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MEAN-FIELD LIMIT OF A HYBRID SYSTEM FOR MULTI-LANE

MULTI-CLASS TRAFFIC∗,∗∗,∗∗∗

Xiaoqian Gong1,**** , Benedetto Piccoli2 and Giuseppe Visconti3

Abstract. This article aims to study coupled mean-field equation and ODEs with discrete events
motivated by vehicular traffic flow. Precisely, multi-lane traffic flow in presence of human-driven
and autonomous vehicles is considered, with autonomous vehicles possibly influenced by external
policymakers. First, a finite-dimensional hybrid system is developed based on the continuous Bando-
Follow-the-Leader dynamics coupled with discrete events due to lane-change maneuvers. Then the
mean-field limit of the finite-dimensional hybrid system is rigorously derived for the dynamics of the
human-driven vehicles. The microscopic lane-change maneuvers of the human-driven vehicles generate
a source term for the mean-field PDE. This leads to an infinite-dimensional hybrid system described
by coupled Vlasov-type PDE, ODEs, and discrete events.
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1. Introduction

Mathematical traffic models, depending on the scale at which they represent vehicular traffic, usually can be
classified into different categories: microscopic, mesoscopic, macroscopic, and cellular. We refer to the survey
papers [1, 5, 42], and references therein, for general discussions about the models at various scales in the
literature. In this paper, we focus on microscopic models and mesoscopic descriptions.

Microscopic models are discrete models of traffic flow that study the behavior of individual vehicles and predict
their trajectories by means of ordinary differential equations (ODEs). One such model is the combined Bando [3]
and Follow-the-Leader [20, 45] model that concerns both relaxation to an optimal velocity and interactions with
the closest neighboring vehicle ahead. Mean-field equations, and in general models based on partial differential
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equations (PDEs), treat vehicular traffic as fluid flow, and aim to provide an aggregate and statistical viewpoint
of traffic by capturing and predicting the main phenomenology of the microscopic dynamics. Within this context
we would like to mention the most classical works [37, 43] and recent developments, e.g. [13, 26, 34, 39]. This
scale of representation is therefore useful and accurate in the limit of the dynamical system with a large number
of vehicles. The link between the microscopic and the mesoscopic description can be also rigorously established
in generalized Wasserstain distance [22]. We point-out that this discussion is not restricted to traffic flow and
is of interest in many research areas, such as in biology [12] or social [11] and economic dynamics [51].

In the present work, we aim to develop and study qualitative properties of models for traffic which are
motivated by the idea of considering, simultaneously, two important aspects: lane-change maneuvers and het-
erogeneous composition of the flow. The former is one of the most common maneuvers, source of interaction
and risk [27], among vehicles on motorways. Currently, multi-lane traffic is modeled either by two-dimensional
models [25, 48], in which lane changing rules are not explicitly prescribed, or by treating lanes as discrete enti-
ties [28, 46]. The latter aspect, instead, is becoming more and more important with the increasingly interest
in automated-driven vehicles and their effects within the vehicular traffic flow [29]. Experiments [14, 47] and
mathematical models [39, 50] have shown that a small number of controlled vehicles can stabilize traffic flow
damping unstable phenomena.

The main contributions of this paper are described in the following. We define microscopic dynamics for two
classes of vehicles, one identified by human-driven vehicles and the other one by automated-driven vehicles. We
use a Bando-Follow-the-Leader model for both classes. More precisely, the model is reformulated by replacing
the interaction with the closest vehicle ahead by a short-range interaction kernel which allows to write the
system of ODEs in a convolution framework. Furthermore, the dynamics of autonomous vehicles differs from
the dynamics of human-driven ones due to an additive control term which, in applications, may be provided by
a remote controller [47]. Along with the continuous dynamics, we consider discrete dynamics generated by the
lane changing rules, which are designed following [33]. The presence of both continuous and discrete dynamics
leads us to a hybrid system, see [8, 19, 21, 40, 49]. Finally, we perform a mean-field limit for human-driven
vehicles only, since autonomous vehicles are supposed to be a small percentage of the total flow on motorways.
The trajectories of the hybrid system exhibit dicontinuities thus the limit procedure requires a generalization of
the classical Arzelà-Ascoli Theorem. This leads to a Vlasov-type PDEs with a source term [16, 24, 30], which is
generated by the discrete lane changing rules. Such source term induces the measure solutions to change mass in
time, thus the limit is obtained using the generalized Wasserstein distance [41]. A brief comparative discussion
with other published works is in order. In [7], the authors introduce controlled vehicles in a Boltzmann-kinetic
setting and study how the control propagates through the scales. In [4], the authors proposed a system of
nonlocal balance laws with ODE modeling multi-lane and multi-class traffic. Specifically, the well-posedness
of the system and a maximum principle for additional assumptions in the input data were proved. While in
our work, we mainly focus on the derivation of the coupled ODE-PDE system in the mean-field approach.
Together with the continuous and discrete dynamics of the autonomous vehicles, we obtain a hybrid system
with mean-field limit involved, for which we prove existence and uniqueness of solutions.

Our main result is thus a complete representation of multi-lane multi-class hybrid system at microscopic
and mesoscopic scales together connected by a rigorous limiting procedure. Namely, we prove well-posedness of
the resulting hybrid models and the convergence of the finite dimensional hybrid system to the corresponding
infinite dimensional hybrid system, stated in Corollary 4.8. This framework allows to study optimal control
problems at multiple scales, in the same spirit as [6, 18]. The optimal control problems associated with the finite
and infinite dimensional hybrid systems were investigated in [23]. We also notice that, even if our main example
is vehicular traffic, the same framework may be adapted to model any hybrid system with multi-population at
microscopic and mesoscopic scale, including social and crowd dynamics [17].

The paper is organized as follows. In Section 2, we briefly recall the basic models, notions, notations and
preliminaries used in this article. Section 3 devotes to the definition of lane changing conditions and the study
of well-posedness of the finite-dimensional hybrid system modeling multi-lane traffic at the microscopic level. In
Section 4, we define a hybrid system involving mean-field limit of the finite-dimensional hybrid system involving
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human-driven vehicles and prove the existence and uniqueness of the trajectories of the mean-field hybrid
system. Finally, Section 5 ends the paper with conclusions and outlook.

2. Notations, definitions and preliminaries

In this section, we first recall some basic notations and definitions about traffic flow models, hybrid systems
and the generalized Wasserstein distance we use in this article. Then we list some well-known results about
solutions to Carathéodory differential equations and to partial differential equations of Vlasov-type with source
term. At last, we give a proof to a revised version of Arzelà-Ascoli Theorem.

2.1. Traffic flow models

In order to setup the mathematical formulation, in the following we consider a population of P cars on
an open stretch road. To each vehicle, labeled by an index i ∈ {1, . . . , P}, we associate a vector of indices
ι(i) = (i, iL, iF ). Here iL is the index of the leader, i.e. the vehicle in front of vehicle i, and iF is the index of
the follower, i.e. the vehicle flowing vehicle i.

Typically, the labels are assigned based on the increasing position of vehicles on the road, in the direction
of the flow, in such a way the first vehicle is labeled as 1, the second as 2, and so on. In this way, we have
that, for each i ∈ {1, . . . , P}, iL = i + 1 and iF = i − 1. However, for the purpose of this paper, we avoid the
introduction of any ordering. Labels can be randomly assigned among vehicles on the road and they remain
unchanged. Then, the indices iL and iF are the labels of the closest vehicle ahead and behind the reference
vehicle i, respectively. To fix notation, we let (xi, vi) be the vector of position-velocity, with xi ∈ R, vi ≥ 0, of
vehicle i. Then,

iL = arg min
k∈{1,...,P}
xk>xi

xk − xi, iF = arg min
k∈{1,...,P}
xk<xi

xi − xk. (2.1)

In addition, we assign iL = 0 if vehicle i is the last on the road, that is, i = arg max
k∈{1,...,P}

xk. Similarly, iF = 0 if

vehicle i is the first on the road, that is, i = arg min
k∈{1,...,P}

xk.

The Follow-the-Leader (FtL) model, which was introduced in [44, 45], assumes that the acceleration of a
vehicle is directly proportional to difference between the velocity of the vehicle in front and its own velocity,
and is inversely proportional to their distance. Let hi = xiL − xi be the headway of the i-th vehicle. The main
dynamics described by the FtL model is given by{

ẋi = vi,

v̇i = βi
viL−vi
(hi)2

, i ∈ {1, . . . , P}, (2.2)

where βi is a positive parameter with appropriate dimension. If vehicle i is the last vehicle, then the dynamics
of vehicle i is given by ẋi = vmax, where vmax is a given maximum velocity, perhaps the speed limit. By system
(2.2), one can see also a drawback of the FtL model: as long as the relative velocity ∆vi = viL − vi is zero, the
acceleration is zero. That is to say, even at high speeds, an extremely small headway is allowed.

The Bando model, proposed by Bando et al. in [3], fixed the aforementioned problems by associating each
vehicle an optimal velocity function V which describes the desired velocity for the headway. A driver controls the
acceleration or deceleration based on the difference between his/her own velocity and the optimal velocity. The
optimal velocity is typically an increasing function of the headway, namely it tends to zero for small headways
and to the maximum value vmax for large headways. The governing equation of the Bando model is as follows:{

ẋi = vi,
v̇i = αi(V (hi)− vi), i ∈ {1, . . . , P}, (2.3)
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where αi is a positive parameter denoting the speed of response. The equilibrium point for this model is obtained
when all vehicles travel at constant speed and have the same headway, see [35].

For the combined Bando-FtL model, which represents the basic model we consider in this work, the dynamics
of the i-th vehicle is defined as follows: If iL 6= 0, i.e., if vehicle i is not the last, then{

ẋi = vi,

v̇i = αi(V (hi)− vi) + βi
viL−vi
(hi)2

, i ∈ {1, . . . , P}, (2.4)

where the headway is hi = xiL − xi. For simplicity, we take αi = α, βi = β for all i ∈ {1, . . . , P}.

2.1.1. Convolution form of the Bando-FtL model

Now we will rewrite the Bando-FtL model, system (2.4), in convolution form to justify the fact that drivers
adjust their acceleration or deceleration according to the velocities of their front nearby vehicles, their own
velocities and optimal velocities. For T > 0 fixed and i = 1, . . . , P , define a time dependent atomic probability
measure on R× R+

0 ,

µP (t) =
1

P

P∑
i=1

δ(xi(t),vi(t)) (2.5)

supported on absolutely continuous trajectories t ∈ [0, T ] 7→ (xi(t), vi(t)) ∈ R×R+
0 . Let ε0 > 0 be fixed. Define

a convolution kernel H1 : R× R+
0 → R as H1(x, v) = αh(x) (V (−x)− v), where h : R→ R is a suitable smooth

and compactly supported function on [−ε0, 0] and weights the strength of the interaction depending on the
distance between two vehicles. Typical choice, as in the case of flocking dynamics, is to consider a weighting
function h which is decreasing with respect to the distance, e.g. h(x) = 1

1+x2 on x ∈ [−ε0, 0]. We observe that
the introduction of the range of interaction ε0 allows each vehicle to interact with more than one vehicle ahead.

Then, formally, for each i ∈ {1, . . . , P} and (xi, vi) ∈ R× R+
0 , the Bando-term in (2.4) can be rewritten as

H1 ∗1 µP (xi, vi) =
1

P

P∑
k=1

H1(xi − xk, vi) =
α

P

∑
k∈iε0

h(xi − xk) (V (xk − xi)− vi)

 ,

where ∗1 is the convolution with respect to the first variable, and iε0 = {k ∈ {1, . . . , P} such that 0 < xk − xi <
ε0}. Similarly, define a convolution kernel H2 : R×R→ R as H2(x, v) = βh(x)−vx2 . Then, for each i ∈ {1, . . . , P}
and (xi, vi) ∈ R× R+

0 , we formally rewrite the FtL-term of (2.4) as

H2 ∗ µP (xi, vi) =
1

P

P∑
k=1

H2(xi − xk, vi − vk) =
β

P

∑
k∈iε0

h(xi − xk)
vk − vi

(xi − xk)2

 ,

where ∗ is the (x, v)-convolution.
Formally, the Bando-FtL model (2.4) can be written using the convolution kernels as follows{

ẋi = vi,
v̇i = (H1 ∗1 µP +H2 ∗ µP )(xi, vi), i ∈ {1, . . . , P}. (2.6)

Model (2.6) has thus a close link to bounded confidence models for opinion formation, flocking and swarming
behaviors [36].



MEAN-FIELD LIMIT OF A HYBRID SYSTEM FOR MULTI-LANE MULTI-CLASS TRAFFIC 5

Next, we will focus also on descriptions based on PDEs. In particular, system (2.6) formally admits the
following mean-field limit as P →∞:

∂tµ+ v∂xµ+ ∂v((H1 ∗1 µ+H2 ∗ µ)µ) = 0, (2.7)

which gives a partial differential equation of Vlasov-type. Here µ represents the density distribution of the
vehicles in position-velocity variables in a single lane. Equation (2.7) describes the evolution of the density
distribution µ with respect to time in the mesoscopic level. This can be easily derived in a formal way following
classical computations, e.g. see [10], by considering a test function ϕ ∈ C1

0 (R2) and computing the time derivative
d
dt 〈µP (t), ϕ〉. Mean-field limits can be also rigorously derived, for more information, please see [9].

In Section 3, we specialize the microscopic Bando-FtL model to the case of multi-lane multi-class traffic flow.
For the finite dimensional model, we will lead to a hybrid system, where the discrete events are determined
by lane changes, and whose general definition is recalled in the next subsection. Whereas, in the mean-field
limit of the multi-lane multi-class microscopic model, lane changes will cause presence of source terms in the
Vlasov-type equation.

2.2. Hybrid control systems

A hybrid control system is a generic term for such controlled system that involves continuous dynamics and
discrete events. The discrete events are due to an automaton that contains a finite number of discrete states
called locations. The continuous dynamics are given by the continuous time controlled system at each location.
The following definition formalizes the details:

Definition 2.1. A hybrid control system is a 6-tuple Σ = (L,M, U,U , g, S) such that

(1) L is the set of a finite number of discrete states, i.e. the locations;

(2) M = {M`}`∈L is a finite family of smooth manifolds representing the state spaces of locations;

(3) U = {U`}`∈L is a finite family of sets representing the control space;

(4) U = {U`}`∈L is such that U` = {u : Dom(u) ⊂ R+
0 → U` measurable} for each ` ∈ L. U` represents the set

of admissible controls at location `;

(5) g = {g`}`∈L is a family of maps, such that

g` : M` × U` → TM`

(x, u) 7→ g`(x, u) ∈ TxM`,

where TM` is the tangent bundle to the manifold M`, TxM` is the tangent space to M` at x, and g` is
the dynamical law at location `;

(6) S is a subset of SW (Σ) := {(`, x, `′, x′) : `, `′ ∈ L, x ∈M`, x
′ ∈M`′}.

The hybrid states of the above hybrid control system Σ is identified by a 2-tuple, more precisely, we have the
following definition,

Definition 2.2. A hybrid state of the hybrid control system Σ is a 2-tuple (`, x), where ` ∈ L such that
x ∈ M` ∈ M. In the other words, the first variable of the state of the hybrid control system Σ indicates the
location, and the second variable indicates the space state of the location. We denote by HS the set of the
hybrid states of the hybrid control system Σ.

Now we define the admissible hybrid trajectories of the hybrid control system Σ with initial data (`0, x0) ∈
L ×M`0 .



6 X. GONG ET AL.

Definition 2.3. A map ϕ : [a, b] ⊂ R+
0 → HS, ϕ(t) = (`(t), x(t)) is an admissible hybrid trajectory of the

hybrid system Σ = (J ,M, U,U , g, S) with the initial data (`0, x0) ∈ L ×M`0 if ϕ(a) = (`(a), x(a)) = (`0, x0)
and if there exists s ∈ N, such that

(1) a = t0 < t1 < · · · < ts = b;

(2) for k = 0, . . . , s− 1, [tk, tk+1) ⊂ Dom(uk), uk ∈ U`(tk);
(3) for k = 0, . . . , s− 1, ` �[tk,tk+1] is constant;

(4) for k = 0, . . . , s− 1 the map x : (tk, tk+1)→M`(tk) is absolutely continuous and lim
t→tk+1

x(t) exists;

(5) for k = 0, . . . , s− 1 and for almost every t ∈ [tk, tk+1], we have

ẋ(t) = g`(tk)(t, x(t), uk(t));

(6) for k = 0, . . . , s− 1, (`(tk), x(tk), `(tk+1), x(tk+1)) ∈ S.

Hybrid control systems have numerous applications industrial process control, manufacturing and robotics,
automotive control and so on, see [17, 38, 49]. We mainly focus on the application of the hybrid control systems
on multi-lane traffic flows in Sections 3 and 4.

2.3. The generalized W‘asserstein distance

In this subsection, we recall the definition and some properties related to the generalized Wasserstein distance.
For a complete introduction we refer to [41].

LetM be the space of Borel measures with finite mass, P be the space of probability measures (the measures
in M with unit mass) and Mp be the space of Borel measures with finite p-th moment on Rd, where d is
the dimension of the space. We also denote with Mac

0 the subspace of M of measures that are with bounded
support and absolutely continuous with respect to the Lebesgue measure. Given a measure µ ∈ M, we denote
with |µ| : = µ(Rd) its mass. Given a Borel map γ : Rd → Rd, the push-forward of µ by γ, γ#µ, is defined as for
every Borel set A ⊂ Rd, γ#µ(A) : = µ(γ−1(A)). One can see that the mass of γ#µ is identical to the mass of
µ, i.e., |µ| = |γ#µ|.

Given two probability measures µ, ν ∈ P, a probability measure π on the product space Rd × Rd is said to
be an admissible transference plan from µ to ν if the following properties hold:∫

y∈Rd
dπ(x, y) = dµ(x),

∫
x∈Rd

dπ(x, y) = dν(y). (2.8)

We denote the set of admissible transference plans from µ to ν by Π(µ, ν). Note that the set Π(µ, ν) is always
nonempty, since the tensor product µ⊗ ν ∈ Π(µ, ν). To each admissible transference plan from µ to ν, π, one can
define a cost as follows: J [π] : =

∫
Rd×Rd |x− y|

p dπ(x, y), where | · | represents the Euclidean norm. A minimizer
of J in Π(µ, ν) always exists. Furthermore, the space of probability measures with finite p-th moment, P ∩Mp,
is a natural space in which J is finite.

Next, we recall the definition of the generalized Wasserstein distance on, M, the space of Borel measures
with finite mass on Rd. For more detail, see [41].

Definition 2.4. Given a, b ∈ (0,∞) and p ≥ 1, the generalized Wasserstein distance between two measures
µ, ν ∈Mp is

W a,b
p (µ, ν) : = inf

µ̃,ν̃∈Mp

|µ̃|=|ν̃|

(a (|µ− µ̃|+ |ν − ν̃|) + bWp(µ̃, ν̃)) . (2.9)
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Remark 2.5. The standard Wasserstein distance is defined only for probability measures. Combining the
standard Wasserstein distance and L1 distance, the generalized Wasserstein distance can be applied to measures
with different masses.

If µ1 is absolutely continuous with respect to µ ∈M and for every Borel set A ⊂ Rd, µ1(A) ≤ µ(A), then we
write µ1 ≤ µ.

Remark 2.6. The infimum in equation (2.9) is always attained if one restrict the computation in equation
(2.9) to µ̃ ≤ µ, ν̃ ≤ ν.

We recall some simple properties of the generalized Wasserstein distance, W a,b
p which use well-known results

on the Wasserstein distance [2]. Compare the following proposition with Proposition 2 in [41].

Proposition 2.7. Let µ, ν, µ1, µ2, ν1, ν2 be measures in Mp. The following properties of the generalized
Wasserstein distance W 1,1

1 hold:

W 1,1
1 (kµ, kν) ≤ kW 1,1

1 (µ, ν) for k ≥ 0;

W 1,1
1 (µ1 + µ2, ν1 + ν2) ≤W 1,1

1 (µ1, ν1) +W 1,1
1 (µ2, ν2).

We also have the following lemmas for the generalized Wasserstein distance.

Lemma 2.8. Let f1, f2 : Rn → Rn be bounded Borel measureable functions. Then for every µ ∈ M1(Rn), one
has

W 1,1
1 (f1#µ, f2#µ) ≤ ‖f1 − f2‖L∞(suppµ).

If in addition f1 is a locally Lipschitz continuous Borel measurable function, then for µ, ν ∈M1(Rn) compactly
supported on a ball B of Rn,

W 1,1
1 (f1#µ, f1#ν) ≤ max{L, 1}W 1,1

1 (µ, ν),

where L is the Lipschitz constant of f1 on B.

Lemma 2.9. Let H be a map satisfying condition (H1)-(H2). Let R > 0 be fixed. Let µ, ν : [0, T ]→M1(R2d)
be continuous maps with respect to the generalized Wasserstein distance W 1,1

1 both satisfying

suppµ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R),

for every t ∈ [0, T ]. Then for every ρ > 0, there exists a constant Lρ,R such that

‖H ∗ µ(t)−H ∗ ν(t)‖L∞(B(0,ρ)) ≤ Lρ,RW 1,1
1 (µ(t), ν(t)). (2.10)

One can prove Lemma 2.8 and Lemma 2.9 by combining lemmata A.6 and A.7 in [17] and the definition of
generalized Wasserstein distance.

2.4. Partial differential equations of Vlasov-type with source term

In this subsection, we consider partial differential equations of Vlasov-type.
Let H1, H2 be two maps satisfying condition (H1)-(H2). Let T > 0, R > 0 be fixed. Consider a continuous map

µ : [0, T ]→ P(R2d) ∩M1(R2d) with respect to the first order Wasserstein distance, W1, such that suppµ(t) ⊂

B(0, R) for all t ∈ [0, T ], and a time dependent atomic measure ν(t)(y, w) = 1
M

M∑
k=1

δ(yk(t),wk(t)) supported on

the absolutely continuous trajectories t 7→ (yk(t), wk(t)), k = 1, . . . ,Mj . Then given an initial datum P0 : =
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(x0, v0) ∈ R2d, there exists a unique solution P (t) : = (x(t), v(t)) on the whole time interval [0, T ] to the
following system of ODEs on R2d

{
ẋ(t) = v(t)
v̇(t) = (H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν)) (x(t), v(t)).

Therefore, one can consider a family of flow maps

T µ,νt : P0 ∈ R2d 7→ P (t) ∈ R2d. (2.11)

indexed by t ∈ [0, T ]. Furthermore, the flow map T µ,νt is Lipschitz continuous. In fact, let µq : [0, T ] →
P(R2d)∩M1(R2d), q = 1, 2, be two continuous maps with respect to Wasserstein distance and be equi-compactly
supported in B(0, R). Let ν1, ν2 be two atomic measures supported on the respective absolutely continuous
trajectories t 7→ (yqk(t), wqk(t)), q = 1, 2 and k = 1, . . . ,M . Fix r > 0. Then there exist constants ρ, L > 0, such
that whenever |P1| ≤ r,|P2| ≤ r,

|T µ
1,ν1

t (P1)− T µ
2,ν2

t (P2)| ≤eLt|P1 − P2|+
∫ t

0

eL(s−t) ∥∥(H1 ∗1 (µ1 + ν1) +H2 ∗ (µ1 + ν1)
)

−
(
H1 ∗1 (µ2 + ν2) +H2 ∗ (µ2 + ν2)

)∥∥
L∞(B(0,ρ))

ds,

(2.12)

for every t ∈ [0, T ]. For more details, please see [17].
Given an initial condition µ0 ∈ P(R2d) ∩M1(R2d) of bounded support, we say that a measure µ(t) is a weak equi-

compactly supported solution of the following Vlasov-type PDE with the initial datum µ0,

∂tµ+ v · ∇xµ+∇v · [(H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))µ] = 0, (2.13)

if (i) µ(0) = µ0; (ii) suppµ(t) ⊂ B(0, R) for all t ∈ [0, T ], for some R > 0; (iii) for every ϕ ∈ C∞c (R2d),

d

dt

∫
R2d

ϕ(x, v) dµ(t)(x, v) =

∫
R2d

∇ϕ(x, v) · ω̃H1,H2,µ,νj
(t, x, v) dµ(t)(x, v)

where ω̃H1,H2,µ,ν(t, x, v) : [0, T ]× Rd × Rd → R2d is defined as

ω̃H1,H2,µ,ν(t, x, v) : = (v, (H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))(x, v)). (2.14)

Furthermore, following from Section 8.1 in [2], a measure µ(t) is a weak equi-compactly supported solution of equation
(2.13) if and only if it satisfies condition (ii) and the measure-theoretical fixed point equation µ(t) = (T µ,νt ) #µ0 where
the flow function T µ,νt is defined in equation (2.11).

Now we consider solutions to the following Vlasov-type PDE with initial datum µ0 ∈Mac
0 (R2d)∩M1(R2d) and source

term S
∂tµ+ v · ∇xµ+∇v · [(H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))µ] = S(µ) (2.15)

under the following hypotheses:

(S1) S(µ) has uniformly bounded mass and support, that is, there exist Q,R,

such that S(µ)(R2d) ≤ Q, and supp(S(µ)) ⊂ B(0, R);

(S2) S is Lipschitz, that is, there exists L, such that, for any µ, ν ∈M1(R2d),

W 1,1
1 (S(µ), S(ν)) ≤ LW 1,1

1 (µ, ν).

A measure µ(t) is a weak solution of equation (2.15) with a given initial datum µ0 ∈Mac
0 (R2d)∩M1(R2d), if µ(0) = µ0

and if for every ϕ ∈ C∞c (R2d), it holds

d

dt

∫
R2d

ϕ(x, v) dµ(t)(x, v) =

∫
R2d

ϕ(x, v) dS(µ)(x, v) +

∫
R2d

∇ϕ(x, v) · ω̃H1,H2,µ,ν(t, x, v) dµ(t)(x, v),

where w̃H1,H2,µ,ν is as defined in (2.14).
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Theorem 2.10. Given an initial datum µ0 ∈Mac
0 (R2d)∩M1(R2d), there exists a unique weak solution µ(t) to equation

(2.15) under the hypotheses (S1), (S2). Furthermore, µ(t) ∈Mac
0 (R2d) ∩M1(R2d).

One can construct a weak solution µ(t) to equation (2.15) based on a Lagrangian scheme by sample-and-hold. Given
a fixed k ∈ N+, define ∆t : = T

2k
and decompose the time interval [0, T ] in [0,∆t], [∆t, 2∆t], . . . , [(2k − 1)∆t, 2k∆t]. We

define

µk(0) : = µ0,

µk((n+ 1)∆t) : = T µk(n∆t),ν(n∆t)
∆t #µk(n∆t) + ∆tS(µk(n∆t)),

µk(t) : = T µk(n∆t),ν(n∆t)
τ #µk(n∆t) + τS(µk(n∆t)),

where n is the maximum integer such that t− n∆t ≥ 0 and τ : = t− n∆t. Then µ(t) = lim
k→∞

µk(t) is the unique weak

solution to equation (2.15). For more detail, please see [41].

2.5. A revised version of Arzelà–Ascoli theorem

In this subsection, we will provide a proof to a revised version of Arzelà–Ascoli theorem.

Theorem 2.11. Let K be a compact subset of R and let D be a complete and totally bounded metric space with metric
d. Consider a sequence of functions {fn}∞n=1 in C(K;D). If there exists L > 0, such that the following is true: for any
ε > 0, there exists N > 0, such that, whenever n ≥ N ,

d(fn(t), fn(s)) ≤ L|t− s|+ min{ε, |t− s|}, ∀s, t ∈ K

then the sequence {fn}∞n=1 has a uniformly convergent sub-sequence.

Proof. First note that since K is a compact subset of R, K is separable. Thus there exists a countable set S ⊂ K that
is dense in K. We list the countably many elements of S as {t1, t2, t3, . . . }.

We will find a sub-sequence of {fn} that converges point-wise on S by a standard diagonal argument.
Since D is complete and totally bounded, D is sequentially compact. Thus the sequence {fn(t1)}∞n=1 in D has a

convergent sub-sequence, which we will write using double subscripts, {f1,n(t1)}∞n=1. Similarly, the sequence {f1,n(t2)}∞n=1

also has a convergent sub-sequence {f2,n(t2)}∞n=1. By proceeding in this way, we obtain a countable collection of sub-
sequences of our original sequence {fn}∞n=1:

f1,1 f1,2 f1,3, . . .
f2,1 f2,2 f2,3, . . .
f3,1 f3,2 f3,3, . . .

...
...

... . . .

where the sequence in the n-th row converges at the points t1, t2, . . . , tn, and each row is a sub-sequence of its previous
row. Let {gn} be the diagonal sequence produced in the previous step, i.e., gn = fn,n for each n ∈ N. Then the sequence
{gn} is a sub-sequence of the original sequence {fn} that converges at each point of S.

Next, we will show that the sub-sequence {gn} of {fn} is uniformly convergent. Let ε > 0 be given and choose
δ = min

{
ε

6L
, ε

6

}
. Then there exists N1 > 0, such that for every n ≥ N1, and for any s, t ∈ K with |s− t| < δ,

d(gn(t), gn(s)) ≤ L|t− s|+ min{ ε
6
, |t− s|} ≤ Lδ +

ε

6
≤ ε

3
.

Since K is compact, for any positive integer M > 1
δ
, there exists a finite set SM ⊂ S such that K ⊂

⋃
s∈SM

B 1
M

(s).

Since the sequence {gn} converges at each point of SM , there exists N2 > 0, such that whenever n,m > N2,

d(gn(s), gm(s)) <
ε

3
, ∀s ∈ SM .

Let t ∈ K be arbitrary but fixed. Then there exists some s ∈ SM such that |s− t| < δ. In addition, let N = max{N1, N2}.
Then whenever n,m > N ,

d(gn(t), gm(t)) ≤ d(gn(t), gn(s)) + d(gn(s), gm(s)) + d(gm(s), gm(t)) < ε.

Hence the sub-sequence {gn} of the original sequence {fn} is uniformly Cauchy. Since the metric space D is complete,
C(K;D) is complete with respect to the uniform metric. Thus the sub-sequence {gn} is uniformly convergent.
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3. The Finite-dimensional hybrid system

In this section, we specify the Bando-FtL model introduced in Section 2.1 to the case of multi-lane and multi-class
vehicles with lane changing maneuvers, leading to a finite-dimensional hybrid system, cf. Section 2.2. Then, we study
existence and uniqueness of solutions to the resulting hybrid system.

3.1. The model

In the case of multi-lane traffic, vehicles travel along multiple lanes with the possibility to change lane paying a cost
related to such maneuver. We consider m lanes and assume that j ∈ J = {1, . . . ,m} is the index of lanes. Now, to each
vehicle i, we associate an extended vector of indices ι(i) = (i, j, iL, iF ), where j ∈ J is the lane index of vehicle i, while

iL = (ijL, i
j+1
L , ij−1

L ) and iF = (ijF , i
j+1
F , ij−1

F ) are the vectors of the leader and follower indices, respectively, of vehicle i on
its current lane j and of an hypothetical vehicle with same position as i but on the two adjacent lanes j + 1, j − 1 (to the
left and right of lane j, respectively.) If there is no lane to the left or to the right, we assume to label the corresponding
index as 0. Similarly, in the case of no leader or follower.

Let (xi, vi) ∈ R× R+
0 be again the space-velocity variables of the vehicle i. Similarly to (2.1), we define ijL and ijF as

ijL = arg min
k∈{1,...,P}
π2(ι(k))=j
xk>xi

xk − xi, ijF = arg min
k∈{1,...,P}
π2(ι(k))=j
xk<xi

xi − xk, (3.1)

where π2 is the projection of ι(i) on its second argument. Instead, for j′ = j + 1, j − 1, we define

ij
′

L = arg min
k∈{1,...,P}
π2(ι(k))=j′

xk≥xi

xk − xi, ij
′

F = arg min
k∈{1,...,P}
π2(ι(k))=j′

xk≤xi

xi − xk. (3.2)

We observe that with the previous definition we identify the leader and the follower in lane j′ being the same if there is
a vehicle next to i having the same x position.

Each individual vehicle has a continuous dynamic governed by system (2.6) before performing lane changing. Discrete
dynamics of the vehicles will be generated due to lane changing. The presence of both continuous dynamics and discrete
dynamics leads us to consider hybrid system, see [19, 40].

In particular, in the following we consider two classes of vehicles and split the population of P vehicles into M
autonomous vehicles and N human-driven vehicles on an open stretch of road with m lanes. We let Mj and Nj be the
number of autonomous vehicles and the number of human-driven vehicles on lane j ∈ J = {1, . . . ,m}, respectively. Then
m∑
j=1

Mj = M and
m∑
j=1

Nj = N .

First, we study the dynamics of the M +N vehicles from the microscopic point of view. As in [17], we assume that
we have a large amount N of human-driven vehicles and a small amount M of autonomous vehicles that have a great
influence on the population. This influence is modelled by controlled dynamics for the M autonomous vehicles.

In order to specify the continuous and discrete dynamics of the vehicles, we introduce the following labeling: the
autonomous vehicles are identified by labels i ∈ {1, . . . ,M}, whereas the human-driven vehicles are identified by labels
i ∈ {M + 1, . . . ,M +N}. Furthermore, we consider the following atomic measures in M+(R× R+) on lane j

µNj (t) =
1

Nj

∑
i∈{M+1,...,M+N}

π2(ι(i))=j

δ(xi(t),vi(t)), νj(t) =
1

Mj

∑
i∈{1,...,M}
π2(ι(i))=j

δ(xi(t),vi(t)). (3.3)

3.1.1. The continuous dynamics

From the microscopic point of view, the dynamics of each vehicle i on lane j ∈ J , i.e. with π2(ι(i)) = j, without lane
changing are

ẋi = vi,

v̇i =
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(xi, vi) + uji ,

(3.4)

where uji : [0, T ] → R, and uji ≡ 0 if i ∈ {M + 1, . . . ,M + N}. The control term uji , related to a car i on lane j, is
introduced in order to differ the dynamics of the two populations of vehicles. The introduction of the control term
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models the controlled behavior of the autonomous vehicles. The control can be chosen in order to reduce the instability
of the effects in traffic flow, see [32]. As observed in Section 2.1, the explicit formulation of the convolution kernels H1

and H2 depends on the modeling of the follow-the-leader term and of the Bando term. Here, we keep them general
and we require that H1 : R× R+ → R, H2 : R× R→ R are locally Lipschitz convolution kernels with sub-linear growth.
Particularly, there exists a constant C > 0 such that for all (x1, v1) ∈ R× R+ and (x2, v2) ∈ R× R,

|H1(x1, v1)| ≤ C(1 + |(x1, v1)|) and |H2(x2, v2)| ≤ C(1 + |(x2, v2)|). (3.5)

3.1.2. Lane changing maneuvers

Let ∆ > 0 be fixed. Vehicle i on j ∈ J lane will perform a lane changing to j′ = j + 1 ∈ J or j′ = j − 1 ∈ J lane at
time t ∈ [0, T ] if the following conditions occur:

Safety: āj
′

i (t) ≥ −∆ and āj
′

i
j′
F

(t) ≥ −∆; Incentive: āj
′

i (t) ≥ aji (t) + ∆.

We recall that ij
′

F is the index of the first vehicle following vehicle i on the new lane if vehicle i changes lane at time

t. Instead, aji (t) is the actual acceleration of vehicle i at time t on the j-th lane, āj
′

i (t) and āj
′

i
j′
F

(t) are the expected

accelerations of vehicle i and ij
′

F , respectively, on lane j′ if vehicle i changes lane at time t. For instance, if vehicle i is

an autonomous vehicle, i.e. i ∈ {1, . . . ,M} with π2(ι(i)) = j, and if vehicle ij
′

F is a human-driven vehicle, then at time
t ∈ [0, T ],

aji (t) =
(
H1 ∗1 (µNj (t) + νj(t)) +H2 ∗ (µNj (t) + νj(t))

)
(xi(t), vi(t)) + uji (t),

āj
′

i (t) =
(
H1 ∗1 (µNj′ (t) + ν̄j

′
(t)) +H2 ∗ (µNj′ (t) + ν̄j

′
(t))
)

(xi(t), vi(t)) + uj
′

i (t),

āj
′

i
j′
F

(t) =
(
H1 ∗1 (µNj′ (t) + ν̄j

′
(t)) +H2 ∗ (µNj′ (t) + ν̄j

′
(t))
)

(x
i
j′
F

(t), v
i
j′
F

(t)),

where

ν̄j
′

=
1

Mj′ + 1

 ∑
`∈{1,...,M}
π2(ι(`))=j′

δ(x`(t),v`(t)) + δ(xi(t),vi(t))

 .

We discuss here the choices of the lane changing rules. The safety condition models the situation in which the reference
vehicle i will perform a lane change if there is enough space not to cause an extreme deceleration of itself and of its
follower on lane j′. Instead, the incentive condition models the situation in which the reference vehicle i will perform a
lane change if difference of the accelerations on the new lane j′ and on the current lane j is larger than the threshold
∆. By considering acceleration for the lane changing condition, a vehicle needs to take into account simultaneously the
space gap, velocity and velocity difference with its leading vehicle on the current and adjacent lane. Similar choices have
been already considered in the literature, e.g. see [33].

Throughout the paper we make use of the following assumptions on the lane changing maneuvers.

Assumption 3.1. We assume that there are no two vehicles changing lane at the same time. We assign each vehicle
a timer over the whole time interval [0, T ]. Let Nτ ∈ Z+ be large and fixed and let T1 = T

Nτ
. A vehicle would consider

changing lane only when its timer reaches to T1. Here T1 is called timer limit for all vehicles. Specifically, the timer τi
for vehicle i satisfies τ̇i = 1, τi(0) = τi,0 ∈ [0, T1). In addition, the following is true:

if k1 6= k2 ∈ {1, . . . ,M +N}, then τk1,0 6= τk2,0. (3.6)

Besides, we reset the timer for each vehicle to be zero when it reaches to T1.

Assumption 3.2. We assume that, when the conditions for vehicle i to change lane are satisfied, then the lane changing

is performed with probability p([min{āj
′

i , ā
j′

i
j′
F

} + ∆]+, [ā
j′

i − a
j
i −∆]+) from lane j to j′, where p : R × R → [0, 1] is an

increasing function with respect to both variables.
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13

25

4Lane 1

Lane 2

Figure 1. Schematic representation of the Example 3.3.

Although Assumption 3.1 might look restrictive, we point out that experimental studies have shown that lane changing
are not frequent in real traffic. Therefore, the probability of having two vehicles changing lane at the same time is low.
However, considering models for lane changes are important since it has been analyzed using safety measures, such as
time-to-collision, that traffic safety is influenced by the flow across lanes. We refer to [27, 31] for detailed discussions.
Furthermore, we observe that the lane changing frequency can be arbitrarily increased by taking small values of T1.

From the mathematical point of view, the introduction of the cool down time T1 will allow us to study qualitative
properties over small time intervals when there is no lane changing. Since the number of lane changing is finite and lane
changing only may occur at specific time, one can extend the small time interval into the whole time interval [0, T ] by
repeating the procedure finitely many times.

We conclude this section by stating the following example to clarify how label switching of the finite dimensional
hybrid system works:

Example 3.3. We present here a summary example of the basic working principles of the present finite-dimensional
hybrid system. For the sake of simplicity, we restrict the focus on the case of a highway with two lanes, i.e. m = 2 and
J = {1, 2}. We assume that there are five vehicles on the road, i.e. P = 5, three of them flowing on lane 1 and two
on lane 2. We refer to Figure 1 for a schematic representation of the case study. The reference vehicle is identified by
the label i = 1 and travels on lane j = 1. Its vector of indices defined by ι(1) = (1, 1, 1L, 1F ), with 1L = (4, 2, 0) and
1F = (3, 5, 0). In fact, vehicle labeled by 4 is the leader in lane 1, whereas vehicle labeled by 2 is the leader in lane 2.
We observe that the last entry of 1L is 0 because there is no right lane for the reference vehicle 1, and so no leader on
the right. Furthermore, and without loss of generality, we assume that the reference vehicle is the only autonomous on
the road, namely N = 4, with N1 = N2 = 2, and M = 1, with M1 = 1, M2 = 0. The vectors associated to the other,
human-driven, vehicles are

ι(2) = (2, 2, 2L, 2F ), 2L = (0, 0, 4), 2F = (5, 0, 1)

ι(3) = (3, 1, 3L, 3F ), 3L = (1, 5, 0), 3F = (0, 0, 0)

ι(4) = (4, 1, 4L, 4F ), 4L = (0, 0, 0), 4F = (1, 0, 2)

ι(5) = (5, 2, 5L, 5F ), 5L = (2, 0, 1), 5F = (0, 0, 3)

Lane changing conditions for the reference vehicle 1 become

Safety: ā2
1(t) ≥ −∆ and ā2

5(t) ≥ −∆; Incentive: ā2
1(t) ≥ a1

1(t) + ∆,

where the acceleration functions are defined by

a1
1(t) =

(
H1 ∗1 (µN1(t) + ν1(t)) +H2 ∗ (µN1(t) + ν1(t))

)
(x1(t), v1(t)) + u1

1(t),

ā2
1(t) =

(
H1 ∗1 (µN2(t) + ν̃2(t)) +H2 ∗ (µN2(t) + ν̄2(t))

)
(x1(t), v1(t)) + u2

1(t),

ā2
5(t) =

(
H1 ∗1 (µN2(t) + ν̃2(t)) +H2 ∗ (µN2(t) + ν̄2(t))

)
(x5(t), v5(t)),

with

µN1(t) =
1

2

∑
i∈{3,4}

δ(xi(t),vi(t)), ν1(t) = δ(x1(t),v1(t)),

µN2(t) =
1

2

∑
i∈{2,5}

δ(xi(t),vi(t)), ν2(t) = 0, ν̄2 = δ(x1(t),v1(t)).
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µN1(t) =
1

2

∑
i∈{3,4}

δ(xi(t),vi(t)),

ν1(t) = δ(x1(t),v1(t)),

µN2(t) =
1

2

∑
i∈{2,5}

δ(xi(t),vi(t)),

ν2(t) = 0,

ν̄2 = δ(x1(t),v1(t)).

Assume that for the reference vehicle 1 the timer τ1 has reached the timer limit T1. Then, it would consider to change
lane if the conditions are fulfilled. In that case, the reference vehicle changes lane going to lane 2 and the sets of indices
of vehicles modify as

ι(1) = (1, 2, 1L, 1F ), 1L = (2, 0, 4), 1F = (5, 0, 3)

ι(2) = (2, 2, 2L, 2F ), 2L = (0, 0, 4), 2F = (1, 0, 3)

ι(3) = (3, 1, 3L, 3F ), 3L = (0, 5, 0), 3F = (0, 0, 0)

ι(4) = (4, 1, 4L, 4F ), 4L = (0, 0, 0), 4F = (0, 0, 2)

ι(5) = (5, 2, 5L, 5F ), 5L = (1, 0, 4), 5F = (0, 0, 3).

3.2. Existence and uniqueness of solutions to the finite-dimensional hybrid system

The presence of both continuous dynamics of vehicles governed by system (3.4) and discrete dynamics of vehicles
caused by lane changing motivates us to consider a finite-dimensional hybrid system.

For the definition of a hybrid system for multilane traffic, we need to introduce the following notation. We introduce
X := R × R≥0 × [0, T1), I := {1, . . . ,M + N}, and ` ∈ RM+N such that `i = π2(ι(i)), i ∈ I, is the label of the lane of
vehicle i. Then, we further define,

A` := {(xi, vi, τi)i∈I ∈ X : ∃i 6= k ∈ I, t ∈ [0, T ], s.t. `i(t) = `k(t) ∧ xi(t) = ik(t)} , (3.7)

the set of states such that two cars are in same lane and position.

Definition 3.4. A hybrid system modeling multilane traffic is given by a 6-tuple Σ1 = (L,M, U,U , g, S) where:

(1) L = {` = (`i), `i ∈ J, i ∈ I} is a finite set of symbols that represent all possible lane labels of all vehicles;

(2) M = {M`}`∈L, where M` = (X \A`)M+N , with A` defined as in (3.7).

(3) U = {U`}`∈L, U` = IM , where I ⊂ [−Umax, Umax] is compact with Umax > 0;

(4) U = {U`}`∈L, U` =
{
u : [0, T ]→ U` = IM

}
;

(5) g = {g`}`∈L, g` : M` × U` → R3(M+N), g`i = (vi, ai, 1), where ai = v̇i as defined in system (3.4);

(6) S is a subset of LC(Σ1), where LC(Σ1) is the set of states for which a lane changing can occur, that is,

LC(Σ1) =
{(
`, (xi, vi, τi), `

′, (x′i, v
′
i, τ
′
i)
)
i∈I : ∃k ∈ I, tk ∈ [0, T ], s.t. ∀i 6= k,

(xi(tk), vi(tk), τi(tk), `i(tk)) = (x′i(tk), v′i(tk), τ ′i(tk), `′i(tk)),

and (xk(tk), vk(tk)) = (x′k(tk), v′k(tk)), τk
′(tk) = 0,

`′k(tk) = (`k(tk) + 1)(1− δm(`k(tk))) or (`k(tk)− 1)(1− δ1(`k(tk)))
}
.

Before actually defining a trajectory of hybrid system Σ1, it is necessary to define its hybrid state first.

Definition 3.5. A hybrid state of the hybrid system Σ1 is a 4-tuple (`, x, v, τ), where ` ∈ L is the location, (x, v, τ) ∈M`.
We denote by HS1 the set of all hybrid states of the hybrid system Σ1.

Now we will define a trajectory of hybrid system Σ1.
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Definition 3.6. Let (`0, x0, v0, τ0) ∈ JM+N × RM+N × (R≥0)M+N × [0, δτ )M+N be given initial condition to the above
hybrid system Σ1. In addition, assume that the initial conditions τ0 satisfy condition (3.6). A trajectory of the hybrid
system Σ1 with initial condition (`0, x0, v0, τ0) is a map ξ : [0, T ] → HS1, ξ(t) = (`(t), x(t), v(t), τ(t)) such that for
i ∈ I, and n ∈ {1, . . . , Nτ − 1}, the following holds:

(1) (xi(0), vi(0), τi(0)) = (xi,0, vi,0, τi,0) ∈ X;

(2) `i(t) = `i,0 ∈ J for t ∈ [0, δτ − τi,0),
`i(t) = `i,n ∈ J for t ∈ [nδτ − τi,0, (n+ 1)δτ − τi,0),
`i(t) = `i,Nτ ∈ J for t ∈ [Nτδτ − τi,0, T ];

(3) τi(nδτ − τi,0) = 0;

(4) lim
t→(nδτ−τi,0)−

xi(t) = xi(nδτ − τi,0);

(5) For almost every t ∈ [0, T ], with ui : [0, T ]→ I a measurable control,
d
dt

(xi, vi, τi) = g`i(t)(xi(t), vi(t), τi(t), ui(t)).

We shall derive the existence and uniqueness of the trajectory of hybrid system Σ1 in the sense of Definition 3.6. Let
ξj = (yj , wj) be the space-velocity of the autonomous vehicles in the j-the lane. Recall that we denote by Mj and Nj
the number of autonomous vehicles and the number of human-driven vehicles in the j-the lane, respectively. Compare
with Lemma 2.1 in [17], we have the following lemma.

Lemma 3.7. Given two locally Lipschitz convolution kernels with sub-linear

growth H1 : R × R+ → R and H2 : R × R → R, and given µn = 1
n

n∑
l=1

δ(xl,vl) an arbitrary atomic measure for (xl, vl) ∈

R× R+, with n ∈ Z+, we have, there exists a constant C > 0 such that

|H1 ∗1 µn(x, v)| ≤ C(1 + |(x, v)|+ 1

n

n∑
l=1

|(xl, 0)|)

and

|H2 ∗ µn(x, v)| ≤ C(1 + |(x, v)|+ 1

n

n∑
l=1

|(xl, vl)|).

Proof. This is a consequence of the sub-linear growth of H1 and H2.

As in [17], motivated by the 1-Wasserstein distance, we endow space R2n for any n ∈ Z+ with the following norm: for

any (x, v) ∈ R2n, ‖(x, v)‖ : = 1
n

n∑
l=1

(|xl|+ |vl|), and the metric induced by the above norm ‖ · ‖.

Theorem 3.8. Let H1 : R × R+ → R, H2 : R × R → R be locally Lipschitz convolution kernels with sub-linear growth.
Then given an initial datum ξ0 = (`0, x0, v0, τ0), there exists a unique trajectory ξ(t) = (`(t), x(t), v(t), τ(t)) to the finite-
dimensional hybrid system Σ1 over the whole time interval [0, T ]. Furthermore, both trajectories of the autonomous
vehicles and the human-driven vehicles are Lipschitz continuous with respect to time over the time interval when there is
no lane changing.

Proof. Let t0 = min
i∈I
{T1 − τi,0}. Note that there is no vehicle changing lane over the time interval [0, t0) in any lane.

In particular, for each j ∈ J , define the set of labels of vehicles on lane j as Ij = {i ∈ I : π2(ι(i)) ∈ J}. We recall
that for t ∈ [0, t0), the dynamics of vehicle i ∈ Ij satisfy the system (3.4). For the sake of compact writing, we let
ξj(t) = (xj(t), vj(t)) ∈ (R × R≥0)Mj+Nj be the trajectories of all vehicles on lane j. Namely, xj(t) = (xi(t))i∈Ij is the

vector of the positions of vehicles on lane j, and similarly for vj(t). Then, we re-write system (3.4) in the following form

ξ̇j(t) = gj(t, ξj(t)), (3.8)

where the right hand side is

gj(t, ξj(t)) = (vj(t), [
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(xi, vi) + uji ]i∈Ij ),



MEAN-FIELD LIMIT OF A HYBRID SYSTEM FOR MULTI-LANE MULTI-CLASS TRAFFIC 15

where uji ≡ 0 if i ∈ Ij ∩{M+1, . . . ,M +N}. Since H1 and H2 are locally Lipschitz with sub-linear growth, by Lemma 3.7,
we obtain

‖gj(t, ξj(t))‖ ≤ C̄
(

1 + ‖ξj(t)‖
)
,

where C̄ > 0 is a constant depending on C > 0, Umax > 0, but not depending on M or N . Thus the right hand
side of equation (3.8) fulfills the sub-linear growth condition. By the theorem on global existence and uniqueness of
solutions for Carathéodory differential equations, there exists a solution of system (3.8) on the interval [0, t0) such that
ξj(0) = ξj0 = (xj0, v

j
0) ∈ (R× R≥0)Mj+Nj . Moreover, for any t ∈ [0, t0),

‖ξj(t)‖ ≤ (‖ξj0‖+ C̄t0)eC̄t0 .

In addition, the trajectory of the vehicles in lane j is Lipschitz continuous in time over the interval [0, t0). That is, for
any τ1, τ2 ∈ [0, t0),

‖ξj(τ1)− ξj(τ2)‖ ≤
∫ τ2

τ1

C̄(1 + ‖ξj(s)‖) ds ≤ C̄(1 + (‖ξj0‖+ C̄t0)eC̄t0)|τ1 − τ2|.

Now for n ≥ 1, let tn = min
i=1,...,M+N

{T1 − τi(tn−1)}. Then over the time interval [tn−1, tn), n ≥ 1, there is no vehicle

changing lane. Similarly, one can show that the trajectory of vehicles in lane j is unique and is Lipschitz continuous in
time over the time interval [tn−1, tn). Since the number of vehicles M +N is finite, one can repeat the above procedure
for finitely many times to show that the trajectory of vehicles in lane j is unique over the whole time interval [0, T ].

4. The mean-field limit to the finite-dimensional hybrid system

In this section, we consider again M autonomous vehicles and N human-driven vehicles. However, due to the large
number of the latter compared to the former, we change perspective in the description of the behavior of regular vehicles
considering the mean-field limit of their microscopic dynamics on each lane of an open stretch of road with m lanes. We
again just add controls on the M autonomous vehicles. We introduce the following notations IM = {1, . . . ,M} and for
each j ∈ J , IjM = {i ∈ IM : π2(ι(i)) = j}. It is possible to define a mean-field limit of system (3.4) in the following sense:
on lane j ∈ J , the population of vehicles can be represented by the vector of positions-velocities (xj , vj) ∈ (R× R≥0)Mj

of the autonomous vehicles, where from now on, we set xj = (xi)i∈Ij
M

and vj = (vi)i∈Ij
M

, coupled with the compactly

supported non-negative measure µj ∈ M+(R× R≥0) of the human-driven vehicles in the position-velocity space. Then
the mean-field limit will result in a coupled system of ODEs for (xj , vj) with control and a PDE for µj without control.
Furthermore, the lane changing of the human-driven vehicles would lead to a source term to the PDE for µj . More
specifically, the limit dynamics of vehicles on lane j when there is no autonomous vehicles changing lane is

ẋi = vi; (4.1a)

v̇i =
(
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
(xi, vi) + uji , i ∈ IjM ; (4.1b)

∂tµ
j + vj∂xµ

j + ∂v
((
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
µj
)

= S(µj−1, µj , µj+1). (4.1c)

where uji : [0, T ] → R are measurable controls for i ∈ IjM , H1 : R × R+ → R and H2 : R × R → R are locally Lipschitz
convolution kernels with sub-linear growth satisfying equation (3.5), νj is as defined in (3.3) and the source term
S(µj−1, µj , µj−1) is defined as

S(µj−1, µj , µj+1) =
(
Sj−1,j(µj−1, µj)− Sj,j−1(µj−1, µj)

)
(1− δj,1)

+
(
Sj+1,j(µj , µj+1)− Sj,j+1(µj , µj+1)

)
(1− δj,m),

(4.2)

with
Sk,l(µk, µl) = p([Al + ∆]+, [A

l −Ak −∆]+)µk, k, l ∈ {j − 1, j, j + 1} (4.3)

and k = l + 1 or k = l − 1. Here p : R × R → [0, 1] is increasing and is the probability of the large population of
human-driven vehicles performing lane changing from k lane to l lane. In addition, if a, b ≤ 0, then p(a, b) = 0. For
consistency, we need to assume that the dimension of p to be [sec]−1. This modeling choice is similar to [24, 30]. In
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addition, Al = H1 ∗1 (µl + νl) + H2 ∗ (µl + νl) is the average acceleration of vehicles on lane l. Equation (4.3) can be
interpreted as the following: Let ∆ > 0 be fixed. A large population of human-driven vehicles on lane k will perform lane
changing to lane l with probability p ∈ [0, 1] if the following condition occur: Al > Ak + ∆.

Furthermore, system (4.1) implies that the acceleration of autonomous vehicle i ∈ IjM is,

aji =
(
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
(xi, vi) + uji . (4.4)

The ith autonomous vehicle on lane j will perform lane changing to j′ = (j − 1)(1 − δ1(j)) or j′ = (j + 1)(1 − δm(j))

lane if the following condition occur: Aj
′
≥ aji + ∆.

We again assign each autonomous vehicle a timer over the whole time interval [0, T ] such that there are no two
autonomous vehicles changing lane at the same time. We define the timer τi for autonomous vehicle i ∈ IM and the
timer limit T1 as before.

The continuous dynamics of vehicles governed by system (4.1) and the discrete lane changing dynamics of the
autonomous vehicles lead us to consider the following hybrid system.

Definition 4.1. A hybrid ODE-PDE system is a 6-tuple Σ2 = (L,M, U,U , g, S) where

(1) L = {` = (`i)i∈IM , `i ∈ J} = JM is the set of locations;

(2) M = {M`}`∈L, where M` = XM \A` ×
(
M+(R2)

)m
and

A` =
{

(xi, vi, τi)i∈IM ∈ X : ∃i1 6= i2 ∈ IM , t ∈ [0, T ], s.t.

`i1(t) = `i2(t) ∧ xi1(t) = xi2(t)} ;

(3) U = {U`}`∈L , U` = IM , where I ⊂ R is compact;

(4) U = {U`}`∈L ,U` =
{
u : [0, T ]→ U` = IM

}
;

(5) g = {g`}`∈L, g` : M` × U` → (R3)M with

g`((xi, vi, τi, u
`i
i , µ

`i)i∈IM ) = (vi, a
`i
i , 1)i∈IM ,

where a`ii is defined as in equation (4.4);

(6) S is a subset of LC(Σ2), where

LC(Σ2) =
{(
`, (xi, vi, τi, µ

`i), `′, (x′i, v
′
i, τ
′
i , µ

`′i)
)
i∈IM

: ∃k ∈ IM , tk ∈ [0, T ],

s.t. ∀i 6= k, (xi(tk), vi(tk), τi(tk), `i(tk)) = (x′i(tk), v′i(tk), τ ′i(tk), `′i(tk)),

and xk(tk) = x′k(tk), vk(tk) = v′k(tk), τ ′k(tk) = 0,

`′k(tk) = (`k(tk) + 1)(1− δm(`k(tk))) or (`k(tk)− 1)(1− δ1(`k(tk)))
}
.

Now we will define the hybrid state of the hybrid system Σ2.

Definition 4.2. A hybrid state of the hybrid system Σ2 is a 5-tuple (`, x, v, τ, µ), where ` is the location, (x, v, τ, µ) ∈M`.
We denote by HS2 the set of all hybrid states of the hybrid system Σ2.

Next we will give the definition of the trajectory of the hybrid system Σ2.

Definition 4.3. A trajectory of the hybrid system Σ2 with initial condition
(`0, x0, v0, τ0, µ0) ∈ L × XM ×

(
M+(R2)

)m
( if i1 6= i2 ∈ IM , then τi1,0 6= τi2,0) is a map ξ : [0, T ] → HS2, ξ(t) =

(`(t), x(t), v(t), τ(t), µ(t)) such that for i ∈ IM and n = 1, . . . , Nτ − 1, the following holds:

(1) (xi(0), vi(0), τi(0)) = (xi,0, vi,0, τi,0) ∈ X;

(2) For t ∈ [0, T1 − τi,0), `i(t) = `i,0 ∈ J , `i(·) is constant in [nT1 − τi,0, (n+ 1)T1 − τi,0), and is equal to `i,n ∈ J ;

(3) τi(nT1 − τi,0) = 0;

(4) lim
t→(nT1−τi,0)−

xi(t) exists and is equal to xi(nT1 − τi,0);
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(5) For every ϕ ∈ C∞c (R× R≥0), and for all t ∈ [0, T ], µ`i(t) satisfies

suppµ`i(t) ⊂ B(0, R) for some R > 0, and for almost every t ∈ [0, T ],
d
dt

∫
R×R≥0

ϕ(x, v) dµ`i(t)(t)(x, v) =

=
∫
R×R≥0

ϕ(x, v) dS(µ`i(t)−1, µ`i(t), µ`i(t)+1)(t)(x, v)

+
∫
R×R≥0

(
∇ϕ(x, v) · ωH1,H2,µ

`i(t),x`i(t),v`i(t)(t, x, v)
)

dµ`i(t)(t)(x, v),

where ωH1,H2,µ
`i(t),x`i(t),v`i(t)(t, x, v) :=

=
(
v,
(
H1 ∗1 (µ`i(t)(t) + ν`i(t)(t)) +H2 ∗ (µ`i(t)(t) + ν`i(t)(t))

)
(x, v)

)
.

(6) For almost every t ∈ [0, T ], with u`ii : [0, T ]→ I a measurable control
d
dt

(xi(t), vi(t), τi(t)) = g`i(t)(xi(t), vi(t), τi(t), u
`i
i (t), µ`i(t)(t)).

Before actually proving the existence of trajectories of the hybrid system Σ2 as in Definition 4.3, it will be convenient
to address the stability of the hybrid system Σ2 with respect to the initial data first.

Let t10 = min
i∈IM

{T1 − τi,0}. Then there is no autonomous vehicle changing lane over the time interval [0, t10) on any

lane. As in Theorem 3.8, it is enough to show the stability of the hybrid system Σ2 with respect to the initial data
over the time interval [0, t10). In particular, for t ∈ [0, t10), the dynamics of autonomous vehicle i ∈ IM and the human-

driven vehicles in lane `i satisfy system (4.1) with the following initial conditions: (xi(0), vi(0), µ`i(0)) = (xi,0, vi,0, µ
`i
0 ) ∈

R × R≥0 ×M+(R × R≥0). Furthermore, we endow space Xn : R2n ×M+(R × R≥0) for any n ∈ Z+ with the following
metric: for any (x1, v1, µ1), (x2, v2, µ2) ∈ Xn,

‖(x1, v1, µ1)− (x2, v2, µ2)‖Xn : =
1

n

n∑
k=1

(|xi,1 − xi,2|+ |vi,1 − vi,2|) +W 1,1
1 (µ1, µ2),

where W 1,1
1 is the generalized Wasserstein distance in M+(R× R≥0).

Lemma 4.4. For j ∈ J , and q ∈ {1, 2}, let µj,q be two solutions to system (4.1c) over the time interval [0, t10) with two
different initial data µj,q0 ∈M+(R× R≥0). Then there exists C̄ > 0 such that,

W 1,1
1 (µj,1(t), µj,2(t)) ≤ C̄

(
W 1,1

1 (µj,10 , µj,20 ) +

∫ t

0

‖(xj,1(s), vj,1(s), µj,1(s))− (xj,2(s), vj,2(s), µj,2(s))‖XMj ds

)
. (4.5)

Proof. Let µj,q be two solutions to system (4.1c) over the time interval [0, t10) with two different initial data µj,q0 ,

q = 1, 2. Let t ∈ [0, t10) be fixed and let ∆t =
t10
2k

for a fixed k ∈ N+. Decompose the time interval [0, t10) into [0,∆t],

[∆t, 2∆t], . . . , [(2k − 1)∆t, 2k∆t). Let n be the maximum integer such that t − n∆t ≥ 0, then t ∈ [n∆t, (n + 1)∆t). By
Section 2.4, we have, µj,q(t) = lim

k→∞
µj,qk (t), where q = 1, 2 and µj,qk is defined as following:

µj,qk (0) = µj,q0 ,

µj,qk ((n+ 1)∆t) = T µ
j,q
k

(n∆t),νj,q(n∆t)

∆t #µj,qk (n∆t) + ∆tS(µj,qk (n∆t)),

µj,qk (t) = T µ
j,q
k

(n∆t),νj,q(n∆t)
τ #µj,qk (n∆t) + τS(µj,qk (n∆t)),

where τ = t− n∆t and νj,q(n∆t) = 1
Mj

Mj∑
i=1

δ(xj,qi (n∆t),v
j,q
i (n∆t)), with

(xj,qi (n∆t), vj,qi (n∆t)) being the vector of position-velocity of the i-th autonomous vehicle on lane j at time n∆t when

the initial data to system (4.1c) is given by µj,q0 . Note that

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤W 1,1

1

(
τS(µj,1k (n∆t)), τS(µj,2k (n∆t))

)
+W 1,1

1

(
T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,1k (n∆t), T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,2k (n∆t)

)
+W 1,1

1

(
T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,2k (n∆t), T µ

j,2
k

(n∆t),νj,2(n∆t)
τ #µj,2k (n∆t)

)
,
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where the last inequality is due to Proposition 2.7. By the properties of the source term S, (S2), and of the generalized
Wasserstein distance W 1,1

1 , Proposition 2.7, there exists some constant LS such that

W 1,1
1

(
τS(µj,1k (n∆t)), τS(µj,2k (n∆t))

)
≤ τLSW 1,1

1 (µj,1k (n∆t), µj,2k (n∆t)).

Since the flow map T µ
j,1
k

(n∆t),νj,1(n∆t)
τ is Lipschitz, by Lemma 2.8, there exists some constant L1, such that,

W 1,1
1

(
T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,1k (n∆t), T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,2k (n∆t)

)
≤ L1W

1,1
1 (µj,1k (n∆t), µj,2k (n∆t)).

Since the flow maps T µ
j,1
k

(n∆t),νj,1(n∆t)
τ and T µ

j,2
k

(n∆t),νj,2(n∆t)
τ are bounded and Borel measurable, by Lemma 2.8,

equation (2.12) and Lemma 2.9, there exist LT , ρ, L∗ > 0, such that

W 1,1
1

(
T µ

j,1
k

(n∆t),νj,1(n∆t)
τ #µj,2k (n∆t), T µ

j,2
k

(n∆t),νj,2(n∆t)
τ #µj,2k (n∆t)

)
≤
∥∥∥∥T µj,1k (n∆t),νj,1(n∆t)

τ − T µ
j,2
k

(n∆t),νj,2(n∆t)
τ

∥∥∥∥
L∞(B(0,R))

≤L∗
∫ t

n∆t

eLT (s−t)

 1

Mj

Mj∑
i=1

(|xj,1i (s)− xj,2i (s)|+ |vj,1i (s)− vj,2i (s)|)

+W 1,1
1 (µj,1k (s), µj,2k (s))

 ds.

Therefore,

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤ (τLS + L1)W 1,1

1 (µj,1k (n∆t), µj,2k (n∆t))

+ L∗

∫ t

n∆t

eLT (s−t)

 1

Mj

Mj∑
i=1

(
|xj,1i (s)− xj,2i (s)|+ |vj,1i (s)− vj,2i (s)|

)+W 1,1
1 (µj,1k (s), µj,2k (s))

 ds.
(4.6)

Similarly, there exists L2 > 0, such that

W 1,1
1 (µj,1k (n∆t), µj,2k (n∆t)) (4.7)

≤(L2 + ∆tLS)W 1,1
1 (µj,1k ((n− 1)∆t), µj,2k ((n− 1)∆t))

+ L∗

∫ n∆t

(n−1)∆t

eLT (s−t)

 1

Mj

Mj∑
i=1

(
|xj,1i (s)− xj,2i (s)|+ |vj,1i (s)− vj,2i (s)|

)
+W 1,1

1 (µj,1k (s)− µj,2k (s))
]

ds.

Combine with equations (4.6) and (4.7), and the definition of norm ‖ · ‖XMj , we obtain there exists C0 such that

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤ C0

(
W 1,1

1 (µj,10 , µj,20 ) +

∫ t

0

‖(xj,1(s), vj,1(s), µj,1k (s))− (xj,2(s), vj,2(s), µj,2k (s))‖XMj ds

)
.

Take k →∞ and consider the definition of µj,p, p = 1, 2, we have, there exists C̄ such that inequality (4.5) is true.

Theorem 4.5. Let (xj,i, vj,i), i = 1, 2, be two solutions of system (4.1a)-(4.1b) relative to given respective initial data
(xj,i0 , vj,i0 ) ∈ R× R≥0 and let µj,i, i = 1, 2, be two solutions of system (4.1c) relative to given respective initial data µj,i0 ,
over the time interval [0, t10). Then there exists a constant C > 0 such that∥∥∥(xj,1(t), vj,1(t), µj,1(t)

)
−
(
yj,2(t), wj,2(t), µj,2(t)

)∥∥∥
XMj

≤ C
∥∥∥(xj,10 , vj,10 , µj,10

)
−
(
xj,20 , vj,20 , µj,20

)∥∥∥
XMj

. (4.8)

Remark 4.6. Theorem 4.5 implies that the trajectory of hybrid system Σ2, if it exists, is uniquely determined by the
initial conditions.
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Proof. By integration we have, for t ∈ [0, t10), xj,ik (t) =
∫ t

0
vj,ik (s) ds+ vj,ik,0, i = 1, 2, k ∈ IM . Thus

|xj,1k (t)− xj,2k (t)| ≤ |xj,1k,0 − x
j,2
k,0|+

∫ t

0

|vj,1k (s)− vj,2k (s)| ds. (4.9)

In addition, by Lemma 2.9, there exists a constant LR, such that

|vj,1k (t)− vj,2k (t)| ≤ |vj,1k,0 − v
j,2
k,0|

+ LR

∫ t

0

 1

Mj

Mj∑
k=1

(
|xj,1k (s)− xj,2k (s)|+ |vj,1k (s)− vj,2k (s)|

)
+W 1,1

1 (µj,1(s), µj,2(s))

 ds.
(4.10)

Combine with equations (4.5) (4.9), (4.10), and the definition of the norm ‖ · ‖XMj , we have, there exists a constant C,
s.t.,

‖(xj,1(t), vj,1(t), µj,1(t))− (xj,2(t), vj,2(t), µj,2(t))‖XMj ≤C
(
‖(xj,10 , vj,10 , µj,10 )− (xj,20 , vj,20 , µj,20 ))‖XMj

+

∫ t

0

‖(xj,1(s), vj,1(s), µj,1(s))− (xj,2(s), vj,2(s), µj,2(s))‖XMj ds

)
.

One can conclude the stability estimate by applying Gronwall’s inequality.

We shall now derive the existence of the trajectory of the hybrid system Σ2. It is enough to show that the trajectories
of the vehicles exist over the time interval [0, t10).

Theorem 4.7. On lane j ∈ J , let (xjk,0, v
j
k,0) ∈ R× R≥0, k ∈ IM , µj0 ∈ M+(R× R≥0) and u∗ ∈ L1([0, T ],U) be given.

In addition, assume that µj0 is of bounded support in B(0, R) for R > 0. Then the trajectories of the vehicles exist on
lane j over the time interval [0, t10).

Proof. We will first construct a sequence of atomic measures to approximate the measure µj0 in generalized Wasserstein
distance. For every Nj ∈ N+, consider the atomic measure

µ
Nj
0 =

Nj∑
i=1

mhδ(
x
Nj
i,0 ,v

Nj
i,0

), (4.11)

with mh =

m∑
j=1
‖µj0‖

m∑
j=1

Nj

, such that lim
Nj→∞

W 1,1
1 (µ

Nj
0 , µj0) = 0. Here we call mh the average mass of the human-driven vehicle.

In addition, fix a weakly convergent sequence (uNj )Nj∈N in L1([0, T ],U) of control functions such that uNj ⇀ u∗ in

L1([0, T ],U) asNj →∞. By Theorem 3.8, for each initial datum ξ
Nj
0 = (x0

Nj
, v0
Nj
, x
Nj
0 , v

Nj
0 ) ∈ (R×R≥0)Mj × (R×R≥0)Nj

depending on Nj , there exists a unique trajectory of the hybrid system Σ1 with control uNj over the time interval [0, t10).

Denote the trajectories of the vehicles on lane j over the time interval [0, t10] with ξNj (t) = (xNj (t), vNj (t), µ
Nj (t)) ∈

XMj . Here, we identify µNj (t) ∈M+(R× R≥0) the atomic measure of the human-driven vehicles with position-velocity

(xNj (t), vNj (t)).
By Theorem 3.8, the trajectories of the vehicles are Lipschitz continuous with respect to time over the time interval

when there is no lane changing. Furthermore, note that the average mass of a human-driven vehicle mh → 0 as Nj →
∞. Thus there exists L > 0, such that for any ε > 0, there exists Ñj > 0, such that whenever Nj ≥ Ñj , ‖ξNj (t) −
ξNj (s)‖XMj ≤ L|t − s| + min{ε, |s − t|}. By Theorem 2.11, there exists a sub-sequence, again denoted by ξNj (·) =

(xNj (·), vNj (·), µNj (·)) converging uniformly to a limit ξ∗,j(·) = (xj∗(·), vj∗(·), µj∗(·)). We will first verify that (xj∗(·), vj∗(·))
is a solution of system (4.1a)-(4.1b) for µj = µj∗ and uj = uNj .

Note that ξNj →→ ξ∗,j implies that

(xNj (t), vNj (t))
→→ (xj∗(t), v

j
∗(t)) in [0, t10);

(ẋNj (t), v̇Nj (t)) ⇀ (ẋj∗(t), v̇
j
∗(t)) in L1([0, t10),R× R+);

lim
Nj→∞

W 1,1
1 (µNj (t), µj∗(t)) = 0.
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In particular, ẋjk,∗(t) = vjk,∗(t), for all k = 1, . . . ,Mj . Furthermore, let us denote now

νNj =
1

Mj

Mj∑
k=1

δ(xk,Nj (t),vk,Nj
(t)) and νj∗ =

1

Mj

Mj∑
k=1

δ
(x
j
k,∗(t),v

j
k,∗(t))

.

By the uniform convergence of the trajectories and Lemma 2.9, we have, as Nj → +∞, W1(νNj (t), ν
j
∗(t))→ 0. In addition,

by the sublinear growth of H1 and H2, we have, as N →∞,

(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj ))(xk,Nj (t), vk,Nj (t))

→→(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗))(x
j
k,∗(t), v

j
k,∗(t)).

By the weak convergence of uNj to u∗ and of v̇Nj to v̇j∗, for every τ ∈ [0, t10],∫ τ
0
v̇jk,∗(t) dt =

∫ τ
0

(
(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗))(x

j
k,∗(t), v

j
k,∗(t)) + ujk,∗(t)

)
dt.

Now we will verify that µj∗ is a solution to system (4.1c) for νj = νj∗. For any time t ∈ [0, t10], let N1
j be the number of

human-driven vehicles that still stay on lane j and let (x
N1
j

i (t), v
N1
j

i (t)) be the location-velocity of the i-th human-driven
vehicle that does not perform lane changing on lane j. Then we can track the position of those human-driven vehicles
by an atomic measure

µN
1
j (t) =

N1
j∑

i=1

mhδ(
x
N1
j

i (t),v
N1
j

i (t)

).
For all ϕ ∈ C∞c (R× R+), consider the following differentiation

d

dt
〈ϕ, µN

1
j (t)〉 =

d

dt

N1
j∑

i=1

mhϕ(x
N1
j

i (t), v
N1
j

i (t))

=mh

N1
j∑

i=1

∂xϕ(x
N1
j

i (t), v
N1
j

i (t))v
N1
j

i (t) +

N1
j∑

i=1

∂vϕ(x
N1
j

i (t), v
N1
j

i (t))

(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj ))(x
N1
j

i (t), v
N1
j

i (t))

]
.

Thus for all s ∈ [0, t10), we have

〈ϕ, µN
1
j (s)− µN

1
j (0)〉 =

∫ s

0

[∫
R×R+

∂xϕ(x, v)v

+∂vϕ(x, v)(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj ))(x, v) dµN
1
j (t)(x, v)

]
dt.

Furthermore,

lim
N1
j→∞

〈ϕ, µN
1
j (s)− µN

1
j (0)〉 = 〈ϕ, µj∗ − µj0〉. (4.12)

By dominated convergence theorem, we obtain the limit (possibly for a sub-sequence) that

lim
N1
j→∞

∫ s

0

∫
R×R+

(∇xϕ(x, v) · v) dµN
1
j (t)(x, v) dt =

∫ s

0

∫
R×R+

(∇xϕ(x, v) · v) d
µ
j
∗
(t)(x, v) dt, (4.13)

for all ϕ ∈ C∞c (R× R+). Furthermore, by Lemma 2.9, we have, for every ρ > 0,

lim
Nj→∞

∥∥∥(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj )
)
−
(

(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)
)∥∥∥

L∞(B(0,ρ))
= 0.

Now since ϕ ∈ C∞c (R× R+) has compact support, we obtain

lim
Nj→∞

∥∥∥∂vϕ((H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj )
)
−
(

(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)
))∥∥∥

∞
= 0.
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Thus,

lim
k→∞

∫ s

0

∫
R×R+

∂vϕ(x, v)(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj ))(x, v) dµN
1
j (t)(x, v) dt

=

∫ s

0

∫
R×R+

∂vϕ(x, v)(H1 ∗1 (µNj + νNj ) +H2 ∗ (µNj + νNj ))(x, v) dµN
1
j (t)(x, v) dt.

(4.14)

By the lane changing condition, we define

µN
2
j (t) =

Nj−1∑
i=1

mhδ(
x
Nj−1
i (t),v

Nj−1
i (t)

)p([Aj + ∆]+, [A
j −Aj−1 −∆]+

)

−
Nj∑
i=1

mhδ(
x
Nj
i (t),v

Nj
i (t)

)p([Aj + ∆]+, [A
j−1 −Aj −∆]+

)

+

Nj+1∑
i=1

mhδ(
x
Nj+1
i (t),v

Nj+1
i (t)

)p([Aj + ∆]+, [A
j −Aj+1 −∆]+

)

−
Nj∑
i=1

mhδ(
x
Nj
i (t),v

Nj
i (t)

)p([Aj + ∆]+, [A
j+1 −Aj −∆]+

)
where

Aj−1 =
(
H1 ∗1 (µNj−1(t) + νNj−1(t)) +H2 ∗ (µNj−1(t) + νNj−1(t))

)
(x, v),

Aj =
(
H1 ∗1 (µNj (t) + νNj (t)) +H2 ∗ (µNj (t) + νNj (t))

)
(x, v),

Aj+1 =
(
H1 ∗1 (µNj+1(t) + νNj+1(t)) +H2 ∗ (µNj+1(t) + νNj+1(t))

)
(x, v).

Therefore, µNj (t) = µN
1
j (t) + µN

2
j (t), and in addition,

lim
Nj−1→∞

Nj−1∑
i=1

mhδ(
x
Nj−1
i (t),v

Nj−1
i (t)

)p([Aj + ∆]+, [A
j −Aj−1 −∆]+

)
=µj−1
∗ p

([(
H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)

)
+ ∆

]
+
,[(

H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)
)
−

−
(
H1 ∗1 (µj−1

∗ + νj−1
∗ ) +H2 ∗ (µj−1

∗ + νj−1
∗ )

)
−∆

]
+

)
=Sj−1,j(µj−1

∗ , µj∗).

Furthermore,

lim
Nj→∞

µN
2
j (t) =

(
Sj−1,j(µj−1

∗ , µj∗)− Sj,j−1(µj−1
∗ , µj∗)

)
(1− δj,1) (4.15)

+
(
Sj+1,j(µj∗, µ

j+1
∗ )− Sj,j+1(µj , µj+1)(1− δj,m)

)
= S(µj−1

∗ , µj∗, µ
j+1
∗ ).

The statement follows by combining equations (4.12), (4.13), (4.14), and (4.15).

Finally, we conclude with the following corollary, which is a direct consequence of the previous results.

Corollary 4.8. Let (xj0, v
j
0, µ

j
0) be an initial condition of the infinite dimensional hybrid system Σ2. Let µ

Nj
0 be an atomic

measure as in (4.11). Then

lim
Nj→∞

∥∥∥(xj(t), vj(t), µj(t))− (yj(t), wj(t), µNj (t))∥∥∥
XMj

= 0,

where
(
yj(t), wj(t), µNj (t)

)
is the solution of the finite dimensional hybrid system with initial state

(
xj0, v

j
0, µ

Nj
0

)
.
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Proof. The existence and uniqueness results, given by Theorem 4.7 and Theorem 4.5, respectively, combined with the
stability estimate (4.8), ensure the convergence of the solution of the finite-dimensional system to the solution of the
infinite dimensional system.

5. Conclusion

In this paper, we have focused on a multi-lane multi-class description of vehicular traffic flow, where simultaneous
presence of human-driven and autonomous vehicles has been considered.

The microscopic dynamics have been formulated by using a Bando-Follow-the-Leader type model, in which the
interaction with the closest vehicle ahead is replaced by a space-dependent convolution kernel modeling interactions with
the surrounding flow. Autonomous vehicles have been distinguished by control dynamics. Lane changing description has
led to discrete events within the differential equations, and thus to a so-called hybrid system whose well-posedness has
been studied.

Inspired by the empirical fact that the penetration rate of the autonomous vehicles is nowadays small, we have
computed a mean-field limit for the dynamics of the human-driven vehicles only, leading to a coupled system of a PDE
and ODEs with discrete events. The discrete lane changing descriptions for human-driven vehicles has been modeled
by a source term of the corresponding Vlasov-type equation. Existence and uniqueness study of the trajectories of this
system has been performed. Moreover, the rigorous convergence of the finite dimensional hybrid system to the infinite
dimensional hybrid system has been proved using the generalized Wasserstein distance.

We point-out that the given application, based on traffic flow, inspiring this work is not restrictive, and many others
may lead to the mathematical frameworks developed and studied here. More precisely, we refer to all physical multi-agent
systems that are intrinsically characterized by heterogeneity and instantaneous jumps in one of their states. For instance,
these include also models for air traffic control [49], chemical process control [15] and manufacturing [38].

Acknowledgements. G.V. wishes to thank Benedetto Piccoli’s Lab for the hospitality at Rutgers University and Michael
Herty for supporting this research work.
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[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and In the Space of Probability Measures. Springer
Science & Business Media (2008).

[3] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Structure stability of congestion in traffic dynamics. Jap.
J. Ind. Appl. Math. 11 (1994) 203.

[4] A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws.
Preprint (2020).

[5] N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM
Rev. 53 (2011) 409–463.

[6] M. Bongini, M. Fornasier and F. Rossi, Mean-field pontryagin maximum principle. Transport. Res. Rec. 175 (2017) 1–38.
[7] R. Borsche, A. Klar and M. Zanella, Kinetic-controlled hydrodynamics for multilane traffic models. Phys. A 587 (2022) 126486.
[8] M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for hybrid control: model and optimal control theory. IEEE

Trans. Automatic Control 43 (1998) 31–45.
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