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1. General introduction  
 

1.1. Postpartum depression  
 

1.1.1. Diagnosis and prevalence 

 

Postpartum depression (PPD) has a controversial nosology; indeed, there is little consensus 

in research and clinical practice about how best to categorise PPD (di Florio & Meltzer-Brody, 2015; 

Stewart & Vigod, 2016). In the Diagnostic and Statistical Manual of Mental Disorders (5th edition – 

text revision) (DSM-V-TR), PPD is classified as a major depressive episode “with peripartum onset”, 

namely during pregnancy or within the first four weeks after childbirth (American Psychiatric 

Association, 2022) (Table 1.1.). Therefore, DSM-V-TR recognizes that the potential onset of 

depression during pregnancy.  

 

Table 1.1. Diagnostic criteria of DSM-V-TR for Major Depressive Episode. Adapted from (American Psychiatric 

Association, 2022). 

Five (or more) of the following symptoms have been present during the same 2 weeks period, for most of nearly 

every day, and represent a change from previous functioning:  

At least one symptom is:  

(1) Depressed mood. 

(2) Markedly diminished interest or pleasure in all, or almost all, activities. 

Other symptoms:  

(3) Significant weight loss when not dieting or weight gain, or decrease or increase in appetite. 

(4) Insomnia or hypersomnia.  

(5) Psychomotor agitation or retardation. 

(6) Fatigue or loss of energy. 

(7) Feelings of worthlessness or excessive or inappropriate guilt. 

(8) Diminished ability to think or concentrate or indecisiveness. 

(9) Recurrent thoughts of death or suicidal ideation (with or without a specific plan). 

The symptoms cause clinically significant distress or impairment in social, occupational, or other important 

areas of functioning. 

The symptoms are not due to the direct physiological effects of a substance (e.g. a drug of abuse, a medication) 

or a general medical condition (e.g. hypothyroidism), not better explained by schizoaffective disorder or other 

psychotic disorders, and there has never been a manic or hypomanic episode.  

Specifier: With peripartum onset  

This specifier can be applied to the current major depressive episode or, if the major depressive episode is in partial or 

complete remission, the most recent episode of major depression if the onset of mood symptoms occurs during 

pregnancy or in the four weeks following delivery. 
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The second main classification system for diagnostic health information – International 

Statistical Classification of Diseases and Related Health Problems, 11th revision (ICD-11) –  used 

similar criteria to those in DSM-V-TR to classify PPD (ICD-11 code: 6E20) and specified that the 

depressive episode must arise during pregnancy or within about six weeks after delivery (World 

Health Organization, 2019). However, in research and clinical practice, the potential onset of PPD is 

extended beyond the first six weeks, up to 12 months after childbirth (Halbreich, 2005; Putnam et al., 

2015; Stewart & Vigod, 2016). The variable onset time range is because PPD that begins later than 

six weeks could still cause harm and require treatment (Gaynes et al., 2005; Vliegen et al., 2014). 

Halbreich (2005) suggests that postpartum phenomena, symptoms and complaints are associated with 

biological and psychosocial processes and may thus be considered to be postpartum only as long as 

they persist. However, the exact individualized time period differs across individuals; therefore, this 

will cause a different onset time for PPD (Halbreich, 2005). 

The Edinburg Postpartum Depression Scale (EPDS) (Cox et al., 1987) is the most widely used 

self-report instrument for the screening of postpartum depressive symptoms (ACOG Committee, 

2018; Knights et al., 2016). The popularity of the EPDS is explained by its good validity, sensitivity 

and specificity (Bergink et al., 2011; Cox et al., 1987; Levis, Negeri, et al., 2020; Sit & Wisner, 2009). 

Other used instruments are: Patient Health Questionnaire – 9 (Kroenke et al., 2001), Beck Depression 

Inventory – II (A. T. Beck et al., 1996), Center for Epidemiologic Studies Depression Scale (Radloff, 

1977), Postpartum Depression Screening Scale (Beck & Gable, 2000), and Zung Self-Rating 

Depression Scale (Zung, 1965). However, EPDS remain a gold standard for screening depressive 

symptoms since it includes anxiety symptoms, which are a prominent feature of perinatal mood 

disorders, but excludes somatic symptoms of depression, such as changes in appetite or sleep patterns, 

which reflect regular peripartum adjustment and may inflate scores (ACOG Committee, 2018; 

Affonso et al., 2000; Putnam et al., 2015). Self-reported questionnaires are usually used in research, 

whereas in clinical practice, a reference standard is typically used to validate the results of screening 

tools (e.g., EPDS or PHQ-9) (Ukatu et al., 2018). The most common and reliable used standard to 

diagnose PPD is the Structured Clinical Interview for DSM-V (SCID -5).  

Postpartum mental health is now firmly on the World Health Organization (WHO) agenda, 

with estimates suggesting that common mental disorders (i.e., anxiety and depression) have a 

prevalence of 13% in high-income countries and 19.8% in low- and middle-income countries (World 

Health Organization & Special Programme of Research, 2022). Postpartum depressive disorders are 

the most prevalent mental illness after childbirth; a recent systematic review and meta-analysis of 

depression among postpartum women reported a global prevalence of 17.2% for PPD, with Southern 
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Africa with the highest prevalence rate (40%) and Oceania with the lowest prevalence rate (11.1%) 

(Wang et al., 2021).  

Like other systematic reviews and meta-analyses that investigate the prevalence of PPD in the 

population, the study of Wang et al. (2021) had a few methodological issues partly related to the 

heterogeneity of PPD (O’Hara & McCabe, 2013). The prevalence of PPD varies widely between the 

different studies because of the lack of uniformity in the methods of screening/diagnosis, the length 

of the postpartum time frame considered, and the cross-cultural and social diversity of the samples 

(Gavin et al., 2005; O’Hara & Swain, 1996; Shorey et al., 2018; Wang et al., 2021). The use of 

different assessment instruments affects the rates of PPD, with the studies using self-report tools (e.g., 

EPDS, PHQ-9) reporting a greater prevalence estimated than studies based on structural interviews 

(e.g., SCID-5) (O’Hara & Swain, 1996; Wang et al., 2021; Woody et al., 2017). This incongruence 

is because a self-reported instrument such as EPDS or PHQ-9 is valid for PPD screening but is 

insufficient for a thorough diagnosis. Moreover, the congruence of prevalence rates between the self-

report tool and the structured interview is closely related to the chosen cut-off for the self-report 

instrument (Levis, Benedetti, et al., 2020; Lyubenova et al., 2021). However, studies that 

administered self-report measurements used different cut-off scores for the same instrument, making 

the comparison of prevalence between the different studies unreliable. A second issue is the different 

time points in which the PPD assessment is carried out. The most recent systematic review reported 

a similar prevalence of PPD through the different time periods of assessment: 1-3 months (17.7%), 

3-6 months (15.3%), 6-12 months (18.2%), and greater than 12 months (17.9%) after the delivery 

(Wang et al., 2021). However, other systematic reviews reported nether a trend of increasing 

prevalence of PPD from few days to more than one year after the childbirth (Shorey et al., 2018) or 

a higher prevalence in the first three postpartum months with a slight decline in the following month 

(Alshikh Ahmad et al., 2021; Gavin et al., 2005). The difference prevalence rates at different 

assessment time periods is related to the heterogeneity of depression in the peripartum period, with 

different trajectories over the time (Kiviruusu et al., 2020; Putnam et al., 2015; Putnick et al., 2020). 

A last important issue in the different country and culture of the samples included in the systematic 

reviews. Literature reported no or little differences between prevalence rates in developed countries 

(Gavin et al., 2005) and a higher prevalence of PPD for women in low- and middle-income countries 

than women in high-income countries (Shorey et al., 2018; Z. Wang et al., 2021). Therefore, country 

development and income inequalities had an important effect on PPD prevalence rates.  

PPD is also a growing challenge for Italy health services, with the two most recent studies 

reporting a prevalence of 5.8% (Ferrari et al., 2021) and 19.9% (Cena et al., 2021) within the first 

eight weeks or the first nine months after the childbirth, respectively. Despite the recent prevalence 
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data heterogeneity, Wang et al. (2021), considering only the 14 studies on Italian samples, reported 

a prevalence of 16.8% of women affected by PPD. Because of the high rate of depression in new 

mothers and the negative mental and physical health consequences of PPD on both the mother and 

newborn (O’Hara & McCabe, 2013; Shorey et al., 2018; Slomian et al., 2019; Webber & Benedict, 

2019), in the recent years, there is more awareness and investigation on PPD leading also in Italy to 

national programmes for the prevention, diagnosis, and intervention on PPD (Palumbo et al., 2016). 

 

1.1.2. Symptoms, course, and consequences 

 

The symptoms of PPD do not generally appear to differ from depression at other times 

(O’Hara & McCabe, 2013). However, the mother may be more labile and tearful – due to the rapid 

changes in hormonal levels following the delivery – and must simultaneously cope with her 

symptoms by looking after a newborn child (Beck & Indman, 2005; Stewart & Vigod, 2019). The 

new mother could experience despondent mood, loss of interest or pleasure in activities, sleep 

disturbance (beyond that associated with the care of the baby), appetite disturbance, loss of energy, 

feelings of worthlessness or guilt, impaired concentration, and suicidal ideation (O’Hara & McCabe, 

2013). Moreover, specific symptoms of PPD are mood lability, feeling of inadequacy as a parent, 

anxiety, irritability, obsessional preoccupation with the baby’s health and feeding, feeling of being 

overwhelmed, and thoughts of harming their child (Jennings et al., 1999; Stewart & Vigod, 2016, 

2019). However, not all new mothers presented the same PPD symptoms simultaneously and with 

the same severity. Indeed, the issues surrounding the screening and diagnosis of PPD are also caused 

by this heterogeneity of the symptoms reported in PPD (di Florio & Meltzer-Brody, 2015; O’Hara & 

McCabe, 2013).  

The natural duration of PPD is variable as its onset (Putnam et al., 2015; Stewart & Vigod, 

2019). As explained in paragraph 1.1.1., diagnostic manuals consider plausible the onset of 

depression during pregnancy; therefore, many times, the diagnosticated PPD is the extension of a 

mood disorder started before the pregnancy (Baron et al., 2017; Kiviruusu et al., 2020; O’Hara & 

McCabe, 2013; Santos et al., 2017). In addition, few studies reported that one of the most important 

predictors of PPD is a history of mental disorders before pregnancy (e.g., mood disorders and anxiety) 

(Putnam et al., 2015; Stewart & Vigod, 2016, 2019). Therefore it could be possible that the 

vulnerability/susceptibility to mental disorders, in general, affects the course of depressive symptoms 

in the peripartum period (Putnam et al., 2015; Vliegen et al., 2014; Wisner et al., 2013). Literature 

supports these point by showing that an episode of depression identified during the postpartum period 

has one of three possible onset times: prior to pregnancy, during pregnancy, or during the postpartum 
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period (Fisher et al., 2016; Wisner et al., 2013). For instance, Yonkers et al. (2001) likewise found 

that 50% of postpartum depressed mothers reported depression onset following delivery, 25% during 

pregnancy and 25% before pregnancy. Moreover, a study that considered mood disorders before 

pregnancy showed that among 541 women with unipolar depression at pre-pregnancy, 4.6% had 

depressive symptoms during pregnancy and 30% after childbirth (Viguera et al., 2011). A recent 

systematic review reported that among women with PPD in the first month after delivery, 24% remain 

depressed one year after the delivery and 13% after two years; in addition, about 40% of new mothers 

with PPD will relapse either during a subsequent pregnancy or in a non-pregnancy period (Stewart & 

Vigod, 2019). These studies were crucial to understanding PPD better, but they add further variability 

to a mental disorder that seems to differ from a non-pregnancy depressive disorder.  

Conceptual problems with the nosology of depression become apparent when one considers 

that depression can present different symptom clusters in different individuals (e.g., somatic or 

cognitive symptoms preponderance), it can manifest itself either as an excess or insufficiency of 

certain behaviours (e.g. hypersomnia or insomnia, weight gain or weight loss), and symptoms of 

major depression overlap with other disorders including dysthymia and bipolar depression (Goldberg, 

2011; Musliner et al., 2016; Zimmerman et al., 2015). If depression is considered during the 

peripartum period, the heterogeneity of the disorder increase with several features that differentiate 

groups, including the timing of onset (i.e., during pregnancy vs postpartum), the type and severity of 

symptoms, and other typical psychiatric comorbidities (e.g., history of depression, other mood 

disorders, anxiety) (Galea & Frokjaer, 2019; Putnam et al., 2015). The difference between PPD and 

depressive symptoms at other times also raises the problem of whether PPD is a distinct disorder in 

its own right linked to childbirth or an episode of major depression that manifests in the postpartum 

period (di Florio & Meltzer-Brody, 2015; Galea & Frokjaer, 2019; O’Hara & McCabe, 2013; Putnam 

et al., 2015). Many researchers have examined this question in an attempt to clarify whether or not 

PPD is, in fact, a separate diagnostic entity. For instance, Whiffen et al. (1992) reviewed 24 studies 

examining the prevalence, symptomatology, course, duration, relapse and aetiology of PPD and 

concluded that PPD did not differ qualitatively from non-postpartum depression (Whiffen, 1992). 

Indeed, the fact that the only difference between postpartum and non-postpartum depression was the 

severity of the disorder may not be helpful to the concept of a separate diagnosis (Whiffen, 1992; 

Whiffen & Gotlib, 1993). However, Cooper and Murray (1995) supported the idea of PPD as a 

specific entity by comparing women for whom PPD was their first experience of depression (i.e., de 

novo group) with those for whom PPD was a recurrence of a previous affective disorder (i.e., 

recurring group). The study showed that the recurring group had a greater risk for subsequent non-

postpartum depressive episodes from 2 to 5 years after childbirth, whereas the de novo group had a 
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greater risk for PPD, supporting the argument for a diagnostic distinction for PPD (Cooper & Murray, 

1995; Murray et al., 1995). Studies investigating the distinctiveness of PPD from non-postpartum 

depression show mixed findings, as reported by different reviews (Batt et al., 2020; di Florio & 

Meltzer-Brody, 2015; O’Hara & McCabe, 2013). Currently, there is insufficient evidence to classify 

PPD as a separate disorder (Batt et al., 2020). Nevertheless, the distinction between depression 

occurring in the peripartum period and depression occurring at other times is important for both 

research and clinical practice (di Florio & Meltzer-Brody, 2015; O’Hara & McCabe, 2013). 

Moreover, it should differentiate between episodes occurring during pregnancy and after childbirth, 

as the pathogenetic factors involved are likely to differ and may require specialized treatment (di 

Florio & Meltzer-Brody, 2015; Putnam et al., 2015). 

Despite difficulties in classifying PPD, the consequences of this disorder are acknowledged 

and affect both the mother and the infant. For example, a recent systemic review concludes that PPD 

diminishes women's mental health and quality of life, affecting their perception of parenting and 

creating a hostile and non-stimulant environment, which leads to detrimental effects on behaviour, 

cognition, and mental/physical health of the child (Slomian et al., 2019). For instance, women with 

PPD had lower psychological well-being and mood scores (Dietz et al., 2009; Lilja et al., 2012), 

which can increase the likelihood of these women engaging in risky health behaviours, such as the 

use of addictive substances or suicidal ideation (Chapman & Wu, 2013; Stewart & Vigod, 2019). 

Moreover, PPD was associated with more difficulties in marital relationships (Slomian et al., 2019), 

often resulting in paternal postnatal depressive symptoms (Barooj-Kiakalaee et al., 2022; J. H. 

Goodman, 2004; Rao et al., 2020). In addition, PPD has been shown to affect numerous maternal 

caretaking behaviours, leading to reduced length and quality of breastfeeding (Dennis & McQueen, 

2007; Dias & Figueiredo, 2015) and poor interest in the health, basic needs and safety of the infant 

(O’Hara & McCabe, 2013; Zajicek-Farber, 2009). This parenting style is often the result of a mother-

child interaction characterized by hostility, unresponsiveness, less sensitivity, and impaired 

attachment to the infant (Brummelte & Galea, 2016; Dietz et al., 2009). The psychological sufferance 

of the mother and the maladaptive parenting could influence, in the long term, the optimal 

behavioural, emotional, cognitive, and physical development of the child. For instance, PPD was 

associated with higher levels of child internalizing and externalizing psychopathology (S. H. 

Goodman et al., 2011), higher levels of fear and anxiety (Slomian et al., 2019), poorer language and 

IQ development (Grace et al., 2003; Stewart & Vigod, 2019), and higher incidence of gastrointestinal 

symptoms and poorer child cardiovascular functioning (Brummelte & Galea, 2016; O’Hara & 

McCabe, 2013). Thus, PPD does not only affect the mother's well-being but has many direct and 
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indirect adverse effects on the child's development. Therefore, detecting and treating postpartum 

depression as early as possible seems crucial to avoid harmful consequences.  

 

1.1.3. Risk factors and pathogenesis 

 

Several studies focused on the psychological, social, and biological predictors of PPD to 

identify women at more risk of developing this mood disorder. Among the potential psychosocial 

predictors of PPD, stress levels are one of the most documented factors in literature (Hutchens & 

Kearney, 2020; Yim et al., 2015). A recent systematic review reported that peripartum chronic 

stressors (e.g., general perceived stress, financial stress, work-related stress) are a more consistent 

predictor of PPD than episodic stressors (e.g., catastrophic events, stressful life events) (Yim et al., 

2015). Moreover, literature has consistently shown that experiencing depressive or anxiety symptoms 

during pregnancy or a history of psychiatric disorders before the pregnancy could be a significant 

factor that predicts PPD (Guintivano et al., 2018; Hutchens & Kearney, 2020; O’Hara & McCabe, 

2013; Payne & Maguire, 2019). Therefore, it seems that a psychological predisposition to mental 

disorders could increase the likelihood of developing PPD. The link between mental vulnerability 

and the development of postpartum mood disorders could be related to neuroticism, namely the 

relatively stable tendency over time to experience negative affect in response to a stressful situation 

(Ormel et al., 2013). Recent literature supported this idea showing that neuroticism is the most 

important personality trait associated with PPD and could affect how women cope with pregnancy 

stressors (Puyané et al., 2022). This finding supported the cognitive-behavioural model of PPD in 

which psychological vulnerabilities (e.g., neuroticism) prior to and during pregnancy would predict 

increases in depressive symptoms following a stressful life event such as childbirth (O’Hara et al., 

1982, 1991).  

Another crucial risk factor of PPD is the quality of interpersonal relationships (Hutchens & 

Kearney, 2020; Yim et al., 2015). According to Yim et al. (2015), women who perceived higher levels 

of social support and were satisfied with support from their partner or family during pregnancy had a 

lower risk of developing PPD. Recent literature supported the finding of the review mentioned above, 

showing a significant buffering effect of social support against the probability of developing PPD 

(Cho et al., 2022; Pao et al., 2019). The findings are in line with Psychosocial Stress Theory (Pearlin, 

1989) and, in particular, with the idea that the potentially harmful effect of a stressor – in this case, 

pregnancy – on health outcomes and psychological well-being could be mitigated by coping strategies 

and social support resources (Abdollahi et al., 2016; Zheng et al., 2022). On the other side, abusive 

and unsupportive relationships and lack of perceived social support are significant predictors of the 
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onset and severity of PPD (Hutchens & Kearney, 2020). Interestingly, Norhayati et al. (2015) found 

that poor marital relationship is an important predictor of PPD in both developed and developing 

countries.  

Among biological processes, the dysregulation of several reproductive (e.g., estrogen and 

progesterone) and stress hormones (e.g., corticotropin-releasing hormone) seems to play a crucial role 

in the aetiology of PPD (O’Hara & McCabe, 2013; Payne & Maguire, 2019; Stewart & Vigod, 2019; 

Yim et al., 2015). The hormonal withdrawal theory posits that the steeper increase of estradiol, 

progesterone and cortisol during pregnancy and the drastic decrease of these hormones immediately 

after childbirth caused dysregulation of body homeostasis processes of the body that could lead to 

PPD (Bloch et al., 2000; Glynn et al., 2013; Serati et al., 2016; Yim et al., 2015). It should be noted 

that although all women experience a dramatic decrease in hormone levels after delivery, only a small 

subset of women develop PPD (O’Hara & McCabe, 2013). Bloch et al. (2000) showed that depression 

symptoms were significantly higher during the hormonal withdrawal phase in women with a prior 

history of PPD, while the group with no history of mood disorders showed minimal change in mood 

scores. Moreover, recent systematic reviews reported mixed findings when the hormonal withdrawal 

was analysed as predictor of PPD (Payne & Maguire, 2019; Stewart & Vigod, 2019; Yim et al., 2015). 

Another point to consider is that hormonal changes affect the activity of few brain areas (e.g., 

hypothalamus, prefrontal cortex, amygdala) and modulate neurotransmitter systems (e.g., serotonin 

system, dopamine system) which alteration is strictly related with depressive symptom (Payne & 

Maguire, 2019). Therefore, it could be hypothesized that the hormonal withdraw could affect only a 

subgroup of vulnerable women and that a potential mechanism that led to PPD was the interaction 

between central nervous and hormonal systems (O’Hara & McCabe, 2013; Payne & Maguire, 2019). 

However, the psychobiological and neurophysiological pathways that are involved in PPD are unclear 

and more studies are needed on these topics (Payne & Maguire, 2019; Stewart & Vigod, 2019). 

As we have seen, the pathogenesis of PPD is as varied and multifactorial as the diagnosis and 

is thought to originate from the interaction between biological, psychological, and social factors 

(Stewart & Vigod, 2019; Yim et al., 2015). A schematic and integrative model of all potential factors 

that could lead to postpartum mental disorders, such as PPD, is shown in Figure 1.1. (Halbreich, 

2005).  

 

Figure 1.1. A bio-psychosocial-cultural model of processes leading to postpartum disorders. Notes: CNS: central 

nervous system, OC: oral contraceptives, PMS: premenstrual syndrome, CRF: corticotrophin releasing factor. Reprinted 

from Journal of Affective Disorders, Volume 88 (1), Halbreich, “Postpartum disorders: Multiple interacting underlying 

mechanisms and risk factors”, page 3, 2005, with permission from Elsevier.  
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Halbreich hypothesised that postpartum mental disorders have a common denominator: they 

occur during periods of hormonal change, implying common vulnerability and similarity of triggers 

(Halbreich, 2005). The main idea of the model was that the hypersensitivity to hormonal changes and 

dysregulation of body homeostasis – controlled by the central nervous system (CNS) and peripheral 

systems – were constantly shaped by hormonal (e.g., withdrawal of hormonal secretion) and 

psychosocial (e.g., partner/family support, cognitive perceptions, coping mechanisms) input during 

the peripartum period, and the dysregulation of these systems could lead to postpartum mental 
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symptom and disorders. Subsequent reviews highlighted the crucial role of the change of biological 

factors during the peripartum period in the pathophysiology mechanism contributing to PPD (Payne 

& Maguire, 2019; Stewart & Vigod, 2019; Yim et al., 2015). Stress, history of mood disorders, and 

previous adverse life events seem to be an important risk factors for PPD, probably for the effect of 

these psycho-social conditions on the hypothalamic-pituitary-adrenal (HPA) axis and the secretion of 

stress hormones. Few studies reported that accelerated corticotropin-releasing hormone (CRH) 

trajectories and higher levels of CRH in mid-to-late pregnancy might be predictive of PPD symptoms 

during the first few postpartum months (Bloch et al., 2003; Glynn & Sandman, 2014; Hahn-Holbrook 

et al., 2013; Yim et al., 2009). Importantly, stress and emotional disorders are also associated with 

epigenetics factors, which refer to changes in gene expression – due to environmental influences – 

carried out by mechanisms that are not DNA encoded but rather from DNA methylation and histone 

modification (Toyokawa et al., 2012; Yim et al., 2015). In particular, there is an interrelationship 

between epigenetics and neuroendocrine changes associated with PPD, where variations in DNA 

methylation of the oxytocin receptor gene are negatively correlated with levels of few reproductive 

hormones, such as serum estradiol and the ratio of allopregnanolone to the progesterone that, in turn, 

could also influence HPA axis function (Bell et al., 2015; M. Kimmel et al., 2016; Payne & Maguire, 

2019). The importance of changes in the levels of reproductive hormones after the delivery in the 

onset of PPD is highlight by different reviews (Schiller et al., 2015; Serati et al., 2016). Their 

suggestion was that reproductive hormones may exert influence especially in a subgroup of a 

“hormone sensitive” PPD phenotype, as estrogen (e.g., estradiol and progesterone) is closely tied to 

the HPA-axis and inflammation.  Indeed, although all women experience a dramatic decrease in 

hormone levels after delivery, only a small subset of women develop PPD (Bloch et al., 2003). 

Therefore, the hormone withdrawal theories of PPD suggest that withdrawal of estrogens and 

progesterone are proximate causes of depression in some vulnerable women (Payne & Maguire, 2019; 

Yim et al., 2015). Epigenetic changes in women who later develop PPD have also been associated 

with neuroinflammatory changes, affecting the expression of genes related to estradiol regulation and 

maternal behaviours (Garfinkel et al., 2016; Guintivano et al., 2014). However, studies examining 

the inflammatory process in the context of PPD reported conflict results; therefore, further studies on 

this pathway are needed (Payne & Maguire, 2019; Stewart & Vigod, 2019; Yim et al., 2015). 

However, it has been proposed that disruption in peripartum neuroinflammatory activity may 

contribute to postpartum depression. HPA axis is one of the potential causes of neuroinflammatory 

changes during pregnancy (Anderson & Maes, 2013). Thus, disruption in HPA axis functioning and 

altered stress hormone levels can impact immune function. Conversely, immune challenges can also 

activate the HPA axis, leading to altered levels of stress hormones. Thus, disruptions in the crosstalk 



22 

 

 

between stress hormones and neuroinflammation may contribute to postpartum depression (Payne & 

Maguire, 2019). Furthermore, the neuroendocrine changes in the peripartum period (e.g., change in 

allopregnanolone levels) could have an important role in triggering PPD through the modification of 

glutamatergic, GABAergic, and monoaminergic signaling (MacKenzie & Maguire, 2014; Schiller et 

al., 2015).  Thus, it is possible that stress, neuroinflammation, and altered synaptic transmission could 

lead to brain circuit dysfunction in brain regions of the maternal care network (i.e., amygdala, 

cingulate cortex, prefrontal cortex, striatum, and insula), leading to postpartum depression (P. Kim et 

al., 2016). In summary, there is a complex interplay between stress, HPA axis dysfunction, the change 

in reproductive hormones levels, neuroinflammation, and altered synaptic transmission in network 

communication in brain regions associated with emotional regulation, reward/motivation, and 

executive function (Figure 1.2.) (Payne & Maguire, 2019).  

 

Figure 1.2. Complex interplay between the potential pathological mechanisms contributing to postpartum depression. 

This figure highlights the diverse potential pathological mechanisms associated with postpartum depression, including 

disruptions in reproductive/lactogenic hormones, stress and HPA axis dysfunction, neuroinflammation, epigenetics, 

altered synaptic transmission, and circuit-level changes in network communication in brain regions associated with mood 

and/or the “maternal care network”. This complex interplay between the genetic, environmental, and synaptic/network 

function highlights the potential diversity in the underlying neurobiology of postpartum depression. Notes: CNS: central 

nervous system, OC: oral contraceptives, PMS: premenstrual syndrome, CRF: corticotrophin releasing factor. Reprinted 

from Frontiers in Neuroendocrinology, Volume 52, Payne & Maguire, “Pathophysiological mechanisms implicated in 

postpartum depression”, page 176, 2019, with permission from Elsevier. 
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These bidirectional influences highlight the diversity of the underling neurobiology of PPD, 

explaining in part the great heterogeneity of PPD.  

 

1.1.4. Prevention and treatment  

 

One of the main problems with preventing and treating PPD is the poor identification of 

depression cases in the prepartum period (Hadfield & Wittkowski, 2017). During pregnancy and in 

the neonatal period, women often interacted with obstetric teams and paediatric primary care, which 

are determinants in detecting depressive symptoms (ACOG Committee, 2018; Dennis & Chung-Lee, 

2006). Given the heterogeneity of PPD, the different times of onset, and the various pathways that 

could let to this mood disorder, the early identification of women at risk of PPD is a very challenging 

aspect (Putnam et al., 2015; Santos et al., 2017). As we see in paragraph 1.1.1., simple and reliable 

diagnostic instruments have been developed in order to identify depressive symptoms in peripartum. 

For instance, the administration of the Edinburgh Postnatal Depression Scale (EPDS) is 

recommended by the American College of Obstetricians and Gynaecologists and the American 

Academy of Paediatrics to identify possible postpartum depression (ACOG Committee, 2018; Earls 

et al., 2019). However, few studies indicated the underdiagnosis of PPD (Currie & Rademacher, 2004; 

Halbreich, 2005; Stowe et al., 2005). The main reasons for this phenomenon are related to maternal 

attitudes toward PPD screening and the insufficient knowledge and training of maternity care services 

to diagnose and treat peripartum depressive symptoms (Currie & Rademacher, 2004; Hadfield & 

Wittkowski, 2017). For instance, qualitative and quantitative studies revealed that one of the most 

critical barriers affecting mothers’ decisions to ask for help was concerns for community mental 

health stigma (Dennis & Chung-Lee, 2006; Hadfield & Wittkowski, 2017). New mothers did not talk 

about their mental health problems for the fear child being taken away, saw themselves as a “failure” 

for experiencing PPD symptoms, and thought that the professionals expected that they cope on their 

own with their mood disorders. Moreover, many health professionals thought that it was not their 

responsibility to recognize PPD symptoms, had insufficient knowledge about postpartum mental 

disorders, and tended to normalize depressive symptoms after childbirth (Currie & Rademacher, 

2004; Dennis & Chung-Lee, 2006).  

The PPD diagnosis is obviously possible only after the delivery; however, focusing on 

preventing PPD could be an optimal option to avoid the development of mood disorders after 

childbirth. Moreover, women are motivated to self-care during pregnancy and frequently contact 

health care providers (Werner et al., 2015). Psychosocial and psychological interventions during 

pregnancy and early postpartum significantly reduce the number of women who develop PPD (Dennis 

& Dowswell, 2013; Stewart & Vigod, 2016). A recent systematic review comparing the efficacy of 
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various interventions to prevent PPD corroborates these results showing that counselling intervention 

– in particular cognitive-behaviour therapy (CBT) and interpersonal therapy (IPT) – could be 

effective in preventing PPD, especially in women at high-risk of postpartum mood disorders 

(O’Connor et al., 2019). The efficacy of these treatments is strictly related to the well-known 

psychosocial risk factors during pregnancy of PPD (e.g., chronic and life stressors, lack of social 

support, prior history of psychopathology) (O’Hara & McCabe, 2013; Stewart & Vigod, 2019). 

Indeed, the psychological and psychosocial interventions tend to focus on these different psychosocial 

risk factors providing the tools to deal positively during pregnancy and avoid the trigger of the 

different potential biopsychosocial pathways that can lead to PPD. On the other side, biological 

prevention treatments during pregnancy (e.g., psychotropic medications, hormone treatments, omega-

3 fatty acids treatment) showed mixed success, partly due to the uncleanliness of biological and 

physiological risk factors of PPD (O’Connor et al., 2019). Moreover, recent systematic reviews 

indicated that the clinical effectiveness of alternative preventive methods during pregnancy – such as 

exercise-based or biofeedback interventions – need to be better explored and established (Carter et 

al., 2019; Herbell & Zauszniewski, 2019; Zhou et al., 2022).  

 Unfortunately, prevention of PPD is not a common practice nowadays (O’Connor et al., 

2019), and often women arrive at health care centres or hospitals with mild or high levels of 

depressive symptoms. Overall, the treatment of PPD consists of psychosocial treatments and 

pharmacotherapy. Figure 1.3. reported a summary of suggested treatments according to the severity 

of the woman’s depressive symptoms(Stewart & Vigod, 2019). 

 

Figure 1.3. Stepped care management of PPD. The safety of mother and infant should be continually reassessed at 

each level of care such that emergency services can be initiated if required. Notes: CBT: cognitive-behaviour therapy; 

ECT: electroconvulsive therapy; IPT: interpersonal therapy; SSRI: selective serotonin reuptake inhibitor. Used with 

permission of Annual Review of Medicine, from “Postpartum depression: pathophysiology, treatment, and emerging 

therapeutics”, Stewart & Vigod, Volume 70, page 190, 2019; permission conveyed through Copyright Clearance Center, 

Inc. 
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Postpartum women tend to prefer psychological over medication treatments, particularly if 

they are breastfeeding (Stewart & Vigod, 2016; Weissman et al., 2004; Werner et al., 2015), and two 

systematic reviews report the safety of few SSRIs (i.e., sertraline and paroxetine), but fewer safety 

data for the other SSRIs (Becker et al., 2016; Thomson & Sharma, 2017). Fortunately, there are 

numerous empirically supported psychological treatments for PPD, and the most common are CBT 

and IPT. These treatments could be administered in individual or group formats, in-person (i.e., in 

the clinic or at home) or remotely (e.g., by telephone, internet or using smartphones), and are short-

term (e.g., an average length of around 10 to 12 sessions) and more acceptable than medication 

treatments by women (O’Hara & McCabe, 2013; Stewart & Vigod, 2016, 2019). CBT and IPT 

efficacy profiles are similar to usual care or control interventions. Gains are demonstrated post-

treatment immediately and in longer-term follow-up (six months after treatment) (Stewart & Vigod, 

2019). However, when PPD is not sufficiently responsive to psychological treatment or women have 

severe PPD symptoms, antidepressants are the first line of treatment (Kim et al., 2014). Unlike 

psychological treatments, medication management requires less intense contact with mental health 

professionals, less time and is also likely to be less expensive than psychological treatments. 

However, beyond the problem of the safety of the use of medications during breastfeeding, 

antidepressant medication has a side effects on patients, and it could be possible that the medicines 

were not taken in the way and with the dosage prescribed (Stewart & Vigod, 2019). Literature on the 

efficacy of medication treatments are scarce and reported mixed findings; more studies are needed to 

understand the effect of antidepressant on improving PPD (O’Connor et al., 2019; Thomson et al., 

2012). Electroconvulsive therapy (ECT) could be a treatment of choice in severe PPD, especially in 

intractable suicidality or psychotic symptoms. Gressier et al. (2015) reviewed eight studies and eight 

case reports that indicated the benefits of using ECT in mood postpartum disorders, especially 

depression. It was well tolerated and gave a fast response. However, the requirement of a general 

anaesthetic and the potential side effects on memory make ECT an option for most women only if 

psychological or medication treatment did not have effects on PPD symptoms. 

 

1.2 . Heart rate variability 
 

1.2.1. Physiology of cardiovascular autonomic regulation  

 

The heart is the main component of the cardiovascular system and is the pump that moves 

blood through blood vessels, providing the needed oxygen and nutrients to the body (Sarlo & Pennisi, 

1998; Weinhaus, 2015). The internal anatomy of the heart reveals four chambers composed of cardiac 

muscle (i.e., myocardium). The two upper chambers (i.e., atria) function mainly as collecting 
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chambers; the two lower chambers (i.e., ventricles) are much stronger and function to pump blood 

(Sarlo & Pennisi, 1998; Shaffer et al., 2014; Weinhaus, 2015). The role of the right atrium and 

ventricle is to collect deoxygenated blood from the body and pump it to the lungs (i.e., pulmonary 

circulation). The role of the left atrium and ventricle is to collect oxygenated blood from the lungs 

and pump it throughout the body (i.e., systemic circulation) (Gordan et al., 2015; Weinhaus, 2015). 

Figure 1.4. showed a schematic representation of the two different circulation systems. 

 

Figure 1.4. Circulation of the blood. Light grey part: deoxygenated blood; dark grey part: oxygenated blood. RA: right 

atrium; RV: right ventricle; LA: left atrium; LV: left ventricle. The figure is adapted and modified from (Starling, 1926).  

 

 

Cardiac cycle events can be divided into diastole and systole. Diastole represents ventricular 

relaxation/filling, and systole represents ventricular contraction/ejection (Shaffer et al., 2014; 

Weinhaus, 2015). Systole and diastole occur in both the right and left heart, though with very different 

pressures. Diastole begins with the closing of the aortic valve (or pulmonic) and ends with the closing 

of the mitral valve (or tricuspid). This period encompasses ventricular relaxation and filling. Diastole 

is when the blood vessels return blood to the heart to prepare for the next ventricular contraction. 

Systole begins when the mitral valve (or tricuspid) closes and concludes with the aortic valve (or 

pulmonic) closure. This stage of the cardiac cycle represents ventricular contraction, forcing blood 

into the arteries. When a ventricle contracts, the pressure within the ventricles will become greater 
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than adjacent blood vessels, and the valves will allow the blood out (Sarlo & Pennisi, 1998; Shaffer 

et al., 2014) (Figure 1.5.).  

 

Figure 1.5. Typical cardiac cycle events for left ventricular function include changes in aortic pressure, atrial pressure, 

ventricular pressure, ventricular volume, electrocardiogram (ECG) and Phonocardiogram (PCG). Reprinted from 

Ostadfar, Biofluid Mechanics, Academic Press, 2016, with permission from Elsevier. 

 

 

The mechanical processes of the cardiac cycle are related and caused by different electrical 

events (Ostadfar, 2016). The electrocardiogram (ECG) is the biological signal representing the 

cardiac electrical activity we can detect from the body surface. The ECG consisted of waves with 

different amplitudes and frequencies related to particular electrical cardiac events (Figure 1.6.). 

Briefly, the P wave represent the atrium depolarization and anticipate the mechanic contraction of 

atriums and the flow of blood in the ventricles. The QRS complex is characterized by the 

depolarization of ventricles that led to the mechanic contraction of ventricles and to the ejection of 

blood int the systemic and pulmonary circulation. Lastly, the T wave indicate the repolarization of 

ventricles, namely the ventricular relaxation. The relaxation of atriums follow the P wave, but in the 

ECG the electrical wave for this mechanical event is hide by the QRS complex (Sarlo & Pennisi, 

1998; Shaffer et al., 2014). 
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Figure 1.6. ECG signal with a focus on heart electrical activity. Notes: P: P wave, QRS: QRS complex; T: T wave; 1: 

depolarization of sinoatrial (SA) node; 2: atrial depolarization; 3: depolarization of atrioventricular (AV) node; 4: atrial 

repolarization; 5: ventricular depolarization; 6: ventricular repolarization. The figure is adapted and modified from (Stern 

et al., 2000). 

 

 

 The heart has an intrinsic conduction system that consists of autorhythmic cells. As a result, 

it can spontaneously depolarise to initiate heartbeats from its rhythmic pacing discharge and 

coordinate heart electrical activity. The sinoatrial (SA) node, located in the right atrium, is the first 

pacemaker that starts the electrical impulse resulting in the depolarisation and contraction of the 

atrium (Gordan et al., 2015; Shaffer et al., 2014). This electrical impulse is distributed throughout the 

heart through the internodal pathway, atrioventricular (AV) node, AV bundle, branches of the bundle 

of His, and Purkinje fibres (Sarlo & Pennisi, 1998). Without the extrinsic (hormonal and neural) 

influences, the SA node creates about 100 beats per minute; however, to meet the body’s oxygen 

requirement under variable conditions, cardiac output (and thus heartbeat) must vary. The autonomic 

nervous system (ANS) could help respond to the organism’s changing requirements.  

The ANS is an important part of the control of different physiological systems (e.g., heart rate, 

blood pressure, respiration, gastrointestinal motility, etc.) (Figure 1.6.) (Jänig & McLachlan, 2013; 
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Levy & Martin, 1984). The ANS is predominantly an efferent system transmitting impulses from the 

central nervous system (CNS) to regulate visceral functions of the body (Singh et al., 2018). The CNS 

comprises the brain, brainstem, and associated nuclei and bundles of visceral fibres in the spinal cord 

(Weinhaus, 2015). The CNS receives, integrates, and distributes commands through efferent (i.e., 

motor) nerves based on the feedback from afferent (i.e., sensory) impulses. Efferent nerves that 

service autonomic control are organised in a sequential neuron pathway for transmission of 

information: a preganglionic neuron, which starts in the CNS and exists along a cranial or spinal 

nerve, and a postganglionic neuron which exists entirely outside the CNS (Jänig, 2016; Jänig & 

McLachlan, 2013; Shaffer et al., 2014).  

 

Figure 1.7. Schematic representation of the efferent ANS. The figure highlight the craniosacral parasympathetic and 

thoracolumbar sympathetic outflow to various target organs. Figure from (Jänig & McLachlan, 2013). 

 

 

Autonomic efferent outflow to the heart originates in the medulla, a structure found within 

the brainstem and centre of cardiovascular regulation activity. In particular, the nucleus of the solitary 

tract (NST) in the medulla receives afferent input from mechanoreceptors (i.e., baroreceptors) and 

chemoreceptors in the carotid sinus and aortic arch regarding environmental and physiological 

demands (Gordan et al., 2015; Shaffer et al., 2014; Singh et al., 2018). The NTS integrates the afferent 

information and distributes motor information which stimulates the appropriate cardiovascular 

responses in the divisions of the autonomic nervous system (ANS) (e.g., increasing/decreasing heart 
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rate (HR), blood pressures (BP), and contractility of coronary vessels) to meet physiological demands 

and maintain homeostasis in the smooth muscle, cardiac muscle, and glands (Carnevali & Sgoifo, 

2014). The two main divisions of the ANS include the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PNS) (Jänig & McLachlan, 2013; Levy & Martin, 1984). The SNS 

mobilises body systems and causes the ‘fight or flight response by increasing alertness and metabolic 

activity (e.g., increases HR, causes vasoconstriction, and increases BP), whereas the PNS conserves 

energy and is known for ‘rest and digest’ control of the body (e.g., slows HR, causes vasodilation, 

and decreases BP) (Jänig & McLachlan, 2013; Richter & Wright, 2013; Shaffer et al., 2014). 

The heart receives extensive innervation from both the sympathetic and parasympathetic 

systems of the ANS (Jänig & McLachlan, 2013). The cardiac efferent sympathetic preganglionic 

nerves (typically all myelinated) originate from the rostral ventrolateral medulla and emerge from the 

upper thoracic segments of the spinal cord (T1-T4), leaving the spinal cord through the ventral 

anterior root of the corresponding spinal cord nerves. These nerves travel to and synapse within the 

sympathetic ganglia chain (SGC) that run parallel to the spinal cord on either side of the anterior face 

of vertebral bodies. Postganglionic efferent fibres in the paravertebral, cervical and thoracic SGC give 

origin to cardiac cervical nerves and cardiac, thoracic nerves (Gordan et al., 2015; Levy & Martin, 

1984). These, in turn, travel to the heart and vascular tissue, where they synapse at their target sites: 

SA node, AV node, atria, and ventricles (Battipaglia & Lanza, 2015; Singh et al., 2018) (Figure 1.7.).  

The cardiac efferent preganglionic parasympathetic (or vagal) neurons generate activity 

through nuclei located deep within the medullary reticular formation called the dorsal motor nuclei 

(DMN) and the nucleus ambiguous (NAmb) (Carnevali & Sgoifo, 2014; Gordan et al., 2015; Levy & 

Martin, 1984). The craniosacral outflow travels through the vagal nerves (10th cranial nerve) that exit 

as a long preganglionic efferent fibre and synapses onto the postganglionic nerve fibres in the vagal 

nerve ganglia located in the cardiac plexus (Gordan et al., 2015; Singh et al., 2018). The vagal nerves 

innervate the SA and AV nodes, but few vagal efferents also sparsely innervate the atria and ventricles 

of the heart (Battipaglia & Lanza, 2015; Levy & Martin, 1984). (Figure 1.4.).  

 

Figure 1.8. ANS regulation of the heart function. CNS: Central nervous system; RA: Right atria; LA: Left atria; RV: 

Right ventricle; LV: Left ventricle; SA: Sino-atrial node; AV: Atrioventricular node; NE: Norepinephrine; ACh: 

Acetylcholine. Figure from (Gordan et al., 2015).  
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Sympathetic and parasympathetic nerves also possess afferent fibres to provide 

communication between the heart and the CNS. Sympathetic nerves have afferent fibres that transmit 

information from nociceptors through thoracic ganglia of the paravertebral SGC, spinal nerve, and 

dorsal root ganglia to the thalamus and other brain regions (Kukanova & Mravec, 2006; Palma & 

Benarroch, 2014; Shaffer et al., 2014). Cardiac vagal afferents transmit mechano- and chemo-

sensitive neuron information from the heart – via the vagus nerve and nodose ganglia – to the NST 

and consequently to other brain areas (Kukanova & Mravec, 2006; Shaffer et al., 2014). 

The ANS influences most heart functions by affecting the SA node, AV node, myocardium, 

and small and large vessel walls (Levy & Martin, 1984). In response to exercise, stress or emergency, 

the sympathetic nerves release the hormone norepinephrine (NE) in postganglionic neurons that – 

through different chemical processes – produces the following effects on the heart (Gordan et al., 

2015):  

 

(1) Positive chronotropic effect: faster depolarisation of the SA node, resulting in an increase 

in HR. 

(2) Positive dromotropic effect: increase of the conductivity of the cardiac electrical signal 

throughout the heart, reducing conduction time.   
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(3) Positive inotropic effect: increased myocardial contractility force of both atrial and 

ventricular muscles.  

 

The parasympathetic nerves affect the heart under restful conditions through the releases of 

the neurotransmitter acetylcholine (Ach) in the postganglionic neurons of the vagus nerve and 

produce the following effects on the heart (Gordan et al., 2015):   

 

(1) Negative chronotropic effect: slower depolarisation of the SA node, resulting in a decrease 

in HR. 

(2) Negative dromotropic effect: decrease the excitability of AV junctional tissue, slowing 

transmission of the electrical impulse to the ventricles.   

 

The two branches of the ANS affect and control the cardiac activity, working together to 

maintain homeostasis (Shaffer et al., 2014). The dynamic balance between parasympathetic and 

sympathetic activity causes a continuous oscillation of the HR (Levy & Martin, 1984). The variability 

of HR can be used as a window into the cardiorespiratory control system and as a tool for examining 

the fluctuations of the sympathetic and parasympathetic branches of the ANS, but interpretation of 

the results depends on the conditions under which the recording was obtained and the length of the 

recording itself. 

 

1.2.2. Heart rate variability: definition and background  

 

Heart Rate Variability (HRV) represents the fluctuation in the time intervals between 

heartbeats (Malik et al., 1996; Shaffer et al., 2014). Like most other biological systems in the body, 

the heart’s activity is not linear and constant. For instance, Figure 1.8. is reported an ECG recording 

in which the first RR time interval A is different from RR interval B, which in turn is different from 

RR interval C. Therefore, a healthy heart rate, even at rest, fluctuates in a complex way to have the 

flexibility to self-regulate and restore equilibrium each time it gets disrupted (Goldberger, 1991; 

Shaffer & Ginsberg, 2017).  

 

Figure 1.9. An ECG signal with three RR intervals. Reprinted from Artificial Intelligence in Medicine, Volume 15 (3), 

Azuaje et al., “Predicting coronary disease risk based on short-term RR interval measurements: a neural network 

approach”, page 281, 1999, with permission from Elsevier.  
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As explained in the paragraph 1.2.1., HRV is produced by the interaction of multiple 

physiological regulatory and homeostatic systems that operate on different time scales. Circadian 

rhythms, core body temperature, the sleep cycle, and metabolism contribute to HRV parameters 

derived from 24-hour ECG. On the other side, short-term HRV measurements (i.e., HRV parameters 

derived from 5-15 minutes of ECG) were mainly generated from the autonomic, cardiovascular, and 

respiratory systems (Plaza-Florido et al., 2020; Shaffer & Ginsberg, 2017). In this thesis, we focused 

on short-term HRV measurements since they are the most widely used HRV parameters in 

psychophysiological literature and allow the researcher to obtain reliable and meaningful data under 

more controlled conditions compared to the HRV parameters derived from 24 hours period of ECG 

(Alcantara et al., 2020; Plaza-Florido et al., 2020).  

Short-term HRV measurements reflect the balance between the sympathetic nervous system 

(SNS) and parasympathetic nervous system (PNS) branches of the heart (Levy & Martin, 1984). This 

complex and dynamic relationship is one source of variability in the heart rate. SNS increase the heart 

rate (HR), while PNS – through the vagus nerve – brings the HR down (Brodal, 2010; Khazan, 2013). 

However, since the heart is under tonic inhibitory control by parasympathetic influences, vagal 

activity in the heart predominates at rest (Shaffer et al., 2014; Shaffer & Ginsberg, 2017; Thayer et 

al., 2012). Moreover, the HRV implied parasympathetic dominance due to the different speeds of 

ANS innervations that exert their effect on the heart. In particular, sympathetic nerves’ influence on 

the heart is too slow (> 5 seconds) to produce beat-to-beat changes than parasympathetic nerves’ 

influence (<1 second) (Nunan et al., 2010). Thus, PNS activity (e.g., increase or decrease of vagal 

stimulation) mediates both a rapid and instantaneous increase and decrease of HR. Conversely, a 

sympathetic stimulation could increase HR in a more robust (e.g., brief stimulations can affect HR 

and HRV for 5-10 seconds) and long-lasting way (Shaffer et al., 2014).  

The second source of variability in the heart rate is Respiratory Sinus Arrhythmia (RSA), 

which refers to the rhythmic fluctuation of the heart rate that accompanies breathing (Berntson et al., 

1993). In particular,  changes in HR occur in a phased relationship with inspiration and expiration 
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(HR increasing during inspiration and HR decreasing during expiration) (Figure 1.9.). This 

synchronous fluctuation happens because the SNS is activated with each inhalation, and the PNS is 

activated with each exhalation. The main component of the RSA is the activity of the vagus nerve 

(Ernst, 2017; Khazan, 2013). In particular, vagal efferent action on the heart was inhibited during 

inspiration and was reinstated during expiration through the respiratory mechanism on the brainstem. 

This physiological phenomenon led to the rhythmic increase or decrease in heart rate associated with 

respiratory cycles (Berntson et al., 1993; Porges, 1995a; F. Yasuma & Hayano, 2004).  

 

Figure 1.10. Hypothetical visual representation of the respiratory sinus arrhythmia (RSA). In the example, the signal 

in the upper part of the graph is heart rate over time (HR), while the signal in the lower part of the graph is respiration 

rate over time (RESP). The two signals were measured simultaneously. During inspiration (ascending parts of RESP 

signal), the HF increase, whereas, during the expiration (descending parts of RESP signal), the HF decrease.  

 

 

 

Another source of variability of heart rate is derived from baroreflexes (BRs) (Lehrer, 2007). 

BRs refer to the body’s ability to regulate blood pressure (Eckberg & Sleight, 1992). Baroreceptors 

are stretch receptors located in the aorta and internal carotid arteries, which respond to changes in the 

diameter of these blood vessels, and, therefore, to changes in blood pressure. When blood pressure 

increases, baroreceptors send a signal to the brain to decrease HR and vascular resistance (i.e., 

increasing diameter of blood vessels), which subsequently result in a decrease of blood pressure. 

When blood pressure decreases, the baroreceptors produce the opposite effects increasing the HR and 

vascular tone (Shaffer & Ginsberg, 2017). Therefore, BRs were a negative feedback mechanism 

controlling blood pressure changes that could affect HR and HRV (Ernst, 2017). Indeed, the strength 

of the BRs is measured in units of change in RR intervals on the ECG (measured in milliseconds) per 
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unit of change in blood pressure (measured in millimetres of mercury) (Lehrer, 2007). Since HRV is 

the variation in time between heartbeats, higher levels of gain of BRs contribute to higher levels of 

HRV (Lehrer et al., 2003).   

In the last thirty years, technological advanced, established standards, and research guidelines 

increased the interest in HRV in the field of psychophysiology (Berntson et al., 1993; Laborde et al., 

2017; Malik et al., 1996). Moreover, HRV parameters are found valuable for understanding the 

relationship between brain and body, given that the parasympathetic nervous system has been found 

to be relevant for self-regulation mechanisms with links to cognitive, affective, social processes, and 

general health (Shaffer et al., 2014; Thayer et al., 2009). Therefore, in the next section, I better explain 

the measurement techniques and methods of analysis of the cardiac signal to obtain HRV parameters.  

 

1.2.3. Methods of measurement and analysis of HRV  

 

The gold standard for obtaining HRV measurements is through EGC equipment. However, in 

recent years, photoplethysmograph sensors have become more widespread in research and clinical 

contexts for the assessment of HRV (Ishaque et al., 2021). Both methods allow for obtaining interbeat 

interval (IBI) data, the starting point for calculating HRV parameters (Shaffer et al., 2014). The ECG 

was typically measured using electrodes applied in the chest following different types of 

configurations: the standard and most used configuration in psychophysiological research is the three-

lead ECG (Einthoven’s triangle placement) (Figure 1.10).  

 

Figure 1.11. ECG electrode placement according to Einthoven’s triangle. The ECG is detected from three available 

electrical dipole activities (bipolar leads). Notes: RA: Right arm; LA: Left arm; LL: Left leg.  
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In the distal configuration, the ECG electrodes are applied to the two arms and the left leg 

(Sarlo & Pennisi, 1998). However, to avoid movement artefacts, the proximal configuration is widely 

used: two electrodes are located over the right and left coracoid processes, and the third electrode is 

on the 5th left intercostal space (Sarlo & Pennisi, 1998; Shaffer et al., 2014). In these types of 

configurations, the heart's electrical activity was registered through a bipolar lead (i.e., the electrical 

activity of one electrode is compared to another). The lead I configuration has the positive electrode 

on the left coracoid process and the negative electrode on the right coracoid process. It, therefore, 

measures the electrical potential difference between the coracoid process. In the lead II configuration, 

the positive electrode is on the 5th left intercostal space, and the negative electrode is on the right 

coracoid process. Finally, the lead III configuration has the positive electrode on the 5th left intercostal 

space and the negative electrode on the left coracoid process. In the research context, the lead II 

configuration is the most utilized since the two electrodes detect the cardiac signal in parallel with 

the primary vector of ventricular depolarization. As a result, the cardiac registration provides wider 

R waves – one of the waves of the QRS complex – that help a more accurately IBI extraction from 

the ECG (Quintana et al., 2016; Sarlo & Pennisi, 1998). In clinical settings, unipolar leads (i.e., the 

electrical activity of one electrode is compared to a reference point that averages electrical activity) 

are common, and a typical configuration is a 12-lead ECG with six limb leads and six precordial leads 

(Ishaque et al., 2021). 

Photoplethysmography (PPG) is the most common alternative to the ECG measurement of 

the cardiac cycle. It can be used to derive an approximation of the beat-to-beat heart period and thus 

calculate HRV parameters. The PPG method relies on transforming the pulsatile waveform of 

microvascular blood flow from a peripheral site on the body (e.g., the fingertip, earlobe, or toe) into 

a series of beat-to-beat intervals (BBIs) (Hertzman, 1938). This occurs via a simple device consisting 

of a light-emitting diode (LED) and a photodetector (PD); the presence of the systolic beat produces 

a perturbation in the light's absorbance, which is identified as a pulse beat (Mukkamala et al., 2022). 

There are two basic configurations used in PPG: the transmission-mode – in which the perfuse tissue 

is placed between LED and PD – and the reflectance-mode – in which the LED and PD are placed 

side-by-side near the skin (Figure 1.11.). Th PPG signal consists of two different components: a large 

quasi-static component (i.e., DC component) corresponding to the light diffusion through tissues and 

non-pulsatile blood layers, and a small pulsatile part (i.e., AC component) due to the light diffusion 

through the arterial blood (Allen, 2007). Despite the ECG method being considered more accurate, 

especially with cardiac signals with frequent abnormal beats, the PPG method is a non-invasive, cost-

effective, and simple alternative when different conditions or needs do not allow the registration of 

the cardiac signal through ECG. Moreover, several studies have shown that when the recordings are 
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taken during a resting state, the IBI values – and the computed HRV parameters – obtained from ECG 

and PPG are highly correlated (Jeyhani et al., 2015; Kiran Kumar et al., 2021; Plews et al., 2017; 

Schäfer & Vagedes, 2013). 

 

Figure 1.12. The PPG principle and current sensors. (A) A light-emitting diode (LED) illuminates tissue, and a 

photodetector (PD) receives the transmitted or reflected light. The AC component of the measured waveform indicates 

changes in haemoglobin and, thus, pulsatile arterial blood volume. The signal quality is higher for visible wavelengths 

due to the absorption characteristics of haemoglobin but better for infrared wavelengths in low signal conditions (e.g., 

dark skin) due to deeper light penetration. (B) Various forms of PPG sensors are widely available, including conventional 

finger clips, wristbands, and smartphone cameras for contact or noncontact measurement. Reprinted from Mukkamala, 

Hahn & Chandrasekhar, Photoplethysmography, Academic Press, 2022, with permission from Elsevier. 

 

 

Different methods of analysis can be performed for HRV measurement and the chose depends 

on the aim of the study and the phenomenon of interest. There are three methods: time-domain 

methods, frequency-domain methods, and methods based on the non-linear dynamics of HR (i.e., 

non-linear methods) (Laborde et al., 2017). Time domain parameters reflect the overall variability in 

measurements of IBIs, whereas frequency domain indices reflect the distribution of power (i.e., signal 

energy) across different frequency bands of the cardiac signal (Malik et al., 1996; Shaffer & Ginsberg, 

2017). Non-linear methods differ from the conventional linear methods (time- and frequency-domain 

methods) because they do not assess the magnitude of variability or fluctuations in some 

predetermined frequencies but rather the quality, scaling, and correlation properties of the signal 
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(Malik et al., 1996; Voss et al., 2009). In particular, non-linear parameters are related to the cardiac 

signal's unpredictability, fractability, and complexity (Huikuri et al., 2003). As explained in 

paragraph 1.2.2., HRV parameters are affected by the duration of the ECG recording (e.g., 24-h, 

short-term: 5 minutes, ultra-short-term: < 5 minutes). For instance, the indices obtained from a 24-h 

recording are not interchangeable with those obtained from a short-term recording due to the different 

biological and physiological processes that affect 24-h and short-term HRV indices (Shaffer & 

Ginsberg, 2017). As indicated by Laborde et al. (2017), 24-h HRV indicators cold be interesting for 

particular study designs or hypotheses. However, due to time constraints and experimental 

considerations, short-term HRV parameters are the most used in psychophysiology research (Laborde 

et al., 2017; Malik et al., 1996). More recently, the interest in ultra-short-term HRV parameters has 

increased, and many studies have started investigating the reliability and validity of these indices 

compared to short-term ones. Literature report that only a few time-domain HRV parameters (e.g., 

rMSSD) obtained from time windows short than 5 minutes are as reliable as short-term HRV 

parameters (Baek et al., 2015; Castaldo et al., 2019; Munoz et al., 2015; Shaffer et al., 2016). 

However, more replications of comparison studies are needed to understand better which HRV 

indices could be reliably used when a standard registration of 5 minutes is not possible.     

Within the time-domain parameters, the most used in psychophysiology are SDNN, rMSSD, 

and pNN50. The SDNN (i.e., the standard deviation of the normal IBI, or RR intervals), expressed in 

ms, reflects the cyclic components responsible for the variability of heart rate (Berntson et al., 1997; 

Malik et al., 1996). Both SNS and PNS influenced SDNN, and few studies indicate that the accuracy 

of this parameter is higher for more extended recording periods (e.g., 24 h periods or more) (Malik et 

al., 1996; Shaffer & Ginsberg, 2017). The rMSSD (i.e., the root mean square of the successive 

differences between normal heartbeats), expressed in ms, reflects estimates of short-term variability 

of heart rate, is highly sensitive to the fluctuation of the high frequency of HRV, and is the primary 

time-domain measure used to estimate the vagal activity on the HR (Berntson et al., 1997; Malik et 

al., 1996; Shaffer & Ginsberg, 2017). The pNN50 (i.e., the percentage of successive normal IBI that 

differ by more than 50 ms) is derived from beat-to-beat differences; therefore, it primarily indicates 

short-term HR variations – as rMSSD (Laborde et al., 2017). The pNN50 is an index of vagal activity, 

and it is closely correlated with the rMSSD and the high frequency of HRV. However, rMSSD is 

preferred to the pNN50 for assessing PNS activity due to its statistical robustness and the fact that it 

provides a better evaluation of RSA (Otzenberger et al., 1998; Shaffer & Ginsberg, 2017). 

The frequency-domain analysis provides an understanding of the specific contribution of SNS 

and PSN to HRV. Through Autoregressive models or Fast Fourier Transformation, the HRV signal 

is filtered to obtain power distribution across different frequency ranges.  As a result, the HRV power 
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spectrum can be divided into four frequency bands: ultra-low frequency (ULF; ≤0.003 Hz), very low 

frequency (VLF; 0.0033–0.04 Hz), low frequency (LF; 0.04–0.15 Hz) and high frequency (HF; 0.15–

0.4 Hz) (Malik et al., 1996; Shaffer & Ginsberg, 2017). The ULF power, expressed in ms2, is the less 

known frequency band, requires an ECG recording period of al least 24-h, and there is no consensus 

on the physiological mechanism underlying this frequency component (Draghici & Taylor, 2016; 

Kleiger et al., 2005; Shaffer & Ginsberg, 2017). The VLF power, expressed in ms2, could be reliably 

obtained from an ECG recording of at least 5 minutes, reflects sympathetic and parasympathetic 

inputs on the heart, and could be influenced by the renin-angiotensin, thermoregulatory, and 

peripheral vasomotor systems (Berntson et al., 1997; Kleiger et al., 2005; Malik et al., 1996; Shaffer 

& Ginsberg, 2017). The LF power, expressed in ms2, reflects both sympathetic and parasympathetic 

cardiac activity and is strongly related to blood pressure regulation (Berntson et al., 1997; Malik et 

al., 1996). Despite few studies using LF power as an index of sympathetic activity, this tagging is 

controversial since literature indicated that LF power is modulated by both branches of ANS and 

baroreflex activity (Billman, 2013; Goldstein et al., 2011). On the other hand, the HF power, 

expressed in ms2, primarily reflects cardiac parasympathetic tone (Berntson et al., 1997; Malik et al., 

1996). The HF band is frequently called the “respiratory band” because it corresponds to heart rate 

variations related to the respiratory cycle (Shaffer & Ginsberg, 2017). When breathing rates remain 

between nine cycles (0.15 Hz) and 24 cycles per minute (0.40 Hz), then HF power reflects vagal tone 

(Laborde et al., 2017). Moreover, Kleiger et al. (2005) indicated that HF power showed a highly 

positive correlation with pNN50 and rMSSD, two time-domain parameters that quantify 

parasympathetic modulation in the heart. The last parameter related to the frequency-domain analyses 

is the ratio of LF to HF (LF/HF), which was often used as an index of the sympathovagal balance 

(i.e., the changing relationship between sympathetic and parasympathetic nerve activities) (Heathers, 

2014; Shaffer et al., 2014). However, it has been repeatedly shown that LF power is not a pure index 

of SNS activity; different biological processes and experimental conditions appear to contribute to 

LF power. Therefore, the LF/HF parameter interpretation as a measure of sympathovagal balance 

cannot hold (Billman, 2013; Shaffer & Ginsberg, 2017). More studies are needed to understand this 

parameter's underpinning physiological mechanism.  

Lastly, non-linear HRV parameters emphasized the dynamical properties of HRV (Malik et 

al., 1996; Voss et al., 2009). Examples of these parameters are the entropic measures of HRV as 

approximate (ApEn) and sample entropy (SampEn), and detrended fluctuation indices (i.e., DFA-α1 

and DFA-α2). Entropy parameters provide a measure of regularity and complexity – or 

unpredictability – of the HRV (Huikuri et al., 2003). Detrended fluctuation parameters are a measure 

of the correlation between successive RR intervals at different time scales. They are developed to 
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distinguish between the interval variation generated by the complexity of the cardiac system and those 

variations due to artefacts or external stimuli (Peng et al., 1998). Non-linear HRV parameters could 

provide different information about cardiac signals' complexity and non-linear behaviour; however, 

more validation studies are needed to use these parameters reliably in psychophysiology research 

(Sassi et al., 2015).  

 

1.3 . Heart rate variability and depression  
 

1.3.1. Autonomic dysfunction and psychopathology  

 

Beauchaine and Thayer (2015) defined HRV as  “a transdiagnostic biomarker of vulnerability 

to psychopathology”. Although their paper focused only on the HF power of HRV, the literature 

confirmed that the alteration of different HRV parameters was associated with the development 

and/or the maintenance of various psychopathologies. For instance, decreased HRV is associated with 

a higher risk of anxiety disorders (Chalmers et al., 2014), alcohol use disorders (Ralevski et al., 2019), 

bipolar disorder (Faurholt-Jepsen et al., 2017), and depression (Hartmann et al., 2019; Koch et al., 

2019). The main idea underlying different models that explain the association between HRV and 

mental disorders is that HRV reflects an individual’s capacity for flexible and adaptive responding to 

changing internal and external demands (McCraty & Shaffer, 2015; Porges, 2007; Thayer et al., 

2009).  

The neurovisceral integration model (Thayer et al., 2009; Thayer & Lane, 2000, 2009) posits 

that the neural network implicated in the self-regulation and adaptability of psychological processes 

(i.e., emotional and cognitive regulation) is also related to the regulation of cardiac autonomic 

activity. Several replicated findings suggested that higher HRV is associated with greater capacity for 

emotion regulation (Appelhans & Luecken, 2006; Balzarotti et al., 2017; Grol & de Raedt, 2020) and 

better executive cognitive performance involving attention, working memory, cognitive flexibility, 

and inhibitory control (Colzato et al., 2018; Forte et al., 2019a; Luque-Casado et al., 2016; Park et 

al., 2012). The association between the HRV and emotional and cognitive regulation is related to the 

Central Autonomic Network (CAN) activity (Thayer et al., 2012; Thayer & Lane, 2009).  

The CAN consists of cortical (e.g., medial prefrontal cortex, insular cortex), limbic (e.g., 

anterior cingulate cortex, central nucleus of the amygdala, hypothalamus), and brainstem regions 

(e.g., periaqueductal grey matter, parabrachial nucleus, the nucleus of the solitary tract) (Benarroch, 

1993; Mulcahy et al., 2019; Thayer et al., 2012). The CAN control of cardiac activity derives from 

the interaction of different neural structures in a feedback-based complex system that leads to ANS 

modulation that affects heart activity (i.e., increase of HR and decrease of vagally mediated HRV) 
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(Figure 1.12.) (Ernst, 2017; Thayer et al., 2012). Literature shows that CAN activity is also involved 

in emotional and cognitive regulation, especially the prefrontal cortex and amygdala (Mulcahy et al., 

2019; Park & Thayer, 2014; Thayer et al., 2012). The activity of these brain regions modulates human 

behaviours by the interconnection between higher-level psychological functions, and autonomic 

regulation of the heart. The CAN integrates the internal and external input, evaluates threat and safety 

of the situation, and flexibly adjust emotional and executive functions. The output of these neural 

activity affects the heart through the ANS. Therefore, HRV –  especially vagally-mediated HRV –  

reflects the functional capacity of CAN brain structures that support cognitive and emotional self-

regulation (Shaffer et al., 2014; Thayer et al., 2009; Thayer & Lane, 2009).  

The model proposed that the non-adaptive and prolonged inhibition of prefrontal cortex 

activity and the related effect on amygdala drive a disruption on the adaptive and goal-directed 

behaviours that, in turn, could led to perseverative negative cognition, hypervigilance, and emotional 

inflexibility and then, to psychopathology (Thayer et al., 2009, 2012). Indeed, the hypoactivity of 

prefrontal cortex is related with an increase of HR and a decrease of vagally-mediated HRV 

confirming that associated lower HRV vagal parameters and higher risk of mental disorders (Shaffer 

et al., 2014; Thayer et al., 2009; Thayer & Lane, 2009).      

 

Figure 1.13. A composite schematic diagram shows the pathways by which the prefrontal cortex might influence heart 

rate control. The prefrontal, cingulate, and insula cortices form an interconnected network with bi-directional 

communication with the amygdala. The amygdala is under tonic inhibitory control via prefrontal vagal pathways to 

intercalated cells in the amygdala. The activation of the central nucleus of the amygdala (CeA) inhibits the nucleus of the 

solitary tract (NTS), which in turn inhibits inhibitory caudal ventrolateral medullary (CVLM) inputs to the rostral 

ventrolateral medullary (RVLM) sympathoexcitatory neurons, and simultaneously inhibits vagal motor neurons in the 

nucleus ambiguus (NA) and the dorsal vagal motor nucleus (DVN). In addition, the CeA can directly activate the 

sympathoexcitatory neurons in the RVLM. The net effect of pharmacological blockade of the prefrontal cortex would be 

disinhibition of the CeA, leading to disinhibition of medullary cardio-acceleratory circuits and an increase in heart rate. 

Reprinted from Neuroscience & Behavioral Reviews, Volume 33 (2), Thayer & Lane, “Claude Bernard and the heart-

brain connection: Further elaboration of a model of neurovisceral integration”, page 84, 2009, with permission from 

Elsevier. 
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A second theory that has been used in the last years to explain the meaning of HRV and the 

interpretation of the underlying process of ANS is the polyvagal theory (Porges, 1995b, 2007, 2009). 

This theory draws on an evolutionary model of explanation regarding the neurophysiological 

development of autonomic regulation. It provides a framework for connecting the neural activation 

of the vagal system to the experience and expression of social and emotional behaviour.  

Porges (Porges, 1995b, 2001, 2007) suggests that mammalian ANS has three hierarchical 

organised systems: the ventral vagal complex (VVC), the sympathetic nervous system (SNS), and the 

dorsal vagal complex (DVC) (Porges, 2022). The three subsystems of ANS have different 

neuroanatomical pathways that lead to peculiar behavioural responses to challenges of the organism. 

The newest phylogenetic subsystem (VVC) comprises myelinated vagal fibres originating in the 

nucleus ambiguous that, through the coordination of striated face and head muscles and the regulation 

of the organs above the diagraphs, promote social expression and engagement (Porges, 2007, 2022). 

Indeed, the innervation of muscles in the face, larynx, pharynx, oesophagus, soft palate, eyelids, and 

middle ear are all of crucial importance for communication (e.g. facial expressivity, prosody, and 

intonation) and perception (e.g., extracting the human voice from background sounds) – and, thereby, 

also essential prerequisites for social interaction. The SNS is related to fight-or-flight behavioural 

response, and its efferent originating in the spinal cord innervates both organs above and below the 

diaphragm (Porges, 2009, 2022). In the DVC, the unmyelinated vagal efferent originating in the 

dorsal nucleus of the vagus primary innervates organs below the diaphragm (i.e., muscle and glands 
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of the gut) with few fibres terminating on the heart's sinoatrial node, and its primary behavioural 

function is immobilisation (Kolacz et al., 2019; Porges, 2022).  

When the VVC state is activated in safe conditions, there is an adaptive autonomic balance 

between SNS and DVC (Porges, 2001). However, when the VVC becomes ineffective (e.g., in threat 

conditions), the two more phylogenetical archaic subsystems are triggered. The SNS led the organism 

to actively cope with the environmental challenge through defensive mobilisation behaviour 

responses (e.g., fight-or-flight behaviours) (Porges, 2007, 2009). In the case of extreme stress or 

hazardous conditions, the DVCed the organisms to an immobilisation response and conservation of 

energy through inhibition of metabolic function and passive behavioural responses (e.g., freezing or 

fainting) (Kolacz & Porges, 2018; Porges, 2001).  

The detection of threats and the evaluation of safety play a crucial role in the employment of 

these systems. The neural processes that determine the level of safety or risk present in the 

environment have been termed “neuroception” (Porges, 2007, 2022). In order to socially engage with 

another organism, mammal neuroreceptor circuits have to evaluate the environment as safe and 

downregulate defensive strategies. When the process of neuroception is disrupted, as in 

psychopathology, the threat may be mislabelled as more or less dangerous than it should be, and a 

maladaptive strategy along with inappropriate systems may be employed, leading to behaviours that 

may be destructive or cause long-term distress (Porges, 2007, 2009). In other words, a chronic 

dampened function of VVC and the resultant mobilisation (SNS) and immobilisation (DVC) 

defensive states in non-threat situations provide the framework for the onset of mental health 

disorders (Kolacz, Dale, et al., 2020; Kolacz et al., 2019). 

Other models also explain the relationship between HRV and psychopathology (e.g., the 

psychophysiological coherence model). However, all these models focused on the PNS activity. The 

overall idea is that a disruption of vagal tone could be associated with lower adaptability and 

successful regulation that, in turn, could be related to worst social and emotional functioning and 

psychological health. Therefore, this thesis will focus on the association between HRV – mainly 

vagally-mediated HRV parameters – and postpartum depressive symptoms. The topic is critical since, 

in the last years, literature found an association between vagally-mediated HRV parameters and 

depressive symptoms in the general population. However, very few studies extend these findings to 

PPD and no studies used vagally-mediated HRV as a potential biomarker and predictor of higher 

depressive symptoms after childbirth.  

 

1.3.1. Heart rate variability and depression in the general population  
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A compelling body of research reported that depression is characterized by lower vagally-

mediated HRV (Brown et al., 2018; Dell’Acqua et al., 2020; Hartmann et al., 2019; Koch et al., 2019; 

Koenig et al., 2016; Schiweck et al., 2019). In their meta-analysis, Kock et al. (2019) considered 

studies that compared HRV measurements at rest between unmedicated adults with major depression 

and healthy controls. Results showed that compared to controls, depressed samples showed lower 

levels of HF power, LF power, rMSSD, SDNN and higher levels of LF/HF ratio, with a greater effect 

size for rMSSD. These findings supported the idea that depression is characterized by a general 

alteration of time- and frequency domain measurements of HRV with an important reduction of 

cardiac vagal control. A recent study corroborates this evidence, showing that lower levels of rMSSD, 

HF power and LF power might be a diagnostic marker to distinguish between depressive patients and 

healthy controls (Hartmann et al., 2019). Moreover, when the depressed sample underwent to 2 weeks 

of antidepressant treatment, they showed lower levels of depressive symptoms and a parallel increase 

of HF power, supporting the hypothesis of an improvement of symptoms severity of depression in 

correspondence to an increase of vagal activity. In a successive study, reduced vagally-mediate HRV 

appears to be a promising indicator of vulnerability to depression (Dell’Acqua et al., 2020). This 

study aimed to compare HRV parameters in individuals vulnerable to the onset of depression (i.e., 

individuals with dysphoria and unmedicated past depression) with healthy controls. The results 

indicated that individuals with at-risk conditions for developing depression showed reduced cardiac 

vagal modulation (i.e., reduction in both SDNN and HF power parameters) compared to controls. 

These findings suggested that cardiac vagal modulation could represent a correlate of vulnerability to 

depression. 

Moreover, two longitudinal studies indicated that vagally-mediated HRV was prospectively 

implicated in the onset of depressive symptoms in a healthy population (Carnevali et al., 2018; 

Jandackova et al., 2016). For instance, Jandackova et al. (2016) showed that lower baseline HR and 

higher HRV parameters (i.e., SDNN, rMSSD, HF power, and LF power) were associated with a lower 

likelihood of symptoms of depression ten years later. However, despite the study's strengths – for 

instance, the sample did not have depressive symptoms at baseline, and the association between HRV 

and depression was independent of various sociodemographic and lifestyle covariates – significant 

results were obtained only for cognitive depressive symptoms and only in male participants. A 

successive study enhanced these findings reporting that low vagal tone (i.e., rMSSD) was associated 

with higher depressive symptoms one year later (Carnevali et al., 2018). Moreover, they showed that 

vagally-mediated HRV mediated the relationship between rumination and depression levels; this 

seems to indicate that the well-known link between rumination and depressive symptoms could be 

partly due to the alteration of PNS function.          
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1.3.2. Heart rate variability and depression in peripartum  

The relationship between HRV and depressive symptoms was also investigated in the 

pregnant population. However, there is an important difference between studies on the general 

population and pregnant women. During pregnancy, the ANS activity varies widely to maintain the 

body’s health homeostasis and adapt to the new physiological requests of the growing fetus (Abbas 

et al., 2005; Brooks et al., 2020). Several studies indicated an increase in basal heart rate, a reduction 

of PNS, and a predominance of SNS activity during the second and third trimester of pregnancy 

(Balajewicz-Nowak et al., 2016; Fu, 2018; Kuo et al., 2000; Matsuo et al., 2007; Volman et al., 2007) 

with the restoration of pre-pregnancy ANS activity in the weeks following childbirth (R. L. Brown et 

al., 2021; Yeh et al., 2009). For instance, Kuo et al. (2000) found a biphasic change in ANS during 

pregnancy; in particular, ANS is shifted significantly to a lower sympathetic and higher vagal activity 

in the first trimester and then progressively to a higher sympathetic and lower vagal activity in the 

second and third trimester. This trend is confirmed in other longitudinal studies (Balajewicz-Nowak 

et al., 2016; Matsuo et al., 2007). One of the leading causes of the adaptive change of ANS activity 

seems to be the increase of cardiac output and vasodilatation through pregnancy that increments the 

workload of the heart, shifting the ANS into a state of a higher SNS and lower PNS activity, as 

gestational time advances (Fu, 2018; Kuo et al., 2000; Matsuo et al., 2007). After delivery, Brown et 

al. (2021) reported a significant improvement of vagally-mediated HRV parameters from the third 

trimester to 4-6 week postpartum, suggesting a returns to vagal tone pre-pregnancy levels in the first 

period after childbirth (R. L. Brown et al., 2021; G. Y. Chen et al., 1999; Yeh et al., 2009). 

Dysfunctional changes in ANS during pregnancy have been investigated directly in relation 

to depressive symptoms (Kimmel et al., 2021; Shah et al., 2020; Shea et al., 2008) or through other 

hypotheses (Ecklund-Flores et al., 2017; Rouleau et al., 2016). Shea et al. (2008) examined the 

association between depression and ANS function during the third trimester of pregnancy by 

comparing HRV parameters obtained from a 24-h ECG in depressed and healthy pregnant women. 

Their findings showed that depressed pregnant women reported lower values of SDNN and SDANN 

(i.e., the standard deviation of the averages of RR intervals in all 5 minutes segments of the entire 

recording) than the healthy control group, indicative of decreased vagal tone. A successive study – 

investigating the possible mechanism linking depression and gestational hypertension – corroborates 

these findings reporting that higher levels of depressive symptoms in the second trimester of 

pregnancy were associated with lower levels of HF power in the third trimester of pregnancy, that in 

turn increases the likelihood of gestational hypertension (Rouleau et al., 2016). Another study 

exploring the effect of pregnancy depressive symptoms on a child’s birth weight found that depressive 
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symptoms and rMSSD in the third trimester of pregnancy were negatively correlated, leading authors 

to posit that PNS activity is altered by the presence of depressive symptoms during pregnancy 

(Ecklund-Flores et al., 2017). A recent cross-sectional study reported that higher levels of LF/HF 

ratio and lower levels of baroreflex sensitivity were associated with depressive symptoms during 

pregnancy (i.e., between 12 and 30 weeks of pregnancy) (Shah et al., 2020). Despite the difficulty of 

interpreting the higher levels of LF/HF ratio, lower levels of baroreflex sensitivity confirmed the idea 

that impaired autonomic modulation is typical in women with prepartum depressive symptoms. 

Although the literature has supported the association between altered HRV and depression in 

pregnancy so far, a recent study by Kimmel et al. (2021) found no association between HRV 

parameters (i.e., SDNN, rMSSD, VLF, LF, HF, and LF/HF ratio) and the presence of a major 

depressive disorder in pregnant women at the late third trimester of pregnancy. However, authors 

found that different HRV parameters were associated with other mental health diagnoses. For 

instance, lower HF power was found for women who met diagnostic criteria for obsessive compulsive 

disorder, whereas higher LF and LF/HF ration were found for those meeting criteria for social phobia 

o general anxiety disorder.  

     

1.4. Aims of the present thesis  
 

The main objective of this thesis was to explore the relationship between parasympathetic 

autonomic activity and mental health, focusing on peripartum depressive symptomatology. In 

particular, we investigated the role of HRV as an indicator of depressive symptoms during pregnancy 

and as a predictor of postpartum depressive symptomatology. Literature supported this relationship 

in the general population, but studies on peripartum samples are scarce. Moreover, the direction of 

the relationship between HRV and depression is unclear, and no studies investigate the potential of 

HRV during pregnancy as a predictor of postpartum depressive symptoms. Since all studies reported 

in this thesis were carried on during the COVID-19 pandemic, we took the opportunity to test the use 

of remote and online technologies. In the last year, mobile and web-based assessments and 

interventions have been widespread, and the pandemic social restrictions boosted the trend. So, this 

thesis could represent a valuable occasion to test the feasibility of using mobile technologies and self-

reported questionnaires to assess HRV, a physiological variable that is often measured in person in a 

laboratory setting. Our target population (i.e., pregnant women) complete the innovative framework 

of the thesis, considering the scarcity of studies that combine psychological and physiological 

measures and use eHealth in the peripartum period.  
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The first study of this thesis validates the use of a commercial Android smartphone application 

to assess HRV. The study is essential for identifying a reliable remote evaluation of the 

parasympathetic activity. Many smartphone applications have been developed in recent years to 

assess cardiac parameters, but validation studies supported very few of them. In the second study, we 

implemented the use of this application in the main aim of this thesis, namely the investigation of the 

relationship between HRV and peripartum depressive symptoms. We aimed to understand the role of 

prepartum HRV in the presence of depressive symptomatology during pregnancy; moreover, to shed 

light on the direction of the relationship, we explored the impact of HRV during pregnancy in the 

onset of postpartum depressive symptoms. The third study continued this research line by using a 

self-reported measure of vagal activity to predict postpartum depressive symptoms. The results of 

this study are innovative and valuable, considering the test of a physiological index through a 

questionnaire and the opportunity of measuring the parasympathetic activity in particular conditions 

(e.g., rural communities, large-scale studies, etc.). Using these tools we aimed to provide new 

effective measures to assess women health in one of the most important phases of their lives, namely 

pregnancy.            
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2. Study 1: Validation of a smartphone application for the 

collection of Heart Rate Variability parameters 

Study 1 of the paper “Singh Solorzano, C., Violani, C., Grano, C., (2022). Pre-partum HRV as a predictor of postpartum 

depression: The potential use of a smartphone application for physiological recordings. Journal of Affective Disorders, 

319, 172-180. https://doi.org/10.1016/j.jad.2022.09.056” 

 

2.1. Introduction 

In the last years, the proliferation of smartphones increased the usage of digital content and 

mobile applications in different contexts (e.g., at home, at school, during free time) and for different 

purposes (e.g., work, education, health, gaming). Recent statistics reported that the number of current 

smartphone users worldwide is over 6 billion, with the highest number of smartphone users in China, 

India, and the United States (Statista Research Department, 2022a). Just in Italy, there are 46,5 million 

smartphone users, and about 9 out of ten Italian mobile owners prefer smartphones to browse the 

internet and use digital services (ISTAT, 2019; Statista Research Department, 2022a). Since the 

increase of the number of smartphone users seems to not slow down in the following years and the 

ubiquity of mobile technologies in all domains of people's lives, it could be important to investigate 

and update on the potential applications of these technologies on health.  

Mobile Health or mHealth is defined as “medical and public health practice supported by 

mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and 

other wireless devices” (World Health Organization, 2011) or as “mobile computing, medical sensor, 

and communications technologies for healthcare” (Istepanian et al., 2007). A more comprehensive 

definition described mHealth as “the use of any mobile device including mobile phones, smartphones, 

mobile or phone-based sensors for providing and receiving healthcare services such as healthcare 

monitoring, diagnosis, management and prediction of diseases” (Iyawa et al., 2020). In the period in 

which this thesis was written, more than 107,000 mHealth apps were available in the app stores, with 

an exponential trend in the number of available mobile health apps from 2015 (Statista Research 

Department, 2022b, 2022c). The main reasons for this increase are related to the economic and 

convenience aspects. However, most available mHealth apps have been developed without being 

tested for validity and effectiveness. Indeed, a recent systematic review reported that the level of 

evidence is currently only sufficient to support the use of apps in a small number of specific clinical 

situations (Rowland et al., 2020). However, this point did not dampen the use of mHealth apps and 

even promoted more trials to understand the real value and reliability of mHealth applications. Due 

to the current technology development and advances, neglecting the use of smartphones in the health 

context could be a missed opportunity to improve the health care system. Considering the potential 
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information a smartphone can collect should lead to more investigations and studies on the topic. 

Indeed, smartphones' ability to carry different embedded or external sensors – apart from a simple 

collection of self-reported measures –might allow their use as a valuable tool for self-assessment and 

monitoring common psychological and physiological parameters. Moreover, using technologies, 

including voice, text messaging, video, and the internet, could improve the quality, make it more 

convenient, and improve the effectiveness of different psychological and educational interventions 

(Fiedler et al., 2020; Marcolino et al., 2018). 

The smartphone’s camera could be an excellent sensor to quickly record cardiac activity with 

low equipment requirements through contact photoplethysmography (PPG) technology (De Ridder 

et al., 2018). The main idea of PPG was to assess blood volume changes caused by pressure changes 

related to the cardiac cycle through a light source to illuminate the subcutaneous tissue and a 

photodetector to detect the changes in light intensity (Allen, 2007; Jonathan & Leahy, 2010). 

Smartphones could be used to perform PPG by replacing the photodetector with the digital red-green-

blue (RGB) camera and using the flashlight as a light source (Figure 2.1.). As explained in paragraph 

1.2.3, HR and HRV parameters could be derived from a PPG registration's beat-to-beat intervals 

(BBIs). Literature indicated that a few time- and frequency-domain HRV parameters derived from 

PPG smartphone camera registration are similar to the same parameters derived from RR intervals 

(RRIs) of an ECG – the golden standard (Bánhalmi et al., 2018; Bolkhovsky et al., 2012; Guede-

Fernández et al., 2020; Holmes et al., 2020; Moya-Ramon et al., 2022; Peng et al., 2015; Plews et al., 

2017; Zhang et al., 2021). For instance, Plews et al. (2017), Holmes et al. (2020), and Moya-Ramon 

(2022) showed that the short-term rMSSD at rest collected with commercial iPhone smartphone 

applications (i.e., HRV4Training, Welltory) had an acceptable agreement with the same parameters 

derived via ECG. Moreover, other studies reported similar or better findings using non-commercial 

PPG smartphone applications using Android (Guede-Fernández et al., 2020; Lenskiy & Aitzhan, 

2013; Peng et al., 2015; Zhang et al., 2021) or iOS (Bánhalmi et al., 2018; Bolkhovsky et al., 2012) 

mobile operating systems. 

 

Figure 2.1. Working principle of PPG collection through a smartphone (reflectance-mode PPG). Figure from (Moraes 

et al., 2018).  
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The assessment of HRV through the smartphone camera could be an attractive opportunity 

for developing different and multidimensional psychological and medical care models. However, 

more proof of feasibility, validity, and accuracy of the different apps is needed to make using these 

mHealth technologies profitable and cost-effective. Furthermore, using smartphones for collecting 

HRV data is currently limited due to the lack of robustness and reliability of these apps in practical 

scenarios. Apart from the need for more validation studies, the operative system of the smartphones 

(e.g., IOS, Android), the different software designed to process the smartphone PPG signal, the low 

frame sampling rate of smartphones camera, and the difficulty accessing raw PPG data are all source 

of randomness and instability of the HRV parameters collected by smartphone apps (Laborde et al., 

2017; Liu et al., 2020b).  

This study aimed to investigate a commercial smartphone application's validity in assessing a 

time-domain HRV index (i.e., rMSSD). This time-domain index was chosen because it is one of the 

most appropriate HRV measures for short-term and ultra-short-term recordings (Y. S. Chen et al., 

2020; Malik et al., 1996; Munoz et al., 2015), is widely used in literature (Khazan, 2013), reflects the 

cardiac vagal influence and is highly correlated with other HRV parasympathetic parameters (Shaffer 

& Ginsberg, 2017), and is less influenced to variability in respiration than other HRV indices (Penttilä 

et al., 2001; Thayer et al., 2012). Therefore, we assessed the reliability and accuracy of a free Android 

commercial smartphone application for recording rMSSD compared with an electrocardiogram 

(ECG).  
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2.2. Methods and Materials 

2.1.1. Participants 

A total of 35 university students voluntarily took part in the study (mean age = 26.43, standard 

deviation = 6.56). Almost all participants were females (85.7%), and the average weight and height 

were 62.63 kg (SD = 10.52 ) and 1.69 m (SD = 0.08), respectively. Exclusion criteria included current 

cardiovascular and metabolic diseases.  

 

 

2.1.2. Procedures 

Before the laboratory session, participants were requested to avoid alcohol consumption, 

caffeine-containing substances, and smoking on the same day of the appointment. In the first part of 

the laboratory session, participants gave written informed consent and were administered a 

demographic interview. Moreover, they were provided with an explanation and demonstration of how 

to use the PPG smartphone application. In particular, the participant had time to familiarise 

themselves with the PPG application and carried out some registration trials. To collect the most 

reliable data, they had to place the fingertip of the right hand’s index to cover both the smartphone 

camera and flash. Moreover, the participants were given instructions to improve the signal quality, 

such as not moving their hands or body during the registration and avoiding hard contact pressure on 

the smartphone camera and flash when performing measurements. 

Then, participants were seated in an upholstered chair in a quiet room. After the ECG  sensors 

were attached and a smartphone with the PPG application mentioned above was provided, the cardiac 

signal was recorded at rest, simultaneously by the ECG and the application over a period of two 

minutes for each participant. Short-term recording (<5 minutes) has been reported to be a reliable 

method to measure time-domain HRV indices both for parameters resulting from ECG (Baek et al., 

2015; Shaffer et al., 2016) and PPG smartphone applications (Y. S. Chen et al., 2020; Christien Li et 

al., 2019; Coppetti et al., 2017). The devices were activated manually to avoid possible 

synchronisation errors between the instruments. All participants signed an informed consent form. 

The study was approved by the Institution Review Board of the Psychology Department, Sapienza 

University of Rome (Prot. n. 0000024).  

 

2.1.3. Measures  

ECG was collected using a ProComp5 Infiniti amplifier and BioGraph Infiniti software 

(Thought Technology Ltd., Montreal, Quebec). The ECG was recorded from three Ag⁄AgCl 

electrodes that were positioned on the participant’s chest in a modified lead II configuration. The 
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physiological signal was recorded continuously for 2 min while participants were seated comfortably 

in a quiet room. Impedance was kept below 5 kΩ, and each ECG signal was amplified, band-pass 

filtered (0.3–100 Hz) and sampled at 1000 Hz. The RR intervals (RRI) were extracted, and Kubios 

HRV Analysis Software 3.4.1 (Matlab, Kuopio, Finland) was used to inspect raw data. Ectopic beats 

and artefacts were removed and replaced with the interpolated adjacent RR interval values (threshold 

= 0.45 seconds or “very low”). Then, the same software was used to calculate the root mean square 

of successive difference between NN intervals (rMSSD) in ms.  

After a training session, the physiological signal was recorded for 2 minutes from the 

smartphone (Xiaomi Redmi Note 7) at the same time as the ECG recording through the use of the 

application Heart Rate Variability HRV Camera. This application uses contact PPG technology to 

detect heartbeats by analysing changes in light absorption related to fluctuations of beat-by-beat 

capillary blood volume (Christien Li et al., 2019; Schäfer & Vagedes, 2013). The sampling rate of 

the smartphone camera was 30 Hz, and the smartphone application performed a 100 Hz interpolation 

to improve the accuracy of raw collected data. Then, the application analysed the raw beat-to-beat 

interval (BBI) data and computed the rMSSD in ms using the standard formulas for this HRV time-

domain index (Jokic et al., 2016; Malik et al., 1996). However, the application did not have a system 

to inform the user whether the collected raw data were of sufficient quality or not. Therefore, a visual 

inspection of the graphs provided by the app (Figure 2.2.) was carried out by the researcher to identify 

signals with high noise or movement artefact (i.e., low-quality physiological registrations) through 

the analysis of the distributions of values in the plot with the course of heart rate over time and in the 

Poincaré plot (Chua et al., 2008; Stein et al., 2005). In the plot with the course of heart rate over time, 

linear and quasi-periodic waves without values outside the biologically plausible range of 20-220 

beats per minute must be seen in the signal. In the Poincaré plot, an ellipsoid or mildly comet-shaped 

distribution of points aligned at the centre of the plot must be seen in the signal. An example of a 

good-quality signal is shown in Figure 2.2. If the measured signal was of low quality, participants 

were asked to repeat the experiment after a pause of 5 minutes. Examples of two bad-quality signals 

are shown in Figure 2.3. 

 

Figure 2.2. An example of graphs plotted by “Heart Rate Variable HRV Camera” after the end of a two-minute 

physiological registration with good quality. The application reported: a plot with the course of heart rate over time (at 

the top left); the Poincaré plot (at the middle left); a plot with the distribution of beat-to-beat intervals over time (at the 

bottom left); a power spectrum density graph of the HRV (at the top right); a power spectrum density graph of the HRV 

obtained by autoregressive method (at the bottom right). 



53 

 

 

 

 

Figure 2.3. Two examples of graphs plotted by “Heart Rate Variable HRV Camera” after the end of a two-minute 

physiological registration with bad quality. At left is an example of a PPG signal with few movement artefacts throughout 

the registration, as indicated by an irregular plot with the course of heart rate over time and an unreliable Poincaré plot. 

At the right is an example of a PPG registration in which the smartphone did not correctly collect the cardiac signal, as 

indicated by a quasi-linear plot with the course of heart rate over time and an unreliable Poincaré plot.  
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2.1.4. Statistical analysis  

Descriptive data of measured variables were presented as means and standard deviations. 

Mean RRI (i.e., the mean of the time intervals elapsing between two consecutive waves of the cardiac 

signal), mean BBI (i.e., the mean of the time interval elapsing between two consecutive beats of the 

PPG signal), and rMSSD recording both with ECG and PPG were logarithmically transformed before 

statistical analyses to normalise their distribution. To assess differences between measures recorded 

with PPG and ECG, independent t-tests were used. Cohen’s d was used to determine the magnitude 

of the mean differences (J. Cohen, 2013). Cohen’s d was interpreted as trivial (0.0-0.2), small (0.2-

0.6), moderate (0.6-1.2), large (1.2-2.0), and very large (>2.0) (Hopkins et al., 2009). Intraclass 

correlation coefficients (ICC) with a two-way random model were used to evaluate the agreement 

between the values provided by the smartphone app to ECG. An ICC value between 0 to 0.30 was 

considered small, 0.31 to 0.49 moderate, 0.50 to 0.69 large, 0.70 to 0.89 very large, and 0.90 to 1.00 

near-perfect (Hopkins et al., 2009). Lastly, Bland-Altman plots were formed to identify the upper and 

lower limits of agreement (LoA) of the indices as determined by the two different instruments (Bland 

& Altman, 1986). In addition, the quality of agreement was calculated as the ratio of half the 95% 

LoA length and the mean of average values of the parameter measured with the PPG and ECG. As 

suggested by Schäfer & Vagedes (2013), a ratio less than 0.1 was considered a “good” agreement, a 

ratio between 0.1 and 0.2 was considered a “moderate” agreement, and a ratio greater than 0.2 was 
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considered an “insufficient” agreement. For all analyses, the level of significance was set at p < 0.05. 

Statistical analyses were conducted using IBM SPSS Statistic version 27 (SPSS Inc., IBM, Armonk, 

NY, USA) and Microsoft Excel 2019 (Microsoft Corp.). 

 

2.3. Results  

Table 2.1. reported raw means (M) and standard deviations (SD) of the mean RRI, mean BBI, 

and the HRV time-domain index (i.e., rMSSD) of interest. There were no significant differences 

between the values recorded with ECG and the PPG smartphone app, and the effect sizes (i.e., 

Cohen’s d) were considered trivial. Furthermore, all ICC values were nearly perfect (from 0.99-1.0), 

so there was a high agreement between the parameters provided by ECG and the PPG smartphone 

application.  

 

Table 2.1. Comparison of ECG and PPG measurement of RRI, BBI, and rMSSD index. 

Cardiovascular 

variables 

Mean (SD) Cohen’s d (95% CI) ICC (95% CI) Ratio of 

agreement 

Mean RRI or BBI (ms)     

  ECG 798.97 (116.24) 
0.003 (-0.466;0.471) 1 (1;1) 0.012 

  PPG app 798.74 (117.01) 

rMSSD (ms)     

  ECG 33.48 (13.71) 
0.023 (-0.446;0.491) 0.995 (0.990;0.997) 0.036 

  PPG app 32.94 (13.23) 

Notes. Results for ECG and PPG application are reported as the Mean (Standard Deviation) of raw values.    

 

Bland-Altman graphs of the differences between the ECG and PPG measurements plotted 

against their means are reported in Figure 2.4. All plots showed relatively narrow values of mean 

difference in mean RRI/BBI (mean bias = -0.001, upper LoA = 0.078, lower LoA = -0.079) and 

rMSSD (mean bias = -0.010, upper LoA = 0.114, lower LoA = -0.135). Moreover, all ratios showed 

a “good” agreement between the two measuring methods. Therefore, the two recording systems 

showed high levels of agreement in the measurement of the analysed indexes. 

 

Figure 2.4. Bland-Altman analysis comparing the log transformation of mean RRI/BBI (lnRRI/lnBBI) and rMSSD 

(lnrMSSD) values from the PPG smartphone application measurements with ECG. The solid line represents the mean 

bias, whereas the outside dashed lines represent the 95% limits of agreement.  
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2.4. Discussion and conclusion 

In this first study, our results reported the validity and reliability of the short-term rMSSD 

measured via the “Heart Rate Variability HRV Camera” commercial application compared with the 

standard ECG assessment. Indeed, the trivial Cohen’s d effect size, the nearly perfect ICC, and the 

“good” Bland-Altman ratio between ECG and PPG recording indicated an excellent accuracy of the 

smartphone application used in measuring the time-domain index of interest (Schäfer & Vagedes, 

2013).  

In line with our findings, other studies reported the validity and reliability of other contact 

PPG smartphone applications in collecting this HRV index (Christien Li et al., 2019). For instance, 

Plews et al. (2017) showed that the 1-minute ultra-short-term rMSSD collected with an iPhone 

commercial smartphone application (i.e., “HRV4Training”) had an acceptable agreement with the 

same index derived via ECG. In addition, the same application displayed strong reliability in 

measuring different rMSSD values within the same day and between two different days (Holmes et 

al., 2020). Furthermore, another PPG smartphone commercial application implemented in an iPhone 

(i.e., Welltory) showed good validity and reliability in the measure of rMSSD during short (i.e., 5 

minutes) and ultra-short (i.e., 1 minute) recording in both supine and seated positions (Moya-Ramon 

et al., 2022).   

Moving into an Android programming environment, Guede-Fernández et al. (2020) found 

that their Android smartphone application can accurately measure the standard deviation of the R-R 

intervals (i.e., SDNN) and rMSSD. However, other studies found different results. For instance, a 

study compared time-domain, frequency-domain, and nonlinear HRV parameters computed from 5-

minutes ECG and PPG Android camera smartphone acquisitions found that only frequency-domain 

parameters from PPG were in good agreement with those calculated from ECG; the rMSSD parameter 

showed insufficient agreement  (Peng et al., 2015). In another similar study, Zhang et al. (2021) used 

their Android smartphone application to measure different time-domain and frequency-domain HRV 

parameters and to compare them with the same parameters derived from ECG. Their found that all 

HRV parameters obtained from the PPG were strongly correlated with the results of the ECG 

measurement with very small differences and within acceptable ranges of error, except rMSSD and 

HF (i.e., High-Frequency power) (Zhang et al., 2021). However, comparing these studies is 

complicated by the use of non-commercial smartphone applications and different algorithms to 

extract beat-to-beat intervals (BBI) from PPG signals.  

Our study extended these findings showing the availability of a free commercial smartphone 

application (i.e., “Heart Rate Variability HRV Camera”) that could be used to reliably assess one of 

the most widely used parameters of HRV. The findings could be relevant for eHealth (i.e., “the use 
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of information technology, including the Internet, digital gaming, virtual reality, and robotics in the 

promotion, prevention, treatment and maintenance of health”) (Borrelli & Ritterband, 2015) and 

mHealth fields. In recent years, the advancement and spread of new technologies have promoted the 

use of smartphone-based software and online intervention in health services (Messner et al., 2019; 

Rowland et al., 2020). As a result, smartphone applications have vast potential and, nowadays, are 

used to support clinical diagnosis, enhance patient adherence and compliance with treatment, act as 

standalone digital therapeutics, and deliver disease-related education (Ferretti et al., 2019; Messner 

et al., 2019; Yerrakalva et al., 2019). Furthermore, the COVID-19 pandemic social restrictions led to 

a sudden increase in the development and use of eHealth and mHealth services in many countries 

since the need to monitor patients and deliver healthcare services remotely (Adetunji et al., 2022). 

Implementing these new technologies is strictly related to the ability of these systems to collect data 

correctly and to the effectiveness of the monitoring and treatment implemented via pc, tablet, 

smartphone or other portable devices. For instance, mHealth showed high usability and good efficacy 

in increasing physical activity and healthy eating (Domin et al., 2021; Fiedler et al., 2020), in the self-

management of hypertension (Li et al., 2020), in the management of diabetes (Mao et al., 2020), in 

the prevention and recovery of coronary heart diseases (Xu et al., 2021), and in the monitoring and 

treatment of mental health disorders (Lecomte et al., 2020; Seppälä et al., 2019). Furthermore, a recent 

review reported increased availability of smartphone applications evaluating heart rate, HRV, and 

atrial fibrillation (Christien Li et al., 2019). These applications could have an essential role in remote 

cardiovascular health monitoring; however, there is often a lack of studies testing the statistical 

reliability and validity of collected data compared to the traditional method of cardiac collection data, 

namely ECG. Our study provides valid data for a mHealth app that could easily be used in patient 

assessment and implemented in different remote interventions. In addition, HRV parameters are 

increasingly becoming used in psychological research due to their relation with cognitive and 

emotional variables (Forte et al., 2019; Mather & Thayer, 2018). Therefore, the use of this smartphone 

application is not limited to a measurement of a cardiovascular health index, but it could be used 

within a global psychophysiological assessment. This aspect could be helpful to psychology 

professionals that would add a valuable physiological measure to their clinical self-reported 

assessments. In addition, psychology researchers could use the application to freely assess HRV 

remotely for research reasons (e.g., ecological studies) or particular conditions (e.g., world 

pandemics, participants living in rural and remote areas, etc.).  

Findings have to be read considering some limitations. First, although literature reported a 

good agreement between ECG and smartphone PPG measurements (Christien Li et al., 2019; de 

Ridder et al., 2018), a few motion artefacts (e.g., hand movements) might corrupt the physiological 
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signal registered with a smartphone and lead to an instrument measurement error. To our knowledge, 

none of the previous studies that compare smartphone PPG with ECG completely solved the problem. 

Moreover, the research does not know the data correction methods implemented by the “Heart Rate 

Variability HRV Camera” application. Therefore, in this study, the subjects were instructed to sit in 

an upholstered chair and place the fingertip of the right hand’s index to cover both the smartphone 

camera and flash. Moreover, the participants were told not to move their hands or body during the 

registration and to avoid hard contact pressure on the smartphone camera and flash when performing 

measurements. We also gave time to participants to familiarise themselves with the PPG application 

and carried out some registration trials. If we detect any artefact, we ask participants to repeat the 

recording with the application. Therefore, we tried to minimise motion artefacts during the recording 

phase to provide the application algorithm with the most cleaned PPG signal. However, this procedure 

is not the most practical in daily life recording, so smartphone applications with efficient motion-

resistant algorithms are required. Second, we have considered the source of the PPG signal. The 

periodic systolic and diastolic heart activity causes blood to enter arteries and return from veins, 

forming the blood circulation system. The spreading of heart pulsation along arterial blood vessels 

and the blood flow to peripherical arteries form the PPG signal. Therefore, the BBI derived from PPG 

signal lag relative to the RRI derived from ECG and, consequently, the computation of HRV 

parameters from BBI might produce errors. This could be a reason for the non-perfect correspondence 

between HRV parameters obtained from the two methods. Even though we must remember this 

asynchronism between the smartphone PPG and ECG signal, the error is negligible, and the time-

domain HRV index seems not to be affected as much (Gil et al., 2010; Selvaraj et al., 2008). However, 

since the biological processes that led to a PPG signal are different from those involved in an ECG 

signal, we have to consider that the HRV parameters computed by PPG are also affected by many 

other body sources of variability (e.g., blood pressure, chronic disease, etc.) (Yuda et al., 2020). Third, 

we only tested the application on an Android environment, so our findings were not generalizable to 

iOS smartphones. However, two commercial apps are validated with iOS systems (i.e., 

“HRV4Training” and “Welltory”). To our knowledge, this is the first study that tested the validity 

and reliability of a commercial Android application. Finally, 86% of our sample was composed of 

females. Although there are no physiological mechanisms by which biological sex should affect the 

comparison between the two recording systems, the current study did not have adequate homogeneity 

between men and women to test it, as it was beyond the scope of the current study.  

Despite the limitations, this study provides a reliable and valid tool to remotely and freely 

measure rMSSD parameters using an Android smartphone. Moreover, using a robust statistical 

approach to compare rMSSD parameters (e.g., Bland-Altman ratio) increases our results' validity 
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(Vagedes 2013). Following the increase in the use and request of mobile technologies in healthcare 

services, the “Heart Rate Variability HRV Camera” application could offer an accessible and non-

invasive alternative to assess HRV for clinical or research purposes. In the next chapter, we explore 

the measurement of rMSSD during the peripartum period using this application to explore the 

relationship between HRV and depressive symptoms during pregnancy and after childbirth.  
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3. Study 2: Prepartum Heart Rate Variability as a predictor of 

postpartum depression  

Study 2 of the paper “Singh Solorzano, C., Violani, C., Grano, C., (2022). Pre-partum HRV as a predictor of postpartum 

depression: The potential use of a smartphone application for physiological recordings. Journal of Affective Disorders, 

319, 172-180. https://doi.org/10.1016/j.jad.2022.09.056” 

 

3.1. Introduction 

Peripartum depressive symptoms are a subset of major depressive disorder in which the “onset 

of mood symptoms occurs during pregnancy or in the four weeks following delivery” (American 

Psychiatric Association, 2013). Recent meta-analyses reported that the prevalence of women affected 

by depression during gestation is about 12% (Woody et al., 2017), and the overall rate increased for 

postpartum depression (PPD) to 17% (Shorey et al., 2018). PPD can also occur later than four weeks 

after the delivery, and a trend of increasing prevalence was reported from a few days to more than 

one year after childbirth (Shorey et al., 2018; Stewart & Vigod, 2016). Moreover, PPD was associated 

with detrimental effects on both mother and newborn infant’s mental and physical health and 

disruptions in maternal-infant interactions (O’Hara & McCabe, 2013; Slomian et al., 2019). Mothers 

with PPD often showed increased negative emotionality and reduced newborn care activities (O’Hara 

& McCabe, 2013; Shorey et al., 2018; Slomian et al., 2019). Reduced maternal caretaking activities 

(e.g., reduced breastfeeding, decreased bonding and engagement with the infant) can have a negative 

impact on the development and health of the child (O’Hara & McCabe, 2013; Webber & Benedict, 

2019). Some studies reported that children of depressed mothers are more likely to develop cognitive, 

behavioural, and health-related problems, which may persist into later childhood and adolescence 

(O’Hara & McCabe, 2013; Slomian et al., 2019). Therefore, identifying risk factors for developing 

PPD is vital for preventing and early treating depression in pregnant women and promoting the 

newborn’s well-being. One potential biomarker of the development of PPD might be the autonomous 

nervous system (ANS) function.  

The ANS is implicated in heart activity through the influence of sympathetic nervous system 

(SNS) activity and parasympathetic nervous system (PNS) (Thayer & Sternberg, 2006). Heart rate 

variability (HRV) is the variation in time between heartbeats and reflects the interaction between the 

SNS and PNS branches of the heart (Khazan, 2013; Malik et al., 1996). Since the vagus nerve’s 

parasympathetic fibres directly innervate the heart and predominately affect cardiac activity with the 

withdrawal or stimulation of vagal input (Malik et al., 1996; Porges, 1995a; Thayer et al., 2012), 

resting vagally regulated HRV is a reliable parameter to measure PNS activity (Khazan, 2013; Thayer 

& Sternberg, 2006). The ANS is in part implicated in the stress response system (Thayer et al., 2012; 
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Thayer & Lane, 2000), and a dysfunctional parasympathetic activity might facilitate the fail in the 

provision of adaptive response to stressors that, in turn, can lead to the onset of emotional disorders 

(Porges, 1995a; Thayer & Lane, 2000). For instance, a recent meta-analysis reported lower resting 

HRV in depressed subjects than healthy controls (Koch et al., 2019), and a series of studies indicated 

that the HRV parameters are important diagnostic indexes of depression severity (Hartmann et al., 

2019) and promising biomarkers of vulnerability to the onset of depression (Carnevali et al., 2018; 

Dell’Acqua et al., 2020). Moreover, HRV biofeedback is a valid and reliable intervention for 

improving depressive symptomatology nowadays (Pizzoli et al., 2021).     

During pregnancy, the activity of maternal ANS varies greatly and adapts to the new 

physiological requests of the developing foetus (Soma-Pillay et al., 2016). Literature reports a 

normative increase in PNS activity and a decrease in SNS activity during the first trimester of 

pregnancy; however, the second and third trimester is characterised by an increase in SNS activity 

and a decrease in PNS activity (Fu, 2018; Kuo et al., 2000; Matsuo et al., 2007; Stein et al., 1999). In 

the weeks following the birthchild, the ANS activity should be restored to pre-pregnancy levels 

(Brown et al., 2021; Yeh et al., 2009). In addition to the specific autonomic adaptations as pregnancy 

progresses, ANS dysfunctional changes are associated with depressive symptoms in the prepartum 

period (Ecklund-Flores et al., 2017; Rouleau et al., 2016; Shah et al., 2020; Shea et al., 2008). For 

instance, reduced parasympathetic activity and sympathovagal imbalance have been reported in 

pregnant women with depressive symptoms (Shah et al., 2020; Shea et al., 2008), and a reduced HRV 

was indicated as a potential mechanism in the onset of gestational hypertension (Rouleau et al., 2016) 

and correlated with high birth weight in the newborns of depressed women (Ecklund-Flores et al., 

2017). Moreover, few trials showed that HRV biofeedback might be a promising intervention to 

reduce depressive symptoms during the peripartum period (Beckham et al., 2013; Kudo et al., 2014). 

As pregnancy could be a stressful condition (Obrochta et al., 2020), the resulting potential decrease 

of parasympathetic tone might boost the normative decrease of PNS activity in late pregnancy or 

avoid the normal parasympathetic restore after childbirth (Brown et al., 2021). This condition could 

make pregnant women more vulnerable to the development of emotional disorders, such as depressive 

symptoms. However, the potential role of vagally regulated HRV at rest in the prepartum period as a 

biomarker of the development of postpartum depression is still unknown.          

In the last years, mobile technologies have supported many women in dealing better with 

physical and mental difficulties during pregnancy and improving their well-being (Chan & Chen, 

2019; Iyawa et al., 2021). The COVID-19 pandemic has increased the use of mobile health (mHealth) 

applications because of their flexibility, convenience, and low cost in remote health monitoring. For 

instance, recent studies showed the usefulness of mHealth applications in monitoring the 
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psychophysiological well-being of pregnant women during the COVID-19 pandemic (Niela-Vilen et 

al., 2021). The smartphone’s camera could be an excellent sensor to quickly record cardiac activity 

with low equipment requirements through contact photoplethysmography (PPG) technology (De 

Ridder et al., 2018). Recent studies using PPG smartphone applications confirm the well-known 

relationship between HRV and mental health in the general population (Liu et al., 2020a).  

Based on these premises, this study aimed to investigate the role of a time-domain HRV index 

(i.e., root mean square of successive difference between NN intervals or rMSSD) as a predictor of 

the onset of postpartum depression. This time-domain index was chosen because it is one of the most 

appropriate HRV measures for short-term recordings (Chen et al., 2020; Malik et al., 1996; Munoz 

et al., 2015), is widely used in literature (Khazan, 2013; Koch et al., 2019), reflects cardiac vagal 

influence, and is less influenced to variability in respiration than other HRV indices (Penttilä et al., 

2001; Thayer et al., 2012). In study 1, we assessed the reliability and accuracy of a free smartphone 

application for recording rMSSD compared with an electrocardiogram (ECG). Therefore, we assess 

whether rMSSD measured via PPG smartphone application in women during pregnancy could be a 

potential biomarker of the development of depression in the postpartum period. In line with existing 

studies on the general population, we hypothesised lower prepartum rMSSD as a predictor of 

depressive symptoms after childbirth. 

 

3.2. Methods and Materials 

3.2.1. Participants 

A total of 135 Italian pregnant women (mean age = 31.39 years, standard deviation = 4.27) 

participated in the prepartum and postpartum assessments. Since the study was conducted during the 

recent COVID-19 pandemic in Italy (July 2020 – June 2021), participants were recruited from 

different social media platforms and websites. All pregnant subjects had a singleton fetus. Inclusion 

criteria were to be at least 18 years of age, to be able to complete questionnaires in Italian and to be 

in the second or third trimester of pregnancy. Exclusion criteria were substance abuse during 

pregnancy, current cardiovascular or metabolic disease diagnosis, and current diagnosis or past 

history of major depression, psychotic disorders, or other severe psychiatric illness. This study was 

approved by the Institution Review Board of the Psychology Department, Sapienza University of 

Rome (Prot. n. 0000024), and informed consent was obtained for each participant.  

 

3.2.2. Procedures 

Pregnant women were asked to participate in two sessions. The first session took place in the 

second or third trimester of pregnancy, and the second section in postpartum (one month after 
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delivery). After explaining the entire study, participants read and signed an online informed consent. 

Participants were provided with instructions to download the application on their smartphones and 

performed a contact PPG registration of good quality without movement artefacts. Then, pregnant 

women were asked to carry out the HRV assessment with the “Heart Rate Variability HRV Camera” 

smartphone application. Participants were requested to avoid caffeine on the same day as the 

physiologic measurements. The HRV recording had to take place in the morning hours (9:00 am to 

1:00 pm) and consisted of a 2-minute recording in a sitting position with spontaneous breathing 

patterns throughout. Participants were requested to collect two HRV measurements and send them to 

a researcher for instant feedback about the quality of the registrations. The application did not have a 

system to inform the user whether the collected raw data were of sufficient quality or not. Therefore, 

a visual inspection of the graphs provided by the app (Figure 3.1.) was carried out by the researcher 

to identify signals with high noise or movement artefact (i.e., low-quality physiological registrations) 

through the analysis of the distributions of values in heart rate plot and the Poincaré plot (Chua et al., 

2008; Stein et al., 2005). In the plot with the course of heart rate over time, linear and quasi-periodic 

waves without values outside the biologically plausible range of 20-220 beats per minute must be 

seen in the signal. In the Poincaré plot, an ellipsoid or mildly comet-shaped distribution of points 

aligned at the centre of the plot must be seen in the signal. An example of a good quality signal is 

shown in Figure 3.1.  

 

Figure 3.1. An example of graphs plotted by “Heart Rate Variable HRV Camera” after the end of a two-minute 

physiological registration with good quality. The application reported: a plot with the course of heart rate over time (at 

the top left); the Poincaré plot (at the middle left); a plot with the distribution of beat-to-beat intervals over time (at the 

bottom left); a power spectrum density graph of the HRV (at the top right); a power spectrum density graph of the HRV 

obtained by autoregressive method (at the bottom right). 
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If the measured signal was of low quality, participants were asked to repeat the experiment 

after a pause of 5 minutes. Examples of two bad quality signals have shown in Figure 3.2. If the 

measurement had a bad quality, participants were provided with further suggestions to achieve a good 

registration and were asked to repeat the HRV measurement. After collecting a good quality 

physiological signal, participants were able to complete the online questionnaire. Women were asked 

to complete a second online questionnaire one month after giving birth. 

 

Figure 3.2. Two examples of graphs plotted by “Heart Rate Variable HRV Camera” after the end of a two-minute 

physiological registration with bad quality. At left is an example of a PPG signal with few movement artefacts throughout 

the registration, as indicated by an irregular plot with the course of heart rate over time and an unreliable Poincaré plot. 

At the right is an example of a PPG registration in which the smartphone did not correctly collect the cardiac signal, as 

indicated by a quasi-linear plot with the course of heart rate over time and an unreliable Poincaré plot.  
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3.2.3. Measures  

Predictor variable: rMSSD 

The root mean square of successive difference of NN intervals (i.e., rMSSD) expressed in ms 

was computed by the smartphone application using the standard formulas (Jokic et al., 2016; Malik 

et al., 1996). rMSSD has been used previously in many studies about stress and mental well-being in 

the pregnant population as an indicator of cardiac parasympathetic activity (Braeken et al., 2017; R. 

L. Brown et al., 2021; Shea et al., 2008; Tung et al., 2021). Higher scores of rMSSD indicated higher 

vagally regulated HRV. 

Outcome variable: Depressive symptoms 

The Edinburgh Postnatal Depression Scale, EDPS (Cox et al., 1987), is a 10-item self-report 

scale that assesses the levels of depressive symptoms in the previous week. Responses to each 

statement are scored on a 4-point Likert scale (from 0 to 3). The total score ranged from 0 to 30, with 

higher scores indicating a greater frequency of depressive symptoms. It has been shown to be a 

reliable instrument for screening depressive symptoms during pregnancy and the postnatal period 

(Bergink et al., 2011; Levis, Negeri, et al., 2020; Sit & Wisner, 2009). The Italian validation study of 

the questionnaire suggested a clinical cut-off of 12 to identify the presence of postpartum depression 

(Benvenuti et al., 1999). In the current study, Cronbach’s alphas were α= 0.85 (prepartum assessment) 

and α= 0.86 (postpartum assessment). 
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Descriptive variables and covariates 

Participants’ age, education, annual income, marital status, gestational age (in months), and 

parity were recorded. Education was classified into six groups ranging from low to high levels of 

education, whereas annual income was classified into five groups ranging from low to higher income 

per year. Marital status, gestational age, and parity were measured as binary variables 

(married/cohabiting, second/third trimester, and primiparous/multiparous, respectively). Body mass 

index (BMI) was calculated based on the participant’s self-reported height and weight. 

 

3.2.4. Statistical analysis  

Descriptive data are expressed as means ± standard deviations (SD) or as the number of 

participants with the percentage in parenthesis. Summary scores were created for EDPS, and paired 

t-test was used to explore the change in depressive symptoms from the prepartum to the postpartum 

period. The prepartum rMSSD was logarithmically transformed before statistical analyses to 

normalise its distribution. Association between depressive symptoms at prepartum and postpartum 

and rMSSD at prepartum were assessed using Pearson’s r, and all results are reported as Pearson’s r 

and p-value. A hierarchical linear regression model (P. Cohen et al., 2014; Field, 2009) was built to 

assess the relationship between prepartum rMSSD (as the predictor variable) and postpartum 

depressive symptoms. Age, education, pregnancy trimester, prepartum BMI, and depressive 

symptoms during pregnancy were entered into the model as covariates (Step 1 of the model). These 

factors were included as covariates since they are known to be associated with postpartum depression 

(Guintivano et al., 2018; Hutchens & Kearney, 2020). Prepartum rMSSD was then entered at Step 2 

to see if it explained any additional variance over and above covariates (P. Cohen et al., 2014). 

Variance inflation factor (VIF) values and tolerance values were generated for all regression models 

to assess multicollinearity, and the assumption was not violated (VIF <10 and tolerance >0.1). Results 

are presented as standardised beta coefficients. The significance level was set to p < 0.05, with a 

precise p-value reported for all test results. Statistical analyses were conducted using IBM SPSS 

Statistic version 27 (SPSS Inc., Armonk, NY, USA). 

 

3.3. Results  

General descriptive characteristics of the sample are shown in Table 3.1. Pregnant women had 

an age range between 19 and 41 years. The majority of the participant had a university-level education 

or higher (59.3%), had an annual income between 15,000 and 55,000 € (75.5%) and were in their first 

pregnancy (70.4%). The average BMI during pregnancy was 25.59 ± 4.50 kg/m2 with a range of  

16.71 to 39.66 kg/m2. 
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Table 3.1. Demographic characteristics of the sample (N = 135) 

Variable Mean ± SD or N (%) 

Age 31.39 ± 4.27 

Education  

  Middle School 6 (4.4) 

  High School  49 (36.3) 

  Bachelor 29 (21.6) 

  Master’s degree 33 (24.4) 

  Post-lauream specialisation courses 12 (8.9) 

  PhD 6 (4.4) 

Marital status  

  Married 67 (49.6) 

  Cohabiting 68 (50.4) 

Annual income  

  < 15,000 € 22 (16.3) 

  15,000 – 28,000 € 52 (38.5) 

  28,001 – 55,000 € 50 (37.0) 

  55,001 – 75,000 € 6 (4.5) 

  > 75,000 € 5 (3.7) 

Pregnancy Trimester (T1)  

  Second trimester (4th, 5th, and 6th month)  59 (43.7) 

  Third trimester (7th, 8th, and 9th month) 76 (56.3) 

Parity status  

  Primiparous 95 (70.4) 

  Multiparous 40 (29.6) 

BMI  

  BMI before the pregnancy 23.07 ± 4.31 

  Prepartum BMI 25.59 ± 4.50 

  Postpartum BMI  24.63 ± 4.79 

 

Table 3.2. reported the means and standard deviations of the main variables of the study. 

Depressive symptoms did not change significantly over peripartum period (t = 0.486, p =0.628). 

Prepartum depressive scores ranged from 0 to 22, with 20% of women above the cut-off. Postpartum 
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depressive scores ranged from 0 to 27, with 15.6% of women above the cut-off. The 6.7% of the 

participants were above the cut-off at both prepartum and postpartum. Table 3.2 also shows the 

correlation between prepartum rMSSD and peripartum depressive symptoms. Prepartum rMSSD was 

significantly and negatively correlated both with prepartum depression (r = -0.448, p < 0.001) and 

postpartum depression (r = -0.400, p < 0.001). A positive significant correlation was found between 

depressive symptoms at prepartum and postpartum (r = 0.510, p < 0.001).  

 

Table 3.2. Correlation between variables of the present study (N = 135). 

Variable Mean SD 1 2 3 

1. Prepartum rMSSD 27.16  12.25 -   

2. Prepartum depressive symptoms 6.96  4.99 -0.448* -  

3. Postpartum depressive symptoms 6.75  5.03 -0.400* 0.510* - 

* p < 0.01  

 

Table 3.3. presents the results of the hierarchical linear regression model examining the 

association between rMSSD during pregnancy and postpartum depressive symptoms. In Step 1, all 

covariates were added to the model, and only prepartum depressive symptoms predicted postpartum 

depressive symptoms (β = 0.555, p < 0.001). In Step 2, prepartum depressive symptoms were still 

associated with postpartum depression (β = 0.447, p < 0.001), but also a reduction of prepartum 

rMSSD was a significant predictor of the development of depressive symptoms after the delivery (β 

= -0.217, p = 0.010). The final model accounted for 30% of the variance in postpartum depression.      

 

Table 3.3. Regression analyses with postpartum depressive symptoms as dependent variable (N = 135). 

Predictor variable B S.E. 95% CI β p 

Step 1      

Age 0.123 0.096 [-0.068; 0.314] 0.105 0.204 

Education 0.476 0.333 [-0.182; 1.134] 0.117 0.155 

Pregnancy trimester -0.963 0.791 [-2.529; 0.603] -0.095 0.226 

Prepartum BMI -0.015 0.086 [-0.185; 0.155] -0.014 0.860 

Prepartum depressive symptoms 0.560 0.077 [0.407; 0.713] 0.555 <0.001 

Step 2      

Age 0.082 0.096 [-0.107; 0.272] 0.070 0.393 

Education 0.549 0.327 [-0.097; 1.195] 0.135 0.095 

Pregnancy trimester -1.031 0.775 [-2.564; 0.502] -0.102 0.186 

Prepartum BMI -0.006 0.084 [-0.172; 0.161] -0.005 0.947 
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Prepartum depressive symptoms  0.451 0.086 [0.280; 0.622] 0.447 <0.001 

Prepartum lnrMSSD -2.670 1.025 [-4.698; -0.642] -0.217 <0.05 

Notes. Bold font indicates statistical significance (p < 0.05). Step 1: F(5,129) = 10.772, p < 0.001, Adj. R2 = 0.267. Step 

2: F(6,128) = 10.511, p < 0.001, Adj. R2 = 0.299; R2
change = 0.036, p = 0.010. 

 

3.4. Discussion and Conclusion 

This study explored the link between prepartum HRV and postpartum depression. Using 

“Heart Rate Variability HRV Camera” smartphone application in the measure of short-term rMSSD, 

we assessed the role of this vagal time-domain HRV index during pregnancy as a predictor of 

depressive symptoms after childbirth. The results indicated that lower levels of rMSSD during the 

prepartum period predicted higher levels of depressive symptoms in the postpartum period. To our 

knowledge, these findings are the first to assess the role of prepartum rMSSD as a predictor of 

postpartum depression; moreover, the study supports the use of smartphone technologies as valuable 

tools in the monitoring and self-management of women in the peripartum period.  

The study evidenced that prepartum rMSSD was negatively associated with depressive 

symptoms before and after the delivery. The association between depressive symptoms and vagal 

withdrawal was corroborated by previous reports (Ecklund-Flores et al., 2017; Rouleau et al., 2016; 

Shah et al., 2020; Shea et al., 2008), although measures were evaluated only during pregnancy and 

not in the postpartum. Two of these studies (Ecklund-Flores et al., 2017; Shah et al., 2020) found a 

significant correlation between rMSSD and depressive symptoms. In contrast, Shea and colleagues 

(2008) did not find a significant association between rMSSD and depressive symptoms during 

pregnancy. However, a reduced parasympathetic activity measured with other HRV indices (i.e., 

lower levels of SDNN, SDANN – the standard deviation of the averages of NN interval in all 5 

minutes segments of the entire recording – and higher levels of LF/HF –  low-frequency/high-

frequency ratio – during the sleeping hours) was associated with higher levels of depressive 

symptoms (Shea et al., 2008). Rouleau and colleagues (2016) used a different index to examine the 

parasympathetic influence on the heart (i.e., the high-frequency component of HRV, HF), finding an 

association between depressive symptoms and lower vagal activity. A recent study reported that other 

mental health disorders, but not depressive symptoms, were associated with altered PNS activity in 

late pregnancy (M. C. Kimmel et al., 2021).  

Finally and most importantly, we found that prepartum rMSSD was a significant predictor of 

postpartum depressive symptoms. Moreover, the predictive power of this HRV time-domain index 

remained significant also when controlling for women’s prepartum depressive symptoms and other 

potential covariates. Our findings align with previous evidence showing that initial levels of 

depressive symptoms strongly increase the risk for depressive symptoms after childbirth (Guintivano 
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et al., 2018) and, for the first time, highlight the role of rMSSD collected during pregnancy in the 

onset of depressive symptoms in the postpartum. Importantly, a large proportion of women who 

reported clinically significant depressive symptoms in postpartum did not report clinically significant 

prepartum depressive symptoms, indicating that rMSSD could be both an indicator and a predictor of 

depressive symptoms after childbirth. Therefore, the prepartum rMSSD assessment may also be a 

useful tool to predict who will have depressive symptoms in order to improve women’s mental health 

while pregnant. 

Some studies reported reduced resting HRV as a potential vulnerability biomarker to 

depression in the non-pregnant population (Carnevali et al., 2018; Dell’Acqua et al., 2020; 

Jandackova et al., 2016). For instance, the most recent study showed that individuals with dysphoria 

and past depression had reduced cardiac vagal activity compared to the control group with no current 

or history of depressive symptoms (Dell’Acqua et al., 2020). Moreover, longitudinally studies 

reported that reduced rMSSD was associated with depressive symptoms over two years after the first 

assessment (Carnevali et al., 2018) and that higher HRV was a significant predictor of a lower 

likelihood of depressive symptoms ten years later (Jandackova et al., 2016). We extend these findings 

to the pregnant population showing that a reduced resting vagal tone during the second and third 

trimester of pregnancy could be a vulnerability factor to depressive symptoms at one month 

postpartum. This literature and our study align with the neurovisceral integration model and the 

relationship between PNS and the prefrontal cortex (PFC) (Beauchaine & Thayer, 2015). Indeed, 

PFC was associated with inhibition, control and executive functions that are altered in patients with 

different psychiatric diagnoses, including major depressive disorder (Mulcahy et al., 2019; Zhou et 

al., 2020). Since HRV is also a peripherical marker of prefrontal cortex functioning (Beauchaine & 

Thayer, 2015), it could be an important index for investigating the vulnerability to psychopathology, 

such as depression. Moreover, during the last two trimesters of pregnancy, there is a normative and 

adaptive decrease in PNS activity (Kuo et al., 2000; Matsuo et al., 2007) that could be boosted by 

psychological stress and emotional difficulties during pregnancy (Brown et al., 2021). In depressed 

pregnant women, dysfunction of a few prefrontal cortex areas has been evidenced (Cheng et al., 2020) 

that HRV may peripherally capture and express as a dysfunctional parasympathetic activity.  

Some limitations of the study need to be acknowledged. First, although literature reported an 

excellent agreement between ECG and smartphone PPG measurements (Christien Li et al., 2019), 

few artefacts (e.g., hand movements) might corrupt the physiological signal registered with a 

smartphone and lead to an instrument measurement error. Second, we considered only rMSSD among 

all available HRV indexes, so we do not have a complete framework of the relationship between HRV 

and peripartum depression. Other potentially useful parasympathetic indicators were not available 
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through the smartphone application (e.g., Coefficient of Variance of RR intervals, CVRR; the number 

of differences NN intervals greater than 50 m, NN50) or did not show good reliability when compared 

with the same indicators derived from the ECG recording (e.g., SDNN or HF). Therefore, we 

preferred to focus only on the rMSSD index since other studies showed its reliability in short-term 

smartphone collection (Chen et al., 2020; Guede-Fernández et al., 2020; Plews et al., 2017). Third, 

we assessed depressive symptoms with a self-report questionnaire. Future studies may assess 

peripartum depression through other clinical tools, such as structured clinical interviews. Fourth, 

more than half of the women in our sample (59.3%) had a tertiary education, which is similar to the 

percentages of the female European population (52%), although lower than Italian ones (35%) 

(OECD, 2021). Future studies may consider more heterogeneous samples with particular attention to 

including more participants with primary or secondary educational levels as the highest level attained. 

Despite the limitations, this study highlights the potential role of the rMSSD index as a 

valuable, economic, and easily used clinical tool that can identify pregnant women with a higher risk 

of developing depressive symptoms in the postpartum period. Moreover, using a smartphone 

application supports findings on the effectiveness of mobile applications for self-management during 

pregnancy to monitor women’s mental and physical health (Iyawa et al., 2021).  

Overall, this study showed that a reduced vagal tone, indexed by lower rMSSD, during 

pregnancy (i.e., second and third trimester) was a predictor of depressive symptoms at one month 

postpartum. Thus, our findings suggest that the prepartum period offers an important timeframe to 

implement preventive intervention on vagal modulation to avoid its influence on the prospective 

generation of postpartum depressive symptoms. Indeed, literature reported increasing evidence of the 

role of HRV biofeedback in the treatment and prevention of depression (Beckham et al., 2013; Kudo 

et al., 2014; Pizzoli et al., 2021). Moreover, using a smartphone application to collect rMSSD might 

promote the remote monitoring of the psychophysiological well-being of pregnant women and the 

potential implementation of smartphone-delivered intervention for peripartum depression.  
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4. Study 3: Predicting postpartum depressive symptoms by 

evaluating self-report autonomic nervous system reactivity 

during pregnancy   
 

Study of the paper “Singh Solorzano, C., Grano, C. (under review, Journal of Psychosomatic Research). Predicting 

postpartum depressive symptoms by evaluating self-report autonomic nervous system reactivity during pregnancy.” 

 

4.1. Introduction 

Depressive symptoms are common in the peripartum period affecting about 20.7% of women 

during pregnancy (Yin et al., 2021) and 17.2% after childbirth (Wang et al., 2021). The fifth edition 

of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) classified peripartum 

depression as depressive symptoms occurring during pregnancy or within four weeks following 

delivery (American Psychiatric Association, 2013). Postpartum depression (PPD) might result in 

negative consequences for both mother and infant's well-being and impaired mother-infant interaction 

(Slomian et al., 2019). For instance, PPD may negatively affect maternal caretaking activities and the 

mother-child relationship, which in turn may lead to cognitive, behavioural and emotional 

consequences for the mental health of the child in the short and long-term period (Murray et al., 2011; 

O’Hara & McCabe, 2013; Verkuijl et al., 2014). Therefore, understanding risk factors for PPD is 

crucial to prevent adverse health and psychosocial effects on women and minimise poor long-term 

psychological outcomes in children. One potential marker of the development of PPD might be the 

autonomous nervous system (ANS) function. 

The ANS plays a crucial role in maintaining homeostasis through afferent and efferent neural 

pathways that allow the coordination between brain and body in threat and safety situations (Jänig, 

2006; Kolacz et al., 2019). Polyvagal Theory (Porges, 1995b, 2001, 2007) suggests that mammalian 

ANS has three hierarchical organised systems: ventral vagal complex (VVC), the sympathetic 

nervous system (SNS), and the dorsal vagal complex (DVC) (Porges & Carter, 2012). The three 

subsystems of ANS have different neuroanatomical pathways that lead to peculiar behavioural 

responses to challenges of the organism. The newest phylogenetic subsystem (VVC) comprises 

myelinated vagal fibres originating in the nucleus ambiguous that, through the coordination of striated 

face and head muscles and the regulation of the organs above the diagraphs, promote social 

expression and engagement (Kolacz et al., 2019; Porges & Carter, 2012; Porges, 2007). The SNS is 

related to fight-or-flight behavioural response, and its efferent originating in the spinal cord innervates 

both organs above and below the diaphragm (Porges & Carter, 2012). In the DVC, the unmyelinated 

vagal efferent originating in the dorsal nucleus of the vagus primary innervates organs below the 

diaphragm with few fibres terminating on the heart's sinoatrial node, and its primary behavioural 
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function is immobilisation (Kolacz et al., 2019; Porges & Carter, 2012). When the VVC state is 

activated in safe conditions, there is an adaptive autonomic balance between SNS and DVC (Porges, 

2001). However, when the VVC becomes ineffective (e.g., in threat conditions), the two more 

phylogenetical archaic subsystems are triggered. The SNS led the organism to actively cope with the 

environmental challenge through defensive mobilisation behaviour responses (e.g., fight-or-flight, 

(Porges & Carter, 2012; Porges, 2007). The DVC, in the case of extreme stress or hazardous 

conditions, led the organisms to an immobilisation response and conservation of energy through 

inhibition of metabolic function and passive behavioural responses (e.g., freezing or fainting, (J. 

Kolacz & Porges, 2018; S.W. Porges, 2001). A chronic dampened function of VVC and the resultant 

mobilisation (SNS) and immobilisation (DVC) defensive states in non-threat situations provide the 

framework for the onset of mental health disorders (Kolacz et al., 2019; Kolacz, Dale, et al., 2020). 

Many studies and meta-analyses reported a significant relationship between physiological autonomic 

dysregulation and depressive symptoms (Hartmann et al., 2019; Koch et al., 2019; Shinba, 2017). As 

regards self-reported measures, Cabrera and colleagues (2018) reported that destabilised self-reported 

ANS reactivity was associated with self-reported mental psychiatric disorders in the general 

population. A recent study corroborated this finding showing the mediational role of dysfunctional 

self-reported ANS activity in the relationship between prior adversity experiences and mental health 

in the general population (i.e., depressive symptoms, post-traumatic stress disorder symptoms, and 

COVID-19-related worry) (Kolacz, Dale, et al., 2020).    

The ANS activity varies during pregnancy to maintain the body's healthy homeostasis and 

adapt to the new physiological requests of the growing fetus (Abbas et al., 2005; Brooks et al., 2020). 

Several studies showed an increase in basal heart rate and a predominance of sympathetic activity 

during the second and third trimesters of pregnancy (Fu, 2018; Kuo et al., 2000; Volman et al., 2007) 

and the restoration of pre-pregnancy ASN activity in the weeks following delivery (R. L. Brown et 

al., 2021; Yeh et al., 2009). Dysfunctional changes in ANS during pregnancy have been investigated 

in relation to depressive symptoms (M. C. Kimmel et al., 2021; Kishan et al., 2021; Shah et al., 2020; 

Shea et al., 2008). For instance, higher sympathetic reactivity and lower vagal modulation during 

pregnancy were related to depressive symptoms in the peripartum period (Kishan et al., 2021; Shah 

et al., 2020; Shea et al., 2008), though Kimmel and colleagues (2021) did not find a significant 

relationship between ANS activity and depressive symptoms in late pregnancy. No studies 

investigated the relationship between self-reported autonomic function and depressive symptoms 

during pregnancy and of self-reported autonomic function as a potential predictor of postpartum 

depression. Given the evidence of ANS dysregulation in the pathophysiological mechanisms of 

depression in the general population (Hartmann et al., 2019; Kolacz, Dale, et al., 2020) and the 
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normative adjustments of ANS during pregnancy (Brooks et al., 2020), we argue that a dysfunctional 

and maladaptive autonomic response in this period can increase the likelihood of emotional disorders 

concurrently and after the childbirth (Brown et al., 2021; Porges, 1995b; Thayer & Lane, 2000).  

Based on this premise, this study aimed to examine the impact of prepartum self-reported 

autonomic reactivity on the development of depressive symptoms during pregnancy and after 

childbirth. In particular, we hypothesised that a dysfunctional self-reported autonomic reactivity 

during pregnancy would predict higher prepartum and postpartum depressive symptomatology. 

 

4.2. Methods and Materials 

4.2.1. Participants 

A total of 287 pregnant women volunteered to participate in a two-phase longitudinal study 

after providing their online informed consent. Data were collected during the COVID-19 pandemic 

in Italy (July 2020 – January 2022). Data from women who withdrew from the study in the second 

phase were omitted from the final analyses. Therefore, the final sample was composed of 170 women. 

Eligible participants included women over 18 starting from the second trimester of pregnancy who 

can complete questionnaires in Italian. Exclusion criteria were self-reported substance abuse during 

pregnancy, current cardiovascular or metabolic disease diagnosis, current diagnosis or history of 

major depression, psychotic disorders, or other severe psychiatric illness. This study was approved 

by the Institution Review Board of the Psychology Department, Sapienza University of Rome (Prot. 

n. 0000024). 

 

4.2.2. Procedures 

Pregnant women were asked to participate in two sessions. The first session took place in the 

second or third trimester of pregnancy, whereas the second section took place in the postpartum 

period (one month after delivery). Pregnant women were recruited through different social media 

platforms and blogs. After explaining the entire study, participants read and signed an online informed 

consent. Then, they completed an online questionnaire. After childbirth, participants were contacted 

again by email or social media and asked to complete a second online questionnaire. 

 

4.2.3. Measures  

Predictor variable: self-reported autonomic reactivity  

Prepartum self-reported experience of the autonomic nervous system reactivity was assessed 

using the Italian version of the Body Perception Questionnaire Short Form (BPQ – SF) (Cabrera et 

al., 2018; Cerritelli et al., 2021). The autonomic reactivity domain of the questionnaire (20 items) 
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included the Supradiaphragmatic Reactivity Subscale (15 items), which reflects the control of ventral 

vagal complex (VVC) on visceral organs above the diaphragm (e.g., "My heart often beats 

irregularly"), and the Subdiaphragmatic Reactivity Subscale (6 items), which reflect the control of 

dorsal vagal complex on organs below the diaphragm (e.g., "After eating I have digestive problems") 

(Cabrera et al., 2018; Kolacz et al., 2018; Porges, 2001). One item ("I feel like vomiting") is included 

in the score of both subscales (Kolacz et al., 2018). Items of the scales measured the frequency of 

each sensation on a 5-point Likert-type scale ranging from 1 ("never") to 5 ("always"). The total score 

for each subscale was obtained by the sum of the items. Higher scores on both subscales indicate 

destabilised autonomic reactivity. The BPQ-SF showed good psychometric properties and consistent 

factors structure across different samples (Cabrera et al., 2018; Cerritelli et al., 2021; N. Wang et al., 

2020) and high scores for BPQ – SF subscales were previously associated with lower flexible 

respiratory sinus arrhythmia (RSA) (Kolacz et al., 2022) and the presence of mental health disorders 

(Cabrera et al., 2018; Kolacz, Dale, et al., 2020). In the current sample, Cronbach’s alphas were α = 

0.86 (Supradiaphragmatic Reactivity Subscale) and α = 0.76 (Subdiaphragmatic Reactivity Subscale). 

Outcome variable: Depressive symptoms  

Depressive symptoms were assessed using the Patient Health Questionnaire – 9 (PHQ – 9) 

(Kroenke et al., 2001), a widely-used measure that evaluates the frequency of depressed mood over 

the past two weeks using a 4-point Likert-type scale ranging from 0 ("not at all") to 3 ("nearly every 

day"). Total scores range from 0 to 27, with higher scores indicating more depressive symptoms. The 

PHQ-9 was used to assess prepartum and postpartum depression showing good sensitivity and 

specificity in screening for peripartum depressive symptoms, with a clinical cut-off score of 10 (Flynn 

et al., 2011; Gjerdincjen et al., 2009; L. Wang et al., 2021). In the current study, Cronbach alpha was 

α = 0.72 at prepartum assessment and α = 0.75 at postpartum assessment.  

Descriptive variables and covariates 

Participants' age, nationality, education, annual income, marital status, gestational age (in 

months), and parity were recorded. Education was classified into six groups ranging from low to high 

levels of education, whereas annual income was classified into five groups ranging from low to higher 

income per year. Marital status, gestational age, and parity were measured as binary variables 

(married/cohabiting, second/third trimester, and primiparous/multiparous, respectively). BMI was 

calculated based on the participant's self-reported height and weight.    

 

4.2.4. Statistical analysis  

Analyses were conducted using IBM SPSS Statistic version 27 (SPSS Inc., Armonk, NY, 

USA). In order to examine whether participants recruited in the prepartum assessment differed or not 
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from those who completed the study, independent t-tests and χ2 tests were used. Women were 

compared on age, education, annual income, parity, BMI, supradiaphragmatic reactivity, 

subdiaphragmatic reactivity and prepartum depressive symptoms. Descriptive statistics are expressed 

as means (M) ± standard deviations (SD) or as the number of participants (N) with the percentage in 

parenthesis. Summary scores were computed for Supradiaphragmatic Reactivity Subscale, 

Subdiaphragmatic Reactivity Subscale, and PHQ – 9. Raw total scores of autonomic reactivity 

subscales were transformed into T total scores as suggested by the BPQ manual for parametric 

analyses (Kolacz, Dale, et al., 2020; Kolacz et al., 2018; Kolacz, Hu, et al., 2020). Paired t-tests were 

used to explore the change in depression from the prepartum to the postpartum period. Associations 

between study variables were assessed using Pearson's r, and all results are reported as Pearson's r 

and p-value. Hierarchical linear regression examined the association between prepartum autonomic 

reactivity measured through Supradiaphragmatic and Subdiaphragmatic Reactivity Subscales and 

postpartum depressive symptoms. The adjusted model included age, education, annual income, 

parity, prepartum BMI and prepartum depressive symptoms as covariates. Variance inflation factor 

(VIF) values and tolerance values were generated for the regression model to assess multicollinearity, 

and the assumption was not violated (VIF < 10 and tolerance > 0.1). The significance level was set 

to p < 0.05, with a precise p-value reported for all test results. 

 

4.3. Results  

Of the initial sample of 287 pregnant women recruited for the prepartum assessment, 117 did 

not participate in the postpartum assessment one month later, leaving a final sample of 170, resulting 

in a 59.2% participation rate. Compared to the women who completed assessments at both time 

points, those who did not complete the postpartum assessment were more likely to have high 

prepartum supradiaphragmatic reactivity (t (285) = 2.771, p = 0.006). The two groups did not differ 

for any other variable, namely age (t(285)= -1.229; p= 0.220), education (t(285)= -1.075; p= 0.283), 

annual income (χ2(4)= 3.088, p= 0.543), parity status (χ2(1)= 0108, p= 0.743), BMI (t(285)= 0.150; 

p= 0.881), prepartum subdiaphragmatic reactivity (t(285)= 1.387; p= 0.167), and prepartum 

depressive symptoms (t(285)= 1.962; p= 0.063). 

The sociodemographic characteristics of the sample are presented in Table 4.1. Pregnant 

women had an age range between 19 and 46 years. The large majority were Italian (97.6%), had at 

least a high school education (95.9%), had an annual income over 15,000 € (84.1%), and were at the 

first pregnancy (70.0%).  

 

Table 4.1. Demographic characteristics of the sample (N = 170) 
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Variable Mean ± SD or N (%) 

Age 31.58 ± 4.23 

Nationality  

  Italian  166 (97.6) 

  Other Countries 4 (2.4) 

Education  

  Middle School 7 (4.1) 

  High School  52 (30.6) 

  Bachelor 45 (26.5) 

  Master's degree 40 (23.5) 

  Post-lauream specialization courses 17 (10.0) 

  PhD 9 (5.3) 

Marital status  

  Married 88 (51.8) 

  Cohabiting 82 (48.2) 

Annual income  

  < 15,000 € 27 (15.9) 

  15,000 – 28,000 € 64 (37.6) 

  28,001 – 55,000 € 62 (36.5) 

  55,001 – 75,000 € 11 (6.5) 

  > 75,000 € 6 (3.5) 

Pregnancy Trimester (T1)  

  Second trimester (4th, 5th, and 6th month)  78 (43.7) 

  Third trimester (7th, 8th, and 9th month) 92 (56.3) 

Parity status  

  Primiparous 119 (70.0) 

  Multiparous 51 (30.0) 

BMI  

  BMI before the pregnancy 23.64 ± 6.04 

  Prepartum BMI 25.99 ± 6.29 

  Postpartum BMI  25.03 ± 6.17 

 

Depressive symptoms did not change significantly over peripartum period (t = 0.532, p 

=0.596). Postpartum depression scores ranged from 0 to 22, with 8.8% of women above the cut-off 

score of 10. Table 2 reports the correlations of the main variables of the study. Prepartum 

supradiaphragmatic reactivity (M = 50.49, SD = 6.79) and subdiaphragmatic reactivity (M = 52.93, 
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SD = 7.43) were significantly and positively associated with both prepartum (M = 6.11, SD = 3.22) 

and postpartum (M = 5.97, p = 3.53) depressive symptoms (Table 4.2).  

 

Table 4.2. Correlation between variables of the present study (N = 170) 

Variable 1 2 3 4 5 6 7 8 

1. Age -        

2. Education .353* -       

3. Annual income .164^ .227* -      

4. Parity  .206* -.150 .061 -     

5. Prepartum BMI -.048 -.079 -.234* -.037 -    

6. Prepartum 

supradiaphragmatic reactivity 

-.230* -.161^ -.020 -.011 .002 -   

7. Prepartum subdiaphragmatic 

reactivity 

-.152^ -.080 -.067 -.041 .018 .547* -  

8. Prepartum depressive 

symptoms 

-.136 -.135 -.142 .142 -.042 .438* .453* - 

9. Postpartum depressive 

symptoms 

-.109 -.108 -.047 -.038 -.010 .417* .337* .522* 

Notes: ^ p < 0.05, * p < 0.01  

 

Table 4.3. presents the results of the hierarchical linear regression model that examined the 

association between autonomic reactivity during pregnancy and postpartum depressive symptoms. In 

Step 1, all covariates were added to the model, and only prepartum depressive symptoms were 

significantly associated with postpartum depressive symptoms (β = 0.540, p < 0.001). In Step 2, 

prepartum depressive symptoms were still associated with postpartum depression (β = 0.438, p < 

0.001), but also an increase in prepartum supradiaphragmatic reactivity was a significant predictor of 

the development of depressive symptoms after the delivery (β = 0.215, p = 0.009). The final model 

accounted for 29% of the variance in postpartum depression, with a significant change in explained 

variance from Step 1 to Step 2 (R2 change = 0.039, p = 0.011). In addition, the accounted variance in 

postpartum depressive symptoms was higher when both depressive symptoms and autonomic nervous 
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system reactivity subscales during pregnancy were considered than when only prepartum depressive 

symptoms (26%) or only prepartum autonomic nervous reactivity subscales were included (16%).  

Moreover, we re-run the same regression analyses considering only women below the PHQ-

9 clinical cut-off at prepartum (N=147). Results of the regression analysis still showed a significant 

change in explained variance from Step 1 to Step 2 (R2 change = 0.054, p = 0.008), indicating that 

self-reported supradiaphragmatic reactivity subscale significantly contributed to predicting 

postpartum depressive symptomatology also in those women who had subthreshold symptoms of 

depression during pregnancy. 

 

Table 4.3. Regression analyses with postpartum depressive symptoms as the dependent variable (N = 170). 

Predictor variable B SE. 95% CI β P 

Step 1      

Age -0.003 0.062 [-0.126; 0.120] -0.004 0.956 

Education -0.082 0.160 [-0.398; 0.234] -0.038 0.608 

Annual income 0.186 0.261 [-0.330; 0.702] 0.050 0.478 

Parity -0.942 0.545 [-2.017; 0.134] -0.122 0.086 

Prepartum BMI 0.009 0.038 [-0.066; 0.085] 0.017 0.806 

Prepartum depressive symptoms 0.592 0.075 [0.443; 0.740] 0.540 <0.001 

Step 2      

Age 0.026 0,062 [-0.096; 0.148] 0.031 0.672 

Education -0.061 0.157 [-0.370; 0.249] -0.028 0.699 

Annual income 0.115 0.257 [-0.393; 0.622] 0.031 0.656 

Parity -0.841 0.535 [-1.898; 0.215] -0.109 0.118 

Prepartum BMI 0.006 0.038 [-0.069; 0.080] 0.010 0.882 

Prepartum depressive symptoms  0.479 0.085 [0.311; 0.647] 0.438 <0.001 

Prepartum supradiaphragmatic reactivity 0.112 0.042 [0.028; 0.196] 0.215 0.009 

Prepartum subdiaphragmatic reactivity 0.010 0.039 [-0.066; 0.086] 0.022 0.790 

Notes. Bold font indicates statistical significance (p < 0.05). Step 1: F(6,163) = 11.012, p < 0.001, Adj. R2 = 0.262. Step 

2: F(8,161) = 9.801, p < 0.001, Adj. R2 = 0.294; R2
change = 0.039, p = 0.011.  
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4.4. Discussion and Conclusion 

This longitudinal study investigated the link between prepartum self-reported autonomic 

reactivity and postpartum depression. We found that higher prepartum supradiaphragmatic reactivity 

predicted higher levels of depressive symptoms in the postpartum period. These findings are the first 

to evidence the role of self-reported autonomic reactivity during pregnancy as a predictor of 

postpartum depression. Importantly, this relationship remains significant after controlling for the 

effect of women's prepartum depressive symptoms and other potential covariates.  

In the present study, depressive symptoms remained stable along the peripartum period with 

no significant differences between pregnancy and postpartum evaluation. This finding is consistent 

with prior studies that, although the heterogeneity of peripartum trajectories of depressive symptoms, 

reported similar levels of depression from pre- to postpartum (Kiviruusu et al., 2020; Santos et al., 

2017; Wikman et al., 2020). In the present study, the prevalence of women with PPD was 8.8% (i.e., 

PHQ – 9 score ≥ 10), consistently with other studies that reported prevalence between 7% and 14.2%, 

using the same questionnaire and cut-offs (Abulaiti et al., 2022; Anokye et al., 2018; Beck et al., 

2012; Wang et al., 2021).  

For correlations, our findings indicated that self-reported prepartum dysfunctional autonomic 

reactivity was significantly and positively associated with depressive symptoms before and after 

childbirth. These findings align with Polyvagal Theory and previous correlational research conducted 

in the general population, confirming the negative impact of altered self-reported autonomic reactivity 

on mental health (Cabrera et al., 2018; Kolacz, Dale, et al., 2020; Wang et al., 2020). In particular, 

significant correlations were reported between destabilised self-reported autonomic reactivity and 

higher depressive symptoms (Kolacz, Dale, et al., 2020; Wang et al., 2020). However, in previous 

studies, this relationship was analysed only cross-sectionally. Furthermore, no previous studies 

evaluated self-reported autonomic reactivity in pregnancy and postpartum. However, prior 

psychophysiological studies showed that a vagal withdrawal at rest was associated with depressive 

symptoms during the peripartum (Lin et al., 2019; Shah et al., 2020; Shea et al., 2008). For instance, 

ANS imbalance favouring sympathetic dominance was significantly related to prepartum depression 

during pregnancy (Kishan et al., 2021; Shah et al., 2020; Shea et al., 2008) and lowered resting 

respiratory sinus arrhythmia (RSA) was significantly associated with higher levels of depression 

during late pregnancy (Lin et al., 2019).  

Unlike previous research, our study considers the relationship between self-reported 

autonomic activity and depression symptoms over time, focusing on pregnant women and evaluating 

whether dysregulated self-reported autonomic activity during pregnancy was a risk factor for 

developing postpartum depression. The findings partially confirmed this hypothesis, indicating that 
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self-reported supradiaphragmatic reactivity during pregnancy, but not subdiaphragmatic reactivity, 

was a risk factor for developing postpartum depressive symptoms. Additionally, the role of 

dysfunctional self-reported supradiaphragmatic reactivity during pregnancy in the onset of 

postpartum depressive symptoms remains significant even after controlling for the effects of self-

reported depressive symptoms during pregnancy. Previous studies supported the role of a 

physiologically measured altered autonomic activity as a potential marker of vulnerability and 

severity of depressive symptoms in the non-pregnant population (Brush et al., 2019; Dell’Acqua et 

al., 2020; Hartmann et al., 2019; Rottenberg et al., 2007; Yaptangco et al., 2015). For instance, Brush 

and colleagues (2019) showed that lower cardiac autonomic balance (i.e., sympathetic predominance) 

was a significant predictor of current major depression disorder (MDD). Moreover a longitudinally 

study reported that lower resting RSA was a potential physiological marker of depressive symptoms 

one year later (Yaptangco et al., 2015). For the peripartum period, only a recent study reported a 

longitudinal relationship between adverse childhood experience, lower resting RSA reactivity during 

the second trimester of pregnancy and 1-year postpartum depressive symptoms (Oosterman et al., 

2019).  

Consistently, our study's findings evidenced that a brief self-reported supradiaphragmatic 

measure of autonomic dysregulation during pregnancy is predictive of the onset of depressive 

symptoms one month later. Our findings are in line with Porges's conceptualisation of the role of 

VVC in stabilising autonomic processes (Porges & Carter, 2012). One specific biomarker of VVC 

functioning is RSA (Porges, 2007), which is related to the adaptive homeostasis process under safe 

conditions and the associated social engagement activities; indeed, lower resting levels of RSA were 

related to emotion dysregulation and behavioural inflexibility that are typical in the psychopathology 

of many mental disorders (Beauchaine, 2015; Beauchaine & Thayer, 2015; Wagner & Waller, 2020). 

One of the links between autonomic activity and mental disorders is the prefrontal cortex (PFC) 

activity (Wagner & Waller, 2020). PFC functioning is altered in patients with different psychiatric 

diagnoses, including major depressive disorder (Mulcahy et al., 2019; Zhou et al., 2020), and its 

dysfunctional activity is reflected peripherally by vagal withdrawal indexes (e.g., RSA) (Beauchaine, 

2015; Beauchaine & Thayer, 2015). During the last two trimesters of pregnancy, women's SNS 

activity increases (Fu, 2018; Kuo et al., 2000; Volman et al., 2007) and RSA and parasympathetic 

nervous system (PNS) activity decreases (DiPietro et al., 2005; Kuo et al., 2000; Matsuo et al., 2007). 

Few recent studies showed that women reported elevated SNS activity during stressful laboratory 

conditions in pregnancy (Tung et al., 2021; Vlisides-Henry et al., 2021) (i.e., Trier Social Stress Test). 

However, a higher sympathetic activation to a stressor is an adaptive autonomic response (Vlisides-

Henry et al., 2021) only if it is associated with a higher vagal tone at rest and a faster recovery of 
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parasympathetic activity after the stressor (Laborde et al., 2018; Porges, 2007). We could hypothesise 

that stressful conditions and emotional problems related to pregnancy could boost the normative and 

adaptive changes of autonomic reactivity, increasing the likelihood of a dysfunctional autonomic 

activity at rest, that in turn, could lead to higher emotional dysregulation and mental health problems 

(Porges, 2007; Thayer & Lane, 2000). Postpartum depressive symptoms might arise when the 

restoration of pre-pregnancy autonomic function is compromised due to retuning of ANS to defence 

states during pregnancy. These ANS changes might persist after childbirth, affecting the homeostatic 

function of the body and increasing the likelihood of emotional problems (Porges, 2001, 2007). More 

research is needed on the pregnant population to clarify the psychophysiological mechanism at the 

basis of the relationship between the ANS function and depressive symptoms.  

In cross-sectional studies on the general population, higher self-reported subdiaphragmatic 

reactivity was associated with greater depressive symptoms (Wang et al., 2020) and other 

psychological disorders (Cabrera et al., 2018). We found this association in the correlation analyses, 

but the effect of subdiaphragmatic reactivity on postpartum depressive symptoms in the final 

regression model was not significant. Literature indicated that as the pregnancy progresses, many 

gastrointestinal complaints of the subdiaphragmatic organs (e.g., nausea, vomiting, constipation) are 

reduced (Body & Christie, 2016; Zielinski et al., 2015). On the other hand, many cardiovascular and 

respiratory changes associated with supradiaphragmatic organs begin early in pregnancy, increase 

throughout the gestation and return to pre-pregnancy levels only after the delivery (Fu, 2018; Jarvis 

& Nelson-Piercy, 2020; Tan & Tan, 2013; Volman et al., 2007). It is possible that during pregnancy, 

changes in supradiaphragmatic organs affected more body perceptions than changes in 

subdiaphragmatic organs. Since the BPQ-SF assesses the person's autonomic reactivity through the 

functioning of the autonomically-innervated organs, it is possible that the greater impact of 

physiological changes related to pregnancy on the supradiaphragmatic organs led to a more 

dysfunctional self-reported autonomic activity. More studies are needed to understand the different 

roles of supra- and subdiaphragmatic autonomic reactivity on the onset of mental disorders during 

pregnancy.  

Finally, some limits need to be acknowledged. First, depressive symptoms were evaluated 

through a self-reported measure. Therefore, there is the possibility that women may over-or under-

estimate their depressive symptomatology. However, it has to be said that the instrument used is well-

validated with structured clinical interviews and is broadly used in the pregnant population. Second, 

in the present study, we focused on a sample of pregnant women from the general population. Future 

studies on pregnant women with major depressive disorders may shed further light on the 

dysfunctional processes involving supra- and subdiaphragmatic autonomic reactivity. Nonetheless, 
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the study has several strengths. The prospective design allows us to identify self-reported autonomic 

reactivity as a predictor of postpartum depressive symptoms and contributes to evidence of the 

specific role of supradiaphragmatic reactivity. Generally, autonomic nervous system reactivity is 

assessed in laboratory conditions or using wearable sensors. Considering that the self-reported 

measure used may be more easily and freely available and administered, the BPQ could provide a 

reliable measure of autonomic nervous reactivity in large-scale studies and in all those conditions in 

which an in-person physiological evaluation is impossible. Interestingly, postpartum depressive 

symptoms were better predicted when both self-reported prepartum depressive symptoms and 

autonomic nervous system reactivity were considered together, indicating that both scales uniquely 

contributed to predicting postpartum depressive symptomatology. The self-reported autonomic 

subscales of BPQ evaluate a range of aspects related to the physiological activation that the typical 

depression screening questionnaires do not include. Beyond the specific symptoms of depression 

(e.g., sadness, apathy), the autonomic assessment detects information on the physiological and bodily 

self-regulation responses to emotional and stressful conditions (Porges, 2007; Thayer & Lane, 2009) 

that may be later reported as depressive symptoms or that may lead to the onset of depressive 

symptoms (Stange et al., 2017). Therefore, evaluating autonomic nervous system reactivity in 

combination with self-reported symptoms of depression may help to better screen vulnerable women 

at risk of developing postpartum depression. Indeed, also, when only prepartum women under the 

clinical threshold of depression were considered, ANS reactivity contributed to predicting postpartum 

depressive symptoms. Unfortunately, the relatively small number of women who developed 

postpartum depressive symptoms did not allow us to evaluate whether self-reported autonomic 

regulation during pregnancy could discriminate between those who remained asymptomatic and those 

who became symptomatic. Population studies are foreseen to answer this question. 

Overall, this longitudinal study indicates that dysfunctional self-reported supradiaphragmatic 

reactivity during pregnancy (i.e., second and third trimester) was a significant predictor of postpartum 

depressive symptoms at one month, after controlling for prepartum depressive symptoms. This may 

help more precisely target interventions aimed to reduce the threat-responsive autonomic reactivity 

at rest and promote interventions aimed to increase cues of safety which may help to decrease ASN 

defensive responses. More studies are needed to understand how pregnancy affects the self-reported 

autonomic reactivity and the pathophysiological pathways that lead to postpartum depression. This is 

fundamental to finding novel interventions to support and help women during this crucial transition.  
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5. General discussion and conclusions  
 

5.1. Summary and discussion of key findings 

This PhD thesis aimed to assess the role of prepartum autonomic nervous system (ANS) 

activity as an indicator of depressive symptoms during pregnancy and as a predictor of depressive 

symptoms after childbirth. Growing scientific literature shows that HRV and autonomic activity are 

strictly related to the onset and maintenance of depressive symptoms in the general population 

(Dell’Acqua et al., 2020; Koch et al., 2019). However, few studies investigated this relationship in 

the pregnant population, with mixed findings (M. C. Kimmel et al., 2021; Shah et al., 2020; Shea et 

al., 2008). The COVID-19 pandemic allowed us to explore remote and self-reported ways to measure 

ANS activity. Despite the standard gold to measure cardiac activity and derived autonomic 

parameters remaining ECG, using new technologies and questionnaires to assess physiological 

activity could be a significant step forward to their higher use in eHealth assessments and 

interventions.  

The first study (Chapter 2) aimed to assess the validity of an Android commercial smartphone 

application to measure HRV (i.e., “Heart Rate Variability HRV Camera”) in the general population. 

Studies on the validation of contact PPG smartphone applications are very few and predominately 

focused on using iOS systems and non-commercial applications (Christien Li et al., 2019). Therefore, 

it was a need for rigorous validation studies that compared HRV parameters (e.g., rMSSD) derived 

from a traditional assessment (i.e., ECG) and those computed from a PPG freely available mobile 

application (Schäfer & Vagedes, 2013). Our result indicated the validity and reliability of a short-

term parameter of HRV (i.e., rMSSD) measured via the “Heart Rate Variability HRV Camera” 

application compared with the standard ECG assessment. Indeed, the trivial Cohen’s d effect size, 

the nearly perfect ICC, and the “good” Bland-Altman ratio between ECG and PPG recording 

indicated an excellent accuracy of the smartphone application used in measuring rMSSD. These 

findings align with other validity studies of contact PPG smartphone applications and provide a new 

free tool that could be implemented in eHealth screening or intervention programmes.  

In Chapter 3, we report an implementation of the “Heart Rate Variability HRV Camera” in a 

real-life setting. In particular, our longitudinal study aims to assess the association between rMSSD 

and depressive symptoms during pregnancy and the role of the same HRV parameter as a predictor 

of depressive symptoms after childbirth. This study could help to disentangle the mixed findings on 

the association between HRV and depression in the pregnant population (M. C. Kimmel et al., 2021; 

Shah et al., 2020; Shea et al., 2008) and show evidence of a potential prospective relationship between 

prepartum parasympathetic activity at rest and postpartum depressive symptoms. Our result showed 
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that short-term rMSSD collected with a contact PPG smartphone application is associated with the 

presence of depressive symptoms during pregnancy. Moreover, the same HRV parameter could be a 

valuable prepartum biomarker to detect women with higher depressive symptoms at postpartum, also 

controlling for depressive symptoms at prepartum. Thus, our findings suggest that the prepartum 

period offers a vital timeframe to implement preventive intervention on vagal modulation to avoid its 

influence on the future generation of postpartum depressive symptoms. Indeed, literature reported 

increasing evidence of the role of HRV biofeedback in the treatment and prevention of depression 

(Pizzoli et al., 2021). Moreover, using a smartphone application to collect rMSSD might promote the 

remote monitoring of the psychophysiological well-being of pregnant women and the potential 

implementation of smartphone-delivered intervention for peripartum depression. 

Our third study (Chapter 4) investigated the potential use of a self-reported measure of 

autonomic activity (i.e., supradiaphragmatic and subdiaphragmatic subscale of the Body Perception 

Questionnaire - BPQ) as an indicator and predictor of peripartum depressive symptomatology. A 

recent study validated the two BPQ subscales mentioned above as a measure of autonomic flexibility 

(Kolacz et al., 2022); therefore, we tested the association between self-reported ANS activity and 

depressive symptoms during pregnancy and after delivery. Our results showed that prepartum 

supradiaphragmatic and subdiaphragmatic reactivity (i.e., altered autonomic activity) were 

significantly and positively associated with both prepartum and postpartum depressive symptoms. 

However, further analyses only detect prepartum supradiaphragmatic reactivity as a predictor of 

postpartum depressive symptoms, also controlling for depressive symptoms at prepartum. In 

particular, it seems that the altered autonomic activity of the organs above the diaphragm could 

predict higher levels of depressive symptoms after childbirth. Overall, this study indicates that 

dysfunctional self-reported supradiaphragmatic reactivity during pregnancy was a significant 

predictor of postpartum depressive symptoms. This may help more precisely target interventions 

aimed to reduce the threat-responsive autonomic reactivity at rest and promote interventions aimed 

to increase safety cues, which may help decrease ASN dysfunctional responses.  

 

5.2. General conclusions 

Altogether, the findings of these studies suggest that:  

1) mHealth technologies could play an essential role in future management and treatment 

programmes addressing people's health needs. The reliable assessment of cardiac parameters (e.g., 

heart rate, RRI, rMSSD) through free and accessible smartphone applications could improve a 

medical screening for cardiac or other physical diseases, but also – and more intriguing for us – could 

lead to a more comprehensive assessment of psychophysiological health in different samples. The 
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HRV parameters have been increasingly used as biomarkers of different mental health disorders in 

the last few years. Therefore, the remote collection of this physiological data allows us to develop 

ecological studies better to understand the relationship between daily stressors and HRV. It also 

provides clinicians with a tool to improve the quality of their interventions and collect data in real-

time.  

2) Lower parasympathetic activity during pregnancy (i.e., lower levels of rMSSD) is an 

indicator of depressive symptoms during pregnancy and – more interesting for preventive mental 

health programmes – a predictor of postpartum depressive symptoms up to a month after the delivery. 

More studies are needed to bring significant evidence for this cross-sectional and prospective 

association. However, this finding reflects on the peripartum population what psychophysiological 

literature already knows about the significant association between HRV and depression. Indeed, HRV 

biofeedback or other mind-body treatments that improve parasympathetic activity showed their 

efficacy in reducing mental health disorders and improving psychological well-being in the general 

population. By providing evidence of the strict and prospective relationship between HRV and 

depressive symptoms, our study might be a flourishing starting point for the implementation of 

intervention based on a modulation of HRV to manage depressive symptomatology during pregnancy 

and to prevent their onset in the postpartum period.  

3) Altered self-reported autonomic activity of supradiaphragmatic organs is an indicator of 

depressive symptoms during pregnancy and a predictor of postpartum depressive symptoms up to a 

month after the delivery. The result of an association of self-reported non-adaptive ANS reactivity 

and depression in part overlaps our findings about HRV as a predictor of postpartum depressive 

symptoms. Indeed, using rMSSD – a predominantly parameter of parasympathetic activity – could 

be considered a part of the assessment of the ANS activity. However, in this case, we used a self-

reported questionnaire to assess data traditionally collected by a sensor (e.g., PPG sensor) or specific 

physiological instruments (e.g., ECG). Therefore, considering that the self-reported measure used 

may be more easily and freely available and administered, the BPQ could provide a reliable measure 

of autonomic nervous reactivity in large-scale studies and in all those conditions in which an in-

person physiological evaluation is impossible. Clearly, the autonomic self-reported measure could 

not replace a physiological assessment of ANS through a “traditional” sensor. The main reason is that 

despite the sensor-based measure and the self-reported measure of ANS reflecting different aspects 

of sympathetic and parasympathetic activity. For instance, HRV parameters like rMSSD or HF power 

are indices of nearly pure vagal activity at rest. However, other HRV parameters are more related to 

sympathetic activation (e.g., VLF power), other to sympathovagal balance (e.g., HF/LF ratio), and 

other related to other aspects of cardiac variability (e.g., non-linear parameters).  Conversely, the self-
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reported autonomic measure pool information over many innervation targets, and it is impossible that 

reflect the dynamic function of only one ANS system. Moreover, the self-reported assessment was 

filled with thinking about their own perception of particular body symptoms that are strictly related 

to a dysregulated or non-functional activation of ANS. Therefore, the collected data could be limited 

by memory and attention bias. However, our results intriguingly indicate the association between an 

autonomic disruption of organs above the diaphragm and depressive symptoms both at prepartum and 

postpartum. The specificity of the result allows us to hypothesise an alteration of the autonomic 

activity of supradiaphragmatic organs in pregnant women (e.g., heart, lungs) as normal physiological 

changes in pregnancy confirmed (e.g., higher heart frequency, more difficulties in respiration). In 

turn, if the ANS activity was not restored to pre-pregnancy levels after the delivery, this could affect 

sympathetic and parasympathetic activity. As shown throughout this PhD thesis, ANS activity and 

mental health are strictly related, so the altered ANS activity could lead to more depressive symptoms 

in the postpartum. Our result shows that a self-reported measure of autonomic activity could capture 

the dysfunctional ANS activity, setting itself as a promising tool to assess the experience of autonomic 

symptoms that can be utilized for clinical monitoring and treatment. More studies are needed using 

this self-reported tool and physiological measurements to clarify which aspects of ANS could be 

reflected by a simple measure of autonomic symptoms.  
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