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We consider several problems for degenerate parabolic equations exhibiting nonlinearities of various kinds. For
example the equations may contain superlinear sources, causing blow up of the solutions, or damping terms; the
principal part of the operator is also nonlinear. We mention as unifying features the fact that the spatial domains
have non-compact boundary, and the technical approach which is based on energy methods and a priori estimates.
The issues investigated include existence under optimal assumptions on the data, asymptotic behavior of solutions,
existence or non-existence of global in time solutions.
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1. Introduction

The main subject of this survey are nonlinear degenerate parabolic equations of divergence type. It is well known
that many of the main qualitative properties of the Cauchy problem in the whole Euclidean space, such as large time
behavior, finite speed of propagation, asymptotic expansion of solutions, are described by means of the so-called
Barenblatt–Pattle exponent, which in the case of doubly degenerate parabolic equations of the type of ð3:3Þ is
Nðpþ m� 3Þ þ p. However, we show that this is not true in the case of Neumann problems in domains with
noncompact boundary, with zero flux on the boundary. Some geometrical characteristics are needed to extend the
concept of such an exponent, which we express in terms of the volume growth at infinity.

For the Neumann problem in domains with noncompact boundary, for doubly degenerate equations with strongly
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nonlinear sources, we prove a Fujita type result. Here again the corresponding critical Fujita exponent depends strictly
on the volume growth. The most difficult situation in this case is the one of domains narrowing at infinity. Here we give
delicate sharp estimates of the relevant moments, which may be of independent interest.

Next, we give the asymptotical expansion for large times of solutions of the Porous Media Equation (PME) in
paraboloid-like domains. Finally we look at equations with damping terms depending on the gradient of the solution,
giving criteria for moment and mass decay in time. Actually here we consider the Cauchy–Dirichlet problem for the
PME in cone-like domains and the Cauchy problem for doubly degenerate parabolic equations.

This survey is based on previous work of the authors, quoted as appropriate, presented here in a new and unified way.
At the end of each Section we include some Comments on the results and on the literature; the references however are
by no means exhaustive.

Let us conclude the Introduction by recalling two open problems which we feel are interesting and may probably be
attacked by means of the methods proposed in the following.

1. Prove an asymptotic expansion of the solution to the Neumann problem in paraboloid-like domains for the
p-Laplacian

ut ¼ divðjrujp�2ruÞ: ð1:1Þ

2. Give criteria for the moment decay to zero as t!þ1 for solutions of the Cauchy–Dirichlet problem for ð1:1Þ in
cone-like domains.

Our approach is based on new Sobolev–Gagliardo–Nirenberg inequalities depending on the geometry of domain, and
on a new streamlined iterative energy approach based on the classical work of DeGiorgi, Ladyzhenskaya and Uraltseva,
DiBenedetto.

In the following � � RN , N � 2 denotes an open set with noncompact boundary, connected and with infinite
volume; further hypotheses on � are assumed as needed. The symbols �; �0; �1; . . . , denote positive constants
depending on the parameters of the problem (but not on the solution itself, for example), and varying from line to line.
We write kuks;G :¼ kukLsðGÞ and, even for a positive measure �, we use the notation k�k1;G ¼ �ðGÞ. When G ¼ RN we
sometimes omit it from the notation.
Denote for any measure space ðE; �Þ with �ðEÞ < þ1I

E

ud� ¼
1

�ðEÞ

Z
E

ud�;

and let B� � RN be the ball of radius � centered at x ¼ 0, unless noticed otherwise.
All solutions (and thus all initial data) are understood to be nonnegative, though the results of existence are still valid

for sign-changing solutions.

2. Sobolev–Gagliardo–Nirenberg Type Inequalities in Domains with Noncompact Bounda-
ries

2.1 Expanding domains

Let � � RN , N � 2 be a domain with noncompact boundary. We are going to describe the geometry of � by means
of isoperimetric inequalities.

Let for all v > 0

lðvÞ ¼ inffj@G \�jN�1 : G � �; jGj ¼ v; @G Lipschitzg: ð2:1Þ

Here we use the symbol j � j for N dimensional Lebesgue measure, while the N � 1 dimensional Hausdorff measure is
denoted by j � jN�1. We assume that lðvÞ > 0 for v > 0 and that there exists a continuos function g satisfying

0 < gðvÞ � lðvÞ; v > 0; ð2:2Þ

and

!ðvÞ :¼
v
N�1
N

gðvÞ
is nondecreasing for v > 0: ð2:3Þ

Let us also introduce the volume function V and its inverse R:

Vð�Þ :¼ j��j; � > 0; �� :¼ � \ fjxj < �g; R ¼ V ð�1Þ:

Definition 2.1. The set � belongs to the class B1ðgÞ if all the following requirements are fulfilled: � � RN , N � 2 is
an unbounded connected open set, satisfying j�j ¼ 1, with a Lipschitz continuous boundary @�, such that 0 2 @�. We
assume also that a function g 2 Cð0;1Þ is given as in ð2:2Þ, ð2:3Þ.

Definition 2.2. We say that � belongs to the class B2ðgÞ if it belongs to B1ðgÞ and also satisfies
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c0

v

gðvÞ
� RðvÞ � c1

v

gðvÞ
; for all v > 0; ð2:4Þ

for suitable constants c0, c1 > 0.

The domains in B1ðgÞ, B2ðgÞ are often referred to as ‘‘expanding’’ or ‘‘non-contracting’’ domains. The intuition
behind this terminology is made clearer by the following example.

Example 2.3 (Paraboloid-like domains). Let 0 � � � 1 be fixed, and define

� ¼ fx 2 RN : jx0j < x�Ng; x
0 ¼ ðx1; . . . ; xN�1Þ: ð2:5Þ

It follows from results of [62, Chapter 4] that � 2 B2ðgÞ, with

gðvÞ ¼ �minfv
N�1
N ; v�g; v > 0; � ¼

�ðN � 1Þ
�ðN � 1Þ þ 1

�
N � 1

N
:

Theorem 2.4 ([67]). Let � 2 B1ðgÞ, and set for all v 2 W1;pð�Þ

Eq ¼
Z

�

jvjqdx; E� ¼
Z

�

jvj�dx;

for some p > 1, 0 < � < q, q � 1, qðN � pÞ � Np. Then we have

kvkq;� � �!ðEÞE
1
q
�1
p
þ 1
Nkrvkp;�; ð2:6Þ

where

E :¼
E

q
q��
�

E
�

q��
q

:

2.2 Narrowing domains

Let

lðv; �Þ ¼ inffj@G \��jN�1 : G � ��; jGj ¼ v; @G Lipschitzg;

for all � > 0, and for all 0 < v < j��j=2, where �� ¼ � \ fjxj < �g as above and �� 6¼ ?. Let f be a continuous
nondecreasing function f : ½1;1Þ ! ð0;1Þ such that for suitable constants c0, c1 > 0

c0

�

f ð�Þ
� Vð�Þ ¼ j��j � c1

�

f ð�Þ
; � � 1: ð2:7Þ

Finally, we also require that for all � > 0

	0ð�ÞVð�Þ � Vð��Þ � 	1ð�ÞVð�Þ; for all � � maxð1; 1=�Þ; ð2:8Þ

where 	0, 	1 are two given nondecreasing positive functions, such that 	1ð�Þ < 1 for � < 1. Note that from ð2:8Þ it
follows

j�j ¼ 1: ð2:9Þ

Moreover, f is required to fulfill for a suitable c2 > 0

gðv; �Þ :¼ c2 min v
N�1
N ;

1

f ð�Þ

� �
� lðv; �Þ; � � 1; 0 < v � Vð�Þ=2: ð2:10Þ

Then, intuitively, 1= f ð�Þ takes the geometrical meaning of the area of the section � \ fjxj ¼ �g.
In the following, for the sake of simplicity, we assume f ð1Þ ¼ 1 and extend f by f ðsÞ ¼ 1 for s 2 ½0; 1Þ.

Definition 2.5. We say that an open unbounded connected set � � RN , N � 2, belongs to the class N ð f Þ if its
boundary @� is locally Lipschitz continuous and if ð2:7Þ–ð2:10Þ are satisfied.

Domains in the class N ð f Þ are often called ‘‘narrowing’’ because they can be shaped like infinite cusps, see the
following example; note that this is impossible for expanding domains. Clearly, this shape and ð2:9Þ imply that lðvÞ as
defined in ð2:1Þ for expanding domains vanishes identically for domains in the class N ð f Þ; this is the reason that forces
us to use local embedding theorems (see Theorem 2.7).

Example 2.6 (Infinite cusp). Let d > 0, 0 < " < 1=ðN � 1Þ. The domain

�" :¼ fx ¼ ðx0; xNÞ 2 RN : jx0j < x�"N ; xN > dg � RN ;
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belongs to N ð f Þ when we define f ¼ �� for � ¼ xN > 2d; here � :¼ "ðN � 1Þ < 1. In this case lðv; �Þ ’ 1= f ð�Þ if v
is large enough.

Theorem 2.7 ([9]). Let � 2 N ð f Þ, � � 1, v 2 W1;pð��Þ be given, and let

Eq ¼
Z

��

jvjqdx; E� ¼
Z

��

jvj�dx;

for some p > 1, � > 0, q � 1, q > �. Assume moreover that v satisfies

E :¼
E

q
q��
�

E
�

q��
q

� 
0Vð�Þ;

where 
0 ¼ 
0ðq; p; �Þ 2 ð0; 1Þ is a suitable constant. Then for all q such that qðN � pÞ � Np, we have

kvkq;��
� �!ðE; �ÞE

1
q
�1
p
þ 1
Nkrvkp;��

;

where � depends on q; p; �, and

!ðz; �Þ ¼ �maxð1; z
N�1
N f ð�ÞÞ:

Comment 2.8. Theorem 2.4 was proved in [67], and Theorem 2.7 was proved in [9].
The case q ¼ p ¼ 2, � ¼ 1 in Theorem 2.4 is due to [44] (with a different approach). The class of domains satisfying
suitable isoperimetric inequalities was studied in [62] (see also references therein), where precise connections between
isoperimetric and Sobolev inequalities were analyzed for various classes of domains. However, in the investigation of
qualitative properties of solutions, the precise multiplicative form of the Sobolev inequalities is important.

The embedding Theorems 2.4 and 2.7 are reported here mostly to stress the technical difference between expanding
and narrowing domains where, respectively, global or just local embeddings are possible. In both cases, in the
application of the embedding one makes often use of the estimate

E � jsupp vj; ð2:11Þ

which follows in turn from Hölder’s inequality (here supp v denotes the support of v). Then assumption E � 
0Vð�Þ in
Theorem 2.7 is handled by means of a suitable cut off technique.

The definition of �� given here for narrowing domains clearly understands rðxÞ ¼ jxj as the coordinate ‘‘measuring
the distance along �.’’ This is done here in order to avoid unnecessary complications, but the whole theory is valid for
domains shaped for example like infinite expanding spirals in R2, where such a coordinate rðxÞ would be different
(essentially the polar angular coordinate in this case).

References for this section: [9], [44], [62], [67].

3. Sup Bounds for Solutions uðtÞ to the Neumann Problem

3.1 Expanding domains

The results of this Subsection were essentially proved in [8]; in this section we demonstrate a simpler approach to
the proof of a sharp bound of kuðtÞk1 (see Remark 3.5) using the Faber–Krahn inequality, in the spirit of [13]. We look
only at the case of globally integrable initial data.

Definition 3.1. We say that � satisfies the global Faber–Krahn inequality for a given p > 1 and a nonincreasing
function �p : ð0;þ1Þ ! ð0;þ1Þ if for any v > 0 and precompact domain G � � with jGj ¼ v we have

�pðvÞ
Z
G

j’jpdv �
Z
G

jr’jpdv; ð3:1Þ

for all ’ 2 W1;pð�Þ such that its support is contained in G.

First we note that the isoperimetric inequality, or even its consequence ð2:6Þ, implies the Faber–Krahn inequality.
Indeed from ð2:6Þ written for v ¼ ’ as in Definition 3.1, when we take into account also ð2:11Þ and take p ¼ q, we
obtain ð3:1Þ with

�pðsÞ ¼ ½�!ðsÞs
1
N ��p; s > 0: ð3:2Þ

We consider in S ¼ �	 ð0;1Þ the following Neumann problem

@u

@t
� divðum�1jrujp�2ruÞ ¼ 0; ðx; tÞ 2 S; ð3:3Þ
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um�1jrujp�2 @u

@	
¼ 0; ðx; tÞ 2 @�	 ð0;1Þ; ð3:4Þ

uðx; 0Þ ¼ u0ðxÞ; x 2 �; ð3:5Þ

in ð3:4Þ 	 denotes the outer normal to @� and u0 2 L1ð�Þ. The equation in ð3:3Þ is known in the literature as doubly
degenerate parabolic, containing both the nonlinearity of the PME (case p ¼ 2) and of the p-Laplacian (case m ¼ 1). In
what follows we will consider the slow diffusion case, that is

pþ m� 3 > 0; p > 1: ð3:6Þ

The notion of weak solution to this and similar problems is standard, see for example [8]; however for the reader’s
convenience we reproduce it in the context of the present section. In Sect. 7.1 we present a variant suited for the case
considered there.

Definition 3.2. A weak solution to ð3:3Þ–ð3:5Þ is a nonnegative function u 2 L1locð�	 ð0;1ÞÞ with
u 2 Cðð0;1Þ; L2

locð�ÞÞ, jru� j
p 2 L1

locð�	 ð0;1ÞÞ, where � ¼ ðpþ m� 2Þ=ðp� 1Þ, such thatZ 1
0

Z
�

�u
@�

@t
þ um�1jrujp�2rur�

� �
dxdt ¼ 0; ð3:7Þ

for all � 2 C1ð�	 ð0;1ÞÞ whose support is a compact set contained in �	 ð0;1Þ. In addition we require uðtÞ ! u0 as
t! 0 in L1

locð�Þ.

Theorem 3.3. Let u be a solution to the problem ð3:3Þ–ð3:5Þ in S; let � satisfy the global Faber–Krahn inequality in
the sense of Definition 3.1. Suppose that �pðvÞ fulfills the condition

�pðvÞva is a nondecreasing function; ð3:8Þ

for a given a > 0. Then for any t > 0 and r � 0 we have

kuðtÞk1 � � sup
t=4<
<t

Z
�

uð
Þrþ1dx

 ! 1
rþ1

	  ð�1Þ
r

1

t
sup

t=4<
<t

Z
�

uð
Þrþ1dx

 !� pþm�3
rþ1

0B@
1CA; ð3:9Þ

where  ð�1Þ
r is the inverse function of

 rðsÞ :¼ spþm�3�pðs�ðrþ1ÞÞ:

We have to assume here that u 2 L1locð0;þ1;Lrþ1ð�ÞÞ.

We need the following standard result.

Lemma 3.4 (Caccioppoli inequality). Let q > 0, and q > 2� m if m < 1, be fixed and define s ¼ ðpþ mþ
q� 2Þ=p. Fix also a1 > a2 > 0, t > 
1 > 
2 > 0. Then

sup

1<
<t

Z
�

ðuðtÞ � a1Þqþ1
þ dxþ

Z t


1

Z
�

jrðu� a1Þsþj
pdxd


� �
Hða1; a2Þ

1 � 
2

Z t


2

Z
�

ðu� a2Þqþ1
þ dxd
: ð3:10Þ

Here Hða1; a2Þ ¼ ½a1=ða1 � a2Þ�jm�1j.

Proof of Theorem 3.3 (see [13]). A) Choose h0 > h1 > 0, 
0 > 
1 > 0, and ki ¼ h1 þ ðh0 � h1Þ2�i, ti ¼ 
1 þ
ð
0 � 
1Þ2�i, fi ¼ ðu� kiÞsþ, i � 0. For any given q > 0 as in Lemma 3.4, let b ¼ ðqþ 1Þ=s < p and denote Ak ¼
fu > kg for all k > 0; then, on applying in this order Hölder, Faber–Krahn and Young inequalities we have that for a
constant " > 0 to be chosen (all integrals and measures calculated at time level 
)Z

�

f biþ1dx � jAkiþ1
j1�b=p�pðjAkiþ1

jÞ�b=
Z

�

jr fiþ1jpdx
� �b=p

�
b

p
"p=b

Z
�

jr fiþ1jpdxþ
p� b

p
"�p=ðp�bÞ�pðjAkiþ1

jÞ�b=ðp�bÞjAkiþ1
j: ð3:11Þ

Integrating in time ð3:11Þ we find for all t > 
0
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Z t

tiþ1

Z
�

f biþ1dxd
 �
b

p
"p=b

Z t

tiþ1

Z
�

jrfiþ1jpdxd


þ
p� b

p
t"�p=ðp�bÞ½�pð sup


1<
<t
jAh1jÞ�

�b=ðp�bÞ sup

1<
<t

jAh1j: ð3:12Þ

Combining Lemma 3.4 and ð3:11Þ–ð3:12Þ with a1 ¼ ki, a2 ¼ kiþ1, 
1 ¼ ti, 
2 ¼ tiþ1, we have for all t > 
0 and for any
"1 > 0, for a suitable " > 0

sup
ti<
<t

Z
�

f bi dxþ
Z t

ti

Z
�

jr fijpdxd
 � "1
Z t

tiþ1

Z
�

jr fiþ1jpdxd


þ �� i1"
� b
p�b

1 tð
0 � 
1Þ
� p
p�b

h0

h0 � h1

� � p
p�bjm�1j

	 ½�pð sup

1<
<t

jAh1jÞ�
�b=ðp�bÞ sup


1<
<t
jAh1j:

ð3:13Þ

Iterating this inequality on i and choosing "1 small enough (see [4, Sect. 2]), we get

sup

0<
<t

Z
�

ðuð
Þ � h0Þqþ1
þ dx � �tð
0 � 
1Þ

� p
p�b

h0

h0 � h1

� � p
p�bjm�1j

	 ½�pð sup

1<
<t

jAh1jÞ�
�b=ðp�bÞ sup


1<
<t
jAh1j: ð3:14Þ

B) We need one more iterative process. Define the sequences

ln ¼ kð1� 2�n�1Þ; ln ¼ ðln þ lnþ1Þ=2; t0n ¼ tð1� 2�n�1Þ:

By invoking ð3:14Þ with 
0 ¼ t0nþ1, 
1 ¼ t0n, h0 ¼ ln, h1 ¼ ln we obtain

Ynþ1 :¼ sup
t0
nþ1
<
<t
jfu > lnþ1gj

� ��n1 k
�ðqþ1Þ sup

t0
nþ1
<
<t

Z
�

ðuð
Þ � lnÞqþ1
þ dx

� ��n1 k
�ðqþ1Þt

� b
p�b�pðYnÞ

� b
p�bYn:

Using now the classical iterative lemma [58, Lemma 5.6, p. 95] we conclude that Yn! 0 as n!1 and therefore
kuðtÞk1 � k, provided

k�ðqþ1Þt
� b
p�b�pðY0Þ

� b
p�b � �; ð3:15Þ

for a suitable � ¼ �ðm; p; qÞ > 0, which amounts to

k�1t
� 1
pþm�3�pðY0Þ

� 1
pþm�3 � �

1
qþ1 : ð3:16Þ

By Chebyshev inequality we have for any fixed r � 0, at all time levels

jAl0 j �
1

lrþ1
0

Z
�

urþ1dx ¼
2rþ1

krþ1

Z
�

urþ1dx;

note that the number r enters the proof only at this stage. Finally, on choosing k from

k�1t
� 1
pþm�3 �p

2

krþ1
sup

t=4<
<t

Z
�

urþ1dx

 !" #� 1
pþm�3

¼ �
1

qþ1 ;

taking into account kuðtÞk1 � k and monotonicity arguments, we arrive at the desired result. �

Remark 3.5. The integrals on the right hand side of ð3:9Þ must be estimated by taking into account the initial data. For
example if r ¼ 0 by conservation of mass we conclude from ð3:9Þ

kuðtÞk1 � �ku0k1;� 
ð�1Þ
0

1

t
ðku0k1;�Þ�ðpþm�3Þ

� �
: ð3:17Þ

This amounts to classical estimates when � ¼ RN so that �pðsÞ ¼ s�p=N ; see e.g., [70] for the PME, and [35] for the
linear case.
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3.2 Narrowing domains

Even in the case of narrowing domains one can prove existence of solutions to ð3:3Þ–ð3:5Þ corresponding to initial
data growing at infinity; to this end let us introduce the norm which rigorously determines the admissible behavior:

½U�r :¼ sup
��r

�
� p
pþm�3

I
��

dU;

where U is a positive Radon measure and r > 0 is a given number.

Theorem 3.6 (Growing initial data ([9])). Let u0 be a positive Radon measure in �, such that ½u�� <1, � � 1.
Then problem ð3:3Þ–ð3:5Þ has a solution defined in �	 ð0;T0Þ, where T0 ¼ �0½u�3�m�p

� , and

½uðtÞ�� � �½u0��; ð3:18Þ

kuðtÞk1;��
� ��

p
pþm�3 t�

N
K½u0�

p
K

� ; ð3:19Þ

for 0 < t < T0, � � �, where K ¼ Nðpþ m� 3Þ þ p.

See the Comments at the end of this Section for the general framework of this result. Here we confine ourselves to
the remark that formally all the existence results of this kind are very similar, once that the norm ½��r is defined with the
appropriate subdomains �� (see e.g., [33]).

Next we deal with solutions uniformly bounded over �; here the situation is markedly different. As we saw in the
previous Subsection, in expanding domains (e.g., in RN) global integrability of the initial data guarantees that uðtÞ 2
L1ð�Þ for t > 0. This is not always the case in narrowing domains, as demonstrated by the explicit counterexample
constructed in [9, Sect. 7]. Actually one can prove that uðtÞ ! 0 uniformly as t!þ1 provided a suitable moment of
the initial data is finite. As a first special example of this behavior, interesting on its own, we present the case of initial
data with bounded support.

Let

ZðtÞ ¼ inff� > 1 j uðx; tÞ ¼ 0; x 2 � n��g; t > 0: ð3:20Þ

Clearly, ZðtÞ gives a measure of the speed of propagation of the support of u, which we expect to be finite in view of the
degeneracy of the equation.

Theorem 3.7 (Finite speed of propagation ([9])). Let u0 be a positive finite Radon measure in � with bounded
support:

supp u0 � ��;

for a given � 2 ð1;þ1Þ. Then, a suitable t0 > 0 exists such that, for t > t0

�1PðtÞ � ZðtÞ � �2PðtÞ; ð3:21Þ

where � ¼ PðtÞ denotes the largest solution of

� f ð�Þ�
pþm�3
2pþm�3 ¼ ku0k

pþm�3
2pþm�3

1;� t
1

2pþm�3 : ð3:22Þ

We also have for t > t0 the two-sided estimate

�1

ku0k1;�
VðPðtÞÞ

� kuðtÞk1;� � �2

ku0k1;�
VðPðtÞÞ

: ð3:23Þ

Here t0 depends on N, p, m, ku0k1;�, �.

Note that the left-hand side of ð3:22Þ goes to1 as �!1, because of ð2:7Þ and ð2:10Þ, so that PðtÞ is well defined
and PðtÞ ! þ1 as t!þ1. Recalling the definition of PðtÞ the estimates ð3:23Þ amount to bounding kuðtÞk1;� on
both sides by multiples of

t
� 1

2pþm�3ku0k
p

2pþm�3

1;� f ðPðtÞÞ
p

2pþm�3 :

It can be easily seen that when f ð�Þ ¼ constant, i.e., when � is cylinder, the results of Theorem 3.7 coincide with those
valid for the one-dimensional Cauchy problem; indeed when N ¼ 1, K ¼ 2pþ m� 3, where K is the Barenblatt–
Pattle exponent defined in Theorem 3.6.

3.2.1 Integrable data of unbounded support

Let us turn to the case of integrable initial data, dropping the assumption of bounded support. As we already
remarked, we need an extra assumption to obtain a uniform bound for uðtÞ, ultimately because of the lack of a global
Sobolev–Gagliardo–Nirenberg or Faber–Krahn inequality. A natural assumption is limiting the growth of the initial
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data by requiring the finiteness of a suitable moment; we introduce to this end the moment

�ðtÞ ¼
Z

�

f ðjxjÞuðx; tÞdx; t � 0: ð3:24Þ

We extend this definition also to measures, in the obvious way. Then we may prove

Theorem 3.8 (Moment bounds ([7])). Assume that � 2 N ð f Þ and that for some given c > 0

� 7!
f ð�Þ
�c

is nondecreasing for � � 1: ð3:25Þ

Let u0 be a positive finite measure in �, such that �ð0Þ < þ1. Then problem ð3:3Þ–ð3:5Þ has a solution u defined in
�	 ð0;þ1Þ, satisfying for t > t0 the estimates ð3:23Þ with PðtÞ given in ð3:22Þ, and

�0ku0k1;� f ðPðtÞÞ � �ðtÞ � �1ku0k1;� f ðPðtÞÞ: ð3:26Þ

Here t0 depends also on �ð0Þ.

The proof of this result is actually rather complex. We sketch here the main argument, which is essentially an a priori
estimate to be then exploited to obtain compactness in a suitable approximation scheme.

First, for all solutions corresponding to an integrable initial data, we obtain

kuðtÞk1;�ð1þ�Þ�n�ð1��Þ� � �maxðt�
N
K�ðtÞ

p
K ; t
� 1
K1 �ðtÞ

p
K1 f ð�Þ

p
K1 Þ; ð3:27Þ

provided � 2 ð0; 1=2Þ, � � �PðtÞ, with K1 ¼ 2pþ m� 3, and

�ðtÞ ¼ sup
0<
<t
kuð
Þk1;�ð1þ2�Þ�n�ð1�2�Þ� :

Since, as already remarked, K1 is the one-dimensional version of K ¼ Nðmþ p� 3Þ þ p, it is clear that ð3:27Þ bounds
uðtÞ by combining the (local) N-dimensional bound and the (global but non-uniform) 1-dimensional one. Note that this
bound is optimal in general (i.e., if �ð0Þ ¼ þ1) as proved by the counterexample in [9].

In ð3:27Þ the integrals in �ðtÞ are local in space; therefore we may absorb f ð�Þ into them; this is the point where the
moment appears in the estimate and the dependence on � is dropped. We obtain after some calculations

kuðtÞk1;� � �maxðt�
N
Kku0k

p
K
1;�;t

� 1
K1 ~�ðtÞ

p
K1 ;

t
� 1
K1 ku0k

p
K1

1;� f ðPðtÞÞ
p

K1 Þ; ð3:28Þ

where ~�ðtÞ ¼ sup0<
<t �ð
Þ. The third term on the right hand side of ð3:28Þ is necessary to bound uðtÞ in �� with
� < PðtÞ.

Then we appeal to the equation again, essentially using f ðjxjÞ�ðxÞ as a test function, where � is a suitable cut off
function. We obtain for t > 0

�ðtÞ � ��ð0Þ þ � f ðHðtÞÞku0k1;�; ð3:29Þ

where for all � 2 ð0; 1=pÞ

HðtÞ ¼ t
1
p
��

Z t

0



� p
p�1
�1kuð
Þk

pþm�3
p�1

1;� d


� � p�1
p

;

here � depends on � too.
Finally we apply ð3:29Þ in ð3:28Þ, obtaining an inequality of (rather non-standard) Gronwall type for kuðtÞk1;�.

However, this inequality is handled by means of a suitable real analysis lemma, finally yielding the sought after
estimate for kuðtÞk1;�; then the bound for �ðtÞ follows from ð3:29Þ.

Comment 3.9. Existence of solutions to the Cauchy problem for ð3:3Þ, under optimal assumptions on the initial data,
was obtained in [28] in the case p ¼ 2 and in [34] in the case m ¼ 1. See [17] for an extension of results of this kind to
a case where ð3:3Þ contains a space-dependent weight in the form of a capacitary coefficient, in a Riemannian
framework.

The Neumann problem for linear uniformly parabolic equations in domains with noncompact boundaries was treated
in [44], [45], see also [61], where it was shown that for a large class of domains �, whose geometry is described by
means of an isoperimetric inequality, the asymptotic behavior of solutions for large times is

kuðtÞk1;� s
ku0k1;�
Vð

ffiffi
t
p
Þ
:

These results were extended to the evolutive p-Laplacian in [66], [68] under the assumption u0 2 L1ð�Þ \ L2ð�Þ. We
quote also [41] for an investigation of the PME in unbounded domains.
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The approach used in the proof of Theorem 3.3 is taken from the work [13] (see also [16]) and is similar to the one
introduced in [11] with the only difference that instead of Gagliardo–Nirenberg inequalities, the Faber–Krahn’s
inequality is used. The latter is a flexible tool for research on Riemannian manifolds (see [43]). This approach seems to
us to essentially simplify the proofs of the corresponding results of [8].
Note that the assumption m � 1 which appeared in [7], [9] is in fact not needed for the results we present here. The
degeneracy of the equation amounts indeed to ð3:6Þ, which is the requirement we place on p, m.
Finally, the approach of [11] is developed starting from the classical ideas of DeGiorgi, Ladyzhenskaya–Uraltseva,
DiBenedetto. In particular, we don’t use here the cylindrical parabolic embedding, which may be restrictive, for
example in a Riemannian setting or in some other problems. In addition, this approach allows us to prove the optimal
finite speed of propagation for degenerate parabolic equations even for initial data measures (see e.g., the two-sided
estimate ð3:21Þ), and it works also in graphs [15].
See also [49] for an approach to the Cauchy problem for doubly nonlinear equations, and [19] for the property of finite
speed of propagation. On the behavior of solutions for large times let us also quote [51], [52], [53], [54].

We remark that the proof of Theorem 3.7 employs an iterative sequence of integral estimates on shrinking annuli;
the use of bounded domains allows one to use local embedding results. This technique was applied also to higher order
parabolic equations in [10].

References for this section: [7], [8], [9], [10], [11], [13], [15], [16], [17], [19], [28], [33], [34], [35], [41], [43], [44],
[45], [49], [51], [52], [53], [54], [58], [61], [66], [68], [70].

4. Fujita Type Results for Blow Up Problems

In this section we study the behavior of nonnegative solutions in S ¼ �	 ð0;þ1Þ of the Neumann problem

@u

@t
� divðum�1jrujp�2ruÞ ¼ u�; ðx; tÞ 2 S; ð4:1Þ

um�1jrujp�2 @u

@	
¼ 0; ðx; tÞ 2 @�	 ð0;1Þ; ð4:2Þ

uðx; 0Þ ¼ u0ðxÞ; x 2 �; ð4:3Þ
here p � 2, m � 1, � > 1.

It is well known that, since � > 1, global in time solutions to this problem may or may not exist; results in this
direction are known in the literature as Fujita type results, after [36]. We are concerned here with existence or
nonexistence of such global solutions, and with estimates of the finite speed of propagation of the support of u. We
show how these properties are connected with the geometry of �, which we assume to be an expanding domain.

Our approach relies on careful integral estimates of solutions which follow in turn from embedding results involving
geometrical properties of the domain �. Let us define � ¼ �ð�1Þ as the inverse function over ½0;1Þ of

�ðzÞ ¼ zpþm�3þ p
N!ðzÞp ¼ zpþm�3þpgðzÞ�p; z � 0:

Note that under assumption ð3:2Þ we have

�ðsÞ ¼
1

 ð�1Þ
0

�
1
s

� ; s > 0; ð4:4Þ

where  0 has been defined in Theorem 3.3.

Theorem 4.1 (Existence of global solutions [8]). Let us assume that � 2 B1ðgÞ and that � satisfiesZ þ1
�ðsÞ��þ1ds < þ1: ð4:5Þ

Then ð4:1Þ–ð4:3Þ has a solution defined for all t > 0, provided the initial data fulfills

ku0k1;� þ ku0kr;� � �; ð4:6Þ

where r > 1 is such that Nð�� m� pþ 2Þ < rp, and � ¼ �ðN; p;m; �; r; gÞ is chosen suitably small. Moreover, u
satisfies for large t > 0

kuðtÞk1;� � �
ku0k1;�

�ðtku0kpþm�3
1;� Þ

: ð4:7Þ

We remark that restrictions on the local integrability of the initial data u0 are in general necessary when superlinear
sources are present in the equation; we state here a global requirement for the sake of simplicity; see also the Comments
at the end of this Section.
The estimate ð4:7Þ is the same as ð3:17Þ, see ð4:4Þ. Namely it is the same estimate in force for solutions to the
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homogeneous equation.
Finally, ð4:5Þ requires that � is large enough; in the case � ¼ RN where �ðsÞ ¼ sN=K it amounts to the classical
threshold

N

K
ð�� 1Þ > 1: ð4:8Þ

Theorem 4.2 (Nonexistence of global solutions [8]). Assume that � 2 B1ðgÞ, � > pþ m� 2 and thatZ
0

Vð
�EÞ
pþm�2
p�1 d
 < þ1; E :¼

ðp� 1Þð�� p� mþ 2Þ
pðpþ m� 2Þ

: ð4:9Þ

Then all non negative solutions u 6
 0 to ð4:1Þ–ð4:3Þ become unbounded in a finite time (in some bounded subset of �),
provided we assume also that � 7! Vð�Þ��� is nonincreasing for large �, for some given 0 < � < p=ð�� p� mþ 2Þ.

Again in the case of � ¼ RN , condition ð4:9Þ coincides with the strict converse of ð4:8Þ, and hence it is sharp. The
last requirement on V could be weakened somehow, see [8].

As we already remarked, due to the degeneracy of the equation one expects solutions with compactly supported
initial data to exhibit the property of finite speed of propagation. In our next result we give a sharp estimate of the
support of uðtÞ for large t.

Theorem 4.3 (Finite Speed of Propagation [8]). Assume � 2 B2ðgÞ, and let the assumptions of Theorem 4.1 be
satisfied. Moreover, we require that supp u0 � ��0

for a given �0 > 0. Then for large t, the bound ZðtÞ for the support
of uðtÞ (defined in ð3:20Þ) satisfies

�0Rð�ðtku0kpþm�3
1;� ÞÞ � ZðtÞ � �1Rð�ðtku0kpþm�3

1;� ÞÞ; ð4:10Þ

and for R ¼ V ð�1Þ we have

kuðtÞk1;� � �0

ku0k1;�
�ðtku0kpþm�3

1;� Þ
: ð4:11Þ

Estimate ð4:11Þ shows that ð4:7Þ is sharp.

Example 4.4 (Paraboloid-like �). If � is one of the domains in Example 2.3, we can check that ð4:5Þ reads

1þ �ðN � 1Þ
ð1þ �ðN � 1ÞÞðpþ m� 3Þ þ p

ð�� 1Þ > 1; ð4:12Þ

while ð4:9Þ reduces to the converse strict inequality. Note that for large � we have in this case Vð�Þ � �1þ�ðN�1Þ, so that
the numerator in ð4:12Þ accounts for the volume function. Then one should compare ð4:12Þ with the threshold ð4:8Þ
valid for the Cauchy problem.

Below we summarily sketch the proofs of the results stated above, which are based on arguments typical of this field.
See also [34], [4], [5].

Proof of Theorem 4.1 (sketch). Step 1. If we look at the right hand side of ð3:10Þ we readily see that such an inequality
is still valid even for the nonhomogeneous equation ð4:1Þ, at least for all times t such that


kuð
Þk��1
1;� � 1; 0 < 
 < t: ð4:13Þ

Clearly this amounts to ignoring the source on the right hand side of ð4:1Þ; our goal is exactly to show that this is
possible under our assumptions.
Thus, if we assume ð4:13Þ, an estimate of the type of ð3:17Þ is in force; recall that � and  0 are related by ð4:4Þ.
Actually, one works with approximating solutions, but we give here the argument in the form of an a priori estimate.

Step 2. We ignore here the time interval ð0; 1Þ, where estimates must make use of the extra integrability of the initial
data.
Note that estimate ð3:17Þ itself proves that ð4:13Þ is in force, at least for those t such that

UðtÞ :¼ sup
0<
<t
kuð
Þk1;� � �0; ð4:14Þ

for a suitable �0 > 0, which is going of course to determine the choice of the � in assumption ð4:6Þ. A more detailed
analysis than the one we perform in this sketch, would show that we already use ð4:5Þ and t > 1 at this stage.
The point is how to obtain estimate ð4:14Þ for all t > 1. Simply by integrating the equation by parts we obtain
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Z
�

uðtÞdx �
Z

�

uð1Þdxþ
Z t

1

kuð
Þk��1
1;�

Z
�

uð
Þdxd


� �ku0k1;� þ �
Z t

1

Uð
Þ�

�ðtku0kpþm�3
1;� Þ��1

d
:

As already remarked, we assume here that Uð1Þ has been estimated already by �ku0k1;�. Then by comparison
arguments, we have that UðtÞ � yðtÞ for t > 1, where y is defined by

dy

dt
¼ �

y�

�ðtku0kpþm�3
1;� Þ��1

; t > 1; yð1Þ ¼ �ku0k1;�:

But owing to the summability condition ð4:5Þ, one can see that yðtÞ � �� for all t > 1, completing the proof. �

Proof of Theorem 4.2 (sketch). The arguments are technically quite involved, but the basic idea is simple. By setting
w ¼ ua, a ¼ ðpþ m� 2Þ=ðp� 1Þ we rewrite the equation as (here � ¼ 1=a 2 ð0; 1�).

@w�

@t
� divðjrwjp�2rwÞ ¼ w��: ð4:15Þ

Let V�ðsÞ ¼ maxðVðsÞ; 1Þ; we use as testing function a suitable cut off of

f ðwÞ ¼
Z w

0

V�ð
�EÞ
pþm�2
p�1 d


	 
�"
; w > 0; f ð0Þ ¼ 0:

This definition is possible due to our assumptions.
Essentially, we show that a suitable integral norm of wðtÞ in a compact set blows up in a finite time, by bounding it from
below with the solution to an ordinary differential equation with such a behavior. The technical difficulty is given by
absorbing all integrals contributed by the diffusion operator into the nonlinear source, which yields on the other hand
the forcing term Z

�

wðx; tÞ��f ðwðx; tÞÞ�ðxÞdx;

where � is the cut off function. �

Proof of Theorem 4.3 (sketch). We define a sequence of cut off functions �n, n � 0, so that

�nðxÞ ¼ 1; x 2 ��n n��n ; �nðxÞ ¼ 0; x 62 ��n�1
n��n�1

;

jr�nj � �
2n

��
;

where 0 < � < 1=2 is given and, for �0 as in the statement,

�n ¼ �þ �2�n�; �n ¼ ð�� �2�n�Þ=2; n � 0; � > 4�0:

The supports of the �n are shaped like shrinking annuli (intersected with �). As n!þ1 we have �n � �nþ1! �þ,
�n � �nþ1! �=2�; note also that the support of �0 is bounded away from the support of u0. Then choosing as a testing
function �pn u


, where 0 < 
 < p=N, we have

sup
0<
<t

Z
�

uð
Þ1þ
�pn dxþ
Z t

0

Z
�

umþ
�2jrujp�pn dxd


� �
2np

ð��Þp

Z t

0

Z
��n�1

n��n�1

upþmþ
�2dxd
 þ �
Z t

0

Z
�

u�þ
�pn dxd
:

ð4:16Þ

Reasoning as in the proof of Theorem 4.1 and choosing � small enough, we may bound the last term in ð4:16Þ by

�

Z t

0

kuð
Þk��1
1 d
 sup

0<
<t

Z
�

uð
Þ1þ
�pn dx �
1

2
sup

0<
<t

Z
�

uð
Þ1þ
�pn dx:

So the contribution of the blow up term can be absorbed into the left hand side and essentially we are reduced to the
case of the homogeneous equation. Therefore from this resulting inequality we get for sufficiently large s > 1

Yn :¼ sup
0<
<t

Z
�

v"ndxþ
Z t

0

Z
�

jrvnjpdxd
 � �1

2np

ð��Þp

Z t

0

Z
�

v
p
n�1dxd
; ð4:17Þ

where vn ¼ uðpþmþ
�2Þ=p�sn, " ¼ pð1þ 
Þ=ðpþ mþ 
 � 2Þ. Next we need apply the embedding Theorem 2.4, with � ¼
", q ¼ p, v ¼ vn�1ð
Þ and replace this in ð4:17Þ with the aim of obtaining an iterative inequality for Yn. The calculations
are made rather intricate by the general functional setting and would be easier in the power nonlinearity setting of

Qualitative Properties of Solutions of Degenerate Parabolic Equations via Energy Approaches 65



Example 2.3. However, eventually we arrive at

Yn � ��n1�
�pt

ð1þ
Þ p
L Y

1þð pþm�3Þ p
L

nþ1 f0ðt; �; ku0k1;�Þ;
where L ¼ Nðpþ m� 3Þ þ pð1þ 
Þ, f0 is a suitable positive function connected to the geometry of �, and �, �1 > 1

are constants. Hence by appealing to [58, Lemma 5.6, Chapter II] we prove that Yn ! 0 as n!þ1 if � � �ðtÞ, where
�ðtÞ is the smallest solution of

��pt
ð1þ
Þ p

L Y
ð pþm�3Þ p

L
0 f0ðt; �; ku0k1;�Þ � c;

for some suitably small c > 0. But Yn! 0 implies that uðx; tÞ ¼ 0 for jxj � �ðtÞ. Next we bound Y0 by means of an
energy inequality like ð4:16Þ and of ð4:7Þ. Finally, on tracking the functional structure of f0 we get the result. �

4.1 Cone-like domains

The methods demonstrated above are in some sense universal and can be applied to other boundary value problems.
Consider the Cauchy–Dirichlet problem for the porous media equation with source in unbouded cone-like domains

@u

@t
��um¼ 0; ðx; tÞ 2 �	 ð0;T Þ; ð4:18Þ

uðx; tÞ ¼ 0; ðx; tÞ 2 @�	 ð0; T Þ; ð4:19Þ
uðx; 0Þ ¼ u0ðxÞ; x 2 �: ð4:20Þ

Here m > 1, u0 � 0 and � � RN , N � 2 satisfies the geometrical assumptions of isoperimetrical type listed below,
which involve a suitable harmonic function H � 0. Before giving the assumptions, let us point out the following
examples.

Example 4.5 (Cone-like domains). 1) Standard cones: in this case

� ¼ x 2 RN j
xN

jxj
> cos 
0

� �
; 
0 2 ð0; ��;

HðxÞ ¼ jxj�’ arccos
xN

jxj

� �
;

where � is the positive root of �ð� þ N � 2Þ ¼ !, with ! being the smallest eigenvalue of the Laplace–Beltrami
operator on � \ fjxj ¼ 1g. The function ’ must satisfy a suitable ordinary differential equation.

2) Octants: here for some 1 � i < N

� ¼ fx 2 RN j x1; . . . ; xi > 0g; HðxÞ ¼ x1 . . . xi:

3) Other examples are given by products of the two cases above, by angles in R2, by dihedral angles in R3.

In general, let H be a positive harmonic function in �, vanishing on @�, and let A be any subset of � with smooth
boundary; define

jAjH ¼
Z
A

HðxÞdx; j@AjH;N�1 ¼
Z
@A

HðxÞd�N�1;

where d�N�1 denotes the area measure. We also define the perimeter function relative to H as

PðVÞ ¼ inffj@AjH;N�1 j A � �; jAjH ¼ Vg; V > 0:

We say that � 2 DðH;MÞ if there exist constants C, C0 > 0 and M > 2 such thatZ
�\fjxj<�g

HðxÞdx � C�M ; PðVÞ � C0V
M�1
M :

The general idea is that M is going to play the role of the dimension (e.g., N in RN); the relevant Barenblatt–Pattle like
exponent in this case is

� :¼ Mðm� 1Þ þ 2;

which indeed coincides with K when N ¼ M, p ¼ 2. With reference to the Examples above, we note that in the case of
Example 4.5.1 we have M ¼ N þ � , while in the case of Example 4.5.2 we have M ¼ N þ i.

We can prove the following theorem

Theorem 4.6 (Existence for growing data ([12])). Assume thatXN
i¼1

xiHxi � 0; ð4:21Þ

and that u0 2 L1
locð�Þ satisfies
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½u0�H :¼ sup
��1

��
�

m�1

Z
��

u0ðxÞHðxÞdx < þ1;

where � 2 DðH;MÞ and H are as above. Then a weak solution of ð4:18Þ–ð4:20Þ exists for 0 < t < T :¼ �0½u0��mþ1
H .

Moreover

kuðtÞk1;��
� �t�

M
� �

2
m�1½u0�

2
�
H ; 0 < t < T ; � > 1: ð4:22Þ

The structure of the proof is similar to the one valid in the whole space RN , but the critical exponents strictly depend
on the geometry of the domain �, which we describe by means of the isoperimetric inequality stated above. We confine
ourselves to the statement of the relevant Sobolev–Gagliardo–Nirenberg inequality.Z

�

Hjvjqdx
� �1=q

� �
Z

�

Hjrvjpdx
� �A=p Z

�

Hjvjrdx
� �ð1�AÞ=r

; ð4:23Þ

where v 2 W1;pð�Þ has bounded support and

0 < r < q �
Mp

M � p
; 1 � p < M; q > 1;

A ¼
p

q

Mðq� rÞ
Mp� ðM � pÞr

:

The inequality ð4:23Þ can be proved according to the approach in [1, Chapter V].

Remark 4.7 (Solutions with finite moment). It follows as a by-product of the proof of Theorem 4.6 that if

�ð0Þ ¼
Z

�

HðxÞu0ðxÞdx < þ1 ð4:24Þ

then

kuðtÞk1;� � ��ð0Þ
2
� t
�M
� ; t > 0: ð4:25Þ

In fact in this case assumption ð4:21Þ is not even needed, since it is necessary only when localizing by means of cut off
functions.

Example 4.8 (Sign-changing solutions in the plane). We start by considering the problem ð4:18Þ–ð4:20Þ in the angle

� ¼ fðx1; x2Þ j 0 < r < þ1; 0 < 
 < �=ng � R2;

n 2 N, so that HðxÞ ¼ rn sinðn
Þ; here r and 
 are the standard polar coordinates in R2.
According to the results in Remark 4.7, we have

kuðtÞk1;� � ��ð0Þ
2

ðnþ2Þðm�1Þþ2 t
� nþ2
ðnþ2Þðm�1Þþ2 ; t > 0: ð4:26Þ

Actually, u can be extended via n� 1 odd reflections (about the sides of �) to a solution U of the Cauchy problem for
the PME in R2. Such a solution changes its sign from a copy of � to the adjacent copy. Note that the estimate ð4:26Þ
still holds for U; we remark that, by selecting n suitably, we can make the decay rate there as close as we want to the
rate valid in bounded domains (with zero Dirichlet data) for nonnegative solutions, i.e., �1=ðm� 1Þ.

We remark here that, in this setting, Fujita type results might be obtained also for the equation

@u

@t
��um ¼ uq; ðx; tÞ 2 �	 ð0;þ1Þ; ð4:27Þ

where q > 1.

Comment 4.9. The result formulated in this section were published in [8], [12].
The first celebrated result concerning the blow up phenomenon is the classical paper by Fujita [36] for the Cauchy
problem for

@u

@t
��u ¼ uq; in RN 	 ð0;1Þ: ð4:28Þ

It was proved there that the exponent q ¼ 1þ 2=N is critical in the sense that, if 1 < q < 1þ 2=N, then ð4:28Þ
possesses no global positive solution, while if q > 1þ 2=N, then there exist global in time solutions, provided a
suitable norm of u0 is small enough. The critical case q ¼ 1þ 2=N (in which any positive solution blows up in a finite
time) was treated later in [46]; see also [65].
As an application of the comparison principle, Fujita type results were established in [38], [37] for the PME and
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p-Laplacian equations with sources. By means of a local energy approach, Fujita type results for general PME type
equations with blow up term were proved in [5] and [2] (for systems). Some of these results were extended to the
p-Laplacian equation with blow up terms in [50]. For the solution of the Neumann problem for doubly degenerate
parabolic equations with nonlinear sources in domains with noncompact boundaries Fujita type results were obtained in
[7], [8]. It was proven that the critical Fujita exponent depends strictly on the geometry of the domain. Note that these
results include the Cauchy problem as well. Later for the same class of equations but in the case of Cauchy problem the
blow up phenomena was proved in [63]. Let us quote also [71], [72], [73], [74], and the surveys [60], [31].

In equations with supercritical power sources, we may have existence of solutions only under restrictions on the
regularity of the initial data; that is, not for all initial data finite measures, or even L1 functions, a solution exists; see
[5], [2] and for initial data measures [3].

Finally, existence of local in time solutions corresponding to growing initial data (as in Theorem 4.6) has been
treated with similar methods, in a Riemannian setting, in [17].

References for this section: [1], [2], [3], [4], [5], [7], [8], [12], [17], [31], [34], [36], [37], [38], [46], [50], [58], [60],
[63], [65], [71], [72], [73], [74].

5. Asymptotic Expansion of Solutions of the Filtration Equation in a Paraboloid-like
Domain

We consider here, following [14], the domain � ¼ �ð�Þ which has been defined in ð2:5Þ for 0 � � � 1, and the
corresponding Neumann problem for the equation of porous-media type

@u

@t
�
@

@xj
aijðx; tÞ

@um

@xi

� �
¼ 0; ðx; tÞ 2 S ¼ �	 ð0;þ1Þ; ð5:1Þ

aijðx; tÞ
@um

@xi
	j¼ 0; ðx; tÞ 2 @�	 ð0;þ1Þ; ð5:2Þ

uðx; 0Þ ¼ u0ðxÞ; x 2 �: ð5:3Þ

We understand throughout summation with respect to repeated indexes. Here N � 2, m > 1 and 	 ¼ ð	1; . . . ; 	NÞ is the
unit outer normal to @�; we assume u0 2 L1ð�Þ is a nonnegative function, and the coefficients aij 2 L1ðSÞ, i, j 2
f1; 2; . . . ;Ng, satisfy for a constant c0 > 1 and for all � ¼ ð�1; . . . ; �NÞ 2 RN , a.e. in S,

c�1
0 j�j

2 � aijðx; tÞ�i�j � c0j�j2: ð5:4Þ

The main goal of this section is to get the asymptotic profile as t!þ1 of solutions to ð5:1Þ–ð5:3Þ in S under
additional assumptions on the coefficients.

If aijðx; tÞ ¼ �ij, where �ij denotes the Kronecker symbol, then ð5:1Þ is the PME. It is well known that if � ¼ RN , then
as t!þ1 we have

t
N
K juðx; tÞ � Eðx; tÞj ! 0; ð5:5Þ

uniformly in x 2 RN , where K ¼ Nðm� 1Þ þ 2 is the Barenblatt–Pattle exponent and Eðx; tÞ is the fundamental
solution of the PME with the same total mass as u0, i.e.,

Eðx; tÞ ¼ t�
N
K C � cðm;NÞ

jxj
t1=K

� �2
" # 1

m�1

þ

; ð5:6Þ

where cðm;NÞ ¼ ð2KÞ�1ðm� 1Þ and C is chosen so that ku0k1 ¼ kEk1 for t > 0. That is, E solves the PME and takes
the multiple of the Dirac mass ku0k1�ðxÞ as initial data.

Let us go back to our problem set in �ð�Þ. Essentially, we prove in [14] that when � < 1, the asymptotic profile
of the solution to ð5:1Þ–ð5:3Þ is one-dimensional, while when � ¼ 1, the asymptotic profile is genuinely N-dimensional;
in this instance, our results cover also the Cauchy problem even if �ð1Þ is in fact a cone.

Assume for the moment � < 1 and let us introduce the following one-dimensional asymptotic profile:

E�ðy; tÞ ¼ t
�nð�Þ
bð�Þ C �

m� 1

2mbð�Þ
y

t
1

bð�Þ

 !2
24 35

1
m�1

þ

; y > 0; t > 0: ð5:7Þ

Here nð�Þ ¼ �ðN � 1Þ þ 1 and bð�Þ ¼ nð�Þðm� 1Þ þ 2. The power nð�Þ corresponds to the dimension at infinity of
�ð�Þ, in the sense that

j�ð�Þ \ fxN < �gj ¼
!N�1

nð�Þ
�nð�Þ; � > 0;
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here !N�1 is the area of the unit sphere in RN . Note that j� \ fjxj < �gj has the same asymptotics for �!þ1. In the
following we let �� ¼ �ð�Þ \ fxN < �g.
Then for a suitable choice of C > 0, E� solves (in a suitable sense) the problem

yðN�1Þ� @V

@t
�
@

@y
yðN�1Þ� @V

m

@y

� �
¼ 0; y > 0; t > 0; ð5:8Þ

yðN�1Þ� @V
m

@y
¼ 0; y ¼ 0; t > 0; ð5:9Þ

yðN�1Þ�Vðy; 0Þ ¼ M�ðyÞ; y > 0; ð5:10Þ
where � denotes the Dirac mass, and we let M ¼ !�1

N�1ku0k1.
Further we need the following assumptions on the asymptotic behavior of the coefficients aiN , i ¼ 1; . . . ;N:

lim
�!þ1

��ðnð�Þþbð�ÞÞ
Z �bð�Þ

0

Z
��

jaiNðy; tÞ � �iN j2dydt ¼ 0: ð5:11Þ

Theorem 5.1 (Case � < 1 ([14])). Let u be a solution of ð5:1Þ–ð5:3Þ in S with 0 � � < 1, and let E� be as in ð5:7Þ.
Assume that ðaiNÞ fulfills condition ð5:11Þ. Then u approaches E� as t!þ1 in the following sense, for all p 2
½1;þ1Þ.

Interior domain: For all � > 0, T > 
 > 0,

t
nð�Þ
bð�Þ p

I tT

t


I
�t1=bð�ÞR

juðy; sÞ � E�ðyN ; sÞjpdyds! 0: ð5:12Þ

Outer domain: For a suitable � > 0

t
nð�Þ
bð�ÞkuðtÞ � E�ðtÞk1;fxN>�t1=bð�Þg ! 0: ð5:13Þ

Next, we look at the case � ¼ 1, i.e., to cones; in this case the asymptotic profiles is N-dimensional.

Theorem 5.2 (Case � ¼ 1 (Cones; [14])). Let u be a solution of ð5:1Þ–ð5:3Þ in S, assume � ¼ 1 and let E be as in
ð5:6Þ, with C such that kEðtÞk1;�ð1Þ ¼ ku0k1;�ð1Þ. Assume that (aij) fulfills the condition

lim
�!þ1

��ðNþKÞ
Z �K

0

Z
��

jaijðy; tÞ � �ijj2dydt ¼ 0; 0 � i; j � N: ð5:14Þ

(Note that nð1Þ ¼ N, bð1Þ ¼K.) Then

t
N
KkuðtÞ � EðtÞk1;�! 0; t!þ1: ð5:15Þ

The same result holds true for the Cauchy problem, that is if �ð1Þ is replaced with RN above.

We sketch the proof of Theorem 5.1; the one of Theorem 5.2 follows the same lines.

Proof of Theorem 5.1 (sketch). For the choice of �ð�Þ in ð5:1Þ–ð5:3Þ, we have from [8] that a solution u satisfies

kuðtÞk1;� � �max
ku0k2=K1;�

tN=K
;
ku0k2=bð�Þ1;�

tnð�Þ=bð�Þ

( )
; for all t > 0: ð5:16Þ

The proof uses then Kamin’s rescaling arguments, where the scaling is chosen so as to leave � fixed. Let ukðx; tÞ ¼
knð�Þuðk�x0; kxN ; kbð�ÞtÞ, k � 1. Then uk satisfies essentially the same estimate as above, by direct inspection and for a
suitable �ð�Þ > 0:

kukðtÞk1;� � �max
ku0k2=K1;�

k�ð�ÞtN=K
;
ku0k2=bð�Þ1;�

tnð�Þ=bð�Þ

( )
; for all k > 1, t > 0: ð5:17Þ

In addition, again by direct inspection one checks that uk solves

@uk

@t
�
@

@xj
ðAk

ijðx; tÞðu
m
k ÞxiÞ ¼ 0; ðx; tÞ 2 S; ð5:18Þ

Ak
ijðx; tÞ

@umk
@xi

	j¼ 0; ðx; tÞ 2 @�	 ð0;þ1Þ; ð5:19Þ

ukðx; 0Þ ¼ uk0ðxÞ; x 2 �; ð5:20Þ

where uk0ðxÞ ¼ knð�Þu0ðk�x0; kxNÞ and for i, j 2 f1; . . . ;N � 1g
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Ak
ij ¼ k2ð1��Þakij; Ak

Nj ¼ k1��akNj; Ak
jN ¼ k1��akjN ; Ak

NN ¼ akNN ;

akijðx; tÞ ¼ aijðk�x0; kxN ; kbð�ÞtÞ:
Notice that for t > 0 we have the uniform conservation of massZ

�

ukðx; tÞdx ¼
Z

�

uðx; tÞdx ¼
Z

�

u0ðxÞdx: ð5:21Þ

Moreover from the problem ð5:18Þ–ð5:20Þ we have the energy estimate for all k � 1, T > 
 > 0, � > 0Z T




Z
��

jðumk ÞxN j
2dxdt þ k2ð1��Þ

Z T




Z
��

jrx0umk j
2dxdt � �; ð5:22Þ

where � depends on ku0k1;�, 
, T , � but not on k. One can prove for the sequence uk also an equicontinuity result with
respect to the time variable; we omit the precise statement here. Then, up to subsequences, we may assume uk ! u1 in
L2

locðSÞ and a.e. in S. The estimate ð5:22Þ itself shows that u1 does not depend on x0, and ð5:17Þ in turn shows

ku1ðtÞk1;� � �
ku0k2=bð�Þ1;�

tnð�Þ=bð�Þ
; for all t > 0: ð5:23Þ

Let ’ðxN ; tÞ be a smooth function in ½0;þ1Þ 	 ½0;þ1Þ such that

’ðxN ; tÞ ¼ 0; xN � R; ’ðxN ; tÞ ¼ 0; t � T :

Then from the weak formulation of the problem for uk, we obtain on taking the limit k!þ1 and invoking our
assumptions on aij, as well as the weak convergence rumk * rum1 in L2

locðSÞ and all our estimates above,ZZ
S

ð�u1’t þ ðum1ÞxN’xN Þdxdt ¼ lim
k!þ1

Z
�

ukðx; 0Þ’ðxN ; 0Þdx

¼ ’ð0; 0Þ
Z

�

u0dx ¼ ’ð0; 0Þ!N�1M: ð5:24Þ

Recalling that the limit function is independent of x0, we inferZ T

0

Z 1
0

x�ðN�1Þ
N ð�u1’t þ ðum1ÞxN’xN ÞdxNdt ¼ M’ð0; 0Þ: ð5:25Þ

Then u1 solves ð5:8Þ–ð5:10Þ; we can prove uniqueness of such solutions in a class satisfying among other requirements,
estimate ð5:23Þ; we omit the details, though the proof might have some independent interest. Thus, u1 ¼ E�.
Therefore, the whole sequence uk tends to E�, actually in L

p
locðSÞ for all p � 1, owing to the sup bound ð5:16Þ.

We next prove the interior estimate ð5:12Þ. Fix R > 0, T > 
 > 0, p � 1 and compute, by taking advantage of the
self-similar form of E� and by changing variables,

Ik ¼
I T




I
�R

jukðx0; xN ; zÞ � E�ðxN ; zÞjpdxdz

¼ knð�Þp
I kbð�ÞT

kbð�Þ


I
�kR

juðy; sÞ � E�ðyN ; sÞjpdyds:

Now for any given t � 1, we select k ¼ t1=bð�Þ so that by virtue of the already claimed compactness

lim
t!þ1

t
nð�Þ
bð�Þ p

I tT

t


I
�Rt1=bð�Þ

juðy; sÞ � E�ðyN ; sÞjpdxds ¼ lim
k!þ1

Ik ¼ 0:

Concerning the estimate in the outer domain, i.e., ð5:13Þ, we note that it reduces to an L1 estimate for uk, since E� ¼ 0

in the outer domain for a suitable choice of �. In turn, we may prove a local L1–L1 estimate in the outer domain, that is
essentially a bound like ð5:16Þ, but where the L1 norm of the initial data is calculated on a larger outer domain
� n��t1=bð�Þ=2. Since this norm goes to zero as t!þ1, the estimate follows. �

Comment 5.3. The asymptotic expansion for t!þ1 of solutions to the PME in the whole space is well known, see
[55], [69]; to the best of our knowledge, for equations with variable coefficients aij even this case was not treated in the
literature. The results of [14], which hold true also in this case, seem therefore interesting in view both of the domain
and of the structure of the equation we consider. See [56] for a related interesting investigation in the linear case.
An important role is played in all the quoted papers by the uniqueness of the fundamental solution, which we prove by
extending to our setting the proof of [64].

References for this section: [8], [14], [55], [56], [64], [69].
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6. Universal Bounds Near the Blow-up Time

Following [11] we consider nonnegative solutions to

ut � divðum�1jrujp�2ruÞ ¼ f ðxÞuq; ðx; tÞ 2 ST ¼ �	 ð0;T Þ; ð6:1Þ

where 0 < T <1. We always assume that

q > pþ m� 2; q > 1; p > 1:

Here f is a radial function in CðRN n f0gÞ, with f ðxÞ > 0 if x 6¼ 0; we always assume that f 2 L1
locðR

NÞ. The domain �

is an open subset of RN such that 0 2 �. We investigate the behavior of u near the (possible) blow up point ð0;T Þ
without any assumption on initial or boundary data. Though the results in [11] are more general, we confine ourselves
here to the case of power f , that is

f ðxÞ ¼ jxj��; �1 < � < minðN; pÞ; ð6:2Þ

setting also

H ¼
ðq� 1Þp� �ðpþ m� 3Þ

q� p� mþ 2
; B ¼

p� �
ðq� 1Þp� �ðpþ m� 3Þ

:

Theorem 6.1 (Local sup estimates ([11])). Assume that � � 0 and

0 < pþ m� 2 < q < pþ m� 2þ
p� �
N

; ð6:3Þ

or that � < 0 and

0 < pþ m� 2 < q < pþ m� 2þ
p

N
; ð6:4Þ

�ðpþ m� 3Þ < ðq� 1Þp; ð6:5Þ

j�j � minfNðq� 1Þ; Nðq� p� mþ 2Þ=ðpþ m� 2Þg: ð6:6Þ

Then any nonnegative solution to ð6:1Þ satisfies

uðx; tÞ � �ðT � tÞ�B; jxj < ðT � tÞ
1
H=2; ð6:7Þ

provided ðT � tÞ
1
H < distð0; @�Þ, and T=2 < t < T .

Let us remark that ð6:3Þ and ð6:5Þ imply that H > 0, B > 0.
The proof of the supremum estimates of Theorem 6.1 relies on two main ingredients: suitable a priori integral

estimates, and precise local L1 estimates given in terms of such integral norms, in the spirit, e.g., of ð3:27Þ. Then we
use the first ones in the latter and get the result. Let us first sketch the proof of the following integral estimate.

Proposition 6.2 (A priori integral estimate ([11])). Let N > � � 0, pþ m� 2 > 0, and 0 < 
 < minf1; pþ m� 2g
and let u be a nonnegative solution to ð6:1Þ. Then for 0 < t < T , 0 < �H � T � t, 2� < distð0; @�Þ, we haveI

B�

uðx; tÞ1�
dx

 !1=ð1�
Þ

� ���HB; ð6:8Þ

where � ¼ �ð
; p;m; qÞ. If � < 0, ð6:8Þ is still in force, provided ð6:6Þ is also satisfied.

Proof of Proposition 6.2 (sketch). The argument is typical of equations with forcing terms. Fix 0 < 
 < minð1; pþ
m� 2Þ, and let � 2 C1ðRNÞ such that � � 0, � ¼ 1 for x 2 B�, � ¼ 0 for x 62 B2�, and jr�j � 2=�. We choose as a
testing function u�
�s, s ¼ pðq� 
Þ=ðq� p� mþ 2Þ > p, obtaining after applying in a standard way Hölder and
Young inequalities,

d

d


Z
RN

�suð
Þ1�
dx �
1� 


2

Z
RN

�sjxj��uð
Þq�
dx� ��N�H�
ð p��Þð1�
Þ
q�p�mþ2

� �0�
�Nq�1

1�
��
Z
RN

�suð
Þ1�
dx
� �q�


1�

� ��N�H�

ð p��Þð1�
Þ
q�p�mþ2 : ð6:9Þ

Set then

yð
Þ ¼
1

�N

Z
RN

�suð
Þ1�
dx;

we get from ð6:9Þ
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y0 � �0�
��y

q�

1�
 � �1�

�H�ðp��Þð1�
Þ
q�p�mþ2 ; t < 
 < T ; ð6:10Þ

where �0, �1 are now fixed constants for the rest of this proof.
We then consider the alternative

i) �0�
��yðtÞ

q�

1�
 � 2�1�

�H�ð p��Þð1�
Þ
q�p�mþ2 ;

ii) �0�
��yðtÞ

q�

1�
 > 2�1�

�H�ð p��Þð1�
Þ
q�p�mþ2 .

If i) holds true, we immediately get

yðtÞ � ð2�1�
�1
0 Þ

1�

q�
�

�ðp��Þð1�
Þ
q�p�mþ2 : ð6:11Þ

If ii) is in force, it follows that y0 > 0 over ð0;T Þ, thus ii) is valid with yðtÞ replaced with yð
Þ, t < 
 < T . Then we may
write

y0 �
�0

2
���y

q�

1�
 ; t < 
 < T ;

whence y would blow up before 
 ¼ T , unless

yðtÞ � ���
1�

q�1ðT � tÞ�

1�

q�1 : ð6:12Þ

Then we select T � t so that ð6:12Þ implies ð6:11Þ, amounting to our assumption

�H � T � t:

�

We omit the proof of the local sup estimates, confining ourselves to the relevant statement in the case � > 0.

Lemma 6.3 (A priori sup estimate ([11])). Assume here � > 0,

q < pþ m� 2þ 	
p� �
N

; 0 < 	 < !þ 1:

Let 0 < d1 < d2, 0 < T2 < T1 < t < T ,

M1 ¼
pþ m� 2þ 	 p

N
� ð	� !Þ

pþ m� 2þ 	 p
N
� 1

s

� �
� q

> 1;

M2 ¼
pþ m� 2þ ð!þ qÞ p

N
� q� 1

s
ð!þ pþ m� 2Þ

pþ m� 2þ 	 p
N
� 1

s

� �
� q

> 1;

where maxð1;N=pÞ < s < N=� is chosen so that the denominator of M1 is positive, and ! is large enough. Then

kuk1;Bd1
	ðT1;tÞ � d

�
q�1

2 ðT1 � T2Þ
� 1
q�1 þ d

�
q�p�m�2

2 ðd2 � d1Þ
� p
q�p�m�2

þ �ðt � T2Þ
1

!þ1�	d
ð��þN

s
Þ M1

!þ1�	
2 sup

T2<
<t

Z
Bd2

uð
Þ	dx

 ! M2�1
!þ1�	

: ð6:13Þ

In order to prove the sup estimate we select 	 ¼ 1� 
 in ð6:13Þ, 
 as in ð6:8Þ. Then for large enough s and ! we
choose d1 ¼ ðT � tÞ1=H=2, d2 ¼ ðT � tÞ1=H, T1 ¼ t � ðT � tÞ=2, T2 ¼ t � ðT � tÞ, so that all three terms on the right-
hand side of ð6:13Þ reduce to constant multiples of ðT � tÞ�B.
In fact in the third term there we use the integral average estimate ð6:8Þ so that the factor T � t appears with the correct
power �B. Note that the auxiliary parameters 
, s and ! do not appear in the estimated blow up rate.

6.0.1 Some results in the whole space

The methods of [11] are rather general, and in that paper were also applied to infer other results, like e.g.,

Proposition 6.4 (Nonexistence of local solutions ([11])). Let f ðxÞ ¼ ð1þ jxjÞ��, with � < 0, pþ m� 3 < 0, ðq�
1Þp < �ðpþ m� 3Þ (so that H;B < 0). Assume that ð6:4Þ is satisfied. Then the only nonnegative solution in RN 	
ð0;T Þ to ð6:1Þ is the trivial one u ¼ 0.

Theorem 6.5 (Bound below when f ¼ 1 ([11])). Let u be a subsolution to ð6:1Þ defined in RN 	 ð0;T Þ. Assume that
f ¼ 1, and that u blows up at time 1 > T > 0. Then

ðT � tÞ
1

q�1kuðtÞk1;RN � ðq� 1Þ�
1

q�1 ; 0 < t < T : ð6:14Þ

Theorem 6.6 (Global boundedness of support ([11])). Let u be a nonnegative subsolution to the Cauchy problem for
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ð6:1Þ. Assume that f ¼ 1, pþ m� 3 > 0, that

uðx; tÞ � cðT � tÞ�
1

q�1 ; x 2 RN ; 0 < t < T ; ð6:15Þ

and that supp uðx; 0Þ is bounded. Then there exists a finite constant C such that

supp uðx; tÞ � BC; for all 0 < t < T : ð6:16Þ
Comment 6.7. Comparison between suitable ordinary differential equations and diffusion equations with sources was
applied in [57]. In unbounded domains it was used in [5], [2], [6] and [3] to obtain a priori bounds for solutions to
equations and systems with superlinear sources. Indeed, such a comparison yields the integral estimates needed in the
independently proved L1–L1 estimates. Clearly in this approach the choice of the correct space-time scaling is of the
greatest importance.

References for this section: [2], [3], [5], [6], [11], [57].

7. Decay of Mass and Other Properties of Degenerate Parabolic Equations with Damping

7.1 The Cauchy problem with damping

Consider the following Cauchy problem set in ST ¼ RN 	 ð0;T Þ:

ut � divðum�1jrujp�2ruÞ ¼ �jru	jq ðx; tÞ 2 ST ; ð7:1Þ
uðx; 0Þ ¼ u0ðxÞ � 0; x 2 RN : ð7:2Þ

We assume throughout that pþ m� 3 � 0, p > 1, 1 < q < p, 	q > pþ m� 2, r > 1, and u0 2 L1ðRNÞ, with u0 � 0.
We use in what follows the notations

K ¼ Nðpþ m� 3Þ þ p; L ¼ pð	q� 1Þ � qðpþ m� 3Þ;

q� ¼
Kþ N

N	þ 1
; A ¼

ðq� � qÞðN	þ 1Þ
L

:

Note that L > 0 under our assumptions.

Definition 7.1. A weak solution to ð7:1Þ–ð7:2Þ is a function u 2 L1locðR
N 	 ð0;1ÞÞ with u 2 Cðð0;1Þ; L2

locðR
NÞÞ,

jru� jp, jru	jq 2 L1
locðR

N 	 ð0;1ÞÞ, where � ¼ ðpþ m� 2Þ=ðp� 1Þ, such thatZ 1
0

Z
�

�u
@�

@t
þ um�1jrujp�2rur� þ jru	jq�

� �
dxdt ¼ 0; ð7:3Þ

for all � 2 C1ðRN 	 ð0;1ÞÞ whose support is a compact subset of RN 	 ð0;1Þ. In addition we require uðtÞ ! u0 as
t! 0 in L1

locðR
NÞ.

Let us begin with some estimates for large times.

Theorem 7.2 (Finite speed of propagation ([18])). Let u � 0 be a solution of ð7:1Þ–ð7:2Þ, with pþ m� 3 > 0 and
supp u0 � B�0

, 0 < �0 < þ1. Then we have for large enough t

ZðtÞ :¼ inff� > 0 j uðx; tÞ ¼ 0; jxj > �g � �t
	q�ð pþm�2Þ

L : ð7:4Þ

Theorem 7.3 (Mass decay ([18])). Under the same assumptions of Theorem 7.2 we have

if q < q�: kuðtÞk1;RN � �t�A; ð7:5Þ

if q ¼ q�: kuðtÞk1;RN � �jlog tj�
1

	q�1 : ð7:6Þ

Remark 7.4. 1) It is important that the constants � in Theorems 7.2 and 7.3 do not depend on the initial data.
2) In the case q > q� on combining ð7:5Þ with the known estimate

kuðtÞk1;RN � � sup
t=4<
<t

kuðtÞk
p
K

1;RN t
N
K ;

we obtain for large t the decay rate predicted by self-similar solutions, i.e.,

kuðtÞk1;RN � �t�
p�q
L :

Even in the case of solutions without bounded support we may prove the following.

Theorem 7.5 (Mass decay ([18])). Let u be a solution to ð7:1Þ–ð7:2Þ, with q < q�. The for large t we have
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kuðtÞk1;RN � �
Z
fjxj>RðtÞg

u0ðxÞdxþ �t�A; RðtÞ ¼ t
	q�ð pþm�2Þ

L ; ð7:7Þ

provided either 	 ¼ ðpþ m� 2Þ=ðp� 1Þ or p ¼ 2, N � 2.

On the contrary, for supercritical q we do not have decay of mass.

Theorem 7.6 (Asymptotically positive mass ([18])). Let u be a solution to ð7:1Þ–ð7:2Þ, with q > q�. Then

kuðtÞk1 � c > 0; t > 0: ð7:8Þ

Here c is a constant depending also on u0.

Proof of Theorem 7.5 (sketch). Let us prove ð7:7Þ when 	 ¼ ðpþ m� 2Þ=ðp� 1Þ.
The starting point of the proof of the decay of mass is to represent the total mass as followsZ

RN

uðx; tÞdx ¼
Z
fjxj<2Rg

uðx; tÞdxþ
Z
fjxj�2Rg

uðx; tÞdx ¼: E1 þ E2;

for a free parameter R which will be chosen presently. On applying Hölder, Gagliardo–Nirenberg and Young
inequalities we have

E1 � �
Z
RN

uðtÞdx
� � 1

	q

R
Nð	q�1Þ
	q

� �
Z
RN

jru	jqdx
� � �

	q

kuðtÞk1��
1;RNR

Nð	q�1Þ
	q

¼ � �
d

dt
kuðtÞk1;RN

� � �
	q

kuðtÞk1��
1;RNR

Nð	q�1Þ
	q

�
1

2
kuðtÞk1;RN þ � �

d

dt
kuðtÞk1;RN

� � 1
	q

R
Nð	q�1Þþq

	q :

Here � ¼ Nð	q� 1Þ=½Nð	q� 1Þ þ q�, and we applied the equation ð7:1Þ.
On the other hand, on multiplying the equation by a suitable cut off function and integrating by parts, we obtain that

E2 � �
Z
fjxj>Rg

u0ðxÞdxþ �TR
N� q

q�pþ1 ¼: E3;

note that in our case the assumptions lead us to q > p� 1, and that we work in t 2 ð0;T Þ for any fixed T > 0. Next
select

R ¼ RðT Þ ¼ T
ðq� pþ1Þð pþm�2Þ

ðp�1ÞH :

On combining the estimates above for E1 and E2, we get for 0 < t < T

FðtÞ :¼ kuðtÞk1 � 2E3 � �
dF

dt

� � 1
	q

RðT Þ
Nð	q�1Þþq

	q :

The sought after estimate (at t ¼ T) follows from an analysis of this nonlinear ordinary differential equation, where we
may assume FðT Þ > 0 (otherwise the result follows trivially). �

Proof of Theorem 7.2 (sketch). Let us try to sketch at least how the interplay between diffusion and damping is used in
terms of integral estimates.
Define the radii ri ¼ 2�ð1� 2�i�1Þ, i ¼ 0; 1; . . . , where � > 2�0 and the sets Ui ¼ fjxj > rig.

By means of calculations similar to the ones showed in the proof of Theorem 3.3, starting from Caccioppoli
inequality we arrive at

yiþ1 :¼ sup
0<
<t

Z
Uiþ1

u1þ
dxþ
Z t

0

Z
Uiþ1

umþ
�2jrujpdxd


þ
Z t

0

Z
Uiþ1

u
jru	jqdxd
 þ
2i p

�p

Z t

0

Z
Uiþ1nUiþ2

upþmþ
�2dxd


� �
2i p

�p
t
ð1þ
Þ p
K
 y

1þ pð pþm�3Þ
K


i :

ð7:9Þ

Here K
 ¼ Nðpþ m� 3Þ þ ð
 þ 1Þp, for a suitable 
 > 0.
Next we use the damping term. Since we know that the support of u is bounded, we have the Poincaré inequality

74 ANDREUCCI and TEDEEV



Z
Ui

wqdx � �ZðtÞq
Z
Ui

jrwjqdx;

where w ¼ uð	qþ
Þ=q. Then, by Hölder inequalityZ t

0

Z
UinUiþ1

w
qð pþmþ
�2Þ

	qþ
 dxd
 � �
Z t

0

Z
Ui

wqdxd


� � pþmþ
�2
	qþ

ðt�NÞ

	q�ð pþm�2Þ
	qþ


� �ðt�NÞ
	q�ð pþm�2Þ

	qþ
 ZðtÞq
pþmþ
�2
	qþ
 y

pþmþ
�2
	qþ


i : ð7:10Þ

Thus, Caccioppoli inequality and ð7:10Þ imply

yiþ1 � �2ipt
	q�ðpþm�2Þ

	qþ
 �
N
	q�ðpþm�2Þ

	qþ
 �p
ZðtÞq

pþmþ
�2
	qþ
 y

pþmþ
�2
	qþ


i : ð7:11Þ

Let

a ¼
K


K
 þ pðpþ m� 3Þ
; A ¼ ½t

ð1þ
Þ p
K
 ��p�a;

b ¼
	qþ 


pþ mþ 
 � 2
> 1; B ¼ ½ðt�NÞ

	q�ð pþm�2Þ
	qþ
 ��pZðtÞq

pþmþ
�2
	qþ
 �b:

Then from ð7:9Þ and ð7:11Þ it follows that

yaiþ1

A
þ

ybiþ1

B
� �Ciyi;

for a suitable C > 1. On applying Young inequality we obtain

y�1iþ1

A�1B1��1
� �Ciyi; ð7:12Þ

where �1 ¼ b=ðbþ 1� aÞ < 1. Therefore from the iterative result [58, Lemma 5.6, Chapter 2] we conclude that yi! 0

if

ðy0BÞ
1�a
b A � �0: ð7:13Þ

This yields that uðx; tÞ ¼ 0 for jxj > 2�. Finally we derive a careful bound of y0 in terms of t, �, ZðtÞ, which replaced in
ð7:13Þ implies the stated estimate of ZðtÞ; since this step, which makes use again of the damping term, is nontrivial, we
omit it here. �

7.2 The Cauchy problem with damping and blow up

We consider next the existence of a priori global in time bounds of solutions to the Cauchy problem for the equation

ut � divðum�1jrujp�2ruÞ ¼ ur � �jru	jq; ð7:14Þ

for r > 1, � > 0 and p, m, q as above. We have to introduce the threshold

r� :¼
q

p� q
½	q� ðpþ m� 2Þ�:

We only state the following results.

Theorem 7.7 (A priori bounds of global solutions ([18])). Let u be a solution to ð7:14Þ, ð7:2Þ, which can be
approximated by bounded subsolutions. Assume 	 ¼ ðpþ m� 2Þ=ðp� 1Þ, r > pþ m� 2, r > r�, q < q�, � ¼ 1.
Moreover, assume that

sup
�>1

�
AL

	q�ðpþm�2Þ

Z
jxj>�

u0ðxÞdx < þ1; ð7:15Þ

and ku0k�;RN < �0 for a suitable �0 and � > Nðr � p� mþ 2Þ=p. Then the following bound is valid:

kuðtÞk1;RN � �t�
p�q
L ; t > 1: ð7:16Þ

Theorem 7.8 (Blow up ([18])). Assume that r ¼ r�, q < q�, 0 < � < ��, where ��ðN; 	; p;m; qÞ > 0. Then any
nontrivial solution to ð7:14Þ, ð7:2Þ blows up in a finite time.

Since equation ð7:14Þ has a positive explicit stationary solution (for a certain � > 0), the requirement � < �� in
Theorem 7.8 seems to be not simply technical.
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7.3 The Cauchy–Dirichlet problem with damping in cone-like domains

We consider here again domains of the class DðH;MÞ introduced in Sect. 4.1. In [12], still in the case of cone-like
domains, we study also the Cauchy–Dirichlet problem for the equation with a damping term

@u

@t
��um ¼ �aðxÞbðtÞjru	jq; ðx; tÞ 2 �	 ð0;þ1Þ; ð7:17Þ

for m � 1, q 2 ð1; 2Þ, 	q > m, while initial and boundary data are still prescribed as in ð4:19Þ–ð4:20Þ. In what follows
we assume that aðxÞ ¼ aðjxjÞ and bðtÞ are strictly positive functions, satysfing

aðsÞ; sq=aðsÞ; are nondecreasing for s > 1; ð7:18Þ

and, for a given c 2 ð0; 1Þ,

bðtÞ; tc=bðtÞm=ð	q�mÞ; are nondecreasing for t > 1: ð7:19Þ
Denote for s > 0

�ðsÞ ¼ ½s2ð	q�1Þ�qðm�1ÞaðsÞm�1�1=ð	q�mÞ; 
 ¼ tbðtÞ�
m�1
	q�m ;

e�ðtÞ ¼ �ð�1Þð
ÞMð	q�1Þþq

að�ð�1Þð
ÞÞbðtÞt

	 
1=ð	q�1Þ

:

Recall that in the setting of cone-like domains, we denote also � ¼ Mðm� 1Þ þ 2.

Theorem 7.9 (Moment bound ([12])). Let m > 1, u be a solution of ð7:17Þ, ð4:19Þ–ð4:20Þ in �	 ð0;þ1Þ, and let
supp u0 be bounded. Assume also that

jrHðxÞ � xj � �HðxÞ; jxj � 1: ð7:20Þ

Then a time t0 > 0 depending on u0 exists such that for t > t0 both

�ðtÞ :¼
Z

�

uðx; tÞHðxÞdx � �e�ðtÞ; ð7:21Þ

and

�ðtÞ � �
Z t

1

að

1
� Þbð
Þ
��ðMð	q�1ÞþqÞd


� ��1=ð	q�1Þ

ð7:22Þ

hold true. Moreover

kuðtÞk1;� � �e�ðtÞ2=�t�M=�; t > t0: ð7:23Þ

Theorem 7.10 (No moment decay in standard cones ([12])). Let u be a solution of ð7:17Þ, ð4:19Þ–ð4:20Þ in �	
ð0;þ1Þ, where � is a standard cone (see Example 4.5). Let aðsÞ ¼ s� for s > 1, � 2 ½0; qÞ, and bðtÞ ¼ t�, t > 1;
assume also that supp u0 is bounded and that

q > q� :¼ ðMðmþ �ðm� 1ÞÞ þ 2ð�þ 1Þ þ �Þ=ðM	þ 1Þ: ð7:24Þ

Then suitable t1 > 0 and c > 0 depending on u0 exist, such that

�ðtÞ > c > 0; t > t1: ð7:25Þ

More generally we can prove the next theorem.

Theorem 7.11 (Moment bound in standard cones ([12])). Let u be a solution of ð7:17Þ, ð4:19Þ–ð4:20Þ in �	
ð0;þ1Þ, where � is a standard cone. Assume that u can be approximated by solutions with bounded support. Then

�ðtÞ � �
Z

�\fjxj>�ð�1ÞðtÞg
u0ðxÞHðxÞdxþ �e�ðtÞ; t > 0: ð7:26Þ

Remark 7.12 (Standard cones ([12])). If �, aðsÞ and bðtÞ are as in Theorem 7.10, then from Theorems 7.9 and 7.10 it
follows that �ðtÞ ! 0 as t!þ1 if q � q�, while �ðtÞ > c if q > q�, where q� is defined in ð7:24Þ. Moreover, for
large t we have for h1 ¼ 2ð	q� 1Þ þ ð�� qÞðm� 1Þ,

�ðtÞ � �t�ðq
��qÞðM	þ1Þ=h1 ; q < q�; ð7:27Þ

�ðtÞ � �½ln t��1=ð	q�1Þ; q ¼ q�; ð7:28Þ
kuðtÞk1;�� �t�ð2þ2�þ��qÞ=h1 ; q < q�: ð7:29Þ
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Remark 7.13 (Octants ([12])). According to the results and methods in [12] we also have the following results in
octants-like domains, as in Example 4.5.2, i.e., for 2 � i � N

� ¼ fðx1; . . . ; xNÞ 2 RN j x1; x2; . . . ; xi > 0g; HðxÞ ¼ x1 . . . xi:

Let m > 1, a ¼ 1, b ¼ 1, u0 with bounded support and

q� ¼
ðN þ iÞmþ 2

ðN þ iÞ	þ 1
:

Then if q � q� we have �ðtÞ ! 0 as t!þ1; if instead q > q� we have �ðtÞ � c > 0 for large t. More exactly for
large t

�ðtÞ � �t�ðq
��qÞ½ðNþiÞ	þ1�=h0 ; q < q�; ð7:30Þ

�ðtÞ � �½ln t��1=ð	q�1Þ; q ¼ q�; ð7:31Þ
here h0 ¼ 2ð	q� 1Þ � qðm� 1Þ.

Comment 7.14. Behavior of mass plays an important role in the investigation of the asymptotic behavior for large
times of solutions of parabolic equations with damping terms. It is well known (see Theorem 3.3) that for solutions or
subsolutions to the Cauchy problem for a homogeneous doubly degenerate parabolic equation we have for any t > 0

kuðtÞk1;RN � �t�
N
K sup

t=4<
<t

Z
RN

uðx; 
Þdx

 ! p
K

: ð7:32Þ

For the same Cauchy problem with the damping term as in Sect. 7.1 the massZ
RN

uðx; 
Þdx

decays in time, but not necessarily to 0. Namely our results answer, in terms of critical exponents, the question of when
the mass decays to 0. As a consequence of this result and of ð7:32Þ we have faster decay of kuðtÞk1;RN as t!þ1.
This kind of estimates also are helpful in discussing whether the fundamental solution does exist. To the best of our
knowledge the first result in this direction for the heat equation with gradient damping was proven in [21]; see also [24].
We also quote on the subject of equations with nonlinear source terms depending on the gradient [3], [27], [22], [25],
[26], [42], [23], [30], [40], [39], [59], [47], [29], [20], [48], [32].

As to the Cauchy–Dirichlet probem, we investigated in [12] for the first time in this framework, as far as we know,
the role played by a suitable moment depending on the geometry of the domain; this role amounts to the one of global
mass in the whole space.

References for this section: [3], [12], [18], [20], [21], [22], [23], [24], [25], [26], [27], [29], [30], [32], [39], [40], [42],
[47], [48], [59].
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