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ground-based measurements in the central Mediterranean and possible 
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ABSTRACT
Instantaneous determinations of photosynthetically active radiation (PAR) over the sea from 
the Ocean and Land Color Instrument (OLCI) on Sentinel-3 are compared with in-situ measure-
ments at the island of Lampedusa in the central Mediterranean Sea. Radiative transfer calcula-
tions show that the PAR measured at the island site is representative for open ocean 
conditions. Satellite data show a good agreement (5.2% positive bias, R2 = 0.97) with in-situ 
data, in line with similar analyses for other satellite sensors. Larger satellite-in situ differences 
are found during summer, and the possible role of aerosols in degrading PAR estimate has 
been investigated by comparing AOD values measured at Lampedusa and derived by OLCI. The 
relative difference between OLCI and in-situ PAR appears to be negatively correlated with the 
relative differences between OLCI and in-situ AOD, suggesting that a more accurate determi-
nation of AOD, in particular, for cases with AOD > 0.2, mostly related to Saharan dust, may lead 
to improved satellite PAR estimates.
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Introduction

Photosynthetically active radiation (PAR) is defined as 
the solar radiation in the visible part of the spectrum, 
i.e. in the range between 400 and 700 nm, which is 
involved in photosynthesis (McCree, 1972) and plays 
a key role in terrestrial and marine primary produc-
tion and carbon storage (Behrenfeld & Falkowski,  
1997; Gregg & Rousseaux, 2019; Mercado et al.,  
2009). For example, equations for the determination 
of phytoplankton growth require PAR (e.g. Kiefer & 
Mitchell, 1983), and marine ecosystem models that 
utilize ocean colour satellite data for estimating pri-
mary production rely on PAR as input parameter 
(Friedrichs et al., 2009; Frouin et al., 2018; Saux 
Picart et al., 2014). The correct determination of 
PAR is, thus, essential to understand the behaviour 
of terrestrial and marine ecosystems and, among other 
processes, to quantify their role in the carbon cycle 
(e.g. Gregg & Rousseaux, 2019; Kwiatkowski et al.,  
2017).

Moreover, marine ecosystems can also affect ocean 
physics and eventually atmospheric dynamics (Frouin 
et al., 2018; Miller et al., 2003; Shell et al., 2003). With 
this respect, phytoplankton may affect ocean sunlight 
absorption and, thus, vertical heat distribution, with 
effects on marine mixed layer dynamics (e.g. 

Ballabrera-Poy et al., 2007; Nakamoto et al., 2000,  
2001). Marine physical and biological interactions 
and related feedback processes are expected to affect 
future climate and are responsible for a large fraction 
of the uncertainties in future projections 
(Friedlingstein et al., 2006).

Local measurements of PAR, although very useful, 
do not allow to derive information on regional and 
global-scale processes. For this reason, efforts have 
been devoted to the determination of PAR from satel-
lite observations (e.g. Frouin & Pinker, 1995; Harmel 
& Chami, 2016; Li et al., 2015; Liang et al., 2006) and to 
obtain information over large scales. Satellite sensors 
measure the upward scattered radiance, and the deri-
vation of the downwelling PAR irradiance requires 
a series of radiative transfer calculations and assump-
tions on the atmospheric vertical structure and com-
position. Thus, satellite determination of PAR is 
somewhat indirect, and verification against high- 
quality surface data is needed to obtain reliable results. 
While PAR measurements over land are relatively 
common (e.g. at the U.S. Department of Agriculture 
UV sites, Bigelow et al., 1998; the National Oceanic 
and Atmospheric Administration Surface Radiation 
Budget network, SURFRAD; Augustine et al., 2000; 
FLUXNET; Baldocchi et al., 2001; and Integrated 
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Carbon Observation System; Carrara et al., 2018, net-
works), very few datasets are available over the ocean, 
where validation of operational satellite retrievals is 
also needed (e.g. Gould et al., 2019; Somayajula et al.,  
2018).

A considerable effort has been dedicated to compare, 
improve and validate satellite PAR observations over 
land, with a particular interest in the fraction of 
absorbed PAR (FAPAR), which is a quantity of interest 
to monitor ecosystem (e.g. Tao et al., 2015, 2016; 
X. Zhang et al., 2014). According to the WMO, the 
absolute accuracy requirement for FAPAR products to 
be acceptable for agronomical and other applications is 
0.05 (GCOS, 2011). Tao et al. (2015), for example, 
compared and validated, using ground-based data, 
FAPAR data from five different sensors: MODIS 
(Moderate Resolution Imaging Spectroradiometer) 
and MISR (Multi-angle Imaging SpectroRadiometer) 
on the Terra satellite, MERIS (Medium Resolution 
Imaging Spectrometer) on Envisat, SeaWiFS (Sea- 
Viewing Wide Field-of-View Sensor) on SeaStar, and 
the GEOV1 products obtained from SPOT-VGT and 
PROBA-V. In the study, they found that satellite- 
derived FAPAR products have an uncertainty of 0.14 
when validating with total FAPAR measurements and 
0.09 when considering only green canopy FAPAR. 
These products are, thus, close but not fully compliant, 
to the WMO accuracy requirements for FAPAR. Su 
et al. (2007) derived PAR using an algorithm primarily 
based on CERES (Clouds and the Earth’s Radiant 
Energy System) data and validated the results against 
data from SURFRAD sites. Z. Zhang et al. (2020) esti-
mated the gross primary production using OLCI 
FAPAR and MODIS FAPAR data and compared the 
results with ground-based data from different sites. The 
gross primary production obtained from the OLCI 
FAPAR data shows a better agreement with in-situ 
data than the estimate obtained from MODIS data, 
with an overall coefficient of determination R2 of 0.44 
for MODIS-derived primary production and 0.55 for 
OLCI-derived primary production. In a different study, 
Ghayas et al. (2022) compared the CERES PAR data 
from the Terra satellite with ground-based data in 
Delhi. PAR estimated from CERES is in a good agree-
ment with in-situ data, with a −5.4% bias, a 14% root 
mean square difference (RMSD) and R2 = 0.74.

To the best of our knowledge, only a limited num-
ber of studies have been dedicated to the analysis and 
validation of satellite-based PAR estimations over 
oceanic regions. Vazyulya et al. (2016) compared 
PAR data from MODIS on the Aqua satellite with 
measurements made during a research cruise from 
the Baltic Sea to the White Seas. They found a bias 
and a RMSD between satellite and ground-based data 
of up to 7.8% and 9.6%, respectively. Harmel and 
Chami (2016) proposed an algorithm, tested on 
MERIS data in the north-western part of the 

Mediterranean Sea. The algorithm was aimed at 
obtaining better PAR retrievals by improving the aero-
sol estimate; the algorithm was planned to be applied 
to OLCI data (whose data were not operatively avail-
able at the time of the study).

Somayajula et al. (2018) compared PAR estimates 
derived from different methods based on MODIS data 
with in-situ measurements in the western 
Mediterranean for both clear-sky and cloudy condi-
tions. The best results were obtained with the NASA 
Ocean Biology Processing Group (OBPG; Frouin 
et al., 2003) model, that produced a bias of 6.6% and 
an RMSD of 19.7% between the satellite-derived PAR 
and the ground-measured values at daily scales.

Gould et al. (2019) compared PAR data derived 
from MODIS and VIIRS (Visible Infrared Imaging 
Radiometer Suite), model data and ground-based 
observations in the Gulf of Mexico. They generally 
found a 5–7% difference between satellite and ground- 
based datasets.

Lastly, Tan et al. (2020) investigated the accuracy of 
PAR retrieval from MERIS data against in-situ obser-
vations in different regions: the northwestern 
Mediterranean Sea, the northwestern Pacific Ocean, 
and the northeastern Atlantic Ocean. They compared 
daily (sunrise to sunset) mean radiative transfer model 
and in-situ data and corrected for possible acquisition 
and calibration errors using a Monte Carlo radiative 
transfer model. The correction on ground-based data 
was of the order of 6%. After the correction, they 
obtained a bias and a RMSD of 0.6% and 4.0% between 
MERIS and in-situ data, for clear sky and low aerosol 
conditions, respectively. When also cases with clouds 
occurring before/after the satellite overpass were taken 
into account, the bias and RMSD increased to 7.3% 
and 15.8%, respectively. As a result of a theoretical 
study with the 6S (Second Simulation of the

Satellite Signal in the Solar Spectrum; Vermote 
et al., 1997) model, Tan et al. (2020) also suggested 
that aerosol strongly impacts daily PAR estimates, 
particularly for cases with aerosol optical depth 
(AOD) > 0.2. Indeed, with large aerosol loads, 
especially absorbing aerosol, they found a relative 
difference in PAR estimates up to 50% compared to 
clear-sky PAR with no aerosol. They also suggest 
that the performance of the discussed MERIS algo-
rithm, which relies on a parameterization of the 
atmospheric transmittance based on AOD and 
Ångström exponent, degrades for large AOD, espe-
cially when dealing with absorbing aerosols.

To our knowledge, there has been no previous 
validation of OLCI-derived PAR measurements 
over the ocean. The Sentinel-3 mission, which 
hosts the OLCI sensor, was designed to guarantee 
long-term and high-quality measurements. 
Specifically, OLCI was developed to guarantee con-
tinuity with MERIS.
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Long-term calibration, validation and verifica-
tion of Sentinel-3 data were a key aspect of the 
mission, which is expected to provide high-quality 
data over an extended time frame (Donlon et al.,  
2012). Thus, validation of OLCI observations is 
important for monitoring climate parameters over 
land and over the ocean.

In this study, we compare instantaneous PAR esti-
mates obtained from the OLCI sensor on the Sentinel- 
3 satellite with measurements of PAR irradiance made 
on the island of Lampedusa, in the Central 
Mediterranean Sea, during the period 2016–2021. As 
far as we are aware, there has been no prior validation 
of satellite-derived PAR measurements conducted 
within this particular area of the Mediterranean Sea, 
which is characterized by frequent cloud-free condi-
tions, variable aerosol properties, and oligotrophic 
waters (e.g. Liberti et al., 2020).

Due to the large role of atmospheric aerosol on the 
PAR retrieval (Harmel & Chami, 2016; Tan et al.,  
2020) we additionally compare OLCI and in-situ 
AOD measurements, with the aim of examining the 
influence of AOD on the satellite-based estimation 
of PAR.

Site, data and methods

Study site

Lampedusa (Italy) is a small island south of the Sicily 
Channel; the island is flat, with a surface area of about 
20 km2. The closest continental region is Tunisia, 
about 130 km west of Lampedusa. The island is far 
from large pollution sources and is characterised by 
frequent cloud-free conditions, mainly in summer, 
and variable aerosols conditions (e.g. Pace et al.,  
2006). Cloud-free conditions occur in more than 
60% of the cases at Lampedusa during June, July, and 
August, with peaks of 80%. The frequency is < 20% in 
February, November and December. On average, the 
area has a 37% overall probability of cloud-free occur-
rence; the interannual variability is relatively small 
(Trisolino et al., 2018).

Aerosol transport patterns and optical properties over 
Lampedusa have been extensively studied using ground- 
based measurements and satellite data (e.g. diSarra et al.,  
2015; Meloni et al., 2006, 2007; Pace et al., 2006). When 
not directly influenced by Saharan dust transport events, 
Lampedusa is characterized by low aerosol optical depth. 
When such events are not considered in the statistics the 
annual mean aerosol optical depth at 870 nm is about 
0.09 (Liberti et al., 2020; Pace et al., 2006). About 75% of 
all daily average AOD values at 870 nm measured in the 
period 1999–2018 are below 0.15, while larger AOD 
values are measured during sporadic events of Saharan 
dust transport that typically last for 1 or 2 days (Meloni 
et al., 2007). The Saharan dust AOD at Lampedusa 

displays a clear annual cycle, with the largest values in 
spring and summer (e.g. DiIorio et al., 2009; diSarra et al.,  
2015; Pace et al., 2006). While dust transport occurring in 
the boundary layer does not display a clear seasonal cycle, 
the annual evolution of AOD is modulated by dust 
transport in the free troposphere (DiIorio et al., 2009; 
Marconi et al., 2014). During spring-summer daily AOD 
values associated with dust events may exceed 1 (e.g. 
diSarra et al., 2011), while monthly mean values often 
exceed 0.2 or 0.3 (diSarra et al., 2015). Cases of pollution 
transport from the European continent are infrequent: 
cases influenced by emissions from forest fires have been 
investigated (Pace et al., 2005), as well as aerosol originat-
ing from heavy fuel combustion processes (i.e. ship traffic 
or refineries; Becagli et al., 2012). The impact of emis-
sions from Etna on AOD is very limited (Sellitto et al.,  
2017).

At surface sea salt represents the largest absolute 
and relative contribution to PM10 in all seasons, with 
a maximum (54%) in winter and minima (33%) in 
summer, while desert dust contributes by 17%–37%, 
with somewhat larger fractions in autumn (Calzolai 
et al., 2015).

The evolution of PAR is discussed by Trisolino et al. 
(2018). The long-term mean values for global and 
diffuse PAR are 95 and 35 W·m−2 (corresponding to 
432 and 159 μE·m−2·s−1, respectively), respectively. 
The mean annual cycle semi-amplitude is about 55% 
and 36% of the long-term mean, respectively, for the 
global and diffuse PAR. Clouds largely modulate PAR, 
although differences between all-sky conditions and 
cloud-free PAR are small in summer, due to high 
frequency of clear sky. The diffuse component of 
PAR for cloud-free conditions displays the largest 
variability during the months characterized by the 
largest AOD (April–July).

In-situ measurements

The in-situ measurements used in this study have 
been made at the Atmospheric Observatory (AO) 
of the Station for Climate Observation on the 
island of Lampedusa (35.5°N, 12.6°E; http://www. 
lampedusa.enea.it). Figure 1 shows the position of 
Lampedusa in the central Mediterranean, a satellite 
picture of the island, whose west-to-east size is 
about 10 km, and an aerial picture of the 
Atmospheric Observatory.

The Lampedusa Atmospheric Observatory, 
which was set up in 1997, is placed on the north- 
eastern plateau of the island, and the measurements 
of downwelling radiation are made on the terrace 
of the main Observatory building, at a height of 
approximately 50 m above sea level. The instru-
ments on the terrace have a free horizon, totally 
devoid of obstacles. All the radiometers are placed 
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at the same altitude, with the instrument horizon 
above all surrounding obstacles. The different 
radiometers are mounted along the south-north 
axis to minimize mutual interference. The coastline 
is about 25 m north-east of the radiometer position. 
A large set of parameters to investigate climate 
processes is measured at Lampedusa (see, e.g. 
Liberti et al., 2020).

The PAR dataset has been constructed using direct 
measurements from PAR quantum sensors (Li-Cor 
model Li-190 R) and from the combination of signals 
from four narrowband channels of Multifilter 
Rotating Shadowband Radiometers (MFRSR).

The MFRSR radiometer (Harrison et al., 1994) 
has six 10 nm wide bands, centred approximately 
around 415, 500, 615, 673, 870 and 940 nm. Four of 
these fall into the PAR spectral interval. The 

instrument continuously performs measurements 
of global and diffuse irradiances with a time reso-
lution of up to 15 s. The PAR irradiance is derived 
from MFRSR measurements by a linear combina-
tion of calibrated irradiances in the four bands; the 
coefficients of the combination are derived by com-
paring independent PAR irradiance observations 
using data from freshly calibrated Li-190 R PAR 
sensors.

The method for the derivation of PAR has been 
described by Trisolino et al. (2016), while the dataset 
collected in the period 2002–2016 has been discussed 
by Trisolino et al. (2018).

The Li-Cor sensors are calibrated at the factory 
using 200 W quartz tungsten halogen lamps traceable 
to the U.S. National Institute of Standards and 
Technology (NIST).

Figure 1. Geographical location of Lampedusa in the Central Mediterranean Sea (top left), satellite photography of Lampedusa 
(bottom image, image ISS026-E-21448) with the orange circle indicating the position of the atmospheric observatory, and aerial 
image of the atmospheric observatory (top right, picture kindly provided by Mirko Nobili).
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The absolute calibration error is lower than 5% (typi-
cally 3%), as reported on the sensor specifications (e.g. 
https://www.licor.com/env/products/light/quantum).

A factory calibration is recommended every 2 years, 
although various studies show that the responsivity of 
PAR irradiance sensors degrades rapidly during field 
use, especially in marine environments (e.g. Nunez 
et al., 2022). A better long-term stability is guaranteed 
by the method by Trisolino et al. (2016), which uses 
MFRSR measurements over 4 narrow bands to derive 
PAR. After the initial comparison with the freshly 
calibrated Li-190 sensor, the long-term stability of 
subsequent data is guaranteed by frequent field cali-
brations of the MFRSR channels with the Langley plot 
method. A discussion of the Langley plot method can 
be found for example in Schmid and Wehrli (1995). 
This method is applicable to the direct irradiances 
derived by the MFRSR as the difference between mea-
surements of the global and the diffuse components. 
Frequent applications of the Langley plot method at 
Lampedusa are possible thanks to the high occurrence 
of cloud-free conditions and the negligible daily cycle 
(e.g. diSarra et al., 2015).

As discussed by Trisolino et al. (2016), this method 
allows to obtain accurate long-term PAR data, which 
may be very useful to verify satellite retrievals. The 
uncertainty on the PAR irradiance measurements 
obtained with this method is 4–6%.

In this study, the dataset discussed by Trisolino 
et al. (2018) has been extended to 2018 to cover the 
period of OLCI observations. Li-Cor Li-190 R data are 
used for the period 2019–2021. Few interruptions in 
the ground-based observations, due to technical pro-
blems, are present in the dataset.

In-situ measurements of PAR from MFRSR are 
derived in W/m2, and these values are converted to 
μE·m−2·s−1 by dividing by 0.22 W·s·µE−1 (Ross & 
Sulev, 2000). The Li-190 R measurements are obtained 
directly in μE·m−2·s−1.

MFRSR measurements of broadband global and 
diffuse irradiances are also used to identify cloud- 
free periods, as will be discussed in the Method sec-
tion. In addition to MFRSR data, all-sky camera 
images are used to characterize cloud distribution 
when MFRSR data are not available. All-sky camera 
images are routinely acquired at 1–min time resolu-
tion at AO.

As will be discussed below, also measurements of 
AOD made at Lampedusa in the same period are 
used. The AOD values used in this study are obtained 
with Cimel Sun photometer part of AERONET 
(Holben et al., 1998), as well as with MFRSR when 
AERONET data are not available. The spectral AOD 
from AERONET and MFRSR is obtained at various 
wavelengths; in the present study, we use the AOD at 
500 and 870 nm. Instantaneous level 2.0 AERONET 
data are used; the estimated uncertainty on level 2.0 

AOD is about 0.015 (Barreto et al., 2016). AOD 
determinations by MFRSR are corrected for the 
influence of the forward scattering produced by 
large-sized aerosol, as described by diSarra et al. 
(2015). The estimated uncertainty on the derived 
MFRSR AOD is about 0.02.

From the AOD at 500 and 870 nm the Ångström 
exponent is calculated and is used to characterize 
particle size and type.

OLCI measurements

In this study, we use data from the Ocean and Land 
Colour Instrument (OLCI) that was launched on the 
Sentinel-3A satellite in 2016. OLCI is a medium- 
resolution push-broom imaging spectrometer with 
21 bands in the range 0.4–1.2 μm, a spatial resolution 
of up to 300 m, and a swath of 1270 km.

OLCI L2 data, downloaded from the EUMETSAT 
data store, are remapped on the equirectangular grid 
covering the regions of interest (i.e. 32.5–39°N and 
10–18°E), with 1 km spatial resolution, once all the 
flagged pixels have been removed. Flags selected to 
clean up the data are those suggested by EUMETSAT 
(https://www-cdn.eumetsat.int/files/2022–05/S3% 
20PN-OLCI-L2M_003_02%20-%20Sentinel-3% 
20Product%20Notice%20%E2%80%93%20OLCI% 
20Level-2%20Ocean%20Colour_new.pdf): CLOUD, 
CLOUD_AMBIGUOUS, CLOUD_MARGIN, 
INVALID, COSMETIC, SATURATED, SUSPECT, 
HISOLZEN, HIGHGLINT, SNOW_ICE, AC_FAIL, 
WHITECAPS, ADJAC, RWNEG_O2, RWNEG_O3, 
RWNEG_O4, RWNEG_O5, RWNEG_O6, 
RWNEG_O7, RWNEG_O8, PAR_ FAIL.

As reported in the OLCI PAR Algorithm 
Theoretical Basis Document (Lavender, 2010), OLCI 
estimates of the PAR reaching the ocean surface are 
based on the MERIS PAR algorithm, which relies on 
the Gregg and Carder (1990) model for clear sky 
conditions, adapted using Frouin et al. (2003).

The effect of aerosol in the algorithm is taken into 
account using the aerosol optical depth obtained from 
the OLCI band at 865 nm.

The resulting product is an instantaneous value, in 
μE·m−2·s−1, obtained from calculations based on 
a plane-parallel model atmosphere and assuming 
a decoupling of the effects of clouds and clear sky.

Thus, the PAR estimates are obtained at the satellite 
overpass over Lampedusa, which takes place approxi-
mately between 8.30 and 9.30 UTC. Consequently, the 
solar illumination conditions change considerably 
throughout the year, with solar zenith angles ranging 
from about 70° in winter and 25° in summer. Figure 2 
shows the histogram of the number of occurrences of 
the solar zenith angle values at OLCI overpass time in 
Lampedusa for the period covered by the present 
study.

EUROPEAN JOURNAL OF REMOTE SENSING 5

https://www.licor.com/env/products/light/quantum
https://www-cdn.eumetsat.int/files/2022%E2%80%9305/S3%2520PN-OLCI-L2M_003_02%2520-%2520Sentinel-3%2520Product%2520Notice%2520%25E2%2580%2593%2520OLCI%2520Level-2%2520Ocean%2520Colour_new.pdf
https://www-cdn.eumetsat.int/files/2022%E2%80%9305/S3%2520PN-OLCI-L2M_003_02%2520-%2520Sentinel-3%2520Product%2520Notice%2520%25E2%2580%2593%2520OLCI%2520Level-2%2520Ocean%2520Colour_new.pdf
https://www-cdn.eumetsat.int/files/2022%E2%80%9305/S3%2520PN-OLCI-L2M_003_02%2520-%2520Sentinel-3%2520Product%2520Notice%2520%25E2%2580%2593%2520OLCI%2520Level-2%2520Ocean%2520Colour_new.pdf
https://www-cdn.eumetsat.int/files/2022%E2%80%9305/S3%2520PN-OLCI-L2M_003_02%2520-%2520Sentinel-3%2520Product%2520Notice%2520%25E2%2580%2593%2520OLCI%2520Level-2%2520Ocean%2520Colour_new.pdf


Statistical parameters

Four statistical indices were employed to assess the 
quality of the OLCI estimates: bias, root mean squared 
difference (RMSD), unbiased RMSD (ubRMSD) and 
coefficient of determination (R2). The intercept, slope, 
and p-value of the fit have been also calculated. The 
unbiased RMSD describes the root mean distance of 
the OLCI with respect to in-situ data, regardless of the 
average bias between the two distributions. The intro-
duced quantities are defined as follows: 

Bias ¼
1
N

XN

j¼1
yj � xj
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RMSD ¼
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u
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t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSD2 � Bias2

p

R2 ¼

PN
j¼1ðyj � ymÞ xj � xm

� �h i2

PN
j¼1 ðyj � ymÞ

2PN
j¼1 ðxj � xmÞ

2 

In these formulas, yi are the PAR values derived from 
OLCI observations, xi are the in situ PAR observations 
and N is the total number of data pairs. The variables 
with subscript m identify the corresponding averages. 
The coefficient of determination is computed as the 
square of the Pearson correlation coefficient.

Methods

The OLCI dataset is composed of instantaneous PAR 
values at the OLCI overpass over Lampedusa, covering 
the period from April 2016 to December 2021. OLCI 
PAR measurements are obtained considering the value 
of one of the pixels closest to AO without land con-
tamination, chosen about 4 km east of the measure-
ment site.

The in-situ PAR dataset is obtained, for each day, 
considering the instantaneous in-situ data closest in 
time to the OLCI overpass time, within a maximum 
time difference of 6 min. The maximum time differ-
ence between satellite and ground-based AOD mea-
surements is set to 10 min.

Due to the application of cloud-specific flags (i.e. 
CLOUD, CLOUD_AMBIGUOUS, 
CLOUD_MARGIN) the influence of cloudy pixels is 
expected to be minimal in the OLCI data. The result-
ing dataset for quasi-clear sky conditions when satel-
lite and ground-based measurements are present is 
composed of 352 data pairs. A second check aimed 
at identifying cloud-free data selected on the basis of 
ground-based measurements has been also implemen-
ted. Previous studies have shown that determinations 
of cloud cover from space and from the surface may 
differ, especially in the case of partial cloud cover, due 
to different factors and in particular the different 
spatial resolution (e.g. Werkmeister et al., 2015; 
Wielicki & Parker, 1992). Cloud screening based on 
ground-based data is performed using two methods. 
Whenever MFRSR data are available, the algorithm 
described by Meloni et al. (2007), is used. This algo-
rithm is an adaptation of the method by Long and 
Ackermann (Long & Ackerman, 2000) and is based on 
the simultaneous measurement of global and diffuse 

Figure 2. Histogram of the number of occurrences of the solar zenith angle at the OLCI overpass time in Lampedusa for the 
selected period.
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broadband solar irradiances. This method allows to 
identify conditions with cloud cover < 2 oktas and sun 
unobstructed by clouds. When MFRSR observations 
are not available, a visual inspection of all-sky camera 
images has been carried out, and cloud-contaminated 
images are discarded.

The cloud screening procedure leads to the elim-
ination of many data, and the remaining dataset com-
prises 93 data pairs.

As discussed above, AO is located at about 50 m 
above sea level, over a rocky terrain, close to the 
northeastern promontory of the island. Thus, the mea-
surements used in the comparison are not obtained 
directly over the ocean, although they benefit from 
stable levelling and regular cleaning. Previous studies 
have shown that there is a very good correspondence, 
with a small bias, between measurements of broad-
band solar irradiance carried out at AO and those 
made at the Oceanographic Observatory, which is an 
open ocean instrumented buoy located about 15 km 
South-West of AO (diSarra et al., 2019). In this study, 
the bias induced by differences between AO and the 
ocean surface, due to both altitude and albedo, is 
estimated through radiative transfer model 
calculations.

The MODerate-resolution atmospheric radiance 
and TRANsmittance model (MODTRAN, version 
6.0; Berk et al., 2014) was run to simulate the down-
welling PAR irradiance at the AO and over the sea. 
The model has been initialized using, as input, para-
meters measured during a field campaign in July 2013. 
The model used 93 vertical layers with higher resolu-
tion in the lowest troposphere. The downwelling PAR 
irradiance has been estimated for varying values of the 
solar zenith angle between 12° (the minimum value 
reached at Lampedusa) and 85°, assuming no aerosol, 
and taking into account differences in surface albedo 
and height. The spectral surface albedo at the AO was 
estimated as in Meloni et al. (2015), as a combination 
of land (barren/desert surface type included in the 
MODTRAN model) and sea albedo with 
a proportion of 72% and 28%, respectively. The sea 
albedo from Jin et al. (2004) has been used. Although 
water vapour plays a very limited role in regulating 
PAR, variations of column water vapour associated 
with the altitude change are included in the model, 
based on data from radiosonde launches made in 
July 2013. The total column water vapour used in the 
model is 3.0 cm. No changes in the total ozone col-
umn, which was assumed to be 305 Dobson units 
(value measured on 3 July 2013, which corresponds 
to the annual mean in Lampedusa), were considered in 
the simulations. The ozone profile measured by air-
craft in July 2013 was used in the simulations. 
Additional details on the model setup are given by 
Meloni et al. (2018). The differences between calcu-
lated PAR at sea level and at 50 m are always smaller 

than 0.75% (PAR at sea level smaller than at AO) for 
all values of the solar zenith angle. The relative differ-
ence slightly increases with the solar zenith angle.

The calculated results are consistent with similar 
calculations made by diSarra et al. (2019) for broad-
band solar irradiance; they found an average differ-
ence always < 1%.

Being the combined effect of altitude and albedo on 
PAR much smaller than the associated measurement 
uncertainty, we have assumed that PAR observations 
at AO may be taken as representative of ocean surface 
measurements, and no correction for these effects was 
applied to the data.

Results and discussion

Figure 3 shows the time series of in situ 24-h average 
PAR and daily mean AOD measurements at 
Lampedusa. The main characteristics of the PAR and 
AOD seasonal cycles appear evident in the figure. The 
PAR reaches its peak in June, when the minima of solar 
zenith angle are reached, and gradually decreases to its 
minimum in December. The large impact of clouds on 
the downwelling irradiance is evident in the figure, 
mainly in winter. As discussed above, AOD peaks are 
generally associated with Saharan dust events, which 
are more frequent in spring and summer and last 1–2  
days. In this figure, the aerosol impact on PAR is 
masked by the dominating cloud effect.

The daily course of instantaneous PAR (iPAR) irra-
diance on 2 days in different seasons is shown in 
Figure 4, together with the iPAR value derived from 
OLCI. On both days cloud-free conditions are domi-
nant, and an overestimate of PAR by OLCI appears 
evident.

Figure 5 shows the time series of OLCI and in-situ 
determinations of iPAR for quasi-clear-sky conditions 
determined from the OLCI data flags. A 6% uncer-
tainty on ground-based PAR measurements is shown 
in the graph. The uncertainty on OLCI PAR data is not 
available in the data files and has not been included in 
the graph.

The iPAR seasonal change is very evident and is 
mainly due to the seasonal evolution of the solar 
zenith angle at the OLCI overpass time. The distribu-
tion of solar zenith angle number of occurrences is 
shown in Figure 2. The OLCI iPAR estimation effec-
tively reproduces the seasonal evolution observed in 
the corresponding ground-based measurements.

Table 1 reports some statistical parameters for the 
two datasets. In general, OLCI tends to provide 
slightly higher estimates of PAR compared to in-situ 
measurements, with a bias of 83.2 μE·m−2·s−1 and 
RMSD of 141.3 μE·m−2·s−1. These values represent 
5.7% and 9.7% of the mean measured iPAR, respec-
tively. This result is consistent with findings from 
previous studies (e.g. Gould et al., 2019; Tan et al.,  
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2020; Vazyulya et al., 2016). The unbiased RMSD is 
114.5 μE·m−2·s−1 (8%), which is compatible with 
results from Somayajula et al. (2018).

Figure 6 displays the scatter plot between OLCI and 
in-situ iPAR measurements. The plot reveals a good 
agreement between the two datasets, with a relatively 
small number of points deviating from the diagonal 
line. The coefficient of determination, R2, is 0.87, 
confirming a strong correlation, while the slope of 
the fit is 0.93. The p-value associated with the calcu-
lated R2 is considerably lower than 0.05.

As discussed above, due to the possible large effect 
of residual clouds, the comparison was carried out also 
with the reduced dataset, obtained by applying the 
cloud screening based on ground observations.

Figure 7 shows the time series of cloud-screened 
ground-based and satellite instantaneous PAR. The 

agreement between OLCI and in-situ data is better 
for the cloud-screened than for the previous dataset. 
The bias reduces to 78.0 μE·m−2·s−1 (5.2%) and the 
RMSD to 97.8 μE·m−2·s−1 (6.6%), whereas the 
ubRMSD becomes 58.9 μE·m−2·s−1 (4%). Statistical 
parameters for this case are also reported in Table 1.

Table 2 reports statistical parameters calculated for 
different seasons (winter DJF, spring MAM, summer 
JJA, autumn SON) for the dataset without ground- 
based cloud screening. Table 3 reports the same quan-
tities for the ground-based cloud-screened dataset. It 
is interesting to note that the cases with the largest 
differences, in terms of absolute bias and RMSD, occur 
in summer for both datasets. In particular, the ratio 
between RMSD and mean iPAR (but also between bias 
and mean iPAR) is largest during summer, when R2 

becomes much smaller than in the other seasons.

Figure 3. Time series of in-situ 24-h mean PAR (orange) and AOD at 870 nm (grey) for the period 2016–2021.

Figure 4. Daily evolution of instantaneous in-situ PAR for a summer day (2016-07-09, left) and for a winter day (2021-11-12, right). 
The green triangles are the OLCI instantaneous PAR irradiances at the sentinel-3 overpass.
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Figure 8 shows the scatter plot between the cloud- 
screened datasets. It can be noted that most of the off- 
diagonal data points have disappeared, confirming 
that the largest deviations found in Figure 6 were 

due to residual clouds. Also in this case, OLCI over-
estimates in-situ data. R2 has risen to 0.97, indicating 
a robust correlation between OLCI and in-situ data. 
The scatter plot linear fit slope is 1.02, compared with 

Figure 5. Time series of instantaneous OLCI (orange) and in-situ (grey) PAR data. Data are selected based on different cloud flags 
of OLCI data (see text). An estimated 6% uncertainty (vertical bars) has been associated with the in-situ PAR data. The red dots are 
the relative difference between OLCI and in-situ data, normalised with respect to the in-situ values.

Table 1. Statistical indices for PAR with and without cloud selection based on ground-based data.

Dataset
Number of 
data pairs

In-situ mean 
[μE m−2s−1]

OLCI mean 
[μE m−2s−1]

Bias 
[μE m−2s−1]

RMSD 
[μE m−2s−1]

ubRMSD 
[μE m−2s−1] R2 Slope

Intercept 
[μE m−2s−1]

All data 352 1458.7 1541.8 83.2 141.3 114.2 0.88 0.93 183.5
Cloud-free 93 1491.3 1569.4 78.0 97.8 58.9 0.97 1.02 45.1

Figure 6. Scatterplot between OLCI and in-situ instantaneous PAR data selected based on different cloud flags of OLCI data (see 
text). The grey line is the bisector and the orange line is the linear fit to the data.
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0.93 for the dataset without cloud screening based on 
ground-based observations. In line with these find-
ings, the p-value remains substantially below 0.05.

It can also be noted that most of the data in Figure 8 
lie on a line which is approximately parallel with 
respect to the 1:1 line, with the largest deviations 
occurring for PAR values above about 1400 
μE·m−2·s−1. Thus, to investigate the cause of the devia-
tion, the ground-based cloud-screened PAR dataset 
has been divided into two subsets, above and below 
a threshold of 1450 μE·m−2·s−1. This threshold value 
essentially separates autumn-winter from spring- 
summer observations (see also Figure 4). Figure 9 
shows the distribution of the number of occurrences 
of the difference between OLCI and in-situ PAR data 
for the two subsets. Differences between OLCI and in- 
situ data are centred at about 75 μE·m−2·s−1 in 

autumn-winter, when the influence of high AOD 
cases is small. Two peaks can be found in spring- 
summer, one approximately around 75 μE·m−2·s−1, 
which is present also in the autumn-winter subset, 
and one approximately around 150 μE·m−2·s−1.

Thus, differences around 75 μE·m−2·s−1 are pre-
sent throughout the year and may suggest the pre-
sence of an overall bias between OLCI and in-situ 
PAR determinations. The spring and summer peak 
around 150 μE·m−2·s−1 may be linked to specific 
conditions, limited in time, which may produce 
larger differences. Large AOD values may be 
found at Lampedusa in spring and summer, when 
they are generally associated with intrusions of 
Saharan dust. We may thus investigate the possibi-
lity that high AOD cases are those producing the 
largest differences in PAR estimates.

Figure 7. Time series of instantaneous OLCI (orange) and in-situ (grey) PAR for cloud-free days selected from ground-based data. 
An estimated 6% uncertainty (vertical bars) has been associated with the in-situ PAR data. The red dots show the difference 
between OLCI and in-situ data, normalised with respect to the in-situ values.

Table 2. Seasonal statistical indices for PAR without cloud selection based on ground-based data.

Dataset Number of data pairs In-situ mean [μE m−2s−1] OLCI mean [μE m−2s−1]
Bias 

[μE m−2s−1]
RMSD 

[μE m−2s−1] ubRMSD [μE m−2s−1] R2

DJF 56 958.6 1025.9 67.3 105.5 81.3 0.72
MAM 77 1603.9 1670.0 66.1 119.3 99.3 0.73
JJA 138 1686.2 1791.4 105.2 159.0 119.2 0.29
SON 81 1278.6 1351.5 72.9 149.7 130.8 0.67

Table 3. Seasonal statistical indices for PAR with cloud selection based on ground-based data.

Dataset Number of data pairs
In-situ mean 
[μE m−2s−1]

OLCI mean 
[μE m−2s−1] Bias [μE m−2s−1] RMSD [μE m−2s−1] ubRMSD [μE m−2s−1] R2

DJF 14 937.6 994.8 57.2 65.0 30.8 0.97
MAM 27 1636.2 1696.0 59.9 84.5 59.7 0.91
JJA 35 1689.8 1794.8 105.0 124.1 66.2 0.43
SON 17 1308.7 1377.2 68.4 75.9 32.8 0.97

10 M. PECCI ET AL.



AOD impact on PAR differences

Figure 10 shows the coincident OLCI-in-situ AOD 
observations corresponding with simultaneous 
iPAR determinations, and the distribution of the 
corresponding Ångström exponent values obtained 
from the ground-based observations. Although the 
number of selected data is limited, similarly to 
ground-based data, the OLCI AOD displays larger 
values in spring and summer, with a peak around 
0.5. Most AOD observations (73%) have an 
Ångström exponent < 1, while for many cases it is 
smaller than 0.5. This value of the Ångström expo-
nent has been used to identify Saharan dust cases at 

Lampedusa. Cases with Ångström exponent > 1.5 
have been attributed to transport of small-sized 
particles from urban-industrial activities or forest 
fires in continental Europe (Pace et al., 2006), and 
display a low frequency of occurrence. The OLCI 
retrieval algorithm takes into account the AOD 
effect, and we expect that inaccuracies in the deter-
mination of AOD may influence the PAR determi-
nation. It must also be pointed out that the OLCI 
algorithm uses a single band (outside the PAR 
spectral interval) to retrieve AOD, and this may 
affect the estimation of the aerosol effect at shorter 
wavelengths. Due to the AOD seasonal evolution at 
Lampedusa, we expect that the largest differences 

Figure 8. Scatterplot of OLCI vs in-situ instantaneous PAR data, selected for cloud-free conditions from ground-based observations 
(see text). The grey line is the bisector and the orange line is the linear fit to the data.

Figure 9. Histogram of the number of occurrences of the differences between OLCI and in-situ iPAR values. The ground-based 
cloud-screened dataset is divided into two subsets considering in-situ iPAR data below (orange histogram with black contour 
lines) and above (blue histogram with no contour lines) a threshold of 1450 μE·m−2·s−1, respectively.
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in the retrieved OLCI AOD occur in the summer, 
as well as the largest differences in the PAR 
determinations.

Thus, we have compared AOD determinations by 
OLCI with ground-based measurements at 
Lampedusa at 870 nm. Ground-based AOD data clo-
sest in time to the OLCI overpass, within a 10-min 
interval, are used in the comparison. The AOD dataset 
is composed of 64 data pairs.

Figure 11 shows the scatter plot between OLCI 
and in-situ AOD. AODs from Cimel and MFRSR 
measurements reach larger values (0.5) than 
OLCI (0.35).

A good agreement is found for AOD below 0.2, even 
if some outliers are present, with OLCI overestimating 
in situ AOD. A degradation of the agreement between 
OLCI and in situ AOD determinations is evident, not-
withstanding the small number of cases, for AOD > 0.2.

Figure 10. Left: time series of instantaneous AOD determinations from OLCI (orange) and in-situ measurements (grey). The 
estimated uncertainty associated with ground-based observations is 0.015. Right: histogram with the distribution of Ångström 
exponent values; the Ångström exponent is derived from the multi-wavelength ground-based observations.

Figure 11. OLCI vs in-situ aerosol optical depth. The grey line is the bisector, the orange line is the linear fit considering the whole 
dataset, the red line is the linear fit obtained considering only the in-situ AOD below 0.2 and the blue line is the linear fit for in-situ 
AOD above 0.2. Elements circled in red and grey correspond to, respectively, Ångström exponent below and above 0.5.

Table 4. Summary of the statistical indices for in-situ and OLCI AOD.
Dataset Number of data pairs In-situ mean OLCI mean Bias RMSD ubRMSD R2 Slope Intercept

All AOD values 64 0.11 0.12 0.0083 0.052 0.051 0.79 0.62 0.051
AOD < 0.2 51 0.067 0.092 0.025 0.039 0.029 0.51 1.00 0.025
AOD > 0.2 13 0.30 0.24 −0.057 0.085 0.063 0.47 0.32 0.14
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Table 4 reports a summary of statistical indices for 
the AOD datasets. Due to the different behaviour, 
these indices were also calculated separately for values 
of surface AOD, respectively, less than and greater 
than 0.2.

The bias between OLCI and ground-based data is 
small when considering the entire dataset (0.0083, 
corresponding to 7.5%). RMSD and ubRMSD are, 
however, relatively high, respectively, 0.051 (46%) 
and 0.051 (45%).

When the dataset is divided into values below and 
above 0.2, a positive bias (0.025, 38% of the observed 
mean with AOD < 0.2) is found for AOD < 0.2, and 
a negative one for AOD > 0.2 (bias of −0.057, 19% of 
the observed mean with AOD > 0.2). The low values of 
R2 and the slope of the fit suggest a poor agreement for 
AOD > 0.2. The over- and underestimate effects for 
the two ranges of AOD appear to offset each other 
when the full dataset is considered. A small bias, 
although with a large RMSD, is found for the full 
dataset, together with a relatively large value of R2. 
The R2 values shown in Table 4 are characterized by 
a p-value substantially below 0.05.

It must be noted, however, that this behaviour is 
driven by few data points, and the availability of 
a wider dataset appears necessary to draw final 
conclusions.

The data points colour shows the corresponding 
value of the Ångström exponent, and it is possible to 
note that most of the data points which lie far from the 
1:1 line are characterized by a small exponent.

To simplify the visualization, in Figure 11, data 
with Ångström coefficient < 0.5 are circled in red.

To investigate the impact of the AOD differences on 
the OLCI PAR estimates, we calculated the relative devia-
tion between OLCI and in-situ PAR and between OLCI 

and in-situ AOD determinations. Figure 12 shows the 
scatter plot between the PAR and AOD relative devia-
tions. Despite the modest correlation (R2 = 0.18, p < 0.05) 
and the spread in the data, a negative correlation appears, 
suggesting that an underestimate of the AOD leads to an 
overestimate of PAR.

Figure 12 also shows, in colours, the value of the 
Ångström exponent, with data circled in red repre-
senting Ångström exponent < 0.5. As shown for exam-
ple by diSarra et al. (2008), the downwelling solar 
irradiance decreases for increasing AOD due to aero-
sol absorption and scattering. Thus, we expect that the 
calculated PAR irradiance estimated from the OLCI 
data is overestimated when the AOD is underesti-
mated (i.e. there is an underestimate of the downwel-
ling radiation reduction due to aerosols). The effect 
shown in Figure 12 with a iPAR overestimate when 
AOD is underestimated is coherent with what is 
expected by an erroneous correction for the aerosol 
influence, and a better determination of AOD, in 
particular for cases of large particles, is expected to 
lead to an improvement of the PAR determination. 
Alternatively, the use of more accurate in-situ AOD 
determination, where available, might be used at spe-
cific sites in the satellite PAR retrieval to obtain more 
accurate PAR retrievals.

Conclusions

A comparison between OLCI and in-situ determina-
tion of photosynthetically active radiation over the 
ocean has been carried out at Lampedusa, in the cen-
tral Mediterranean Sea.

Instantaneous ground-based and satellite data cov-
ering the period of May 2016–December 2021 have 
been used. PAR measurements at Lampedusa are 

Figure 12. Relative difference between OLCI and in-situ PAR vs relative difference between OLCI and in-situ AOD. The grey line is 
the linear fit. Elements circled in red and grey correspond to, respectively, Ångström exponent below and above 0.5.
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taken at the Atmospheric Observatory, which resides 
on the northeastern promontory of the island, at about 
50 m above sea level.

Radiative transfer calculations performed with the 
MODTRAN radiative transfer model show that the 
observations on the island of Lampedusa well repre-
sent open ocean conditions.

In order to reduce the variability of PAR irradiance 
due to clouds, only clear sky days are selected. A first 
dataset comprises data screened using the OLCI cloud 
flags.

The comparison of instantaneous data shows 
a good correlation (R2 = 0.88) and values of bias and 
RMSD (5.7% and 9.7%, respectively) consistent with 
similar analyses made for PAR derived from other 
satellite sensors.

A second dataset is obtained using a cloud screen-
ing algorithm based on surface observations. The use 
of this algorithm leads to a strong reduction of the 
dataset, at the same time significantly improving the 
agreement between OLCI and in-situ measurements.

The analysis of the second dataset leads to the elim-
ination of all the outliers and to a very good agreement 
between OLCI and in situ observations, with a smaller 
RMSD (6.6%) and higher R2 (0.97). The bias remains 
essentially unchanged (5.2%), with OLCI overestimat-
ing ground-based iPAR. The bias and RMSD are similar 
to those obtained over the ocean in previous compar-
isons with respect to MODIS, SeaWIFS and VIIRS. 
Cases with somewhat larger overestimates occur in 
summer. It is worth noting that the bias found between 
OLCI and ground-based iPAR estimates is comparable 
with the uncertainty associated with ground-based PAR 
measurements (which is in the order of 4–6%). Thus, it 
is not possible to exclude that part of the bias may be 
due to a systematic component of the uncertainty.

The possible influence of aerosol on the differences 
between OLCI and in-situ PAR determinations has 
been investigated by comparing the satellite and 
ground-based AOD estimates, and by relating the 
PAR differences with AOD differences.

The comparison between the OLCI AOD retrieved 
on band 16 at 865 nm and in situ measurements at 
Lampedusa displays a good agreement for AOD < 0.2 
and a significant underestimate by OLCI for larger 
AOD values.

Although, in general, the agreement between 
PAR by OLCI and in-situ is good, larger overesti-
mates of PAR correspond with AOD underesti-
mates, suggesting that an improvement of the 
AOD determinations may lead to better results. 
This seems to be particularly important for cases 
with moderate and large aerosol load, i.e. 
AOD > 0.2, which appears to be related to 
Saharan dust events. The impact of AOD on PAR 
estimates found in the present study, especially for 
AOD > 0.2, agrees with what was found in the 

theoretical study by Tan et al. (2020) in 
Northwestern Mediterranean for daily mean PAR. 
As discussed in the introduction, PAR data over 
the ocean are needed, among other things, to esti-
mate primary production. High-quality data are 
crucial to understand the evolution of the marine 
ecosystem, also in relation with the carbon cycle. 
This study suggests that an improvement in the 
AOD determination might help in reducing uncer-
tainties in cases of high AOD. However, due to the 
limited statistics, it appears evident that a dedicated 
study on a more extended dataset would be neces-
sary to have a robust assessment of the uncertain-
ties associated with the OLCI AOD retrieval.

The synergistic use of ground-based AOD and 
Ångström exponent data at specific sites, with 
a dedicated correction for the aerosol effect, might 
also lead to improvement.
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