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Abstract

Recent research has found that neural networks are vulnerable to several types of
adversarial attacks, where the input samples are modified in such a way that the model
produces a wrong prediction that misclassifies the adversarial sample. In this paper we
focus on black-box adversarial attacks, that can be performed without knowing the inner
structure of the attacked model, nor the training procedure, and we propose a novel
attack that is capable of correctly attacking a high percentage of samples by rearranging
a small number of pixels within the attacked image. We demonstrate that our attack
works on a large number of datasets and models, that it requires a small number of
iterations, and that the distance between the original sample and the adversarial one is
negligible to the human eye.

1 Introduction

Neural Networks (NN) have achieved state-of-the-art performance in image classification
and many other tasks. However, despite their extensive usage, NNs are highly susceptible
to deception performed using adversarial images, which are samples containing small noise,
used to fool the NN and force a misclassification. Models that operate in a real world scenario
can also be attacked, by physically modifying the objects that have to be classified [1, 2]. This
problem is not circumscribed to NNs that operate in the image domain, but also to ones that
work over speech, text, or more general domains.

The majority of the existing methods to generate an adversarial image do it by constrain-
ing the difference between the original image and the adversarial one, in such a way that the
difference between the two is small, and thus hardly visible to the naked eye. The difference
between these images is usually calculated using a norm Lp. The value of p influences the
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Figure 1: Successful adversarial image from ImageNet using the proposed Pixle attack. The
original class of the image is 14 (Passerina Cyanea), while the misclassified class is 883 (Vase).
The L0 distance between the original image and the adversarial one is just 1 pixel in this case.

method used by the algorithm, and we can have: L0) the difference is pixel wise, by count-
ing the number of pixels that have been modified by the method, L1) which measures the
absolute distance between the images, L2) that measures the distance as Euclidean distance
and, L∞) which is the largest perturbed pixel in the image.

Another important aspect when developing an attack is the number of iterations required
to correctly create an adversarial image. An iteration is an interrogation of the model: the
input is passed though it and the output is collected. It is a crucial aspect, because many
real life models have a limit on the number of queries that can be performed, and thus it is
important to keep this aspect contained.

Moreover, adversarial methods can be grouped into two categories: white-box attacks
and black-box attacks [3, 4]. In the first case, which is the most studied one, the methods
have full knowledge about the model and its training procedure. In this case, we can rely on
any information within the model itself, such as gradients for a given sample or the weights
of the model itself. The methods in this category clarify the risks to which the NNs may be
exposed, but usually they do not reflect a real case scenario, in which a malicious user wants
to attack a model, but has a limited number of queries and no access to the model itself, with
the exception of its output. On the other hand, in the black-box case we can access only the
input and the output of the model, and thus it is closer to a true case scenario.

In this paper we propose a simple yet effective L0 norm black-box attack. Our proposal,
called Pixle, is capable of efficiently attacking a model by measuring only, given an input
sample, the confidence of the prediction, as a probability. Pixle is based on random search,
and it creates an effective adversarial image by rearranging a small set of pixels in the image,

2



showing also that an image usually contains all the pixels that are necessary to misclassify it,
using a contained number of iterations, as shown in our experimental results.

2 Related Works

The problem of security in machine learning has always been crucial in order to develop
more robust models [5, 6]. The first machine learning model to be attacked were Support
Vector Machines [7], then, in [8] and [9], the authors discovered that NNs are prone to such
attacks as well, which can be easily accomplished using several gradient based algorithms for
obtaining gradient information of the attacked image, and thus fool the model. After these
discoveries, the security of NNs has become a critical topic for real world deployments.

Many methods to fool a NN have been proposed in recent years. As said, white-box
attacks are the most studied. As attacks based on L0 norm we have SparseFool [10], which
exploits the curvature of decision boundaries, or JSMA [11], that finds the pixels to attack
through saliency maps. Based on others norms, we have the Fast Gradient Sign Method [9]
and its evolution, called Projected Gradient Descent [12], and Jitter [13], for L∞ norm; both
methods attack the image by changing all the pixels based on their importance, calculated
using the gradient associated to the image. For L1 norm we have attacks that place an upper
bound over the absolute sum of the perturbed values, and the most notable examples are
DeepFool [14], EAD [15], and FAB [16].

Black-box attacks are usually based on L2 or L∞ norms. In [17] the authors proposed a
simple policy that produces adversarial images by perturbing random segments of an image
to produce the adversarial counterpart. In [17], the authors proposed the idea to identify
low-frequency perturbations to improve query efficiency when attacking a model. Another
group of methods is composed by approaches that estimate the gradient of the model without
accessing it directly [18, 19, 20], emulating white-box attacks. Less studied black-box attacks
are the ones based on the L0 norm. The first method developed in this field is called One-
Pixel attack [21], that uses a Differential Evolution (DE) search algorithm [22] to find the
best pixels to replace and the values that must overwrite them. It works well on small images,
but fails when it is not the case; also, it requires thousands of iterations to find a suitable set
of pixels to replace. A similar approach, but based on larger patches, is called PatchAttack
[23], that uses reinforcement learning to optimally place pre-computed patches over the
image to attack. The drawbacks are that the patches are easily detected, being, often, very
large and visible. Another approach, called ScratchThat [24] is also based on DE, and literally
‘scratches’ the images by adding lines of different colors over them to create perturbed images.

As said, studying how to fool NNs is important to understand also how to protect them
from such attacks, and many approaches have been proposed over the years [25]. One way
to achieve this goal is to add adversarial images to the training data, such that the robustness
against adversarial images can be improved against specific attacks [26, 12]. Others training
approaches build more robust models by distillation [27], ensemble of multiple models or
models that incorporate some degree of uncertainty within them [28]. In addition, some
image processing methods are also proved to be effective in detecting adversarial images.
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Figure 2: Visualization of the mapping procedure used by Pixle. As the image shows, pixels
originating from a small patch of the source image (left) are mapped into the destination
image (right), to build the adversarial sample. The pixels in the patch are the only ones that
are mapped into new positions, while the others are unchanged. Better viewed in color.

For instance, in [29] the authors studied how the detection of adversarial images can be
carried out using noise reduction methods, by comparing the classification after and before
applying those techniques. Similarly, in [29] the authors showed that squeezing colors and
applying spatial smoothing have high success rate on detecting adversarial images.

3 Methodology

3.1 Problem Description

Generating adversarial images that fool a neural network can be formalized as an optimiza-
tion problem with constraints.

Let f : x ∈ [0, 1] ∈ R(3,w,h) → Rc be a classification function that takes as input a sample
of size (3, w, h), were 3 are the number of channels while w and h are, respectively, the width
and the height of the image, and produces a vector containing c probabilities (such that
∑

i ci = 1), one associated to each class; a sample x can be classified as argmaxi fi(x). In our
case, the function f is a NN.

Given an image x , and the associated class y , that is classified correctly by the function f ,
the goal of an attack is to change the prediction of the function, by producing an adversarial
image x ∈ R(3,w,h) such that f (x) 6= y . The image x must be similar to x , in such a way that
the Lp norm of the difference is bounded by a constant ε:

arg max
i

fi(x) 6= y ||x − x ||p ≤ ε (1)

with ε ∈ N+ in our black-box case. An attack can be untargeted, as described above, or
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targeted, by forcing the miss-classification of the adversarial image to a specific adversarial
class y 6= y: f (x) = y . The task of finding the perturbed image x , associated to x , can be
viewed as a minimization problem

min
x

L( f (x), y) ||x − x ||p ≤ ε , (2)

for a proper loss function L. Here, we use L( f (x), y) = f y(x) for untargeted attacks and
L( f (x), y) = 1 − f y(x) for targeted ones; in the first case we want to minimize the score
associated to the correct class, while in the second one we want to maximize the score asso-
ciated to the adversarial target y .

3.2 Pixle

Pixle is a black-box attack based on random search. Despite its simplicity, random search
performs well in many situations and does not depend on gradient information associated to
the objective function L(·, ·).

Given an image x ∈ R(3,w,h), the main idea of the algorithm is to sample a random portion
p of adjacent pixels from it, that we call patch, and to rearrange some pixels inside it into
other positions, calculated, for each pixel, using a predefined function m, that we call the
map function. Given an image x , a generic patch is defined by a 4-tuple p = (wp, oy , wp, hp),
where 0 < ox ≤ w and 0 < oy ≤ h are the coordinates on the image used as origin point
of the patch, while wp and hp are, respectively, the weight and the height of the patch. We
indicate as P the list of index tuples (i, j), that are defined by the coordinates of the patch,
and thus are contained in the rectangle having vertices as [(ox , oy), (ox + wp, oy), (ox , oy +
hp), (ox+wp, oy+hp)]. We formalize this list as P =

�

(ox + i, oy + j)
�

∀i∈{0,...,wp}, j∈{0,...,hp}
, which

has cardinality |P| = wp ∗ hp, assuming that the patch does not exceeds the boundary of the
image, otherwise it is moved in such a way that all the indexes are inside the image. The
mapping function m is defined as:

m: (i, j) ∈ P 7→ N2
+ ∈ [1, h]× [1, w] , (3)

that returns, for each pixel in the patch, the position where the pixel must be moved in the
original image. Given this function, we can define each pixel of the adversarial image as:

x i, j =

¨

m(i, j) (i, j) ∈ P
x i, j otherwise

The exposed procedure changes only the destination pixels, that are overwritten by the
source ones. This approach is useful if we want to search for an adversarial image that
reduces the distance from the original one. If we don’t care about this aspect, and we want
to speed up the convergence, another possible approach is to swap the position of the source
and destination pixels at the same time, using the mapping function as before. In this way,
no redundant information is injected into the adversarial image. The overall procedure,
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Algorithm 1 Pixle: Restart-Iterative algorithm

Require: input image x with its associated label y . Maximum and minimum dimension for
source patch. The number of restarts R and the iterations to perform for each restart step
T . The mapping function m.

Ensure: y = xn

x ← x
l ← f y(x)
for r = 0 to R do

x r ← x
for t = 0 to T do

Sample p = (ox , oy , wp, hp).
Calculate the set P
x t ← x
for ∀(i, j) ∈ P do
(z, k)← m(i, j)
x t

z,k← x i, j

end for
if f y(x t)< l then

l ← f y(x t)
x r ← x t

end if
end for
x ← x r

end for
return x

sampling a patch and calculating the mapping function codomain, remains the same. Fig. 2
visually shows how the pixels are mapped from the source image to the destination one.

3.3 Implementing the mapping function

The function m can be implemented in different ways. Here, since we focus on the speed of
the attack and the number of times that the models is interrogated, we propose and test the
following implementations:

• Random: the function m returns, for each input pixel, a random coordinate point (i ∼
U[1, h], j ∼ U[1, w]), different from the origin position.

• Similarity: given the image x and the pixel i extracted using an index tuple from P, it
returns the position of the most similar pixel in the image that is not equal to i.

• Distance: it works like the Similarity approach, but in this case the position of the most
different pixel is selected, avoiding the ones that have zero distance.
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Algorithm 2 Pixle: Iterative algorithm

Require: input image x with its associated label y . Maximum and minimum dimension for
source patch. The number of iterations to perform for each restart step T . The mapping
function m.

Ensure: y = xn

x ← x
l ← f y(x)
x ← x
for t = 0 to T do

Sample p = (ox , oy , wp, hp).
Calculate the set P
x t ← x
for ∀(i, j) ∈ P do
(z, k)← m(i, j)
x t

z,k← x i, j

end for
if f y(x t)< l then

l ← f y(x t)
x ← x i

end if
end for

return x

• Similarity Distribution: like the similarity approach, this is based on the most similar
pixels, but, instead of selecting the position in a deterministic way, a distribution of po-
sitions is calculated using all the distances between the source pixel and all the others;
in this way, the most similar pixels have a higher probability of being selected. Once
the distribution has been calculated, the mapped position is sampled from it.

• Distance Distribution: it is the distance based version of the Similarity Distribution
exposed above, where most distant pixels are more likely to be selected.

3.4 Search Algorithms

We propose two different procedures to find the adversarial image. In the first one, we have
two loops, one nested inside the other, and we select only the attack that leads to the highest
decrease of the loss; this attack is called Restart-Iterative. In the second one, each pixel
replacement is used to create the final adversarial image, and it is called Iterative.

Restart-Iterative: the algorithm is composed of a fixed number of restarts R ≥ 1, and
within each one a maximum number of iterations M are performed. Before starting the
main loop, the adversarial image is a copy of the original one, so that all the pixels from the
original image are preserved during the process. At every iteration, we sample a source patch
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p, and then, using the mapping function m, the pixels in the set P are overwritten. Only the
mapping that decreases the loss the most is actually saved and used in the next restart step.
This algorithm is summarized in Alg. 1.

Iterative: in this version, we have only the internal iteration loop, and the adversarial
image is updated each time that an attack decreases the loss value. The algorithm is summa-
rized in Alg. 2.

Intuitively, the first approach requires more iterations, because only the best attacks are
saved and preserved, while the second approach updates the adversarial image after each
attack. The latter could require less iterations, but it can happen that an attack leads to a
region of the search space which is sub-optimal, due to the lack of any controlling strategy.

4 Experimental evaluation

4.1 Experimental setup

The evaluation of the proposed attack is carried out on the following datasets: CIFAR10 [30],
TinyImagenet, and ImageNet [31]. We train CIFAR10 and TinyImagenet using, respectively,
ResNet20 [32] and VGG11 [33] for CIFAR10 and ResNet50 [32] and VGG16 [33] for TinyIm-
ageNet. Regarding ImageNet, we used the pretrained version of ResNet50 [32] and VGG16
[33], without fine-tuning them.

As training procedure for CIFAR10 and TinyImageNet, we use Stochastic Gradient De-
scent, with learning rate set to 0.01 and momentum to 0.9. Also, we use the standard aug-
mentation schema: the images are flipped horizontally with a probability of 0.5, and random
cropped to the same original size, but after applying a padding.

For each experiment, we extract the test images to attack from the subset of test images
that are correctly classified by the models. For CIFAR10 we use 100 images per each class,
while for TinyImageNet and ImageNet, we use, respectively, 5 and 1 images per class. In this
way, we test the attacks on the same number of images for each dataset (1000). We also test
the ability of the approaches to perform targeted attacks. For this purpose, we use 20 images
per class for CIFAR10, resulting in 200 attacks, excluding the other datasets.

We compare our proposal to two others black-box attacks based on the L0 norm: ScratchThat
[24] and OnePixel attack [21]. For the latter, we based our implementation on the one
present in TorchAttacks [34], while the first one is a custom implementation 1. For each
attack we performed a search of the best hyper-parameters, based on the results from the
respective papers, in order to produce the best results in the smallest number of iterations.
For ScratchThat, we use 1 Bézier Curve for CIFAR10 and 3 otherwise, with a population size
of 50 and maximum number of iterations set to 50 for the DE algorithm. While for OnePixel,
we set the number of pixels to modify equals to 5, and, regarding the DE algorithm, we set
the population size to 100 solutions and the number of iterations to 50. Regarding our ap-
proach, we use the Restart-Iterative approach as random search with at most 100 restarts
and 50 iterations per restart cycle. The patches have a size of 3 pixels, and the mapping

1The complete code used to run all the experiments can be found here
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function is the random one, which is calculated again at each iteration. All the methods are
interrupted when the current image is misclassified by the model, for non targeted attacks,
or when the image is classified as the target class, for targeted ones.

In order to compare the approaches, we use the following metrics:

• Success Rate: it is defined as the percentage of adversarial images that are misclassified
by the neural network.

• Iterations: calculated image wise, it is the number of times that a model is interrogated
while searching the adversarial counterpart of that image.

• L0 norm: the number of pixels that the approach has modified.

4.2 Main results

4.2.1 Non targeted attacks

The results in Table 1 shows that our approach is the most performant one across the vast
majority of scenarios. In fact, it is capable of achieving almost 100% of success rate on all
the datasets, while the others approaches fail to achieve comparable results when the images
become bigger.

Regarding the iterations, we see that our proposal requires a lower number of iterations
even when the dimensions of the images increase with the exception of OnePixel, which
requires fewer iterations than the others, but the success rate is not sufficiently high to be
considered a good attack for big images. Figure 3 shows how the loss value decreases when
attacking CIFAR10 and ImageNet using our proposal. The images contain the loss value for
each attacked image, as well as the average loss on each iteration (red dots). According to
the images, it can be seen that a set of images are easily attacked and the associated loss
values rapidly decrease, as the bottom images also show; this happens for both CIFAR10 and
ImageNet. In fact, for CIFAR10 our approach correctly attacks 80% of the images after 600
iterations, while the same number of images from ImageNet are correctly attacked after 750
iterations (approximately).

In the end we analyze the L0 norm. The same table shows that our approach changes
less pixels than ScratchThat, when attacking all the dataset. Also, if we cross reference the
results in terms of L0 norms and Fig. 3, we see that a lot of images are correctly attacked
using a small number of pixels, while other images require more iterations (as also shown by
the standard deviation of the metrics). Moreover, the hyperparamenters of our approach can
be adapted in order to achieve a smaller L0 loss, at the expense of the number of iterations
or success rate (as shown in Table 2).

4.2.2 Targeted attack

Figure 4 shows the results obtained when attacking each class of CIFAR10 with respect to all
the others classes. It shows that OnePixel is incapable of attacking most of the classes, and
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Table 1: Results obtained when attacking multiple datasets trained on ResNet and VGG ar-
chitectures. For each score, we show the mean and the variance, if present, calculated over
all the images on that dataset. Best results for each pair dataset-architecture are highlighted
in bold.

Dataset Model Method Success rate Iterations L0 norm

C
IF

A
R

10

ResNet18
OnePixel 64.7 5125±799 5

ScratchThat 99.7 1010 38.3±5.2

Pixle (Proposed) 100 119±141 26.8±22.8

VGG11
OnePixel 84.5 5100 5

ScratchThat 99.3 1010 27.64±4.8

Pixle (Proposed) 100 80±145 20.1±21.9

Ti
ny

Im
ag

eN
et

ResNet50
OnePixel 21.0 5100 5

ScratchThat 69.7 1010 49.1±2.2

Pixle (Proposed) 99.6 310±561 59.0±88.5

VGG16
OnePixel 31.9 5100 5

ScratchThat 76.6 1010 48.6±2.4

Pixle (Proposed) 100 87±201 21.5±30.6

Im
ag

eN
et ResNet50

OnePixel 47.7 5100 5
ScratchThat 82.6 623±321 175.2±25.7

Pixle (Proposed) 98.0 341±426 155.7±184.2

VGG16
OnePixel 31.9 5100 5

ScratchThat 81.8 753±156 143.0±6.0

Pixle (Proposed) 99.0 519±780 98.5±137.5
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Table 2: The results obtained when varying the side dimension of a patch, for each combi-
nation of dataset and architecture, using Pixle.

Dataset Model Patch dimension Success rate Iterations L0 norm
C

IF
A

R
10

ResNet18
1 100 314±311 6.9±6.1

3 100 119±141 26.8±22.8

5 100 78±123 51.6±44.8

VGG11
1 99.1 343±726 7.3±13.6

3 100 80±145 20.1±21.9

5 100 56±236 38.2±33.9

Ti
ny

Im
ag

eN
et

ResNet50
1 96.81 754±1055 15.3±20.0

3 99.6 310±561 59.0±88.5

5 99.8 182±379 98.0±137.7

VGG16
1 99.6 242±172 18.0±29.9

3 100 87±201 21.5±30.6

5 100 52±120 43.2±49.6

Im
ag

eN
et ResNet50

1 94.5 1417±1376 28.9±27.3

3 98.0 341±426 155.7±184.2

5 99.5 223.3±315 286.2±372.3

VGG16
1 95.6 1194±1319 24.4±26.1

3 99.0 519±780 98.5±137.5

5 99.5 339±609 183.9±291.7

presents a low success rate. Regarding Scratch That, it is capable of perfectly attacking most
of the pairs source-destination, achieving half of the times a perfect score. Our approach,
instead, achieves a perfect score on almost all the attacks, with the exception of some couples.

4.2.3 Dimension of the patches

A crucial aspect of our proposal is the dimension of the patches, and in Table 2 we study
this aspect, by calculating all the metrics while varying the dimensions of them. For each
experiment, we use random mapping and at most 100 restart, each one composed of 50
iterations.

We see that, as expected, the bigger the patches are the fewer iterations are required, but
at the same time the distance between the original image and the adversarial counterpart
grows. This happens because more pixels are moved at the same time, leading rapidly to a
minima, which is accepted due to the callback which interrupts the searching process, that
could be reached by moving fewer pixels as well (this is clearly visible by comparing the
results obtained using 3 pixels with the one achieved when using 5 pixels).

4.3 Ablation studies

We perform an ablation study to show how the individual design decisions improve the per-
formance of Pixle, both in terms of scores and convergence.
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(a) CIFAR10 results using VGG11.
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(b) ImageNet results using ResNet50.

Figure 3: Each figure shows, on top, how the losses (the probability associated to the correct
class) change during the iterations of our proposal, using the Restart-Iterative algorithm (the
red dots are the average loss calculated on that iteration); while the bottom image shows
how many images are left to attack after each iteration. Better viewed in colors.
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Table 3: The results obtained using VGG11 trained on CIFAR10. For the Iterative-Restart
approach we fixed the number of iterations to 59.

Restart-Iterative (restarts) Iterative (iterations)
50 100 250 500 50 100 250 500 1000 2000 10000

Success Rate 95.5 98.2 99.7 100.0 6.1 77.7 87.9 90.5 92.4 93.1 94.3
Iterations 170±243 199±362 222±531 209±468 31±17 45±36 69±79 95±147 131±264 206±511 697±2365

L0 norm 8.9±11.6 10.2±16.9 10.9±22.5 10.9±20.3 12.2±9.1 16.1±13.7 18.7±18.9 20.4±23.0 20.4±23.4 21.1±25.5 21.86±28.2

Table 4: The results obtained when varying the mapping function. The attacked model is
VGG11 trained on CIFAR10.

Mapping function Success rate Iterations L0 norm
Distance 17.6 8297±3697 40.1±17.9

Similarity 96.5 1029±2196 10.0±18.7

Distance distribution 99.3 536±1260 5.9±11.9

Similarity distribution 99.1 605±1425 3.1±7.3

4.3.1 Restart-Iterative vs Iterative

In this section we explore how the choice of the search algorithm affects the results. Table
4.3 shows the results obtained training VGG11 on CIFAR10, while changing the number of
iterations. To this end, the algorithm attacks 1 pixel at a time, using a random mapping
calculated at each iteration. We can see that the random search based on the restarts is
more effective with respect to all the metrics. In fact, when setting the limit to 100 iterations
and 50 restarts, we achieve better results then the iterative algorithm with a limit of 10000
iterations.

4.3.2 Mapping function

In this section we study how the selection of mapping function affects the final scores, shown
in Table 4. We see that, when operating with a deterministic mapping, the number of required
iterations, as well as the L0 norm, are higher than the distribution counterparts. This happens
because the randomness of the distributions force the approach to explore the space, avoiding
local minima.

5 Conclusion

In this paper we proposed a novel black-box attack called Pixle. Our attack, despite using
only the probability of the prediction returned by the attacked model, proved to be effective
over a wide range of datasets and architectures types, and on multiple metrics, such as the
number of iterations required and the number of modified pixels.

As future work, we aim to understand the correlation between the attacked class and the
pixels in the image, especially when performing a targeted attack. Furthermore, we would
like to expand the proposed approach also on other domains, such as text and audio. In the
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end, we would like to understand if the proposed attack can be further studied, in order to
create a defense algorithm against L0 attacks.
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(a) The results obtained using OnePixel at-
tack.
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Figure 4: The images show the success rate on ResNet18 trained using CIFAR10. The results
are calculated using 20 test images, classified correctly by the model, for each class. Each
matrix contains the percentage of attacks that have been successfully completed.
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