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Abstract

We show how to derive an effective nonlinear dynamics, described by the Hartree–Fock
equations, for fermionic quantum particles confined to a two-dimensional box and in
presence of an external, uniform magnetic field. The derivation invokes the Dirac–
Frenkel principle. We discuss the validity of this effective description with respect to
the many-body Schrödinger dynamics for small times and for weak interactions, and
also in regards to the number of particles.

1 Introduction

Many-body quantum theory is plagued by the “curse of dimensionality”: although the
many-body Schrödinger dynamics is described mathematically by a linear PDE, whose
solution is therefore immediate to derive, the presence of a large number of interacting
particles makes the concrete computation of properties of the solution (say, measured in
terms of expectation values of observables in the many-body wave function) practically
inaccessible. One looks therefore for effective descriptions of the many-body quantum dy-
namics, which retain only partial (but still relevant) information on the full wave function,
but on the other hand have the advantage of depending on fewer degrees of freedom. The
“price to pay” to obtain this simplified representation is that the approximating objects
are often described as solutions to nonlinear differential equations. There are many in-
stances of nonlinear PDEs of relevance for mathematical physics which arise in this way:
from the nonlinear Schrödinger equation, used to model Bose–Einstein condensates [20],
to the Hartree (respectively Hartree–Fock) equations for the effective dynamics of large
collections of bosons (respectively fermions) [19]. The derivation of such equations from
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microscopic models, like the N -body Schrödinger equation, is a very active research field
in mathematical physics: we refer the reader to the fairly recent monograph [4] and to the
survey article [24] and references therein for an account on the literature.

In this note, we apply this general paradigm to the concrete case of the quantum dy-
namics of N fermionic particles subject to a uniform external magnetic field. Specifically,
we work in the canonical ensemble, namely we consider the number of particles as fixed
(but possibly arbitrarily large). We illustrate how the application of a variational ap-
proach known as the Dirac–Frenkel principle allows to derive the Hartree–Fock equations
as the effective description of such systems, see Theorem 4.3. These equations provide
a mean-field description of the interactions among the fermions, and the solution to the
Hartree–Fock equations gives an “uncorrelated” approximation to the many-body wave
function, whose form is that of a Slater determinant : this is the form of the simplest
possible wave functions obeying fermionic statistics. In recent times, these effective de-
scriptions of the quantum dynamics in magnetic fields have themselves proved to be useful
starting points for considerations e.g. in density functional theory and other similar lim-
its [17, 21, 22], thus motivating the present attempt to give an account on their derivation.
We also quantify the effectiveness of the approximation by providing a norm bound for
the difference of the solution to the N -body Schrödinger equation and the outcome of
the Dirac–Frenkel variational principle, which is illustrated in Theorem 5.1. We comment
on how this bound justifies the nonlinear approximation for small times and for weak
interactions, and discuss also the dependence of this bound on the number of particles, in
relation to a coupled mean-field and semiclassical scaling. For the sake of a self-contained
and introductory presentation, we include a quick overview on the one-particle description
of charged quantum particles in a magnetic field through the Landau Hamiltonian (Sec-
tion 2), and on generalites on N -body quantum systems (Section 3). Our exposition shows
in particular that translation invariance, which is explicitly broken by any choice of the
magnetic vector potential and invalidates the use of the Fourier expansion, is irrelevant
for the derivation of the Hartree–Fock equations: indeed, in our presentation, one could
replace the eigenvectors of the Landau operator with the plane waves which diagonalize
the one-particle free Hamiltonian in the box, and recover in this way the non-magnetic
case. While we don’t claim any originality in the results described in this note, we hope
the reader may still find some usefulness and insights in our presentation of this concrete
application of the Dirac–Frenkel principle to quantum dynamics.

2 One-particle picture: the Landau Hamiltonian

We consider a charged quantum particle confined to two dimensions by the presence of
a uniform external magnetic field perpendicular to the plane [26, Chapter 8]. The two-
dimensional sample could be further confined to a box Λ := [−L1/2, L1/2]×[−L2/2, L2/2],
L1, L2 > 0, with appropriate boundary conditions to be discussed later, or be infinite (and
we will treat both situations in this Section). We choose coordinates in configuration space
so that the magnetic field is of the form B⃗ = (0, 0, B) with qB > 0, where q is the electric
charge of the fermion. If A⃗ denotes a magnetic potential for the magnetic field B⃗, i.e.1

1With a slight abuse of notation, we identify the three-dimensional magnetic vector potential (A1, A2, 0)
with A⃗ = (A1, A2) ∈ R2, and we denote x⃗ ∧ y⃗ := x1y2 − x2y1 for x⃗ = (x1, x2) and y⃗ = (y1, y2) in R2.
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curl A⃗ ≡ (0, 0, ∇⃗ ∧ A⃗) = B⃗, then the one-particle Landau Hamiltonian reads

H1 =
1

2m

(
p⃗A⃗

)2 ≡ 1

2m

(
p⃗− q

c
A⃗
)2
, (1)

where m is the mass of the particle, p⃗ = −iℏ∇⃗ is the 2D momentum and c the speed of
light.

Even though we will not make it explicit in the notation, the expression for H1 does
depend on the choice of the vector potential. It is well known however that the Landau
Hamiltonian displays a magnetic gauge covariance, namely that if γ is a (smooth) function
on R2 and one sets

A⃗′ := A⃗+ ∇⃗γ ,

then

H ′
1 ≡

1

2m

(
p⃗− q

c
A⃗′

)2
= eiqγ/ℏc

(
1

2m

(
p⃗− q

c
A⃗
)2

)
e−iqγ/ℏc = eiqγ/ℏcH1e

−iqγ/ℏc. (2)

2.1 From Landau to the harmonic oscillator

Observe first of all that the two components of the magnetic momentum p⃗A⃗ = −iℏ∇⃗ −
(q/c)A⃗ do not commute: indeed[

pA⃗,1, pA⃗,2

]
= −i ℏ

q

c
∇⃗ ∧ A⃗ = i ℏ

qB

c
1 ≡ i ℏ2b1 (3)

where we set, also for future convenience,

b :=
qB

ℏc
> 0. (4)

We use this observation to draw a connection between the Landau Hamiltonian and a
one-dimensional quantum harmonic oscillator. Define ladder operators

a := i

√
1

2ℏ2b

(
pA⃗,1 + i pA⃗,2

)
, a† := −i

√
1

2ℏ2b

(
pA⃗,1 − i pA⃗,2

)
. (5)

These operators satisfy canonical commutation relation, [a, a†] = 1, and therefore a†a is
a number operator, meaning that σ(a†a) = N. Moreover, with ωc := ℏb/m = qB/mc
denoting the cyclotron frequency, an immediate check yields

H1 = ℏωc

(
a†a+

1

2
1

)
. (6)

From this, we can conclude at once that the spectrum of H1 consists of the Landau levels

En = ℏωc

(
n+

1

2

)
=

ℏ2

2m
b (2n+ 1), n ∈ N. (7)
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2.2 Eigenfunctions for the Landau Hamiltonian: infinite volume

In order to diagonalize the Landau Hamiltonian, we consider first the infinite-volume case
x⃗ ∈ R2. For definiteness, we fix the Landau gauge

A⃗(x1, x2) = A⃗L(x1, x2) := B(0, x1)

hereonafter. Since this vector potential does not depend on x2, the standard kinetic
momentum in the second direction is a conserved quantity. We can then define a good
quantum number k2 ∈ R by performing a partial Fourier reduction: namely, we look for
(generalized) eigenstates of the form ψk2(x1, x2) = eik2x2ϕk2(x1). The fiber Hamiltonian
H1(k2) := eik2x2H1e

−ik2x2 is then the restriction of the Landau Hamiltonian to states with
fixed momentum k2, that is, to the ϕ’s. This fiber Hamiltonian describes a one-dimensional
quantum harmonic oscillator of cyclotron frequency ωc centered at k2/b: in the Landau
gauge

H1(k2) = − ℏ2

2m

∂2

∂x21
+

1

2
mω2

c

(
x1 −

k2
b

)2

= ℏωc

(
a†(k2)a(k2) +

1

2
1

)
,

where a†(k2) and a(k2) are fibered ladder operators

a(k2) :=
1√
2b

(
∂

∂x1
+ bx1 − k2

)
, a†(k2) :=

1√
2b

(
− ∂

∂x1
+ bx1 − k2

)
.

The spectrum of H(k2) is then also discrete (and independent of k2), formed by the
same Landau levels of (7). The eigenfunctions of H1(k2) are then also constructed in the
standard way: starting from a state annihilated by a(k2), one obtains excited states by
subsequent applications of a†(k2).

This procedure yields a set of generalized eigenstates for the Landau Hamiltonian H1

in the Landau gauge and in infinite volume given by

φ∞
n,k2(x1, x2) := eik2x2ϕ∞n,k2(x1), with ϕ∞n,k2(x1) := b1/4 hn

(√
b

(
x1 −

k2
b

))
, (8)

where the Hermite functions are defined by

hn(z) := (
√
π 2n n!)−1/2 e−z2/2Hn(z) (9)

with Hn the n-th Hermite polynomial. The choice of the numerical constant in hn(z) is
such that, for fixed k2 ∈ R, the function ϕ∞n,k2 is normalized in L2(R, dx1).

2.3 Magnetic translations

A similar analysis can be performed in the finite-volume case x⃗ ∈ Λ. We first need to
impose (self-adjoint) boundary conditions. To do so, we consider magnetic translations.
These are generated by (dual) magnetic momenta p⃗A⃗∨ = −iℏ∇⃗− (q/c)A⃗ ∨, for some linear

vector potential A⃗ ∨, via

Tm
a⃗ := eia1 pA⃗∨,1

/ℏ eia2 pA⃗∨,2
/ℏ, a⃗ = (a1, a2) ∈ R2.
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Magnetic translations are required first of all to commute with the Hamiltonian. This can
be achieved if[

pA⃗,i, pA⃗∨,j

]
= −iℏ

q

c

(
∂jAi − ∂iA

∨
j

) !
= 0 for all i, j ∈ {1, 2} (10)

since then [p⃗A⃗, T
m
a⃗ ] = 0 and [H1, T

m
a⃗ ] = [p⃗A⃗

2/2m,Tm
a⃗ ] = 0 as well. Notice that from the

above equality it follows that ∇⃗ ∧ A⃗ ∨ = −∇⃗ ∧ A⃗ = −B, and hence (compare (3))[
pA⃗∨,1, pA⃗∨,2

]
= −i ℏ2b1. (11)

By using that ∇⃗ ∧ A⃗ = ∂1A2 − ∂2A1 = B is constant, one can solve (10) and obtain

A⃗ ∨(x1, x2) = A⃗(x1, x2) +B

(
x2
−x1

)
. (12)

We can then choose magnetic-periodic boundary conditions for the Landau Hamiltonian
on the box Λ, namely

φ(−L1/2, x2) =
(
Tm
(L1,0)

φ
)
(−L1/2, x2),

φ(x1,−L2/2) =
(
Tm
(0,L2)

φ
)
(x1,−L2/2),

(x1, x2) ∈ Λ. (13)

In order for the two conditions above to be consistent with each other, the two magnetic
translations Tm

(L1,0)
and Tm

(0,L2)
should commute. This is not the case, due to the noncom-

mutativity of the components of the magnetic momenta. To see this more explicitly, we
use the Baker–Campbell–Hausdorff formula to elaborate the expression for the magnetic
translations. First of all, notice that the commutator in (3) is central, that is, it commutes
with both pA⃗∨,1 and pA⃗∨,2. The Baker–Campbell–Hausdorff formula then reduces to

Tm
(L1,0)

Tm
(0,L2)

= eiL1 pA⃗∨,1
/ℏ eiL2 pA⃗∨,2

/ℏ = eibL1L2/2eiL⃗·p⃗A⃗∨/ℏ

where L⃗ = (L1, L2). A similar computation yields

Tm
(L2,0)

Tm
(0,L1)

= e−ibL1L2/2eiL⃗·p⃗A⃗∨/ℏ

and hence

Tm
(L1,0)

Tm
(0,L2)

= eibL1L2 Tm
(L2,0)

Tm
(0,L1)

.

In order for magnetic-periodic boundary conditions to be consistent, then, we need to
impose the following quantization condition:

bL1L2
!
= 2πM, M ∈ N. (14)

Notice that the above equality means that the magnetic flux through the sample Λ is an
integer multiple of the magnetic flux quantum Φ0 := hc/q:

ΦB :=

∫
Λ
dx⃗ ∇⃗ ∧ A⃗(x⃗) = BL1L2

!
= 2πM

ℏc
q

=MΦ0, M ∈ N.
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Under this condition, moreover, the magnetic translations form a unitary representation
of the lattice

Γ :=
{
ℓ⃗ = (ℓ1L1, ℓ2L2) : ℓ1, ℓ2 ∈ Z

}
≃ Z2,

namely Tm : Γ → U(L2(Λ)), ℓ⃗ 7→ Tm
ℓ⃗
, satisfies Tm

0⃗
= 1 and Tm

ℓ⃗
Tm
ℓ⃗′

= Tm
ℓ⃗+ℓ⃗′

= Tm
ℓ⃗′
Tm
ℓ⃗
.

Concretely, if we fix once again the Landau gauge A⃗L(x1, x2) = B(0, x1), then A⃗
∨
L(x1, x2) =

B(x2, 0) from (12) and

Tm
a⃗ = eia1(p1−qBx2/c)/ℏ eia2p2 = e−i b a1 x2 Ta⃗, (15)

where Ta⃗ := ei⃗a·p⃗/ℏ are the usual translations, acting as (Ta⃗φ)(x⃗) = φ(x⃗+a⃗). The magnetic-
periodic boundary conditions then read in this gauge

φ(−L1/2, x2) = e−i b L1 x2 φ(L1/2, x2) = e−i 2πM x2/L2 φ(L1/2, x2),

φ(x1,−L2/2) = φ(x1, L2/2),
(x1, x2) ∈ Λ. (16)

2.4 Eigenfunctions for the Landau Hamiltonian: finite volume

We now come back to the question of finding eigenfunctions for the Landau Hamiltonian
in the Landau gauge satisfing the magnetic-periodic boundary conditions (16). One can
perform the same analysis from Section 2.2, the main difference being that the conserved
momentum in the second direction k2 now takes values in (2π/L2)Z, and the corresponding
Fourier multiplier eik2x2 can be also L2-normalized by dividing it by a factor of

√
L2. In

order to enforce also the first condition in (16), notice that for ℓ1 ∈ Z and k2 = 2πm/L2 ∈
(2π/L2)Z(

Tm
(ℓ1L1,0)

φ∞
n,2πm/L2

)
(x⃗) = b1/4 e−i2πMℓ1x2/L2 eik2x2hn

(√
b

(
x1 + ℓ1L1 −

k2
b

))
= b1/4 ei2π(m−Mℓ1)x2/L2 hn

(√
b

(
x1 −

2π

L2
(m−Mℓ1)

))
= φ∞

n,2π(m−Mℓ1)/L2
(x⃗)

(17)

where we made use of the quantization condition (14) in the second equality. Thus, if we
saturate over magnetic translations and define, for m ∈ {0, . . . ,M − 1} ≡ Z/MZ,2

φn,m(x⃗) :=
1√
L2

∑
ℓ1∈Z

(
Tm
(ℓ1L1,0)

φ∞
n,2πm/L2

)
(x⃗) =

1√
L2

∑
ℓ1∈Z

φ∞
n,2π(m−Mℓ1)/L2

(x⃗)

= b1/4
ei2πmx2/L2

√
L2

∑
ℓ1∈Z

e−i2πMℓ1x2/L2 hn

(√
b
(
x1 +

(
ℓ1 −

m

M

)
L1

))
,

(18)

we will obtain states which satisfy the magnetic-periodic boundary conditions (16) and
are eigenstates of H1 with energy En. These are, moreover, orthonormal. Indeed, notice
that if m ̸= m′ ∈ {0, . . . ,M − 1} each state in the sum defining φn,m is orthogonal to
each other state in the sum defining φn,m′ , since they have different momentum k2. It

2Notice that this series is convergent due to the Gaussian decay at infinity of the Hermite functions.
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follows that
〈
φn,m, φn,m′

〉
L2(Λ)

= δm,m′ ∥φn,m∥2L2(Λ). To compute the latter norm squared,

notice that again by the orthogonality of the vectors in the sum defining φn,m we can use
Parseval’s identity to get

∥φn,m∥2L2(Λ) =
1

L2

∑
k2∈2π(MZ+m)/L2

∥∥φ∞
n,k2

∥∥2
L2(Λ)

=
∑

k2∈2π(MZ+m)/L2

∥∥ϕ∞0,k2∥∥2L2([−L1/2,L1/2])
.

(19)

Notice now that in view of (14)

ϕ∞n,k2+2πM/L2
(x1) = ϕ∞n,k2+bL1

(x1) = b1/4 hn

(√
b

(
x1 −

k2 + bL1

b

))
= b1/4 hn

(√
b

(
x1 − L1 −

k2
b

))
= ϕ∞n,k2(x1 − L1)

(20)

so that shifting the momentum k2 by 2πM/L2 is equivalent to shifting the argument of
the function ϕ∞n,k2 by −L1. The sum in (19) becomes then

∥φn,m∥2L2(Λ) =
∑
ℓ1∈Z

∥∥ϕ∞0,m∥∥2
L2([−L1/2,L1/2]−ℓ1L1)

=
∥∥ϕ∞0,m∥∥2

L2(R) = 1

as wanted. By a similar argument, invoking the completeness in L2([−L2/2, L2/2], dx2)
of the Fourier multipliers

{
eik2x2/

√
L2

}
k2∈(2π/L2)Z

and the completeness of the Hermite

functions as an orthonormal set in L2(R, dx1) [25], one can conclude that the collection
{φn,m}n∈N,m∈Z/MZ forms an orthonormal basis for L2(Λ).

We collect the previous considerations in the following statement.

Theorem 2.1. The operator H1 defined in (1), acting on L2(Λ) with magnetic-periodic
boundary conditions (13), is self-adjoint on the domain given by the magnetic Sobolev
space

D(H1) = H2
A⃗
(Λ) :=

{
ψ ∈ L2(Λ) : H1 ψ ∈ L2(Λ)

}
.

The spectrum of H1 consists of Landau levels

σ(H1) = σp(H1) =

{
En =

ℏ2

2m
b (2n+ 1) : n ∈ N

}
and moreover

ker (H1 − En 1) = Span {φn,m : m ∈ {0, . . . ,M − 1} ≡ Z/MZ} , n ∈ N ,

with φn,m as in (18). In particular, each Landau level has finite degeneracyM , withM ∈ N
as in (14). Finally, the collection {φn,m}n∈N,m∈Z/MZ forms an orthonormal eigenbasis of

H1 for L2(Λ).

Proof. The only point left to prove is to show thatH1 = H∗
1 is self-adjoint. First of all, H∗

1

extends H1 because the latter is symmetric, as can be easily seen by integration by parts:
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the boundary terms on ∂Λ vanish because of magnetic-periodic boundary conditions. To
show that the converse is also true, we need to show that D(H∗

1 ) ⊂ D(H1) = H2
A⃗
(Λ),

where

D(H∗
1 ) :=

{
f ∈ L2(Λ) : ∃ g ∈ L2(Λ) : ⟨H1φ, f⟩ = ⟨φ, g⟩ ∀φ ∈ D(H1)

}
.

Let then f ∈ D(H∗
1 ) ⊂ L2(Λ): we want to show that also H1f ∈ L2(Λ). Since the set

{φn,m}n∈N,m∈Z/MZ is orthonormal and complete, by Parseval’s identity it suffices to show
that ∑

n∈N
m∈Z/MZ

|⟨φn,m, H1f⟩|2 < +∞ .

By the symmetry of H1 and the definition of D(H∗
1 ), we have that

⟨φn,m, H1f⟩ = ⟨H1φn,m, f⟩ = ⟨φn,m, g⟩

for some g ∈ L2(Λ), independent of n ∈ N and m ∈ Z/MZ, since all φn,m’s are in the
domain of H1. But then∑

n∈N
m∈Z/MZ

|⟨φn,m, H1f⟩|2 =
∑
n∈N

m∈Z/MZ

|⟨φn,m, g⟩|2 = ∥g∥2L2(Λ) < +∞

which concludes the proof. ■

3 N-particle picture: non-interacting ground state

The dynamics of a single quantum particle in an external uniform magnetic field is de-
scribed by the Landau Hamiltonian, whose properties were illustrated in the previous
Section. When a quantum system is composed by a number N ≥ 2 of particles, then the
effects of the interactions between such particles should be included in the model. We
recall in this Section a few features of many-body quantum systems which are relevant for
our discussion: the reader is referred e.g. to [18] for a more detailed description.

3.1 Generalities on N-body quantum systems

First of all, the wave function of the collective system depends on theN positions x⃗1, . . . , x⃗N
of the particles, and are thus elements of the Hilbert space

L2(ΛN ) ≃
N⊗
i=1

L2(Λ) ≡ L2(Λ)⊗ N times· · · ⊗L2(Λ)

if Λ is the configuration space for the single particle (e.g. the 2-dimensional box). Actually,
wave functions should be described as vector-valued, i.e. elements of L2(ΛN ) ⊗ CS , to
take into account the spin of the quantum particles they model. Many-body systems
reveal however a new feature, peculiar to quantum particles, in that the particles’ spin
influences their statistics: this feature is modelled by a phase which is picked up by the
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wave function, when the positions of two particles are exchanged. Particularly relevant
are the cases in which this phase is +1 — i.e. totally symmetric wave functions, describing
bosonic particles or bosons, for simplicity — and the one in which this phase is −1 —
i.e. totally antisymmetric wave functions, describing fermionic particles or fermions, for
simplicity. In the following, we will be interested in fermionic wave functions, and make
the simplified, “academic” assumption of treating spinless fermions: this means that we
ignore the vectorial spin degrees of freedom of the particles, and model them through
scalar, antisymmetric wave functions in the subspace

HN =
N∧
i=1

L2(Λ) := L2(Λ)∧ N times· · · ∧L2(Λ) ⊂ L2(ΛN ) .

Thus, the main feature of the particles’ statistics which is retained by this description
is the Pauli exclusion principle, which dictates that two particles cannot be in the same
one-particle quantum state ψ, as guaranteed by the antisymmetry of the wedge product:
ψ ∧ ψ = 0.

The simplest wave functions inHN are Slater determinants: given N one-particle quan-
tum states ψ1, . . . , ψN ∈ L2(Λ) (i.e. an orthonormal set of square-integrable functions),
we define

ΨSlater(x⃗1, . . . , x⃗N ) = ψ1 ∧ · · · ∧ ψN (x⃗1, . . . , x⃗N ) :=
1√
N !

det [ψi (x⃗j)]1≤i,j≤N . (21)

The factor 1/
√
N !, which enters in the definition of the wedge product, ensures that

⟨ΨSlater,ΦSlater⟩HN
= ⟨ψ1 ∧ · · · ∧ ψN , φ1 ∧ · · · ∧ φN ⟩HN

= det
[
⟨ψi, φj⟩L2(Λ)

]
1≤i,j≤N

. (22)

In particular, ΨSlater is normalized in L2(ΛN ) if {ψ1, . . . , ψN} is an orthonormal set in
L2(Λ). By definition of the subspace HN ⊂ L2(ΛN ), Slater determinants span HN , and
in particular the Slater determinants

{φn1,m1 ∧ · · · ∧ φnN ,mN : (n1,m1) ̸= · · · ≠ (nN ,mN ) ∈ N× Z/MZ} (23)

form an orthonormal basis of HN , in view of Theorem 2.1 and of (22).

3.2 N-body quantum Hamiltonian

Having established the basic notation regarding the kinematics of many-body quantum
systems, we are ready to describe their dynamics, i.e. the typical quantum Hamiltonian for
such systems. It is customary to neglect, in first approximation, any interaction involving
a higher number of particles (like three-body interactions and so on), and therefore to
assume that particles interact at most pair-wise. One considers then Hamiltonians on HN

of the form

HN = Hni +Hint (24)

where:
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� Hni is the non-interacting part of the Hamiltonian, namely an operator of the form

Hni =

N∑
i=1

1L2(Λ,dx⃗1) ⊗ · · · ⊗ 1L2(Λ,dx⃗i−1) ⊗H
(i)
1 ⊗ 1L2(Λ,dx⃗i+1) ⊗ · · · ⊗ 1L2(Λ,dx⃗N ) ;

the operator Hni is thus a sum of operators, each of which acts non-trivially only

on the Hilbert space L2(Λ,dx⃗i) of the i-th particle through the operator H
(i)
1 , i ∈

{1, . . . , N};

� Hint is the interacting part of the Hamiltonian, which accounts for many-body in-
teraction and is of the form

Hint =
∑

1≤i<j≤N

Vij ≡
∑

1≤i<j≤N

V (x⃗i; x⃗j) (25)

where Vij is the multiplication operator times the two-body potential V (x⃗i; x⃗j), de-
pending non-trivially only on the positions of the i-th and j-th particle, i, j ∈
{1, . . . , N}, which accounts for interactions between this pair of particles. In or-
der to preserve indistinguishability of the N quantum particles, it is assumed that
the function V (·, ·) is left invariant by the exchange of its two entries, namely

V (x⃗; y⃗) = V (y⃗; x⃗) for all x⃗, y⃗ ∈ Λ .

The natural choice for us will be to posit that the non-interacting part of the Hamil-
tonian HN is modelled after the one-particle Landau Hamiltonian described in the last
Section, namely that

H
(i)
1 ≡ H1 for all i ∈ {1, . . . , N} ,

and that H1 is endowed with magnetic-periodic boundary conditions on Λ. Moreover, we
assume that the two-body potential V is a bounded function on Λ × Λ, so that Hint is a
bounded operator on HN with

∥Hint∥B(HN ) ≤
(
N

2

)
∥V ∥L∞(Λ×Λ) . (26)

This is a simplifying assumption, and much larger classes of singular potentials (including
e.g. those modeling Coulomb interactions) can be treated with the appropriate mathemat-
ical care: we refer the interested reader to [18, 4] and references therein.

Proposition 3.1. The Hamiltonian HN = Hni +Hint is self-adjoint on the domain

D(Hni) :=

N∧
i=1

H2
A⃗
(Λ) .

Proof. Recall that the states (23) generate HN orthonormally. Using (22) and the defi-
nition of Hni, it follows from Theorem 2.1 that

⟨φn1,m1 ∧ · · · ∧ φnN ,mN , Hni φn1,m1 ∧ · · · ∧ φnN ,mN ⟩ =
N∑
i=1

⟨φni,mi , H1 φni,mi⟩ =
N∑
i=1

Eni .
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Therefore, the states in (23) form an orthonormal eigenbasis of Hni for HN . Repeating
the argument contained in the proof of Theorem 2.1, we deduce that Hni is self-adjoint
on the domain D(Hni) =

∧N
i=1D(H1). The Kato–Rellich theorem guarantees that HN =

Hni+Hint is then self-adjoint on the same domain, as Hint is a bounded perturbation. ■

3.3 Non-interacting ground states

A typical quantity of interest to be determined in many-body quantum systems, especially
in connection with the question of stability of matter [18], is the ground state energy

E
(N)
0 := inf

Ψ∈HN
∥Ψ∥=1

⟨Ψ, HN Ψ⟩ .

For example, the condition E
(N)
0 > −∞ is called stability of the first kind for the quantum

system modelled by HN . States Ψ ∈ HN realizing the infimum in the definition of E0

are called ground states for HN . This topic has drawn a lot of attention: restricting to
a selection of mathematical results on properties of the ground state energy for systems
of interacting fermions (in three-dimensions and without magnetic fields), in particular to
its dependence on the number of particles or more generally on the particle density under
various assumptions on the two-body interaction potentials, we refer the reader to the
monograph [4] and to the more recent works [2, 9, 10, 12, 15, 16].

The computation of the ground state energy and of the corresponding ground states
is greatly simplified in the non-interacting case V ≡ 0. In our present framework, the
complete knowledge of the spectral information on the one-particle Landau Hamiltonian
H1, provided by Theorem 2.1, translates in a corresponding description of the spectral
properties of Hni as detailed in Proposition 3.1, and therefore in particular of its ground
state properties. The non-interacting ground state is constructed by “filling” the Lan-
dau levels from the lowest up, according to their multiplicity, with the only constraint
being given by the Pauli exclusion symmetry (that is, by the use of wedge products or
Slater determinants of the one-body energy states). We summarize the conclusions of this
construction in the following statement.

Theorem 3.2. Let HN = Hni =
∑N

i=1 1∧i−1
j=1 L

2(Λ) ⊗H1 ⊗ 1∧N
j=i+1 L

2(Λ). Write

N = (ν + 1)M + r , ν ∈ N, r ∈ {0, . . . ,M − 1} ,

where M is as in (14). Then the ground state energy of Hni is

E
(N)
0 =M

ν∑
n=0

En + rEν+1 ,

where the En’s are the Landau levels (7). Moreover, the space of ground states is

ker
(
Hni − E

(N)
0 1HN

)
= Span


 ν∧

n=0

∧
m∈Z/MZ

φn,m

 ∧ φν+1,m1 ∧ . . . ∧ φν+1,mr : m1 ̸= · · · ̸= mr ∈ Z/MZ

 .
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In particular, the ground state energy has a degeneracy equal to

dimker
(
Hni − E

(N)
0 1HN

)
=

(
M

r

)
.

Remark 3.3. From the explicit expression (7) for the Landau levels En’s, we can write

the non-interacting ground state energy E
(N)
0 from the above statement as

E
(N)
0 =M E0

[
ν∑

n=0

(2n+ 1) + r (2 ν + 3)

]
=M E0

[
(ν + 1)2 + r (2 ν + 3)

]
=M E0

[(
N − r

M

)2

+ r

(
1 + 2

N − r

M

)]
.

We notice in particular, for future reference, that the dependence of E
(N)
0 on the number

of particles is quadratic for large N .

4 Hartree–Fock effective dynamics for interacting fermions

When fermions interact, that is, when V ̸≡ 0, the description of their dynamics becomes
more involved. Even though the Schrödinger equation generated by the Hamiltonian HN

is linear, and thefore its solution can be expressed as Ψ(t) = e−iHN t/ℏΨ(0), the state Ψ(t)
at t ̸= 0 is typically difficult to describe (e.g. to compute numerically), as correlations
between particles are generated by the interacting potential even when the initial state
Ψ(0) is minimally correlated (that is, when it is a Slater determinant). One then looks
for a simpler, effective description of the dynamics of the quantum state. When Ψ(0) is
a Slater determinant — for example one of the non-interacting ground states described
in Theorem 3.2 — a possible approach is to try and “force” the evolution to stay in the
manifold of Slater determinants. While Slater determinants are definitely easier to handle,
since one can “separate” the orbitals describing the dynamical evolution of the different
particles, the result of this approach is that one trades the difficulty of having a many-
body wave function Ψ(t) depending on the positions of the N particles all at once with
having to describe N one-body states, which turn out to be coupled nonlinearly among
each other.

We will now describe this method, which is due to Dirac [11] and Frenkel [13], to deduce
the effective nonlinear dynamics within the space of Slater determinants from the linear
Schrödinger dynamics by means of a variational approach. We follow the presentation
in [19], to which the reader is referred for further details. As we will detail in the next
Section 5, our aim is to show that the effective dynamics gives a good approximation of the
actual dynamics at least for short times and for weak interactions, as expected from the
previous discussion. We will comment also on the dependence of this approximation on the
number of particles N . It is worth noting that a different application of the same Dirac–
Frenkel principle to derive an effective Hartree–Fock dynamics for non-magnetic fermionic
particle systems, formulated in terms of density matrices acting on the antisymmetric Fock
space (so, in the grand-canonical picture), has been described in [5].
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4.1 Dirac–Frenkel principle

In a general setting, the Dirac–Frenkel variational principle to derive an effective equation
from Schrödinger’s can be formulated as follows. Consider a Hamiltonian H that is a
self-adjoint and linear operator on a Hilbert space H. Let M be a smooth submanifold of
H, and for u ∈ M, let TuM denote the (complex) tangent space to M at u: by definition,
TuM consists of velocity vectors to every differentiable path on M passing through u. We
want to obtain a path u(t) ∈ M, with initial condition u(0) = Ψ(0) ∈ M, which at least
for small t approximates the solution Ψ(t) = e−iHt/ℏΨ(0) to the Schrödinger equation. The
Dirac–Frenkel principle states that u(t) ∈ M should be chosen such that, at each time t,
the derivative u̇(t) lying on the tangent space Tu(t)M satisfies the following condition:

⟨v, i ℏ u̇(t)−H u(t)⟩ = 0 for all v ∈ Tu(t)M . (27)

The above can be seen as a variational principle: indeed, by taking the real part of the
above scalar product, one can realize that [19]

u̇(t) = argmin
w∈Tu(t)M

∥∥∥∥w − 1

i ℏ
H u(t)

∥∥∥∥
H
.

Proposition 4.1. If u(t) satisfies the Dirac–Frenkel principle (27), then the flow t 7→ u(t)
preserves the energy:

⟨u(t), H u(t)⟩ ≡ ⟨u(0), H u(0)⟩ = ⟨Ψ(0), H Ψ(0)⟩ for all t .

If moreover u(t) ∈ Tu(t)M, then the flow t 7→ u(t) also preserves the norm:

∥u(t)∥ ≡ ∥u(0)∥ = ∥Ψ(0)∥ for all t .

Proof. As for the preservation of energy, it suffices to compute

d

dt
⟨u(t), H u(t)⟩ = ⟨u̇(t), H u(t)⟩+ ⟨u(t), H u̇(t)⟩ = ⟨u̇(t), H u(t)⟩+ ⟨u̇(t), H u(t)⟩

= 2 Re ⟨u̇(t), H u(t)⟩ = −2ℏ Im

〈
u̇(t),

1

i ℏ
H u(t)

〉
= −2ℏ Im ∥u̇(t)∥2H = 0 .

In the second-to-last equality, we have used (27) for v = u̇(t).

Concerning instead the preservation of the norm, we can similarly compute

d

dt
⟨u(t), u(t)⟩ = ⟨u̇(t), u(t)⟩+ ⟨u(t), u̇(t)⟩ = ⟨u(t), u̇(t)⟩+ ⟨u(t), u̇(t)⟩

= 2 Re ⟨u(t), u̇(t)⟩ = 2

ℏ
Im ⟨u(t), i ℏ u̇(t)⟩

=
2

ℏ
Im ⟨u(t), H u(t)⟩ = 0

due to the self-adjointness of H. Again, in the second-to-last equality, we have used (27)
for v = u(t) ∈ Tu(t)M. ■



170 ]ocnmp[ M Ferrero and D Monaco

4.2 Hartree–Fock equations from the Dirac–Frenkel principle

We now apply the Dirac–Frenkel variational principle to the N -body Hamiltonian HN

from (24) on HN . We choose the manifold of Slater determinants for the restricted dy-
namics:

M :=
{
u = aφ1 ∧ · · · ∧ φN : a ∈ C, φi ∈ L2(Λ), ⟨φi, φj⟩ = δi,j for i, j ∈ {1, . . . , N}

}
.

(28)

In the above, we have parametrized Slater determinants with orthonormal orbitals: in
particular, in this way, we have that ∥u∥ = |a|. Notice that M contains rays, that is, if u
is in M then s u is in M for all s ∈ R; therefore, u = (d/ds)(s u)

∣∣
s=0

∈ TuM for all u ∈ M.
Then, Proposition 4.1 applies, and the solution u(t) ∈ M of the Dirac–Frenkel variational
principle (27) will have constant norm for all t. We will take u(0) = Ψ(0) ∈ M ⊂ HN

of unit norm, as is natural for the initial datum of the Schrödinger equation; therefore in
particular

|a(t)| = ∥u(t)∥ ≡ 1 for all t . (29)

From (28) it appears that a natural choice to parametrize tangent vectors u̇ ∈ TuM is

u̇ = ȧ φ1 ∧ · · · ∧ φN + a φ̇1 ∧ φ2 ∧ · · · ∧ φN + · · ·+ aφ1 ∧ · · · ∧ φN−1 ∧ φ̇N , (30)

with ȧ ∈ C and φ̇i ∈ L2(Λ), i ∈ {1, . . . , N}. If u(t) ∈ M is the solution to the Dirac–
Frenkel variational principle, this parametrization for u̇(t) ∈ Tu(t)M can be chosen so that
it satisfies further constraints.

Proposition 4.2. Let t 7→ u(t) ∈ M be the solution to (27). Then u̇(t) ≡ du(t)/dt ∈
Tu(t)M can be chosen as in (30) with

⟨φi(t), φ̇j(t)⟩ = 0 for all i, j ∈ {1, . . . , N} and all t . (31)

Proof. It is clear that, if U ∈ U(N) is an N ×N unitary matrix, then

aφ1 ∧ · · · ∧ φN = a′ φ′
1 ∧ · · · ∧ φ′

N

where

a′ =
a

detU
and φ′

i =
n∑

j=1

φj Uji .

This is because linear combination of orthonormal vectors with coefficients from a unitary
matrix yield still orthonormal vectors, and ⟨φ1 ∧ · · · ∧ φN , φ

′
1 ∧ · · · ∧ φ′

N ⟩ = detU by the
properties of the scalar product of Slater determinants of orthonormal orbitals. We refer to
this as a gauge freedom in the representation of u = aφ1∧· · ·∧φN ∈ M with |a| = ∥u∥ and
φ1, . . . , φN orthonormal. Similarly, we have a gauge freedom in the parametrization (30)
of a tangent vector u̇ ∈ TuM: indeed, writing

φ̇j =

N∑
i=1

⟨φi, φ̇j⟩ φi + φ̇′
j , with

〈
φi, φ̇

′
j

〉
= 0 for all i, j ∈ {1, . . . , N} ,



]ocnmp[ Effective quantum dynamics for magnetic fermions 171

we can have

ȧ φ1 ∧ · · · ∧ φN + a
N∑
j=1

φ1 ∧ · · · ∧ φ̇j ∧ · · · ∧ φN

= ȧ′ φ1 ∧ · · · ∧ φN + a
N∑
j=1

φ1 ∧ · · · ∧ φ̇′
j ∧ · · · ∧ φN

by setting

ȧ′ = ȧ−
N∑
j=1

⟨φj , φ̇j⟩ .

Using this reparametrization at t = 0, we will therefore assume without loss of generality
that

⟨φi(0), φ̇j(0)⟩ = 0 for all i, j ∈ {1, . . . , N} . (32)

We now want to exploit this gauge freedom to guarantee that the conditions in the
statement are satisfied. Consider then the solution u(t) ∈ M of the Dirac–Frenkel prin-
ciple. First of all, let us notice that if the orbitals φi(t) which describe u(t) have to be
orthonormal at all times, then we should require that for all i, j ∈ {1, . . . , N}

0 =
d

dt
⟨φi(t), φj(t)⟩ = ⟨φi(t), φ̇j(t)⟩+ ⟨φ̇i(t), φj(t)⟩ = ⟨φi(t), φ̇j(t)⟩+ ⟨φj(t), φ̇i(t)⟩ .

The above condition can be recast by saying that the matrix

B(t) =
[
B(t)ij

]
1≤i,j≤N

, B(t)ij := ⟨φi(t), φ̇j(t)⟩ ,

is skew-adjoint, B(t)∗ = −B(t), and satisfies B(0) = 0 by (32). Define now for i ∈
{1, . . . , N}

φ′
i(t) :=

n∑
j=1

φj(t)U(t)ji , U(t) =
[
U(t)ij

]
1≤i,j≤N

∈ U(N) .

We show that there exists a choice of U(t) ∈ U(N) such that the orthonormal vectors
{φ′

1(t), . . . , φ
′
N (t)} satisfy the condition in (31) at all t. Indeed, it is easy to compute that

B′(t)ij :=
〈
φ′
i(t), φ̇

′
j(t)

〉
is such that B′(t) = U(t)∗B(t)U(t) + U(t)∗ U̇(t) .

Therefore, U(t) should be chosen as the solution to the Cauchy problem{
U̇(t) = −B(t)U(t) ,

U(0) = 1N ,

which has a unique unitary solution in view of the skew-adjointness of the generator
−B(t). ■
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Having imposed the gauge condition (31), let us now derive the equations of motion
for the parameters appearing in (30), namely the so-called Hartree–Fock equations: these
dictate the effective non-linear dynamics of an initially factorized state, in the form of a
Slater determinant, which as mentioned above could be for example a ground state for the
non-interacting Hamiltonian as presented in Theorem 3.2.

Theorem 4.3. Let u(t) ∈ M be the solution to (27), with

HN = Hni+Hint =
∑

1≤i≤N

H(i)+
∑

1≤i<j≤N

Vij , H(i) := 1∧i−1
j=1 L

2(Λ)∧H1∧1∧N
j=i+1 L

2(Λ) (33)

of the form described in Section 3.2 — in particular, Λ = [−L1/2, L1/2] × [−L2/2, L2/2]
is a box and V ∈ L∞(Λ× Λ). Then

u(t) = a(t)φ1(t) ∧ · · · ∧ φN (t)

where a(t) = e−i E(N)
0 t/ℏ a(0) satisfies the differential equation

i ℏ ȧ(t) = E(N)
0 a(t) for E(N)

0 := ⟨u(0), HN u(0)⟩ = ⟨Ψ(0), HN Ψ(0)⟩ (34)

and the orthonormal orbitals {φ1(t), . . . , φN (t)} satisfy the Hartree–Fock equations

i ℏ φ̇ℓ(t) = H1 φℓ(t) +Kℓ(t)φℓ(t)−
∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(t)φℓ′(t) , ℓ ∈ {1, . . . , N} , (35)

where the Hartree–Fock potential Kℓ and the exchange potentials Xℓ,n are defined as
follows:

Kℓ(t, x⃗) :=
∑
ℓ′ ̸=ℓ

∫
Λ
dy⃗ V (x⃗; y⃗) |φℓ′(t, y⃗)|2 , ℓ ∈ {1, . . . , N} , (36)

Xℓ,ℓ′(t, x⃗) :=

∫
Λ
dy⃗ V (x⃗; y⃗) φℓ′(t, y⃗)φℓ(t, y⃗) , ℓ, ℓ′ ∈ {1, . . . , N} . (37)

The Hartree–Fock equations constitute a system of (at least locally) well-posed nonlinear
partial differential equations, that is, there exist a time interval 0 ≤ t ≤ t̄ for which a
solution φℓ ∈ C1([0, t̄], L2(Λ)) ∩ C([0, t̄], H2

A⃗
(Λ)) of the Hartree–Fock equations exists. In

particular, orthonormality of the φℓ(t)’s solutions to (35) is preserved throughout the entire
time interval.

Proof. Let us rewrite the parametrization (30) for the generic vector v ∈ Tu(t)M as

v = ȧ(t)u(t) + a(t)

N∑
ℓ=1

φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t)

where θℓ ∈ L2(Λ) is any function, possibly orthogonal to {φ1(t), . . . , φN (t)} in view of
Proposition 4.2. The above yields then an orthogonal decomposition of the vector v
in HN . Therefore, Equations (34) and (35) will be derived by plugging in (27) each of the
orthogonal summands

vu = u(t) and vℓ = φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t) . (38)
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If the orbitals {φ1(t), . . . , φN (t)} are chosen so that the condition in (31) holds, then
by taking the scalar product of (30) with u(t) = a(t)φ1(t) ∧ · · · ∧ φN (t) we get

⟨u(t), u̇(t)⟩ = ȧ(t) a(t) ⟨φ1(t) ∧ · · · ∧ φN (t), φ1(t) ∧ · · · ∧ φN (t)⟩ = ȧ(t) a(t)

and by using (29), i.e. a(t) = a(t)−1, we arrive at

ȧ(t) = ⟨u(t), u̇(t)⟩ a(t) .

Using the fact that u(t) is the solution to (27), we have now

⟨u(t), u̇(t)⟩ = 1

i ℏ
⟨u(t), HN u(t)⟩ ≡ 1

i ℏ
⟨u(0), HN u(0)⟩ = 1

i ℏ
E(N)
0 ,

in view of Proposition 4.1. Combining the two equalities above yields (34), as wanted.

To derive now the Hartree–Fock equations, let us consider (27) with v = vℓ as in (38)
and u̇(t) as in (30), assuming the gauge condition (31). As was already mentioned, only
the part of the function θℓ which is orthogonal to φ1(t), . . . , φN (t) contributes to the scalar
product on the right-hand side of (27). With this in mind, the Dirac–Frenkel condition
reads

0 = ⟨θℓ, iℏ a(t) φ̇ℓ(t)⟩ − ⟨φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t), HN u(t)⟩
= a(t)

[
⟨θℓ, iℏ φ̇ℓ(t)⟩

− ⟨φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t), HN φ1(t) ∧ · · · ∧ φN (t)⟩
] (39)

for all θℓ ∈ L2(Λ), which at this stage we can assume to be normalized. To compute the
term on the last line of the above, we use the form (33) of HN and the orthonormality
conditions. From (22) we have

⟨φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t), Hni φ1(t) ∧ · · · ∧ φN (t)⟩

=
∑

1≤i≤N

〈
φ1(t) ∧ · · · ∧ θℓ ∧ · · · ∧ φN (t), φ1(t) ∧ · · · ∧

(
H1 φi(t)

)
∧ · · · ∧ φN (t)

〉
=

∑
1≤i≤N

δi,ℓ ⟨θℓ, H1 φi(t)⟩ = ⟨θℓ, H1 φℓ(t)⟩ .

(40)

We claim that the interaction term in HN yields

⟨φ1(t) ∧ · · · ∧ φℓ−1(t) ∧ θℓ ∧ φℓ+1(t) ∧ · · · ∧ φN (t), Hint φ1(t) ∧ · · · ∧ φN (t)⟩

=
∑
ℓ′ ̸=ℓ

⟨θℓ ⊗ φℓ′(t), V12 φℓ(t)⊗ φℓ′(t)⟩ − ⟨θℓ ⊗ φℓ′(t), V12 φℓ′(t)⊗ φℓ(t)⟩ (41)

where V12 denotes the multiplication operator by V (x⃗; y⃗) on L2(Λ) ⊗ L2(Λ). We will
prove the previous claim momentarily; let us first show how this identity determines the
definition of the Hartree–Fock and exchange potentials (36) and (37). Indeed, the right-
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hand side of (41) can be spelled out to be∑
ℓ′ ̸=ℓ

∫
Λ
dx⃗

∫
Λ
dy⃗ θℓ(x⃗)φℓ′(t, y⃗)V (x⃗; y⃗) [φℓ(t, x⃗)φℓ′(t, y⃗)− φℓ′(t, x⃗)φℓ(t, y⃗)]

=

∫
Λ
dx⃗ θℓ(x⃗)

∑
ℓ′ ̸=ℓ

∫
Λ
dy⃗ V (x⃗; y⃗) |φℓ′(t, y⃗)|2

 φℓ(t, x⃗)

−
∑
ℓ′ ̸=ℓ

∫
Λ
dx⃗ θℓ(x⃗)

∑
ℓ′ ̸=ℓ

∫
Λ
dy⃗ V (x⃗; y⃗)φℓ′(t, y⃗)φℓ(t, y⃗)

 φℓ′(t, x⃗)

=

〈
θℓ,Kℓ(t)φℓ(t)−

∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(t)φℓ′(t)

〉
.

(42)

Plugging (40) and (42) into (39) yields〈
θℓ, iℏ φ̇ℓ(t)−H1 φℓ(t)−Kℓ(t)φℓ(t) +

∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(t)φℓ′(t)

〉
= 0 for all θℓ ∈ L2(Λ) ,

and therefore the Hartree–Fock equations (35) hold, as claimed.
It remains to show (41). Let us first rewrite the definition (21) of the wedge product

as

ψ1 ∧ · · · ∧ ψN =
1√
N !

∑
σ∈SN

(−1)σ ψσ(1) ⊗ · · · ⊗ ψσ(N) , (43)

where SN is the permutation group on N elements, and (−1)σ is the parity of a permu-
tation σ ∈ SN . It is also convenient to write the function V ∈ L∞(Λ×Λ) ⊂ L2(Λ×Λ) ≃
L2(Λ)⊗ L2(Λ) as

V =
∑

α,β∈N×Z/MZ

vαβ φα ⊗ φβ ,

where
{
φα ⊗ φβ ≡ φn,m ⊗ φn′,m′

}
α=(n,m),β=(n′,m′)∈N×Z/MZ is the orthonormal basis of the

tensor product L2(Λ)⊗ L2(Λ) constructed from the eigenfunctions of the Landau Hamil-
tonian H1 (compare Theorem 2.1). Notice that the symmetry V (x⃗; y⃗) = V (y⃗; x⃗) of V
yields

V =
∑

α,β∈N×Z/MZ

vαβ φα ⊗ φβ =
∑

α,β∈N×Z/MZ

vαβ φβ ⊗ φα . (44)

Then, if Vij is the operator of multiplication by V on the space of the i-th and j-th
particles, i < j ∈ {1, . . . , N}, as in (25), we have

Vij φ1 ∧ · · · ∧ φN =
1√
N !

∑
σ∈SN

(−1)σ Vij φσ(1) ⊗ · · · ⊗ φσ(N)

=
1√
N !

∑
σ∈SN

(−1)σ

∑
α,β∈N×Z/MZ

vαβ φσ(1) ⊗ · · · ⊗
(
φα φσ(i)

)
⊗ · · · ⊗

(
φβ φσ(j)

)
⊗ · · · ⊗ φσ(N) ,

(45)
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where we dropped the dependence on t of φ1(t), . . . , φN (t) for notational convenience. Let
us take the scalar product of the above with φ1∧· · ·∧θℓ∧φN . This yields, using again (43),

⟨φ1 ∧ · · · ∧ θℓ ∧ φN , Vij φ1 ∧ · · · ∧ φN ⟩

=
1

N !

∑
σ,σ′∈SN

(−1)σ
′
(−1)σ

∑
α,β∈N×Z/MZ

vαβ〈
φ′
σ′(1) ⊗ · · · ⊗ φ′

σ′(N), φσ(1) ⊗ · · · ⊗
(
φα φσ(i)

)
⊗ · · · ⊗

(
φβ φσ(j)

)
⊗ · · · ⊗ φσ(N)

〉
=

1

N !

∑
σ,σ′∈SN

(−1)σ
′
(−1)σ

∑
α,β∈N×Z/MZ

vαβ〈
φ′
σ′(1), φσ(1)

〉
· · ·

〈
φ′
σ′(i), φα φσ(i)

〉
· · ·

〈
φ′
σ′(j), φβ φσ(j)

〉
· · ·

〈
φ′
σ′(N), φσ(N)

〉
,

(46)

where for ℓ′ ∈ {1, . . . , N}

φ′
ℓ′ :=

{
φℓ′ if ℓ′ ̸= ℓ ,

θℓ if ℓ′ = ℓ .

Let us now analyze the right-hand side of the above equality. If the permutation
σ′ ∈ SN is such that σ′(i) ̸= ℓ ̸= σ′(j), then ℓ = σ′(k) for some i ̸= k ̸= j, and thefore
the product of scalar products in the right-hand side of the above equality contains the
factor

〈
θℓ, φσ(k)

〉
= 0. Therefore, the only permutations which contribute to the sum are

those for which either σ′(i) = ℓ or σ′(j) = ℓ. Let us fix α, β ∈ N × Z/MZ and look
at one summand of the corresponding sum, for which we have that the only non-zero
contributions are∑

σ′∈SN
σ′(i)=ℓ

(−1)σ
′ ∑
σ∈SN

(−1)σ δσ′(1), σ(1) · · ·
〈
θℓ, φα φσ(i)

〉
· · ·

〈
φσ′(j), φβ φσ(j)

〉
· · · δσ′(N), σ(N)

+
∑

σ′∈SN
σ′(j)=ℓ

(−1)σ
′ ∑
σ∈SN

(−1)σ δσ′(1), σ(1) · · ·
〈
φσ′(i), φα φσ(i)

〉
· · ·

〈
θℓ, φβ φσ(j)

〉
· · · δσ′(N), σ(N) .

Let us focus on the first sum above. If σ′(i) = ℓ, and we call σ′(j) =: ℓ′, then the
only two permutations σ ∈ SN which give a non-zero contribution to the sum are σ = σ′

or σ = σ′ ◦ (ij); namely, σ can be the permutation coinciding with σ′ — for which
(−1)σ = (−1)σ

′
— or the one which coincides with σ′ apart from at i and j, where instead

we have σ(i) = ℓ′ and σ(j) = ℓ — for which (−1)σ = (−1)σ
′
(−1)(ij) = −(−1)σ

′
. A similar

argument can be made for the sum over permutations σ′ such that σ′(j) = ℓ. All in all,
the above sums equal∑

σ′∈SN
σ′(i)=ℓ

[
⟨θℓ, φα φℓ⟩ ·

〈
φσ′(j), φβ φσ′(j)

〉
−
〈
θℓ, φα φσ′(j)

〉
·
〈
φσ′(j), φβ φℓ

〉 ]
+

∑
σ′∈SN
σ′(j)=ℓ

[ 〈
φσ′(i), φα φσ′(i)

〉
· ⟨θℓ, φβ φℓ⟩ −

〈
φσ′(i), φα φℓ

〉
·
〈
θℓ, φβ φσ′(i)

〉 ]
.
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We now write{
σ′ ∈ SN : σ′(i) = ℓ

}
=

⊔
ℓ′ ̸=ℓ

{
σ′ ∈ SN : σ′(i) = ℓ and σ′(j) = ℓ′

}
,

{
σ′ ∈ SN : σ′(j) = ℓ

}
=

⊔
ℓ′ ̸=ℓ

{
σ′ ∈ SN : σ′(j) = ℓ and σ′(i) = ℓ′

}
,

and notice that

♯
{
σ′ ∈ SN : σ′(i) = ℓ and σ′(j) = ℓ′

}
= (N − 2)!

= ♯
{
σ′ ∈ SN : σ′(j) = ℓ and σ′(i) = ℓ′

}
.

With these identifications, it is easy to realize that the above sums compute

(N − 2)!
∑
ℓ′ ̸=ℓ

⟨θℓ, φα φℓ⟩ · ⟨φℓ′ , φβ φℓ′⟩ − ⟨θℓ, φα φℓ′⟩ · ⟨φℓ′ , φβ φℓ⟩

+ ⟨φℓ′ , φα φℓ′⟩ · ⟨θℓ, φβ φℓ⟩ − ⟨φℓ′ , φα φℓ⟩ · ⟨θℓ, φβ φℓ′⟩

= (N − 2)!
∑
ℓ′ ̸=ℓ

⟨θℓ ⊗ φℓ′ , φα φℓ ⊗ φβ φℓ′⟩ − ⟨θℓ ⊗ φℓ′ , φα φℓ′ ⊗ φβ φℓ⟩

+ ⟨θℓ ⊗ φℓ′ , φβ φℓ ⊗ φα φℓ′⟩ − ⟨θℓ ⊗ φℓ′ , φβ φℓ′ ⊗ φα φℓ⟩ .

Let us plug the above information back in (46): so we multiply by vαβ, sum over
α, β ∈ N×Z/MZ and divide by N !. Upon using the symmetry condition (44), this whole
expression simplifies to

⟨φ1 ∧ · · · ∧ θℓ ∧ φN , Vij φ1 ∧ · · · ∧ φN ⟩

=
1

N !
· (N − 2)! · 2

∑
ℓ′ ̸=ℓ

⟨θℓ ⊗ φℓ′ , V φℓ ⊗ φℓ′⟩ − ⟨θℓ ⊗ φℓ′ , V φℓ′ ⊗ φℓ⟩

=
2

N (N − 1)

∑
ℓ′ ̸=ℓ

⟨θℓ ⊗ φℓ′ , V12 φℓ ⊗ φℓ′⟩ − ⟨θℓ ⊗ φℓ′ , V12 φℓ′ ⊗ φℓ⟩ .

The right-hand side of the above is independent of i < j ∈ {1, . . . , N}, and therefore
summing over the

(
N
2

)
= N (N − 1)/2 choices of such indices we conclude that

∑
1≤i<j≤N

⟨φ1 ∧ · · · ∧ θℓ ∧ φN , Vij φ1 ∧ · · · ∧ φN ⟩

=
∑
ℓ′ ̸=ℓ

⟨θℓ ⊗ φℓ′ , V12 φℓ ⊗ φℓ′⟩ − ⟨θℓ ⊗ φℓ′ , V12 φℓ′ ⊗ φℓ⟩

which coincides with (41).

Now that the Hartree–Fock equations (35) have been established, the regularity prop-
erties of the solutions stem from the theory of nonlinear partial differential equations. The
interested reader is referred to [19]; see also [7] and [6, Section 9.1] for related works. ■
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5 Effectiveness of the Hartree–Fock dynamics

Having established the Hartree–Fock equations, we want to provide a quantitative estimate
on how good of an approximation the solution u(t) of the Dirac–Frenkel principle (27) is
compared to the solution Ψ(t) = e−iHN t/ℏΨ(0) to the N -body Schrödinger equation,
provided both share the same initial condition u(0) = Ψ(0). For simplicity and without
loss of generality we assume

u(0) ≡ Ψ(0) = ΦSlater(0) = φ1(0) ∧ · · · ∧ φN (0) ∈
N∧
i=1

H2
A⃗
(Λ) ,

i.e. a(0) = 1 in the representation (28) of u(0) ∈ M: this phase can be reabsorbed in the
definition of one of the orbitals φℓ(0).

Theorem 5.1. Let u(t) = a(t)φ1(t)∧· · ·∧φN (t) ∈ M, t ∈ [0, t], be as in Theorem 4.3, with
a(0) = 1. Let also Ψ(t) = e−iHN t/ℏΦSlater(0) be the solution of the N -body Schrödinger
equation

i ℏ Ψ̇(t) = HN Ψ(t) .

Then for all t ∈ [0, t]

∥Ψ(t)− u(t)∥HN
≤ 1

ℏ
√
N(N − 1) ∥V ∥L∞(Λ×Λ) t . (47)

Proof. Let us compute then, for s ∈ [0, t] ⊂ [0, t],

∥Ψ(s)− u(s)∥ · d

ds
∥Ψ(s)− u(s)∥ =

1

2

d

ds
∥Ψ(s)− u(s)∥2

= Re
〈
Ψ(s)− u(s), Ψ̇(s)− u̇(s)

〉
= Re

〈
Ψ(s)− u(s),

1

iℏ
HN [Ψ(s)− u(s)]

〉
− Re

〈
Ψ(s)− u(s), u̇(s)− 1

iℏ
HN u(s)

〉
.

The first term on the right-hand side of the above equality vanishes, because HN is self-
adjoint. Thefore, by applying the Cauchy–Schwarz inequality to the scalar product in the
second term and dividing both sides by ∥Ψ(s)− u(s)∥, we conclude that∣∣∣∣ dds ∥Ψ(s)− u(s)∥

∣∣∣∣ ≤ ∥∥∥∥u̇(s)− 1

iℏ
HN u(s)

∥∥∥∥ .
With the above, by the fundamental theorem of calculus we can estimate for t ∈ [0, t]

∥Ψ(t)− u(t)∥ ≤
∫ t

0
ds

∥∥∥∥u̇(s)− 1

iℏ
HN u(s)

∥∥∥∥ (48)

(compare e.g. [19, Chapter II, Theorem 1.5]).
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We now bound the integrand on the right-hand side of the above. To this end, let us
notice that

u̇(s) =
d

ds
[a(s)φ1(s) ∧ · · · ∧ φN (s)]

= ȧ(s)φ1(s) ∧ · · · ∧ φN (s) + a(s)
N∑
ℓ=1

φ1(s) ∧ · · · ∧ φ̇ℓ(s) ∧ · · · ∧ φN (s)

=
E(N)
0

iℏ
a(s)φ1(s) ∧ · · · ∧ φN (s) + a(s)

N∑
ℓ=1

φ1(s) ∧ · · ·

· · · ∧

 1

iℏ

H1 φℓ(s) +Kℓ(s)φℓ(s)−
∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(s)φℓ′(s)

 ∧ · · · ∧ φN (s)

in view of (34) and the Hartree–Fock equations (35). Similarly

HN u(s) = a(s) (Hni +Hint) [φ1(s) ∧ · · · ∧ φN (s)]

= a(s)

[
N∑
ℓ=1

φ1(s) ∧ · · · ∧H1 φℓ(s) ∧ · · · ∧ φN (s)

]
+ a(s)Hint [φ1(s) ∧ · · · ∧ φN (s)]

and therefore

u̇(s)− 1

iℏ
HN u(s) =

E(N)
0

iℏ
u(s)

+
a(s)

iℏ

{ N∑
ℓ=1

φ1(s) ∧ · · · ∧

Kℓ(s)φℓ(s)−
∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(s)φℓ′(s)

 ∧ · · · ∧ φN (s)


−Hint [φ1(s) ∧ · · · ∧ φN (s)]

}
.

(49)

In order to compute the norm of the left-hand side of the above, which appears in (48),
we use the fact that∥∥∥∥u̇(s)− 1

iℏ
HN u(s)

∥∥∥∥ = sup
Φ∈HN
∥Φ∥=1

∣∣∣∣〈Φ, u̇(s)− 1

iℏ
HN u(s)

〉∣∣∣∣ . (50)

To estimate the absolute value of the scalar product appearing on the right-hand side, let
us decompose HN =

∧N
i=1 L

2(Λ) into an orthogonal sum of subspaces each accounting for
a certain number of orbitals out of the Hartree–Fock Slater determinant, i.e.,

HN = H(0)
N ⊕H(1)

N ⊕H(2)
N ⊕ · · · ⊕ H(N)

N , (51)

where the summands are defined as follows:

� H(0)
N is spanned by the Slater determinant φ1(s) ∧ · · · ∧ φN (s);
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� H(1)
N is spanned by Slater determinants of the form

φ1(s) ∧ · · · ∧ φm−1(s) ∧ θm ∧ φm+1(s) ∧ · · · ∧ φN (s) , m ∈ {1, . . . , N} ,

where θm ∈ L2(Λ) is a (normalized) function orthogonal to {φ1(s), . . . , φN (s)};

� H(2)
N is spanned by Slater determinants of the form

φ1(s) ∧ · · · ∧ θm1 ∧ · · · ∧ θm2 ∧ · · · ∧ φN (s) , m1 < m2 ∈ {1, . . . , N} ,

where θm1 , θm2 ∈ L2(Λ) are (normalized) functions orthogonal to {φ1(s), . . . , φN (s)}
and to each other;

� for i ∈ {1, . . . , N}, the subspace H(i)
N is spanned by Slater determinants in which i

of the N orbitals φ1(s), . . . , φN (s) have been swapped for orthogonal functions
θm1 , . . . , θmi (for all possible choices of indices m1 < · · · < mi in {1, . . . , N}) which
are orthogonal to all the orbitals φ1(s), . . . , φN (s).

Notice that the subspaces H(i)
N are indeed mutually orthogonal, in view of (22), and that

they generate the whole HN . Their definition depends in principle on s ∈ [0, t], but we
will not keep track of it in the notation.

Each vector Φ ∈ HN can be decomposed orthogonally as the sum of its components

Φ(i) ∈ H(i)
N , according to (51), and therefore〈
Φ, u̇(s)− 1

iℏ
HN u(s)

〉
=

N∑
i=0

〈
Φ(i), u̇(s)− 1

iℏ
HN u(s)

〉
.

To compute the scalar products on the right for a generic Φ(i), it clearly suffices to compute

them on the generating Slater determinants Φ
(i)
gen of H(i)

N .

� On H(0)
N , we have〈
φ1(s) ∧ · · · ∧ φN (s), u̇(s)− 1

iℏ
HN u(s)

〉
= a(s)

〈
u(s), u̇(s)− 1

iℏ
HN u(s)

〉
= 0

(52)

in view of (27) and the fact that u(s) ∈ Tu(s)M, as M contains rays.

� Let us now pick m ∈ {1, . . . , N} and Φ
(1)
gen = φ1(s) ∧ · · · ∧ θm ∧ · · · ∧ φN (s) ∈ H(1)

N ,

with θm ∈ L2(Λ) orthogonal to all the φi(s)’s. In particular, Φ
(1)
gen is orthogonal to

u(s) = a(s)φ1(s) ∧ · · · ∧ φN (s) ∈ H(0)
N , and therefore from (49)

〈
Φ(1)
gen, u̇(s)−

1

iℏ
HN u(s)

〉
=
a(s)

iℏ

{[
N∑
ℓ=1

〈
Φ(1)
gen, φ1(s) ∧ · · · ∧ ηℓ(s) ∧ · · · ∧ φN (s)

〉]

−
〈
Φ(1)
gen, Hint [φ1(s) ∧ · · · ∧ φN (s)]

〉}
,
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(53)

where also for future convenience we have denoted by ηℓ(s) the nonlinear part of the
ℓ-th Hartree–Fock equation:

ηℓ(s) ≡ ηℓ(s;φ1(s), . . . , φN (s)) := Kℓ(s)φℓ(s)−
∑
ℓ′ ̸=ℓ

Xℓ,ℓ′(s)φℓ′(s) .

From (22) and the orthogonality conditions on φ1(s), . . . , φN (s) and θm, we see at
once that〈

Φ(1)
gen, φ1(s) ∧ · · · ∧ ηℓ(s) ∧ · · · ∧ φN (s)

〉
= ⟨φ1(s) ∧ · · · ∧ θm ∧ · · · ∧ φN (s), φ1(s) ∧ · · · ∧ ηℓ(s) ∧ · · · ∧ φN (s)⟩
= δℓ,m ⟨θm, ηℓ(s)⟩ .

Notice also that (41) and (42) together yield〈
Φ(1)
gen, Hint [φ1(s) ∧ · · · ∧ φN (s)]

〉
= ⟨φ1(s) ∧ · · · ∧ θm ∧ · · · ∧ φN (s), Hint [φ1(s) ∧ · · · ∧ φN (s)]⟩
= ⟨θm, ηm(s)⟩ .

Plugging the above two equalities in (53) we conclude that〈
Φ(1)
gen, u̇(s)−

1

iℏ
HN u(s)

〉
= 0 (54)

for the generators Φ
(1)
gen of H(1)

N ; therefore, all Φ(1) in H(1)
N satisfy the same orthogo-

nality condition.

� We now choose a generator Φ
(2)
gen = φ1(s)∧ · · · ∧ θm1 ∧ · · · ∧ θm2 ∧ · · · ∧φN (s) of H(2)

N .
Since both θm1 and θm2 are orthogonal to φ1(s), . . . , φN (s), it follows from (22) that〈

Φ(2)
gen, u(s)

〉
= a(s)

〈
Φ(2)
gen, φ1(s) ∧ · · · ∧ φN (s)

〉
= 0 ,〈

Φ(2)
gen, φ1(s) ∧ · · · ∧ ηℓ(s) ∧ · · · ∧ φN (s)

〉
= 0 ,

and therefore, using (49), that〈
Φ(2)
gen, u̇(s)−

1

iℏ
HN u(s)

〉
= −a(s)

iℏ

〈
Φ(2)
gen, Hint [φ1(s) ∧ · · · ∧ φN (s)]

〉
= −a(s)

iℏ
⟨φ1(s) ∧ · · · ∧ θm1 ∧ · · · ∧ θm2 ∧ · · · ∧ φN (s), Hint [φ1(s) ∧ · · · ∧ φN (s)]⟩ .

(55)

The above scalar product can be computed as in the proof of Theorem 4.3, com-
pare (41), using again the orthogonality conditions between the θ’s and the φ’s: one
is lead to

⟨φ1(s) ∧ · · · ∧ θm1 ∧ · · · ∧ θm2 ∧ · · · ∧ φN (s), Hint [φ1(s) ∧ · · · ∧ φN (s)]⟩
= ⟨θm1 ⊗ θm2 , V12 [φm1(s)⊗ φm2(s)− φm2(s)⊗ φm1(s)]⟩
=

√
2 ⟨θm1 ⊗ θm2 , V12 [φm1(s) ∧ φm2(s)]⟩ .

(56)
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Indeed, let us start from (45), dropping again for notational convenience the depen-
dence on s. In analogy with (46), we can write

⟨φ1 ∧ · · · ∧ θm1 ∧ · · · θm2 ∧ · · · ∧ φN , Vij φ1 ∧ · · · ∧ φN ⟩

=
1

N !

∑
σ,σ′∈SN

(−1)σ
′
(−1)σ

∑
α,β∈N×Z/MZ

vαβ〈
φ′
σ′(1) ⊗ · · · ⊗ φ′

σ′(N), φσ(1) ⊗ · · · ⊗
(
φα φσ(i)

)
⊗ · · · ⊗

(
φβ φσ(j)

)
⊗ · · · ⊗ φσ(N)

〉
=

1

N !

∑
σ,σ′∈SN

(−1)σ
′
(−1)σ

∑
α,β∈N×Z/MZ

vαβ〈
φ′
σ′(1), φσ(1)

〉
· · ·

〈
φ′
σ′(i), φα φσ(i)

〉
· · ·

〈
φ′
σ′(j), φβ φσ(j)

〉
· · ·

〈
φ′
σ′(N), φσ(N)

〉
,

where for ℓ ∈ {1, . . . , N}

φ′
ℓ :=

{
φℓ if ℓ /∈ {m1,m2} ,
θℓ if ℓ ∈ {m1,m2} .

The only permutations which contribute to the sum are those for which {σ′(i), σ′(j)} =
{m1,m2} as sets. Let us fix α, β ∈ N×Z/MZ and look at one summand of the cor-
responding sum, for which we have that the only non-zero contributions are∑

σ′∈SN
σ′(i)=m1, σ′(j)=m2

(−1)σ
′ ∑
σ∈SN

(−1)σ δσ′(1), σ(1) · · ·
〈
θm1 , φα φσ(i)

〉
· · ·

〈
θm2 , φβ φσ(j)

〉
· · · δσ′(N), σ(N)

+
∑

σ′∈SN
σ′(i)=m2, σ′(j)=m1

(−1)σ
′ ∑
σ∈SN

(−1)σ δσ′(1), σ(1) · · ·
〈
θm2 , φα φσ(i)

〉
· · ·

〈
θm1 , φβ φσ(j)

〉
· · · δσ′(N), σ(N) .

As in the proof of Theorem 4.3, the only permutations σ ∈ SN which give a non-zero
contribution to the sums above are σ = σ′ or σ = σ′ ◦ (ij). Therefore, the above
sums equal ∑

σ′∈SN
σ′(i)=m1, σ′(j)=m2

[
⟨θm1 , φα φm1⟩ · ⟨θm2 , φβ φm2⟩ − ⟨θm1 , φα φm2⟩ · ⟨θm2 , φβ φm1⟩

]
+

∑
σ′∈SN

σ′(i)=m2, σ′(j)=m1

[
⟨θm2 , φα φm2⟩ · ⟨θm1 , φβ φm1⟩ − ⟨θm2 , φα φm1⟩ · ⟨θm1 , φβ φm2⟩

]
= (N − 2)! · ⟨θm1 ⊗ θm2 , (φα ⊗ φβ) [φm1 ⊗ φm2 − φm2 ⊗ φm1 ]⟩+

(
β ↔ α

)
as the summands on the left-hand side are independent of the permutation σ′ ∈ SN ,
and there are (N − 2)! such permutations which satisfy σ′(i) = m1 and σ′(j) =
m2 and equally as many which satisfy σ′(i) = m2 and σ′(j) = m1. Using the
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symmetry (44) of the potential, the term with β and α swapped results in an overall
factor of 2, and we conclude that

⟨φ1 ∧ · · · ∧ θm1 ∧ · · · θm2 ∧ · · · ∧ φN , Vij φ1 ∧ · · · ∧ φN ⟩

=
2 (N − 2)!

N !
⟨θm1 ⊗ θm2 , (φα ⊗ φβ) [φm1 ⊗ φm2 − φm2 ⊗ φm1 ]⟩

=
2

N (N − 1)
⟨θm1 ⊗ θm2 , (φα ⊗ φβ) [φm1 ⊗ φm2 − φm2 ⊗ φm1 ]⟩

independently of i < j ∈ {1, . . . , N}. Summing over the
(
N
2

)
choices of such indices

yields the desired conclusion, namely (56).

An orthonormal basis for H(2)
N can be exhibited as follows: complete the orthonormal

set φ1(s), . . . , φN (s) to an orthonormal basis {φ1(s), . . . , φN (s), θ1, θ2, . . .} of L2(Λ).

An orthonormal basis for H(2)
N is then provided by the vectors

{
Φ(2)
m1,m2;a1,a2 : 1 ≤ m1 < m2 ≤ N, 1 ≤ a1 < a2 < +∞

}
defined as

Φ(2)
m1,m2;a1,a2

:= φ1(s)∧· · ·∧φm1−1(s)∧θa1∧φm1+1(s)∧· · ·∧φm2−1(s)∧θa2∧φm2+1(s)∧· · ·∧φN (s) .

Let now Φ(2) be any vector in H(2)
N , which we decompose in the above basis as

Φ(2) =
∑

1≤m1<m2≤N

∑
1≤a1<a2<+∞

〈
Φ(2)
m1,m2;a1,a2 ,Φ

(2)
〉
Φ(2)
m1,m2;a1,a2 .

Then by (55) and (56) we can compute

〈
Φ(2) , u̇(s)− 1

iℏ
HN u(s)

〉

=
∑

1≤m1<m2≤N

∑
1≤a1<a2<+∞

〈
Φ
(2)
m1,m2;a1,a2 ,Φ

(2)
〉

·
〈
Φ(2)
m1,m2;a1,a2 , u̇(s)−

1

iℏ
HN u(s)

〉
= −

√
2 a(s)

iℏ
∑

1≤m1<m2≤N

∑
1≤a1<a2<+∞

〈
Φ
(2)
m1,m2;a1,a2 ,Φ

(2)
〉

· ⟨θa1 ⊗ θa2 , V12 [φm1(s) ∧ φm2(s)]⟩
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which we can bound as∣∣∣∣〈Φ(2), u̇(s)− 1

iℏ
HN u(s)

〉∣∣∣∣
≤

√
2

ℏ

 ∑
1≤m1<m2≤N

∑
1≤a1<a2<+∞

∣∣∣〈Φ(2)
m1,m2;a1,a2 ,Φ

(2)
〉∣∣∣2

1/2

·

 ∑
1≤m1<m2≤N

∑
1≤a1<a2<+∞

|⟨θa1 ⊗ θa2 , V12 [φm1(s) ∧ φm2(s)]⟩|
2

1/2

≤
√
2

ℏ

∥∥∥Φ(2)
∥∥∥
 ∑

1≤m1<m2≤N

∥ΠV12 [φm1(s) ∧ φm2(s)]∥
2

1/2

,

where Π is the projection onto the subspace of L2(Λ)⊗L2(Λ) spanned by the vectors
{θa1 ⊗ θa2}a1,a2∈N, obtained as tensor products of the functions orthogonal to all the
Hartree–Fock orbitals φj(s)’s. On the other hand, as uniformly in 1 ≤ m1 < m2 ≤ N
and in s ∈ [0, t] we have

∥ΠV12 [φm1(s) ∧ φm2(s)]∥ ≤ ∥Π∥ ∥V12∥ ∥φm1(s) ∧ φm2(s)∥ = ∥V ∥L∞(Λ×Λ) ,

we finally conclude that∣∣∣∣〈Φ(2), u̇(s)− 1

iℏ
HN u(s)

〉∣∣∣∣ ≤ 1

ℏ

∥∥∥Φ(2)
∥∥∥ ∥V ∥L∞(Λ×Λ)

√
N(N − 1) , (57)

for all Φ(2) ∈ H(2)
N .

� For Φ
(i)
gen a generating Slater determinant in the subspace H(i)

N with i ≥ 3, we can
see that〈

Φ(i)
gen, u(s)

〉
= a(s)

〈
Φ(i)
gen, φ1(s) ∧ · · · ∧ φN (s)

〉
= 0 ,〈

Φ(i)
gen, φ1(s) ∧ · · · ∧ ηℓ(s) ∧ · · · ∧ φN (s)

〉
= 0 ,〈

Φ(i), Hint [φ1(s) ∧ · · · ∧ φN (s)]
〉
= 0 .

The only non-trivial identity is the third, which can be shown via a similar ar-
gument to the one just presented, starting from (45): indeed, the scalar product〈
Φ
(i)
gen, Vij [φ1(s) ∧ · · · ∧ φN (s)]

〉
can be decomposed as a sum of products, each of

which contains at least a factor of the form ⟨θm, φℓ⟩ = 0. We conclude that〈
Φ(i), u̇(s)− 1

iℏ
HN u(s)

〉
= 0 for all Φ(i) ∈ H(i)

N , i ∈ {3, . . . , N} .

Summing up the above considerations we have deduced that〈
Φ, u̇(s)− 1

iℏ
HN u(s)

〉
=

N∑
i=0

〈
Φ(i), u̇(s)− 1

iℏ
HN u(s)

〉
=

〈
Φ(2), u̇(s)− 1

iℏ
HN u(s)

〉



184 ]ocnmp[ M Ferrero and D Monaco

which, coming back to (50), together with (57) yields∥∥∥∥u̇(s)− 1

iℏ
HN u(s)

∥∥∥∥ = sup
Φ∈HN
∥Φ∥=1

∣∣∣∣〈Φ, u̇(s)− 1

iℏ
HN u(s)

〉∣∣∣∣
= sup

Φ(2)∈H(2)
N

∥Φ(2)∥=1

∣∣∣∣〈Φ(2), u̇(s)− 1

iℏ
HN u(s)

〉∣∣∣∣
≤ 1

ℏ
√
N(N − 1) ∥V ∥L∞(Λ×Λ)

uniformly in s ∈ [0, t]. Integrating over this interval, we conclude together with (48) that
for all t ∈ [0, t]

∥Ψ(t)− u(t)∥ ≤ 1

ℏ
√
N(N − 1) ∥V ∥L∞(Λ×Λ) t

as claimed. ■

Remark 5.2. In the above proof, (52) and (54) show once more that the choice of the
nonlinear part of the Hartree–Fock equations determines a partial cancellation of the effects
of the interacting part Hint of the Hamiltonian, when the vector in (49) is projected on
Slater determinants where at most one orbital is orthogonal to those evolving according
to the effective dynamics. The error terms come instead from pair interactions with pairs
of orbitals both orthogonal to those satisfying the Hartree–Fock equations, compare (56).
This argument is quite general and abstract (compare [19]), and does not use the specific
form of the non-interacting part of the Hamiltonian HN in an essential way: indeed, as
briefly mentioned in the Introduction, the same argument could be adopted in the non-
magnetic case, namely replacing the Landau Hamiltonian with the free one at the one-body
level.

We end with some comments on the effectiveness of the estimate (47). The approx-
imation of the Schrödinger dynamics by a Slater determinant by definition ignores all
effects of correlations contained in the many-body wave function due to the interaction.
As expected, initializing the many-body dynamics at an uncorrelated state, the effective
dynamics is supposed to give a sufficiently good approximation of this wave function for
small times — hence the linear dependence on t on the right-hand side of (47) — and
for weak interactions — as indicated by the dependence on ∥V ∥L∞(Λ×Λ) of the bound.
The dependence of the bound (47) on the number of particles is instead essentially lin-
ear, proportional to N . The bound in (47) should be compared to the trivial bound
∥Ψ(t)− u(t)∥ ≤ 2 provided by the triangle inequality: with this proof, the nonlinear
dynamics appears to be effective then for very small times, of order t≪ 1/N .

To put this consideration in perspective, it is convenient to take into account both the
energy and time scales. From Remark 3.3 and (26), we see that, at least in non-interacting
ground states, both the kinetic, non-interacting energy and the two-body interactions scale
quadratically in the number of particles. This suggests that, in the large-N limit, each
particle experiences an “averaged effect” of the interaction with all the other particles, that
is, that the interaction potential is represented by the effects of a mean field generated
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by the other N − 1 particles. In non-magnetic fermionic systems, it is common (see e.g.
the discussion in [4, 1]) to also couple the large-N limit to an appropriate semiclassical
scaling, using a rescaled effective Planck constant. In practice, these coupled mean-field
and semiclassical limits require rescaling

ℏ ; ℏeff := ℏN−1/2, V (x⃗; y⃗) ; Veff(x⃗; y⃗) :=
1

N
V (x⃗; y⃗) .

Upon this rescaling, the bound (47) becomes

∥Ψ(t)− u(t)∥HN
≤ 1

ℏeff

√
N(N − 1) ∥Veff∥L∞(Λ×Λ) t

=

√
N

ℏ
√
N

√
N − 1

1

N
∥V ∥L∞(Λ×Λ) t

=
1

ℏ
√
N − 1 ∥V ∥L∞(Λ×Λ) t ,

which shows that the nonlinear Hartree–Fock dynamics is an effective description of the
Schrödinger evolution, in the coupled mean-field and semiclassical scalings, for times
smaller than the semiclassical scale: t≪ 1/

√
N = N−1/2.

Again in absence of magnetic fields, a much more refined control on the interaction
energy allows to improve the N -dependence of the bound, at the expense of a super-
exponential (rather than linear) dependence on time. This approach was pursued in [3,
23, 1, 8] for the coupled mean-field and semiclassical scaling presented above, and in [14] in
the so-called Kac regime. The comparison is formulated by introducing the 1-body reduced
density matrices corresponding to the states Ψ(t) and u(t), defined respectively as the
operators on L2(Λ) whose integral kernels are given by [18]

ωΨ(t, x⃗; y⃗) := N

∫
ΛN−1

dx⃗2 . . . dx⃗N Ψ(t, x⃗, x⃗2, . . . , x⃗N )Ψ(t, y⃗, x⃗2, . . . , x⃗N ) ,

ωSlater(t, x⃗; y⃗) :=

N∑
ℓ=1

φℓ(t, x⃗)φℓ(t, y⃗) .

The operators ωΨ(t) and ωSlater(t) are then non-negative trace-class operators, with trace
equal to N — in fact, ωSlater(t) is the rank-N projection onto the subspace of L2(Λ)
spanned by the orthonormal orbitals φ1(t), . . . , φN (t). The difference ωΨ(t) − ωSlater(t)
can be then estimated in trace norm: while the triangle inequality would give a bound of
order N , a much smaller error of order

√
N can be achieved. The generalization of these

methods to systems of fermions in a magnetic field is certainly an interesting future line
of research.
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