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Abstract: This review article explores the possibility of developing an integrated approach to the
management of the different needs of endometrial cancer (EC) patients seeking to become pregnant.
Life preservation of the woman, health preservation of the baby, a precocious and—as much as
possible—minimally invasive characterization of the health and fertility parameters of the patient,
together with the concerns regarding the obstetric, neonatal, and adult health risks of the children
conceived via assisted reproductive techniques (ART) are all essential aspects of the problem to
be taken into consideration, yet the possibility to harmonize such needs through a concerted and
integrated approach is still very challenging. This review aims to illustrate the main features of EC
and how it affects the normal physiology of pre-menopausal women. We also focus on the prospect
of a miR-based, molecular evaluation of patient health status, including both EC early diagnosis and
staging and, similarly, the receptivity of the woman, discussing the possible evaluation of both aspects
using a single specific panel of circulating miRs in the patient, thus allowing a relatively fast, non-
invasive testing with a significantly reduced margin of error. Finally, the ethical and legal/regulatory
aspects of such innovative techniques require not only a risk-benefit analysis; respect for patient
autonomy and equitable health care access allocation are fundamental issues as well.

Keywords: endometrial cancer (EC); assisted reproductive techniques (ART); miR-based; molecular
evaluation; ethical and legal implications

1. Introduction

Assisted reproductive technology (ART) refers to several techniques allowing women
to achieve pregnancy in a non- (fully) natural way and include in vitro fertilization (IVF),
intracytoplasmic sperm injection (ICSI), gamete intrafallopian transfer (GIFT), and preim-
plantation genetic diagnosis (PGD) [1]. ART is a viable option not only in couples with
fertility impairment but also in women diagnosed with cancer set to undergo chemotherapy;
such therapeutical approach, however, not only affects fertility by impairing the viability of
gametes but could also alter their genome introducing deleterious mutations in the embryo.
As such, ART is also a valuable option for EC patients to minimize those problems [2].
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Endometrial cancer (EC) affects the lining of the uterus and is usually diagnosed
in postmenopausal women, but about 5% of cases occur in women under 40, and ap-
proximately 20% of cases are diagnosed before menopause [3]. The most common type
of endometrial cancer in premenopausal women is estrogen-sensitive adenocarcinoma
(type I carcinoma), which has a better prognosis than more aggressive type II carcinoma.
Several genes that play a central role in EC development and growth have been recognized
in the last years, [4,5]; more recently, the epigenetics of EC has started to be unveiled.
Micro RNAs (miRNAs or miRs) are short molecules of non-coding endogenous RNA that
function as post-transcriptional regulators of gene expression [6]. In addition, in EC, miRs
can play a role in the development and progression of cancer by modulating the expression
of oncogenes and tumor suppressor genes. For example, some miRNAs have been reported
to regulate the expression of PTEN, a tumor suppressor gene that is frequently mutated or
deleted in EC (see below). In addition, miRs can also be associated with EC risk factors,
such as insulin resistance and hyperinsulinemia, which can trigger cell proliferation and
angiogenesis [7]. It is crucial to understand the molecular bases of EC and how it influences
women’s fertility; of similar importance is the evaluation of who, how, and when can face
oocyte preservation for ART procedures once EC is in remission.

Evaluation of female fertility is an important step for women who want to undergo
ART or preserve their fertility after being diagnosed with EC. A pelvic examination should
be performed to assess the uterus and adnexa for masses or other abnormalities. The gold
standard method for diagnosing EC is hysteroscopy and endometrial biopsy, which have
high sensitivity and specificity. Other imaging techniques, such as ultrasound, magnetic
resonance imaging (MRI), or computed tomography (CT), can be used to evaluate the
disease extent and plan the treatment [8].

In this work, we will examine all the above aspects. We will discuss the etiopatho-
genesis of EC both from a clinical and a molecular point of view, with a special focus
on epigenetic causes and the use of circulating miRs as diagnostic biomarkers. We will
report the state-of-the-art in fertility evaluation by means of circulating miR, comparing
the two sets of data (circulating miRs in EC and for fertility assessment) and highlight how
these two sets have only minimum overlap, providing the possibility to establish both the
health status of the patient and her possibility to undergo ART at the same time and with a
minimally invasive test (a blood sample). Finally, we will provide an overview of the main
ethical and legal aspects of procreation in EC (and, more widely, in oncologic) patients. We
set out to elucidate in a succinct and yet comprehensive fashion the underlying factors,
determinants, and dynamics at the root of EC, its clinical implications in terms of therapeu-
tics and diagnostics, the prospects for fertility preservation in younger patients, and the
prospect for a miR-based, molecular evaluation of patient health status, including both EC
early diagnosis and staging and, similarly, the patient’s receptivity. Finally, the complex
ethical and legal/regulatory aspects have been weighed. For each of the above-listed
subjects, 125 sources have been drawn upon, by using the search strings “endometrial can-
cer”, “fertility preservation”, “RNA-based molecular classification/evaluation”, “miRNA
cancer diagnosis” through scientific databases PubMed/MedLine, PubMed Central, Sco-
pus, ResearchGate, Web of Science. Only articles accounting for EC, infertility/fertility
preservation, RNA-based diagnostic and therapeutic approaches, and ethics peculiarities
of such innovative techniques have been considered for the fundamental purpose of this
review article.

2. Etiology and Pathogenesis of EC in Fertile Women
2.1. Clinical and Endocrinological Characteristics of EC

EC has long been known as one of the most widespread gynecologic cancers world-
wide; it is also the most common cancer affecting the female genital tract in developed
countries. This malignancy is localized to the uterus in most patients (reportedly, as many
as 67%) [9].
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While uterine corpus cancer is currently the most common gynecologic malignancy,
endometrial carcinomas constitute the majority of such diagnoses; sarcoma accounts for
less than 10% of uterine corpus cancers. As many as 83% of uterine corpus cancers are
endometrioid carcinomas. In addition, 4% to 6% of endometrial carcinomas consist of
serous and papillary serous carcinomas, while clear cell carcinomas account for 1% to
2%. For a thorough analysis and better management and prevention of such conditions,
it is worth drawing a distinction among type 1 endometrioid, type 2 serous endometrial
carcinomas, and other highly aggressive non-endometrioid carcinoma histotypes [10,11].

Abnormal uterine bleeding or postmenopausal bleeding constitutes typical EC presen-
tations. A diagnostic evaluation should be made available to any patient having EC risk
factors, which should include the assessment of clinical history, imaging, and endometrial
sampling. Standard EC therapeutic pathways may entail hysterectomy, bilateral salpingo-
oophorectomy, and surgical staging. Hysterectomy is instrumental in accurately assessing
EC prognostic factors, such as stage, grade, myometrial invasion, lymphovascular space
invasion, and lymph node status [12–14].

ECs have been found to begin as preinvasive intraepithelial lesions transitioning into
full-blown invasive cancers affecting endometrial stroma. A progressive penetration into
the myometrium occurs through the lymphatic capillaries, thus spreading cancerous cells
into regional lymph nodes. Then, the metastasizing process unfolds via vascular channels.
The uterine cervix and stroma are likely affected by tumor progression through lymphatic
channels, even if surface spread has been observed to take place from ECs manifesting in
the lower uterine segment (LUS). LUS involvement in endometrial carcinoma has often
been reported to result in lower survival rates and higher recurrence rates [15].

High levels of free estrogens leading to endometrial hyperplasia have been linked
to estrogen-secreting, ovarian tumors, and polycystic ovaries (PCO); both conditions can
adversely affect regular ovulation and menstruation. While anovulation obviously results
in infertility, nulliparity is linked to a higher EC risk, even after adjusting for infertility [16].

Potential precursors of type I EC (which has been linked to a tumoral environment with
excess estrogen) have been found to be atypical endometrial hyperplasia or endometrial
intraepithelial neoplasia (EIN). Such dynamics often manifest at an early stage, with rather
favorable outcomes. Serous, clear cell, mixed cell, and undifferentiated histologies are
all elements reportedly associated with type II ECs, which are estrogen-independent and
manifest at an already advanced stage with unfavorable prognosis [17]. The validation of
genes or biomolecular factors is instrumental for an accurate prognosis assessment [18].

Such clinical dynamics entail medical as well as ethical and social concerns: fertility-
sparing treatment (FST) can in fact forgo more radical care procedures by prioritizing the
patient’s reproductive capabilities. ARTs are often required to that end, which means that
EC treatment in patients of reproductive age is uniquely challenging, due to the need to
strike a balance between “competing interests” of cancer care and the determination of
patients to maintain their reproductive potential. Early menarche and late menopause,
with higher levels of lifetime exposure to endogenous estrogens, have been found to lead
to higher EC risks.

2.2. Challenges Arising from Fertility-Sparing Approaches in EC Patients

EC type and fundamental traits ought to be thoroughly assessed in order to choose
the therapeutic pathway, which best suits each patient, particularly when weighing a
conservative management opportunity.

Fertility-sparing procedures need to be weighed and counseled when making treat-
ment decisions. That is even truer in light of the potentially harmful psychological dy-
namics that may be triggered by the loss of fertility following aggressive therapeutic
approaches [19,20].
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EC risk of extrauterine spread is an essential aspect to evaluate when assessing patient
eligibility for fertility-sparing procedures. For patients who have an interest in preserving
their fertility and plan to conceive as soon as possible after remission, fertility-sparing
should be always considered, in the absence of contraindications and when there is favor-
able histopathological cancer makeup [21].

The fertility-sparing decision-making process needs to be weighed against various
EC risk factors, such as obesity and polycystic ovary syndrome; such factors are linked
to infertility as well; hence, any ART consideration may well be influenced by them. EC
stage Ia grade 1 (G1) and EEC are the malignancies for which fertility-sparing treatment
is most often chosen. EC type II, on the other hand, often makes patients ineligible for
conservative treatments, due to its high level of invasiveness and poor differentiation.
Young women with G1, no myometrium and/or adnexal invasion, and without lymphvas-
cular space involvement, are therefore deemed the best candidates for fertility preservation
approaches [22,23]).

When outlining any such pathway, it is worth taking into account updated guidelines
by scientific societies such as ESGO-ESHRE-ESGE (the European Society of Gynaecolog-
ical Oncology, the European Society of Human Reproduction and Embryology, and the
European Society for Gynaecological Endoscopy, respectively), which have issued specific,
evidence-based guidance for fertility-sparing treatment of EC patients, by focusing on the
fundamental traits of fertility-sparing treatments. Particularly relevant is the recommenda-
tion that EC patients undergoing fertility-sparing procedures are counseled and cared for
by a multidisciplinary team relying on oncologists and fertility specialists [24].

Progestin therapies (e.g., medroxyprogesterone acetate, MPA), megestrol acetate (MA),
and progesterone-releasing intrauterine device (IUD) are the most widespread and vali-
dated EC hormonal treatment (HT) options and constitute the bedrock of the conservative
fertility-sparing toolbox. MPA at 250–600 mg daily and MA at 160–480 mg daily are the
most widely used regimens and rely on similar potency levels [25]. A 2016 meta-analysis
by Qin et al., accounting for 25 sources comprising 445 women with early-stage EC treated
with an oral progestin, has found an 82.4% regression rate, a 25% relapse rate, and a 28.8%
pregnancy rate. Such findings point to the high degree of safety of oral progestins for
early-stage EC patients who wish to have their fertility preserved [26].

Recent data have pointed to the novel levonorgestrel intrauterine device (LNG-IUD)
as a solid fertility preservation option as well [27]. This device elicits a local hormonal surge
in higher amounts and has efficacy rates similar to oral formulation, although conclusive
comparative studies are not yet available [28].

3. Genetic and Epigenetic Factors Causing EC Pathogenesis
3.1. The Genetics of EC

As described before, pathological and demographic parameters allow the identifica-
tion of two different types of EC: type I EC, also called EEC (endometrial endometrioid
carcinomas), usually well differentiated, with average recurrence rates of 20%; and type
II EC, which include mainly CCEC (clear cell endometrial carcinoma) and SEC (serous
endometrial carcinoma). It is essential to differentiate type I from type II carcinomas
and other highly aggressive non-endometrioid carcinoma histotypes to understand,
manage and possibly prevent these diseases [18]. The molecular characterization of EC
can facilitate the identification of various tumor subtypes. Approximately 80% of type I
EC show expression downregulation or mutations of the phosphatase and tensin (PTEN)
gene, which acts on the PI3K/Akt/mTOR signaling pathway, essential for the regulation
of the cell cycle and is involved in cell survival, proliferation, and growth [29,30]. Several
ongoing studies are currently aimed at inhibiting this pathway in advanced or recurrent
EC [31] since the incidence of EC has been increasing, while the survival of EC patients
did not significantly improve over the past 30 years [32]. Additional impaired cell cycle
controls in EC include the RAS-RAF-MEK-ERK and canonical WNT-β-catenin pathways,
both involved in the regulation of cell proliferation, cell survival, and differentiation [33].
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Back in 2013, the TGCA Research Network reported the data collected from the ge-
nomic, transcriptomic, and proteomic analysis of 373 endometrial carcinomas, of which
307 were EECs, 53 were SECs, and 13 were mixed cases [34]. Those data allowed a
classification into four classes of EC with distinct clinical, pathologic, and molecular
features: (i) POLE (polymerase epsilon)/ultramutated (7% of cases), (ii) microsatellite
instability (MSI)/hypermutated (28%), (iii) copy-number low/endometrioid (39%), and
(iv) copy-number high/serous-like (26%). POLE gene encodes the catalytic subunit of
DNA polymerase epsilon whose function is implicated in nuclear DNA replication and
repair. POLE mutations usually occur in the soma and because of their function, have
an extremely high mutation rate but also by excellent prognosis with no recurrence
regardless of the FIGO grade. The MSI group also shows a high mutation rate and is
mostly caused by MLH1 promoter methylation. MLH1 is a DNA mismatch repair protein,
and its gene mutations are frequently associated with microsatellite instability (both facts
explaining the high mutation rate in EC) as also observed in hereditary nonpolyposis
colorectal cancer (HNPCC, or Lynch syndrome). MLH1 mutations cause an EC risk of 25–
60% [35] and result in an intermediate prognosis. The copy-number low/endometrioid
group of EC shows a lower mutation rate compared to the previous two, no mutations
in POLE, absence of MSI, and a low incidence of somatic copy-number variations. This
genetic scenario is frequently found in low-grade EEC and the prognosis is intermediate.
Finally, the fourth class is characterized by a low mutational rate but a high frequency of
copy number variations and a 90% rate of TP53 mutations. This group mainly includes
SEC and its patients, who unfortunately have a poor prognosis [36]. Recently (December
2020), the European Society of Gynaecological Oncology (ESGO), the European Society
for Radiotherapy and Oncology (ESTRO), and the European Society of Pathology (ESP)
published updated EC guidelines on the basis of the TGCA consortium findings [37]. To
date, more than 300 genes mapping throughout the genome (with the only exception
of the Y chromosome) and two mitochondrial genes have been studied for their role
in EC [33]. According to the study of Bianco and co-workers, the most frequently mu-
tated genes in endometrioid carcinomas are PTEN (>77%), PIK3CA (53%), PIK3R1 (37%),
CTNNB1 (36%), ARID1A (35%), K-RAS (24%), CTCF (20%), RPL22 (12%), TP53 (11%),
FGFR2 (11%), and ARID5B (11%). The most frequently mutated genes in serous carci-
nomas are TP53 (80–90%), PIK3CA (41.9%), PPP2R1A (36.6%), FBXW7 (30.2%), CHD4
(16.3%), CSMD3 (11.6%), and COLA11 (11.6%), along with loss of heterozygosity (LOH)
on many chromosomes. MSI is frequent in type I carcinomas (25–40%) but relatively rare
in type II carcinomas (<5%). Interestingly, PTEN mutations are characteristic of type
I EC, while TP53 mutations are characteristic of type II EC, affecting just 11% of EEC.
Instead, PIK3CA mutations are a common characteristic of both types, being mutated in
40–50% of all EC. This finding suggests that, apart from some shared pathways, types I
and II have a very distinct molecular pathogenesis. Similarly, the above-mentioned four
subtypes of EC are molecularly different as well, with candidate driver or pathogenic
genes accounting for 190 genes in the POLE subgroup, 21 in the MSI subgroup, 16 in the
low copy number subgroup, and 8 in the high copy number subgroup [33]. In these sub-
types, PTEN is the most frequently mutated gene in all except in the copy number high
group, where TP53 mutations dominate. Additional genetic causes of EC formation and
growth include single nucleotide variants in specific genes [38], shortened telomeres [39],
and epigenetic factors, such as DNA hypermethylation of target gene promoters (as for
MLH1) [40,41] or deregulation of both long and short non-coding (nc) RNAs [42].

In recent years, increasing interest has been devoted to these last molecules and their
cross interaction, because of their great potential as EC biomarkers. Focused ncRNA panels
are under investigation for creating fast and accurate diagnostic tools; with the aim of being
as fast and accurate as possible, but at the same time without using invasive approaches,
circulating short ncRNA attracted the attention of researchers.
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3.2. Role of Circulating miRNA in EC: miR, ceRNET, and Cancer Biology

Micro-RNAs (miRNAs or miRs) are a class of single-stranded, non-coding RNAs
(ncRNA) characterized by their short length: 20–25 nucleotides on average. They are
part of a group of molecules collectively called ‘short non-coding RNAs’ (sncRNA). Their
action is modulating gene expression by targeting messenger RNAs (mRNA) through
sequence homology. Notably, the match between miR and its target is not always
perfect, thus allowing the former to interact with multiple mRNAs; this makes the
target discovery challenging and the function identification puzzling [43]. The binding
miR/mRNA occurs in most cases at the 3′UTR end of the mRNA, and the final effect is
typically the inhibition of the mRNA function, either by impairing its translation or by
promoting its degradation [44]. Consequently, many miRs can be functionally considered
gene expression silencers. It is estimated that more than 2500 miRs are encoded in the
human genome, regulating over 60% of human genes [45]. Several metabolic pathways
are controlled by miR action, including those involved in cell cycle control. In fact,
the central role of miRs is now widely recognized in many cancers [46], including
EC [47–49], where miR controls pivotal steps of tumor biology, such as proliferation,
apoptosis, and invasion. Interestingly, miRs can have either an oncogenic or a tumor-
suppressive action during cell cycle control, depending on several factors including
(i) the role of the gene encoding the target mRNA; (ii) their own regulation, since miRs
as well can be up- or down-regulated in different patients; (iii) their expression in
different tissues. EC is not an exception: recent systematic reviews highlighted the
role of the dysregulation of more than 100 miRs in the etiopathogenesis of EC [50,51].
Therefore, miRs are considered both valuable markers and very promising targets in
cancer therapy [52]. However, the action mechanism of miR on mRNA is neither simple
nor straightforward. First, as said, multiple miRs can target the same mRNA, and a single
miR can target multiple mRNAs. Second, another heterogeneous class of non-coding
RNA called long non-coding RNAs (lncRNA), is involved as well in this control. These
molecules are longer ncRNA (200 nt or more), heterogeneous in several aspects (length,
shape, cytological localization, and genome localization), and able to bind several miRs
at the same time, a phenomenon called ‘miR sponging’ [53]. In the last years, hundreds
of papers have been published describing single components of these control pathways,
the sum of one lncRNA, one sncRNA, and one target mRNA interacting with each
other being called an “axis”. In these axes, mRNA, and lncRNA compete for miR
binding, and multiple, interconnected axes create what is now commonly known as a
ceRNET (competing endogenous RNA network). In this network, nodes are ceRNAs
(competing endogenous RNAs, i.e., lncRNA and mRNA), while miRs represent their
connections [54,55]. This complex epigenetic gene expression control allows very fine
tuning of cell cycle regulation. Despite this organization should provide a certain
redundancy able to confer robustness to mutations, it also allows a single alteration to
hit multiple metabolic pathways at the same time, hence, the importance to identify and
characterize ceRNET. These networks have been partially reported in neurodegenerative
diseases [56,57] and in a few cancers such as lung adenocarcinoma [58], intrahepatic
cholangiocellular carcinoma [59], hepatocellular carcinoma [60], glioma [61], thyroid
cancer [62], and breast cancer [63,64]. However, for most cancer types, only single axes
have been published so far. Recently, a complex ceRNET involving the lncRNA encoded
inside the X-linked chromosome inactivation center and involved in multiple organ
carcinogenesis has been described [65].

The literature reports several ceRNA axes in EC [66] and a long list of simpler interac-
tions has been described as well, with only two components for each putative axis. Recently,
ceRNET started to be described in EC as well. In 2019, Zhao and collaborators analyzed
original data of EC RNA transcripts from The Cancer Genome Atlas (TCGA) database in
search of prognostic biomarkers in endometrial carcinoma [67]. This study allowed the
identification of 62 lncRNA, 26 miR, and 70 mRNA deregulated in EC. Amongst them,
10 lncRNA, 19 mRNA, and 4 miRs were closely associated with the survival of EC patients
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(p < 0.05). In 2022, Cai and coworkers analyzed both the TCGA and the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) databases to reconstruct a lncRNA-mediated ceRNA
network for uterine corpus endometrial carcinoma [68]. This work allowed identifying tens
of these axes, with six of them carrying a high prognostic value. In the same year, Song and
collaborators also took advantage of TGCA database to reconstruct a ceRNET including
5 deregulated lncRNA, 7 deregulated miR, and 90 deregulated mRNA [69]. In Figure 1, we
report two simplified examples of ceRNET in EC.
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Figure 1. Examples of ceRNET in EC. The reported examples are only for exemplification purposes,
and they are not exhaustive of EC-related ceRNET identified so far. Nodes are ceRNA (i.e., a lncRNA
or an mRNA) and in the scheme, they are represented as either ovals (mRNA) or rectangles (lncRNA).
Their connections (lines) identify miR interacting with both molecules (one oval, one rectangle).
Individual axes (mRNA + miR + lncRNA) are identified by dotted lines with arrows and are the
same retrieved by the available bibliography (see below). In panel (A), the two top axes share both
a connection (miR-646) and a node (NPM1) and, at the same time, the node NPM1 is shared with
the lower axis. In panel (B), a more complex situation is depicted: the two top axes share both a
connection (miR-205-5p) and a node (PTEN), which is shared with two additional axes.; o One of
these PTEN-linked axes (PTEN/miR103/GAS5) is in turn connected with an additional axis, sharing
the node identified by GAS5. Bibliographic sources for these schemes are reported in the references
list [70–77].

3.3. Using Circulating miRs for EC Diagnosis

According to recent advances in histopathological and molecular characterization, EC
can be classified into at least four different classes [78,79]. In addition, adequate biomarkers
may also be used as valuable prognostic tools [80], and miR might be promising tools
during patients’ evaluation [81]. The accurate characterization of each patient is funda-
mental for their management, especially when it is desirable to preserve fertility [37,82]. In
this perspective, the use of adequate biomarkers and their early detection, possibly with
a fast and minimally invasive approach, is very important. It is possible to characterize
EC according to the expression of different miR—and, consequently, their ceRNET-related
characteristics [47–49]. Many studies have detected extracellular/circulating miR in biolog-
ical fluids, such as plasma and serum, cerebrospinal fluid, saliva, breast milk, urine, tears,
colostrum, peritoneal fluid, bronchial lavage, seminal fluid, and ovarian follicular fluid
(see [6] and references therein). In these fluids, miRs can be either detected inside extra-
cellular vesicles (exosomes, microvesicles, and apoptotic bodies) or floating in association
with proteins such as Ago2. Interestingly, miR stability in body fluids is far higher than
inside cells [83,84]. The reason why miRs—which are generated inside cells—are present
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in body fluids is still unknown. Two main hypotheses are under investigation: they are
merely a byproduct of extensive cell death (mainly apoptosis and necrosis) connected to
tumor biology (a passive mechanism), or they fulfill long-distance, cell-cell communication
tasks (an active mechanism).

The identification of deregulated miRs in EC patients is ongoing, and the discovery
of new ceRNA axes is relatively frequent. A meta-analysis published in 2019 by Delangle
and co-workers [85] identified the deregulation of the expression levels of 261 miRs in
EC, divided into 133 onco-miRs, 110 miRs onco-suppressors, and 18 miRs with discordant
functions; of them, 139 showed deregulation in endometrial tissue compared to benign
and/or hyperplastic tissues (Figure 2). However, the possibility to use circulating miRs to
achieve this characterization is still under evaluation and has been only poorly explored
in EC. In 2022, Bloomfield and collaborators performed a systematic review in search
of circulating miRs in the serum and plasma of EC patients [86]. Their analysis allowed
identifying 33 significantly deregulated miRs (Figure 2), 27 up- and 4 down-regulated, while
the remaining 2 (miR-21 and miR-204) showed contradictory expression values, depending
on the study considered (Table 1). These works show that adequate combinations of
miR expression values may be used as prognostic markers, able to help in defining EC
histological type and grade, tumor size, FIGO stage, lymph node involvement, and survival
rate, thus demonstrating the miR role in decision- making for patients’ management [85].
Interestingly, a simple one-to-one comparison of the two sets of data reported above
indicates that almost half (16/33) of the described circulating miRs are also deregulated in
EC specimens. As shown in Table 1, while in most cases up- or down-regulation matches, in
both reports, in a few cases (miR-9, miR-99a, miR-100, and miR-199b), they are discordant.
Considering the two hypotheses described above, concordant regulation might indeed be a
passive mechanism due to cell death and the consequent release of cellular debris in the
bloodstream. However, discordant results might allow for the consideration of an active
mechanism that, if further supported by the data, might shed light on new and interesting
features of miR biology in EC.
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Figure 2. Comparison of miRs identified in the studies of Bloomfield and collaborators [86] and
Delangle and collaborators [85]. The former study (red circle) identified 33 different miRs deregulated
in EC; the second (blue circle) identified 139 miRs; 16 miRs are reported in both publications. These
16 miRs are further described in Table 1.
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Table 1. Deregulated miRs in EC. The table reports the miRs that are in common between the studies
of Bloomfield and collaborators [86] and Delangle et al. [85] as depicted in Figure 2. Arrows indicate
the up- (upwards) or down- (downwards) regulation of miR; arrows pointing in opposite directions
represent inconclusive results; extr stands for extracellular (i.e., serum/plasma-derived, data from
[86]) miR; intr stands for intracellular (i.e., specimen-derived, data from [85] miR. Original reference(s)
indicate the original manuscripts used by the two groups (Bloomfield and collaborators, Delangle
and collaborators) for their literature analysis.

miR Name extr. intr. Original Reference
(s)

9 ↓ ↑ [87–90]

21 ↑↓ ↓ [91,92]

27a ↑ ↑ [93–95]

30a-5p ↓ ↓ [91]

99a ↑ ↓ [96,97]

100 ↑ ↓ [88,96]

135b ↑ ↑ [89,91]

141 ↑ ↑ [88,89,98,99]

142-3p ↑ ↑↓ [100–103]

199b ↑ ↓ [88,90,96]

200a ↑ ↑ [88–90,98,104–106]

203 ↑ ↑ [88,89,98,99,107]

204 ↑↓ ↓ [99,108]

205 ↑ ↑ [87–89,91,98,99,104,
105,109]

223 ↑ ↑ [87,93,98,110]

449 ↑ ↑ [89,99]

Eismann and coworkers in 2017 showed that the circulating miRs excreted in vitro
by EC cell lines are also dependent on exogenous environmental stress, such as hypoxia
and acidosis [111]. They showed that the hypoxia caused the downregulation of miR-15a,
miR-20a, miR-20b, and miR-128-1 in Ishikawa cells (type I EC) and the upregulation of
miR-21 in EFE-184 cells (type I EC), while acidosis caused the upregulation of the oncogenic
miR-125b in AN3-CA cell (type II EC), while in Ishikawa cells (type I EC), miRs with tumor
suppressive function were found altered in divergent directions, either up- (let-7a) or down-
(miR-22) regulated. These data show that at least in type I EC cells, hypoxia promotes the
downregulation of secreted miRs with tumor suppressive and anti-angiogenetic function
and the contemporary upregulation of secreted miRNAs with tumor and angiogenesis-
promoting function. Instead, acidosis caused the upregulation of tumor-promoting miRs in
type II EC. Collectively, these data suggest that the miR profile not only might be used to
identify EC in patients but also to evaluate the status of the tumor microenvironment and
its changes over time.

4. Profiling the miR Transcriptome for the Evaluation of Endometrial Receptivity

To date, only a minor proportion of studies analyzed the expression levels of miRs in
healthy women to evaluate their potential receptivity.

In 2017, Altmae and collaborators performed a meta-analysis using as ‘bait’ a meta-
signature of endometrial receptivity involving 57 mRNA genes as putative receptivity
markers [112]. Searching for putative regulators and using the robust rank aggregation
(RRA) method [113], they identified 19 miRs with 11 corresponding up-regulated meta-
signature genes. Of them, three (miR-30c-1, miR-130b, and miR-449c-5p) are also linked to
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human EC [98,99,114]. Drissennek and collaborators performed a retrospective analysis of
the miRNome of endometrium samples collected during the implantation and associated
with the receptivity status and the pregnancy outcome (implantation failure, early embryo
miscarriage, and live birth at term) in patients with a positive or negative b-hCG [115]. They
identified 11 miRs associated with the endometrial receptivity status (9 downregulated);
among them, miR-455-3p was also a putative tumor suppressor. They also showed that the
overexpression of miR-152-3p and miR-155-5p in receptive endometrium is associated with
implantation failure, with both miRs being involved also in the etiopathogenesis of several
types of cancer. Unfortunately, additional validation tests did not allow producing more
reliable results on other miRs identified during the study, including circulating miR. Addi-
tional research identified other miRs involved in these processes, such as miR-135b [116],
let-7-a [117], miR-21 [118], miR-22 [119], miR-23b and miR-145 [120], miR-30b/d [121,122],
miR-148a-3p [123], miR-181a/b [124,125], miR-194-3p [126], miR-200a [127,128], miR-429,
miR-4668 and miR-5088 [129], and miR-494 [121]. Only a few additional studies investi-
gated circulating miRs related to women’s fertility, but despite their limited number, they
allowed identifying also miR-25, miR-27a, miR-31, miR-93, miR-106b, miR-146a, miR-152,
and miR-155 (reviewed in [130]).

It is noteworthy to underline that, among all these fertility-related miR, only miR-21,
miR-27a, and miR-135b are present in Table 1, i.e., they are circulating miRs related to EC.
If further validated, these data would allow for the characterization of the presence of EC
and the fertility status of the patients using distinct miR panels, without ambiguity and
relying on the collection of blood samples only.

5. RNA-Based Diagnostics and Therapeutics: Are Innovations Set to Outpace
Bioethics Precepts?

RNA-based measurements are potentially applicable through a wide array of medical
areas, including diagnosis, prognosis, and therapy selection. Currently, among the most
promising clinical applications, it is worth mentioning not only cancer research [131] but
also infectious diseases, transplant medicine, and fetal monitoring [132]. RNA sequencing
(RNA-seq) has enabled us to detect a remarkably wide array of RNA species, such as mes-
senger RNA (mRNA), non-coding RNA, pathogen RNA, chimeric gene fusions, transcript
isoforms, and splice variants. RNA-seq has also led to the possibility of quantifying known,
pre-defined RNA species and rare RNA transcript variants. Not only differential expression
and detection of novel transcripts are possible, but also the detection of mutations and
germline variation can be achieved through RNA-seq, possibly involving hundreds to
thousands of expressed genetic variants, thus enhancing our ability to evaluate the allele-
specific expression of these variants. Since the mechanisms governing RNA for diagnostics
and therapeutics were first discovered and explored in the late 1990s, therapeutics based
on RNA interference (RNAi, a mechanism for gene silencing underpinned by short inter-
fering RNAs, siRNA, which was discovered in 1997 by Craig Mello) [133,134] have been
developing remarkably fast, and our understanding of such highly complex processes and
interactions has deepened considerably [135]. RNA-based clinical trials have already begun.
Such therapies relying on “gene-silencing” are even more controversial than diagnostic
applications since they may be viewed as akin to gene-editing/genetic engineering. It has
been literally decades since such techniques have been developing and eliciting intense
debates among scientists, bioethicists, policy- and law-makers, centered around how to
best harness the potential of such breakthroughs for the benefit, potentially, of billions
of human beings [136]. The hope and dream that diseases could one day be eradicated
through the deliberate and targeted manipulation or editing of genes were the driving force
behind the Human Genome Project [137,138], through which the complete human DNA
sequence was first outlined and mapped in 2003. Such a fundamental principle, at the core
of which lies disease treatment via genetic modification, dated back to the 1960s, i.e., when
it was first observed that viral DNA had the ability to trigger cellular modulation during an
infection. Early efforts aimed at gene modification were dated back to the 1970s [139,140];
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recombinant DNAs (rDNAs), i.e., a combination of more than one DNA sequence from
one or more species, were used for that purpose. Primary transfection methods were viral
infection and calcium phosphate. Such innovations gradually bore fruit in the form of
cell line development, genetically modified animals, and the creation of human proteins
such as insulin in bacteria [141]. By the late 1970s, mRNA in vitro had been transfected by
liposomes; this gave rise to rabbit globin expressed in mouse lymphocytes [142]. mRNA
sequences in the cell cytoplasm, in order to inhibit protein translation or to induce exon
skipping were targeted by newly developed antisense oligonucleotides (ASOs) [143]. Not
surprisingly, it was back then that such fast-moving progress ignited a broad-ranging and
concerted effort encompassing genetic engineering in terms of its ethical, social, political,
and even economic implications. As a result, regulations limiting the different “tiers” of
gene editing were drafted and enacted. Later, major developments are constituted by
zinc finger nuclease (ZFN) to cleave a target DNA, and two decades later, TALEN and
CRISPR/Cas9. Hence, it stands to reason that before such novel and potentially revolu-
tionary therapeutic approaches can become mainstream from the standpoint of clinical
applications, it is of utmost importance to discuss the legal and ethical issues arising from
their use [144]. An analysis of the ethically relevant features of RNAi therapies is essential
for the purpose of producing a comprehensive risk-benefit analysis. Ethically relevant
traits such as siRNA delivery and the specificity of silencing effects cannot be swept aside.
Furthermore, the future development of RNAi-based therapeutic options ought to consider
and respect patient autonomy by accounting for the risks of generating infection-competent
viruses or possibly introducing genetic changes in germ-line cells. Just as importantly,
issues relative to justice in care delivery, such as equal access as opposed to private acquisi-
tion, and the right to participate in clinical trials should also be prioritized. The sheer scale
of progress made in ncRNA research applied to cancer, and our ever-greater understanding
of tumor biology, which will lay the groundwork for the development of new ‘smart’
drugs tailored to a patient-oriented approach, is poised to enable us to minimize adverse
events and improve the patient prospects for recovery [145]. However, an important risk
is that innovative biomedical techniques may outpace our ethical, legal, and regulatory
frameworks, leading to “grey areas” similar to those found in genome-editing research
and artificial intelligence. In addition, assisted reproductive technologies and fertility
preservation (oncofertility) also pose complex and challenging ethical and legal issues.
In fact, even though oncofertility procedures are not life-saving, they can undoubtedly
be viewed as “life-enhancing” or “life-giving”. This characterization is fully supported
by the wide-ranging conception of health, in adherence to the 1946 Constitution of the
World Health Organization, which covers a broader notion of well-being that reaches way
farther than the absence of disease [146]. In that regard, there is no discounting the fact
that cancer-related or iatrogenic infertility following cancer treatment can indeed engender
emotional and psychological implications that may lead to psychiatric conditions. Such a
risk is hardly surprising, given the fact that a cancer diagnosis itself frequently poses major
psychological strain [147], and perceiving the risk of infertility often adds to the mental
and psychological distress, leading to low self-esteem, anxiety, depression, and a noxious
sense of personal worthlessness, which have the potential to cause major deterioration and
ignite psychiatric diseases. Hence, in light of the well-documented connection between
infertility, health, and mental issues, the fundamental importance of counseling cannot be
overstated [148]. Guaranteeing access to such care without discrimination and inequality
is, therefore, a medical, moral, ethical, and legal imperative. However, despite their undis-
puted value, oncofertility procedures are ethically and ethically controversial much for
the same reasons that ARTs are. Legislative frameworks regulating such techniques reflect
that delicate balance. ARTs are governed at the national level with varying degrees of
restrictions in Europe and globally. That is hardly surprising, considering the various social
and moral principles that each society decides to prioritize through specific national norms.
Beginning-of-life issues are certainly among the most complex and variously regulated
matters overall. Although an in-depth comparative analysis is beyond the scope of this
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article, it is still worth mentioning that in the European Union, the European Court of
Human Rights (ECHR) has over the years espoused a broad margin of appreciation [149]
for member states when governing matters with fundamental social, moral, and ethical
valence [150,151]. Fertility preservation for cancer patients serves a fundamental purpose
that cannot be discounted: it is meant to discharge the moral duty to uphold the repro-
ductive autonomy of individuals, an inalienable human right that any free society should
strive to enforce [152]. It is certainly safe to assume that mentally capable adults should be
enabled to exercise such rights, provided that no unreasonable risk arises for the children
thus conceived or to others. As far as medicolegal implications are concerned, failing to
provide information and counseling on fertility preservation opportunities might even
constitute grounds for a negligence-based malpractice lawsuit for loss of chance, if the
patient’s reproductive capabilities are provably impaired as a result, even though currently
available case law on the matter is not yet entirely conclusive [153–155]. Against such a
backdrop, it is therefore worth remarking on the essential role of reproductive counseling
within the framework of a multidisciplinary management approach to cancer care. Patient
consent must possess specific features: it must be fully informed, free, unequivocal, specific,
and revocable at any time. It is the onus of the healthcare professional to document the
accuracy of the whole process. Such key aspects have been highlighted by evidence-based
recommendations and guidelines by leading international scientific organizations, such as
the American Society for Reproductive Medicine [156], the American Society of Clinical
Oncology [157,158], and the already mentioned ESHRE [159].

Fertility preservation should only be offered to patients with EC stage Ia grade
1 (G1), who present without myometrial invasion or where cancer has invaded less
than 50% of the myometrium, with no evidence of pathological lymph nodes or syn-
chronous/metachronous ovarian tumor [16]. The most common fertility-sparing treatment
for EC is hormonal therapy with progestins, which can induce regression or stabilization
of the tumor. However, this treatment has several limitations, such as a low response
rate, high recurrence rate, lack of standardization, and potential adverse effects on the
fetus. Therefore, patients who opt for fertility preservation should be carefully selected
and counseled about the risks and benefits of this approach. They should also be closely
monitored during and after the treatment and advised to undergo definitive surgery after
completing their childbearing. ART can offer an alternative or complementary option for
women who want to conceive after being treated for EC. However, ART also poses some
ethical dilemmas, such as the safety and efficacy of the procedures, the potential harm to
the mother and the child, the disposal or donation of surplus embryos [160], and the access
and affordability of the services [161,162]. Moreover, some ART techniques involve genetic
testing or manipulation of embryos, which raises further ethical questions about respect
for human dignity, autonomy, and diversity [163,164]. Undoubtedly, ART can provide
hope and opportunity for women who want to have children after being diagnosed with
EC. However, ART also involves medical, legal, and ethical challenges that require careful
consideration and multidisciplinary collaboration. Therefore, patients who are interested in
ART should be informed and supported by a team of experts who can help them to make
informed decisions that are consistent with their values and preferences [165].

6. Discussion

Although gynecological cancers are most frequently diagnosed in post-menopausal
patients, substantial numbers of younger women of reproductive age are also affected. The
importance of thorough counseling of these patients cannot be overstated, including a
comprehensive discussion of long-term consequences on fertility of the various treatment
options and aiming at fertility preservation as much as possible, if the patient prioritizes this
aspect. EC diagnosis at reproductive age points to the risk of a hereditary condition; hence,
counseling must address the genetic cancer risk evaluation in order to investigate any
known genetic predisposition. Such broad-ranging principles notwithstanding, fertility-
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sparing therapeutic pathways need to be individually tailored, considering the high level
of heterogeneity of gynecological cancers.

The chief surgical option for EC is hysterectomy, whereas fertility-sparing manage-
ment in patients with EC or complex atypical hyperplasia is not deemed the standard
approach. Eligibility requirements are age under 40, complex atypical hyperplasia, or
grade 1 EC limited to the endometrium. Therefore, an accurate pretreatment staging is
non-negotiable [166].

Gallos et al., in a meta-analysis involving 408 women with early-stage EC who under-
went fertility-sparing treatments, found a 28% live birth rate, with patients undergoing
ART achieving a 39.4% live birth rate, as opposed to 14.9% in the spontaneous conception
group [167].

The preservation of fertility and procreative capabilities are ever-more relevant ele-
ments in terms of life quality after EC. Patients with no male partner or unwilling to freeze
and store embryos can still preserve their oocytes. Such techniques, particularly those
relying on freezing by vitrification, lower the risk of incurring multiple pregnancies or
ovarian hyperstimulation syndrome (OHSS). Compared to transfer from fresh embryos,
no significant differences have been reported in terms of pregnancy rate per cycle and the
clinical pregnancy rate per cycle [168].

The decision to store frozen oocytes, as opposed to embryos, can avoid or at least
alleviate ethical and legal challenges often arising from cryopreserved embryos and their
controversial status. Major improvements in overall outcomes of oocyte cryopreservation
have been achieved through more effective cryopreservation techniques such as vitrification
rather than the slow-freeze protocol, mostly thanks to the reduction of cellular damage
arising from ice crystal formation [169]. Moreover, it is worth remarking that most ECs
are estrogen-dependent, which questions the safety of pregnancy and the risk of cancer
recurrence related to it.

The intersection of gonadotoxic therapy and reproduction raises ethical issues for both
cancer and fertility specialists, including issues of experimental vs established therapies,
the ability of minors to give consent, the welfare of expected children, and posthumous
reproduction [154,170,171].

The newly found possibility to focus both on the health status of the patient, including
the definition of EC staging and her fertility, with a fast and minimally invasive approach,
as described above, further contributes to enabling such patients to achieve motherhood,
through effective management of their treatments.

7. Conclusions

As infertility after cancer has become a recognized survivorship issue, oncologists
should be prepared to discuss the negative impact of cancer therapy on reproductive po-
tential with their female patients in the same way as any other risks of cancer treatment
are discussed. Patients interested in fertility preservation should be promptly referred to
a reproductive medicine expert to offer timely and appropriate counseling and improve
the success of fertility preservation. Such aspects are to be viewed as requirements for
the medicolegal tenability of any intervention. Reproductive endocrinologists should
collaborate with oncologists and molecular biologists, updating them regarding available
technologies and facilitating consultations with patients newly diagnosed with cancer. To
further these alliances, education about fertility preservation, as well as ethical and legal
aspects tailored to country-specific laws, should be incorporated into training programs for
oncology and reproductive endocrinology. Just as importantly, the breakthrough consti-
tuted by RNA-based diagnostics and therapeutics needs to rely on as broad a consensus as
possible, by all stakeholders involved (patients, healthcare professionals, law- and policy-
makers, bioethicists, and patient rights organizations) in order to reconcile the amazing
opportunities created by such techniques with the core values that must guide scientific
research and medical practice at all times.
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