

= η2 e −2 θt 
E 

(
[ e θt B H (t) − θ

∫ t 

0 

e θu B H (u ) du ] 2 
)

by i) 

= η2 e −2 θt 

(
e 2 θt 

E [ B H (t)] 2 − 2 e θt θ

∫ t 

0 

e θu 
E [ B H (t) B H (u )] du 

+ θ2 
E 

[∫ t 

0 

e θu B H (u ) du 

∫ t 

0 

e θv B H (v ) dv ] 
])

= η2 t 2 H − θη2 e −θt 

∫ t 

0 

e θu (t 2 H + u 2 H − | t − u | 2 H ) du 

+ η2 e −2 θt θ2 

∫ t 

0 

∫ t 

0 

e θu e θv 
E [ B H (u ) B H (v )] d ud v 

= η2 t 2 H − θη2 e −θt 

∫ t 

0 

e θu (t 2 H + u 2 H − | t − u | 2 H ) du 

+ θ2 η2 e −2 θt 1 

2 

∫ t 

0 

∫ t 

0 

e θu e θv (u 2 H + v 2 H − | u − v | 2 H ) d ud v . (14) 

�

Appendix B. Proof of Proposition 2 

Proof. First, we recall a result provided in Nourdin (2012) . 

i) Let X = { X(t) , t ∈ [0 , 1] } be a centered and continuous Gaussian 

process. Set ζ 2 = sup t∈ [0 , 1] V ar[ X(t)] . Set ξ = E [ sup u ∈ [0 , 1] X(u )] 

finite. Then, for all x > ξ

P 

(
sup 

u ∈ [0 , 1] 

X (u ) ≥ x 

)
≤ e 

− (x −ξ ) 2 

2 ζ2 . (15) 

Eq. (15) shows that the supremum of a Gaussian process 

roughly behaves like a Gaussian variable with variance equal to the 

largest variance achieved by the entire process. Based on this re- 

sult, we now derive an expression for the probability for the supre- 

mum of the fOU process. In order to prove Theorem 2 , note that 

for x > 0 and a constant c > 0 one has ∫ ∞ 

x 

e −
y 2 

2 c dy ≤ 1 

x 

∫ ∞ 

x 

ye −
y 2 

2 c dy = 

k 

c 
e −

x 2 

2 c , 
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from which we deduce that lim x →∞ 

x −2 log 
∫ ∞ 

x e −
y 2 

2 c dy = − 1 
2 k 

. 

Notice that when t = 1 

1 √ 

2 πV ar[ X H (1)] 

∫ ∞ 

x 

e 
− y 2 

2 V ar[ X H (1)] dy = P (X H (1) ≥ x ) ≤ P (M 

H (1) ≥ x ) , 

where V ar[ X H (1)] for the fOU is defined in Proposition 1 . This im- 

plies that 

lim 

x →∞ 

inf x −2 log P (M 

H (1) ≥ x ) ≥ − 1 

2 V ar[ X 

H (1)] 
. (16) 

Furthermore, Eq. (15) implies that when x is large enough 

log P (M 

H (1) ≥ x ) ≤ − (x − E [ M 

H (1)]) 2 

2 sup t∈ [0 , 1] V ar[ M 

H (1)] 
≤ − (x − E [ M 

H (1)]) 2 

2 V ar[ X H (1)] 
, 

in turn giving that 

lim 

x →∞ 

sup x −2 log P (M 

H (1) ≥ x ) ≤ − 1 

2 V ar[ X 

H (1)] 
. (17) 

Combining (16) and (17) completes the proof. �

References 

Andersen, T.G. , Bollerslev, T. , Diebold, F.X. , Ebens, H. , 2001a. The distribution of re- 
alized stock return volatility. J. Financial Econ. 61 (1), 43–76 . 

Andersen, T.G. , Bollerslev, T. , Diebold, F.X. , Labys, P. , 2001b. The distribution of real- 
ized exchange rate volatility. J. Am. Stat. Assoc. 96 (453), 42–55 . 

Andersen, T.G. , Bollerslev, T. , Diebold, F.X. , Labys, P. , 2003. Modeling and forecasting 

realized volatility. Econometrica 71 (2), 579–625 . 
Avellaneda, M. , Lee, J. , 2010. Statistical arbitrage in the U.S. equity market. Quant. 

Finance 10, 761–778 . 
Barndorff-Nielsen, O.E. , Shephard, N. , 2002a. Econometric analysis of realized 

volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. 
Ser. B (Stat. Methodol.) 64 (2), 253–280 . 

Barndorff-Nielsen, O.E. , Shephard, N. , 2002b. Estimating quadratic variation using 

realized variance. J. Appl. Econom. 17 (5), 457–477 . 
Bayer, C. , Friz, P. , Gatheral, J. , 2016. Pricing under rough volatility. Quant. Finance 16 

(16), 887–904 . 
Bennedsen, M., Lunde, A., Pakkanen, M. S., 2016. Decoupling the short-and long- 

term behavior of stochastic volatility. arXiv: 1610.00332v1 . 
Bergomi, L. , 2005. Smile dynamics. Risk 67–73 . 

Bernard, C. , Jiang, X. , Wang, R. , 2014. Risk aggregation with dependence uncertainty. 
Insurance Math. Econ. 54, 93–108 . 

Bernard, C. , Vanduffel, S. , 2015. A new approach to assessing model risk in high 

dimensions. J. Banking Finance 58, 166–178 . 
Bjork, T. , Hyll, M. , 20 0 0. Fractional Ornstein–Uhlenbeck Process. Stockholm School 

of Economics . Unpublished Manuscript 
Brigo, D. , Mercurio, F. , 2001. A deterministic shift extension of analytically tractable 

and time homogeneous short rate models. Finance Stochast. 5 (3), 369–387 . 
Caporin, M. , Rossi, E. , Santucci de Magistris, P. , 2017. Chasing volatility: a persistent 

multiplicative error model with jumps. J. Econom. 198 (1), 122–145 . 

Chen, Y.-H. , Tu, A.H. , 2013. Interest rate risk management and the mix of fixed and 
floating rate deb. J. Banking Finance 27, 514–528 . 

Cheridito, P. , Kawaguchi, H. , Maejima, M. , 2003. Fractional Ornstein–Uhlenbeck pro- 
cesses. Electron. J. Probab. 8 (3), 1–14 . 

Comte, F. , Renault, E. , 1998. Long memory in continuous-time stochastic volatility 
models. Math. Finance 8 (4), 291–323 . 

Corsi, F. , 2009. A simple approximate long-memory model of realized volatility. J. 
Financial Econom. 7, 174–196 . 

Corsi, F. , Renò, R. , 2012. Discrete-time volatility forecasting with persistent leverage 
effect and the link with continuous-time volatility modeling. J. Bus. Econ. Stat. 

30, 368–380 . 
Cox, J.C. , Ingersoll, J.E. , Ross, S. , 1985. A theory of the term structure of interest rates. 

Econometrica 53 (2), 385–407 . 
Delves, L. , Lyness, J. , 1967. A numerical method for locating the zeros of an analytic 

function. Math. Comput. 21 (100), 543–560 . 

Embrechts, P. , Puccetti, G. , 2006a. Bounds for functions of dependent risks. Finance 
Stochast. 10 (3), 341–352 . 

Embrechts, P. , Puccetti, G. , 2006b. Bounds for functions of multivariate risks. J. Mul- 
tivariate Anal. 97 (2), 526–547 . 

Engle, R.F. , Patton, A. , 2001. What is a good volatility model? Quant. Finance 1, 
237–245 . 

Filipovic, D. , 2007. Energy Risk: Valuing and Managing Energy Derivative, 2nd ed 

McGraw Hill, New York . 
Gatheral, J. , Jaisson, T. , Rosenbaum, M. , 2018. Volatility is rough. Quant. Finance 18 

(6), 933–949 . 
Gnedenko, B.V. , 1943. Sur la distribution limite du terme maximum d’une série 

aléatoire. Ann. Math. 44, 423–453 . 
Gouriéroux, C. , Monfort, A. , Renault, E. , 1993. Indirect inference. J. Appl. Econom. 8, 

85–118 . 

Heston, S.L. , 1993. A closed-form solution for options with stochastic volatility with 
applications to bond and currency options. Rev. Financial Stud. 6, 327–343 . 

Hull, J. , White, A. , 1990. Pricing interest rate derivative securities. Rev. Financial 
Stud. 3, 573–592 . 

Jacquier, A. , Pakkanen, M.S. , Stone, H. , 2018. Pathwise large deviations for the rough 
Bergomi model. J. Appl. Probab. 55 (4), 1078–1092 . 

Kaeck, A. , Alexander, C. , 2012. Volatility dynamics for the S&P 500: further evi- 

dence from non-affine, multi-factor jump diffusions. J. Banking Finance 36 (11), 
3110–3121 . 

Kaeck, A. , Alexander, C. , 2013. Continuous-time VIX dynamics: on the role of 
stochastic volatility of volatility. Int. Rev. Financial Anal. 28, 46–56 . 

Kolmogorov, A. , 1940. Wienersche spiralen und einige andere interessante kurven 
im hilbertschen raum. Comptes Rendus (Doklady) de l’AcadÃ©mie des Sciences 

de l’URSS (N.S.) 26, 115–118 . 

Kou, S. , Peng, X. , 2016. On the measurement of economic tail risk. Oper. Res. 64 (5), 
1056–1072 . 

Kroese, D.P. , Botev, Z.I. , 2015. Spatial process simulation. In: Stochastic Geometry, 
Spatial Statistics and Random Fields. Springer, pp. 369–404 . 

Kwona, O.K. , 2007. Mean reversion level extensions of time homogeneous affine 
term structure models. Appl. Math. Finance 14, 291–302 . 

Lai, K.S. , 2004. On structural shifts and stationarity of the ex-ante real interest rate. 

Int. Rev. Econ. Finance 13 (2), 217–228 . 
Liu, L.Y. , Patton, A.J. , Sheppard, K. , 2015. Does anything beat 5-minute RV? a com- 

parison of realized measures across multiple asset classes. J. Econom. 187 (1), 
293–311 . 

Mandelbrot, B. , Van Ness, J. , 1968. Fractional brownian motions, fractional noises 
and applications. SIAM Rev. 10, 422–437 . 

Nourdin, I. , 2012. Selected Aspects of Fractional Brownian Motion. Bocconi Univer- 
sity Press. Springer-Verlag Italia, Milan . 

Rossi, E. , Santucci de Magistris, P. , 2014. Estimation of long memory in integrated 

variance. Econom. Rev. 33 (7), 785–814 . 
Rossi, E. , Santucci de Magistris, P. , 2018. Indirect inference with time series observed 

with error. J. Appl. Econom. 33 (6), 874–897 . 
Sauri, O. , 2019. Pathwise decompositions of Brownian semistationary processes. 

Theory Probab. Appl. 64 (1), 78–102 . 
Tan, J. , 1997. Principal component analysis and portfolio optimization. Math. Finance 

7, 95–105 . 

Vasicek, O. , 1977. An equilibrium characterisation of the term structure. J. Financial 
Econ. 5, 177–188 . 

http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0001
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0001
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0001
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0001
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0001
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0002
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0002
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0002
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0002
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0002
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0003
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0003
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0003
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0003
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0003
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0004
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0004
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0004
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0005
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0005
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0005
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0006
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0006
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0006
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0007
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0007
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0007
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0007
http://arxiv.org/abs/1610.00332v1
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0008
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0008
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0009
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0009
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0009
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0009
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0010
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0010
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0010
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0011
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0011
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0011
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0011
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0012
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0012
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0012
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0013
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0013
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0013
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0013
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0014
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0014
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0014
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0015
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0015
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0015
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0015
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0016
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0016
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0016
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0017
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0017
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0018
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0018
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0018
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0019
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0019
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0019
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0019
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0020
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0020
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0020
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0021
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0021
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0021
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0022
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0022
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0022
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0023
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0023
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0023
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0024
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0024
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0025
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0025
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0025
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0025
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0026
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0026
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0027
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0027
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0027
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0027
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0028
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0028
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0029
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0029
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0029
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0030
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0030
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0030
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0030
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0031
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0031
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0031
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0032
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0032
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0032
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0033
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0033
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0034
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0034
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0034
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0035
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0035
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0035
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0036
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0036
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0037
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0037
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0038
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0038
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0038
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0038
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0039
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0039
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0039
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0040
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0040
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0041
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0041
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0041
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0042
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0042
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0042
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0043
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0043
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0044
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0044
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0045
http://refhub.elsevier.com/S0378-4266(19)30229-8/sbref0045

	Volatility tail risk under fractionality
	1 Introduction
	2 Theoretical background
	2.1 Supremum of the fOU process
	2.1.1 Supremum in the rBergomi model


	3 Empirical analysis
	3.1 Density of the fOU volatility model

	4 Conclusion
	Appendix A Proof of Proposition 1
	Appendix B Proof of Proposition 2
	References


