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Abstract: Digital anthropometry (DA) has been recently developed for body composition evaluation
and for postural analysis. The aims of this review are to examine the current state of DA technology,
as well as to verify the methods for identifying the best technology to be used in the field of DA
by evaluating the reliability and accuracy of the available technologies on the market, and lay the
groundwork for future technological developments. A literature search was performed and 28 studies
met the inclusion criteria. The reliability and accuracy of DA was high in most studies, especially in
the assessment of patients with obesity, although they varied according to the technology used; a good
correlation was found between DA and conventional anthropometry (CA) and body composition
estimates. DA is less time-consuming and less expensive and could be used as a screening tool
before more expensive imaging techniques or as an alternative to other less affordable techniques.
At present, DA could be useful in clinical practice, but the heterogeneity of the available studies
(different devices used, laser technologies, population examined, etc.) necessitates caution in the
interpretation of the obtained results. Furthermore, the need to develop integrated technologies for
analyzing body composition according to multi-compartmental models is increasingly evident.

Keywords: digital anthropometry; 3D body imaging; body scanning; anthropometry; body composition;
systematic review

1. Introduction

Conventional human anthropometry is a simple, non-invasive, and economical method-
ology that is easy to perform in different epidemiological or clinical settings and aims to
collect measurements of the human body at a total body and/or regional level using simple
devices (stadiometer, weight scale, meter, gauges, compasses, skinfold caliper, etc.) [1]. In a
broader perspective, it is correct to consider anthropometry as the measurement of each
segment, area, or volume of the human body.

The etymology of the word anthropometry is based on the Greek anthropos (human)
and metron (measure). Anthropometry was developed in the late 19th century by anthro-
pologists analyzing the differences in human body shape. The role of anthropometry in
evaluating nutritional status was defined at the end of the 19th century by Richer, who
used the thickness of skin folds as an index of fatness. The modern era of nutritional anthro-
pometry began with Matiegka’s studies during the First World War [2]. Matiegka’s interest
in the physical efficiency of soldiers led him to develop methods for anthropometrically
subdividing the human body into muscle, fat, and bone compartments.

Anthropometry’s main limitation is that it is deeply dependent on the operator’s
skill and requires adequate training. The International Society for the Advancement
of Kinanthropometry (ISAK) has established a methodology for reducing procedural
errors [3]. Kinanthropometry, first defined by William Ross in 1978, is the study of body
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size, shape, proportions, composition, and function in order to understand growth process,
functional and sporting performances, and nutritional status [4]. Sometimes the two terms,
anthropometry and kinanthropometry, are used interchangeably, even if they have different
meanings. Anthropometry is based on simple body measures such as weight, height, sitting
height, lengths and diameters of the different body segments, circumferences, skinfold
thickness, etc., and some parameters are included in predictive equations to estimate
indirectly the body composition or used as direct indicators of disease risk (i.e., waist
circumference, sagittal abdominal diameter).

Notwithstanding the procedure standardization promoted by existing guidelines,
human anthropometry is limited by precision and accuracy, undermining its applicability,
particularly at the individual level. Anthropometric measurement errors, categorized
as random errors (expressed in terms of precision and reliability) and systematic errors
(expressed in terms of accuracy), are described in Boxes 1 and 2.

Box 1. Precision, reliability, accuracy, validity [5].

Confusion often arises when applying these terms to the field of anthropometry, leading some
authors to use them interchangeably. Following are practical definitions.

Precision: it expresses how similar two repeated measurements are to each other, under similar
conditions (i.e., how results can be duplicated from one measurement to another). It can be intra-
rater (duplicate measurements on the same subject by a single rater) or inter-rater (two raters
measuring the same variable on the same subject).

Reliability: it shares the same features as precision, but also includes individual differences
due to dependability or physiological variation of the measured variable (independent of technique
errors). For example, within each individual’s height there is intra-day variation due to changes in
intervertebral disk hydration.

Precision and reliability are sometimes used interchangeably, but low precision can coexist with
high reliability (with a wider range of measurement values, e.g., when measurements are made on
a heterogeneous group of individuals) and vice versa.

Accuracy: it expresses how close a measurement is to the “true value” of the evaluated variable.
For example, measurements by a field technique can be compared with those by a gold standard
method: the higher the accuracy, the closer their respective values. Similarly, measurements by an
unexperienced anthropometrist can be compared with those by an expert/reference measurer.

Validity: it expresses the extent to which a study evaluates what it was intended to evaluate.
Results from a clinical study are deemed internally valid if they are not biased by study design
flaws and externally valid if they can be generalized to the population of reference. In psychometry,
validity expresses the degree to which a scale/test measures the construct it was developed for in
the first place. A test cannot be considered valid/invalid in itself without taking into account the
subjects and context it is applied to.

Accuracy and validity are used interchangeably by some authors.

Box 2. Random and systematic errors in anthropometric measures [3,6–10].

• Random error can be expressed in terms of precision and reliability (relative or absolute)
level.

• Precision expresses the variability between repeated measurements by a particular ob-
server using a particular device to measure a particular variable. Imprecision can be
caused by flawed measuring equipment, inadequately trained measurers, or poor tech-
nique. Common indices of precision are absolute intra- and inter- Technical Error of
Measurement (TEM) and relative TEM (%TEM). According to the International Society
for the Advancement of Kinanthropometry (ISAK) protocol, acceptable TEMs are 0.1 kg,
3 cm and 2 cm for weight, stature, and body circumferences, respectively. Another
example is the precision error of repeated measurements (PE).

• Absolute reliability regards the consistency of scores for individuals or, in other terms,
the degree to which repeated measurements vary for individuals. It can be expressed
by the coefficient of variation (CV) and the standard error of measurement of a group
estimate (SEM).
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Box 2. Cont.

• Relative reliability is the degree to which individuals maintain their position in a sample
over repeated measurements; it is expressed by the reliability coefficient R and the
intraclass correlation coefficient (ICC).

• Systematic error or bias depends on accuracy, defining the level of correlation or agreement
between an under-validation (bedside) method and a reference method when measuring the
same variable. It may depend on equipment bias (lack of calibration, device complexity) or
operator error. As mentioned before, it is possible to classify accuracy in terms of:

• Correlation at a mean level: paired t-tests, Pearson’s correlation coefficient, concor-
dance correlation coefficient (CCC), linear regression. The latter involves calculating the
coefficient of determination (R2), standard error of the estimate (SEE), and root mean
square error (RMSE). CCC appears useful to describe methods agreement (association
and identity) when more than two operators and/or repeated measurements come into
play. While ICC relies on ANOVA assumptions, CCC does not; both indices concurrently
involve precision and accuracy assessment.

• Agreement or concordance, at an individual level: the Bland–Altman plot compares
the level of agreement of two different technologies by plotting the difference against the
arithmetic mean (M) of each pair of measurements, the total mean difference (bias), and
the 95% limits of agreement (LoA), with their respective confidence intervals.

Random error

• Precision

# Absolute Technical Error of Measurement (TEM) =
√

(ΣD2/2n)
# Relative Technical Error of Measurement (%TEM) = (TEM/M) × 100
# Precision Error (PE) =

√
(ΣSD2/n)

D = ∆ between the 2 measurements, n = number of subjects, M = arithmetic mean of measure-
ments, SD = standard deviation of measurements

• Absolute Reliability

# Coefficient of Variation (CV) = SD/M
# Standard Error of Measurement (SEM) = SD

√
(1 − rxx)

rxx = chosen coefficient of reliability, usually ICC
• Relative Reliability

# Reliability Coefficient (R) = 1 − (total TEM2/SD2)
1 − (%TEM/CV)2

# Intraclass correlation coefficient (ICC)
different forms according to the ANOVA model, number of raters, and consis-
tency/absolute agreement

SD2 = total inter-subject variance

Systematic error or bias

• Correlation, at a mean level

# Pearson’s correlation coefficient (r)
# Coefficient of determination (R2)
# Standard Error of the Estimate (SEE) =

√
[Σ(Y − X)2/(n − 2)]

# Root Mean Square Error (RMSE) =
√

[Σ(Y − X)2/n]
# Concordance Correlation Coefficient (CCC)
# Mean difference (groups)
# Paired t-tests

Y = measured value; X = predicted value
• Agreement or concordance, at an individual level

# Bland–Altman plot
# LoA = mean difference ± (1.96 × SD)

Y = reference method; X = bedside method

To date, anthropometry refers to the systematic collection of physical measurements
of the human body [11] and their combination to develop useful indicators for the assess-
ment of nutritional status [12], the risk of malnutrition, sarcopenia, the decline in physical
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capacity and performance, the impairment of quality of life, and the increased risk of
developing non-communicable diseases (metabolic diseases, diabetes or cardiovascular
disease) [13,14]. Anthropometric measures are also included in tools for diagnosing or
assessing the risk of malnutrition and monitoring the effectiveness of nutritional inter-
vention strategies. Furthermore, anthropometric parameters are useful for analyzing the
relationships between lifestyle (eating habits and level of physical activity) and nutritional
status, because, although linked to the genetic heritage, they are also influenced by lifestyle,
eating habits, physical activity, and environmental, social, and cultural factors [15–17].

During the mid-1980s, a textile manufacturer asked the University of Loughborough,
England, to provide a new technology to obtain comprehensive body shape data with the
aim of facilitating garment production. The company wanted to explore the possibility
of developing a contactless machine that was reasonably portable and fast enough to
economically scan a large sample of the British population. In 1987, the Loughborough
Anthropometric Shadow Scanner, LASS, was realized. The device included a camera, a
projector, and a 360◦ rotating table on which the volunteer had to be positioned during the
evaluation procedure. This technology gave birth to the field of digital anthropometry (DA).
Over the next three decades, a rapid advance in methodologies designed to quantify the
shape of the human body occurred, including laser and light technologies, millimeter-wave
radar, and multi-perspective camera methods. Interest in automated or digital anthropom-
etry has intensified with the introduction of relatively inexpensive optical imaging devices
that replace the LASS system camera. Currently, practical three-dimensional (3D) imaging
devices are available either for clinical use or for personal use at home.

Recent technological advances have positively influenced the development of 3D
imaging, enabling faster and more reliable anthropometric measurements and reducing
physical contact between patients and operators. Initially confined to the textile industry,
today digital anthropometry plays an important role in the assessment of body composition
and postural analysis, e.g., as a first-line screening tool for scoliosis prior to Cobb angle
measurement via a conventional X-ray image [1]. Consequently, in the near future, digital
anthropometry could help overcome the traditional assumptions and limitations of classical
anthropometry.

This systematic review aims, as a first objective, to provide an update on the state
of digital anthropometry in medicine, with specific reference to body circumferences and
lengths, body shape.

In the context of bicompartmental models of body composition that distinguish Fat
Mass (FM) and Fat Free Mass (FFM), digital anthropometry allows the estimation of the
body volume which, knowing the mass (weight), can be used to calculate the body density.
Starting from the body density, through the use of predictive equations validated on
samples of individuals differentiated by ethnicity, sex, and age, it is possible to estimate the
body composition (FM%).

Starting from the analysis of existing technologies, a secondary objective, is to identify
the best technologies to be used in the field of DA or which technologies are most suitable
for different fields of application.

The review will cover not only the precision, reliability, and accuracy of existing
technologies, but also the cost/benefit assessments related to the collection of anthropo-
metric and body composition measurements for the diagnosis and treatment of diseases in
different clinical settings.

2. Materials and Methods

This systematic review was carried out according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [18].

2.1. Search Strategy

The bibliographic search was carried out using three different electronic databases,
PubMed, Embase, and Scopus, without any restrictions on the age of the recruited popula-
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tion. The year of publication of studies was restricted to 2000–present (i.e., September, 2021).
The research was conducted by applying the PICO methodology (Population: healthy pop-
ulation; Intervention: use of DA; Comparator: use of conventional techniques for the
generation of anthropometric data; Outcome: replacement of conventional techniques with
DA). The last search was performed on 15 September 2021.

The following free-text keywords were searched: “Digital Anthropometry”, “Anthro-
pometry Digital Human Model”, “Digital Human Model Anthropometry”, “Digital Body
Size”, “Digital Body Shape”, “Body Scanners”, “Body Scanning”, “Body Optical Imaging”,
“Digital Anatomic measurements”, “Optical scan to anthropometric data generation”, “Op-
tical imaging technology for body size”, “Optical imaging technology for body shape”,
“Whole body surface scanners”, “Digital Anthropometrics system”.

2.2. Eligibility Criteria and Procedures for Article Selection

The included studies involved the use of DA to analyze lengths, circumferences, and
other anthropometric measurements. Body composition results were also included because
of the close connection, through the use of predictive equations, that exists in numerous
technologies, including reference methods, between anthropometric measurement and
body composition appraisal.

For these reasons we decided to include studies concerning body composition, consid-
ering them an indirect measure of the precision and accuracy of the technologies used to
measure anthropometric measurements that are then used to estimate body composition.

Each selected study compared DA with conventional techniques of body composition
assessment, such as manual measurements, bioimpedance analysis (BIA), dual-energy X-
ray absorptiometry (DXA), hydrostatic weighing (HW), air displacement plethysmography
(ADP) and computed tomography (TC). Every study included in this review evaluated
accuracy; some studies evaluated both precision and accuracy; studies evaluating only
precision but not accuracy were not included.

Meta-analyses, reviews, book chapters, case reports/series, expert opinions, articles
in languages other than English, full text unavailable, articles published before 2000, and
those concerning somatotypes, body typing with statistical models, body surface, and
postural analysis were discarded.

The references of included studies were also checked to identify other potentially
relevant studies. The search process was carried out by two researchers (F.F. and P.C.)
working independently; disagreements were solved through consensus and by discussion
with the lead author (M.E.).

2.3. Data Extraction and Quality Assessment

Data was extracted by the lead author, who retrieved the following information for
each study: first author, year of publication, study design, country of origin, type of 3D
scanner used, comparison with other techniques, and results.

The methodological quality of the included studies was assessed by means of the
Appraisal tool for Cross-Sectional Studies (AXIS) [19] and the Newcastle–Ottawa Scale
(NOS) on cross-sectional studies [20]. Scores for both scales are reported at the end of
this section.

The AXIS tool consists of 20 items that evaluate the quality of reporting (7 questions),
study design quality (7 questions), and potential introduction of biases in a study (6 ques-
tions). Each question has three possible answers: “yes”, “no”, “do not know/comment”,
therefore implying a subjective judgement by the user. While numerical rating scales may
appear to provide a more objective assessment, increasing comparability among differ-
ent raters, in reality summing up individual item answers to produce a global score or a
weighted summarization (as in a meta-analysis) can lead to biased estimates since quality
itself can be non-additive and nonlinear [21]. On the other hand, the AXIS provides more
flexibility for quality of reporting and risk of bias assessment, due to its inherent subjectivity;
it appears more comprehensive than similar tools for cross-sectional studies [19].
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The NOS, appropriately modified for cross-sectional studies assessment, consists of
seven different items grouped into three categories; each item is given a score ranging
from 0 to (maximum) 2 stars by the rater. A summary score ranging from 0 to 10 stars is
computed by adding up the individual item scores. The three categories are: quality of
group selection (4 questions, maximum 5 stars overall), comparability between groups
(1 question, maximum 1 star overall), and study outcomes (2 questions, maximum 3 stars
overall). The NOS summary score has no universal cut-off value but some authors have
suggested the following categorization: very good (9–10 stars), good (7–8 stars), satisfactory
(5–6 stars), unsatisfactory (0–4 stars) [22].

Finally, the quality of evidence and strength of recommendations were evaluated
using the GRADE scale (Grading of Recommendations Assessment, Development, and
Evaluation). The GRADE approach gives an a priori ranking based on study design
(randomized controlled trial or observational study) before grading certainty of evidence
and weighing cost-effectiveness, patient preference and desiderable/undesiderable effects
balance [23].

3. Results

The search returned 4410 references: a total of 696 records were found from the
search in PubMed, 232 in Embase, 3289 in Scopus, and 194 from the references of some
studies. 804 records were excluded because they were duplicates. Another 3519 articles
were excluded after screening the remaining citations based on title and abstract. Full-text
examination was then conducted, and finally 28 papers were included in this review.

A flowchart of the paper selection process is shown in Figure 1. The detailed PRISMA
checklist is available in Supplementary Materials Table S1.

The main characteristics of the included studies are summarized in Table 1: all
the studies are cross-sectional and they were published between 2006 and 2021. The
4693 participants in the 28 studies have an average age of 27.8 ± 12.6 years (range 2–83).
Some studies evaluated only male subjects [24–27], while others evaluated only female
subjects [24–32], but both sexes are considered equally: 52% of participants were females,
while 48% were males. Regarding the country of origin, nineteen studies were published
in the USA [26,29,31–47], three in Switzerland [24,25,27], one in the United Kingdom [48],
two in Slovenia [49,50], one in Malaysia [28], one in Italy [30] and one in China [51].

3.1. Quality Assessment

The results of the quality assessment of the included studies are available in
Supplementary Materials Tables S2 and S3.

The quality assessment by the NOS on cross-sectional studies [20] and by the AXIS
tool [19] was conducted by two authors (P.C. and F.F.) independently, and disagreements
were resolved by consensus in the presence of a third author (M.E.).

The mean value obtained using the NOS on the cross-sectional studies was 5.2 ± 0.5.
The highest value was 6/10 and the minimum value was 4/10. Only eight studies scored
above the mean value; considering the three categories, the quality of group selection was
assessed as medium risk of bias, the comparability between the groups had a minimum
score (high risk of bias), and the study outcome had a maximum score (low risk of bias).
Overall, the quality of the studies can be regarded as satisfactory.

Applying the AXIS tool, questions on non-responders (n.7, n.13, n.14) received the “do
not know/comment” answer across all studies, since no information on non-responders
was available in the included studies. The overall quality score of the studies was fourteen
out of twenty. Nine studies had a quality score of sixteen [26,38,40–45,47], eight studies
of fifteen [24,25,29,31,32,34,36,39], three studies of fourteen [30,37,48], four studies of thir-
teen [27,33,35,50], one study of twelve [46], two studies of eleven [28,49], and one study of
nine [51]. The overall quality of the studies included in the review is good.

Finally, the quality of evidence and strength of recommendations were evaluated
using the GRADE scale [23].
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Table 1. Characteristics of the included studies.

Authors and Year
of Publication Study Design Country Number of

Participants
Average Age
(Year ± SD) Males Males

%
Average Age
(Year ± SD) Females Females

%
Average Age
(Year ± SD)

Harbin et al. (2018) [33] Cross-sectional USA 265 22.1 ± 2.5 119 45% 22.4 ± 2.7 146 55% 21.8 ± 2.4

Bourgeois et al. (2017) [34] Cross-sectional USA 113 44 ± 17 40 35% 41 ± 17 73 65% 47 ± 17

Koepke et al. (2017) [24] Cross-sectional Switzerland 123 24.55 ± 4.18 123 100% 0 0%

Garlie et al. (2010) [26] Cross-sectional USA 37 28.4 ± 12.7 37 100% 0 0%

Wagner et al. (2019) [35] Cross-sectional USA 79 32.9 ± 12.4 42 53% 33.2 ± 11.9 37 47% 32.5 ± 13.1

Busic et al. (2020) [49] Cross-sectional Slovenia 51 NA 12 24% NA 39 76% NA

Sager et al. (2020) [25] Cross-sectional Switzerland 104 20.5 ± 1.1 104 100% 0 0%

Japar et al. (2017) [28] Cross-sectional Malaysia 200 29.83 0 0% 200 100% NA

Cabre et al. (2021) [36] Cross-sectional USA 194 23.52 ± 5.47 83 43% 23.8 ± 6.1 111 57% 23.2 ± 4.9

Wells et al. (2015) [48] Cross-sectional UK 1022 8.44 ± 1.57 NA NA

Wong et al. (2019) [37] Cross-sectional USA 112 12.5 ± 3.3 46 41% 12.3 ± 3.3 66 59% 12.7 ± 3.3

Conkle et al. (2018) [38] Cross-sectional USA 474 2.17 246 52% NA 228 48% NA

Heuberger et al. (2008) [29] Cross-sectional USA 85 19.5 ± 1.4 0 0% 85 100%

Lu et al. (2010) [51] Cross-sectional China 263 18–30 172 65% NA 91 35% NA

Beckmann et al. (2019) [27] Cross-sectional Switzerland 52 19–23 52 100% NA 0 0%

Kennedy et al. (2020) [39] Cross-sectional USA 90 7–74 36 40% NA 54 60% NA

Sobhiyeh, Dunkel et al.
(2021) [40] Cross-sectional USA 356 21–79 155 44% NA 201 56% NA

Tinsley, Benavides et al.
(2020) [47] Cross-sectional USA 179 33.6 ± 15.3 76 42% 33.8 ± 14.5 103 58% 33.4 ± 15.9

Kennedy et al. (2022) [42] Cross-sectional USA 64 5–8 29 45% 6.9 ± 1.1 35 55% 6.6 ± 1.2

Tinsley, Adamson et al.
(2020) [41] Cross-sectional USA

171 33.1 ± 15.2 75 44% NA 96 56% NA

139 65 47% NA 74 53% NA
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Table 1. Cont.

Authors and Year
of Publication Study Design Country Number of

Participants
Average Age
(Year ± SD) Males Males

%
Average Age
(Year ± SD) Females Females

%
Average Age
(Year ± SD)

Milanese et al. (2015) [30] Cross-sectional Italy 25 20–60 0 0% 25 100%

Pepper et al. (2010) [31] Cross-sectional USA 70 30.91 ± 1.31 0 0% 70 100%

Pepper et al. (2011) [32] Cross-sectional USA 70 29.74 ± 1.41 0 0% 70 100%

Sobhiyeh, Kennedy et al.
(2021) [43] Cross-sectional USA 35 NA 23 66% 22.7 ± 2.9 12 34% 22 ± 3.2

Lee et al. (2015) [44] Cross-sectional USA 121 34.38 ± 0.98 67 55% NA 54 45% NA

Ng et al. (2016) [45] Cross-sectional USA
39 44.3 ± 15.5 20 51% NA 19 49% NA

37 18 49% NA 19 51% NA

Simenko et al. (2016) [50] Cross-sectional Slovenia 31 22.1 ± 4.63 17 55% NA 14 45% NA

Wang et al. (2006) [46] Cross-sectional USA 92 6–83 44 48% NA 48 52% NA

Abbreviations: SD = standard deviation; NA = not available.
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3.2. Comparison between Digital Anthropometry (DA; 3D Scanners) and Classic Manual
Anthropometry (CA) Measurements: Body Circumferences, Lengths, and Shape

The results of the studies comparing digital anthropometry (DA; 3D scanners) to
classic manual anthropometry (CA) with specific reference to body circumferences, lengths,
and shapes, are discussed separately on the basis of reliability and accuracy criteria, which
quantify random and systematic (bias) error related to anthropometric measurements,
respectively (Boxes 1 and 2). The results of studies included in this systematic review are
summarized in Tables 2–5; the comparison between studies is described in Supplementary
Materials Tables S4 and S5.

Table 2. Summary table of included studies.

Authors and Year
of Publication Scanner Utilised DA Technology Comparison Method

Harbin et al. (2018) [33] Styku body scanner (MYBODEETM,
Styku, Los Angeles, CA, USA)

time-of-flight
Manual measurements,

BIA and hydrostatic
weighing

Bourgeois et al. (2017) [34]

KX-16 scanner
(TC LABS, Apex, NC, USA)

Styku S100 scanner
(Styku, Los Angeles, CA, USA)

Fit3D Scanner (Redwood City, CA, USA)

structured light
time-of-flight

structured light ir

Manual measurements,
DXA, ADP

Koepke et al. (2017) [24] BS Vitus Smart XXL (Human solution
GmbH, Kaiserslautern, Germany) structured light laser Manual measurements

Garlie et al. (2010) [26] Cyberware WB4 laser body scanner
(Cyberware Inc., Monterey, CA, USA) structured light laser Manual measurements

and DXA

Wagner et al. (2019) [35] Fit3D Scanner (Redwood City, CA, USA) structured light ir Manual measurements
and ADP

Busic et al. (2020) [49] BodyRecog mobile 3D scanner
(BodyRecog Metrics, Boston, MA, USA) structured light ir Manual measurements

Sager et al. (2020) [25] Anthroscan VITUS body scan (Human
solution GmbH, Kaiserslautern, German) structured light laser Manual measurements

Japar et al. (2017) [28] NX-16 body scanner (Cary, NC, USA) structured light white light Manual measurements

Cabre et al. (2021) [36] Styku body scanner (MYBODEETM,
Styku, Los Angeles, CA, USA)

time-of-flight BIA, DXA, ADP

Wells et al. (2015) [48] NX-16 body scanner (Cary, NC, USA) structured light white light Manual measurements

Wong et al. (2019) [37] Fit3D Proscanner®

(Redwood City, CA, USA)
structured light ir Manual measurements

and DXA

Conkle et al. (2018) [38] AutoAnthro scanner (Occipital, San
Francisco, CA, USA) structured light white light Manual measurements

Heuberger et al. (2008) [29] VITUS Smart 3D (Human solution
GmbH, Kaiserslautern, Germany) structured light laser Manual measurements

Lu et al. (2010) [51]
Vitronic Vitus-3D 1600 scanning system

(Human solution GmbH,
Kaiserslautern, Germany)

structured light laser Manual measurements

Beckmann et al. (2019) [27] VITUS body scan (Human solution
GmbH, Kaiserslautern, Germany) structured light laser Manual measurements

Kennedy et al. (2020) [39] Naked Body Scanner (Naked Labs Inc.,
Redwood City, CA, USA) structured light ir Manual

measurements, DXA

Sobhiyeh, Dunkel
et al. (2021) [40]

Styku S100 (Los Angeles, CA, USA)
Size Stream SS20 (Cary, NC, USA)

time-of-flight
structured light ir ADP and DXA
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Table 2. Cont.

Authors and Year
of Publication Scanner Utilised DA Technology Comparison Method

Tinsley, Benavides
et al. (2020) [47]

Naked Labs 3D Fitness Tracker
(Redwood City, CA, USA)

Fit3D Proscanner®

(Redwood City, CA, USA)
Size Stream SS20 (Cary, NC, USA)

Styku S100 (Styku,
Los Angeles, CA, California)

structured light ir
structured light ir
structured light ir

time-of-flight

ADP and DXA

Kennedy et al. (2022) [42]

Fit3D Proscanner®

(Redwood City, CA, USA)
Size Stream SS20 (Cary, NC, USA)

Styku S100 (Styku,
Los Angeles, CA, USA)

structured light ir
structured light ir

time-of-flight
Manual measurements

Tinsley, Adamson
et al. (2020) [41]

Naked Labs 3D Fitness Tracker
(Redwood City, CA, USA)

Fit3D Proscanner®

(Redwood City, CA, USA)
Size Stream SS20 (Cary, NC, USA)

Styku S100 (Styku,
Los Angeles, CA, USA)

structured light ir
structured light ir
structured light ir

time-of-flight

4-component (4C)
model (BIA-BIS,

DXA, ADP, scale)

Milanese et al. (2015) [30]
Breuckmann GmbH Body-SCAN

(Breuckmann GmbH,
Meersburg, Germany)

structured light white light DXA

Pepper et al. (2010) [31]
Rotatory Laser Body scanner

(by Bugao Xu) (University of Texas,
Austin, TX, USA)

structured light laser DXA, hydrostatic
weighing

Pepper et al. (2011) [32]
Rotatory Laser Body scanner

(by Bugao Xu) (University of Texas,
Austin, TX, USA)

structured light laser Manual measurements

Sobhiyeh, Kennedy et al.
(2021) [43]

Fit3D Proscanner®

(Redwood City, CA, USA)
Size Stream SS20 (Cary, NC, USA)

Styku S100 (Styku,
Los Angeles, CA, USA)

structured light ir
structured light ir

time-of-flight
Manual measurements

Lee et al. (2015) [44]
Stereovision body imaging

(prototype by Bugao Xu) (University of
Texas, Austin, TX, USA)

passive stereo Manual measurements

Ng et al. (2016) [45] Fit3D Proscanner®

(Redwood City, CA, USA)
structured light ir Manual measurements

Simenko et al. (2016) [50] NX-16 body scanner (Cary, NC, USA) structured light white light Manual measurements

Wang et al. (2006) [46] C9036-02 (Hamamatsu Photonics KK,
Hamamatsu, Japan) structured light laser Manual measurements,

hydrostatic weighing

Abbreviations: DA = digital anthropometry; ir = infrared; BIA = bioimpedance analysis; DXA = dual-energy X-ray
absorptiometry; ADP = air displacement plethysmography; BIS = bioimpedance spectroscopy.
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Table 3. Statistical analysis of included studies evaluating classic anthropometric measurements: circumferences, lengths and shape.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Koepke et al. (2017) [24]

Reliability: Technical Error of
Measurement (TEM),
intraclass correlation

coefficient (ICC)
Accuracy: Pearson’s coefficient

(r), concordance correlation
coefficient (CCC), mean

difference (groups), t-test,
Bland–Altmann plot

No significant differences between
repeated DA and repeated CA, except
for CA for chest and waist. TEM in DA

(height: 0.45, chest: 1.24, waist: 0.98,
buttock 1.18, hip: 1.05) than in CA

(height: 0.50, chest: 8.19, waist: 4.36,
buttock: 6.84, hip: 2.50); ICCs in CA
(chest: 0.968, waist: 0.990, buttock:

0.955, hip: 0.972) and DA (chest: 0.981,
waist: 0.993, buttock: 0.997, hip: 0.994),
for height (in CA 0.999, in DA 0.998).

Correlation between methods (r between 0.933
and 0.993, CCC between 0.718 and 0.960); buttock

circumference (r = 0.828, CCC = 0.258) and
significant mean differences (height: −2.01,
p < 0.001; chest: 3.88, p < 0.001; waist: 1.17,

p < 0.001; buttock: 12.62, p < 0.001; hip: 4.37,
p < 0.001); Body shape: significant difference

between two methods (WHR: −0.03, p < 0.001;
WHtR: 0.01, p < 0.001; BMI: 0.52, p < 0.001);
correlation (r 0.979–0.996, CCC 0.920–0.974);

WHR (r = 0.857, CCC = 0.673).

The precision and the intraclass
correlation coefficients were better

in DA than in CA, and the two
methods were highly correlated, but

there were significant differences
between two methods.

Busic et al. (2020) [49]

Reliability: coefficient of
variation (CV), standard error

of estimate (SEM)
Accuracy: Pearson’s coefficient
(r), coefficient of determination
(R2), mean difference (groups),

t-test, Bland–Altman plot

Analysis of 15 measures, CVs were >5%,
except for the hip circumference (in
DA = 4.243%; in CA = 4.295%), and

higher in DA (5.265%–10.291%) than in
CA (5.090%–10.178%). SEM values were
similar between two methods, higher in

chest and breast circumferences.

The correlation measured by r (0.865–0.995) and
R2 (0.749–0.990) was high in almost all

measurements. Significant differences between
means in 7 measurements (breast, right and left

wrist, right and left upper leg, right and left
lower leg circumference) of 15 (p < 0.005).

Bland–Altman plots indicated good agreement.

CV values do not demonstrate good
performance. The agreement

between the methods was good, but
there were significant differences in

over half of the measurements.

Sager et al. (2020) [25]
Accuracy: Spearman Rho,
mean difference (groups),

Bland–Altman plot

Strong correlation between DA and CA for the
height (Spearman Rho = 0.98), waist

circumference and WHtR (Spearman Rho = 0.96)
and BMI (Spearman Rho = 1). Bland–Altman plot

indicated a constant bias for the height
and a trend in the upper part of the range in DA

than CA.

Body measurements obtained with
both methods were strongly

correlated; there was a constant bias
for DA measures

Japar et al. (2017) [28] Accuracy: mean difference
(groups), t-test

Significant differences between DA and CA for
waist (in DA: 85.34 ± 13.36, in CA: 84.63 ± 13.82,

p < 0.05) and hip circumferences (in DA:
103.47 ± 11.53, in CA: 94.88 ± 15.08, p < 0.01) and

waist to hip ratio (in DA: 0.82 ± 0.02, in CA:
0.89 ± 0.04, p < 0.01).

The DA produced higher readings
in waist and hip circumferences

compared with CA.
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Table 3. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Wells et al. (2015) [48]

Reliability: technical error of
measurement (TEM)

Accuracy: Pearson’s coefficient
(r), coefficient of determination
(R2), standard error of estimate

(SEE), mean difference
(groups), t-test,

Bland–Altmann plot

TEM higher in DA (circumference of
chest: 1.57, waist: 1.49, knee: 1.36, calf:

0.90) than in CA (circumference of chest:
0.13, waist: 0.06, knee: 0.06, calf: 0.04)

Strong correlation between two methods
(r ≥ 0.95, R2 ≥ 0.89, SEE 0.80–2.37). The mean

differences of circumferences (chest: 3.67 ± 2.23,
waist: 1.36 ± 2.37, knee: 1.39 ± 1.21, calf:

0.62 ± 0.80) and Bland–Altman plots showed a
significant (p < 0.0001) and proportional bias.

The reliability was better in CA, and
the correlation between DA and CA

was strong, but there were biases
that varied with outcome size (DA

produced larger measures than CA).

Conkle et al. (2018) [38]

Reliability: technical error of
measurement (TEM) and

percentage technical error of
measurement (%TEM),

coefficient of reliability (R),
intraclass correlation

coefficient (ICC)
Accuracy: mean difference

(groups), paired t-test,
Bland–Altmann plot

In DA, intraobserver TEM and TEM%
(stature 0.62 cm–0.8%, HC 0.41 cm–0.9%,
MUAC 0.35 cm–2.3%) and interobserver

TEM (stature 0.46 cm–0.5%, HC
0.30 cm–0.7%, MUAC 0.25 cm–1.7%)

were higher than in CA intraobserver
TEM (stature 0.36 cm–0.4%, HC

0.20 cm–0.4%, MUAC 0.20 cm–1.3%)
and interobserver TEM (stature

0.37 cm–0.5%, HC 0.26 cm–0.6%, MUAC
0.24 cm–1.6%). The inter-observer TEM
was higher than the intra-observer TEM

for CA and not for DA. For CA, total
TEM was 0.51 cm for stature, 0.33 cm
for HC, 0.31 cm for MUAC, compared

with 0.77 cm for stature, 0.51 cm for HC,
for 0.43 cm for MUAC for DA. The R

and ICC were close to 1.00 for repeated
measurements for both techniques.

According to Bland–Altman plots, there were
significant differences (p < 0.001) for height

(mean difference 0.59 and LoA −0.1–1.2), for
head circumference (mean difference 0.32 and

LoA −0.1–0.8), and for arm circumference (mean
difference −0.19 and LoA −0.6–0.2).

The measures were reliable with
both methods, but the precision was
better in the CA. The agreement was
good, but there was significant bias

with an overestimation of height
(+0.6 mm) and head circumference
(+0.3 mm) and an underestimation
for arm circumference (−0.2 mm).
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Table 3. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Heuberger
et al. (2008) [29]

Accuracy: coefficient of
determination (R2)

The linear regression R2 of hip (0.63, p < 0.05) and
waist-to-hip ratio (0.53, p < 0.05) were significant.

For waist, height and weight, the same results
were not found; significant differences (p < 0.01)
existed between DA and CA for circumferences
of hip (DA: 40 ± 4.5 cm; CA: 39 ± 4.7 cm) and

waist (DA: 33 ± 4.2 cm; CA: 32 ± 4.2 cm).

The accuracy of measures of hip and
waist-to-hip ratio decreased when

the measure increased. DA
produced an overestimation of
waist and hip circumferences.

Lu et al. (2010) [51] Accuracy: mean difference,
t-test

Significant differences between DA and CA in
eight of the 12 measurements (shoulder breadth,

p = 0.0047; anterior chest breadth, p = 0.0004;
cervical to waist length, p = 0.0023; chest

circumference, p = 0.0008; waist circumference,
p = 0.0090; sleeve length, p = 0.0001; front length,

p = 0.008; back length, p = 0.0167).

The accuracy of DA was lower than
of CA, probably due to variations

caused by human subjects.

Beckmann
et al. (2019) [27]

Accuracy: Pearson’s
coefficient (r), Spearman Rho,

concordance correlation
coefficient (CCC), mean

difference, t-test,
Bland–Altmann plot

The correlation between DA and CA for waist
(r = 0.979, CCC = 0.964, Rho = 0.964) and height
(r = 0.995, CCC = 0.988, Rho = 0.989) was strong.
The mean differences between two methods for

waist (−1.50 cm) and height (0.77 cm) were
significant (p < 0.001). The agreement at the

Bland–Altman plot was very good, but there was
a systematic bias.

The correlation was good. The waist
circumference was systematically

smaller in DA than in CA, and
height was less in CA than DA
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Table 3. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Kennedy et al. (2022) [42]

Accuracy: t-test, coefficient of
determination (R2) of multiple
regression, Bland–Altman plot,

mean differences
(between groups)

All three scanners showed significant mean
differences (paired t-test, p < 0.01) with CA

(∆ mean: Fit3D Proscanner® (Redwood City, CA,
USA), 1.2–4.2 cm; Styku body scanner (Los

Angeles, CA, California), 1.0–5.5 cm; Size Stream
SS20 (Cary, NC, USA), 1.6–3.4 cm; p < 0.01). The
only exception was left thigh measurement by

the Fit3D Proscanner® (Redwood City, CA, USA)
(∆ mean: 0.3 cm). Linear regression analysis: DA

significantly predicted manual measurements
(R2: Fit3D Proscanner® (Redwood City, CA,

USA), 0.70–0.96; Styku S100 scanner (Los
Angeles, CA, USA), 0.54–0.97; Size Stream SS20
(Cary, NC, USA), 0.68–0.97; p < 0.01), with Fit3D
Proscanner® (Redwood City, CA, USA) being the

best predictor of body size in small children
(R2 > 0.70 for all measurements, p < 0.01).
Bland–Altman plots displayed significant,

systematic bias for Fit3D Proscanner (Redwood
City, CA, USA) (all sites: +1.5 cm–4.0 cm), Size

Stream SS20 (Cary, NC, USA) (hip and arms
+1.6–2.5 cm, thigh −3.0 cm) and Styku S100

(Styku, Los Angeles, CA, USA)
(heterogeneous magnitude).

In the processed scans, mean
3DO-tape circumference differences

tended to be small (~1–9%) and
varied across systems; correlations
and bias estimates also varied in

strength across anatomic sites and
systems. Overall findings differed

across devices; the best results were
found for the multi-camera

stationary system and less so for
two rotating single- or
dual-camera systems.
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Table 3. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Pepper et al. (2011) [32]

Reliability: coefficient of
variation (CV), intraclass

correlation coefficient (ICC)
with 2-way mixed-effects

ANOVA
Accuracy: standard error of
the estimate (SEE), Pearson’s

correlation coefficient (r),
coefficient of determination
(R2) of univariate regression
analysis, Bland–Altman Plot

CVs showed little difference between
within-subject measurements, with a

high level of concordance among
8 repeated measures (CV 0.53–1.68%).
All ICCs were ≥0.99, with abdomen,
waist and hip showing the highest

values (ICC = 1.00) and chest
circumference having the lowest

ICC = 0.992.

No significant differences for waist, hip, or
waist:hip ratio according to Paired samples
t-tests (p = 0.05); significant correlation by

Pearson’s r (0.998, 0.989, and 0.984 for waist, hip,
and waist:hip ratio respectively, p = 0.01). No

significant systematic bias in Bland–Altman plots
shown by r and regression analysis. No impact of

age, BMI, and body size on circumference
measurement bias in univariate

regression analysis

Body volume estimations by laser
body scanner and

hydrodensitometry were strongly
related, and agreement was high.
Measurements of % body fat also
agreed strongly with each other

between methods, and mean % fat
estimates by body imaging did not
differ from criterion methods. Body
imaging is an accurate measure of

body fat compared with dual energy
X-ray absorptiometry

Sobhiyeh, Kennedy et al.
(2021) [43]

Accuracy: mean difference,
t-test, coefficient of

determination (R2) of linear
regression, Bland–Altman plot,
root mean square error (RMSE)

in regression analysis

Mean circumference values by CA and DA were
comparable.Statistically significant differences
were observed (absolute mean ∆ ~2 cm across

digital scanners and body sites, with a few
outliers). Mean systematic differences were

negative for Styku S100 scanner (Los Angeles,
CA, USA) and positive for Fit3D Proscanner

(Redwood City, CA, USA) and Size Stream SS20
(Cary, NC, USA). Relative CA-DA differences

were smaller for chest, waist, and hip
measurements (∼2–3%) but larger for arms

(∼5–7%) and ankles (∼8–10%). Linear regression
analysis showed a RMSE of 1–3 cm, with a trend
for higher error for Styku; high R2 values were
also seen (majority > 0.90, p < 0.001), with a few

exceptions for limbs. Bland–Altman plots
displayed significant systematic bias in

11/33 evaluations; correlations between CA and
DA waist circumference estimates had R2s of
0.95–0.97 (p < 0.001), with measurement bias

significant only for the Fit3D Proscanner
(Redwood City, CA, USA) (p < 0.05).

Site location error sometimes had a
significant impact on various girth
measurements. The magnitude of
this error varied according to the

girth measurement being taken, sex,
and BMI. Special care should be

applied when measuring girths on
females, especially waist girths on

lean females.
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Table 3. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Simenko et al. (2016) [50]

Reliability: coefficient of
variation (CV), standard error

of measurement (SEM),
intraclass correlation

coefficient (ICC)
Accuracy: Pearson’s

correlation coefficient,
coefficient of determination

(R2) of univariate linear
regression, Bland–Altman plot,

mean differences, t-test

DA body circumferences %CV
6.62–11.29, SEM 0.13–0.46

(corresponding manual %CVs and
SEMs consistently higher at each body

site). Accuracy: 10 out of 14 paired
measurements showed statistically

significant (p < 0.05) but clinically small
differences (Mean differences

0.273–0.974 cm; average relative error
0.006–0.037) with non-significant

Bland–Altman plots. High correlation
and explained variance in univariate
linear regression in all measurements

(Pearson’s r > 0.96, R2 > 0.906).

Digital body scan measurements
correlated strongly to criterion
methods. However, systematic

differences were observed for each
measure due to discrepancies in

landmark positioning. Predictive
body composition equations

showed strong agreement for whole
body and arms, legs and trunk.
Visceral fat prediction showed

moderate agreement.

Abbreviations: CA = conventional anthropometry; HC = Head circumference; MUAC = Mid-Upper Arm Circumference; WHR = Waist Hip Ratio; WHtR = Waist to Height Ratio;
BMI = body mass index; LoA = limits of agreement; ∆ = difference; 3DO = 3D optical.

Table 4. Statistical analysis of included studies evaluating both classic anthropometric measurements and body composition.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Bourgeois
et al. (2017) [34]

Reliability: coefficient of
variation (CV)

Accuracy: coefficient of
determination (R2), root

mean square error
(RMSE), mean difference

(groups), paired t-test,
Bland–Altman plot

Comparing the DA and reference
method, CV values were lower for CA

(between 0.2 and 0.4%) than for DA
(between 0.1 and 2.6%), except for the

hip circumference with Styku S100
scanner (Styku, Los Angeles, CA, USA)

(0.2% in CA, 0.1% in DA), and lower
with DXA (between 0.2 and 1.5%) than
with DA (between 0.4 and 5.7%), except

with the Styku S100 scanner (Los
Angeles, CA, USA) for the trunk (0.6%
with DXA, 0.3% with the scan) and left

leg (1% with DXA, 0.8% with scan).

Measures obtained with DA significantly correlated
with CA (R2 0.72–0.96, p < 0.0001, RMSE 1.9–7.7), DXA

(R2 0.69–0.99, p < 0.0001, RMSE 0.8–12) and ADP
(R2 0.99, p < 0.0001). Significant difference of means
between DA and CA, except for waist with KX-16
scanner (TC LABS, Aoex, NC, USA), hip and right
thigh with Styku S100 scanner (Styku, Los Angeles,

CA, USA) and right arm with Fit3D Proscanner
(Redwood City, CA, USA), and between DA and ADP

and DXA. Bland–Altman plots showed a significant
underestimation, especially for subjects with higher

volumes, except for hip circumference and trunk
volume, with R2 ranging from 0.0005 to 0.85.

The reliability was higher in the
reference methods (tape

measurements and DXA). The
measurements of circumferences and
regional body volume obtained from

3D optical devices were well
correlated with those obtained from
tape measurements and DXA, but

there were significant differences and
an underestimation, especially in

body volume for larger subjects; total
body volume determined by DA were
highly correlated with ADP volumes.
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Table 4. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Wong et al. (2019) [37]

Reliability: coefficient of
variation (CV)

Accuracy: coefficient of
determination (R2), root

mean squared
error (RMSE),

Bland–Altman plot

In CA, %CVs of circumferences (waist:
0.28%, hip: 0.20%, arm: 0.46%, thigh:
0.98%) were lower than CVs in DA

(waist: 1.37%, hip: 0.79%, arm: 2.51%,
thigh: 2.59%); %CVs of indices of body
shape in DA were 1.50% for waist-hip
ratio, 1.82% for waist-height ratio and
1.29% for waist-width ratio; %CVs of
measures of body composition in DA

were 3.30% for FM and 1.34% for FFM.

Strong association between DA and CA for waist
circumference (R2 = 0.939, RMSE 3.783) and hip

(R2 = 0.987, RMSE 1.828) and between DA and DXA
(total body volume: R2 0.995, RMSE 1.618; trunk

volume: R2 0.968, RMSE 1.683; arm volume: R2 0.968,
RMSE 0.255; leg volume: R2 0.763, RMSE 2.159; %FM:
R2 0.855, RMSE 3.630). Bland–Altman plot showed a
good agreement for %BF and a size related bias for

waist and hip circumferences and regional
body volumes.

Each method was reliable and
estimates of 3D body composition and

circumferences were strongly
associated with the manual

measurements and DXA. With the
strong correlation and low RMSE, 3D

can substitute as a reasonable
alternative method if DXA is not

available. There was an
overestimation of waist and hip

circumferences and the volumes for
total body, leg and arm and an

underestimation for trunk volume.

Kennedy
et al. (2020) [39]

Reliability: coefficient of
variation (%CV), mean

difference (among
repeated measures)

Accuracy: paired t-test,
coefficient of

determination (R2) of
multiple regression,

Bland–Altman plot, root
mean square error

(RMSE) in regression
analysis, mean group

differences
(between methods)

Naked Body Scanners (Naked Labs Inc.,
Redwood City, CA, USA) showed lower

repeatability than CA for body
circumferences (CV 0.4–2.7% vs.

0.2–0.4%). The average mean difference
between duplicate measurements by

DA was 0.4 ± 0.4 cm for hip and
0.7 ± 0.7 cm for waist circumferences

(CA: 0.2 ± 0.4 cm for all locations). The
most precise measurement was hip

circumference (DA:CV = 0.4%;
CA:CV = 0.2%). %BF was consistent

among repeated measures by DA
(CV = 2.4%).

Mean group differences between DA and CA ranged
from 1.5 cm (arms) and 3.2 cm (thighs). Only hip

circumference was not significantly different between
the two methods. For all sites, explained variance in

linear regression by DA was high (R2s, 0.84–0.97;
p < 0.0001). Bland–Altman plots displayed how the
Naked Body Scanners (Naked Labs Inc., Redwood
City, CA, USA) significantly overestimated waist

circumferences by ~2.0 cm compared with CA
(p < 0.0001). Significant bias was also found for left and

right thighs, with a mean overestiamtion of ~3.0 cm
(p < 0.0001). %BF: no significant difference between

DA and DXA, with a linear regression R2 = 0.73
(p < 0.0001). Bland–Altman plot revealed a
quasi-significant systematic bias by DA to

underestimate %BF (p = 0.09).

DA exhibited greater variation in
test–retest reliability between the six

measured anatomic locations
compared with manual

measurements. All six device-derived
circumferences correlated with

flexible tape references. The %fat
estimates correlated with DXA results

with no significant bias.
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Table 4. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Pepper et al. (2010) [31]

Reliability: coefficient of
variation (CV), intraclass

correlation coefficient
(ICC)

Accuracy: Pearson’s
correlation coefficient (r),

coefficient of
determination (R2) of

univariate linear
regression, standard
error of the estimate
(SEE), ICC (between

methods)

Volumes: all ICCs were ≥0.99, with
thigh volume having the lowest ICC
(0.997). CVs showed little difference

between within-subject measurements,
with total body volume the most

reliable (CV 0.41%) and thigh volume
the most variable (CV 2.26%).

%BF showed good agreement among all methods, with
an overall ICC = 0.86 (p < 0.01); RM-ANOVA showed

no significant difference after pairwise comparison
between DA and DXA or hydrodensitometry mean

%BF (p = 0.81 and 0.43, respectively).

Evaluation of waist and hip
circumferences measured by body
scanner did not differ significantly

from tape measure (p < 0.05), with no
bias between laser scanning and tape

measure. The 3-dimensional laser
body scanner is reliable and valid in

order to estimate waist and hip
circumference compared with

tape measure.

Ng et al. (2016) [45]

Reliability: coefficient of
variation (CV).

Accuracy: mean
difference, paired t-test,

coefficient of
determination (R2) of

stepwise multiple
regression, root mean
square error (RMSE)

Good test-retest precision with
%CV < 5% in almost all measurements:
0.75–2.24% (circumferences), 0.81–3.45%

(surface area), volume (0.91–4.49%).
Higher CV% in derived regional FM

and FFM (VAT: 6.69%; Arms FFM:
6.67%; Arms FM: 11.63%). RMSE

0.03–1.41 (generally 0.5–0.7).

For calibration group, significant paired t-test for waist
and hip circumferences. Mean differences were

1.75 cm (CI 0.58–2.91) and 3.17 cm (CI 1.43–4.41),
respectively. High association with ADP and DXA
whole body volumes were observed (R2 = 0.99 and
0.97, respectively). Regional DA volume estimates

showed strong correlation with DXA measured
counterparts (R2 = 0.73–0.97), with less volume

included in limbs and relatively more volume in the
trunk compartment (all p < 0.001).

The R2 of the prediction equations for
fat mass and percent body fat were
93.2% and 76.4% for android, and

91.4% and 66.5% for gynoid,
respectively. Prediction values for fat
mass and percent fat were 94.6% and
88.9% for total body, 93.9% and 71.0%

for trunk, and 92.4% and 64.1%
for leg, respectively

Wang et al. (2006) [46]

Reliability: coefficient of
variation (CV), intraclass

correlation coefficient
(ICC).

Accuracy: paired t-test,
Pearson’s correlation

coefficient, coefficient of
determination (R2),

standard error of the
estimate (SEE), mean
absolute differences

Lowest CVs for circumferences (0.9)
and partial thigh length (1.2). As for

volumes, the CVs ranged from 1.9 to 2.5
for head, upper and lower limbs and

torso volumes, while total-body volume
showed a CV = 0.4. All ICCs > 0.97
(lenghts, volumes, circumferences).

No significant difference in %BF according to paired
t-tests between 3DPS and UWW (p = 0.4801), although
differences were higher than in volumes. Total body

volumes between 3DPS and UWW showed high linear
correlation with R2 = 0.999 and SEE = 0.892 L, with DA
showing significant slightly greater values than UWW
(p < 0.001). Body circumferences values by DA were

slightly greater than CA ones (p < 0.001).

Body shape of white American adults
differs from that of their UK

counterparts. Among Americans,
ethnic differences in body shape

closely track reported differences in
prevalence of metabolic syndrome.

3D photonic scanning offers a novel
approach for categorizing the risk of

metabolic syndrome.
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Table 4. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Tinsley, Benavides et al.
(2020) [47]

Reliability: RMS-% CV
(=%TEM), coefficient of

variation (CV), intraclass
correlation coefficient

(ICC) with 2-way
mixed-effects ANOVA.
Accuracy: coefficient of
determination (R2) of

univariate linear
regression,

Bland–Altman plot, root
mean square error

(RMSE) in
regression analysis

Body circumferences: all body scanners
showed high precision with ICCs

0.974–0.999. When averaged across all
body regions, the four body scanners
produced a RMS-% CV of 1.1–1.3%,

with the lowest value for hip (RMS-%
CV < 1% for all), followed by waist

(0.7–1.6%) and thigh (0.8–1.4%), neck
(1.2–2.0%), and arm circumferences

(1.4–2.8%). Three scanners measured
body volumes, with ICCs 0.952–0.999.

When averaged across all body regions,
RMS-% CV was 1.9–2.3%, with the
lowest value for total body (RMS-%
CV < 1% for all), followed by torso

(~1.2%), leg (~2.5%), and arm
(~3 to 5%) volumes.

Total BV: strong linear correlation was observed
between DA and reference methods (R2: 0.98–1.0);

significant overestimation by Size Stream® (Cary, NC,
USA) and underestimation by Styku S100 scanner®

(Los Angeles, CA, USA) was observed (p < 0.01) and
no true equivalence from Fit3D Proscanner®

(Redwood City, CA, USA) (in contrast to all
DXA-derived equations). Bland–Altman plots showed
systematic proportional bias of various degrees for all

four scanners. DA RMSE: 4.2–10.5 L, with LoA
2.9–5.3 L (both larger compared with DXA-related

indices). Similar accuracy issues (strong linear
correlation with significant overestimation and

proportional bias) were reported in regional volumes.

All scanners produced precise
estimates. Precision for

circumferences generally decreased in
the order of: hip, waist and thigh,

chest, neck, and arms. Precision for
volumes generally decreased in the

order of: BV, torso, legs, and arms. No
total or regional 3DO volume

estimates exhibited equivalence with
reference methods using

5% equivalence regions, and
proportional bias of varying
magnitudes was observed.

Abbreviations: VAT = Visceral Adipose Tissue; RM = Repeated measures; 3DPS = three-dimensional photonic scan; UWW = underwater weighing; BV = body volume; L = liter.

Table 5. Recap of the statistical analysis of included studies.

Study

Random Error
• Precision (P)
• Absolute Reliability (AR)
• Relative Reliability (RR)

Precision (Reliability): Precision and Reliability Are
Used Synonymously

Systematic Error or Bias
Accuracy or Validity

Accuracy (Validity): Accuracy and Validity Are Used Synonymously

P AR RR Correlation,
at a Mean Level

Agreement or
Concordance

at an Individual Level

TEM %TEM PE CV SEM R ICC r R2 SEE RMSE CCC ∆ Means t-Test Bland–Altman Plot

Harbin et al. (2018) [33] X X X X
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Table 5. Cont.

Study

Random Error
• Precision (P)
• Absolute Reliability (AR)
• Relative Reliability (RR)

Precision (Reliability): Precision and Reliability Are
Used Synonymously

Systematic Error or Bias
Accuracy or Validity

Accuracy (Validity): Accuracy and Validity Are Used Synonymously

P AR RR Correlation,
at a Mean Level

Agreement or
Concordance

at an Individual Level

TEM %TEM PE CV SEM R ICC r R2 SEE RMSE CCC ∆ Means t-Test Bland–Altman Plot

Garlie et al. (2010) [26] X X X X X X

Sobhiyeh, Kennedy et al. (2021) [43] X X X X X

Tinsley, Benavides et al. (2020) [47] X X X X X X X X

Kennedy et al. (2022) [42] X X X X

Tinsley, Adamson et al. (2020) [41] X X X X X X X

Pepper et al. (2010) [31] X X X X X X X X

Pepper et al. (2011) [32] X X X X X X

Lee et al. (2015) [44] X X X

Wang et al. (2006) [46] X X X X X X X

Bourgeois et al. (2017) [34] X X X X X X

Wagner et al. (2019) [35] X X X X X X X X

Cabre et al. (2021) [36] X X X X X X X

Wong et al. (2019) [44] X X X X

Conkle et al. (2018) [38] X X X X X

Heuberger et al. (2008) [29] X

Kennedy et al. (2020) [39] X X X X X X

Sobhiyeh, Dunkel et al. (2021) [40] X X

Koepke et al. (2017) [24] X X X X X X X
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Table 5. Cont.

Study

Random Error
• Precision (P)
• Absolute Reliability (AR)
• Relative Reliability (RR)

Precision (Reliability): Precision and Reliability Are
Used Synonymously

Systematic Error or Bias
Accuracy or Validity

Accuracy (Validity): Accuracy and Validity Are Used Synonymously

P AR RR Correlation,
at a Mean Level

Agreement or
Concordance

at an Individual Level

TEM %TEM PE CV SEM R ICC r R2 SEE RMSE CCC ∆ Means t-Test Bland–Altman Plot

Sager et al. (2020) [25] X X

Beckmann et al. (2019) [27] X X X X X

Wells et al. (2015) [48] X X X X X X X

Busic et al. (2020) [49] X X X X X X X

Simenko et al. (2016) [50] X X X X X X X X

Japar et al. (2017) [28] X X

Milanese et al. (2015) [30] * X X X X X

Lu et al. (2010) [51] X X

Ng et al. (2016) [45] X X X X X

* Accuracy values were not reported in Supplementary Materials Tables S4–S7 since this study did not evaluate digital anthropometry’s ability to predict baseline body composition.
Actually, Milanese et al. [30] compared exercise-induced regional changes in body FM (as measured by DXA) with changes in selected body geometrical measures (as measured by a
digital scanner). See Table 6 for more details. Abbreviations: PE = precision error; R = coefficient of reliability.
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Table 6. Statistical analysis of included studies evaluating body composition, volume, FM and FFM.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Harbin et al. (2018) [33]

Accuracy: Pearson’s
coefficient (r), mean
difference (groups),
Bland–Altmnn plot

The correlation between DA and other methods for %BF was
measured: r was 0.816 with HW, 0.888 with BIA, 0.817 with

skinfolds, and 0.875 with circumferences. According to
Bland–Altman plot, there was a proportional bias when

measuring %BF in DA compared with circumferences (mean
differences: −3.20 ± 9.022, LoA: −12.22–5.822), skinfolds (mean

differences: −1.743 ± 1.133, LoA: −12.88–9.391), BIA (mean
differences: −1.954 ± 8.167, LoA: −10.12–6.213), HW (mean

differences: −4.704 ± 9.808, LoA: −14.51–5.104) and a reduced
accuracy among subjects with increased adiposity.

The %BF from 3D was
underestimated compared with
other methods, and there was a

proportional bias, probably
attributable to inconsistencies with
landmark and partition position in

the 3D scan analysis algorithm.

Wagner
et al. (2019) [35]

Reliability: standard error of
measurement (SEM),
intraclass correlation

coefficient (ICC)
Accuracy: Pearson’s

coefficient (r), coefficient of
determination (R2), standard
error of estimate (SEE), mean

difference (groups), t-test,
Bland–Altman plot

The ICC and the SEM for the
DA was 0.995 and 0.57,

showing a high
test-retest reliability.

There was a high correlation between DA and ADP for %BF
(r = 0.899, r2 = 0.809, SEE 4.13%), but the mean difference (mean

DA: 24 ± 6.8%; mean ADP: 21.9 ± 9.4%) and Bland–Altman
(r = −0.597, LoA −6.7 to 11%) showed a significant (p < 0.001)
and proportional bias with an overestimation of the lean body.

The scanner overestimated
participants at the lean end of the

sample and underestimated
participants with the most body fat,

not providing valid estimates of
%BF compared with ADP.

Garlie et al. (2010) [26]

Accuracy: Pearson’s
coefficient (r), concordance

correlation coefficient (CCC),
standard error of estimate

(SEE), mean difference
(groups), paired t-test,

Bland–Altman plot

%BF measured by DA was correlated with %BF measured by
DXA (r = 0.74, SEE 3.2, p < 0.05) and by CA (r = 0.96, SEE 1,

p < 0.05). CCC revealed a moderate and statistically significant
concordance correlation between DA and DXA (rho_c: 0.74) and
DA and CA (rho_c: 0.96). There were no significant differences
between DA and CA for height, neck and waist circumferences

or between DA and DXA for %BF (mean differences:
0.11% ± 3.1%, LoA: −6.06–6.28%).

The correlation and concordance
were high with DA and there were
no significant differences of means.
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Table 6. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Cabre et al. (2021) [36]

Accuracy: Pearson’s
coefficient (r), coefficient of

determination (R2), standard
error of estimate (SEE), root
mean square error (RMSE),
mean difference (groups),
t-test, Bland–Altman plot

Strong correlation between 3D and DXA and 4C (for DXA:
%BF r = 0.86, R2 = 0.74; %BF with 4C, r = 0.80, R2 = 0.63; FM with

4C FM, r = 0.9, R2 = 0.81; FFM r = 0.9, R2 = 0.88; for 4C: %BF,
r = 0.80, R2 = 0.63; FM, r = 0.85, R2 = 0.72; FFM, r = 0.92, R2 =

0.84), and SEE was fairly good in %BF with DXA (4.20%), good
in FM with DXA (2.91 kg), fair in FFM with DXA (3.77 kg) and
FM with 4C (3.64 kg), poor in %BF and FFM with 4C (5.31% and

4.76 kg, respectively). The differences between DA and DXA
were −0.10% for %BF, −0.28 kg for FM and −0.10 kg for FFM.
Differences between DA and 4C were higher: 4.13% for %BF,

2.66 kg for FM, −3.15 kg for FF. According to paired t-test and
Bland– Altman plot, there were significant differences between
DA and 4C, not for values between DA and DXA but the LoA

was wide (%BF: −8.46–8.25; FM: −5.99–5.42; FFM: −7.68–7.48).

DA produced acceptable
measurements compared with DXA,
and the two methods were in good
agreement, especially in those with
normal or high lean mass, but the
LoA was wide so the agreement

should be interpreted with caution.
DA does not appear to be valid

against 4C models.

Sobhiyeh, Dunkel et al.
(2021) [40]

Accuracy: one-way ANOVA,
Pearson’s correlation

coefficient (r), coefficient of
determination (R2) of

stepwise multiple regression,
mean absolute error (MAE)

Volumes: total body volume measured by DXA and ADP
showed high linear correlation with DA using a universal

software (R2 0.98, MAE 1.34–2.17 for Styku S100
scanner®(Styku, Los Angeles, CA, USA); R2 = 1.00, MAE

1.19–1.79 for SS20 Size Stream SS20® (Cary, NC, USA)); a slight
significant underestimation by Styku was observed. As for

regional volumes, good agreement between DA and DXA was
seen the regional volumes calculated by DXA (arms: R2 0.75 vs.

0.79, legs: R2 0.86 vs. 0.89, trunk: R2 0.97 vs. 0. 98, for Styku
S100 scanner®(Styku, Los Angeles, CA, USA) vs. SS20 Size

Stream SS20® (Cary, NC, USA). However, a significant though
positive bias in the head-neck region was observed, with R2

0.43–0.59. Fat mass (FM) calculated with Siri equation: total FM
by DA strongly agreed with DXA counterpart (R2 = 0.84 vs. 0.86,

Styku S100 scanner®(Styku, Los Angeles, CA, USA) vs. SS20
Size Stream SS20® (Cary, NC, USA). Appendicular fat masses

estimated by the universal software also showed good
agreement with DXA regional fat masses (R2 0.72–0.88 for Styku
S100 scanner®(Styku, Los Angeles, CA, USA) and R2 0.76–0.85
for SS20 Size Stream SS20® (Cary, NC, USA)), which were still

lower than ADP values.

Total body and regional volumes
measured by DXA and ADP had

strong associations with
corresponding estimates from the
commercial 3D optical scanners

coupled with the universal software.
Regional body volumes also had
strong correlation between DXA
and the 3DO scanners. Similarly,

there were strong associations
between DXA-measured total body
and regional fat mass and 3D optical

estimates calculated by the
universal software. Absolute

differences in volumes and fat mass
between the reference methods and

the universal software
values appeared.
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Table 6. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Tinsley, Adamson et al.
(2020) [41]

Reliability: relative technical
error of measurement
(%TEM = RMS-% CV),

precision error (PE),
intraclass correlation

coefficient (ICC) with 2-way
mixed-effects ANOVA.

Accuracy: mean difference,
Bland–Altman plot,

concordance correlation
coefficient (CCC), root mean

square error (RMSE) in
regression analysis

All body scanners showed
ICCs 0.975–0.999 (p < 0.0001).
Naked 3D Fitness Trackers®

(Redwood City, CA, USA),
Styku S100 scanner®(Styku,
Los Angeles, CA, USA), and
Size Stream SS20® (Cary, NC,
USA) were the most precise

in terms of %BF (PE
0.5–0.7%, RMS-% CV
2.3–2.9%), with FIT3D

Proscanner® (Redwood City,
CA, USA)® showing slightly
higher errors (PE: 1.0–1.1%;
CV: 4.0–4.3%). All scanners

showed similar precision for
FM (kg), while FFM

exhibited a RMS-% CV
0.7–1.4% for all scanners.

Size Stream SS20® (Cary, NC, USA), FIT3D Proscanner®

(Redwood City, CA, USA), and Naked 3D Fitness Trackers®

(Redwood City, CA, USA) were equivalent to the 4C model in
terms of %BF, FM, and FFM (5% equivalence region = ±1.3%
body fat, ±1.0 kg FM, and ±2.7 kg FFM). All scanners CCCs:

0.74–0.90 (%BF), 0.85–0.95 (FM), 0.93–0.97 (FFM). FIT3D
Proscanner® (Redwood City, CA, USA) displayed the lowest

RMSE for all variables (2.8 kg for FM and FFM; 3.7% for %BF),
similar to Naked 3D Fitness Trackers® (Redwood City, CA,
USA) and Size Stream SS20® (Cary, NC, USA); Styku S100

scanner®(Styku, Los Angeles, CA, USA) displayed the largest
RMSE (4.6 kg for FM and FFM, 6.1% for %BF). Bland–Altman

plots showed that FIT3D Proscanner® (Redwood City, CA, USA)
had narrowest LoA (±7% for %BF and ±~5.5 kg for FM and

FFM), with slightly higher values for all other scanners
(±~9.0–9.5% for %BF and ±~7.0 kg for FM and FFM).
Proportional bias was largest for %BF, with regression

coefficients ± 0.1–0.3 for all scanners (p < 0.01). Naked 3D
Fitness Trackers® (Redwood City, CA, USA) showed no

systematic bias for FM, and Styku S100 scanner®(Styku, Los
Angeles, CA, USA) showed no systematic bias for FFM.

All scanners produced reasonably
reliable estimates and, except Styku,
demonstrated equivalence with 4C,
using 5% equivalence regions, and
constant errors of <1% for %BF and

0.5 kg for FM and FFM.

Milanese
et al. (2015) [30]

Accuracy: paired t-test,
Pearson’s correlation

coefficient (r), coefficient of
determination (R2) of

multiple linear regression,
standard error of the

estimate (SEE)

All pre-post absolute changes in DA whole-body FM showed
fair linear correlation with DXA counterparts (r > 0.5); 4 out of

6 regional DA trunk FM changes correlated with DXA
measurements. As for relative changes, only TB %FM and trunk
% FM correlated with their respective DA measurements. When

individually used as predictor variables in simple linear
regression analysis, several DA anthropometric measurements
produced significant models (p < 0.05, adjusted R2 12.0–39.9%)

with no improvement when implemented in a stepwise
regression analysis.

Variation in DXA-measured FM and
% FM (at both the TB and trunk

level) of women with obesity after
exercise training showed several

significant correlations, with
variation in automatic digital

anthropometric measurements.
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Table 6. Cont.

Authors and Year
of Publication

Summary Statistics
Results

Conclusion
Reliability Accuracy

Lee et al. (2015) [44]

Accuracy: coefficient of
determination (R2) of

stepwise multiple regression,
standard error of the

estimate (SEE), mean errors,
Bland–Altman plot

Prediction equations for android and gynoid FM (kg) showed
higher prediction values (R2 93.2% android and 91.4% gynoid)
than %BF (76.4% android and 66.5% gynoid). Total and regional
body FM (kg) was better predicted (R2 from 92.4 to 94.6%), as

opposed to predicted %BF (R2 from 64.1 to 89.9%).
Cross-validation of the proposed equations showed no

statistical difference between DXA and predicted body fat by
the equation (all mean error CI included 0). Android and

gynoid FM and %BF data distribued within Bland–Altman
plots, 95% LoA with few outliers and a systematic bias ~0 cm.

Overall, group mean digital and
conventional body circumferences

values were in good agreement,
with ∼2 cm systematic differences

and highly correlated (all
p values < 0.01). The bias tended to
be small, but significant depending

on anatomic site and device.

Abbreviations: FM = Fat Mass; FFM = Free Fat Mass; BF = body fat; CI = confidence interval; 4C = 4-component model; rho_c = Lin’s concordance correlation; TB = total body.
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The measurement results below indicate the minimum value and the maximum value;
the ranges are wide due to the differences in values of the measured body section and the
laser technology used to measure them.

3.2.1. Reliability

Fourteen out of 30 studies compared the repeatability of digital (DA) and conventional
anthropometric (CA) measurements. Almost all studies showed that both methodologies
are reliable [24,34,37–39,48,50]; however, some studies showed greater reliability for manual
measurements than digital scanners [34,37–39,48], whereas in other cases the opposite was
observed [24,50].

The reliability of the two methodologies (i.e., the variability observed among repeated
measurements performed on the same subject by one or more operators, i.e., the intra- and
inter-operator variability) is expressed in terms of Technical Error of Measurement (TEM)
and %TEM. According to the ISAK protocol, if TEM is <2 cm and %TEM is <1.5%, the
anthropometric measurements should be considered reliable.

The calculated TEMs were generally less than 2 cm [38,47,48], with more accurate
results observed in manual anthropometry [38,48].

By means of SL-IR (Structured Light-InfraRed) devices, Conkle used the AutoAnthro
Scanner® (Occipital San Francisco, CA, USA) to obtain comparable inter- and intra-observer
TEM, demonstrating that DA performance was operator independent. In contrast, CA
produced higher inter-observer TEMs than intra-observer TEMs, as might be expected [38].

Koepke et al. employed an SL laser scanner (BS VITUS Smart XXL (Human solution
GmbH, Kaiserslautern, Germany)), which showed acceptable TEMs for hip circumference,
as observed in CA; otherwise, manual measurements of other body sites appeared to be
less precise [24].

Tinsley et al. used three different SL-IR scanners (Naked Labs 3D Fitness Trackers®

(Redwood City, CA, USA), Fit3D Proscanner® (Redwood City, CA, USA), and Size Stream
SS20® (Cary, NC, USA)) and one ToF (Time-of-Flight) device (Styku S100 scanner (Los
Angeles, CA, USA)) to compare the repeatability in measuring body circumferences. The
four body scanners produced an overall mean root mean-square (RMS)-% CV (% TEM)
of 1.1–1.3%, with lower values for hips and waist (%TEM < 1% and 0.7–1.6%, respec-
tively) and higher values for the thigh (0.8–1.4%), neck (1.2–2.0%), and arm circumferences
(1.4–2.8%) [47]. Lu used the mean absolute differences (MAD) between the repeated
measurements derived from scans, and all MAD values were less than 7 mm [51].

Regarding the relative reliability indices (i.e., the proportion of variance attributable
to between-subject variance in a set of measurements), the ICC (two-way mixed-model,
absolute agreement) and R (coefficient of reliability) values were high [24,38,47].

Tinsley, Benavides et al. in the aforementioned study, used SL-IR and reported high
ICCs (0.974–0.999) for all circumferences [47]; similarly, using SL-IR, Conkle observed high
R and ICC values for both methods [38], with slightly better values in CA. Wang et al.
showed ICCs > 0.97 for both lengths and circumferences with a SL-laser scanner [46].
Koepke obtained ICCs > 0.993 except for the chest circumference (ICC 0.981) [24]. Pep-
per et al. reported ICCs ≥ 0.99 for all eight repeated measures of body circumferences,
with the abdomen, waist, and hip showing the highest values (ICC = 1.00) and the chest
circumference having the lowest one (ICC = 0.992) [31].

For absolute reliability (i.e., consistency within repeated measurements of the same
subject), %CV and standard error of the measurement (SEM) were calculated. Wong ob-
served CVs < 5% when using an SL device (Fit3D Proscanner® (Redwood City, CA, USA))
with the exception of the forearm circumference (CV value = 6.09%) [37]; Ng et al. reported
%CVs of 0.75–2.24% measured by a SL-IR scanner (Fit3D Proscanner® (Redwood City, CA,
USA)) [45]. The studies of Kennedy with SL-IR scanners showed lower reliability in DA
than CA for body circumferences (CV 0.4–2.7% vs. 0.2–0.4%), with the most precise mea-
surement being the hip [39]. Bourgeois, who used two SL scanners and one ToF, revealed
%CVs < 2.6% for four circumferences: waist, hip, right arm, and right thigh [34]. Simenko
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and Busic’s studies, which used SL-visible light scanners, reported %CV > 5% [49,50],
with the exception of hip circumference (%CV in DA 4.243%, in CA 4.295%) [49], which
performed slightly better in DA (%CV 6.62–11.29, SEM 0.13–0.46) [50]. Busic also reported
similar values of SEM between the two methods, with higher values in chest and breast
circumference [49]. Wong examined the %CV of body shape indices and found that the CV
was 1.50% for the waist hip ratio, 1.82% for waist height ratio, and 1.29% for waist-width
ratio, respectively [37].

3.2.2. Accuracy

Most of the studies selected evaluated DA accuracy compared with manual measure-
ments. The correlation was studied with Pearson’s coefficient (r), and a very strong linear
correlation (r > 0.8) [52] was demonstrated between the two methods [24,27,32,48,49]. There
was also a strong correlation with body shape [24]. Some studies [24,27] examined the
correlation with Lin’s concordance correlation (CCC); other studies [25] used Spearman
Rho, and the strong correlation was confirmed.

Through Pearson’s coefficient and linear regression analysis, it is possible to confirm
the goodness of fit with the coefficient of determination (R2). In Busic’s study, this value was
acceptable: it was over 90% in 7 out of 15 measurements, over 80% in 6 measurements, and
above 74.9% in 2 measurements [49]. Bourgeois demonstrated that DA was significantly
correlated with CA using the KX-16 scanner® (TC LABS, Apex, NC, USA) (R2 0.71–0.91,
p < 0.0001; root mean-square error (RMSE), 3.9–7.7), Fit3D Proscanner® (Redwood City,
CA, USA) (R2 0.79–0.92, p < 0.0001; RMSE, 1.9–6.4) and Styku S100 scanner® (Los Angeles,
CA, USA) (R2 0.73–0.96, p < 0.0001; RMSE, 2.6–6.3) [34]; similarly, Kennedy and Smith
observed that DA significantly predicted manual measurements (R2: Fit3D Proscanner®

(Redwood City, CA, USA), 0.70–0.96; Styku S100 scanner®(Styku, Los Angeles, CA, USA),
0.54–0.97; Size Stream (Cary, NC, USA), 0.68–0.97; p < 0.01) [42]. The explained variance
in linear regression by DA was high also in Kennedy’s study (R2 0.84–0.97, p < 0.0001),
although the Naked Body Scanners (Naked Labs Inc, Redwood City, CA, USA) signifi-
cantly overestimated waist circumferences by ~2.0 cm compared with reference estimates
(p < 0.0001). Significant bias was also discovered in measurements of the left and right
thighs (p < 0.0001). The scanner overestimated thigh circumferences by ~3.0 cm, with
significantly greater overestimations for thighs < 55.0 cm [39].

Similar results were found in Sobhyeh and Kennedy’s study (R2 > 0.90 for most of the
scanners compared with conventional anthropometry, p < 0.001, RMSE 1–3 cm), with a few
exceptions for limbs; specifically, correlations between CA and DA waist circumference
had R2s of 0.95–0.97 (p < 0.001) [43]. Wong, who studied a pediatric population, found high
values of R2 and RMSE for waist (R2 0.939, RMSE 3.783 cm) and hip (R2 0.987, RMSE 1.828)
circumferences [37]. In the study of Wells, ranking consistency was high (R2 > 0.90 for most
of the outcomes) [48].

Differences between two methods were found. A statistically significant overestima-
tion between means obtained with DA and CA was observed for waist circumferences
(Japar’s study: 85.34 vs. 84.63 cm, p < 0.05 [28]; Wells’s study: 83.15 vs. 81.65, p < 0.001 [48];
Koepke’s study: 81.38 vs. 80.31 cm, p < 0.001 [24]), hip circumferences (Japar’s study:
103.47 vs. 94.88 cm, p < 0.01 [28]; Koepke’s study: 99.19 vs. 94.77 cm, p < 0.01 [24]), chest
circumferences (Koepke’s study: 97.62 vs. 93.82 cm, p < 0.001 [24]), and buttock circum-
ferences (Koepke’s study: 97.23 vs. 84.61 cm, p < 0.001 [24]). This was also confirmed by
Bland–Altman plots that highlighted a systematic bias and a proportional bias in circum-
ference of waist [27]. Wells found a significant bias for the circumferences of the chest
(intercept: coefficient −0.88, confidence interval (CI): −0.97 to 0.21; slope: coefficient 1.07,
CI 1.05 to 1.08), waist (intercept: coefficient 1.43, CI: 0.34 to 2.51; slope: coefficient 1.00,
CI 0.98 to 1.02), knee (intercept: coefficient 0.17, CI −0.48 to 0.83; slope: coefficient 1.04,
CI 1.02 to 1.07), and calf (intercept: coefficient 0.37, CI −0.04 to 0.78; slope: coefficient
1.01, CI 0.99 to 1.02) that varied with outcome size and ethnicity [48]. Wong found a good
agreement using Bland–Altman plots for hip and waist circumference [37]. Heuberger also
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reported significant (p < 0.01) differences in waist and hip circumference measured by DA
and CA [29].

Underestimation of height with DA compared with CA is shown in studies by Koepke
(178.31 vs. 180.32 with p < 0.001) 24], Beckmann (177.92 vs. 178.69 with p < 0.001) [27], and
Sager [25], as shown in Bland–Altman plots [24,25,27]. Height was overestimated in DA
compared with CA in Conkle’s study (mean differences: 0.59, limits of agreement (LoA):
−0.1 to 1.2) [38]. Conkle studied the head circumference, which was overestimated (mean
differences: 0.32, LoA: −0.1 to 0.8), and arm circumference, which was underestimated
(mean differences: −0.19, LoA: −0.6 to 0.2) [38].

Kennedy et al. found mean group differences between DA and CA ranging from
1.5 cm (arms) to 3.2 cm (thighs), which were all statistically significant apart from that for
hip circumference [39]. Sobhyeh et al. reported statistically significant differences between
CA and DA means (absolute mean difference (∆)~2 cm across digital scanners and body
sites, with few outliers). Overall, Bland–Altman analyses revealed systematic bias in 11 of
the 33 evaluations, with the highest observed slopes comparing CA and DA results by the
Fit3D Proscanner® (Redwood City, CA, USA) system. Relative CA-DA differences were
smaller for chest, waist, and hip measurements (2–3%) and larger for arms (5–7%) and
ankle measurements (8–10%). As for lower limbs, the Styku S100 scanner®(Styku, Los An-
geles, CA, USA) displayed absolute mean differences between DA and CA measurements,
increasing from 1–2 cm at the thighs to 2–3 cm at the calves and then to 6 cm at the ankles;
in contrast, both the Fit3D Proscanner® (Redwood City, CA, USA) and the Size Stream SS20
(Cary, NC, USA) showed relatively constant (1–3 cm) mean differences between DA and
corresponding CA measurements at those body sites, with no increasing pattern moving
down along the legs. As a result, Bland–Altman slopes comparing ankle circumferences
that were measured on the Size Stream SS20 (Cary, NC, USA) and Fit3D Proscanner® (Red-
wood City, CA, USA) were close to zero. When comparing ankle circumferences measured
on either of these scans with Styku S100 scanner®(Styku, Los Angeles, CA, USA) scans, the
Bland–Altman slopes were larger [43].

Finally, Ng et al. reported small but significant mean differences for waist and hip
circumferences (mean differences of 1.75 cm, CI 0.58–2.91 and 3.17 cm, CI 1.93–4.41, respec-
tively, p < 0.05) [45].

As for body shape, Japar and Koepke observed significant differences for Waist to Hip
Ratio (WHR). Koepke reported a WHR of 0.82 in DA vs. 0.85 in CA, and Japar reported
0.82 in DA vs. 0.89 in CA; for Waist to Height Ratio (WHtR), Koepke reported a value of
0.46 in DA vs. 0.45 in CA, with p < 0.001 [24,28].

Simenko reported conflicting results, with 10 statistically different paired measure-
ments out of 14, but clinically small differences (mean differences 0.273–0.974 cm, p < 0.05).
Bland–Altman plots showed high agreement between both methods; 95% LoA were nar-
row for both the upper (−1.61; +2.74 cm) and lower limbs (−1.43; +1.95 cm) [50]. Simi-
larly, Busic showed significant differences between means in 9 out of 15 circumferences
(height, waist, hip, chest, upper arms, forearms, and right upper leg circumferences) with a
p < 0.05, with small differences except for the breast and chest girths, probably due to the
chest movements during breathing [49]. Unlike other authors, Lu used the mean absolute
difference (MAD) between the DA and CA as a measure of accuracy in addition to the
paired t-test, finding significant differences in 8 of the 12 body dimensions, p < 0.05 [51].
Busic showed good agreement and no significant biases between DA and CA, as analysed
by Bland–Altman plots [49]. Kennedy et al. found significant mean differences between
three DA devices and CA circumferences on a sample of young children (∆ mean: Fit3D
Proscanner® (Redwood City, CA, USA), 1.2–4.2 cm; Styku S100 scanner® (Los Angeles,
CA, USA), 1.0–5.5 cm; Size Stream SS20 (Cary, NC, USA), 1.6–3.4 cm; p < 0.01). The Fit3D
Proscanner® (Redwood City, CA, USA) generally overestimated waist, right arm, and left
arm measurements by ~1.5 cm and hip measurements by about 4.0 cm; in contrast, thigh
circumferences > 40 cm were generally underestimated. The Size Stream SS20 (Cary, NC,
USA) also showed a slight positive bias for waist, hip, right arm, and left arm measurements
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ranging from 1.6 to 2.5 cm, whereas thigh circumferences were underestimated by ~3.0 cm.
Finally, the Styku S100 scanner®(Styku, Los Angeles, CA, USA) prediction bias was less
homogenous between different measurement locations [42].

Bourgeois evaluated four circumferences (waist, hip, right arm, and right thigh cir-
cumferences) with one time-of-flight scanner (Styku S100 scanner®(Styku, Los Angeles,
CA, USA)) and two structured light scanners (KX-16 scanner® (TC LABS, Apex, NC, USA)
and Fit3D Proscanner® (Redwood City, CA, USA)) and found differences between the
means of the reference methods and DA depending on the scanner used. There were
significant differences with KX-16 scanner® (TC LABS, Apex, NC, USA) for hip, right
arm, and right thigh circumferences (p < 0.0001); with Fit3D Proscanner® (Redwood City,
CA, USA) for waist, right thigh (p < 0.0001) and hip (p < 0.01) circumferences; and with
Styku S100 scanner®(Styku, Los Angeles, CA, USA) for waist and right arm circumferences
(p < 0.0001). In the Bland–Altman analysis, significant biases were found for waist circum-
ference with KX-16 scanner® (TC LABS, Apex, NC, USA) (R2 0.04, p < 0.05) and Styku
S100 scanner®(Styku, Los Angeles, CA, USA) (R2 0.12, p < 0.01); for hip circumference
with Fit3D Proscanner® (Redwood City, CA, USA) (R2 0.11, p < 0.01); for right arm with
KX-16 scanner® (TC LABS, Apex, NC, USA) (R2 0.05, p < 0.05) and Styku S100 scanner®

(Los Angeles, CA, USA) (R2 0.17, p < 0.0001); and for right thigh with KX-16 scanner® (TC
LABS, Apex, NC, USA) (R2 0.27, p < 0.0001), Fit3D Proscanner® (Redwood City, CA, USA)
(R2 0.06, p < 0.05) and Styku S100 scanner® (Los Angeles, CA, USA) (R2 0.24, p < 0.0001) [34].

Pepper et al. found no significant differences for waist, hip, or waist: hip ratio accord-
ing to paired-samples t tests (p = 0.05) [31]. Garlie also found no significant differences
between the means of height, weight, neck circumference, and waist circumference [26].

In terms of body shape, DA and CA agreed on popular indices of body shape (waist cir-
cumference, waist to hip ratio, waist to height ratio). The correlation was very high [24,25],
but the Bland–Altman plot exhibited a bias and a trend towards values in the upper part of
the range in DA [25].

3.3. Comparison between Digital Anthropometry (DA; 3D Scanners) and Classic Manual
Anthropometry (CA) Measurements: Body Composition, Volume, FM and FFM

Numerous studies compared the reliability and accuracy (validity) of body composi-
tion estimated using DA vs. specific reference methods (Dual-Energy X-ray Absorptiometry,
DXA, Air Displacement Plethysmography, ADP, Bioelectrical Impedance Analysis, BIA,
Hydrostatic Weighing, HW) [26,30,32–37,39–41,44–47].

As for anthropometric measurements, the results are analysed separately on the basis
of the reliability and accuracy criteria, which quantify random and systematic (bias) errors
related to anthropometric measurements, respectively (Boxes 1 and 2). The results of studies
included in this systematic review are summarized in Tables 2 and 4–6; the comparisons
between studies are described in Supplementary Materials Tables S6 and S7.

3.3.1. Reliability

Few studies have reported %TEM (RMS-% CV) reliability. Tinsley Adamson et al.
demonstrated that Naked 3D Fitness Trackers® (Redwood City, CA, USA), Styku S100
scanner®(Styku, Los Angeles, CA, USA), and Size Stream SS20® (Cary, NC, USA) were
the most accurate devices for estimating body fat percentage (%BF) (RMS-% CV 2.3–2.9%),
with FIT3D Proscanner® (Redwood City, CA, USA) showing slightly higher errors (RMS-%
CV: 4.0–4.3%). Similar precision was reported for FM (kg), while FFM exhibited an RMS-
%CV of 0.7–1.4% for all scanners [41]. Another study by Tinsley et al. using the same
scanners reported an average RMS-% CV of 1.9–2.3% for body volumes; the lowest value
was observed for total body volume (RMS-% CV < 1% for all scanners), followed by trunk
(~1.2%), legs (~2.5%), and arms (~3 to 5%) [47].

Relative reliability indices showed concordant results: Tinsley Adamson et al. re-
ported high ICCs 0.975–0.999 (p < 0.0001) for %BF, FM, and FFM [41]; the same group
reported comparable reliability with reference to body volumes (ICCs 0.952–0.999 for body
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volumes) [47]. Pepper et al. observed ICCs ≥ 0.99, with thigh volume being the most
reliable (ICC = 0.997) [32], and Wang confirmed ICCs > 0.97 for body volumes [46].

In terms of absolute reliability, Tinsley Adamson reported that Naked 3D Fitness
Trackers® (Redwood City, CA, USA), Styku S100 scanner®(Styku, Los Angeles, CA, USA),
and Size Stream SS20® (Cary, NC, USA) were highly reliable for %BF (Precision Error =
SEM = 0.5–0.7%), with FIT3D Proscanner® (Redwood City, CA, USA) showing slightly
higher errors (PE = SEM = 1.0–1.1%). Similar results were reported for FM (kg) [41]. With
a time-of-flight (ToF) scanner, for %BF, Harbin found SEM = 0.469 between DA and BIA
and SEM = 0.307 between DA and HW [33]. Ng et al. observed %CV < 5% for volumes
(0.91–4.49%) but a higher CV% in derived regional FM and FFM (Visceral Adipose Tissue
(VAT): 6.69%; Arms FFM: 6.67%; Arms FM: 11.63%) [45]. Wong reported precise 3D scan
measurements, particularly for fat mass (CV 3.30%) and fat-free mass (CV 1.34%) [37].
Bourgeois made a comparison among 3D, DXA, and ADP precision, and the CV values
of reference methods (DXA and ADP) did not exceed 1.5%, indicating good reliability; in
regional body volumes, 3D scans showed higher CVs (0.3–5.7%), which were less with
Styku S100 scanner®(Styku, Los Angeles, CA, USA) than with the reference method for the
trunk and left leg [34]. According to Pepper et al., the CVs were all <5%, with total body
volumes (BV) being the most reliable (CV 0.41%) and thigh volume being the most variable
(CV 2.26%) [32]. Similar results were observed by Kennedy et al. with %BF consistent
among repeated measurements (CV = 2.4%) [39]. Ng et al. found a higher CV% in derived
regional FM and FFM (VAT: 6.69%; Arms FFM: 6.67%; Arms FM: 11.63%) than in volumes
(0.91–4.49%) [45].

3.3.2. Accuracy

Several studies examined the relationships between total or segmental BV and body
composition using 3D body scanners with those by BIA, DXA, ADP, and
HW [26,30,32–37,39,41,43–47].

The measurement results are presented below as the minimum and maximum values;
the range can be wide depending on the specific body segments and the laser used to
measure them.

For %BF, good correlation was reported for DA and other body composition methods:
DXA (r≥ 0.74) [26,36], HW (r = 0.816) [33], ADP (r = 0.899) [35] and BIA (r = 0.888) [33]. Gar-
lie evaluated the correlation through CCC, and the values were moderate and statistically
significant (CCC = 0.74, p < 0.05) [26].

Cabre and Milanese examined body composition. In Cabre’s study there was a strong
correlation between 3D, DXA, and four compartments (4C) model for FM (3D vs. DXA
r = 0.90, 3D vs. 4C r = 0.85) and for FFM (3D vs. DXA r = 0.90, 3D vs. 4C r = 0.92) [36].
Milanese et al. compared post-exercise changes in total and regional FM, as detected by
DA and DXA. Whole-body FM showed a fair linear correlation with DXA counterparts
(r > 0.5); 4 out of 6 regional DA trunk FM changes correlated with DXA measurements. As
for relative changes, only total %FM and trunk %FM correlated with their respective DA
measurements [30].

The association between DA and other methods was studied through the coefficient
of determination. For total body volume, a strong correlation between DA, ADP, and DXA
(R2 > 0.97, RMSE 1.618–9.7) was described [34,40,45].

Despite a strong prediction of a total BV R2 = 0.98–1.0, Tinsley et al. observed signifi-
cant overestimation (Size Stream SS20® (Cary, NC, USA)) and underestimation (Styku S100
scanner®(Styku, Los Angeles, CA, USA)) (both p < 0.01) for the DA vs. the reference method
(4C model). The reported RMSE for total BV ranged from 4.2 to 10.5 liters depending on the
scanner, whereas DXA predictive equations showed a RMSE of 0.7–1.5 L. Compared with
the 4C model, Bland–Altman plots showed systematic proportional bias in total BV (with
statistically significant regression coefficients) for all four scanners and wider LoA with
the 4C model than with DXA (LoA 2.9–5.3 L vs. 1.1–2.0 L, DA vs. DXA). Similar accuracy
issues were also reported for regional volumes, with DA significantly overestimating trunk
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volume as well as underestimating both arm and leg volumes. Furthermore, all 3D regional
volumes failed to exhibit equivalence with DXA-derived volumes [47].

Total-body volumes measured by the three-dimensional photonic scanner (3DPS) and
underwater weighing (UWW) were linearly correlated (R2 = 0.999 and SEE = 0.892 L), with
DA showing significantly greater values (p < 0.001) [46].

Bourgeois reported all significant correlations with DXA for regional body volume
measured by DA (R2 0.69–0.98, p < 0.0001, RMSE 0.8–14.0) [34]. DXA regional volume
estimates showed moderate prediction by DA (R2 = 0.73–0.97), with the latter includ-
ing less volume in the limbs and relatively more volume in the trunk compartment (all
p < 0.001) [45]. Sobhyeh reported a good correlation between DA and DXA (arms: R2 0.75
vs. 0.79, legs: R2 0.86 vs. 0.89, trunk: R2 0.97 vs. 0. 98, for Styku S100 scanner®(Styku,
Los Angeles, CA, USA) vs. SS20 (Cary, NC, USA)) [40]; similarly, Wong reported val-
ues of R2 > 0.7 (arm: R2 0.962, RMSE 0.255; leg: R2 0.763, RMSE 2.159; trunk: R2 0.968,
RMSE 1.683) [37].

Lower values between 3D and DXA for %BF were reported by Kennedy (R2 0.73,
p < 0.0001) [39] and by Cabre (R2 0.74, SEE 4.20) [36]. Cabre also reported on correlations
between 3D and DXA for FM (R2 0.81, SEE 2.91) and FFM (R2 0.88, SEE 3.77) and between
the 3D and 4C model for %BF (R2 0.63, SEE 5.31), FM (R2 0.72, SEE 3.64), and FFM (R2 0.84,
SEE 4.76) [36]. Garlie reported SEE 3.2 for %BF between 3D and DXA [26]; Wagner found a
significant (p < 0.001) overestimation of %BF by DA compared with ADP with R2 = 0.809
and SEE 4.13% [35], and Wong reported a strong association between 3D and DXA for %BF
(R2 0.855, RMSE 3.63) [37].

Using (UWW as the criterion method, Wang et al. found no significant difference in
%BF between DA and UWW (p = 0.4801), although the absolute differences were higher
than in volumes [46].

In a study by Tinsley et al., three body scanners employed (Size Stream SS20® (Cary,
NC, USA), FIT3D Proscanner® (Redwood City, CA, USA), and Naked 3D Fitness Trackers®

(Redwood City, CA, USA)) were within the 5% equivalence region of a 4C model in terms of
%FM, FM, and FFM (±1.3% body fat, ±1.0 kg FM, and ±2.7 kg FFM). The CCCs of all the
scanners were 0.74–0.90 (%FM), 0.85–0.95 (FM), and 0.93–0.97 (FFM). FIT3D Proscanner®

(Redwood City, CA, USA) displayed the lowest RMSE for all variables (2.8 kg for FM and
FFM; 3.7% for %FM), and Naked 3D Fitness Trackers® (Redwood City, CA, USA) and Size
Stream SS20® (Cary, NC, USA) displayed slightly higher values (~3.7 kg for FM and FFM;
4.8% for %FM); Styku S100 scanner®(Styku, Los Angeles, CA, USA) displayed the largest
RMSE (4.6 kg for FM and FFM; 6.1% for %FM). According to the Bland–Altman analysis,
FIT3D Proscanner® (Redwood City, CA, USA) showed the narrowest LoA (±7% for %BF
and ±~5.5 kg for FM and FFM), with other scanners showing larger values (±9.0–9.5% for
%BF and±~7.0 kg for FM and FFM). Proportional bias was largest for %FM, with regression
coefficients ranging from ±0.1 to 0.3 for all scanners (all p < 0.01). On the one hand, only
Naked 3D Fitness Trackers® (Redwood City, CA, USA) did not display proportional bias for
FM, while the other scanners displayed regression coefficients of 0.1 to 0.2 (p < 0.0001). On
the other hand, only Styku S100 scanner®(Styku, Los Angeles, CA, USA) did not display
proportional bias for FFM, while all other scanners exhibited proportional bias, which was
statistically significant but small (coefficients ± 0.1) [41].

In a study by Sobhiyeh, total FM by DA calculated with Siri’s equation strongly agreed
with DXA (R2 = 0.84 vs. 0.86, Styku S100 scanner®(Styku, Los Angeles, CA, USA) vs. Size
Stream SS20 (Cary, NC, USA)). Appendicular FM estimated by the universal software also
agreed with DXA (R2 0.72–0.88 for Styku S100 scanner®(Styku, Los Angeles, CA, USA)
and R2 0.76–0.85 for Size Stream SS20 (Cary, NC, USA)), although less well than with ADP
values [40].

In another study using DXA as a reference method for %BF, android and gynoid FM
showed higher prediction values for android and gynoid FM (R2 93.2% android and 91.4%
gynoid) than %BF (76.4% android and 66.5% gynoid). As for Bland–Altman plots, both FM
and %FM data were randomly dispersed within the 95% LoA; the limits of agreement for
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FM and %FM were −0.06 ± 0.87 kg and −0.11 ± 1.97 % for android and −0.04 ± 1.58 kg
and −0.19 ± 4.27% for gynoid, respectively; few outliers and a systematic bias ~0 cm for
both android and gynoid FM were observed [44].

The mean differences between DA and other methods were measured. When mea-
suring total body volume with DA, Bourgeois reported a significant (p < 0.0001) underesti-
mation in comparison with DXA and ADP; for regional body volume, Bourgeois found
significant differences: the volume of the trunk was overestimated, and the volumes of
arms and legs were underestimated [34].

The 3D estimates of %BF, FM and FFM were significantly (p < 0.001) different compared
with those from 4C (3D-4C: %BF −4.13, FM −2.66, FFM 3.15), but not significantly different
compared with those from DXA (3D-DXA: %BF 0.1, FM 0.28, FFM 0.10). With high
mean differences and wide limits of agreement (%BF: −6.39–14.64; FM −4.47–9.79; FFM
−14.9–3.78), the Bland–Altman plot confirmed the overestimation of %BF measured with
3D compared with 4C, especially in subjects with increased adiposity; however, when
compared with DXA, the estimates were more acceptable, even if the LoA were quite wide
(%BF: −8.46–8.25; FM: −5.99–5.42; FF: −7.68–7.98) [36]. The results appeared similar to a
study by Harbin, who examined %BF and revealed a proportional bias in DA comparing
circumferences (LoA: −12.22 to 5.822), BIA (LoA: −10.12 to 6.213) and HW (LoA: −14.51
to 5.104) and reduced accuracy among subjects with increased adiposity [33]. Similarly,
Wagner demonstrated significant bias (r = −0.597, p < 0.001) in the estimates of %BF in the
Bland–Altman plot, overestimation of thinner participants and underestimation of fatter
participants, with the LoA between −6.7 and 11% [35].

Garlie showed small and no significant mean differences between DA and DXA of
0.11 ± 3.1%, with a LoA ranging from −6.06 to 6.28% [26]. Pepper reported no signif-
icant difference between DA and DXA, and HW measured %BF [32]. In the study by
Kennedy et al., the Naked Body Scanners (Naked Labs Inc, Redwood City, CA, USA)
showed a trending bias to underestimate %FM in individuals with less than ~30% body fat
(p = 0.09) [39].

Similarly, Wong reported a good agreement between DA and DXA for %BF and a
proportional bias for regional body volumes with an overestimation for total volume
and volumes of arm and leg, and an underestimation for trunk volume [37]. In contrast,
Bourgeois reported a proportional bias and an overestimation for trunk volume with three
scanners compared with DXA (KX-16 scanner® (TC LABS, Apex, NC, USA): R2 0.31; Fit3D
Proscanner® (Redwood City, CA, USA): R2 0.78; Styku S100 scanner®(Styku, Los Angeles,
CA, USA): R2 0.32) and an underestimation for total body volume compared with ADP
(KX-16 scanner® (TC LABS, Apex, NC, USA)): R2 0.31; Fit3D Proscanner® (Redwood City,
CA, USA): R2 0.18; Styku S100 scanner®(Styku, Los Angeles, CA, USA): R2 0.69) [34].

3.4. Certainty in the Evidence

The quality of evidence was assessed by means of the GRADE tool [23]. The GRADE
approach rates each outcome across studies, assigning a final grade of “high”, “moderate”,
“low”, or “very low” for all critically important outcomes. Clinical parameters of anthropomet-
ric measures and body composition were used. The certainty of evidence was considered very
low for almost all studies: nineteen studies [24–26,28–30,33,35,37–40,43,44,47,48,50,51] had a
serious risk of bias according to the AXIS tool, three studies [27,42,45] were considered
imprecise for the narrow sample size, and two studies [36,42] used an indirect comparison
of evidence. Four studies were rated low [24,26,29,48] (Table 7).
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Table 7. GRADE assessment for overall quality of evidence.

Outcomes Risk of Bias Inconsistency Indirectness Imprecision Publication
Bias

Overall
Quality of
Evidence

Anthropometric
measures Serious Not serious Not serious Serious Not serious
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trending bias to underestimate %FM in individuals with less than ~30% body fat (p = 0.09) 

[39]. 

Similarly, Wong reported a good agreement between DA and DXA for %BF and a 

proportional bias for regional body volumes with an overestimation for total volume and 

volumes of arm and leg, and an underestimation for trunk volume [37]. In contrast, Bour-

geois reported a proportional bias and an overestimation for trunk volume with three 

scanners compared with DXA (KX-16 scanner®  (TC LABS, Apex, NC, USA): R2 0.31; Fit3D 

Proscanner®  (Redwood City, CA, USA): R2 0.78; Styku S100 scanner®  (Styku, Los Angeles, 

CA, USA): R2 0.32) and an underestimation for total body volume compared with ADP 

(KX-16 scanner®  (TC LABS, Apex, NC, USA)): R2 0.31; Fit3D Proscanner®  (Redwood City, 

CA, USA): R2 0.18; Styku S100 scanner®  (Styku, Los Angeles, CA, USA): R2 0.69) [34]. 

3.4. Certainty in the Evidence 

The quality of evidence was assessed by means of the GRADE tool [23]. The GRADE 

approach rates each outcome across studies, assigning a final grade of “high”, “moder-

ate”, “low”, or “very low” for all critically important outcomes. Clinical parameters of 

anthropometric measures and body composition were used. The certainty of evidence was 

considered very low for almost all studies: nineteen studies [24–26,28–30,33,35,37–

40,43,44,47,48,50,51] had a serious risk of bias according to the AXIS tool, three studies 

[27,42,45] were considered imprecise for the narrow sample size, and two studies [36,42] 

used an indirect comparison of evidence. Four studies were rated low [24,26,29,48] (Table 

7). 
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Serious Not serious Not serious Serious Not serious 
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4. Discussion 

This work focused on how three-dimensional body scanners perform in terms of an-

thropometric measurements and body composition estimates. The majority of included 

studies reported good reliability and accuracy of DA, with laser-based scanners outper-

forming other technologies [24]. SL-projectors and ToF scanners produced a wide spec-

trum of results: some studies found lower, though still acceptable, reliability than refer-

ence methods [34,37,38,48], whereas two studies reported poor precision in both CA and 

SL-projector or ToF scanners [39,49], and one study demonstrated better precision with 

SL-projector and passive stereo scanners than the reference method [34]. 

With the exception of one [26], all the studies agreed on a good correlation between 

traditional and 3D body composition estimates, but 3D imaging showed a systematic bias. 

In particular, because of heterogeneity in landmark positioning and body surface parti-

tioning algorithms [33], three of the studies included in the review found less accurate 

estimation of the %BF and total BV by 3D imaging than BIA, HW, and ADP among adults 

with increased adiposity [33–35]. 

4. Discussion

This work focused on how three-dimensional body scanners perform in terms of
anthropometric measurements and body composition estimates. The majority of included
studies reported good reliability and accuracy of DA, with laser-based scanners outper-
forming other technologies [24]. SL-projectors and ToF scanners produced a wide spectrum
of results: some studies found lower, though still acceptable, reliability than reference meth-
ods [34,37,38,48], whereas two studies reported poor precision in both CA and SL-projector
or ToF scanners [39,49], and one study demonstrated better precision with SL-projector and
passive stereo scanners than the reference method [34].

With the exception of one [26], all the studies agreed on a good correlation between
traditional and 3D body composition estimates, but 3D imaging showed a systematic
bias. In particular, because of heterogeneity in landmark positioning and body surface
partitioning algorithms [33], three of the studies included in the review found less accurate
estimation of the %BF and total BV by 3D imaging than BIA, HW, and ADP among adults
with increased adiposity [33–35].

Despite this observation, DA appears to be less time-consuming and more reliable
than CA, especially in the clinical population with obesity. Furthermore, three-dimensional
body scanners have some significant advantages: they are more affordable than DXA,
which requires adequately trained personnel in the acquisition and post-processing phases,
and exposes patients to ionizing radiation. They are also less expensive and invasive than
other reference body composition techniques (ADP, HW) in the field of bicompartmental
models (Fat Mass and Fat Free Mass) of human body composition assessment.

However, DA has a few limitations due to technical and human variability. Technical
variability is influenced by the characteristics of 3D scanning hardware and the performance
of data acquisition, visualization, landmarking, and measurement extraction software.
Stationary SL laser scanners show sub-millimeter accuracy and resolution, although their
cost and slow scanning time limit their use to experimental settings. At the other end of the
spectrum, passive stereo (PS) handheld devices or ToF mini-scanners represent economical
“field measurement” options, though lower resolution limits their use in collecting ground-
truth data [53].

Currently, the absence of validated reference software makes the use of patent-
protected technologies and software from different manufacturers, which only allow up-
dates and calibrations but no direct comparison between different models, unavoidable [54].
As a first step towards DA standardization, several studies have proposed the development
of standard software (which does not require laborious manual positioning of reference
landmarks), paving the way for cross-validation of body measurements across different
devices [40,43]. Furthermore, incorporating principal component analysis (PCA) into re-
gression models trained by machine-learning algorithms could lead not only to improved
accuracy of body composition estimates but also of haematological metabolic parameters,
muscle strength, and performance [55,56]. Finally, from a global rehabilitation perspective,
the integration of postural analysis based on 3D imaging in a complete tool for assessing
patients’ nutritional status could provide useful diagnostic information to researchers
or clinicians, considering that patients with over- or under-nutrition (such as obesity
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and/or eating disorders) may be affected by pathologies affecting the musculoskeletal
system [57–60].

Participants ability to minimize motion artifacts and to replicate a standard pose across
several scans is contributes to human variability [54]. Indeed, experimental studies have
demonstrated better accuracy and precision if the human variation is under the control
of the experimenters. Lu et al. used a dummy to eliminate interference from body sway
and allow for stable posture. They showed that the mean values of the absolute difference
between the scan-derived measurements and hand-held measurements, and between the
scan-derived repeated measurements were better than the mean values reported in other
studies that did not use a dummy [51]. It is, therefore, recommended to normalize the rate
and depth of respiration during the acquisition phase through repeated measurements;
otherwise, serious accuracy problems may arise. To minimize the impact of posture on
human variability, without compromising the quality of the scans, positioning aids have
been developed [54].

Furthermore, if a standardized pose is not adopted by the subjects analysed, it may be
possible to remove the unwanted pose variance (i.e., a random error introduced by different
postures) by rigging individual 3D meshes to a standard pose. This in turn would improve
the mathematical models applied to the prediction of human body composition [37,56].

Additional clinical applications of 3D body scanners include anorexia nervosa and
obesity diagnosis and treatment. The ability of patients to describe other people’s 3D body
images and their own body images could help clarify any relationship between the mental
representation of the body and body image distortion [61].

Limitations

Our systematic review suffers from a number of drawbacks. The included studies are
observational (cross-sectional), lowering the overall quality of evidence compared with
experimental studies. The study sample sizes were generally small, with heterogeneous
ages, ethnic groups, and body mass index (BMI) classes. The heterogeneity of measurement
sites further limits the comparability of studies. As mentioned above, digital scanners used
patent-protected technologies and software from different manufacturers, which limits
direct comparisons between devices; finally, the “reference” methods used in DA validation
were not always gold standard techniques.

5. Conclusions

Initially designed for the textile industry, DA applications have now expanded to
human nutrition, due to rapid technological advancements. The high reliability and speed
of measurement detection make DA more suitable than its conventional counterparts in spe-
cific contexts, e.g., large-scale population surveys or clinical subpopulations. Furthermore,
3D body imaging could be used in place of other known methods of body composition
assessment where biological costs (DXA, computed tomography (CT)) or technical/time
constraints (ADP, UWW, magnetic resonance (MR)) are of concern. Finally, AD could be
proposed as a screening tool before second-level imaging techniques for the assessment of
human body composition as well as in postural analysis. However, hardware variability, a
lack of standard validated software, the cost of more accurate and precise scanners, and
small sample sizes limit the quality of the evidence in current studies.

For all of these reasons, this systematic review of the literature was able to achieve
the primary objective of providing an update on the state of digital anthropometry. The
secondary objective was to verify the methods for identifying the best technology to be
used in the field of DA, to identify how technologies can be selected appropriately for
specific applications, and to identify ways in which digital anthropometry technologies
can be incorporated into daily clinical practice. Investigation of this objective highlights a
series of concerns that must first be further investigated in order to address the above.

Finally, although the contribution of anthropometric measurements in statistical mod-
els for the prediction of human body composition (for example, in the estimation of lean
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body mass) is extremely high and explains over 80% of variability [62], to explain residual
variability, especially in different clinical settings, it is necessary to develop new tools
and software that integrate the available analytical methods of human body composition
according with the perspective of multicompartmental models.
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