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Abstract 

Background Recently, there has been increasing interest in the possible role of the gut microbiota (GM) in the onset 
of migraine. Our aim was to verify whether bacterial populations associated with intestinal dysbiosis are found 
in pediatric patients with migraine. We looked for which metabolic pathways, these bacteria were involved 
and whether they might be associated with gut inflammation and increased intestinal permeability.

Methods Patients aged between 6 and 17 years were recruited. The GM profiling was performed by the 16S 
rRNA metataxonomics of faecal samples from 98 patients with migraine and 98 healthy subjects. Alpha and beta 
diversity analyses and multivariate and univariate analyses were applied to compare the gut microbiota profiles 
between the two group. To predict functional metabolic pathways, we used phylogenetic analysis of communities. 
The level of indican in urine was analyzed to investigate the presence of metabolic dysbiosis. To assess gut inflam-
mation, increased intestinal permeability and the mucosal immune activation, we measured the plasmatic levels 
of lipopolysaccharide, occludin and IgA, respectively.

Results The α-diversity analysis revealed a significant increase of bacterial richness in the migraine group. The 
β-diversity analysis showed significant differences between the two groups indicating gut dysbiosis in patients 
with migraine. Thirty-seven metabolic pathways were increased in the migraine group, which includes changes 
in tryptophan and phenylalanine metabolism. The presence of metabolic dysbiosis was confirmed by the increased 
level of indican in urine. Increased levels of plasmatic occludin and IgA indicated the presence of intestinal perme-
ability and mucosal immune activation. The plasmatic LPS levels showed a low intestinal inflammation in patients 
with migraine.
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Conclusions Pediatric patients with migraine present GM profiles different from healthy subjects, associated 
with metabolic pathways important in migraine.

Keywords Gut microbiota; migraine; tryptophan, Occludin, Lipopolysaccharide, Indican, IgA, Dysbiosis, Inflammation, 
Gut permeability

Introduction
Migraine affects approximately 10% of the pediat-
ric population and can significantly interfere with 
the child’s activities and worsen the quality of life of 
patients and their family [1]. Migraine causes intense 
pain typically accompanied by nausea and/or vomiting, 
photophobia and phonophobia (ICHD-3 criteria) [25] 
and some subjects may be resistant to available phar-
macological treatments [56].

Though still incompletely known, migraine patho-
physiology involves inherited alteration of brain excit-
ability, vascular phenomena and sensitization of the 
trigemino-vascular system (TVS), and consequential 
structural and functional changes in genetically suscep-
tible subjects [54]. The identification of new therapeu-
tic targets may be aided by a greater understanding of 
migraine pathophysiological mechanisms.

Recently, scientific interest has been raised by the 
possibility of a link between gut microbiota (GM) and 
migraine. The bidirectional communication between 
brain and gut is commonly referred as microbiome-
gut-brain (MGB) axis [55, 63]. The connection is 
achieved through a complex network involving the 
nervous system (vagus nerve and enteric nervous sys-
tem) and immune, vascular, and hormonal signals 
[45]. The MGB axis and intestinal dysbiosis have been 
implicated in various neurological conditions, includ-
ing autism spectrum disorder, cerebrovascular disease, 
Alzheimer’s disease, and Parkinson’s disease [6, 16, 59, 
61]. In patients with migraine, GM profiles are very dif-
ferent from those of healthy subjects [21, 24, 47, 61]. 
The intestinal dysbiosis observed in migraineurs might 
lead to the production of pro-inflammatory substances 
such as TNF-α, INF-γ, nitric oxide (NO) cytokines and 
lipopolysaccharide (LPS) [20, 26]. These substances are 
associated with inflammatory hyper nociception at sen-
sory afferent endings [68]. The regulation of migraine 
pain is greatly influenced by bacterial metabolites in 
the gut, particularly short-chain fatty acids (SCFAs), 
γ-aminobutyric acid (GABA) and tryptophan [4]. An 
increase in intestinal permeability could lead to these 
substances passing through the systemic circulation 
and act on the nociceptors of the TVS, leading to the 
onset of migraine [82]. Despite the possible role of 
MBG axis dysfunction in migraine, there are few func-
tional studies showing profiles of GMs involved in NO 

metabolism, kynurenine degradation and tryptophan 
production [36, 47, 60].

The study of the relationships between GM and 
migraine in pediatric age offers the advantage of observ-
ing these conditions at an earlier stage, when the impact 
of environmental factors and comorbidities is lower. 
Despite this there are only two recent studies dealing 
with GM in children with migraine [7, 36]. They showed 
a gut microbial dysbiosis consisting of shifts in gut micro-
bial diversity and relative abundance of probiotic versus 
pathogenic bacteria. Particularly, an overall lower diver-
sity in the GM [11] and a higher abundance of inflam-
mation-related bacteria (e.g., Eggerthella, Sutterella, and 
Eubacterium) have been found [7, 36]. Unfortunately 
both studies had two important limitations: 1) they did 
not consider the impact of probiotics and antibiotics, and 
2) data on GM came from digital datasets and the criteria 
for the diagnosis of migraine were not specified [7, 36].

Here we present the results of the “Migraine Microbi-
ota” project, carried out at the Bambino Gesù Children’s 
Hospital, which aimed to study GM in a population of 
pediatric migraine patients. This is the first prospective 
study exploring both the composition and functions of 
GM in a pediatric population with migraine. The study 
focused on examining the presence of GM dysbiosis in 
migraine patients and the potential impact of intestinal 
bacteria’s metabolic pathways on this disease. We also 
investigated whether the intestinal permeability, inflam-
mation and the mucosal immune activation might be 
related to migraine.

Materials and methods
Patients
We prospectively enrolled patients visited from 2021 to 
2023 at the Headache Center of the Bambino Gesù Chil-
dren’s Hospital in Rome, Italy. Diagnosis of migraine with 
or without aura was performed by pediatric neurologists 
according to third version of the International Classifica-
tion of Headache Disorder (ICHD-3). We referred to the 
migraine patients in this study with the acronym MIMIC 
(Migraine-Microbiota).

Healthy subjects (controls, CTRLs) were enrolled dur-
ing an epidemiological survey carried out at the Microbi-
ome Unit of Bambino Gesù Children’s Hospital (BBMRI 
Human Microbiome Biobank, OPBG) to generate a 
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reference biobank of samples from healthy subjects. 
MIMIC and CTRL subjects were matched according to 
age, sex and BMI.

For both MIMIC and CTRL groups we considered the 
following inclusion criteria: aged between 7 and 17 years; 
eating style that follows a mediterranean diet. The fol-
lowing exclusion criteria were considered for all subjects: 
history of chronic inflammatory diseases of the gastroin-
testinal (GI) tract; history of allergies; intake of antibiot-
ics and/or pre/probiotics in the last 3 months; history of 
gastroenteritis and/or parasitosis in the last 3  months; 
particular dietary regimes (vegetarian, vegan diet, etc.); 
BMI ≤ 18.4 or BMI > 24.9; history of other neurological, 
gastrointestinal and psychiatric pathologies.

In the MIMIC group, pediatric neurologists excluded: 
an history of chronic migraine; and/or medication over-
use headache; taking prophylactic drugs or any other 
pharmacological treatment at the time of sample collec-
tion. In the CTRL group, pediatric neurologists excluded 
history of migraine or any other type of primary head-
ache according to ICHD-3 criteria.

For each MIMIC and CTRL subject, a stool sample was 
requested. The sample collection should not have been 
carried out less than 24 h after a possible migraine attack 
or the intake of a rescue drug.

MIMIC subjects were divided into subgroups based 
on the number of headache days per month (monthly 
migraine days, MMD) (low frequency if MMD < 4 and 
high frequency if MMD ≥ 4), migraine onset (early and 
late onset before and after 10  years, respectively), pres-
ence of nausea/vomiting and/or photophobia/phonopho-
bia, gender, and presence of aura.

The study was approved by the Ethical Committee of 
the Bambino Gesù Children’s Hospital, IRCCS (protocol 
No. 596_OPBG_2021; protocol No. 2590_OPBG_2021; 
healthy subjects: protocols No. 1113_OPBG_2016 and 
No.2839_OPBG_2022) and was conducted in accord-
ance with the Principles of Good Clinical Practice and 
the Declaration of Helsinki. Written informed consent 
was obtained from either parents or legal representative 
of the children. From each subject in these cohorts, a sin-
gle faecal sample was collected and stored at -80 °C until 
further analyses.

16S rRNA‑based gut microbiota profiling
DNA was extracted from 200  mg of stools by QIAmp 
Fast DNA Stool mini kit (Qiagen, Germany), following 
the manufacturer’s instructions. The 16S rRNA V3-V4 
regions (~ 460  bp) were amplified following the MiSeq 
rRNA Amplicon Sequencing protocol (Illumina, San 
Diego, CA). The bacterial libraries were obtained by DNA 
amplifications, cleaning and barcoding using Illumina 
Nextera adaptor-primers (Illumina, San Diego, CA). The 

final library was quantified by Quant-iT™ PicoGreen® 
dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, 
MA). Samples were sequenced on an Illumina MiSeq™ 
platform according to the manufacturer’s specifications 
to generate paired-end reads of 300 base-length [15].

Pre‑Processing of fastq Files with QIIME2
A total of 422 fastq files (211 paired-end fastq files) were 
obtained by four distinct sequencing experiments and 
imported into QIIME2 v2023.2 [19]. With DADA2 plugin 
[8], paired-end reads were denoised, filtered from chime-
ras and joined into Amplicon Sequences Variants (ASVs). 
The sequences were taxonomically assigned by querying 
the Greengenes nucleotide sequence database v2022.10 
[46] by greengenes2 plugin. The phylogenetic tree was 
built with the phylogeny align-to-tree-mafft-fasttree 
method. Finally, the ASV tables, the taxonomic data 
frames and phylogenetic trees were imported in R v4.3.2 
to perform statistical analyses.

Batch Normalization and Statistical Analyses
The ASVs’ matrices were joined with the phyloseq R 
package v1.40.0, obtaining a single matrix characterized 
by 1,690 ASVs. To reduce the batch effect introduced by 
the sequencing steps, the matrix was normalized with the 
Conditional Quantile Regression (CQR) method, applied 
with ConQur R package v2.0 [34].

Age was evaluated as confounding factor by means 
of Microbiome Multivariable Association with Linear 
Model 2 (MaAsLin2) algorithm [43].

Prior to perform the α- and β-diversity analyses the 
ASV matrix was normalized with the rarefaction method 
based on the minimum sample size. Statistical analyses 
on α-diversity indices were performed using the non-
parametric Mann–Whitney test. PERMANOVA test was 
applied on β-diversity matrices.

The ASV matrix was normalized by the cumulative 
sum scaling (CSS) method and filtered out retaining 
ASVs present in at least the 25% of the total samples 
and with relative abundance > 0.01, prior to perform 
statistical analyses. For the univariate analysis (Linear 
Discrimant Effect Size [LEfSe]), the α value of 0.05 and 
an effect size threshold of 3 were used to identify the 
significant bacterial biomarkers [64]. For the multivari-
ate analysis (Partial Least Square Discriminant Analysis 
[PLS-DA]), the plsda function of the MixOmics pack-
age was used and the algorithm was a regression model. 
To evaluate the performance of the model and the over-
fitting phenomenon, a cross validation was performed 
with 200 random permutations, using the Bioconductor 
ropls package. The score plots and loading plots were 
generated through the mixOmics package, representing 
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in the Loadingplot only the taxa with a loading coeffi-
cient between 0.1 and 0.3 in absolute value. The load-
ings with VIP score < 1 were filtered out.

The Root Mean Square Error (RMSE),  Q2,  R2 and the 
Area Under the Receiver Operating Characteristics 
(AUROC) parameters were calculated to evaluate the 
performance of the PLS-DA. Then the Principal Com-
ponent Analysis (PCA) was performed with the prcomp 
function and the score plot and the biplots were visual-
ized through the Factoextra package of R the data [57].

All p-values were adjusted for multiple testing with 
the Benjamini–Hochberg procedure.

Functional and network analyses
To predict functional pathways, the Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt2) [18] software was 
used exploiting the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) orthologs database. LEfSe was used 
to identify statistically significant biochemical pathways 
(α value of 0.05 and a logarithmic LDA score thresh-
old of 3.0). Correlations between microorganisms and 
KEGG pathways were performed by using Spearman’s 
correlation method by means of Hmisc package v4.7–
1, and networks were obtained with igraph package 
v1.3.5.

Statistical analyses
IBM SPSS Statistics 21 software (IBM Corp., NY, U.S.A.) 
was used for statistical analysis of the patients’ anthro-
pometric and clinical data. To test whether our data-
set was normally distributed we used the Shapiro–Wilk 
test. Student’s t test (t test) and analysis of variance 
(ANOVA), was used for comparison of normally dis-
tributed variables. The Mann–Whitney U test and the 
Kruskal–Wallis test were used for non-parametric statis-
tical comparisons. Categorical variables were analyzed by 
the chi-square test or Fisher’s exact test. The relationship 
between two variables was tested by the Spearman’s rank 
correlation test.

To estimate the sample size, it was assumed that a dif-
ference in diversity indices (α and β indexes) equal to 0.4 
points would be observed between MIMIC and CTRL. 
In a previous work we found a standard deviation of 
the biodiversity score of 0.6 points [62]. Therefore, with 
alpha set at 5% and a power of 80%, a minimum num-
ber of 36 patients per group was obtained. Since from 
the same series a drop-out rate of approximately 15% 
was observed, the sample size was set at minimum 42 
patients per group. Considering the subgroup analyses, 

we therefore considered a total population of approxi-
mately 90–100 subjects [12].

Intestinal inflammation, permeability, mucosal immune 
activation and dysbiosis markers
In the migraine patients we measured the levels of 
lipopolysaccharide (LPS), occludin and IgA in the plasma 
to estimate the state of inflammation, intestinal perme-
ability and mucosal immune activation, respectively. We 
also measured the levels of indican (indoxyl sulphate) in 
the urine to verify the state of metabolic dysbiosis.

LPS levels were measured by an enzyme-linked immu-
nosorbent assay (ELISA) kit (concentration range of 
0.04–10.0 EU/mL) (Hycult Biotechnology, Uden, The 
Netherlands). The absorbance was measured in a micro-
plate reader at 405 nm.

The levels of occludin and IgA were measured by 
ELISA kits (concentration ranges: IgA, 25-200  ng/ml; 
occludin, 0.156–10  ng/ml) (Wuhan Fine Biotech Co, 
Wuhan, China), according to the product instructions. 
The absorbance for both tests was measured at 450 nm, 
using a microplate reader.

Indican was quantitatively measured by QuantyChrom 
TM Indican Assay Kit (detection range is 0.2–20 mg/dL) 
(Biossay Systems, CA, USA), following manufacturer’s 
instructions. The absorbance was measured in a micro-
plate reader at 480 nm.

Results
Characteristics of the migraine cohort
A total of 98 MIMIC subjects were enrolled, 64 females 
and 34 males, mean age of 12.24 years (range 6–17) at the 
time of enrolment. The mean age of migraine onset was 
9.35 years (median 9, SD 3.2, range 6–17). The most com-
mon diagnosis was migraine without aura (N 91, 92.9%).

Features of MIMIC subjects are reported in Table 1.

Characterization of the gut microbiota
The characteristics of the GM were investigated by 16S 
rRNA analysis of 195 fecal samples from 97 MIMIC and 
98 CTRL subjects. We obtained a total of 1848 ASV, fil-
tered and grouped into 75 bacterial genera.

To exclude gender and age as confounding factors in 
the gut microbiota analyses, we performed a β-diversity 
analysis on the faecal microbiota composition of the 
overall cohort, grouping subjects by gender and median 
age (11  years). No differences in the distribution of 
gut microbiota taxa were observed for gender (PER-
MANOVA p-value = 0.25) (Supplementary Fig. 1, A).

On the contrary, age resulted a confounding factor (PER-
MANOVA p-value = 0.001) (Supplementary Fig. 1, B).
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We tried to identify a specific gut microbiota signature 
associated to migraine by removing the potential effect 
of latent confounding variable (age). Consequently, after 
performing a general linear model, we could identify that 
Bifidobacterium 38,775 and Eggerthella were specifically 
associated to age and not to case–control matching (Sup-
plementary Fig. 2).

Gut bacterial dysbiosis in patients with migraine
The α-diversity analysis revealed a statistically signifi-
cant increase of all three indexes in the MIMIC group 
compared to CTRL (Shannon index: p-value = 5 ×  10–7, 
Simpson index p-value = 0.0006; Chao 1 p-value = 0.001) 
(Fig.  1A). The PERMANOVA test, performed on the 
Bray–Curtis distance matrix (β-diversity analysis), high-
lighted significant differences in the gut microbiota 
profiles of the two groups (p-value = 0.001) (Fig.  1B), 
indicating a gut dysbiosis in children with migraine.

To highlight the differences in gut microbiota composi-
tion between MIMIC and CTRL, we applied multivariate 
(unsupervised and supervised analysis and loading vari-
able plots) and univariate statistical approaches (Fig.  2 
and Supplementary Fig.  3). In all types of analysis, bac-
teria providing a statistically significant profile between 
MIMIC and CTRL samples were: Gemmiger, Pho-
caeicola, Roseburia, Escherichia, ER4, Acetatifactor, 
Alistipes_A_871400, Dorea_A and Rombustia for MIMIC 
subjects, and Eggerthella, Alistipes_A_871404, Clostrid-
ium, Collinsella, Parabacteroides, Erysipelatoclostridium, 
Akkermansia and Faecalibacillus for CTRLs. Bifidobac-
terium_388775 was also identified as marker of CTRLs, 
but was excluded in the previous confounding analysis 

because associated with age. The area under the ROC 
curve (AUROC) was 0.969, indicating that the applied 
model had high accuracy in group classification.

Finally, we tested the influence of anthropometric and 
clinical characteristics in shaping the gut microbiota, but 
we did not observe any statistical differences in patients’ 
group by α- and β-diversity analyses.

Metabolic inferred profile of migraine
To assess the microbial metabolic pathways, inferred 
by 16S rRNA sequences, we performed the prediction 
of pathways of the two cohorts, shown in the LDA plot 
(Fig. 3).

Thirty-seven pathways, belonging to 17 defined 
metabolic classes, have been associated with the 
MIMIC profile. Of these, the following pathways were 
increased in MIMIC: metabolism of phenylalanine, 
ascorbate, aldarate, glyoxylate, dicarboxylate, pro-
panoate, pyruvate, nitrogen, glycerophospholipid, por-
phyrin, riboflavin, beta-alanine, cyanoamino acid, and 
glutathione; degradation of lysine, geraniol, benzoate, 
dioxin, ethylbenzene, toluene and xylene; biosynthe-
sis of penicillin, cephalosporin, fatty acids, ansamy-
cins and siderophore group non-ribosomal peptides; 
pentose and glucuronate interconversions; bacterial 
chemotaxis; flagellar assembly; biofilm formation 
(Vibrio cholerae); carbon fixation pathways in prokar-
yotes; plant-pathogen interaction; protein process-
ing in endoplasmic reticulum; sulphur relay system; 
bacterial secretion system; two-component system; 
RNA polymerase; RNA transport; drug metabolism 
(other enzymes). These pathways were decreased in 
MIMIC: metabolism of cysteine, methionine, glycine, 

Table 1 Features of migraine cohort (MIMIC)

Total Patients: 98

 Age: mean (median ± SD; range) 12.24 years (12.5 ± 2.87; 6–17)

 Female: male (%) 64:34 (females 65.3%—males 34.7%)

Headache diagnosis

 Migraine without aura 91 (92.9%)

 Migraine with aura 7 (7.1%)

Migraine Features

 Mean (median ± SD; range) age at onset 9.35 (9 ± 3.2; 6–17)

 Early Onset (≤ 10 years of age) 61 (62%)

 Late Onset (> 11 years of age) 37 (38%)

MMD

 Low frequency (< 4/m) 54 (55.1%)

 High Frequency (> 4/m) 44 (44.9%)

 Nausea/Vomiting 70 (71.4%)

 Photophobia 74 (75.5%)

 Phonophobia 74 (75.5%)
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serine, threonine, amino sugars, nucleotide sugars, 
C5-Branched dibasic acids, fructose, mannose, galac-
tose, inositol phosphate, linoleic acid, nicotinate, nic-
otinamide, thiamine, seleno-compound and purine; 

biosynthesis of lysine, phenylalanine, tyrosine, tryp-
tophan, valine, leucine, isoleucine, novobiocin, 
pantothenate, Coenzyme A, terpenoid backbone, ami-
noacyl-tRNA; degradation of RNA, bisphenol, chloro-
alkane and chloroalkene; glycolysis/gluconeogenesis; 

Fig. 1 Gut microbiota biodiversity. A α-diversity analysis based on the Shannon-Weiner, Simpson and Chao1 indexes. The Mann–Whitney test 
was applied for the comparisons between migraine patients (MIMIC) and control subjects (CTRL). B β-diversity was calculated by the Bray–Curtis 
algorithm and presented by PCoA plots. PERMANOVA test results are statistically significant, p-value = 0.001
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cell cycle (Caulobacter); adipocytokine signalling path-
way; one carbon pool by folate; base and nucleo-
tide excision repair; DNA replication and ribosome 
pathway.

Network analysis between bacteria and metabolites
The link between bacteria and inferred pathways was 
highlighted by network analysis (Fig.  4). Remarkably, in 
MIMIC group (Fig.  4A), only Escherichia 71,083, Fae-
calibacterium, Bacteroides H, Phocaeicola_A_858004 and 
Dorea_A were linked to metabolic pathways. In particu-
lar, Escherichia showed only positive correlations with 
33 metabolic pathways; Faecalibacterium had 6 negative 
and 2 positive correlations with metabolic pathways; Bac-
teroides had 8 negative and 1 positive correlations with 
metabolic pathways; Dorea_A and Phocaeicola had 2 
and 1 positive correlations, respectively. The metabolic 
pathways of biosynthesis of siderophore group non-ribo-
somal peptides, galactose metabolism, fructose and man-
nose metabolism, beta-Alanine metabolism were shared 
between Escherichia and Faecalibacterium, whit inverse 
sign of correlation.

Interestingly, the CTRL network analysis highlighted corre-
lations amongst metabolic pathways and Escherichia_710834, 
Faecalibacterium, Bacteroides_H, Alistipes_A_871400, 
Blautia_A_141781, Bifidobacterium_388775, and Akker-
mansia (Fig. 4B). In particular, Escherichia 710,834 showed 
positive correlations with 18 metabolic pathways, of which 
16 were the same reported for MIMIC group. Moreover, one 
of these, penicillin and cephalosporin biosynthesis was in 
common with Faecalibacterium. The pathway Geraniol deg-
radation was in common between Bacteroides H (positive 
correlation) and Blautia A 141781 (negative correlation). The 
latter was linked by Chloroalkane and chloroalkene degrada-
tion with Bifidobacterium 388,775. Bacteroides was linked to 
Alistipes A 871400 by the positive correlation with Protein 
processing in the endoplasmic reticulum.

Finally, Akkermansia showed negative correlation with 
9 metabolic pathways.

Gut permeability, inflammation, metabolic dysbiosis 
and mucosal immune activation in migraine
In the MIMIC group, we examined plasma levels of LPS, 
occludin and IgA, markers of systemic inflammation, 
microbial translocation and mucosal immune system 

activation, respectively. We also tested patients’ urinary 
indican levels to indirectly measure gut dysbiosis levels 
[41].

It was previously reported that the plasma concentra-
tion of LPS ranges from undetectable levels up to 0.2 ng/
ml [42, 52], while occludin ranges from 0.5 to 1.7 ng/
ml [79]. In MIMIC subjects, the mean value of LPS was 
0.26 ± 0.17 ng/ml and occludin was 4.87 ± 4.21 ng/ml 
(Fig. 5). The mean value of systemic IgA was 76.91 ± 72.47 
g/L. The IgA range between 0.90–1.13 g/L was reported 
in healthy children from 6 to 10 years [29].

The mean value of indican urinary level in the MIMIC 
group was 136.71 ± 50.83 mg/L. As described in the lit-
erature, the urinary indican level was considered normal 
around 10–25 mg/L [10].

Correlation analysis based on Spearman’s test revealed 
a negative correlation between LPS and occludin (rho 
value = -0.560, p value < 0.05), but none between indican 
and the other two markers.

The gut inflammation, permeability and dysbiosis 
marker levels in the migraine cohort were evaluated con-
sidering the migraine’s features (Table  2). We observed 
an increase of LPS and a decrease of IgA in late migraine 
with respect to early onset patients, and an increase of 
IgA in the presence of phonophobia. We did not observe 
any other statistical differences for these biohumoral bio-
marker concentrations between patient groups (Table 2).

Discussion
This study shows that MIMIC subjects have GM profiles 
significantly different from those of CTRLs, and they 
are characterized by an increase of metabolic dysbiosis, 
intestinal permeability and mucosal immune activation. 
However, no systemic inflammation was observed.

The role of dysbiosis in migraine
Recent evidence highlighted that GM dysbiosis may 
contribute to migraine, although this relationship is not 
clearly explained. According to some researchers, there 
is a relationship between microbiota residents, inflam-
matory mediators, neuropeptides, stress hormones, and 
nutrient substances [3, 4]. It is well known that biochemi-
cal signals are transmitted from the gastrointestinal tract 
to the central nervous system (CNS) through the intes-
tinal barrier [3, 75]. The intestinal dysbiosis could play a 

(See figure on next page.)
Fig. 2 Compositional analysis of migraine patients (MIMIC) and control subjects (CTRL) gut microbiota at genus level. A Unsupervised multivariate 
analysis. Principal Component Analysis [PCA] plot showing the top 25 loadings; B Supervised multivariate analysis plot (Partial Least Squares 
Discriminant Analysis [PLS-DA]); C Loading variables plot (filtered for VIP > 0.85). The Root Mean Square Error (RMSE) = 0.247,  R2 value = 0.759, 
p-value ≤ 0.05 and  Q2 = 0.632, p value ≤ 0.05; D Univariate analysis (Linear Discriminant Analysis [LDA] Effect Size [LEfSe] plot. Bacterial taxa 
enriched in migraine patients have positive LDA scores (red), while bacterial enriched in CTRL have negative scores (green). E Receiver operating 
characteristic (ROC) analysis of the PLS-DA model. The value of AUROC = 0.969 indicates a high accuracy of the prediction model
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Fig. 2 (See legend on previous page.)
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Fig. 3 PICRUSt2 functional prediction using the KEGG pathway Database. Predicted metabolic pathways statistically associated to migraine 
patients (MIMIC) and control subjects (CTRL). Red bars represent pathways increased in MIMIC; green bars represent pathways increased in CTRL. 
LDA, linear discriminant analysis
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Fig. 4 Bacterial and metabolic pathways correlation network in migraine patients (MIMIC) (A) and in control subjects (CTRL) (B). Each node 
represents bacteria (orange circles) and metabolic pathways (blue circles). Green and red edges indicate positive and negative correlation values, 
respectively. Only correlations statistically significant (p-value < 0.05) are reported
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role in migraine attack by altering the intestinal perme-
ability and by enhancing inflammatory processes [20, 26].

Two studies have investigated the impact of GM on 
pediatric migraine [7, 36]. In line with some results on 
adults with migraine [11], Jiang et  al., [27]), both stud-
ies showed statistically significant differences for α 
and β-diversity between migraine patients and CTRLs 
groups. Unfortunately, GM profiles were retrieved from 
available digital datasets and the criteria for the diagnosis 
of migraine were not specified.

Our study showed that MIMIC subjects had higher 
α-diversity values of GM than CTRLs. This result is in 
contrast with those of the above cited studies [6, 36], in 
which batch effects related to geography, ethnicity and 
diet were not assessed, thus limiting the reproducibility 
of GM ecological data. Beyond its richness and diver-
sity, the proportions of different types of bacteria in GM 

may have a role in migraine pathophysiology. The bio-
chemical composition of the gut environment can be 
influenced by the correct balance between species.

In particular, Dorea_A, Acetatifactor, Gemmiger, 
Phocaeicola, Roseburia, Alistipes_A_871400, Escheri-
chia, ER4, and Rombustia were assigned to MIMIC 
subjects while Eggerthella, Erysipelatoclostridium, 
Alistipes_A_871404, Collinsella, Clostridium, Parabac-
teroides, Akkermansia and Faecalibacillus to CTRLs.

1) Bacteria assigned to MIMIC group. Dorea is posi-
tively associated with intestinal permeability and an 
increase in INF-γ, suggesting a role in pro-inflam-
matory processes [32]. Acetatifactor is a producer of 
lithocholic acid (LCA), a secondary bile acid [70]. It 
is well known that bile acids have immunomodula-
tory properties [22]. In particular, the LCA admin-

Fig. 5 Plasmatic levels of LPS, occludin, IgA and urinary level of indican for patients with migraine (MIMIC). Bar plots of LPS (ng/ml), occludin (ng/
ml) and IgA (g/L) plasmatic concentrations and of urinary indican concentration (mg/L)
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istration inhibited Th17 cell differentiation and pro-
moted Treg differentiation in a mouse model [23]. A 
potential role of Gemmiger, as well as Eggerthella and 
Acetatifactor, has been suggested in patients affected 
by psychiatric disorders like depression, bipolar dis-
order, schizophrenia, and psychosis [53]. In particu-
lar, a meta-analysis on the role of GM in depression 
reported an increase in Eggerthella and a decrease 
in Acetatifactor and Gemmiger in patients [37]. Egg-
erthella exerts its harmful role by inducing intestinal 
inflammation by activating Th17 cells [2], or by the 
depletion of butyrate, a short fatty acid molecule with 
anti-inflammatory properties [67]. Mechanisms that 
regulate intestinal inflammation involve Eggerthella, 
Gemmiger, and Acetatifactor [38]. Given that in 
MIMIC subjects we observed an opposite trend of 
these bacteria compared to depression-related GM 
profile, it is possible that these microorganisms may 
act differently on inflammatory processes associated 
with migraine or depression. Roseburia spp. are bac-
teria critical for the production of butyrate, which has 
a neuroprotective effect, can enhance cognition, and 
activates the vagus nerve [51]. Roseburia was linked 
to a higher level of serotonin and quinolinic acid in 
both the brain and colon of mice [81]. Major depres-
sive disorder patients have been reported to have a 
decreased abundance of Roseburia [80]. MIMIC 
subjects had a higher abundance of Roseburia com-

pared to controls, which is in line with previously 
reported results [24]. We also observed an increase 
of Rombustia in MIMICsubjects. Its role in this dis-
ease could be explained by the observation that Rom-
bustia has been correlated with an increase in serum 
tryptophan (Tabone et  al., [69]) and that there is a 
link between tryptophan metabolic activities and 
migraine pathophysiology [36]. Phocaeicola vulgatus 
is a producer of 3-hydroxyphenylacetic acid [28]. It 
has been proposed that phenylacetic acids play a role 
as triggers for migraine [49, 50].

2) Bacteria assigned to CTRL. Alistipes had two dis-
tinct genera associated with MIMIC and CTRL 
groups. This observation agrees with Liu et al.’s find-
ings (2024) which demonstrate the presence of Alis-
tipes in both healthy subjects and migraineurs. An 
increased abundance of Collinsella has been reported 
in migraine patients with irritable bowel syndrome 
(IBS), compared to those with only IBS, supporting 
a role of this microorganism in migraine [35]. Akker-
mansia muciniphila is able to produce propionate, 
which is involved in migraine pain reduction and can 
reduce the frequency and intensity of migraine epi-
sodes [30]. Furthermore, Akkermansia muciniphila 
can increase the expression of serotonin transport-
ers and increase the bioavailability of this molecule in 
the gut [78]. The potential protective role of Akker-
mansia against migraine is supported by these data.

Table 2 Occludin, LPS, indican and IgA levels in migraine cohort stratified for patients’ features. P values were obtained by T test

Biomarkers Categories Occludin 
(ng/ml) 
average ± SD

p value LPS (ng/ml) 
average ± SD

p value Indican 
(mg/L) 
average ± SD

p value IgA (g/L) 
average ± SD

p value

Gender Female 4.87 ± 4.6 0.998 0.26 ± 0.19 0.764 139.87 ± 51.67 0.919 72.46 ± 76.28 0.712

Male 4.87 ± 3.44 0.25 ± 0.13 130.81 ± 49.44 84.25 ± 66.96

Age  < 11 years 5.49 ± 3.87 0.458 0.22 ± 0.13 0.239 128.05 ± 50.6 0.929 80.76 ± 75.46 0.977

 ≥ 11 years 4.65 ± 4.34 0.27 ± 0.18 139.78 ± 50.92 75.53 ± 72.33

Episodes frequency low 5.29 ± 4.83 0.149 0.25 ± 0.18 0.342 137.03 ± 57.31 0.112 83.93 ± 67.2 0.806

high 4.35 ± 3.25 0.26 ± 0.16 136.32 ± 42.08 68.43 ± 78.99

Migraine onset early 5.16 ± 4.56 0.478 0.21 ± 0.12 0.003 136.05 ± 54.25 0.539 67.85 ± 57.07 0.031
late 4.44 ± 3.68 0.33 ± 0.21 137.67 ± 46.21 89.68 ± 89.68

Phonophobia not 6.17 ± 3.61 0.142 0.21 ± 0.15 0.161 139.29 ± 53.35 0.415 51.66 ± 32.38 0.032
yes 4.4 ± 4.34 0.28 ± 0.18 135.16 ± 48.13 87.92 ± 81.307

Photophobia not 5.36 ± 3.56 0.555 0.23 ± 0.2 0.485 131.67 ± 45.72 0.911 71.65 ± 53.57 0.233

yes 4.65 ± 4.42 0.27 ± 0.17 137.41 ± 50.38 81.88 ± 80.395

Nausea/vomiting not 5.89 ± 4.42 0.257 0.27 ± 0.17 0.779 122.98 ± 39.48 0.541 88.27 ± 75.813 0.445

yes 4.56 ± 4.13 0.25 ± 0.17 141.84 ± 53.82 73.22 ± 71.965

Aura not 4.71 ± 4.2 0.229 0.26 ± 0.17 0.97 133.01 ± 47.1 0.078 81.11 ± 73.83 0.065

yes 7.07 ± 4.17 0.26 ± 0.11 181.74 ± 74.61 25.65 ± 5.37

Nr. of migraine charac-
teristics

 ≤ 2 5.91 ± 3.86 0.115 0.18 ± 0.1 0.884 126.6 ± 54.09 0.555 73.77 ± 56 0.353

 > 2 4.51 ± 4.3 0.28 ± 0.18 139.07 ± 47.81 80.76 ± 78.87
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Different from our results, other authors reported 
higher levels of Eggerthella, Parabacteroides, and Ery-
sipelatoclostridium in children with migraine compared 
to CTRLs [7, 36]. Probably, different neurological altera-
tions may be associated with different distributions of 
bacterial signatures in the GM.

Intestinal inflammation and permeability
We analyzed the plasmatic concentration of occludin 
and LPS to study intestinal permeability and inflam-
mation in migraine patients. Tight junction proteins 
(e.g., occludin, zonulin, claudin) are core elements of 
the intestinal barrier, and their detection in the blood-
stream may indicate disruption of it [76]. The intact 
intestinal barrier allows the passage of nutrients into the 
bloodstream, while restricting the leakage of LPS into 
the systemic circulation [9]. Low-grade inflammation 
has been found in different diseases, such as diabetes, 
obesity, inflammatory bowel diseases (IBD), chronic 
kidney diseases, and cardiovascular diseases [48, 73]. In 
the context of migraine, it is possible that LPS favours 
the production of cortisol which in turn acts at the level 
of the TVS stimulating the production of calcitonin 
gene-related peptide (CGRP) [65].

Adult patients suffering from chronic migraine and 
medication overuse headache (MOH) exhibit an ele-
vated serum level of LPS [76]. The presence of a leaky 
gut and the passage of LPS into the bloodstream is 
demonstrated by the correlation between LPS levels 
and occludin levels in these patients. The same study 
found that patients with episodic migraine did not have 
an increased level of LPS, but they showed high levels 
of occludin when compared to healthy subjects [76]. It 
seems that intestinal inflammation may come up later 
in the course of migraine or it could be connected with 
the excessive use of non-steroidal anti-inflammatory 
drugs (NSAIDs).

This is the first study that analyze the levels of LPS, 
occludin, indican, and IgA in pediatric patients with 
episodic migraine. The relevance of this study on a 
pediatric cohort offers the opportunity to analyse 
associations between migraine and gut in an earlier 
phase of the disease, when the impact of environ-
mental factors is lower than in adults. We found that 
the serum LPS was not increased in MIMIC subjects, 
which seems to confirm that intestinal inflamma-
tion associated with migraine, or vice versa, is some-
thing that occurs over time, probably when the disease 
becomes chronic. This hypothesis is supported by the 
correlation between age at onset of migraine and LPS. 
Despite this, all patients had high levels of occludin, 
which suggests that permeability increases prior to 
intestinal inflammation.

Is tryptophan metabolism a potential link between gut 
microbiota and pediatric migraine?
In the MIMIC group, tryptophan metabolism may be 
dysfunctional at multiple levels, as demonstrated by our 
study. Liu et al. had previously speculated that migraine 
and tryptophan metabolism were related in pediatric 
patients, but there were some limitations. In the study by 
Liu et al., the GM data were extracted from a digital data-
base, while tryptophan metabolite levels were measured 
in a different migraine population [36].

Tryptophan metabolism involves three pathways: the 
serotonin (5-hydroxyptamine, 5-HT), kynurenine (KYN), 
and indole pathways [38].

The serotonin pathway is very important in the patho-
physiology of migraine, which can be considered as a 
syndrome of chronic low serotonin levels with transient 
increases during attacks [14]. We observed an increase 
of plasmatic IgA levels in our cohort. Migraine patients 
have been reported to have an increased level of serum 
complement components and immunoglobulins, which 
can cause platelets aggregation and release of serotonin 
into the blood [40]. Serotonin is selectively absorbed by 
the platelets, which represent circulation reservoirs for 
the substance. Furthermore, a decrease in platelet 5-HT 
levels has been observed in patients with migraine [66]. 
The increased levels of immunoglobulins in migraine 
patients might be related to the reduced levels of 5-HT in 
the platelets [66].

The kynurenine pathway is the main catabolic path-
way of tryptophan and, through the action of differ-
ent enzymes, can lead to the production of metabolites 
which can have protective or harmful effects on the CNS 
[38].

The indole pathway is the main pathway for metabo-
lizing tryptophan that is dominated by intestinal micro-
biota. The nervous system’s functions are regulated by 
indole and its derivatives [77]. The liver transforms indole 
into indican and excretes it via the urine [71]. Increased 
production and reabsorption of indican by intestinal bac-
teria is indicative of bacterial overgrowth in the small 
intestine, malabsorption, constipation and dysbiosis [39, 
41, 72, 74]. In our study, three main underlined elements 
are connected to the metabolism of GM and tryptophan. 
First, the patients’ GM population showed a higher con-
centration of E. coli, Bacteroides, and Lactobacilli com-
pared to CTRLs. The indole pathway’s high metabolism 
of tryptophan is generally attributed to these bacteria 
[17, 36]. This finding is also consistent with an increase in 
indican levels in the urine of MIMIC subjects, suggesting 
a metabolic dysbiosis [39, 41]. Second, the patients exhib-
ited elevated Akkermansia, which increases the expres-
sion of the serotonin transporter and its availability in 
the intestinal tract. Third, MIMIC subjects showed high 
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quantities of Roseburia that is associated with increased 
5-HT level and decreased quinolinic acid and 3-hydrox-
ykynurenine levels, in both brain and colon of mouse 
models [81]. Overall, our data on tryptophan metabo-
lism suggests that the GM ecosystem in MIMIC patients 
may unbalance its metabolism towards indoles instead 
of serotonin and kynurenine pathways. Measurement of 
the levels of tryptophan and its metabolites in the plasma 
of migraneous patients is necessary for verifying this 
hypothesis.

Amines metabolism and gut microbiota
The abnormal levels of dopamine and norepineph-
rine, as well as other elusive amines, can also affect the 
pathophysiology of migraine attacks [13]. In our study, 
it was observed that the pathways responsible for the 
biosynthesis of phenylalanine and tyrosine decreased in 
migraine patients. Phenylalanine has vasoconstrictive 
properties and may cause headaches by altering cerebral 
blood flow and the release of norepinephrine from sym-
pathetic nerve cells [33]. Additionally, phenylalanine is 
converted to tyrosine, which is a precursor of epineph-
rine, norepinephrine, and dopamine [44].

Nitric oxide metabolism and gut microbiota
Nitrate-containing compounds have been identified as 
common triggers of migraine [58]. In healthy volunteers 
and patients with migraine, the nitroglycerin (NTG) 
provocation model induces a headache that resembles 
migraine in pain characteristics and vascular manifesta-
tions [5, 58].

Under physiological conditions, the basal concentra-
tion of NO in the gut allows for control of commensal 
microbial populations and maintenance of the integrity 
of the intestinal epithelial barrier. Dysbiosis and intestinal 
inflammation lead to a significant increase in NO levels. 
High NO concentration depleted the microbiota of ben-
eficial species and favoured potentially deleterious bac-
teria such as Escherichia coli, Enterococcus faecalis, and 
Proteus mirabilis [31].

Our investigation revealed that MIMIC subjects have 
an abundance of Escherichia coli and an increase in 
nitrogen metabolism pathways simultaneously. Further 
research is needed to confirm that there is a connection 
between NO metabolism mediated by GM and migraine.

Limitations
The main limitation of the present study is the absence 
of urinary indican, plasmatic LPS, occludin, and IgA in 
healthy subjects as a reference baseline. Further our study 
showed data that were not always comparable to those 
of other studies in the literature (α and β value and GM 
species).

This could be the effect of using different methods for 
data analysis and patient selection. However, beyond the 
richness and diversity of the GM, a role in migration may 
be linked to the proportion between the various spe-
cies of bacteria and how these influence the biochemical 
composition of the intestinal environment. To accurately 
define the metabolic environment linked to GM, it would 
have been necessary to measure specific metabolites, 
such as tryptophan.

Conclusions
Gut dysbiosis was linked to migraine in our pediatric 
cohort. This evidence may lead to the identification of 
promising biomarkers and therapeutic targets for this 
disease. Furthermore, the increase in intestinal perme-
ability and IgA levels could be a factor in the disease’s 
trigger through the gut-brain axis. The study’s strength 
comes from its prospective design and the involvement 
of pediatric specialists for headache diagnosis. Further-
more, several variables related to diet, drug intake, and 
other conditions that affect GM were considered as exclu-
sion criteria. Finally, this study on pediatric patients with 
migraine offers the advantage of analyzing the GM in an 
early phase of the disease, when the role of interfering 
environmental factors on the GM is lower than in adults.

The present findings are a base for future advancement. 
The role of GM in migraine could be better defined by 
understanding the composition of the entire intestinal 
ecosystem. Metagenomics, metabolomics, and metapro-
teomics studies are necessary to gain a deeper under-
standing of metabolic pathways implicated in migraine 
triggering.

A better understanding of the GMB axis could lead to 
innovative therapeutic approaches that utilize modula-
tion or resetting of GM. Consideration could be given 
to faecal transplantation in pharmacologically resistant 
migraine, as well as possible bacterial therapies using tar-
geted probiotics and prebiotics.
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