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Abstract: With the advent of the digital computer, time series analysis has gained wide attention
and is being applied to many fields of science. This paper reviews many traditional and recent
techniques for time series analysis and change detection, including spectral and wavelet analyses
with their advantages and weaknesses. First, Fourier and least-squares-based spectral analysis
methods and spectral leakage attenuation methods are reviewed. Second, several time-frequency
decomposition methods are described in detail. Third, several change or breakpoints detection
methods are briefly reviewed. Finally, some of the applications of the methods in various fields,
such as geodesy, geophysics, remote sensing, astronomy, hydrology, finance, and medicine, are
listed in a table. The main focus of this paper is reviewing the most recent methods for analyzing
non-stationary time series that may not be sampled at equally spaced time intervals without the
need for any interpolation prior to the analysis. Understanding the methods presented herein is
worthwhile to further develop and apply them for unraveling our universe.

Keywords: applied sciences; change detection; Fourier transform; least-squares; non-stationary;
spectral analysis; time series; trend analysis; unequally spaced; wavelet analysis

1. Introduction

A periodic oscillation can be described by a smooth sinusoidal function. It may be
a function of time or distance. Consider the sinusoidal wave f (t) = A sin(2πωt + θ),
where f is a function of time t. The parameters A, ω and θ are called the amplitude, cyclic
frequency or number of cycles per unit time and phase of the sinusoid, respectively. This
function is periodic with period T = 1/ω [1,2]. A time series is an ordered sequence of
data points measured at discrete time intervals that may not be equally spaced or may
contain data gaps, and so the time series is unequally spaced or unevenly sampled. In
certain experiments, measurements may also have uncertainties introduced by random
noise and thus may also be unequally weighted [3,4].

In many areas of research, such as geodesy, geophysics, geodynamics, astronomy and
speech communications, researchers deal with series of data points measured over time or
distance to study the periodicity and/or power of certain constituents. For example, in
a speech record, one may be interested in certain signals in the record, such as the voice
of a person obscured by other simultaneously recorded constituents, noise from musical
instruments and the environment. It is often difficult to study these signals by direct
analysis of the time series; however, decomposing the time series into another domain
may result in detecting the constituents of interest much easier. Furthermore, the physical
series of data are usually a combination of various sinusoidal waves, such as light emitted
from a star, sound waves, ocean waves, and thus certain phenomena may be studied more
accurately by decomposing the data into a new domain, e.g., frequency or time-frequency
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domains. The decomposition of a series of data points into sinusoidal waves of various
frequencies may be imagined as dispersing sunlight to waves of different frequencies
representing different colors when it passes through a triangular prism, e.g., a rainbow.
In other words, a triangular prism separates the sunlight to different wavelengths; the
longer wavelength is red, and the shorter wavelength is blue. The word spectrum was first
referred to the range of colors observed when white light was refracted through a prism.

If all statistical properties of a time series, i.e., the mean, variance, all higher-order
statistical moments and auto-correlation function, do not change in time, then the time
series is called stationary. A time series is called non-stationary if it violates at least one of
the assumptions of stationarity [2]. A non-stationary time series may contain systematic
noise, such as trends, datum shifts, and jumps, indicating that its mean value is not constant
in time. The second moments, central and mixed moments, of the time series values form
a symmetric matrix called the covariance matrix [5,6]. In certain fields, such as geodesy,
geophysics, and astronomy, a time series is usually associated with a covariance matrix,
which means that the time series is stationary or non-stationary in its second statistical
moments. In geodynamics applications, seismic noise may contaminate the time series of
interest or certain components of the time series may exhibit variable frequency, such as
linear, quadratic, exponential or hyperbolic chirps.

To solve problems regarding heat transfer and vibrations, Fourier [7] introduced
the Fourier series and showed that certain functions can be written as an infinite sum of
harmonics or sinusoids. The Fourier transform and Fourier’s law are also named after
him. The Fourier transform basically decomposes a time series into the frequency domain
using sinusoidal basis functions. The amplitudes of the sinusoids for a set of frequencies
generate a spectrum like the light spectrum. The Fourier transform is one of the equations
that changed our world. Since then, numerous Fourier-based methods have been proposed
by researchers for various purposes, such as time series analysis.

In many practical applications, researchers have to deal with non-stationary and un-
equally spaced time series. This paper starts by reviewing the most popular and traditional
time series analysis methods and continues by reviewing some of the most recent methods
of analyzing non-stationary and unequally spaced time series. More specifically:

• In Section 2, several popular frequency decomposition methods are briefly reviewed,
such as the Fourier transform and least-squares spectral analysis along with
their modifications.

• In Section 3, several popular time-frequency decomposition methods are discussed,
including the short-time Fourier and wavelet transforms, Hilbert–Huang transform,
constrained least-squares spectral analysis, and least-squares wavelet analysis, and
then two methods of analyzing multiple time series together are reviewed.

• In Section 4, several change or breakpoint detection methods within non-stationary
time series are studied.

• In Section 5, many applications of the methods in applied sciences along with other
techniques of time series analysis are briefly mentioned.

• Finally, the conclusion, findings, and limitations of this investigation are briefly sum-
marized in Section 6.

The advantages and weaknesses of each method are briefly discussed herein. For the
sake of consistency and fluency, all the methods presented herein are described in terms of
time and frequency. In general, all the methods can be applied to analyze any data series,
e.g., distance and wavenumber instead of time and frequency, respectively.

Herein, we discuss how one may: (1) extract useful information from a time series
theoretically and empirically, (2) attenuate noise and regularize time series, (3) detect and
classify changes in the time series components, and (4) analyze unequally spaced time
series without any interpolations while considering the observational uncertainties.
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2. Decomposition Methods into Frequency Domain

In this section, several spectral analysis methods are briefly reviewed in short sections,
and their advantages and weaknesses are discussed. The review has the purpose of
focusing on the most popular and state-of-the-art spectral analysis methods applied in
almost every field of science. The section starts with the Fourier transform defined for
equally spaced or evenly sampled time series and continues by reviewing its modifications
that ease the stringent conditions of Fourier transform.

2.1. Fourier Transform

An absolutely integrable function f on R is a real- or complex-valued function such
that

∫ ∞
−∞ | f (t)| dt < ∞. If f is an absolutely integrable function on R, then the Fourier

transform of f for cyclic frequency ω, denoted f̂ (ω) is defined as

f̂ (ω) =
∫ ∞

−∞
f (t)e−2πiωt dt, (1)

where “e” is the Euler’s number, and “i” stands for the imaginary number that is a solution
of x2 = −1. The spectrum of f is defined as s(ω) = | f̂ (ω)|2, which measures how many
oscillations of cyclic frequency ω contribute to f , where for a complex number z, |z| denotes
its absolute value or Abs [1,2]. Note that the absolute value of a complex number z = a + ib
is |z| =

√
a2 + b2.

A square-integrable function f on R is a real- or complex-valued function such that∫ ∞
−∞ | f (t)|

2 dt < ∞. Now if f is also a square-integrable function on R, e.g., an energy
signal, then the Parseval’s theorem [1] (Chapter 2) states that∫ ∞

−∞
| f (t)|2 dt =

∫ ∞

−∞
| f̂ (ω)|2 dω. (2)

Equation (2) implies that the total energy may be determined either by integrating
| f (t)|2 over all time or by integrating | f̂ (ω)|2 over all cyclic frequencies. Therefore, | f̂ (ω)|2
is interpreted as Energy Spectral Density (ESD) of f . For inverse of the Fourier transform
to exist, function f̂ should be absolutely integrable on R [1] (Chapter 2).

The average power P of f over all time is given by P = limτ→∞(1/τ)
∫ τ

0 | f (t)|
2 dt. For

many signals of interest, the Fourier transform does not formally exist. Therefore, one may
use a truncated Fourier transform where the signal is integrated only over a finite interval:

f̂ (ω) =
1√
τ

∫ τ

0
f (t)e−2πiωt dt, (3)

that is the amplitude spectral density. Then the Power Spectral Density (PSD) can be
defined as limτ→∞ E

[
| f̂ (ω)|2

]
, where E[X] is the expected value of X [8] (Chapter 10). The

PSD describes how the power of a signal is distributed over frequencies.
In the Discrete-Time Fourier Transform (DTFT), the integral in Equation (1) may

be replaced with the summation multiplied by a factor, see Equation (4). More pre-
cisely, suppose that f =

[
f (t1), . . . , f (tn)

]
is a time series of size n. One may define

∆t` = 1
2 (t`+1 − t`−1) for 1 < ` < n, and for the two special cases ` = 1 and ` = n, define

∆t1 = t2 − t1 and ∆tn = tn − tn−1, respectively. Let ∆t = ∑n
`=1 ∆t`. The forward discrete

summation of the Fourier integral (after dividing by the summation range) for cyclic
frequency ω is defined as

f̂ (ω) =
1

∆t

n

∑
`=1

∆t` f (t`)e−2πiωt` . (4)

When t` are equally spaced, ∆t` is independent of `, and ∆t`/∆t = 1/n. The Discrete
Fourier Transform (DFT) can be seen as the sampled version (in frequency-domain) of
DTFT output because computers can only handle a finite number of values, i.e., in DFT, the
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frequencies are also discretized. The complexity of computing DFT is in the order of n2

floating operations or O(n2) for a time series of n data points. The Fast Fourier Transform
(FFT) is an optimized algorithm that computes DFT (for equally spaced time series) but
has an order of n log(n) floating operations or O(n log n) [1]. The DFT spectrum may be
obtained by taking the absolute value of the Fourier coefficients in Equation (4).

The Fourier transform is not defined for unequally spaced time series. Even DFT is not
an appropriate method of estimating the signal amplitudes and frequencies of unequally
spaced time series [3,9]. The Fourier transform and its modifications do not consider trends
and/or datum shifts present in time series, and they are not appropriate for analyzing
non-stationary time series. Moreover, there is no rigorous statistical testing for assessing
the Fourier transform results.

2.2. Least-Squares Spectral Analysis (LSSA)

The LSSA is an appropriate method of analyzing unequally spaced time series that
comprise trends and/or datum shifts [10,11]. The LSSA and its modifications have been
described in detail in many publications [3,12–14]. Its basic definition for time series is
described below.

Suppose that f is a real times series of n data points, f =
[

f (t1), f (t2), . . . , f (tn)
]T,

where T is the transpose and tj may not be equally spaced. Furthermore, suppose that Cf is
the covariance matrix of dimension n associated with the time series. Note that each data
point f (tj) can be generally assumed to be a random variable with mean µj and variance
σ2

j , so the covariance between any two data points may be calculated [6] (Chapter 3). Let

P = C−1
f , and Ω be a set of cyclic frequencies (positive real numbers) that may be chosen

based on the scope of analysis.
The LSSA estimates a vector c = [c1, . . . , cm]T satisfying f = Φc. Matrix Φ of dimen-

sion n× m, which models the physical relationship between the time series (the vector
of measurements) and the unknown vector c, is called the design matrix [10]. If the di-
mension of f is larger than m, then the system f = Φc is overdetermined, i.e., the system
has more equations than unknowns. In order to solve the system, one can recall the
least-squares principle to minimize quadratic form (f−Φc)TP(f−Φc). This results in the
well-known expression

ĉ = (ΦTPΦ)−1ΦTPf, (5)

where ĉ = [ĉ1, . . . , ĉm]T [13]. If Y = BX, then by the covariance law, CY = BCXBT [15]
(Chapter 2). Thus, by the covariance law, the covariance matrix of ĉ can be obtained as

Cĉ = (ΦTPΦ)−1. (6)

The design matrix Φ comprises sine and cosine basis functions of various cyclic
frequencies ωk ∈ Ω as well as other basis functions that characterize systematic noise (e.g.,
trends and offsets). The simplest case (out-of-context) is when c = [c1, c2]

T, and Φ is a
n× 2 matrix whose columns are the cosine and sine basis functions of a cyclic frequency
ωk. In this case, the least-squares spectrum (LSS) of f for ωk is defined as

s(ωk) =
fTPΦĉ
fTPf

, (7)

which shows how much the wave of cyclic frequency ωk contributes to f. Note that s(ωk) is
in (0, 1). Aliasing may not occur in time series that are inherently unequally spaced [3,16]
underlining yet another important advantage of LSSA when applied to unequally spaced
time series. LSSA can also consider constituents of known forms, such as trends, datum
shifts, and sinusoidal basis functions of particular frequencies [14].

In order to find the underlying probability distribution function of LSS, one may
assume that f is a random vector of dimension n following the multidimensional normal
distribution N (0, Cf), where Cf may be singular. Note that f can also have any arbitrary
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mean that may be modeled by constituents of known forms [13]. It is shown that LSS
follows the beta distribution from which the critical value at (1− α) confidence level is
calculated as ζ = 1− α2/(n−q−2), where α is the significance level, usually 0.01 or 0.05, n is
the time series size, and q is the number of constituents of known forms [13]. Therefore,
if s(ωk) > ζ, then the spectral peak in the spectrum corresponding to ωk is statistically
significant at a certain confidence level, usually 99% or 95%.

It is worth mentioning that the least-squares minimization has many applications in
wireless networking and telecommunications. For instance, Seberry et al. in [17] showed
that if Φ is a weighing design whose entries are ±1, and the covariance matrix associated
with f is Cf = σ2I, then Φ is optimal if ΦTΦ = nI, and so Equation (6) gives Cĉ = (σ2/n)I.
That means Φ is optimal, i.e., the variances of the elements of ĉ are minimum, if Φ is a ±1
matrix whose columns are orthogonal and are taken from a Hadamard matrix (a Hadamard
matrix is a square matrix H of order n with ±1 entries such that HHT = nI) [18].

Craymer [3] showed that the Fourier analysis is a special case of LSSA when the
time series is strictly stationary, equally spaced, equally weighted, and with no gaps. The
Fourier transform of a function f for cyclic frequency ω is obtained by considering the
entire domain of f similar to LSSA that obtains the spectrum of a time series by fitting
sinusoidal functions of cyclic frequency ω to the entire time series; this is not a satisfactory
approach for analyzing non-stationary time series comprising constituents with a variability
of amplitude and frequency over time.

2.3. Recent Methods of Mitigating Spectral Leakages in Spectrum

Since the sinusoidal basis functions in the Fourier transform are not orthogonal over
irregularly spaced series, spectral leakages appear in the Fourier spectrum, that is, power
or energy leaks from one spectral peak into another [19,20]. In LSSA, since the selected
frequencies are examined one by one (out-of-context), spectral leakages still appear, which
can result in a poor signal estimation, although the non-orthogonality between the sine
and cosine basis functions is taken into account for each frequency.

To visualize the spectral leakages, a synthetic unequally spaced time series is gen-
erated, as described below, that may represent a geophysical time series for one year.
Suppose that f (t`) = 1.5 sin(2π · 6t`) + sin(2π · 15t`) and t` (` = 1, ..., 70) are random
numbers in [0, 1] generated by the MATLAB command “rand” and sorted in ascending
order (Figure 1a). For example, f (t) may be an ambient temperature in degree Celsius
(◦C) at time t, and so the amplitude will be in ◦C in Figure 1. The time series contains two
sine waves of frequencies 6 and 15 cycles per year with amplitudes 1.5 and 1, respectively.
The ideal spectrum in terms of amplitudes is shown in Figure 1b, which clearly shows the
spectral peaks corresponding to the two sine waves. LSS of this time series calculated by
Equation (7) (suppose P = I, the identity matrix) is illustrated in Figure 1c. It can be seen
that the spectral peaks corresponding to the two sine waves are significant.

In LSSA, the estimated amplitudes of this time series are obtained by Equation (5),
then the square root of ĉTĉ is calculated, and its corresponding spectrum is illustrated
in Figure 1d. Alternatively, the absolute values of the Fourier coefficients obtained from
Equation (4) (Figure 1e) show severe spectral leakages (see arrows). The absolute value
of Fourier coefficients is approximately half of the amplitudes shown in Figure 1d but
with more severe spectral leakages. Note that DFT of a real time series has an identical
response to both positive and negative frequencies. In solving physical problems, negative
frequencies in DFT have no meaning; however, it is mathematically a useful concept that
can simplify the frequency domain representation of signals.

The LSS peaks are cleaner and sharper in the percentage variance mode (Figure 1c)
than amplitude mode (Figure 1d), and also, the statistics of the significant peaks are on the
percentage variance and not on the amplitude. This is a fundamental and crucial approach
in the development of the antileakage LSSA algorithm [19]. Moreover, the identification
of signal frequencies in DFT is more difficult and challenging compared to LSSA because
DFT does not consider the correlations among the sine and cosine basis functions [3,14].
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Figure 1. Spectral leakages in DFT and LSSA for unequally spaced time series. Arrows show many of the leakages.

One of the purposes of mitigating spectral leakages in the spectrum is regularization.
Regularization is a process of introducing additional information in order to solve an
ill-posed problem or to prevent over-fitting. This process usually uses the spectrum of an
equally or unequally spaced time series in an inverse mode to produce an equally spaced
time series that will have the same spectrum as the original time series but with attenuated
random noise. In other words, regularization places a time series onto any desired equally
spaced series. The same concept is true for data series, i.e., a sequence of data points that
are distance indexed, so instead of time and frequency, distance and wavenumber are
used, respectively.

2.3.1. Antileakage and Arbitrary Sampled Fourier Transforms

The AntiLeakage Fourier Transform (ALFT) [20,21] and Arbitrarily Sampled Fourier
Transform (ASFT) [22] are two Fourier-based methods that try to mitigate the spectral
leakages in the Fourier spectrum of unequally spaced time series. The ALFT and ASFT
estimate the Fourier coefficients of a time series, first by searching for the peak of maximum
energy and subtracting its component from the time series and then repeating the procedure
again on the residual series until all the significant Fourier coefficients are estimated. This
way, the spectral leakages of Fourier coefficients emerging from the non-orthogonality of
the global Fourier basis functions will be attenuated. The accuracy of signal frequency
in ALFT depends on the preselected set of frequencies. The denser the set is, the better
the estimation but the slower the computation. On the other hand, ASFT is a direct
cost function minimization approach. Upon finding a frequency ω1 in the preselected
set of frequencies minimizing the cost function, ASFT searches a small neighborhood
around ω1 to find a more accurate frequency. ALFT and ASFT have been applied to
regularize unevenly sampled seismic data. Flowcharts of ALFT and ASFT are shown in
Figures A1 and A2, respectively.

Although ALFT and ASFT perform much better than DFT for analyzing unequally
spaced time series, they usually cannot find the correct location of a peak of maximum
energy from a preselected set of frequencies due to the correlation between the sinusoids,
and so these methods do not effectively reduce the leakage [19]. This shortcoming becomes
more severe when a time series has more spectral components. Moreover, the constituents
of known forms, such as datum shifts and trends, are not explicitly considered in these
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algorithms. Therefore, if the trends or datum shifts are present in a time series, then ALFT
and ASFT implicitly approximate them by sinusoids of different frequencies [20]. Hollander
et al. proposed a method that uses an Orthogonal Matching Pursuit (OMP) to improve
the ALFT results [23]. In the OMP approach, the coefficients of all previously selected
Fourier components are re-optimized, producing better interpolation results compared to
the ALFT results.

2.3.2. Interpolation by Matching Pursuit (IMAP)

The IMAP is a least-squares-based method proposed to mitigate the spectral leakages
in the spectrum and can be used to regularize seismic data [24]. In IMAP, a frequency
ω1 corresponding to the largest peak in the spectrum [12] is selected, i.e., a frequency ω1
such that Equation (7) (or just its numerator) is maximized. Then the contribution of the
sinusoidal basis functions of frequency ω1 to the time series is subtracted from it to obtain
the residual series. In the next step, the residual series is treated as a new input time series
to choose a frequency ω2 corresponding to the largest peak in the new residual spectrum,
and this procedure continues until the desired frequencies are estimated. This iterative
method mitigates the spectral leakages in the spectrum and results in a faster convergence.
A flowchart of IMAP is shown in Figure A3.

Unlike ALFT, IMAP matches the basis functions to the data rather than the data being
mapped to the basis-function domain [25]. Since the correlation between the sine and
cosine basis functions are considered in IMAP, its spectrum generally shows much fewer
leakages than ALFT and ASFT, and so it performs better for regularization. Although
IMAP improves the spectral leakages in the spectrum, it does not explicitly account for
the correlations among the sinusoids of different frequencies, and so its spectrum contains
many frequencies due to leakages that increase the computational cost and reduce the
accuracy of the regularization results. Vassallo et al. [26] have also studied estimating
many frequencies per iteration and have documented several de-aliasing schemes.

2.3.3. AntiLeakage Least-Squares Spectral Analysis (ALLSSA)

The ALLSSA is an iterative method based on LSSA that usually uses a preselected set
of frequencies to accurately estimate the statistically significant spectral peaks [19]. After
simultaneously suppressing several significant spectral peaks with the highest percentage
variance from the spectrum, ALLSSA revisits the previously estimated frequencies to
estimate them more accurately in the next step, and so it can significantly reduce the
computational cost while it estimates the signal frequencies and amplitudes more accurately
than LSSA. Once the frequencies and amplitudes are estimated, they can be used to
reconstruct the time series to any desired equally spaced series while attenuating noise
down to a certain confidence level. A flowchart of ALLSSA is shown in Figure A4.

Unlike IMAP, ALLSSA simultaneously considers the correlations among sinusoids
of different frequencies and constituents of known forms, such as trends, as well as the
covariance matrix associated with the time series if provided. The ALLSSA, in many
practical applications, usually performs fast; however, its computational cost may increase
for large size time series with many components.

2.4. Recent Methods of Mitigating Spectral Leakages in Spectrum Beyond Aliasing

Aliasing is an effect that causes different signals to be indistinguishable when sampled.
In other words, signals with different frequencies may have the same samples over the
given time intervals. Aliasing occurs whenever a signal is sampled at a rate below its
Nyquist rate, and so when decomposing a time series into the frequency domain, two or
more different sinusoids identically fit the same set of samples. Figure 2a shows an example
of two aliased sinusoids that are indistinguishable from the samples in black diamonds.
The two sinusoids are a sine wave of 4 Hz, shown in red, and a sine wave of 36 Hz, shown
in blue, that differs from the first sine wave by the sampling frequency of 32 Hz. Mitigating
the aliasing effect is crucial in many areas of research, such as interpolation of seismic data
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that are coarsely sampled [25]. Additional information or assumptions must be provided
to overcome the aliasing effect and identify the true signals. For instance, the gradients in
Figure 2b, i.e., the derivative of the sinusoids, has different values at sample positions and
can be used to identify the true sinusoid.

Figure 2. (a) Two aliased sinusoids with identical values at sampling frequency 32 Hz, and (b) their gradients with many
different values at sample positions.

2.4.1. Interpolation by Matching Pursuit (MIMAP)

The MIMAP is a spectral analysis method that uses the gradients of a coarsely sampled
time series, presenting severe aliasing to estimate the true frequency spectrum of the time
series [25]. For each frequency, MIMAP simultaneously minimizes the L2 norm of the
residual series and gradients to estimate the coefficients of cosine and sine functions. The
rest of the process is similar to IMAP, i.e., a frequency ω1 corresponding to the largest
peak in the spectrum is selected, and the contributions of the sinusoidal basis functions of
frequency ω1 to the time series and its gradients are subtracted to obtain the residual series
and gradients. In the next step, the residual series and residual gradients are treated as
new inputs to choose a frequency ω2 corresponding to the largest peak in the new residual
spectrum, and this procedure continues until the desired frequencies are estimated.

Like IMAP, MIMAP estimates the frequencies and corresponding amplitudes one at a
time (out-of-context), ignoring the correlations between the sinusoids of different frequen-
cies. Therefore, the estimated frequencies and amplitudes may not be accurate, resulting in
a large number of iterations and less accuracy compared to when these correlations are
considered [19,27].

2.4.2. Multichannel AntiLeakage Least-Squares Spectral Analysis (MALLSSA)

The MALLSSA uses the idea of MIMAP to estimate a frequency spectrum for a coarsely
sampled time series with the aid of its corresponding gradients [27]. Unlike MIMAP, the
cost function in MALLSSA is defined in such a way that it considers the covariance matrices
associated with the time series and its gradients and also can get updated iteratively to
simultaneously estimate the statistically significant spectral peaks. Since MALLSSA is
based on ALLSSA, it inherits all the advantages of ALLSSA.

The MALLSSA, like MIMAP or almost any regularization method in the presence
of aliasing, has the potential overlap of two or more spectral replicas at the same fre-
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quency. The perfect overlap of aliased events happens only in the ideal case of perfectly
regular sampling.

3. Decomposition Methods into Time-Frequency Domain

This section briefly reviews several popular time-frequency decomposition meth-
ods and eventually continues to recent techniques for processing unequally spaced and
weighted time series. Two popular cross-wavelet methods for analyzing multiple time
series together are also reviewed at the end of this section.

3.1. Short-Time Fourier Transform (STFT)

In order to measure the frequency variation of sounds, Gabor introduced STFT, which
is one way of analyzing piece-wise stationary and equally spaced time series [28]. He
basically endeavored to obtain the spectrum of a time series in short-time intervals (or
within a window that translates or slides through the whole time series) rather than
considering the entire time series at once. Mathematically, let f be a square-integrable
function on R (e.g., an energy signal), and w be a normalized (‖w‖2 =

∫ ∞
−∞ |w(t)|2 dt = 1)

real and symmetric (w(t) = w(−t)) window function (e.g., Hann or Gaussian). The
continuous STFT is defined as

f̂ (τ, ω) =
∫ ∞

−∞
f (t)w(t− τ)e−2πiωt dt, (8)

where w is centered at time τ, the translation parameter. The STFT energy density of f
(spectrogram) is | f̂ (τ, ω)|2, which measures the energy of f in the time-frequency neigh-
borhood of (τ, ω) [1] (Chapter 4). For a time series, a spectrogram can be obtained by
calculating | f̂ (τ, ω)|2 (in the summation form) for all pairs (τ, ω).

The rectangular boxes centered at (τ, ω) with side lengths στ and σω (standard devia-
tion) are illustrated in Figure 3, and they are called the Heisenberg boxes [1]. Resolution is
referred to the side lengths of the Heisenberg boxes in the time-frequency domain—time
or frequency support. In other words, resolution means the ability to resolve frequencies
or times in a spectrogram. It is shown that στ and σω are independent of τ and ω, and
so STFT has the same resolution across the time-frequency domain, i.e., the area and the
side lengths of the Heisenberg boxes do not change across the time-frequency domain, and
the Heisenberg boxes do not rotate across the time-frequency domain [1]. If the selected
window is wider, then στ is larger and σω is smaller, meaning that the spectrogram has
poorer time resolution but better frequency resolution across the time-frequency domain
(Figure 3a). Similarly, if the selected window is narrower, then στ is smaller and σω is larger,
meaning that the spectrogram has better time resolution but poorer frequency resolution
across the time-frequency domain (Figure 3b).

Since in STFT the sinusoidal functions that do not complete an integer number of
cycles within a window are not orthogonal, the segment of the time series within such win-
dow cannot be represented as a linear combination of these sinusoids properly, resulting in
spectral leakages. Note that the STFT does not consider the correlation between the sinu-
soidal functions when they are not orthogonal within a window [1]. Using an appropriate
window function, the segment of the time series within the window can be tapered to zero
at both ends to prevent leakages. It is shown in [29] that if w is Gaussian, then the area of
the Heisenberg box is minimum, a property that is similar to the least-squares principle
and highly desirable (optimal). In STFT, the window length is fixed during translation in
time, which is inappropriate for analyzing time series with components of high amplitude
and frequency variability over time.
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Figure 3. A few adjacent Heisenberg boxes of the STFT (a,b), and CWT (c).

3.2. Continuous Wavelet Transform (CWT)

A wavelet is a wave-like function whose values start from zero and end at zero after
a number of oscillations, a very useful function in signal and image processing [30–32].
A wavelet can be visualized as a short oscillation like one recorded by a seismograph
or heart monitor. The CWT maps an equally spaced time series into wavelets to con-
struct a time-frequency representation of the time series, providing a good time and
frequency determination.

In CWT, the dilation of a (mother) wavelet defines a window, and a scalogram in the
time-scale domain is calculated instead of a spectrogram in the time-frequency domain.
The scalogram is a three-dimensional analog of the wavelet transform representation in
which the x-axis, y-axis, and z-axis represent time, scale, and absolute value of Fourier
coefficients at particular times, respectively. The spectrogram is slightly different from the
scalogram in that its y-axis values represent frequencies rather than scales, and thus is
more appropriate to study the periodicity of various components in the time series. One
may convert the scalogram to a spectrogram using several approaches, such as conversion
based on the center frequencies of the scales [33]. In CWT, the window length decreases as
frequency increases, allowing the detection of short-time or short-duration components
of high frequencies, and vice versa: the window length increases as frequency decreases,
allowing the detection of the low-frequency components in the time series. Mathematically,
assume that the functions

ψτ,s(t) =
1√

s
ψ

(
t− τ

s

)
, (9)

are a family of (daughter) wavelets that are generated by dilating ψ (mother wavelet)
with a scale parameter s > 0 and translating it by τ, that is, time or position or lo-
cation. For theoretical reasons, one may choose a special wavelet ψ (mother wavelet)
from the space of all square-integrable functions over R such that it is normalized, i.e.,
‖ψ‖2 =

∫ ∞
−∞ |ψ(η)|

2 dη = 1 and integrates to zero, i.e.,
∫ ∞
−∞ ψ(η)dη = 0 [34,35]. The

wavelet transform of a square-integrable function f on R (e.g., an energy signal) at time τ
and scale s is then defined as

f̂ψ(τ, s) =
〈

f , ψτ,s
〉
=

1√
s

∫ ∞

−∞
f (t)ψ∗

(
t− τ

s

)
dt, (10)

where ψ∗ is the complex conjugate of ψ [1] (Chapter 4). Therefore, the values of time τ
and scale s as well as the choice of wavelet affect the values of the coefficients f̂ψ(τ, s). An
analytic wavelet transform defines a local time-frequency energy density | f̂ψ(τ, s)|2, which
measures the energy of f in the Heisenberg box of each wavelet ψτ,s. This energy density
is called a scalogram [1] (Chapter 4). The Fourier transform in Equation (1) is a special case
of the CWT in Equation (10) when ψτ,s(t) = e2πiωt and f is absolutely integrable, ignoring
scale s.
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The CWT in MATLAB operates on a discrete time series, where the integral in
Equation (10) is implemented by a simple summation over the elements [36]. More pre-
cisely, suppose that f =

[
f (t1), . . . , f (tn)

]
is an equally spaced time series of n data points,

where t` = `/n (` = 1, . . . , n). The CWT coefficients are calculated as

f̂ψ(tj, s) =
1√
ns

n

∑
`=1

f (t`)ψ∗
( t` − tj

s

)
, (11)

where ψ∗ is the complex conjugate of ψ, and the wavelet is dilated in time by varying its
scale (s) and normalizing it to have unit energy [37,38]. For a time series, a scalogram can
be obtained by calculating wavelet power | f̂ψ(tj, s)|2 for all pairs (tj, s).

The time and frequency resolutions of CWT depend on the scale s. It can be seen
from Figure 3c that CWT has high-frequency resolution at low frequencies and high-time
resolution at high frequencies [1]. The Discrete Wavelet Transform (DWT) of a time series
is calculated by passing it through a series of filters, calculated differently from CWT for
different purposes [1,34,39]. CWT is more useful for feature extraction and time series
analysis due to its fine resolution; whereas, DWT is a fast transform that represents a time
series in a more redundant form and often used for data compression and noise attenuation
of two-dimensional signals or images [1,34].

Note that unequally spaced wavelets are not defined, so CWT and DWT are not
defined for an unequally spaced time series unless one interpolates to fill in the missing
data or shrinks the wavelet [40,41]. However, interpolation may produce undesirable
biases in spectrograms, especially for non-stationary time series [42,43]. Moreover, the
covariance matrix associated with the time series is not considered in STFT and CWT [43].

There are a bewildering variety of wavelets to use in CWT, such as Biorthogonal,
Coiflets, Daubechies, Harr, Meyer, Morlet, and Symlet, and if one uses an inappropriate
wavelet to correlate with a time series, then the CWT spectrogram may give misleading
and nonphysical results [36,39,44,45]. In order to study the periodicity of the constituents
and to detect the periodic fluctuations in a time series, one may choose a (mother) wavelet,
which fluctuates based on the periodic sinusoidal basis functions [31,42]. A simple and
commonly used wavelet possessing this property is the Morlet wavelet defined as

ψ(η) = π−1/4e−η2/2e2πiω0η , (12)

where η may represent time, and the cyclic frequency ω0 is chosen to be 6/(2π) cycles
per unit time to satisfy the wavelet admissibility condition of the mother wavelet and
provides a good balance between time and frequency resolution [35,37,38]. The condition∫ ∞

0 (|Ψ(ω)|2/ω) dω < ∞ is called the wavelet admissibility condition that is a necessary
condition for the inverse of CWT, where Ψ is the Fourier transform of ψ [1]. For this choice
of ω0, the Fourier period of the Morlet wavelet (T = 1/ω0) is almost equal to 1.03 s.

To match the inverse of scale factor s exactly to frequency, Foster [42] applied a simple
transformation to define the Morlet wavelet as

ψ(z) = e−cz2
eiz = e−c(2πω(t−τ))2

e2πiω(t−τ), (13)

where ω is the cyclic frequency and z = 2πω0η, so c = 1/(8π2ω2
0), disregarding coef-

ficient π−1/4 in Equation (12) because it does not affect the results of the least-squares
methods. For MATLAB users, the command “scal2frq” may be used to convert the scales
to frequencies in CWT [36]. Note that when ω0 = 6/(2π), c = 1/72, that is, approximately
close to c = 0.0125 used in [42]. Figure 4 shows the construction and analyses of a Morlet
wavelet given by Equation (13) for cyclic frequency ω = 10 cycles per second (Hertz or
Hz). Figure 4a,c are generated using e2πiω(t−τ) and e−c(2πω(t−τ))2

, respectively, which are
the two components of the Morlet wavelet shown in Figure 4e. Comparing Figure 4b–f,
one can see that the bandwidth of the Morlet wavelet is larger (poor frequency resolution)
than the pure sinusoids. There are several definitions for bandwidth in the literature. The
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bandwidth is typically understood as the frequency interval in the spectrum where the
main part (95% or 99%) of its power is located; others use 50% to be compatible with
the definition of the cutoff frequency of a filter: −3 decibel (dB) half-power point [1,46].
Software packages for CWT are freely available online [47].

Figure 4. Morlet wavelet of frequency 10 Hz and its analyses (1000 samples per second). (a) Sinusoids of frequency 10 Hz,
(b) DFT spectrum of panel a, (c) a Gaussian function, (d) DFT spectrum of panel c, (e) a Morlet wavelet, and (f) DFT
spectrum of panel e.

3.3. Hilbert–Huang Transform (HHT)

The HHT is an alternative method of analyzing non-stationary time series with or
without trends [48–51]. The HHT is the result of the Empirical Mode Decomposition
(EMD) and the Hilbert Spectral Analysis (HSA). The EMD decomposes the time series into
Intrinsic Mode Functions (IMFs) with a trend via a procedure called sifting, and then HSA
applies IMFs to obtain instantaneous frequency data.

An IMF is a function whose number of extrema and zero-crossings are either equal
or differ by at most one. Moreover, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero at any point [49]. The sifting
process identifies all the local extrema in time series f, then it connects all the local maxima
by a cubic spline as the upper envelope and does the same for all the local minima to
produce the lower envelope. Therefore, the upper and lower envelopes with mean µ(t)
should cover all the data points between them (this generally may not occur). Then the
difference between the time series values and µ(t) is ideally an IMF. Otherwise, the same
process on the difference may be repeated, which is one of the weaknesses of HHT [49].
Denote this IMF by c1. The sifting process will now continue on r1 = f− c1 (residual) to
obtain c2 (IMF), and so r2 = r1 − c2. The sifting process stops when residual rn becomes a
monotonic function from which no more IMF can be extracted [48]. Therefore, the time
series is decomposed into IMFs, i.e., f = ∑n

j=1 cj + rn. After obtaining the IMFs, cj, the
instantaneous frequencies, ωj(t), and instantaneous amplitudes, aj(t), of IMFs can be
obtained using the Hilbert transform, the convolution integral of cj with 1/t [48–51]. The
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distribution of amplitude aj(t) in the time-frequency domain, H(t, ω), can be regarded as a
skeleton form of that in CWT [49].

Although HHT is an empirical method based on the physical meaning of non-
stationary time series, it also comes with several weaknesses, such as the limitation of
EMD in distinguishing different components in narrow-band time series, end effects, and
the mode mixing problem occurring in the EMD process [52,53]. The performance and
limitations of HHT with particular applications to irregular water waves are comprehen-
sively investigated in [54]. As a result, an appropriate interpolation technique is needed to
determine better envelopes for this method.

3.4. Constrained Least-Squares Spectral Analysis (CLSSA)

Puryear et al. [55] introduced CLSSA as a seismic spectral decomposition method and
showed that it has spectral resolution advantages over the conventional methods, such as
CWT. Suppose that Φw is a design matrix consisting of the sinusoidal functions truncated
by the end points of a window in the time domain. More precisely, let

Φw =


e2πiω1(t1−τ) e2πiω2(t1−τ) · · · e2πiωn(t1−τ)

e2πiω1(t2−τ) e2πiω2(t2−τ) · · · e2πiωn(t2−τ)

...
... · · ·

...
e2πiω1(tm−τ) e2πiω2(tm−τ) · · · e2πiωn(tm−τ)

, (14)

be a m× n matrix, where m is the number of data points within the time window, n is the
number of frequencies (equal to the size of the entire data series according to DFT), and
τ is the center of the window (the translating parameter). Now consider system (model)
Φwu = y, where y is the windowed seismic data series (complex segment) of size m and u
is the column vector of unknown Fourier coefficients. Since m is less than n, this system
is underdetermined, and specific constraints are needed to estimate the unknowns and
achieve a unique solution. Note that an underdetermined system is a system that has more
unknowns than equations.

The CLSSA uses two diagonal matrices Wu and Wy, which are the model and data
weights, respectively, to constrain the underdetermined system. Matrix Wu changes in iter-
ation (starts with I), and Wy is constant throughout the iteration. Applying these two matri-
ces, the underdetermined system becomes WyΦwWuW−1

u u = Wyy. Let Φw = WyΦwWu
and uw = W−1

u u. The CLSSA minimizes the following cost function

Υ = ‖Φwuw −Wyy‖2 + α‖uw‖2, (15)

where ‖.‖ is the L2 norm and parameter α is selected empirically which varies at each
iteration step. Note that for a n-dimensional complex vector z = [z1, . . . , zn], the L2 norm
of z is ‖z‖ =

√
|z1|2 + · · ·+ |zn|2 =

√
z1z̄1 + · · ·+ zn z̄n. The solution of Equation (15) is

ûw = Φ∗w(ΦwΦ∗w + αI)−1Wyy, (16)

where ∗ is the conjugate transpose. The estimated Fourier coefficients are û = Wuûw.
The approach of constrained least-squares solutions incorporated to bypass the prob-

lem of a singular normal equation matrix (rank-deficient matrix) has a much longer history.
In the 1970s, there were many attempts to solve underdetermined problems in geodesy,
resulting in minimal constraints and inner constraints, etc., which in the end satisfied the
least-squares g-inverse and Moore–Penrose inverse, etc. [5,56].

Although CLSSA results in a time-frequency analysis with improved frequency res-
olution compared to STFT and CWT, no detailed discussion and analyses are provided
for analyzing unequally spaced time series by Puryear [57]. CLSSA may not be able to
handle the constituents of known forms, such as trends and/or datum shifts, and so it
may not be appropriate for the detection of hidden signatures in time series. Furthermore,
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no discussion is made for incorporating the covariance matrix in the model as well as the
rigorous statistical analyses for a possible test on the significance of spectral peaks.

3.5. Weighted Wavelet Z-Transform (WWZ)

Foster [42] proposed a robust method of analyzing astronomical time series that are
non-stationary and unequally spaced, namely, the Weighted Wavelet Z-transform (WWZ).
In this section, the same notation is used as in [42] to define the WWZ. Suppose that
f =

[
f (tj)

]
is a time series of n data points. For each τ (the window location; can be the tj

or equally spaced times) and each ωk ∈ Ω, let Φ1 = [1]

Φ2 =
[

cos
(
2πωk(t1 − τ)

)
, . . . , cos

(
2πωk(tn − τ)

)]
, (17)

Φ3 =
[

sin
(
2πωk(t1 − τ)

)
, . . . , sin

(
2πωk(tn − τ)

)]
, (18)

where [1] is the all-ones vector of dimension n. The inner product of two vectors
u = [u(t1), . . . , u(tn)] and v = [v(t1), . . . , v(tn)] is defined as

〈u|v〉 = ∑n
i=1 wiu(ti)v(ti)

∑n
i=1 wi

, (19)

where wi is the statistical weight chosen as wi = e−c(2πωk(ti−τ))2
, and c is a window constant,

which may be selected to be c = 0.0125, as described in Section 3.2, see Equation (13). The
constant c determines how rapidly the analyzing wavelet decays [42]. Let S be the square
matrix of order three whose entries are 〈Φa|Φb〉 (1 ≤ a, b ≤ 3). The Weighted Wavelet
Z-transform (WWZ) (power) is defined as

Z =
(Neff − 3)Vy

2(Vx −Vy)
, (20)

where Neff = (∑n
i=1 wi)

2/(∑n
i=1 w2

i ) is the effective number of data points, Vx = 〈f|f〉 − 〈1|f〉2
is the weighted variation of the data, and Vy = ∑a,b S−1

ab 〈Φa|f〉〈Φb|f〉 − 〈1|f〉2 is the
weighted variation of the model function obtained by the least-squares method [42].
Assuming the normality condition, Foster also showed that Equation (20) follows the
F-distribution with Neff − 3 and two degrees of freedom and expected value of one [42].

The WWZ is based on the least-squares optimization that is a robust method of
analyzing non-stationary and unequally spaced time series; however, WWZ is a poor
estimator of amplitude [42], and the spectral peaks in WWZ lose their power toward higher
frequencies similar to CWT. Therefore, it may not detect possible hidden signatures in time
series. The latter shortcoming is caused mainly by the effective number of data points that
decreases when the frequency increases, making the numerator of Equation (20) smaller.
Note that the term Vy/(Vx −Vy) in Equation (20) is the estimated signal-to-noise ratio [42].
Subtracting Vy from Vx in the denominator of Equation (20) significantly alters the true
power of the signals that may not allow one to see the behavior of the time series, especially
when searching for possible hidden signals with low power in a time series. Furthermore,
in WWZ, constituents of known forms and the covariance matrix associated with the time
series are not considered, which may potentially alter the results. After the signal period
is estimated via WWZ, the signal amplitude may be obtained via the Weighted Wavelet
Amplitude (WWA) that is the square root of the sum of squares of the estimated cosine and
sine coefficients [42].

3.6. Least-Squares Wavelet Analysis (LSWA)

The LSWA is a natural extension of LSSA that decomposes a time series from the time
domain into the time-frequency domain using an appropriate segmentation of the time
series [43]. This segmentation is linked to a translating window (rectangular or Gaussian)
whose size decreases as frequency increases within a frequency band of interest. The
segmentation results in the detection of constituents with amplitude and/or frequency
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variability over time as well as detection of short-duration signatures buried in the time
series by simultaneously removing the constituents of known forms from the time series.
The LSWA can statistically analyze any non-stationary and unequally spaced time series
without any need for editing of the original time series, which is indeed a breakthrough
in signal processing and time series analysis. The flowchart of the LSWA algorithm is
illustrated in Figure A5. Note that the locations of the translating windows may also be
chosen to be equally spaced, and the translating windows may also be set up in such a way
that they do not overlap each other for the sake of faster computation.

The normalized spectrogram in LSWA shows percentage variances of the spectral
peaks corresponding to the time series segments, i.e., it shows how much the time-frequency
localized sinusoids contribute to the corresponding residual segment of the time series.
Assuming the normality condition, the LSWA normalized spectrogram follows the beta dis-
tribution, and so a stochastic confidence level surface is defined to identify the statistically
significant peaks in the spectrogram, see Appendix C in [4]. The amplitude spectrogram
in LSWA shows the localized signal amplitudes. Selection of the Gaussian window, i.e.,
the weight matrix whose diagonal elements are the Gaussian values, generates smoother
spectral peaks but wider bandwidth in the spectrogram. Simultaneous estimation and
removal (suppression) of the constituents of known forms in the spectrogram allows one
to search for any hidden signatures in the residual time series.

Unlike CWT, the least-squares-based methods, such as WWZ, WWA, and LSWA, are
more robust in estimating the signal frequency and amplitude. However, they generally
have a higher computational cost than CWT. Like LSSA, LSWA can also consider the
constituents of known forms and covariance matrices associated with the time series.

3.7. Methods of Analyzing Multiple Time Series Together
3.7.1. Cross-Wavelet Transform (XWT)

To examine two equally spaced time series together having the same sampling rates
and study the coherency and phase differences between their corresponding constituents,
Torrence and Compo [38,47] proposed a method called the Cross-Wavelet Transform (XWT).
Briefly, suppose that f1 and f2 are two equally spaced time series of size n. For each pair
(tj, s), let f̂1ψ(tj, s) and f̂2ψ(tj, s) be their corresponding CWT coefficients calculated by
Equation (11). XWT is defined as

Xψ(tj, s) =
(

f̂1ψ(tj, s)
)(

f̂ ∗2ψ(tj, s)
)

, (21)

where f̂ ∗2ψ(tj, s) is the complex conjugate of f̂2ψ(tj, s), and the XWT power is defined as
|Xψ(tj, s)| [37,38]. The argument arg[Xψ(tj, s)] defines the phase differences (local relative
phase or coherence phase) between the constituents of the two series [37,38]. Note that the
argument of a complex number z = a + ib is arg[z] = tan−1(b/a).

Torrence and Compo [38] showed that if a time series is derived from a population
of random variables following the multidimensional normal distribution, then the real
and imaginary parts of the Fourier coefficients and thus the CWT coefficients are also
normally distributed. Therefore, the continuous wavelet power, that is, the sum of squares
of two normally distributed random variables, follows χ2

2 (chi-squared distribution with
two degrees of freedom). Now, if both time series are independently derived from pop-
ulations of random variables following the multidimensional normal distribution, then
the underlying probability distribution function of the squared absolute value of XWT, i.e.,
|Xψ(tj, s)|2 = | f̂1ψ(tj, s)|2| f̂2ψ(tj, s)|2, is in fact the product of two chi-squared distributions
each with two degrees of freedom. The underlying probability distribution function of the
XWT power (|Xψ(tj, s)|) is f (z) = zK0(z), where K0(z) is the modified Bessel function of
order zero defined as K0(z) =

∫ ∞
0 cos (z sinh t) dt =

∫ ∞
0 cos (xt)/

√
t2 + 1 dt [58,59].

Because in the locations toward the edges of the CWT spectrogram, the wavelet is not
completely localized, edge artifacts occur in those locations. The cone of influence (COI) in
CWT or XWT is defined as the area outside which the edge effects can be neglected [37,38].
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Although CWT and XWT are well-established methods of time-frequency analysis, they
cannot be used directly for analyzing unequally spaced series with associated covariance
matrices. Furthermore, these methods cannot handle the constituents of known forms,
such as trends and/or datum shifts, and thus are not appropriate for analyzing time series
in many geodetic and geophysical applications.

3.7.2. Least-Squares Cross Wavelet Analysis (LSCWA)

The LSCWA is a robust method of analyzing two time series together [60]. Since the
sampling rates of the time series may not be the same, one may choose a common set of
times for both time series, e.g., the union of the times in both time series, and compute a
normalized spectrogram for each time series, namely, s1 and s2. Then, the Least-Squares
Cross-Wavelet Spectrogram (LSCWS) is defined by Xs = s1s2, which shows the coherency
of the components in percentage variance when multiplied by 100. Higher and lower
values of Xs indicate that the components of both series are highly coherent and incoherent
within the corresponding time-frequency neighborhoods, respectively.

Like XWT, LSCWA also provides the phase differences between the components
of interest in both time series, usually displayed by arrows in the cross-spectrogram.
The arrows follow the trigonometric circle principle in the two-dimensional Cartesian
coordinate system. If an arrow points to the right or toward the positive x-axis for a peak in
the cross-spectrogram, then the corresponding components of both time series are in-phase,
and they are out-of-phase if the arrow points to the left. If an arrow is in the first or second
quadrant with an angle ψ1 (0 < ψ1 < 180 degrees) counterclockwise from the positive
x-axis, then the component of the second time series lags the one in the first time series
by ψ1 degrees. Furthermore, if an arrow is in the third or fourth quadrant with an angle
ψ2 (0 < ψ2 < 180 degrees) clockwise from the positive x-axis, then the component of the
second time series leads the one in the first time series by ψ2 degrees. Given the frequency,
one may convert the angle to time.

The Least-Squares Cross-Spectral Analysis (LSCSA) is a special case of LSCWA, which
multiplies the Least-Squares Spectra of both time series, and no windowing method is
applied. Thus, LSCSA is not suitable for estimating the phase differences of unstable
components over time because it averages them out, similarly for the signal estimation
of LSSA vs. LSWA. Finally, the statistical properties of LSCWA and LSCSA follow from
the normality assumption of the time series such as in LSSA and LSWA [60]. LSCWA
inherits the advantages of LSWA over CWT, but it can be computationally slower than
XWT. The time series in LSCWA do not have to be equally spaced with the same sampling
rate. The LSCWA considers the covariance matrices associated with the time series as well
as the constituents of known forms. A MATLAB software package for LSWA and LSCWA
including a graphical user interface is freely available [61–63].

4. Change or Breakpoint Detection within Non-Stationary Time Series

Abrupt changes may occur in the trend component of the time series due to various
reasons. For example, in remotely-sensed satellite image time series, an abrupt change may
occur due to wildfire, drought, flood, insect attack, urbanization, etc. To visualize this, a
simulated Normalized Difference Vegetation Index (NDVI) time series [64] is illustrated in
Figure 5. In environmental applications, accurate estimation of breakpoints, e.g., the abrupt
change in panel b, their types and magnitudes are very challenging due to the presence
of noise, complexity of trend and seasonal components, and missing values. This section
briefly reviews the most recent change detection methods that can detect the location and
magnitude of such changes. The methods are also able to detect seasonal changes that, for
instance, may be the result of climate change in environmental applications.
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Figure 5. Simulation of a 16-day NDVI time series: (a) seasonal component, (b) trend component with an abrupt change in
2019 with a negative magnitude, (c) noise component, (d) the sum of seasonal, trend, and noise components, (e) 30% of the
observations are randomly removed, and (f) illustration of near-real-time monitoring. The breakpoint or jump is shown by
a red star. The red vertical bars are the error bars. The black curve is the result of an over-fitting issue that arises when the
sinusoids of frequencies 1,2,3 cycles per year are forced to be fitted to the stable time series segment, so when the result is
forecast into the monitoring period, shown in the gray background, the breakpoint may not be correctly detected.

4.1. Breaks for Additive Seasonal and Trend (BFAST)

The BFAST is based on an iterative process that decomposes a time series into trend,
seasonal, and remainder components [65,66]. The trend component between any two
consecutive jump locations is assumed to be linear, and the seasonal component is estimated
by summing the cosine and sine functions of fixed frequencies. For example, in remote
sensing applications, the frequencies are 1,2,3 cycles per year. The Ordinary Least-Squares
(OLS) residual segment is obtained by subtracting the estimated trend and/or sinusoidal
functions of fixed frequencies via the least-squares fit from the segment.

The iterative process begins by estimating the seasonal component via a standard
season-trend decomposition. The Ordinary Least-Squares Residuals-Based Moving Sum
(OLS-MOSUM) is applied to investigate whether there exist any breakpoints in the trend
component. If the OLS-MOSUM test shows that breakpoints are happening in the trend
component, then their numbers and locations are estimated by the Least-Squares from the
seasonally adjusted data, i.e., from the time series minus the estimated seasonal component.
Given the breakpoints, the intercepts and slopes of the linear trends are estimated via a
robust regression based on M-estimation. If the OLS-MOSUM test indicates breakpoints
are occurring in the seasonal component, then their numbers and locations are estimated by
the Least-Squares from the de-trended data, i.e., from the time series minus the estimated
trend component. The amplitudes of the sinusoidal functions are estimated using a robust
regression based on M-estimation to estimate the seasonal component. This process is
iterated until the numbers and positions of the breakpoints no longer change.

The BFAST R-code is available online [67]. The BFAST is a popular change detection
method applied in many applications. For example, Saxena et al. in [68] showed that
BFAST rarely failed to detect breakpoints. Since BFAST analyzes the entire time series by
implementing a harmonic seasonal model, it is robust to noise and minimally influenced by
outliers [66]. Though BFAST is a robust and popular change detection method, it also has
weaknesses. For example, Awty-Carroll et al. in [69] demonstrated that BFAST performed
very poorly at detecting seasonal changes, such as a change in amplitude or change in the
number of seasons. They showed that BFAST is affected by missing data due to the use
of linear interpolation to fill in the missing values. Watts and Laffan in [70] showed that
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BFAST did not clearly detect changes caused by fires in semi-arid regions. Moreover, BFAST
does not consider the observational uncertainties, e.g., the error bars shown in Figure 5f.

4.2. BFAST Monitor

The BFAST Monitor is a near-real-time monitoring method that uses a stable historical
variation to enable change detection within newly acquired data [71]. Verbesselt et al.
suggest the use of the reversed-ordered-cumulative sum (CUSUM) of residuals or BFAST,
slower than CUSUM, to select a stable history period [71]. Then they use the moving sums
of residuals in the monitoring period to determine whether the stable season-trend model
remains stable for new observations. Thus, if a disturbance occurs, the moving sums will
deviate systematically from zero. A break is detected if the absolute value of moving sums
exceeds some threshold that is asymptotically only crossed with 5% probability under
structural stability.

Unlike BFAST, BFAST Monitor can handle missing values and is considered a robust
near-real-time monitoring method. The BFAST Monitor has been recently implemented
on the Google Earth Engine to support large-area and sub-annual change monitoring
using Earth observation data [72]. Since BFAST Monitor only needs a single observation
to exceed a boundary for a change to be detected, it can potentially increase the false
positive rate. Like BFAST, BFAST Monitor also has the over/under-fitting issue due to
the use of sinusoids of fixed frequencies. Furthermore, the observational uncertainties
are not considered in BFAST Monitor, meaning that the model is more sensitive to noisy
observations. Using simulated data sets, Awty-Carroll et al. in [69] showed that BFAST
Monitor performs poorly in estimating break magnitude.

4.3. Continuous Change Detection and Classification (CCDC)

The CCDC is like BFAST Monitor with the aim of detecting changes in near-real-time;
however, CCDC uses a robust regression technique, called the Least Absolute Shrinkage
and Selection Operator (LASSO) [73]. Unlike OLS used in BFAST and BFAST Monitor,
LASSO is used in CCDC to fit the season-trend model to the history period, which mini-
mizes over-fitting by limiting the total absolute value of the coefficients [74,75]. The Root
Mean Square Error (RMSE) of the fitted history model and residuals of incoming obser-
vations are used to detect a change, so if the new residuals deviate from the fitted model
about six times in a row, the breakpoint location and magnitude will be identified. Then a
sliding windowing strategy is used to determine the next stable period [69,73].

The advantages of CCDC include its fully automated monitoring, capability of mon-
itoring many kinds of land cover change as soon as new data become available, and its
independence from empirical or global thresholds. The thresholds in CCDC are calculated
through the original observations. Furthermore, LASSO used in CCDC can also prevent
the over-fitting issue, but it is more likely to under-fit the seasonal curve and unlikely to
overestimate the number of breaks [69]. CCDC has high computational complexity, and
it requires high temporal frequency of clear observations to reliably estimate the model
coefficients. Furthermore, CCDC does not explicitly consider the observational uncertain-
ties into its model and may not be reliable for time series with more complex intra-annual
variation [73]. Noisy data are more likely to affect the efficacy of CCDC in the correct
detection of breakpoints than missing values [69].

4.4. Jumps Upon Spectrum and Trend (JUST)

The JUST is established based on ALLSSA or the Ordinary Least-Square (OLS) with
an appropriate windowing technique [76]. Using ALLSSA, JUST simultaneously searches
for trends and statistically significant spectral components of each time series segment to
identify the potential jumps by considering appropriate weights associated with the time
series. Within each translating window, a sequential approach is implemented to find the
jump location in the trend component within the window. Then all the potential jump
locations are sorted according to their maximum occurrences, then the minimum distance



Appl. Sci. 2021, 11, 6141 19 of 29

to the window locations where they were estimated. The flowchart of JUST is given in [76].
Although using OLS instead of ALLSSA in JUST reduces the computational cost, it can
significantly reduce the accuracy of breakpoints due to over/under-fitting issues.

One of the advantages of JUST over BFAST is the simultaneous estimation of trends
and seasonal components. In BFAST, removing the seasonal component estimated by the
harmonic functions of fixed frequencies can propagate error into the residual series. The
error propagation in BFAST can also occur when removing the estimated trend from the
time series. In other words, the correlation between the trend and seasonal components is
not carried forward in BFAST, making it less accurate and less compatible with unequally
spaced time series or even equally spaced time series with unknown signal frequencies [76].

4.5. JUST Monitor

The JUST Monitor is like BFAST Monitor and CCDC, proposed for the purpose of
near-real-time monitoring [77]. It first searches to find a stable history period via JUST,
and then it forecasts the stable historical time series into the monitoring period. Thus,
the simultaneously estimated seasonal and trend components will be subtracted from
the time series to obtain the residual series from which LSSA will determine whether the
spectrum of the residual series remains statistically insignificant as the new observations
become available. If a peak in LSS becomes statistically significant, then a change will
be identified as abrupt or seasonal. If ALLSSA is used in JUST instead of OLS, then the
over/under-fitting issue may not occur, resulting in more reliable change detection in
near-real-time. Unlike BFAST Monitor and CCDC, JUST Monitor can explicitly consider
the observational uncertainties, e.g., the error bars shown in Figure 5f, and is expected to
perform well in estimating generally unknown seasonal components of any time series.
JUST and JUST Monitor are new methods that promise nice features for change detection
and classification; however, similarly to any other method, their usability in real-world
applications needs to be further investigated. The MATLAB and python software package
for JUST and JUST Monitor is freely available [63,78].

5. Other Methods and Applications

There are many other time-frequency decomposition methods for analyzing non-
stationary time series, such as the Wigner–Ville distribution [79–81], Empirical Wavelet
Transform (EWT) [82], tunable-Q wavelet transform [83], and ensemble empirical mode
decomposition [50,84]. Amato et al. [85] used a wavelet-based Hilbert space reproducing
kernel method and showed its advantages in terms of the mean squared error. Furthermore,
Mathias et al. [86] proposed a least-squares-based technique to deal with undesirable side
effects of nonuniform sampling in the presence of constant offsets. There are other methods
of analyzing two unequally spaced time series together, such as the least-squares self-
coherency analysis that splits the series into shorter and independent segments depending
on the study to be conducted. Each segment is then analyzed via LSSA, and the resulting
spectra are multiplied to derive the product spectrum that strengthens common spectral
peaks, particularly if the phenomenon contains signals with signal-to-noise ratios in the
vicinity of −40 dB [87,88]. The least-squares self-coherency method may be considered
the precursor of the LSCWA mentioned herein. There are also other change detection
techniques, such as Detecting Breakpoints and Estimating Segments in Trend (DBEST) [89],
Exponentially Weighted Moving Average Change Detection (EWMACD) [90,91], and
others [92,93]. Table 1 lists some of the applications of the change detection and time-
frequency analyses mentioned herein.
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Table 1. Some of the applications of the methods reviewed in this paper.

Field Data/Time Series Description References

Geodesy Very Long Baseline Interferometry
(VLBI) and Temperature Data—
GRACE and GOCE Data

LSSA, LSWA, and LSCWA are applied to VLBI and temperature
time series; the methods are also applied to study the behavior of
GRACE stripes in space-frequency domains

[43,60,94,95]

Geophysics Marine Seismic and Multicomponent
Streamer Data

ALFT, ASFT, IMAP, MIMAP, ALLSSA and MALLSSA are applied to
regularize coarsely sampled seismic data

[19–27]

Remote Sensing MODIS and Landsat Imagery BFAST, BFAST Monitor, CCDC, DBEST, EWMACD, JUST, and JUST
Monitor as well as LSWA and LSCWA and other similar methods are
applied for vegetation and drought monitoring, forecasting forest
fire danger conditions, and crop yield forecasting

[65,66,71,
73,76,77,89–
92,96–100]

Astronomy Telescope Observations—AAVSO WWA, WWZ, HHT, LSSA, ALLSSA, and LSWA are applied to study
the orbital, pulsation, and spin periods of variable stars and others

[42,51,101]

Hydrology Streamflow and Climate Data CWT, XWT, HHT, LSWA, LSCWA, and other similar methods are
applied to study inter- and intra-annual fluctuations in streamflow
and climate time series for flow forecasting and other purposes

[102–107]

Finance Stock exchange and price series; daily
Eurozone stock market

CWT, DWT, maximal overlap DWT, and wavelet coherency are
applied to analyze financial time series

[108–111]

Medicine Electroencephalogram (EEG) and
Electrocardiogram (ECG) Signals

CWT, DWT, EMD, and EWT are applied to the EEG and ECG signals
to study brain and heart activities

[112–114]

MODIS: Moderate Resolution Imaging Spectroradiometer; AAVSO: American Association of Variable Star Observers; GRACE: Gravity
Recovery and Climate Experiment; GOCE: Gravity field and steady-state Ocean Circulation Explorer.

6. Conclusions

In this paper, many frequency and time-frequency decomposition methods via Fourier
and least-squares analyses were studied. Many change detection and monitoring meth-
ods were also briefly reviewed, and some of the applications of all methods were listed
in Table 1. There are many more robust time series analysis techniques proposed by re-
searchers that were not mentioned here. In many practical applications, time series contain
seasonal and trend components. Simultaneous estimation of the statistically significant
components can provide more accurate and reliable estimates for the time series com-
ponents and thus are more appropriate for change detection and monitoring. The time
series components can also be estimated more accurately when considering the observa-
tional uncertainties. Therefore, the observations with higher uncertainties hold less weight
during the analysis and vice versa. Computational complexity optimization is another
major challenge in time series analysis when dealing with big data sets. An inappropriate
algorithm modification for reducing the computational cost can produce unreliable and
inaccurate results. Each method presented herein has advantages and weaknesses, and
there is plenty of room for researchers and scientists to expand and improve the existing
methods. Finally, we conclude this by the following quote from Nikola Tesla (1856–1943):

If you want to find the secrets of the universe, think in terms of energy, frequency, and
vibration. We are just waves in time and space, changing continuously, and the illusion of
individuality is produced through the concatenation of the rapidly succeeding phases of
existence. What we define as likeness is merely the result of the symmetrical arrangement
of molecules that compose our bodies.
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Abbreviations
The following abbreviations are for the time series analysis methods mentioned herein:

ALFT Anti-Leakage Fourier Transform
ALLSSA Anti-Leakage Least-Squares Spectral Analysis
ASFT Arbitrary Sampled Fourier Transform
BFAST Breaks For Additive Seasonal and Trend
CCDC Continuous Change Detection and Classification
CLSSA Constrained Least-Squares Spectral Analysis
CWT Continuous Wavelet Transform
XWT Cross Wavelet Transform
DBEST Detecting Breakpoints and Estimating Segments in Trend
DFT Discrete Fourier Transform
DTFT Discrete-Time Fourier Transform
DWT Discrete Wavelet Transform
EMD Empirical Mode Decomposition
EWMACD Exponentially Weighted Moving Average Change Detection
EWT Empirical Wavelet Transform
HHT Hilbert–Huang Transform
IMAP Interpolation by MAtching Pursuit
JUST Jumps Upon Spectrum and Trend
LSCWA Least-Squares Cross Wavelet Analysis
LSSA Least-Squares Spectral Analysis
LSWA Least-Squares Wavelet Analysis
MALLSSA Multichannel Anti-Leakage Least-Squares Spectral Analysis
MIMAP Multichannel Interpolation by MAtching Pursuit
OLS Ordinary Least-Squares
OLS-MOSUM Ordinary Least-Squares Residuals-Based Moving Sum
STFT Short-Time Fourier Transform
WWA Weighted Wavelet Amplitude
WWZ Weighted Wavelet Z-Transform
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Appendix A. Flowcharts of ALFT, ASFT, IMAP, ALLSSA, and LSWA

ALFT

Enter time series:
t = [t`], f = [ f (t`)], ` = 1, 2, . . . , n

Enter set of frequencies Ω
Enter threshold ϑ

For each ωk in Ω compute

f̂ (ωk) = 1
∆t ∑n

`=1 ∆t` f (t`)e−2πiωkt`

Find ωu = arg maxωk∈Ω
{
| f̂ (ωk)|

} Store ωu and f̂ (ωu)
for regularization

For ` from 1 to n compute

f (t`) ←− f (t`) − f̂ (ωu)e2πiωut`
‖f‖ ≤ ϑ?

Stop

no

yes

Figure A1. Flowchart of the ALFT algorithm.

ASFT

Enter time series:
t = [t`], f = [ f (t`)], ` = 1, 2, . . . , n

Enter set of frequencies Ω
Enter threshold ϑ

For each ωk in Ω compute

f̂ (ωk) = 1
∆t ∑n

`=1 ∆t` f (t`)e−2πiωkt`

Λ(ωk) = ∑n
`=1 ‖ f (t`) − f̂ (ωk)e2πiωkt`‖2

Then find ωu = arg minωk∈Ω
{

Λ(ωk)
}

Find h = arg minω∈I=[ωu−b, ωu+b]
{

Λ(ω)
}

(b depends on Ω)
Store h and f̂ (h)

for regularization

For ` from 1 to n compute

f (t`) ←− f (t`)− f̂ (h)e2πiht`
‖f‖ ≤ ϑ?

Stop

no

yes

Figure A2. Flowchart of the ASFT algorithm.
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IMAP

Enter time series:
t = [t`], f = [ f (t`)], ` = 1, 2, . . . , n

Enter set of frequencies Ω
Enter threshold ϑ

For each ωk in Ω compute

Φk =
[

cos(2πωkt), sin(2πωkt)
]

ĉk =
(
ΦT

k Φk
)−1

ΦT
k f

s0(ωk) = fTΦk ĉk (can be normalized)

Then find ωu = arg maxωk∈Ω
{

s0(ωk)
}

Find h = arg maxω∈I=[ωu−b, ωu+b]
{

s0(ω)
}

(b depends on Ω)

Store h and ĉh
for regularization

f ←− f − Φh ĉh‖f‖ ≤ ϑ?

Stop

no

yes

Figure A3. A flowchart of the IMAP algorithm in matrix form.
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ALLSSA

Enter time series:
t = [t`], f = [ f (t`)], ` = 1, 2, . . . , n

Enter P = Cf
−1 (if available)

Enter set of frequencies Ω
Enter Φ, e.g., Φ = [1, t]
Enter significance level α

ĉ =
(
ΦTPΦ

)−1
ΦTPf

ĝ = f − J f, where J f = Φ ĉ
Ω ←− frequencies of sinusoids in Φ

For each ωk in Ω compute
Φk =

[
cos(2πωkt), sin(2πωkt)

]
ĉk =

(
ΦT

k PΦk − ΦT
k PJΦk

)−1
ΦT

k Pĝ
s(ωk) =

(
ĝTPΦk ĉk

)
/
(
ĝTPĝ

)
Then find ωu = arg maxωk∈Ω

{
s(ωk)

}

Eliminate sinusoids of frequency h in Φ
when |h − ωu| < b (b depends on Ω)

Find h = arg maxω∈I=[ωu−b, ωu+b]
{

s(ω)
}

q ←− column dimension of Φ

s(h) ≥
1− α2/(n−q−2)?

Store ĉ and Ω
for regularization

Concatenate sinusoids
of wavenumber h to Φ

f ←− f − Φ ĉ
Then reset Φ

Update P (optional)

Is f random?

Stop

no

yes

no
;r

eq
ui

re
s

m
or

e
it

er
at

io
ns

fo
r

no
n-

st
at

io
na

ry
da

ta
se

ri
es

yes

Figure A4. A flowchart of the ALLSSA algorithm.
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LSWA

Enter time series t = [tj], f = [ f (tj)], j = 1, 2, . . . , n
Enter P = Cf

−1 (if available)
Enter set of frequencies Ω = {ωk; k = 1, 2, . . . , κ}

Enter constituents of known forms Φ1, . . . , Φq
Enter window size parameters M, L1, and L0

Enter significance level α

k ←− 1 and j ←− 1

k ≤ κ?

L =
⌊ L1M

ωk

⌋
+ L0

j ≤ n?

Calculate R = R(j, k) (R = L except for margins)

Extract segment [tR, y] from [t, f] and

submatrix Py from P of dimension R located at tj

(Py may also be obtained from Gaussian values)

Φ = [Φ1tR , . . . , ΦqtR ] (R × q matrix)

Φ =
[

cos (2πωktR), sin (2πωktR)
]

(R× 2 matrix)

ĉ =
(
ΦTPyΦ

)−1
ΦTPyy

ĝ = y − J y, where J y = Φ ĉ

ĉ =
(
ΦTPyΦ−ΦTPyJΦ

)−1
ΦTPyĝ

s(tj, ωk) = (ĝTPyΦ ĉ)/(ĝTPyĝ)

ζ(tj, ωk) = 1 − α2/(R−q−2)

j ←− j + 1

k ←− k + 1
j ←− 1

Output
ĉ and s and ζ

Stop

yes

yes

no

no

Figure A5. A flowchart of the LSWA algorithm.
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14. Wells, D.E.; Vaníček, P.; Pagiatakis, S.D. Least-Squares Spectral Analysis Revisited; Department of Surveying Engineering, University

of New Brunswick: Fredericton, NB, Canada, 1985.
15. Wells, D.E.; Krakiwsky, E.J. The Method of Least-Squares; Department of Surveying Engineering, University of New Brunswick:

Fredericton, NB, Canada, 1971.
16. VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 28. [CrossRef]
17. Seberry, J.; Wysocki, B.J.; Wysocki, T.A. On some applications of Hadamard matrices. Metrika 2005, 62, 221–239. [CrossRef]
18. Ghaderpour, E.; Kharaghani, H. The asymptotic existence of orthogonal designs. Australas. J. Comb. 2014, 58, 333–346.
19. Ghaderpour, E.; Liao, W.; Lamoureux, M.P. Antileakage least-squares spectral analysis for seismic data regularization and random

noise attenuation. Geophysics 2018, 83, V157–V170. [CrossRef]
20. Xu, S.; Zhang, Y.; Pham, D; Lambaré, G. Antileakage Fourier transform for seismic data regularization. Geophysics 2005, 70,

V87–V95. [CrossRef]
21. Xu, S.; Zhang, Y.; Lambaré, G. Antileakage Fourier transform for seismic data regularization in higher dimensions. Geophysics

2010, 75, WB113–WB120. [CrossRef]
22. Guo, Z.; Zheng, Y.; Liao, W. High fidelity seismic trace interpolation. In SEG Technical Program Expanded Abstracts; Society of

Exploration Geophysicists: Tulsa, OK, USA, 2015; pp. 3915–3919. [CrossRef]
23. Hollander, Y.; Kosloff, D.; Koren, Z.; Bartana, A. Seismic data interpolation by orthogonal matching pursuit. In Proceedings of the

74th EAGE Conference and Exhibition Incorporating EUROPEC, Copenhagen, Denmark, 4 June 2012. [CrossRef]
24. Özbek, A.; Özdemir, A.K.; Vassallo, M. Interpolation by matching pursuit. In SEG Technical Program Expanded Abstracts; Society of

Exploration Geophysicists: Tulsa, OK, USA, 2009; pp. 3254–3258. [CrossRef]
25. Vassallo, M.; Özbek, A.; Özdemir, A.K.; Eggenberger, K. Crossline wavefield reconstruction from multicomponent streamer data:

Part 1-multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient. Geophysics 2010, 75,
WB53–WB67. [CrossRef]

26. Vassallo, M.; Özbek, A.; Özdemir, A.K.; WesternGeco; Eggenberger, K. Crossline wavefield reconstruction from multicomponent
streamer data: Multichannel interpolation by matching pursuit. In SEG Technical Program Expanded Abstracts; Society of Exploration
Geophysicists: Tulsa, OK, USA, 2010; pp. 3594–3598. [CrossRef]

27. Ghaderpour, E. Multichannel antileakage least-squares spectral analysis for seismic data regularization beyond aliasing. Acta
Geophys. 2019, 67, 1349–1363. [CrossRef]

28. Gabor, D. Theory of communication. J. IEEE 1946, 93, 429–457. [CrossRef]
29. Weyl, H. The Theory of Groups and Quantum Mechanics; Courier Corporation: Dutton, NY, USA, 1931.
30. Morlet, J. Sampling theory and wave propagation. In Issues in Acoustic Signal-Image Processing and Recognition; Chen, C.H., Ed.;

NATO ASI Series (Series F: Computer and System Sciences); Springer: Berlin, Germany, 1983; Volume 1, pp. 233–261.
31. Grossmann, A.; Morlet, J.; Paul, T. Transforms associated to square integrable group representations. I General results. J. Math.

Phys. 1985, 26, 2473–2479. [CrossRef]
32. Grossmann, A.; Morlet, J.; Paul, T. Transforms associated to square integrable group representations. II examples. Ann. Inst.

Henri Poincare Phys. Theor. 1986, 45, 293–309.
33. Hlawatsch, F.; Boudreaux-Bartels, F. Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 1992,

9, 21–67. [CrossRef]
34. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005.

[CrossRef]
35. Farge, M. Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 1992, 24, 395–457. [CrossRef]

http://doi.org/10.1137/S003614459731533X
http://dx.doi.org/10.1007/BF00651344
http://dx.doi.org/10.1007/BF00656134
http://dx.doi.org/10.1007/BF00648343
http://dx.doi.org/10.1007/s001900050220
http://dx.doi.org/10.3847/1538-4365/aab766
http://dx.doi.org/10.1007/s00184-005-0415-y
http://dx.doi.org/10.1190/geo2017-0284.1
http://dx.doi.org/10.1190/1.1993713
http://dx.doi.org/10.1190/1.3507248
http://dx.doi.org/10.1190/segam2015-5923716.1
http://dx.doi.org/10.3997/2214-4609.20148144
http://dx.doi.org/10.1190/1.3255534
http://dx.doi.org/10.1190/1.3496958
http://dx.doi.org/10.1190/1.3513597
http://dx.doi.org/10.1007/s11600-019-00320-3
http://dx.doi.org/10.1049/ji-1.1947.0015
http://dx.doi.org/10.1063/1.526761
http://dx.doi.org/10.1109/79.127284
http://dx.doi.org/10.1109/18.57199
http://dx.doi.org/10.1146/annurev.fl.24.010192.002143


Appl. Sci. 2021, 11, 6141 27 of 29

36. Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.M. Wavelet Toolbox: User’s Guide (MATLAB). Available online: http://ailab.
chonbuk.ac.kr/seminar_board/pds1_files/w7_1a.pdf (accessed on 30 June 2021)

37. Grinsted, A.; Moore, J.C.; Jeverjeva, S. Application of the cross-wavelet transform and wavelet coherence to geophysical time
series. Nonlinear Process. Geophys. 2004, 11, 561–566. [CrossRef]

38. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [CrossRef]
39. Rhif, M.; Ben Abbes, A.; Farah, I.R.; Martinez, B.; Sang, Y. Wavelet transform application for/in non-stationary time-series

analysis: A review. Appl. Sci. 2019, 9, 1345. [CrossRef]
40. Hall, P.; Turlach, B.A. Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Ann. Stat. 1997, 25,

1912–1925. [CrossRef]
41. Sardy, S.; Percival, D.B.; Bruce, A.G.; Gao, H.; Stuetzle, W. Wavelet shrinkage for unequally spaced data. Stat. Comput. 1999, 9,

65–75. [CrossRef]
42. Foster, G. Wavelet for period analysis of unevenly sampled time series. Astron. J. 1996, 112, 1709–1729. [CrossRef]
43. Ghaderpour, E.; Pagiatakis, S.D. Least-squares wavelet analysis of unequally spaced and non-stationary time series and its

applications. Math. Geosci. 2017, 49, 819–844. [CrossRef]
44. Qian, S. Introduction to Time-Frequency and Wavelet Transforms; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2002.
45. Wijaya, D.R.; Sarno, R.; Zulaika, E. Information Quality Ratio as a novel metric for mother wavelet selection. Chemom. Intell. Lab.

Syst. 2017, 160, 59–71. [CrossRef]
46. Van Valkenburg, M.E. Network Analysis, 3rd ed.; Pearson Education: London, UK, 2006.
47. A Practical Guide to Wavelet Analysis–by Torrence and Compo. Software for Fortran, IDL, Matlab, and Python. Available online:

https://atoc.colorado.edu/research/wavelets/ (accessed on 30 June 2021).
48. Huang, N.E.; Shen, Z; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454,
903–995. [CrossRef]

49. Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys.
2008, 46, 1–23. [CrossRef]

50. Huang, N.E.; Wu, Z. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt Data Anal.
2009, 1, 1–41.

51. Barnhart, B.L. The Hilbert-Huang Transform: Theory, Application, Development. Ph.D. Thesis, University of Iowa, Iowa, IA,
USA, 2011.

52. Chen, Y.; Feng, M.Q. A technique to improve the empirical mode decomposition in the Hilbert-Huang transform. Earthq. Eng.
Eng. Vib. 2003, 2, 75–85. [CrossRef]

53. Guang, Y.; Sun, X.; Zhang, M.; Li, X.; Liu, X. Study on ways to restrain end effect of Hilbert-Huang transform. J. Comput. 2014, 25,
22–31.

54. D̈atig, M.; Schlurmann, T. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to
irregular water waves. Ocean Eng. 2004, 31, 1783–1834. [CrossRef]

55. Puryear, C.I.; Portniaguine, O.N.; Cobos, C.M.; Castagna, J.P. Constrained least-squares spectral analysis: Application to seismic
data. Geophysics 2012, 77, 143–167. [CrossRef]

56. Rao, C.R.; Mitra, S.K. Generalized Inverse of Matrices and Its Applications; John Wiley: New York, NY, USA, 1971.
57. Puryear, C.I. Constrained Least-Squares Spectral Analysis: Application to Seismic Data. Ph.D. Thesis, University of Houston,

Houston, TX, USA, 2012.
58. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau

of Standards Applied Mathematics Series; USA Department of Commerce: Washington, DC, USA, 1972.
59. Ge, Z. Significance tests for the wavelet cross-spectrum and wavelet linear coherence. Ann. Geophys. 2008, 26, 3819–3829.

[CrossRef]
60. Ghaderpour, E.; Ince, E.S.; Pagiatakis, S.D. Least-squares cross-wavelet analysis and its applications in geophysical time series.

J. Geod. 2018, 92, 1223–1236. [CrossRef]
61. Ghaderpour, E.; Pagiatakis, S.D. LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses. GPS

Solut. 2019, 23, 50. [CrossRef]
62. LSWAVE: A MATLAB Software for the Least-Squares Wavelet and Cross-Wavelet Analyses–by E. Ghaderpour and S. D. Pagiatakis.

National Geodetic Survey (NGS)—National Oceanic and Atmospheric Administration (NOAA). Available online: https://
geodesy.noaa.gov/gps-toolbox/LSWAVE.htm (accessed on 30 June 2021).

63. Signal Processing by E. Ghaderpour. GitHub. Available Online: https://github.com/Ghaderpour/LSWAVE-SignalProcessing/
(accessed on 30 June 2021).

64. Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE
Trans. Geosci. Remote Sens. 1995, 33, 457–465. [CrossRef]

65. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series.
Remote Sens. Environ. 2010, 114, 106–115. [CrossRef]

66. Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual
trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [CrossRef]

http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/w7_1a.pdf
http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/w7_1a.pdf
http://dx.doi.org/10.5194/npg-11-561-2004
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://dx.doi.org/10.3390/app9071345
http://dx.doi.org/10.1214/aos/1069362378
http://dx.doi.org/10.1023/A:1008818328241
http://dx.doi.org/10.1086/118137
http://dx.doi.org/10.1007/s11004-017-9691-0
http://dx.doi.org/10.1016/j.chemolab.2016.11.012
https://atoc.colorado.edu/research/wavelets/
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1029/2007RG000228
http://dx.doi.org/10.1007/BF02857540
http://dx.doi.org/10.1016/j.oceaneng.2004.03.007
http://dx.doi.org/10.1190/geo2011-0210.1
http://dx.doi.org/10.5194/angeo-26-3819-2008
http://dx.doi.org/10.1007/s00190-018-1156-9
http://dx.doi.org/10.1007/s10291-019-0841-3
https://geodesy.noaa.gov/gps-toolbox/LSWAVE.htm
https://geodesy.noaa.gov/gps-toolbox/LSWAVE.htm
https://github.com/Ghaderpour/LSWAVE-SignalProcessing/
http://dx.doi.org/10.1109/TGRS.1995.8746027
http://dx.doi.org/10.1016/j.rse.2009.08.014
http://dx.doi.org/10.1016/j.rse.2010.08.003


Appl. Sci. 2021, 11, 6141 28 of 29

67. Breaks for Additive Seasonal and Trend (BFAST) R-Code. Available Online: https://cran.r-project.org/web/packages/bfast/
index.html (accessed on 30 June 2021).

68. Saxena, R.; Watson, L.T.; Wynne, R.H.; Brooks, E.B.; Thomas, V.A.; Zhiqiang, Y.; Kennedy, R.E. Towards apolyalgorithm for land
use change detection. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 217–234. [CrossRef]

69. Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. An evaluation and comparison of four dense time series change detection
methods using simulated data. Remote Sens. 2019, 11, 2779. [CrossRef]

70. Watts, L.M.; Laffan, S.W. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region.
Remote Sens. Environ. 2014, 154, 234–245. [CrossRef]

71. Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ.
2012, 123, 98–108. [CrossRef]

72. Hamunyela, E.; Rosca, S.; Mirt, A.; Engle, E.; Herold, M.; Gieseke, F.; Verbesselt, J. Implementation of BFASTmonitor algorithm
on Google Earth Engine to support large-area and sub-annual change monitoring using Earth Observation Data. Remote Sens.
2020, 12, 2953. [CrossRef]

73. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote
Sens. Environ. 2014, 144, 152–171. [CrossRef]

74. Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting
Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [CrossRef]

75. Bento, J. On the complexity of the weighted fused lasso. IEEE Signal Process. Lett. 2018, 25, 1595–1599. [CrossRef]
76. Ghaderpour, E.; Vujadinovic, T. Change detection within remotely-sensed satellite image time series via spectral analysis. Remote

Sens. 2020, 12, 4001. [CrossRef]
77. Ghaderpour, E.; Vujadinovic, T. The potential of the least-squares spectral and cross-wavelet analyses for near-real-time distur-

bance detection within unequally spaced satellite image time series. Remote Sens. 2020, 12, 2446. [CrossRef]
78. Ghaderpour, E. JUST: MATLAB and Python software for change detection and time series analysis. GPS Solut. 2021, 25, 85.

[CrossRef]
79. Classen, T.A.C.M.; Mecklenbrauker, W.F.G. The Wigner distribution: A tool for time-frequency analysis (Parts I, II, III). Philips J.

Res. 1980, 35, 217–249.
80. Waldo, D.; Chitrapu, P.R. On the Wigner-Ville distribution of finite duration signals. Signal Process. 1991, 24, 231–237. [CrossRef]
81. Baydar, N.; Ball, A. A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville

distribution. Mech. Syst. Signal Process. 2001, 15, 1091–1107. [CrossRef]
82. Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
83. Selesnick, I.V. Wavelet transform with tunable Q-factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575. [CrossRef]
84. Ren, H.; Wang, Y.L.; Huang, M.Y.; Chang, Y.L.; Kao, H.M. Ensemble empirical mode decomposition parameters optimization for

spectral distance measurement in hyperspectral remote sensing data. Remote Sens. 2014, 6, 2069–2083. [CrossRef]
85. Amato, U.; Antoniadis, A.; Pensky, M. Wavelet kernel penalized estimation for non-equispaced design regression. Stat. Comput.

2006, 16, 37–55. [CrossRef]
86. Mathias, A.; Grond, F.; Guardans, R.; Seese, D.; Canela, M.; Diebner, H.H. Algorithms for spectral analysis of irregularly sampled

time series. J. Stat. Softw. 2004, 11, 1–27. [CrossRef]
87. Pagiatakis, S.D.; Yin, H.; Abd El-Gelil, M. Least-squares self-coherency analysis of superconducting gravimeter records in search

for the Slichter triplet. Phys. Earth Planet. Inter. 2007, 160, 108–123. [CrossRef]
88. Abd El-Gelil, M.; Pagiatakis, S.D. Least-squares self-coherence for sub-ngal signal detection in the superconducting gravimeter

records. J. Geodyn. 2009, 48, 310–315. [CrossRef]
89. Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation.

Remote Sens. Environ. 2015, 156, 182–195. [CrossRef]
90. Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-fly massively multitemporal change detection using

statistical quality control charts and landsat data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [CrossRef]
91. Brooks, E.B.; Yang, Z.; Thomas, V.A.; Wynne, R.H. Edyn: Dynamic signaling of changes to forests using exponentially weighted

moving average charts. Forests 2017, 8, 304. [CrossRef]
92. Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS

J. Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]
93. Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367.

[CrossRef]
94. Ghaderpour, E. Least-squares wavelet and cross-wavelet analyses of VLBI baseline length and temperature time series: Fortaleza-

Hartrao-Westford-Wettzell. Publ. Astron. Soc. Pac. 2020, 133, 1019.
95. Peidou, A; Pagiatakis, S. Stripe mystery in GRACE geopotential models revealed. Geophy. Res. Lett. 2020, 47, 9.
96. Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Processing of near real time land surface temperature and its application in

forecasting forest fire danger conditions. Sensors 2020, 20, 984. [CrossRef]
97. Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a new remote sensing-based model for forecasting forest fire

danger conditions at a four-day scale. Remote Sens. 2019, 11, 2101. [CrossRef]

https://cran.r-project.org/web/packages/bfast/index.html
https://cran.r-project.org/web/packages/bfast/index.html
http://dx.doi.org/10.1016/j.isprsjprs.2018.07.002
http://dx.doi.org/10.3390/rs11232779
http://dx.doi.org/10.1016/j.rse.2014.08.023
http://dx.doi.org/10.1016/j.rse.2012.02.022
http://dx.doi.org/10.3390/rs12182953
http://dx.doi.org/10.1016/j.rse.2014.01.011
http://dx.doi.org/10.1016/j.rse.2015.02.009
http://dx.doi.org/10.1109/LSP.2018.2867800
http://dx.doi.org/10.3390/rs12234001
http://dx.doi.org/10.3390/rs12152446
http://dx.doi.org/10.1007/s10291-021-01118-x
http://dx.doi.org/10.1016/0165-1684(91)90133-4
http://dx.doi.org/10.1006/mssp.2000.1338
http://dx.doi.org/10.1109/TSP.2013.2265222
http://dx.doi.org/10.1109/TSP.2011.2143711
http://dx.doi.org/10.3390/rs6032069
http://dx.doi.org/10.1007/s11222-006-5283-4
http://dx.doi.org/10.18637/jss.v011.i02
http://dx.doi.org/10.1016/j.pepi.2006.10.002
http://dx.doi.org/10.1016/j.jog.2009.09.018
http://dx.doi.org/10.1016/j.rse.2014.09.010
http://dx.doi.org/10.1109/TGRS.2013.2272545
http://dx.doi.org/10.3390/f8090304
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.013
http://dx.doi.org/10.1007/s10115-016-0987-z
http://dx.doi.org/10.3390/s20040984
http://dx.doi.org/10.3390/rs11182101


Appl. Sci. 2021, 11, 6141 29 of 29

98. Ghaderpour, E.; Ben Abbes, A.; Rhif, M.; Pagiatakis, S.D.; Farah, I.R. Non-stationary and unequally spaced NDVI time series
analyses by the LSWAVE software. Int. J. Remote Sens. 2019, 41, 2374–2390. [CrossRef]

99. Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Development of a remote sensing-based rice yield forecasting model. Span. J.
Agric. Res., 2016, 14, e0907.

100. Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ. Sci. 2016, 3,
604–630. [CrossRef]

101. Ghaderpour, E.; Ghaderpour, S. Least-squares spectral and wavelet analyses of V455 Andromedae time series: The life after the
super-outburst. Publ. Astron. Soc. Pac. 2020, 132, 1017. [CrossRef]

102. Labat, D. Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour. 2008, 31, 109–117.
[CrossRef]

103. Rudi, J.; Pabel, R.; Jager, G.; Koch, R.; Kunoth, A.; Bogena, H. Multiscale analysis of hydrologic time series data using the
Hilbert-Huang transform. Vadose Zone J. 2010, 9, 925–942. [CrossRef]

104. Fang, Z.; Bogena, H.R.; Kollet, S.; Koch, J.; Vereecken, H. Spatio-temporal validation of long-term 3D hydrological simulations
of a forested catchment using empirical orthogonal functions and wavelet coherence analysis. J. Hydrol. 2015, 529, 1754–1767.
[CrossRef]

105. Schultea, J.A.; Najjar, R.G.; Li, M. The influence of climate modes on streamflow in the Mid-Atlantic region of the United States.
J. Hydrol. Reg. Stud. 2016, 5, 80–99. [CrossRef]

106. Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.A. Application of the Least-Squares Wavelet software in hydrology: Athabasca River
Basin. J. Hydrol. Reg. Stud. 2021, 36C, 100847. [CrossRef]

107. Veiga, V.B.; Hassan, Q.K.; He, J. Development of flow forecasting models in the Bow River at Calgary, Alberta, Canada. Water
2015, 7, 99–115. [CrossRef]

108. Gallegati, M. Wavelet analysis of stock returns and aggregate economic activity. Comput. Stat. Data Anal. 2008, 52, 3061–3074.
[CrossRef]

109. Fernández-Macho, J. Wavelet multiple correlation and cross-correlation: A multiscale analysis of Eurozone stock markets. Phys.
A Stat. Mech. Appl. 2012, 391, 1097–1104. [CrossRef]

110. Masset, P. Analysis of financial time series using wavelet methods. In Handbook of Financial Econometrics and Statistics; Springer:
Berlin, Germany, 2015; pp. 539–573.

111. Chakrabarty, A.; De, A.; Gunasekaran, A.; Dubey, R. Investment horizon heterogeneity and wavelet: Overview and further
research directions. Phys. A Stat. Mech. Appl. 2015, 429, 45–61. [CrossRef]

112. Addison, P.S. Wavelet transforms and the ECG: A review. Physiol. Meas. 2005, 26, 155–199. [CrossRef] [PubMed]
113. Bhattacharyya, A.; Sharma, M.; Pachori, R.B.; Sircar, P.; Acharya, U.R. A novel approach for automated detection of focal EEG

signals using empirical wavelet transform. Neural Comput. Appl. 2018, 29, 47–57. [CrossRef]
114. Alickovic, E.; Kevric, J.; Subasi, A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and

wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 2018, 39,
94–102. [CrossRef]

http://dx.doi.org/10.1080/01431161.2019.1688419
http://dx.doi.org/10.3934/environsci.2016.4.604
http://dx.doi.org/10.1088/1538-3873/abaf04
http://dx.doi.org/10.1016/j.advwatres.2007.07.004
http://dx.doi.org/10.2136/vzj2009.0163
http://dx.doi.org/10.1016/j.jhydrol.2015.08.011
http://dx.doi.org/10.1016/j.ejrh.2015.11.003
http://dx.doi.org/10.1016/j.ejrh.2021.100847
http://dx.doi.org/10.3390/w7010099
http://dx.doi.org/10.1016/j.csda.2007.07.019
http://dx.doi.org/10.1016/j.physa.2011.11.002
http://dx.doi.org/10.1016/j.physa.2014.10.097
http://dx.doi.org/10.1088/0967-3334/26/5/R01
http://www.ncbi.nlm.nih.gov/pubmed/16088052
http://dx.doi.org/10.1007/s00521-016-2646-4
http://dx.doi.org/10.1016/j.bspc.2017.07.022

	Introduction
	Decomposition Methods into Frequency Domain
	Fourier Transform
	Least-Squares Spectral Analysis (LSSA)
	Recent Methods of Mitigating Spectral Leakages in Spectrum
	Antileakage and Arbitrary Sampled Fourier Transforms
	Interpolation by Matching Pursuit (IMAP)
	AntiLeakage Least-Squares Spectral Analysis (ALLSSA)

	Recent Methods of Mitigating Spectral Leakages in Spectrum Beyond Aliasing
	Interpolation by Matching Pursuit (MIMAP)
	Multichannel AntiLeakage Least-Squares Spectral Analysis (MALLSSA)


	Decomposition Methods into Time-Frequency Domain
	Short-Time Fourier Transform (STFT)
	Continuous Wavelet Transform (CWT)
	Hilbert–Huang Transform (HHT)
	Constrained Least-Squares Spectral Analysis (CLSSA)
	Weighted Wavelet Z-Transform (WWZ)
	Least-Squares Wavelet Analysis (LSWA)
	Methods of Analyzing Multiple Time Series Together
	Cross-Wavelet Transform (XWT)
	Least-Squares Cross Wavelet Analysis (LSCWA)


	Change or Breakpoint Detection within Non-Stationary Time Series
	Breaks for Additive Seasonal and Trend (BFAST)
	BFAST Monitor
	Continuous Change Detection and Classification (CCDC)
	Jumps Upon Spectrum and Trend (JUST)
	JUST Monitor

	Other Methods and Applications
	Conclusions
	Flowcharts of ALFT, ASFT, IMAP, ALLSSA, and LSWA
	References

