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1 Introduction

The production of photon pairs (diphotons) at the Large Hadron Collider (LHC) is a
very relevant process for phenomenological studies in the context of the Standard Model
(SM) [2–5] and in the search for new physics [6–11]. In particular, diphoton final states are
highly relevant for Higgs boson studies [12–19] (and played a crucial role in its discovery [20,
21]), as they constitute an irreducible background for a Higgs boson decaying into two
photons.

Due to its physical relevance, the study of diphoton production requires dedicated
and accurate theoretical calculations, in particular including QCD radiative corrections at
high perturbative orders. The state of the art for diphoton production is represented by
the next-to-next-to-leading order (NNLO) QCD corrections [22–25] to the Born subprocess
(which proceeds via quark annihilation qq̄ → γγ). The relevant scattering amplitudes in
the completely massless case have been known in the literature for some time [26–36].

More recently, scattering amplitudes belonging to higher orders in the strong coupling
αs (i.e. beyond the NNLO) have become available (in the massless case): the three-loop
matrix element [37]; the two-loop scattering amplitudes for a photon pair in association
with one jet in the leading colour approximation [38–40], and, very recently, the full colour
case [41, 42]. The two-loop scattering amplitudes for diphoton production in gluon fu-
sion [43] together with the recent computation of diphoton production in association with
one jet [42, 44] at NNLO emphasise that all the building blocks are in place for the next-to-
next-to-next-to-leading order (N3LO) massless calculation. However, the implementation
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of slicing subtraction methods to reach the N3LO accuracy could be challenging in this
case, due to the presence of a high number of particles in the final state and the use of a
photon isolation prescription. More clearly, the NNLO calculation of the diphoton cross
section in association with one jet at small diphoton transverse momentum could be very
CPU demanding.

In the massive case, the first non-trivial corrections appear at the NNLO, through the
inclusion of top quark loops and top quark radiation.1 The mass effects of the so-called
box contribution (gg → γγ) were discussed in ref. [23] (together with partial N3LO contri-
butions). Due to the large gluon luminosity at the LHC, the size of the box contribution
is of the order of the Born subprocess qq̄ → γγ. It is therefore of interest to calculate the
corrections of the following perturbative order (i.e. N3LO contributions). Regarding the
gluon fusion channel only, the simplest approach (which captures very sizable components)
is to consider the NLO QCD corrections to the box contribution, since these form a gauge
invariant subset [43] of the whole N3LO gluon fusion channel. In this context, two recent
papers have shown the impact of these massive NLO QCD corrections on the gluon fusion
channel [45, 46].

Considering the full NNLO accuracy, there are still three missing ingredients that were
not available or not presented together in previous phenomenological studies in the litera-
ture: i) the massive one-loop real-virtual contribution (qq̄ → γγg and q(q̄)g → γγq(q̄)), the
double real radiation of top quarks (qq̄ → γγtt̄ and gg → γγtt̄) and the two-loop virtual
corrections to the Born sub-process qq̄ → γγ.

In this paper we report on the computation of the two-loop form factors for diphoton
production in the quark annihilation channel, where the full dependence on the heavy quark
mass, which appear in the loops, is retained. This contribution is included in the recently
presented phenomenological study of full massive NNLO QCD corrections to diphoton
production [1].

The two-loop form factors have been computed employing standard techniques for scat-
tering amplitude calculations. We considered the partonic process qq̄ → γγ and the relative
two-loop Feynman diagrams, which contain a massive heavy quark loop, as shown in fig-
ure 1. The associated amplitude is decomposed into a combination of tensors multiplied by
scalar form factors, as described in [47], and the scalar integrals appearing in the expressions
of the form factors are written in terms of a basis of master integrals (MIs). The decom-
position in terms of MIs is performed using Integration-by-Parts (IBPs) identities [48, 49],
via the Laporta Algorithm [50], implemented in the computer code2 KIRA [58, 59].

The MIs relevant for this process have been computed by means of the differential
equations method [60–67]. While for the integrals associated to the planar topologies
analytic expressions are available in the literature [68–74], the non-planar ones have been
computed numerically in [45, 46]. Indeed, while the planar MIs admit an analytic solution in
terms of Multiple Polylogarithmic functions (MPLs) [75–80], it is known that the functional
space for the analytic solution of the non-planar double-box family [81] contains elliptic

1The inclusion of the massive b-quark contribution it is also possible in this context but it is often not
considered in the literature.

2Other available implementations are described in [51–57].
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integrals [82–93]. In recent years, a big effort has been devoted to the understanding of
the analytic structure of Feynman integrals which do not admit an expression in terms of
MPLs. However, even in the cases in which an analytic solution in closed form is available,
the numerical evaluation of the functions associated to such solution can be extremely
challenging for phenomenological applications [94, 95].

In order to be able to overcome the issues previously described, we choose to exploit
the generalised power series method [96–102] to solve the systems of differential equations
associated to the MIs. This technique, currently implemented in two public computer
codes [103, 104], has recently attracted a lot of interest due to its wide range of applicability
and it has been successfully employed in several phenomenological applications [1, 105–107].
Specifically, in the calculation reported in this paper, we used the software DiffExp [103]
to obtain a semi-analytic solution for the MIs.

The paper is organised as follows. In section 2, we describe the general setup for
the computation and we set the context in which the two-loop form factors, presented in
this paper, are relevant. We discuss the form factors computation along with their UV
singularity structure and the renormalisation procedure. In section 3 instead we report
on the MIs calculation. We describe the different integral families that appear in the
computation and the approach that we used to solve the differential equations, along with
a brief analysis on the geometry underlying the actual analytic solution.

Moreover, as ancillary material attached to this paper, we furnish the analytic expres-
sions of the finite reminder for the form factors, alongside with Mathematica files which
allows for a standalone evaluation of the MIs with DiffExp.

2 Computational setup and amplitude structure

In this paper, we consider the two-loop form factors for diphoton production in the quark
annihilation channel with a heavy quark loop. At the partonic level, the scattering ampli-
tude proceeds as the Born subprocess:

q(p1) + q(p2) → γ(p3) + γ(p4). (2.1)

The kinematics for this process is described by the Mandelstam variables3

s = −(p1 + p2)2, t = −(p1 − p3)2, u = −(p2 − p3)2, with s + t + u = 0, (2.2)

where the external particles are on-shell, i.e. p2
i = 0, and we indicate with m2

t the heavy-
quark squared mass.4 In order to obtain the scattering amplitude, we generated the relevant
Feynman diagrams using the FeynArts package [109]. We found a total number of 14
diagrams contributing to the amplitude, the representative ones are shown in figure 1. We
write the scattering amplitude in terms of form factors, which are decomposed into a basis
of 72 MIs exploiting IBPs reduction [48–50, 52–58, 110], as implemented in the software
Kira [58].

3For our computations we use the metric of [108].
4For the rest of this paper we will refer to the heavy quark as top quark. We note however that our

formulas are general and they can be evaluated with a different value of the heavy quark mass.
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Figure 1. Representative set of two-loop diagrams with internal heavy-quark loops, which con-
tribute at NNLO QCD corrections to diphoton production in the quark annihilation channel. Thin
black lines represents light quarks, thick black lines heavy quarks, curly lines gluons and wavy lines
photons.

The MIs contributing to this process can be described by three different scalar integral
topologies (modulo exchange of the two final photons). Specifically, the MIs for the Feyn-
man diagrams (a) and (b) in figure 1 are associated to the integral families PLA and NPL,
respectively, as defined in section 3. Similarly, the MIs for the diagrams (c), (d) and (e)
can be grouped into one scalar integral family, PLB, also defined in section 3. The MIs of
the families PLA and PLB were already known in the literature [68]. The MIs for the non-
planar topology NPL have been studied in [68, 73, 74, 98, 111–113]. Specifically, the top
sector integrals have been computed numerically in [45, 46]. For this project, we performed
an independent calculation of all the MIs by means of the differential equations method [60–
67]. In particular we solved the system of differential equations semi-analytically exploiting
the generalised power series expansion technique, as described in [101] and implemented in
the software DiffExp [103].

The two-loop amplitudes computed in this paper constitute a necessary ingredient
of the recently presented full massive NNLO QCD corrections to diphoton production at
hadron colliders [1]. We anticipate here, that our two-loop form factors, taking into account
the full dependence on the top quark mass, are finite after UV renormalization. Therefore,
they can be included directly (without the use of any IR regularization prescription) in
any numerical implementation of the NNLO cross section. In the following paragraph we
will illustrate the precedent statement with a specific example based on the qT -subtraction
method [114, 115] (which can easily be extended to any other subtraction method).

To this end, we consider the following scattering process,

h1 + h2 → γγ (2.3)

where h1 and h2 are the colliding hadrons. At the NNLO, the cross-section for this process
can be computed using the qT -subtraction method [114–116] as follows

dσγγ
NNLO = Hγγ

NNLO ⊗ dσγγ
LO +

[
dσγγ+jets

NLO − dσCT
NLO

]
. (2.4)

The terms inside the square brackets dσγγ+jets
NLO and dσCT

NLO represent the cross section for
diphoton plus jet production at NLO [36] and the corresponding counterterm, needed to
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cancel the associated singularities in the small-qT limit. The coefficient function Hγγ
NNLO

(defined in [116]) is the so-called hard-virtual function and it includes the one-loop and
two-loop corrections to the Born subprocess. This object admits a perturbative expansion
in terms of the strong coupling αS :

Hγγ = 1 + αS

π
Hγγ

NLO +
(

αS

π

)2
Hγγ

NNLO + · · · . (2.5)

In our particular case (diphoton production) the one-loop contribution to eq. (2.5)
was calculated in [33], while the massless two-loop contribution was first calculated in [35]
and later in [37]. The explicit expressions of the hard virtual factor (computed with the
previous massless one- and two-loop amplitudes) in the hard resummation scheme are
given in appendix A of ref. [115]. The inclusion of the new two-loop massive form factors
proceeds by simple addition to that of the massless case [35]. After regularising the IR
divergences (e.g. in the hard resummation scheme) [115] present in the massless two-loop
amplitude [35], our massive two-loop contribution can be added directly to the massless
finite remainder.

After generating all the relevant Feynman diagrams for the process, the amplitude
Aqq̄,γγ has been decomposed in terms of form factors [47], and the UV singularities have
been regularised in dimensional regularisation. The expression obtained has been used to
compute the NNLO corrections to the hard function Hγγ coming from two-loop diagrams
which involve a massive top quark loop. Specifically, from the knowledge of the finite
remainder A(fin)

qq̄,γγ of the amplitude, we can obtain the hard function from the all-orders
relation [115]:

Hγγ =
|A(fin)

qq̄,γγ |2

|A(0)
qq̄,γγ |2

, (2.6)

where A(0)
qq̄,γγ is the Born-level amplitude for this process:

|A(0)
qq̄,γγ |2 = 128π2 α2

em Q4
q Nc

(
t

u
+ u

t

)
, (2.7)

with αem, the QED coupling, Qq is the electric charge of the incoming quarks and Nc is
the number of colours. We also performed a sum over initial and final polarisations and
initial colours.

This massive hard-virtual coefficient represents the last missing ingredient necessary
to perform a NNLO phenomenological study, for diphoton production at the LHC, which
takes into account the complete dependence on the top quark mass [1].

2.1 Form factors

The bare scattering amplitude can be written5 as

Aqq̄,γγ = αem δij ϵ∗µ
λ3
(p3)ϵ∗ν

λ4(p4)vs2(p2)Aµν(s, t, u, m2
t )us1(p1), (2.8)

5For the sake of simplicity we are omitting color indices on the left side of eq. (2.8).
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where δij is the Kronecker delta function with i and j the color indices of the incoming qq̄

pair, ϵ∗µ
λ3
(p3) and ϵ∗ν

λ4
(p4) are external photon polarisation vectors and vs2(p2), us1(p1) the

quark spinors.
The amplitude (2.8) can be further decomposed in terms of a set of four independent

tensors6 [47] which are built using external momenta and polarisation vectors:

Aqq̄,γγ =
4∑

k=1
Fk Tk, (2.9)

where the Tk are chosen as:

T1 = vs2(p2)/ϵ∗λ3
(p3)us1(p1)ϵ∗λ4(p4) · p2,

T2 = vs2(p2)/ϵ∗λ4
(p4)us1(p1)ϵ∗λ3(p3) · p1,

T3 = vs2(p2)/p3us1(p1)ϵ∗λ3(p3) · p1ϵ∗λ4(p4) · p2,

T4 = vs2(p2)/p3us1(p1)ϵ∗λ3(p3) · ϵ∗λ4(p4).

(2.10)

The decomposition (2.9) has been achieved also by enforcing the physical conditions ϵλi
·pi =

0 for the polarisation vectors, and by choosing as reference vectors for the external photons
the condition ϵλ3 · p2 = ϵλ4 · p1 = 0, which implies for the photons the polarization sums:

∑
λ3

ϵµ
λ3

ϵ∗ν
λ3 = gµν − pµ

2 pν
3 + pµ

3 pν
2

p2 · p3
,

∑
λ4

ϵµ
λ4

ϵ∗ν
λ4 = gµν − pµ

1 pν
4 + pµ

4 pν
1

p1 · p4
, (2.11)

where gµν = diag(1, 1, 1, 1). The coefficients of Tk are the so-called scalar form factors,
Fk. These objects are functions of the kinematic invariants of the process, and of the
space-time dimension D, and they can be written in terms of scalar Feynman integrals.
Their expression can be obtained by applying a set of projectors, {Pk}, k = 1, 2, 3, 4, to
the amplitude Aqq̄,γγ :

Fk = tr

 ∑
s1,s2,λ3,λ4

Pk Aqq̄,γγ

 , (2.12)

where

P1 = 1
(D − 3)t

[
u

2s2 T †
1 − u

2s2t
T †

3

]
,

P2 = 1
(D − 3)t

[
u

2s2t
T †

3 + u

2s2 T †
2

]
,

P3 = 1
(D − 3)t

[(
Du2 − 4st

)
2s2ut2 T †

3 − u

2s2t
T †

1 + u

2s2t
T †

2 + (t − s)
2sut

T †
4

]
,

P4 = 1
(D − 3)t

[(t − s)
2sut

T †
3 + 1

2u
T †

4

]
. (2.13)

6In general one has to consider a fifth form factor, however, for the corrections we are considering in
this paper it can be chosen in such a way that the tensor is proportional to D − 4 and the form factor is
finite after UV renormalisation. Hence, it vanishes in D = 4 and it can be neglected for phenomenological
considerations.
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The form factors Fk admit the following perturbative expansion:

Fk = F (0)
k +

(
αS

π

)
F (1)

k +
(

αS

π

)2
F (2)

k + · · · , (2.14)

where αS is the strong coupling constant. At leading order we have:

F (0)
1 = −4παemδijQ2

q

1
t

,

F (0)
2 = 4παemδijQ2

q

1
t

,

F (0)
3 = 4παemδijQ2

q

2
tu

,

F (0)
4 = −4παemδijQ2

q

(t − u)
tu

. (2.15)

The massive corrections, we are interested in, appear starting from the two-loop order.
Therefore, they affect only the term F (2)

k . For the rest of this paper we will focus just on
this contribution, which we will refer to as F (2)

k,top. We generated all the relevant Feynman
diagrams for this contribution using FeynArts [109], and we found 14 different two-loop
Feynman diagrams, which can be grouped into five different categories, as depicted in
figure 1. We used FORM [117, 118] to apply the projectors to the Feynman diagrams and
perform the Dirac algebra. The form factors, then, were expressed as a linear combinations
of 72 MIs, {Ji}, which are defined in appendix A.

We find the following expression for the form factors F (2)
k,top:

F (2)
k,top = 4παemδij CF

[
Q2

qF
(2)
k,top;0 + Q2

tF
(2)
k,top;2

]
, (2.16)

where CF = N2
c −1

2Nc
is the Casimir of the fundamental representation of SU(Nc) and Qt is

the electric charge of the top quark running in the loop. The two contributions F (2)
k,top;0

and F (2)
k,top;2 are indeed related to different powers of the top electric charge Qt. The first

contribution F (2)
k,top;0 is associated to the diagrams (c), (d) and (e) in figure 1 in which the

top quark does not couple to the external photons, while the second contribution F (2)
k,top;2

comes from the diagrams (a) and (b) where the top quark actually couples with the photon.
We perform our computations in the context of dimensional regularisation. As a con-

sequence, potential ultraviolet (UV) and infrared (IR) singularities can appear in the form
factors as poles in the dimensional regulator ϵ = (4 − D)/2. However, since the diagrams
with a top loop start contributing to the qq̄ channel at the two-loop order, F (2)

k,top does not
have IR singularities and therefore all the ϵ poles are of UV origin. Furthermore, F (2)

k,top;2 is
also free of UV divergences and then the UV poles come only from the contribution F (2)

k,top;0.

2.2 UV renormalisation

We renormalise the bare form factors in a mixed scheme. The external quark fields are
renormalised on shell; the strong coupling constant is renormalised in a scheme in which
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the light-quark contribution is treated in MS, while the heavy-quark contribution is renor-
malised at zero momentum. No renormalisation is needed for the top quark mass m2

t at
this order in perturbation theory and the same occurs for the external photon field.

We have, then
FR

k = Zq Fk

(
αB

S → ZαS αS

)
, (2.17)

where the superscript “R” stands for “renormalised”. The renormalisation factors Zq and
ZαS admit a perturbative expansion in the strong coupling constant [119–122]:

Zq = 1 +
(

αS

π

)
δZ(1)

q +
(

αS

π

)2
δZ(2)

q +O(α4
S) ,

ZαS = 1 +
(

αS

π

)
δZ(1)

α +O(α2
S) . (2.18)

In our renormalisation scheme, we have

δZ(1)
q = 0 ,

δZ(2)
q = π−2ϵΓ2(1 + ϵ)

(
µ2

m2
t

)2ϵ

CF NhTF

( 1
16ϵ

− 5
96

)
,

δZ(1)
α = δZ

(1)
α,Nl,MS + δZ

(1)
α,Nh,OS , (2.19)

where

δZ
(1)
α,Nl,MS = −π−ϵe−γϵ 1

2ϵ

(11
6 CA − 1

3Nl

)
,

δZ
(1)
α,Nh,OS = π−ϵΓ(1 + ϵ)

(
µ2

m2
t

)ϵ
Nh

6ϵ
, (2.20)

µ is the renormalisation scale, Nl is the number of light flavours, in this case Nl = 5, Nh

is the number of heavy quarks, in this case Nh = 1, the quantity CA = Nc is the Casimir
of the adjoint representation of SU(Nc), and TF = 1

2 .
Therefore, the renormalised form factors F (2) R

k,top are determined by the following for-
mula:

F (2) R
k,top = F (2)

k,top + δZ(2)
q F (0)

k + δZ
(1)
α,Nh,OS F

(1)
k . (2.21)

3 Master integrals computation

In this section we discuss the details of the MIs computation. Specifically, we define
the three scalar integral topologies which describe all the MIs that appear in the ampli-
tude (modulo exchange of final photons). The MIs are computed through the differential
equations method. The system of differential equations associated to the MIs is solved
semi-analytically employing the generalised power series expansion technique, as described
in [101] and implemented in the software DiffExp [103]. Finally, we show that some of the
MIs that appear in the computation admit an analytic solution in terms of elliptic functions.

The system of differential equations for the planar families, PLA and PLB, is in canon-
ical form, while for the non-planar family, NPL, we have canonical differential equations
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just for the sectors whose analytic solution could be given in terms of MPLs. We notice
that the bases of MIs in which we solve the differential equations, which we will refer in the
following as f⃗ for the planar families and g⃗ for the non-planar one, and the one in which
we write the form factors are different. We choose this approach in order to avoid square
roots of the kinematic invariants in the expressions of the form factors. In the ancillary
material attached to this paper, we furnish the rotation matrices from the bases f⃗ and g⃗

to the basis {Ji} defined in appendix A.

3.1 General setup

The three integral families which describe the relevant MIs for this process are defined as
follows:

Itopo(n1, . . . , n9) =
∫ Dk1Dk2

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 Dn6

6 Dn7
7 Dn8

8 Dn9
9

, (3.1)

where topo ∈ {PLA, PLB, NPL} labels the families and the scalar products D1, . . . , D9 are
given in table 1. The indices n1, · · · , n7 are non-negative while the indices n8 and n9 are
non-positive.

The computation is done in dimensional regularization with D = 4 − 2ϵ dimensions,
and our convention for the integration measure is

Dk = dD k

iπ2−ϵΓ(1 + ϵ)

(
µ2

m2
t

)−ϵ

, (3.2)

where µ is the dimensional regularization scale.
With the definitions given in table 1, all the scalar Feynman integrals appearing in

the amplitude can be mapped to one of the three integral families, or families obtained by
permutation of the external momenta. The MIs appearing in the form factors are listed in
appendix A and shown in figure 2.

3.2 Planar families PLA and PLB

The scalar integrals family PLA is described by a set of 32 master integrals f⃗(x⃗, ϵ),7 where

x⃗ = {y, z} , y = s

m2
t

, z = t

m2
t

(3.3)

is the vector of the kinematic invariants with respect to which we derived the differential
equations. The system of differential equations for these integrals has been derived in
canonical logarithmic form [66] in ref. [68]:

d f⃗(x⃗, ϵ) = ϵ d A(x⃗)f⃗(x⃗, ϵ), (3.4)

where d is the total differential with respect to the kinematic invariants, and the matrix
A(x⃗) is written as linear combinations of logarithms:

A(x⃗) =
∑

ci log(wi(x⃗)). (3.5)
7The definition of the MIs basis exploited to solve the differential equations for the planar families PLA

and PLB is explicitly given in the ancillary material attached to the paper.
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Figure 2. Basis of Master Integrals for the topologies PLA, PLB and NPL. In the figure, the MIs
defined with a permutation of the external momenta are not displayed.

The ci represent matrices of rational numbers, while WP LA = {wi(x⃗)} is the alphabet of
the solution and it is made by algebraic functions of the kinematic invariants. Specifically,
the alphabet is made by the following set of 21 letters:

WP LA=
{

r1,r2,r3,r4,
r4−r5
r4+r5

,y,
r1−y

r1+y
,r4−r2y,

r3+y

r3−y
,
−r1z+r1+r5
−r1z+r1−r5

,
r5−yz+y

y−yz
,
r1z−r4
r1z+r4

,

r1z−r5
r1z+r5

,1−z,z,y+z,
r2−z

r2+z
,− r5−yz+y+2z

r5−yz+y−2z2 ,
r4z+r4−r5z

r4z+r4+r5z
,−−r2+r3+y+z

r2+r3+y+z
,

−r2y(z−4)+r2z(r2−z+4)+r4(z−4)
r2y(z−4)+r2z(r2+z−4)−r4(z−4)

}
, (3.6)
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Denominator Integral family PLA Integral family PLB Integral family NPL

D1 k2
1 k2

1 k2
1

D2 (k1 − p1)2 (k1 − p1)2 (k1 − p1)2

D3 (k1 + p2)2 (k1 + p2)2 (k1 + p2)2

D4 k2
2 + m2

t k2
2 + m2

t k2
2 + m2

t

D5 (k1 + k2 − p1)2 + m2
t (k2 − k1)2 + m2

t (k1 + k2 − p1)2 + m2
t

D6 (k1 + k2 + p2)2 + m2
t (k1 − p1 + p3)2 (k2 −p1 −p2 +p3)2 +

m2
t

D7
(k1 +k2 −p1 +p3)2 +
m2

t

(k2 + p1)2 (k1 +k2 −p1 +p3)2 +
m2

t

D8 (k1 + p3)2 (k2 + p2)2 (k1 + p3)2

D9 (k1 + k2)2 (k2 + p3)2 (k1 + k2)2

Table 1. Routing definition for the three scalar integrals families PLA, PLB and NPL.

where r1, · · · , r5 are a set of square roots of the kinematic invariants:

r1 =
√
(y − 4)y, r2 =

√
(z − 4)z, r3 =

√
y(y + 4), r4 =

√
yz(y(z − 4)− 4z),

r5 =
√

y (y(z − 1)2 − 4z2). (3.7)

The knowledge of the logarithmic canonical form of the differential equations (3.4), together
with the alphabet structure (3.6) would allow us, in principle, to obtain a fully analytic
representation for the system of the MIs. However, the presence of the set of square roots
given in eq. (3.7) makes the achievement of such analytic expression non trivial. Indeed,
these square roots are not simultaneously rationalizable. As a consequence, in order to
obtain a fully analytic representation of the solution one would have to exploit symbol
level techniques [123, 124]. For the purpose of this project, we found that the semi-analytic
evaluation, which we achieved exploiting a generalised power series expansion method, was
sufficient to perform phenomenological studies.

The boundary conditions for the system are provided in the origin of kinematic vari-
ables y = z = 0, where all the MIs vanish except for the two masters f1 and f2, for which
we use the following analytical expressions:

f1 = ϵ2 J1 = 1,

f2(y) = −y ϵ2 J2(y) = − (−y)−ϵ Γ(1− ϵ)2

Γ(1− 2ϵ) , (3.8)

where J1 and J2 are the pre-canonical masters shown in figure 2 and defined in appendix A.
Regarding the second planar family, PLB, we observe that we do not need to set up a

system of differential equations for it. Indeed, every master integral of this family, except
J21, is equal to one of the MIs of the two other families (modulus permutations). For
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J21, by integrating analytically its differential equation, we obtain the following analytical
expression:

J21(y, z) = 1
y z

[
4
ϵ3 − 2(log(−y) + log(−z))

ϵ2 − 5π2 − 6 log(−y) log(−z)
3ϵ

+

+ 2Li3
(
−z

y

)
− 2 log(−z)Li2

(
−z

y

)
+ 2 log(−y)Li2

(
−z

y

)
− log(−y) log2(−z) + log(y) log2(−z)− log2(−z) log(y + z) (3.9)
− log2(−y) log(y + z)− 2 log(−y) log(y) log(−z)
+ 2 log(−y) log(−z) log(y + z)− π2 log(y + z)

+ log2(−y) log(y) + π2

3 log(−y) + π2 log(y)

+1
3 log3(−z) + 4

3π2 log(−z)− 10ζ(3)
]
+ O(ϵ).

This formula was cross checked analytically with [125] and numerically with AMFlow [126].

3.3 Non-planar family NPL

The non-planar scalar integrals family, NPL, is more complicated to study with respect to
the two planar families. The total number of MIs g⃗8 associated to this topology is 36. The
system of differential equations can be divided in two different subsets:

• (I) Canonical logarithmic: the subset of MIs whose differential equations are in
canonical logarithmic form;

• (II) Elliptic sectors: this subset contains MIs whose analytic solution involves
elliptic functions and it is not written in ϵ-factorized form.

The system of differential equations for the subset (I) has been put in canonical logarithmic
form. The alphabet WNP L for this subset is described by the following 30 letters:

WNP L =
{

q1, q3, q4, q5, q6,−q4−2q8
q4+2q8

,
q5−2q8
q5+2q8

,−q9−2
q9+2 , q9,−q7y+q5

q5−q7y
,y,−q1+y

y−q1
,

q4−q2y,−q3+y

y−q3
,
q1z−q4
q1z+q4

,−q6−q7z

q7z+q6
,z,y+z,y+z+4,−q2+z

z−q2
,
q1y+q1z+q5
q1y+q1z−q5

,

q2y+q2z+q6
q2y+q2z−q6

,
−q5+y2+yz

q5+y2+yz
,
q3y−q7y+q3z

q3y+q7y+q3z
,
−q6+yz+z2

q6+yz+z2 ,
q6+yz+z2

−q6+yz+z2 ,

− q7+y+z

−q7+y+z
,− q2+q3+y+z

−q2+q3+y+z
,−q8yz−4q8y+q6q9y+q8z2−4q8z−2q8q9z

q8yz−4q8y+q6q9y+q8z2−4q8z+2q8q9z
,

−q2y−q2z+q4+z2

q2y+q2z−q4+z2

}
(3.10)

8The definition of the MIs basis exploited to solve the differential equations for the non-planar family
NPL is explicitly given in the ancillary material attached to the paper.
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Figure 3. Diagrams representing the two elliptic sectors in the non planar topology NPL. Thin
lines represent massless particles, while thick lines massive particles.

where q1, · · · , q9 are a set of square roots of the kinematic invariants:

q1 =
√

y(y−4), q2 =
√

z(z−4), q3 =
√

y(y+4), q4 =
√

yz(y(z−4)−4z),

q5 =
√

y(y+z)(−4z+y(y+z)), q6 =
√

z(y+z)(y(z−4)+z2), q7 =
√
(y+z)(y+z+4),

q8 =
√
−yz(y+z), q9 =

√
4−z. (3.11)

The subset (II), which is associated to MIs whose analytic structure involves elliptic func-
tions, contains two sectors (see figure 3). The first one is a non-planar triangle with a
massive loop [113], shown in figure 3 (a). This sector has 2 MIs, which admit a represen-
tation in terms of elliptic multiple polylogarithms (eMPLs) [127].

We choose for them the same normalization as in [113]:

g31(y) = y2ϵ4J19 , g32(y) = −y2ϵ4 (16 + y)
2(1 + 2ϵ) J20 . (3.12)

The second sector whose analytic structure is characterised by the presence of elliptic
functions is the top sector of the topology NPL, i.e. the double-box integral, shown in
figure 3 (b), which contains 4 MIs: g33, g34, g35 and g36. We choose, as basis for this sector,
the following scalar integrals:

g33(y, z) = −y3ϵ4J39, g34(y, z) = y2ϵ4J40 ,

g35(y, z) = y4ϵ4J41 , g36(y, z) = −yϵ4J42 .
(3.13)

With this choice of normalization, initial conditions in the origin y = z = 0 are:

g1 = f1, g2(y) = f2(y), gi(y = 0, z = 0) = 0, i = 3, . . . , 36 (3.14)

where f1 and f2 are given in eq. (3.8).
The non-polylogarithmic structure of this sector is two-fold. First, the differential

equations for the MIs g33, g34, g35 and g36 contain the triangle integrals g31 and g32 in
the non-homogeneous part of the system. As a consequence the analytic solution of the
differential equations requires the integration over kernels that contains eMPLs. Moreover,
also the homogeneous part of the differential equation itself contains elliptic functions. This
statement can be verified by studying the maximal cut of the double-box integral [67]:

Idb = J39 . (3.15)
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In order to perform such computation it is convenient to follow the loop-by-loop analy-
sis [128, 129] of the Baikov [130] representation of the integral Idb. For reader’s convenience,
we briefly introduce the basic idea of Baikov representation and its application to maximal
cut analysis, and we refer to refs. [128–131] for a proper description of the method. The
Baikov representation of an L-loop Feynman integral in D dimensions, with E independent
external momenta, is written as:

I(a1, · · · , an) = CL
E

∫
dz1 · · · dzn

za1
1 · · · zan

n
U

E−D+1
2 P

D−L−E−1
2 . (3.16)

The variables zi are just the scalar products Di which define the integral topology. Indeed,
the basic idea of the Baikov representation is to write a scalar Feynman integral in a form
where the integration variables are exactly the scalar products associated to the topology.
The factors U and P are, respectively, the Gram determinant of the external momenta
p1, · · · , pE :

U = detG(p1, · · · , pE), (3.17)

and the Gram determinant of the external momenta together with the loop ones:

P = detG(k1, · · · , kL, p1, · · · , pE), (3.18)

where Gij(v⃗) = vi · vj is the Gram matrix. The factor CL
E is a normalization constant,

which is immaterial for the present discussion.
In the Baikov representation the maximal cut of the integral I(a1, · · · , an) can be

calculated from the multivariate residues of the expression (3.16) [132]. This operation
is more efficiently done within the so-called loop-by-loop approach [128]. In a nutshell, in
this approach we split the integral under study in subsequent one-loop integrals and then
we take the maximal cut of each sub-integral sequentially. Let us consider explicitly our
double box integral (3.15). By inspecting the integrand of (3.15) we see that it can be split
into two one-loop box integrals as follows:

Idb = C
∫

dz1dz2dz3dz8
z1z2z3z8

U ϵ
1P

− 1
2−ϵ

1

∫
dz4dz5dz6dz7

z4z5z6z7
U ϵ

2P
− 1

2−ϵ
2 , (3.19)

where C is some overall normalisation constant. U2 and P2 are Gram determinants as-
sociated to the change of variables for a one-loop box integral with loop momentum k2,
similarly U1 and P1 are related to change of variables for a box integral with loop momen-
tum k1. Then, the maximal cut of the expression (3.19) is obtained by taking the residue
around the simple pole z1 = · · · z7 = 0:

MCut Idb = C
∮

z1=z2=z3=0

dz1dz2dz3dz8
z1z2z3z8

U ϵ
1P

− 1
2−ϵ

1

∮
z4=z5=z6=z7=0

dz4dz5dz6dz7
z4z5z6z7

U ϵ
2P

− 1
2−ϵ

2

= C
∫

dz8
1

s z8
√
(z8 + t)(z8 + s + t)(z8 − z+)(z8 − z−)

, (3.20)

where z± = 1
2

(
−s − 2t ±

√
s
√

s + 16m2
t

)
. As we can see from eq. (3.20) the result of the

maximal cut for the double box non planar integral in figure 3 (b) is a one-fold integral. It
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θ

s

Figure 4. Schematic representation of the procedure exploited to optimise the grid construction
within DiffExp. Red dots represents the points in which the MIs are evaluated and the blue dashed
lines connect the sequential evaluations.

is possible to show that eq. (3.20) can be written in terms of complete elliptic integrals of
first and third kind, where the elliptic curve is given by the polynomial of fourth-order in
the integration variable z8:

y2
c = (z8 + t)(z8 + s + t)(z8 − z+)(z8 − z−). (3.21)

Remarkably, we observe that the elliptic curve (3.21) degenerates to the same curve of the
massive triangle in figure 3 (a) [94, 113, 127] in the forward limit t = 0.

3.4 Semi-analytic solution with generalised power series

We conclude this section by describing the solution for the systems of differential equations
associated to the planar topology PLA and the non-planar topology NPL. As already
mentioned, we choose to exploit the generalised power series method, as described in [101]
and implemented in the software DiffExp [103], to obtain a semi-analytic solution for the
set of MIs. This method has the advantage of not being limited by the functional space in
which the MIs would be analytically represented. This feature allows us to avoid the issues
connected with the presence of MIs which admit an analytic solution in terms of elliptic
integrals, for which both the understanding of their analytic structure and the numerical
evaluation can still represent a bottleneck for phenomenological applications.

We exploit the method to build a grid of points for the contribution of the corrections
considered in this paper to the hard function Hγγ

NNLO. After interpolation, the grid has
been used in the fully massive NNLO phenomenological study for diphoton production
in [1]. The grid has been generated directly in the physical region of the phase-space for
this process:

s > 0, t = −s

2(1− cos(θ)), −s < t < 0, (3.22)

where θ, 0 < θ < π, is the scattering angle in the partonic center of mass frame.
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Since the evaluation time, within DiffExp, for the MIs needed in this process is rela-
tively low, we can build the grid of points as follows.9 We consider a total number of 13752
points in the following range for the scattering angle θ and the energy of the center of mass s:

−0.99 < cos θ < 0.99, 8GeV <
√

s < 2.2TeV . (3.23)

The points pi,j of the grid are equally spaced in the coordinate system (s, t)10 as follows:

pi,j :=

si = s0 + (sf − s0) i
572

tj = − si
2 (1− cos θj), cos θj = cos θ0 + (cos θf − cos θ0) j

23
(3.24)

where s0 = 64GeV2, sf = 4.4TeV2, cos θ0 = −0.99, cos θf = 0.99 and the indices i, j

take the values i ∈ [0, 572], j ∈ [0, 23]. We constructed the grid by performing sequential
numerical evaluations of the MIs in DiffExp as depicted schematically in figure 4. Starting
from the boundary conditions for the systems of differential equations, we perform a first
evaluation in the physical point p0,0. From this point, at fixed value of s, we move along
the θ axis, from cos θ = −0.99 to cos θ = 0.99, up to the point p0,23. Then, we increase
the value of s and we move in the other direction along the θ axis up to the point p1,0,
and so on so forth. In order to optimise the grid generation, for each evaluation we use as
boundary conditions the value of the MIs obtained at the previous point. This procedure
effectively increases the efficiency of the evaluation for the MIs. In particular, we managed
to evaluate the MIs in all the points of the grid, with a 16 digits accuracy, in 2.5 hours for
the system PLA and 10.5 hours for the system NPL, on a single core laptop.

Finally, in order to validate our results, we performed numerical checks for the MIs
against independent numerical evaluations done with the AMFlow package [126], which
implements the auxiliary mass flow method [133, 134]. The MIs have been checked for
several points in the physical phase-space region, finding an agreement between the two
independent evaluations up to 200 digits of accuracy. In the table 2 we show explicitly
the agreement up to 60 digits, for the non-planar double-box integrals, in a point of the
physical region. As a proof of concept of the numerical checks we show in figure 5 our
results for the double-box MIs in the non-planar topology NPL.

4 Conclusions

In this paper we presented the computation of the two-loop form factors for diphoton
production in the qq̄ channel, where the full dependence on the top quark mass has been
retained. This computation represents the only missing ingredient, at two loops, in order to
be able to perform a phenomenological study for diphoton production at NNLO [1] which
fully takes into account the dependence on the top quark mass in all the relevant channels.

The non-planar topology which contributes to this process contains two sectors of MIs
whose analytic representation cannot be given in terms of MPLs. In order to be able
to exploit our results for phenomenological applications, we computed the MIs by means
of differential equations, exploiting the generalised power series technique. This method

9We notice that for more CPU demanding computations more refined approaches have to be used.
10For the purpose of this discussion we use the dimensional Mandelstam variables defined in eq. 2.2.

– 16 –



J
H
E
P
1
2
(
2
0
2
3
)
1
0
5

⨯

⨯ ⨯ ⨯

⨯

⨯ ⨯ ⨯

0 100 200 300 400 500 600

-3

-2

-1

0

1

2

3

s [GeV]

J39
(0)

⨯
⨯ ⨯

⨯

⨯ ⨯ ⨯
⨯

0 100 200 300 400 500 600

-3

-2

-1

0

1

2

3

s [GeV]

J40
(0)

⨯

⨯ ⨯ ⨯

⨯

⨯ ⨯ ⨯

0 100 200 300 400 500 600

-3

-2

-1

0

1

2

3

s [GeV]

J41
(0)

⨯

⨯ ⨯

⨯

⨯ ⨯
⨯

⨯

0 100 200 300 400 500 600

-3

-2

-1

0

1

2

3

s [GeV]

J42
(0)

Figure 5. Numerical checks for the non-planar double-box MIs J39,J40,J41 and J42. The plots
show the order O(ϵ0) of the masters. Blue and dashed red lines represent, respectively, the numerical
values of real and imaginary part of the MIs obtained with DiffExp. Crossed dots represent
numerical values obtained with AMFlow. The evaluations are performed for different values of

√
s

at fixed angle θ (in this case cos θ = 0.7).

proves to be of great use for phenomenological applications, especially in cases where the
functional space for the MIs contains not only polylogarithmic functions.
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A The master integrals

The MIs appearing in the form factors, modulo permutations of the external momenta, are
the following:

J1 = IPLA(0, 0, 0, 2, 0, 0, 2, 0, 0), J2(y) = IPLA(0, 1, 2, 0, 0, 0, 2, 0, 0),
J3(y) = IPLA(0, 0, 0, 2, 1, 2, 0, 0, 0), J4(y) = IPLA(0, 0, 2, 1, 2, 0, 0, 0, 0),
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J (0)
39

Diffexp
Re +2.49597816751993787503669534608707004855484501578010226649940

Im −19.3696712261029735613778974058427447083413092161553385906536

AMFlow
Re +2.49597816751993787503669534608707004855484501578010226649940

Im −19.3696712261029735613778974058427447083413092161553385906536

J (0)
40

Diffexp
Re −0.21333872522870035684861132095536863050417440181134354635927

Im +0.00518899458382563661817200347695793605211879002185383038327

AMFlow
Re −0.21333872522870035684861132095536863050417440181134354635927

Im +0.00518899458382563661817200347695793605211879002185383038327

J (0)
41

Diffexp
Re −0.29205801090198350332310826520408754701906247319880367700175

Im −11.1410374678296939291520842477369677143009917553143987736030

AMFlow
Re −0.29205801090198350332310826520408754701906247319880367700175

Im −11.1410374678296939291520842477369677143009917553143987736030

J (0)
42

Diffexp
Re +0.73229133983930426889370536546880071419196880255135349324906

Im +0.01063600986474977455448357856767079241193558304513195335839

AMFlow
Re +0.73229133983930426889370536546880071419196880255135349324906

Im +0.01063600986474977455448357856767079241193558304513195335839

Table 2. Numerical comparison between DiffExp and AMFlow for the order ϵ0 of the non-planar MIs
J39, J40, J41 and J42. The centre of mass energy and the photon scattering angle are respectively√

s = 52.1615GeV and cos θ = −0.99. The two independent numerical solutions are equal up to
200 digits, of which only 60 are shown.

J5(y) = IPLA(0, 0, 1, 2, 2, 0, 0, 0, 0), J6(y) = IPLA(0, 1, 2, 0, 2, 1, 0, 0, 0),
J7(y) = IPLA(0, 0, 0, 2, 1, 1, 1, 0, 0), J8(y) = IPLA(0, 0, 1, 3, 1, 0, 1, 0, 0),
J9(y) = IPLA(0, 1, 1, 2, 0, 0, 1, 0, 0), J10(y) = IPLA(0, 1, 2, 1, 0, 0, 2, 0, 0),
J11(y) = IPLA(1, 0, 0, 2, 1, 1, 0, 0, 0), J12(y) = IPLA(2, 0, 0, 1, 1, 1, 0, 0, 0),
J13(y) = IPLA(1, 0, 0, 2, 1, 2, 0, 0, 0), J14(y) = IPLA(0, 1, 1, 1, 1, 1, 0, 0, 0),
J15(y) = IPLA(0, 2, 1, 0, 1, 1, 1, 0, 0), J16(y) = IPLA(0, 1, 1, 1, 0, 1, 1, 0, 0),
J17(y) = INPL(0, 1, 0, 1, 1, 1, 1, 0, 0), J18(y) = IPLA(0, 1, 1, 1, 1, 1, 1, 0, 0),
J19(y) = INPL(0, 1, 1, 1, 1, 1, 1, 0, 0), J20(y) = INPL(0, 1, 1, 2, 1, 1, 1, 0, 0),

J21(y, z) = IPLB(1, 1, 1, 2, 0, 1, 0, 0, 0), J22(y, z) = IPLA(1, 1, 1, 2, 0, 0, 1, 0, 0),
J23(y, z) = IPLA(1, 1, 1, 2, 0, 0, 1,−1, 0), J24(y, z) = IPLA(1, 0, 1, 1, 1, 0, 1, 0, 0),
J25(y, z) = IPLA(1, 0, 1, 2, 1, 0, 1, 0, 0), J26(y, z) = IPLA(1, 0, 0, 2, 1, 1, 1, 0, 0),
J27(y, z) = IPLA(1, 0, 0, 3, 1, 1, 1, 0, 0), J28(y, z) = IPLA(1, 0, 0, 2, 1, 1, 1, 0,−1),
J29(y, z) = IPLA(1, 1, 1, 1, 1, 0, 1, 0, 0), J30(y, z) = INPL(1, 0, 0, 1, 1, 1, 1, 0, 0),
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J31(y, z) = INPL(2, 0, 0, 1, 1, 1, 1, 0, 0), J32(y, z) = INPL(1, 0, 0, 1, 2, 1, 1, 0, 0),
J33(y, z) = INPL(1, 1, 0, 1, 1, 1, 1, 0, 0), J34(y, z) = INPL(1, 1, 0, 2, 1, 1, 1, 0, 0),
J35(y, z) = IPLA(1, 1, 1, 1, 1, 1, 1, 0, 0), J36(y, z) = IPLA(1, 1, 1, 1, 1, 1, 1,−1, 0),
J37(y, z) = IPLA(1, 1, 1, 1, 1, 1, 1, 0,−1), J38(y, z) = IPLA(1, 1, 1, 1, 1, 1, 1,−1,−1),
J39(y, z) = INPL(1, 1, 1, 1, 1, 1, 1, 0, 0), J40(y, z) = INPL(1, 1, 1, 1, 1, 1, 1,−1, 0),
J41(y, z) = INPL(1, 1, 1, 1, 2, 1, 1, 0, 0), J42(y, z) = INPL(1, 1, 1, 1, 1, 1, 1,−1,−1).

To complete the whole set of MIs appearing in the form factors, we have to consider also
the following masters, obtained from the previous list permuting the kinematic variables
(y,z and w = −y − z):

J43(z) = J2(z), J44(w) = J2(w),
J45(w) = J4(w), J46(z) = J4(z),
J47(w) = J5(w), J48(z) = J5(z),
J49(w) = J8(w), J50(z) = J8(z),

J51(y, z) = J21(y, w), J52(y, z) = J22(y, w),
J53(y, z) = J23(y, w), J54(y, z) = J24(y, w),
J55(y, z) = J25(y, w), J56(y, z) = J26(y, w),
J57(y, z) = J27(y, w), J58(y, z) = J28(y, w),
J59(y, z) = J29(y, w), J60(y, z) = J30(y, w),
J61(y, z) = J31(y, w), J62(y, z) = J32(y, w),
J63(y, z) = J33(y, w), J64(y, z) = J34(y, w),
J65(y, z) = J35(y, w), J66(y, z) = J36(y, w),
J67(y, z) = J37(y, w), J68(y, z) = J38(y, w),
J69(y, z) = J39(y, w), J70(y, z) = J40(y, w),
J71(y, z) = J41(y, w), J72(y, z) = J42(y, w).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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