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Abstract

We study the global approximate controllability properties of a one dimensional semi-
linear reaction-diffusion equation governed via the coefficient of the reaction term. It is
assumed that both the initial and target states admit no more than finitely many changes
of sign. Our goal is to show that any target state u∗ ∈ H1

0 (0, 1), with as many changes
of sign in the same order as the given initial data u0 ∈ H1

0 (0, 1), can be approximately
reached in the L2(0, 1)-norm at some time T > 0. Our method employs shifting the points
of sign change by making use of a finite sequence of initial-value pure diffusion problems.
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1 Introduction

Our main goal in this paper is to study the global approximate controllability properties of the
following semilinear Dirichlet boundary value problem






ut = uxx + v(x, t)u + f(u) in QT = (0, 1)× (0, T ) , T > 0,

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u |t=0 = u0 ∈ H1
0 (0, 1).

(1)

Here v ∈ L∞(QT ) is a control function, which affects the reaction rate of the process described
by (1). The nonlinear term f : R → R is assumed to be a Lipschitz function satisfying f(0) = 0.

1 This work was supported by the Istituto Nazionale di Alta Matematica (INdAM), through the GNAMPA
Research Project 2015: “Analisi e controllo di equazioni a derivate parziali nonlineari” (coordinator G. Floridia).
Moreover, this research was performed in the framework of the GDRE CONEDP (European Research Group on
“Control of Partial Differential Equations”) issued by CNRS, INdAM and Université de Provence.

2The research of this author was carried out in the frame of Programme STAR, financially supported by
UniNA and Compagnia di San Paolo.
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Let us recall that, in general terms, an evolution system is called globally approximately
controllable in a given space H at time T > 0, if any initial state in H can be steered into any
neighborhood of any desirable target state at time T , by selecting a suitable control.

Historically, the concept of controllability emerged in the context of linear ordinary dif-
ferenetial equations and was motivated by numerous engineering applications. Then it was
extended to various linear partial differential equations governed by additive locally distributed
(i.e., supported on a bounded subdomain of the space domain), lumped (acting at a point),
and boundary controls (see Fattorini in [15], Fattorini and Russell in [16], and Zabczyk in [33]).
Methodologically, these studies were typically based on the linear duality pairing technique be-
tween the control-to-state mapping at hand and its dual observation map. When this mapping
is nonlinear, as it happens in (1), the aforementioned approach does not apply and the above-
stated concept of controllability becomes, in general, unachievable. For example, the above
control system cannot be steered to any nonzero target starting from the origin u0 = 0 (see
more about that in Remark 2.1 below).

It is well-known that (1) can be linked to various applied reaction-diffusion models such as
chemical reactions, nuclear chain reactions, and biomedical models (see [24], and the references
therein). More generally, reaction-diffusion equations or systems describe how the concentration
of one or more substances changes under the influence of some processes such as local chem-
ical reactions, where substances are transformed into each other, and diffusion which causes
substances to spread out in space.

Unfortunately, additive controls (see, e.g., [1] and [10]) are unfit to treat such problems
because, for example, they would require inputs with high energy levels or they are not available
due to the physical nature of the process at hand. On the other hand, an approach based
on multiplicative controls, where the coefficient v in (1) is used to change the main physical
characteristics of the system at hand, seems realistic.

In the area of multiplicative controllability for partial differential equations we would like to
mention the pioneering work [3] by Ball, Marsden and Slemrod establishing the approximate
controllability of the rod and wave equations, based on the implicit nonharmonic Fourier series
approach. Further principal contributions to the field of the multiplicative controllability of
linear and semilinear parabolic and hyperbolic equations and of a number of swimming models
were made by Khapalov, see [22]-[24] and the references therein. Substantial progress has
also been made in the study of the controllability properties of the Schrödinger equation by
Beauchard, Coron, Boscain et al., Ervedoza and Puel, Nersesyan, see [4], [6], [13], [14] and [28]
and the references therein. Let us also mention along these lines the work by Beauchard [5] for
the beam model, the works by Lin et al. [26] and [27], and the work by Fernandez and Khapalov
[17] on the bilinear controllability of parabolic equations.

In [22], Khapalov studied the global nonnegative approximate controllability of the one di-
mensional nondegenerate semilinear convection-diffusion-reaction equation governed in a bounded
domain via bilinear control. Similar results were obtained for degenerate parabolic equations
by Cannarsa and Floridia in [8],[9],[18] and [19]. In [11] Cannarsa and Khapalov established
an approximate controllability property for nondegenerate linear equations in suitable classes
of functions that change sign.

In this paper, we are interested in the multiplicative controllability of the semilinear reaction-
diffusion system (1) when both the initial and target states admit a finite number of points of sign
change. This fact introduces substantial differences with respect to the above works. Indeed,
on the one hand, we manage to extend all the approximate controllability results of [11] to
semilinear equations as well as those of [22] to initial/target states that may change sign. On
the other hand, here we introduce a new technique of proof.

In [11], an implicit “continuation argument” was employed to justify the fact that one can
always continue to move the points of sign change until their target positions have been reached.
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Such a technique was mainly qualitative but sufficient to obtain the conclusion due to the linear
structure of the equation at hand. In this paper, on the contrary, a more quantitative approach
is needed because the equation of interest is nonlinear.

Indeed, we give an explicit construction of the controls required for the steering process.
Such controls are, essentially, obtained by splitting [0, T ] into finitely many time intervals

[0, T ] = [0, S1] ∪ [S1, T1] ∪ · · · ∪ [TN−1, SN ] ∪ [SN , TN ] ∪ [TN , T ]

on which two alternative actions are applied: on [Sk, Tk] we choose suitable initial data, wk,
in pure diffusion problems (v ≡ 0) to move the points of sign change to their desired location,
whereas on [Tk−1, Sk] we use piecewise static multiplicative controls vk to attain such wk’s as
intermediate final conditions. More precisely, on [Sk, Tk] we make use of the boundary problems






wt = wxx + f(w), in (0, 1)× [Sk, Tk],

w(0, t) = w(1, t) = 0, t ∈ [Sk, Tk],

w |t=Sk
= wk(x), w′′

k (x) |x=0,1= 0,

where the wk’s are viewed as control parameters to be chosen to generate suitable curves of sign
change, which have to be continued along all the N time intervals [Sk, Tk] until each point has
reached the desired final position. In order to fill the gaps between two successive [Sk, Tk]’s, on
[Tk−1, Sk] we construct vk that steers the solution of






ut = uxx + vk(x, t)u + f(u), in (0, 1)× [Tk−1, Sk],

u(0, t) = u(1, t) = 0, t ∈ [Tk−1, Sk],

u |t=Tk−1
= uk−1 + rk−1,

from uk−1+rk−1 to wk, where uk−1 and wk have the same points of sign change, and ‖rk−1‖L2(0,1)

is small. The fact that such a process can be completed within a finite number of steps is an
important point of the proof. It follows from precise estimates that guarantee that the sum
of the distances of each branch of the null set of the resulting solution of (1) from its target
points of sign change decreases at a linear-in-time rate for curves which are still far away from
their corresponding target points, while the error caused by the possible displacement of points
already near their targets is negligible.

We believe that the techniques of this paper could be useful to study multidimensional
diffusive systems on Riemannian manifolds of low dimension or special structure.

Motivations and future perspectives

In this section we present some applications. The following nuclear model is a typical example
of the applications we plan to study, that is, a reaction-diffusion model in a fissionable material
(see Section 2.7 of [31]). By shooting neutrons into a uranium nucleus it may happen that
the nucleus breaks into two parts, releasing other neutrons already present in the nucleus and
causing a chain reaction. At a macroscopic level, the free neutrons diffuse like a chemical in
a porous medium, where reaction and diffusion are competing. Some macroscopic aspects of
this phenomenon can be described by means of a simplified reaction-diffusion model, like in (1),
where u is the neutron density and the multiplicative coefficient v is the fission rate.

Our study of the reaction-diffusion models is also motivated by mathematical models of
tumor growth (see, e.g., Friedman in [21] and Perthame in [29]). There are three distinct main
stages in the growth of a tumor (see [30], [32] and [2]) before it becomes so large that it causes
patients to die or reduces permanently their quality of life: avascular (tumors without blood
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vessels), vascular, and metastatic. From a clinical point of view, vascular and metastatic tumor
growth are what cause the patient to die. So modeling and understanding these processes is
crucial for cancer therapy. Nevertheless, avascular tumor growth is much simpler to model
mathematically, and yet contains many of the phenomena that one needs to address also in a
general model of vascular or metastatic tumor growth. In the review [30], Roose, Chapman
and Maini describe a continuum mathematical model of avascular tumor growth. This model
consist of reaction-diffusion-convection equations and was introduced by Casciari, Sotirchos
and Sutherland in [12]. Mathematical models describing continuum tumor cell populations and
their development classically consider the interactions between the cell number density and one
or more chemical species that provide nutrients or influence the cell cycle events. The model
introduced in [12] can reduce to the following simplified system

∂ui
∂t

=
∂2ui
∂2x

+ vi(x, t)ui + f(ui), i = 1, . . . , N (N ∈ N),

where ui are the concentrations of the chemical species and vi are the net rate of consump-
tion/production of the chemical species both by the tumor cells and due to chemical reac-
tions with other species. In future works we will address controllability issues for systems of
reaction-diffusion equations of the type outlined in the survey paper [7] (see Section 7, “Control
problems”).

Outline of the paper

In Section 2, we give the precise formulation of the problem and state our approximate control-
lability result for system (1) (Theorem 1) together with some of its consequences.
In Section 3, we explain the structure of the proof and, admitting two essential technical tools
(Theorem 2 and Theorem 3), we proceed with the proof of Theorem 1.
Section 4 deals with the proof of Theorem 2: a controllability result for pure diffusion problems.
Finally, Section 5 is devoted to the proof of Theorem 3: a smoothing result intended to attain
suitable intermediate data while preserving the already-reached points of sign change.

2 Problem formulation and results

Our main goal in this paper is to study the global approximate controllability properties of the
semilinear Dirichlet boundary value problem (1)





ut = uxx + v(x, t)u + f(u) in QT = (0, 1)× (0, T ) , T > 0,

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u |t=0 = u0 ∈ H1
0 (0, 1).

Here v ∈ L∞(QT ) is a bilinear control. The nonlinear term f : R → R is supposed to be a
Lipschitz function with f(0) = 0, differentiable at 0 and L will denote a Lipschitz constant for
f, that is,

| f(u′)− f(u) | ≤ L | u′ − u |, ∀u, u′ ∈ R. (2)

Remark 2.1 We note that system (1) cannot be steered anywhere from the origin. Moreover,
if u0(x) ≥ 0 in (0, 1), then the strong maximum principle demands that the respective solution
to (1) remains nonnegative at any moment of time, regardless of the choice of v. This means
that system (1) cannot be steered from any such u0 to any target state which is negative on a
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nonzero measure set in the space domain. We remark that the strong maximum principle for
linear parabolic PDEs (see, e.g, Chapter 2 in [20], p. 34) can be extend to semilinear parabolic
system (1). Indeed, since f(0) = 0 and f(u) is differentiable at 0, the term f(u(x, t)) in (1) can

be represented as β(x, t)u(x, t), where β =
f(u)

u
∈ L∞(QT ).

Let us start with the well-posedness for the system (1).

Functional setting and Well-posedness

Hereafter, we use the standard notation for Sobolev spaces, in particular,

H1(0, 1) = {φ ∈ L2(0, 1) | φx ∈ L2(0, 1)}
H1

0 (0, 1) = {φ ∈ H1(0, 1) | φ(0) = φ(1) = 0}
H2(0, 1) = {φ ∈ H1(0, 1) | φxx ∈ L2(0, 1)}.

By classical well-posedness results (see, for instance, Theorem 6.1 in [25], pp. 466-467) problem
(1) with initial data u0 ∈ L2(−1, 1) admits a unique solution

u ∈ L2(0, T ;H1
0(0, 1)) ∩C([0, T ];L2(0, 1)).

Furthermore, if u0 ∈ H1
0 (0, 1), then the solution u of problem (1) satisfies

u ∈ H1(0, T ;L2(0, 1)) ∩ C([0, T ];H1
0 (0, 1)) ∩ L2(0, T ;H2(0, 1)).

Problem formulation

In this paper, we assume that u0 ∈ H1
0 (0, 1) has finitely many zeros, that is, there exist points

0 = x00 < x01 < · · · < x0n < x0n+1 = 1

such that

u0(x) = 0 ⇐⇒ x = x0l , l = 0, . . . , n+ 1.

Moreover, we assume that the interior zeros (x0l , l = 1, . . . , n) are points of sign change, that is,
for l = 1, . . . , n,

u0(x)u0(y) < 0, ∀x ∈
(
x0l−1, x

0
l

)
, ∀y ∈

(
x0l , x

0
l+1

)
.

We will refer to such functions u0 as the ones with finitely many changes of sign.

Our goal is to show that any target u∗ ∈ H1
0 (0, 1), with as many changes of sign in the same

order as the given u0, can be approximately reached in the L2(0, 1)-norm at some time T > 0.
By the above expression we mean that, denoting by x∗l , l = 0, . . . , n + 1, the zeros of u∗, we
have

u0(x)u
∗(y) > 0, ∀x ∈

(
x0l−1, x

0
l

)
, ∀y ∈

(
x∗l−1, x

∗
l

)
, for l = 1, . . . , n+ 1.

Remark 2.2 The matching of the initial and target states seems optimal. Indeed, the strong
maximum principle (see Remark 2.1), applied on the subdomain of QT delimited by any two
adjacent curves of sign change (in the sense of Definition 4.1 and Lemma 4.2.), prevents the
appearance of new zeros of u(x, t) within this area.

Let us start with the following definition.
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Definition 2.1 We say that a function v ∈ L∞(QT ) is piecewise static, if there exist m ∈ N,
ck(x) ∈ L∞(0, 1) and tk ∈ [0, T ], tk−1 < tk, k = 1, . . . ,m with t0 = 0 and tm = T, such that

v(x, t) = c1(x)1[t0,t1](t) +

m∑

k=2

ck(x)1(tk−1,tk](t),

where 1[t0,t1] and 1(tk−1,tk] are the indicator function of [t0, t1] and (tk−1, tk], respectively.

Here we present our main result for system (1).

Theorem 1 Let u0 ∈ H1
0 (0, 1). Assume that u0 has finitely many points of sign change. Con-

sider any u∗ ∈ H1
0 (0, 1) which has exactly as many points of sign change in the same order as

u0. Then, for any η > 0 there are a T = T (η, u0, u
∗) > 0 and a piecewise static multiplicative

control v = v(η, u0, u
∗) ∈ L∞(QT ) such that for the respective solution u to (1) the following

inequality holds

‖u(·, T )− u∗‖L2(0,1) ≤ η.

✲

✻

x01 x02

x∗1 x∗2

u0

u∗

✲✻• ✛ ✻•

u

x0 1

Figure 1. Control of two points of sign change.

2.1 Further results

We present in this section two results that generalize Theorem 1 and are easy consequences of
such theorem.

Corollary 2.1 Let u0, u
∗ ∈ H1

0 (0, 1). Assume that u0 and u∗ have finitely many points of

sign change and the amount of points of sign change of u∗ is less than the one of u0. Then,
for any η > 0 there are a T = T (η, u0, u

∗) > 0 and a piecewise static multiplicative control

v = v(η, u0, u
∗) ∈ L∞(QT ) such that for the solution u to (1) the following inequality holds

‖ u(·, T )− u∗ ‖L2(0,1) ≤ η.

In the following Remark 2.3 we clarify the statement of Corollary 2.1.

Remark 2.3 We explain the statement of Corollary 2.1 by the following example. Let us
consider an interval (0, x01) of positive values of u0 followed by an interval (x01, x

0
2) of negative

values of u0(x), which in turn is followed by an interval (x02, x
0
3) of positive values of u0(x) and

so forth. Then the merging of the respective two points of sign change x01 and x02 will result in
one single interval (0, x03) of positive values.

In the following picture we describe the situation discussed in Remark 2.3 in the particular case
0 = x00 < x01 < x02 < x03 = 1.
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✲

✻

x01 x02u0

u∗

u

x0 1

Figure 2. u0, u
∗: merging of the points of change of sign.

Proof (of Corollary 2.1). Corollary 2.1 follows from Theorem 1. Indeed, all the target states
described in Corollary 2.1 can be approximated in L2(0, 1) by those in Theorem 1.

It may be worth noting that the following generalized approximate controllability property
can be deduced from Corollary 2.1.

Corollary 2.2 Let u0 and u∗ be given in L2(0, 1). Then, for any η > 0 there exists uη0 ∈
H1

0 (0, 1) such that ‖ uη0 − u0 ‖L2(0,1) < η, and there exist T = T (η, u0, u
∗) > 0 and a piecewise

static multiplicative control v = v(η, u0, u
∗) ∈ L∞(QT ) such that the solution u to





ut = uxx + v(x, t)u + f(u) in QT = (0, 1)× (0, T )

u(0, t) = u(1, t) = 0 t ∈ (0, T )

u(·, 0) = uη0 ∈ H1
0 (0, 1)

satisfy the following inequality

‖u(·, T )− u∗‖L2(0,1) ≤ η.

The proof of Corollary 2.2 is similar to one of the Corollary 2 of [11], which deals with linear
systems.

3 Control Strategy for the proof of the main result

In this section, we fix the notation and we introduce a control strategy to obtain the complete
proof of Theorem 1 in Section 3.3.

Let us fix a number ϑ ∈ (0, 1) to be used in whole the paper.

Now, we recall some useful functional spaces.

Hölder continuous spaces

We define the Hölder spaces

Cϑ([0, 1]) :=

{
w ∈ C([0, 1]) : sup

x,y∈[0,1]

|w(x) − w(y)|
|x− y|ϑ < +∞

}
,
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C2+ϑ([0, 1]) :=
{
w ∈ C2([0, 1]) : w′′ ∈ Cϑ([0, 1])

}
.

Let QT = (0, 1)× (0, T ). Let us define the following spaces of time dependent functions

Cϑ,ϑ2 (QT ) :=

{
u ∈ C(QT ) : sup

x,y∈[0,1]

|u(x, t)− u(y, t)|
|x− y|ϑ + sup

t,s∈[0,T ]

|u(x, t)− u(x, s)|
|t− s|ϑ2

< +∞
}
,

C2,1(QT ) :=
{
u : QT −→ R : ∃ uxx, ux, ut ∈ C(QT )

}
,

C2+ϑ,1+ϑ
2 (QT ) :=

{
u ∈ C2,1(QT ) : uxx, ux, ut ∈ Cϑ,ϑ2 (QT )

}
.

Notation

Given N ∈ N, let us set RN
+ = {(a1, . . . , aN ) | ak ∈ R, ak > 0, k = 1, . . . , N}. For every

(τ1, . . . , τN ) = (τk)
N
1 ∈ R

N
+ , (σ1, . . . , σN ) = (σk)

N
1 ∈ R

N
+ ,

we define

T0 := 0, Sk := Tk−1 + σk, Tk := Sk + τk, k = 1, . . . , N. (3) (3)

Noting that 0 = T0 < Sk < Tk ≤ TN , k = 1, . . . , N, we consider the following partition of
[0, TN ] in 2N intervals:

[0, TN ] = [0, S1] ∪ [S1, T1] ∪ · · · ∪ [TN−1, SN ] ∪ [SN , TN ] =

N⋃

k=1

(Ok ∪ Ek) , (4)

where, for every k = 1, . . . , N, we have set Ok := [Tk−1, Sk] and Ek := [Sk, Tk].

Outline and main ideas for the proof of Theorem 1

We obtain the proof of Theorem 1 in Section 3.3 using the partition introduced in (4) and
applying two alternative control actions: on [Sk, Tk] we choose suitable initial data, wk, in pure
diffusion problems (v ≡ 0) to move the points of sign change to their desired location (Section
3.1), whereas on [Tk−1, Sk] we give a smoothing result to preserve the reached points of sign
change and attain such wk’s as intermediate final conditions, using piecewise static multiplicative
controls vk (Section 3.2).

3.1 Controllability for initial-value pure diffusion problems on disjoint

time intervals

In this section, we outline the main idea of the proof of Theorem 1.

Let N ∈ N. For any fixed (σ1, . . . , σN ) ∈ R
N
+ , let us consider a generic (τ1, . . . , τN ) ∈ R

N
+

and, for k = 1, . . . , N, recalling (3)-(4), let us introduce the following initial value pure diffusion
problems on disjoint time intervals





wt = wxx + f(w), in QEk
= (0, 1)× [Sk, Tk],

w(0, t) = w(1, t) = 0, t ∈ [Sk, Tk],

w |t=Sk
= wk(x), w′′

k (x) |x=0,1= 0.

(4) (5)

3We note that T0 = 0, S1 = σ1, T1 = σ1+τ1, and Sk =

k−1∑

h=1

(σh+τh)+σk , Tk =
k∑

h=1

(σh+τh), ∀k = 2, . . . , N.

4w′′
k
(x) |x=0,1= 0 is a compatibility condition, see [25], pp. 452-453, where it is introduced in a more general

parabolic problem.
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We will consider the initial data wk and times τk, k = 1, . . . , N, as control parameters, where
wk’s belong to C2+ϑ([0, 1]), with ϑ ∈ (0, 1) fixed at the beginning of this section.

Remark 3.1 For every k = 1, . . . , N, by a classical well-posedness result (see [25], pp. 452-
453), if wk ∈ C2+ϑ([0, 1]), then any initial-value problem in (5) has a unique classical solution
Wk(x, t) on QEk

and Wk ∈ C2+ϑ,1+ϑ/2(QEk
).

Definition 3.1 We call solution of (5) the function defined in (0, 1)×
N⋃

k=1

[Sk, Tk] as

w(x, t) =Wk(x, t), ∀(x, t) ∈ (0, 1)× [Sk, Tk], k = 1, . . . , N,

where Wk, for every k = 1, . . . , N, is the unique solution on (0, 1)× [Sk, Tk] of the k
th problem

in (5), with initial state wk.

Remark 3.2 We observe that a solution of (5) is a collection of solutions of finitely many
problems which are set on disjoint time intervals. Therefore, it is independent of the choice of
(σk)

N
1 . We prefer to give Definition 3.2 for a fixed (σk)

N
1 , just for technical purposes that will

be clarified in the sequel (see Theorem 2 and Section 3.3).

Definition 3.2 Let u0 ∈ H1
0 (0, 1) be a function with n points of sign change. For every fixed

N ∈ N and (σk)
N
1 ∈ R

N
+ , we call a finite “family of Times and Initial Data” of (5) associated

to u0, a set of the form
{
(τk)

N
1 , (wk)

N
1

}
such that

⋆ (τk)
N
1 ∈ R

N
+ ;

⋆ wk ∈ C2+ϑ([0, 1]), for all k = 1, . . . , N, satisfies:

1. wk(0) = wk(1) = 0, w′′
k (0) = w′′

k (1) = 0;

2. w1 and u0 have the same points of sign change, in the same order as the points of

sign change of u0;

3. for k = 2, . . . , N, wk(·) and w(·, Tk−1) have the same points as the points of sign

change, in the same order of sign change of u0, where w is the solution of (5).

Theorem 2 Let u0 ∈ H1
0 (0, 1) have n points of sign change at x0l ∈ (0, 1), with 0 =: x00 < x0l <

x0l+1 ≤ x0n+1 := 1, l = 1, . . . , n. Let x∗l ∈ (0, 1), l = 1, . . . , n, be such that 0 := x∗0 < x∗l <
x∗l+1 ≤ x∗n+1 := 1. Then, for every ε > 0 there exist Nε ∈ N and a finite family of times and

initial data
{
(τk)

Nε

1 , (wk)
Nε

1

}
such that, for any (σk)

Nε

1 ∈ R
N
+ , the solution wε of problem (5)

satisfies

wε(x, TNε
) = 0 ⇐⇒ x = xεl , l = 0, . . . , n+ 1,

for some points xεl ∈ (0, 1), 0 := xε0 < xεl < xεl+1 ≤ xεn+1 := 1, l = 1, . . . , n, such that

n∑

l=1

|x∗l − xεl | < ε.

Moreover, wε(·, TNε
) has the same order of sign change as u0.

This theorem is obtained in Section 4 by proving a series of preliminar results.
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3.2 Smoothing result to preserve the reached points of sign change

and to obtain the intermediate data wk

In this section we introduce a smoothing result to preserve the reached points of sign change
and attain regular intermediate final conditions wk’s.

Let N ∈ N. For any fixed (τ1, . . . , τN ) ∈ R
N
+ , let us consider a generic (σ1, . . . , σN ) ∈ R

N
+ and,

for k = 1, . . . , N, recalling (3)-(4), given uk−1, rk−1 ∈ H1
0 (0, 1), vk ∈ L∞((0, 1)× [Tk−1, Sk]), let

us introduce the following problem





ut = uxx + vk(x, t)u + f(u) in QOk
= (0, 1)× [Tk−1, Tk−1 + σk],

u(0, t) = u(1, t) = 0, t ∈ [Tk−1, Tk−1 + σk],

u |t=Tk−1
= uk−1 + rk−1 ∈ H1

0 (0, 1).

(5) (6)

Our goal is to show that, given Tk−1, there exists a sufficiently small σk > 0 such that,
provided ‖rk−1‖L2(0,1) is small, we can steer the system (6) from uk−1+rk−1 to a neighborhood
of any state wk, where wk has the same n changes of sign as uk−1, in the same order of sign
change. In Section 3.3 we will apply the following result to obtain regular wk’s, that satisfy
suitable properties.

Theorem 3 Let uk−1, rk−1, wk ∈ H1
0 (0, 1). Let uk−1 and wk have the same n points of sign

change in the same order of sign change. Then, for every η > 0 there exist a sufficiently

small σk = σk(η, uk−1, wk) > 0 and a piecewise static bilinear control vk = vk(η, uk−1, wk) ∈
L∞((0, 1)× (Tk−1, Sk)) such that

‖Uk(·, Sk)− wk(·)‖L2(0,1) ≤ η + Ck‖rk−1‖L2(0,1),

where Uk is the solution of (6) on (0, 1)×[Tk−1, Sk] and Ck = C(uk−1, wk) is a positive constant.

The above theorem is proved in Section 5.

3.3 Proof of Theorem 1

Let us start this section by the following Lemma.

Lemma 3.1 Let u0 ∈ H1
0 (0, 1) be a function with n points of sign change. Let

{
(τk)

N
1 , (wk)

N
1

}

be a finite family of times and initial data of (5) associated to u0, and let w :
(
0, 1
)
×

N⋃

k=1

[Sk, Tk] −→ R be the solution of (5). For every δ > 0, there exists σδ = (σk)
N
1 ∈ R

N
+ , vδ ∈

L∞((0, 1) × (0, TN)) such that, denoting by uδ : (0, 1) × [0, TN ] → R the solution of (1) with

bilinear control vδ, we have

‖uδ(·, Tk)− w(·, Tk)‖L2(0,1) ≤ δ, ∀k = 1, . . . , N. (7)

Proof. Fix
{
(τk)

N
1 , (wk)

N
1

}
and δ > 0. Let us consider the partition of [0, TN ] in 2N intervals

introduced in (4). We will show that the bilinear control vδ has the following expression

vδ(x, t) =

{
vδk(x, t) in QOk

= (0, 1)× [Tk−1, Sk], k = 1, . . . , N,

0 in QEk
= (0, 1)× [Sk, Tk], k = 1, . . . , N.

5We recall that Sk = Tk−1 + σk .
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Step 1: A useful energy estimate on (0, 1)×
N⋃

k=1

[Sk, Tk] (vδ ≡ 0).

In the following, for every k = 1, . . . , N, we will consider the following problem on QEk





ut = uxx + f(u), in QEk
= (0, 1)× [Sk, Tk],

u(0, t) = u(1, t) = 0, t ∈ [Sk, Tk],

u |t=Sk
= wk + pk,

(8)

where pk ∈ H1
0 (0, 1) are given functions, and we will represent the solution of (8) as the sum of

two functions w(x, t) and h(x, t), which solve the following problems in QEk






wt = wxx + f(w) in QEk
,

w(0, t) = w(1, t) = 0,

w |t=Sk
= wk ∈ C2+ϑ([0, 1]),






ht = hxx + (f(w + h)− f(w)) in QEk
,

h(0, t) = h(1, t) = 0,

h |t=Sk
= pk.

(9)

Evaluation of ‖h(·, Tk)‖L2(0,1), k = 1, . . . , N . Let us fix k = 1, . . . , N. Multiplying by
h each member of the equation in the second problem of (9) and integrating by parts over
Q[Sk,t] = (0, 1)× [Sk, t], t ∈ [Sk, Tk], keeping in mind (2), it follows that

1

2

∫ t

Sk

∫ 1

0

(h2)tdx ds =

∫ t

Sk

∫ 1

0

hxxhdx ds+

∫ t

Sk

∫ 1

0

(f(w + h)− f(w))h dxds

≤ −
∫ t

Sk

∫ 1

0

h2xdx ds + L

∫ t

Sk

∫ 1

0

h2dxds, ∀t ∈ [Sk, Tk].

Then, ∫ 1

0

h2(x, t)dx ≤
∫ 1

0

p2k(x)dx + 2L

∫ t

Sk

∫ 1

0

h2dxds, ∀t ∈ [Sk, Tk].

So, applying Gronwall’s inequality we deduce

‖ h(·, Tk) ‖L2(0,1) ≤ eLT̃ ‖ pk ‖L2(0,1), with T̃ :=

N∑

k=1

τk. (10)

Step 2: Steering.

• Steering the system from u0 to w1 on [0, S1]. Applying Theorem 3 (with k = 1 and r0 = 0
in its statement), for every η1 > 0 there exist σ1 = σ1(η1, u0, w1) > 0 and a piecewise
static bilinear control v1 = v1(η1, u0, w1) ∈ L∞((0, 1)× (0, S1)) (with S1 = σ1) such that

‖U1(·, S1)− w1(·)‖L2(0,1) ≤ η1, (11)

where U1 is the solution of (6) on (0, 1)× [0, S1]. Let us set

p1(·) := U1(·, S1)− w1(·), (12)

we have U1(·, S1) = w1(·) + p1(·).
• Steering the system from w1 + p1 to u1 on [S1, T1]. We consider the problem (8), written
for k = 1. Due to (9), we have u(·, T1) = w(·, T1) + h(·, T1), where u,w, h, defined on

(0, 1)×
N⋃

k=1

[Sk, Tk], are the solutions of the problem (8), the first problem in (9) and the

second problem in (9), respectively. Thus, let us set

u1(·) := w(·, T1) and r1(·) := h(·, T1). (13)
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• Steering the system from uk−1 + rk−1 to wk on [Tk−1, Sk], k = 2, . . . , N .

Similarly to (13), let us set

uk−1(·) := w(·, Tk−1) and rk−1(·) := h(·, Tk−1).

Applying Theorem 3, for every ηk > 0 there exist σk = σk(ηk, uk−1, wk) > 0 and a
piecewise static bilinear control vk = vk(ηk, uk−1, wk) ∈ L∞((0, 1)×(Tk−1, Sk)) (with Sk =
Tk−1 + σk), such that

‖Uk(·, Sk)− wk(·)‖L2(0,1) ≤ ηk + Ck‖rk−1‖L2(0,1), (14)

where Uk is the solution of (6) on (0, 1)× [Tk−1, Sk], Ck = C(uk−1, wk) ≥ 1 is a constant,
as in Theorem 3. Moreover, we note that Uk(·, Sk) = wk(·) + pk(·), where

pk(·) := Uk(·, Sk)− wk(·). (15)

• Steering the system from wk + pk to uk on [Sk, Tk], k = 2, . . . , N . Let us consider the
problem (8). Due to (9), we have u(·, Tk) = w(·, Tk) + h(·, Tk), where u,w, h, defined on

(0, 1)×
N⋃

k=1

[Sk, Tk], are the solutions of the problem (8), the first problem in (9) and the

second problem in (9), respectively. Thus, let us set

uk(·) := w(·, Tk) and rk(·) := h(·, Tk). (16)

Step 3: Conclusions. Given η = (η1, . . . , ηN ) ∈ R
N
+ , let U1, . . . , UN be the solutions of (6)

satisfying (11) and (14). Define

uη(x, t) =





Uk(x, t) in (0, 1)× [Tk−1, Sk], k = 1, . . . , N,

w(x, t) + h(x, t) in (0, 1)×
N⋃

k=1

[Sk, Tk],
(6) (17)

and observe that uη is the solution of (1) corresponding to the piecewise static bilinear control

vη(x, t) =






vk(x, t) in (0, 1)× [Tk−1, Sk], k = 1, . . . , N,

0 in (0, 1)×
N⋃

k=1

[Sk, Tk].

Thus, to show (7) it is sufficient to prove by induction that there exists η(δ) = (η1(δ), . . . , ηN (δ)) ∈
R

N
+ , such that, for the corresponding uδ := uη(δ), as in (17), the following inequality holds

‖Uk(·, Sk)− wk(·)‖L2(0,1) ≤
δ Ck

2N−ke(N−k)LT̃

N∏

h=k

Ch

, ∀k = 1, . . . , N. (18)

Indeed, by (17), (10), (12) and (15), and (18) we obtain (7) and complete the proof.
Step 4: Proof of (18).

6We note that Uk, k = 1, . . . , N, depend on ηk and h depends on η, but w is independent of η.
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• Base case. Choosing η1 = η1(δ) :=
δ C1

2N−1e(N−1)LT̃

N∏

h=1

Ch

in (11), we obtain (18) for k = 1.

• Inductive step. Let k = 1, . . . , N − 1. By the inductive assumption, let us suppose that
the inequality (18) holds for the index k. Thus, we will prove (18) for the index k + 1.

Choosing ηk+1 = ηk+1(δ) :=
δ Ck+1

2N−ke(N−k−1)LT̃

N∏

h=k+1

Ch

in (14), keeping in mind (13) or

(16), (10), (12) or (15), and the induction assumption we deduce

‖Uk+1(·, Sk+1)− wk+1(·)‖L2(0,1) ≤ ηk+1 + Ck+1‖rk‖L2(0,1)

≤ ηk+1 + Ck+1e
LT̃ ‖Uk(·, Sk)− wk(·)‖L2(0,1)

≤ ηk+1 + Ck+1e
LT̃ δ Ck

2N−ke(N−k)LT̃

N∏

h=k

Ch

=
δ Ck+1

2N−k−1e(N−k−1)LT̃

N∏

h=k+1

Ch

,

from which the inequality (18) is proved. ⋄

Now, we can prove Theorem 1.
Proof (of Theorem 1). Let us fix η > 0. Let u0 ∈ H1

0 (0, 1) have n points of sign change at
x0l ∈ (0, 1), with 0 =: x00 < x0l < x0l+1 ≤ x0n+1 := 1, l = 1, . . . , n. Let u∗ ∈ H1

0 (0, 1) have n
points of sign change at x∗l ∈ (0, 1), l = 1, . . . , n, such that 0 := x∗0 < x∗l < x∗l+1 ≤ x∗n+1 := 1.
Step 1: Applying Theorem 2, for every ε > 0 there exist Nε ∈ N and a finite family of times

and initial data
{
(τk)

Nε

1 , (wk)
Nε

1

}
such that, for any (σk)

Nε

1 ∈ R
Nε

+ , the solution

wε :
(
0, 1
)
×

Nε⋃

k=1

[Sk, Tk] −→ R of problem (5) satisfies

wε(x, TNε
) = 0 ⇐⇒ x = xεl , l = 0, . . . , n+ 1, (19)

for some points 0 := xε0 < xεl < xεl+1 ≤ xεn+1 := 1, l = 1, . . . , n, such that

n∑

l=1

|x∗l − xεl | < ε. (20)

Moreover, wε(·, TNε
) has the same order of sign change as for u0.

Step 2: Applying Lemma 3.1, for every δ > 0 there exists σε,δ = (σk)
Nε

1 ∈ R
N
+ , vε,δ ∈

L∞((0, 1)× (0, TNε
)) such that, denoted by uε,δ : (0, 1)× [0, TNε

] −→ R the solution of (1) with
bilinear control vε,δ, we have

uε,δ(·, TNε
) = wε(·, TNε

) + rNε
(·), (21)
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and
‖rNε

‖L2(0,1) ≤ δ . (22)

Step 3: Steering the system from uε,δ(·, TNε
) to u∗. By (20) it is easy to show that there exist

ε∗ = ε∗(η) > 0 and u∗ε ∈ H1
0 (0, 1) such that, for every ε ∈ (0, ε∗), we have

u∗ε(x) = 0 ⇐⇒ x = xεl , l = 0, . . . , n+ 1 and ‖u∗ − u∗ε‖L2(0,1) ≤
η

3
. (23)

Since wε(·, TNε
) and u∗ε have the same points of sign change (see (19) and (23)), keeping in mind

(21) we can steer the system (1) from uε,δ(·, TNε
) to u∗ε at some time T > TNε

. Indeed applying
Theorem 3, for every η > 0 there exist σ∗ = σ∗(η, ε, u0, u

∗) > 0 and a piecewise static bilinear
control v∗ = v∗(η, ε, u0, u

∗) ∈ L∞((0, 1)× (TNε
, T )), with T := TNε

+ σ∗, such that, using also
the inequality (22), we obtain

‖U∗(·, T )− u∗ε(·)‖L2(0,1) ≤ η + C∗(ε)‖rNε
(·)‖L2(0,1) ≤ η + C∗(ε)δ, (24)

where U∗ is the solution of (6) on (0, 1) × [TNε
, T ] with initial state uε,δ(·, TNε

), C∗(ε) =
C(ε, u0, u

∗).

Conclusions. Let us fix ε := ε∗(η)
2 and η := η

3 . Then, we consider the constant C∗(ε) :=

C∗
(

ε∗(η)
2

)
of (24) and we choose δ := η

3C∗

(
ε∗(η)

2

) . So, by (23) and (24), we obtain the conclusion

‖U∗(·, T )− u∗(·)‖L2(0,1) ≤ ‖U∗(·, T )− u∗ε(·)‖L2(0,1) + ‖u∗ − u∗ε‖L2(0,1) ≤ η. ⋄

4 Proof of Theorem 2

The plan of this section is as follows:

In Section 4.1, by Lemma 4.1 we construct suitable initial data wk’s to be used in the proof of
Theorem 2. By Lemma 4.2 we construct the n curves of sign change associated to the the
n initial points of sign change and we prove some useful properties for the construction of
suitable control strategies.

In Section 4.2, we construct a suitable particular family of times and initial data, that allows
to move the n initial points of sign change towards the n target points of sign change. In
this section, we also introduce the definitions of gap and target distance functional, defined
on the set of the order processing steering times and initial data at the beginning of this
section).

In Section 4.3, after proving a technical proposition (Proposition 4.1) we show how to steer
the points of sign change of the solution arbitrarily close to the target points.

For the notation of this section we refer to Section 3.1.

4.1 Preliminary results

Let us prove the following lemma.

Lemma 4.1 (Construction of suitable initial data wk’s) Let xl ∈ [0, 1], l = 0, . . . , n+ 1,
be such that 0 = x0 < x1 < · · · < xn < xn+1 = 1. Let α = (α0, . . . , αn+1) ∈ R

n+2, β =
(β0, . . . , βn+1) ∈ R

n+2 be such that αl αl+1 < 0, αl ∈ {−1, 1}, βl ∈ {−1, 0, 1}, l = 0, . . . , n, β0 =
βn+1 = 0. Let ρ̃ = min

l=0,...,n
{xl+1 − xl}. Then, there exists w ∈ C

∞

([0, 1]) such that

14



⋆ w(x) = 0 ⇐⇒ x = xl, l = 0, . . . , n+ 1;

⋆ w′(xl) = αl, w
′′(xl) = βl, l = 0, . . . , n+ 1;

⋆ ‖w‖Ck([0,1]) ≤ C(k, ρ̃), ∀k ∈ N.

Proof. For every l = 0, . . . , n+ 1, set

vl(x) = αl(x− xl) +
βl
2
(x − xl)

2, ∀x ∈ R.

Note that each vl(x) has no critical points in
[
xl − ρ̃

2 , xl +
ρ̃
2

]
. Set ρ = 1

2 ρ̃ and define

w(x) =

n+1∑

l=0

ηρl (x) vl(x) +

n∑

l=0

αl1[xl,xl+1)(x)
[
1− (ηρl (x) + ηρl+1(x))

]
, x ∈ [0, 1],

where 1A(x) is the characteristic function of a set A, and ηρj ∈ C∞(R), j = 0, . . . , n + 1, are
such that ηρj (x) = ηρ0(x − xj) and η

ρ
0 has the following properties:

• ηρ0(−x) = ηρ0(x), 0 ≤ ηρ0(x) ≤ 1, ∀x ∈ R; ηρ0(x) = 1, ∀x ∈ [0, ρ2 ]; η
ρ
0(x) = 0, ∀x ∈ [ρ,+∞);

•
∣∣∣∣
dhηρ0(x)

dxh

∣∣∣∣ ≤
Ch

ρh , ∀x ∈ R, where Ch is a positive constant and h ∈ N.

Observe that, for x ∈ [xl, xl+1], l = 0, . . . , n,

w(x) =





vl(x), if x ∈ [xl, xl + ρ/2],
ηρ0(x − xl)vl(x) + αl[1− ηρ0(x − xl)], if x ∈ (xl + ρ/2, xl + ρ),
αl, if x ∈ [xl + ρ, xl+1 − ρ],
ηρ0(x − xl+1)vl+1(x) + αl[1− ηρ0(x− xl+1)], if x ∈ (xl+1 − ρ, xl+1 − ρ/2),
vl+1(x), if x ∈ (xl+1 − ρ/2, xl+1] .

Notice that w is of class C∞(R) by construction. Moreover, our choice of ρ ensures that w(x)
has no points of sign change in (xl − ρ, xl) or in (xl, xl + ρ). This ends the proof of Lemma 4.1.
⋄

✲

✻

x1

1

1

−1

x2

w

x0

Figure 1: A function w as in Lemma 4.1 with 2 points of change of sign.
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Remark 4.1 In the above, we can costruct η0 by the following expression on
(
ρ
2 , ρ
)

η0(x) =
e

1

(x−ρ)(x−
ρ
2
)

e
1

(x−ρ)(x−
ρ
2
) + e

− 1
(x−

ρ
2
)2

= e
1

1+h0(x) , with h0(x) =
−(2x− 3

2 ρ)

(x− ρ
2 )

2(x− ρ)
.

In the whole section, ϑ ∈ (0, 1) denotes the number that was fixed at the beginning of Section
3.

Lemma 4.2 (Construction of the curves of sign change) Let α = (α0, . . . , αn+1) ∈ R
n+2

be such that αl αl+1 < 0, αl ∈ {−1, 1}, αn+1 = −αn, l = 0, . . . , n . Let ρ̃ > 0 be. Let

xl ∈ [0, 1], l = 0, . . . , n + 1, be such that 0 = x0 < x1 < · · · < xn < xn+1 = 1 and

min
l=0,...,n

{xl+1 − xl} = ρ̃. Let wk ∈ C2+ϑ([0, 1]) be such that wk(x) = 0 if and only if x =

xl, w
′
k(xl) = αl, l = 0, . . . , n+ 1, w′′

k (0) = w′′
k (1) = 0 and ‖wk‖C2+ϑ([0,1]) ≤ c, for some positive

constant c = c(ρ̃). Let T > 0 and let w ∈ C2+ϑ,1+ϑ
2 (QT ) be the solution of the problem






wt = wxx + f(w) in QT = (0, 1)× (0, T )

w(0, t) = w(1, t) = 0 t ∈ (0, T )

w(x, 0) = wk(x) x ∈ (0, 1) .

(7) (25)

Then, for every ρ ∈ (0, ρ̃] there exist τ̃ = τ̃ (ρ) > 0 and M = M(ρ) > 0 such that, for each

l = 1, . . . , n, there exists a unique solution ξl : [0, τ̃ ] −→ R of the initial-value problem
{
ξ̇l(t) = −wxx(ξl(t),t)

wx(ξl(t),t)
, t ∈ [0, τ̃ ],

ξl(0) = xl,

that satisfies w(ξl(t), t) = 0, ∀t ∈ [0, τ̃ ], and

ξl ∈ C1+ϑ
2 ([0, τ̃ ]), ‖ξl‖

C1+ϑ
2 ([0,τ̃ ])

≤M, ‖ξl(·)− xl‖C([0,τ̃]) <
ρ

2
.

Remark 4.2 In Lemma 4.2, since ‖ξl(·) − xl‖C([0,τ̃]) <
ρ

2
for each l = 1, . . . , n, we also have

that
0 := ξ0(t) < ξl(t) < ξl+1(t) < ξn+1(t) := 1, ∀t ∈ [0, τ̃ ], ∀l = 1, . . . , n− 1. (26)

Definition 4.1 We call the functions ξl : [0, τ̃ ] −→ R, l = 1, . . . , n, given by Lemma 4.2,

Curves of Sign Change associated to the set of initial points of sign change X = (x1, . . . , xn).

Proof (of Lemma 4.2). Let us fix ρ ∈ (0, ρ̃].
Step 1: Uniform estimate for w. Due to Theorem 6.1 of [25] (pp. 452-453), the solution w of

(25) belongs to C2+ϑ,1+ ϑ
2 (QT ) (

8) and, for some constant K = K(‖wk‖C2+ϑ([0,1])) > 0, depend-
ing only on ‖wk‖C2+ϑ([0,1]) (see (6.8)-(6.12) on pp. 451-452 in [25]), we have ‖w‖

C2+ϑ,1+ϑ
2 (QT )

≤
K. Thus, since ‖wk‖C2+ϑ([0,1]) ≤ c(ρ̃), we deduce that

‖w‖
C2+ϑ,1+ϑ

2 (QT )
≤ K(‖wk‖C2+ϑ([0,1])) ≤ C, (27)

for some positive constant C = C(ρ̃) depending only on ρ̃.
Step 2: Existence and regularity of curves of sign change. For any fixed l = 1, . . . , n, since
wx(xl, 0) = αl 6= 0 and wx(x, t) is a continuous function in (xl, 0) ∈ QT , there exist δl ∈(
0,min

{
1
2C , ρ

})
(9) and Tl > 0 such that wx(x, t) 6= 0, ∀(x, t) ∈ [xl − δl, xl + δl]× [0, Tl].

7For the existence, uniqueness and regularity of problem (25) see Remark 3.1 and Theorem 6.1 in [25] (pp.
452-453).

8One can note that the initial datum satisfies the compatibility condition w′′
k
(0) = w′′

k
(1) = 0, as in Theorem

6.1 of [25].
9C is the constant present in (27).
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Let δ := min
l=1,...,n

δl be. For every l = 1, . . . , n, we consider the Cauchy problems

{
ξ̇l(t) = − wt(ξl(t),t)

wx(ξl(t),t)
, t > 0,

ξl(0) = xl .
(28)

Observe that F (x, t) := − wt(x,t)
wx(x,t)

is continuous on [xl − δ, xl + δ] × [0, Tl]. Therefore, for every

l = 1, . . . , n, the problem (28) has a solution ξl of class C
1 on some interval [0, τl], with 0 <

τl ≤ Tl. Moreover, since F ∈ C
ϑ
2 ([xl − δ, xl + δ] × [0, Tl]), we conclude that ξl ∈ C1+ ϑ

2 ([0, τl]).
Furthermore, w(ξl(t), t) = 0, ∀t ∈ [0, τl], because

d

dt
w(ξl(t), t) = wt(ξl(t), t) + wx(ξl(t), t)ξ̇l(t) = 0, ∀t ∈ [0, τl], and w(ξl(0), 0) = wk(xl) = 0.

Moreover, since f(w(ξl(t)), t) = 0, ∀t ∈ [0, τl], we also have that

ξ̇l(t) = −wt(ξl(t), t)

wx(ξl(t), t)
= −wxx(ξl(t), t)

wx(ξl(t), t)
, ∀t ∈ [0, τl].

Step 3: Uniform estimates for the curves of sign change. For any fixed l = 1, . . . , n, we consider

the number δ = δ(ρ) > 0, δ = min
l=1,...,n

δl < min
{ 1

2C
, ρ
}
, introduced in Step 2, and the uniform

time τ̃ = τ̃ (ρ) > 0,

τ̃ := min
{( 1

2C
− δ
) 2

ϑ

,
δ2

3
, min
l=1,...,n

τl

}
. (10)

We remember that the function t 7→ wx(x, t) belongs to C
ϑ
2 ([0, τ̃ ]), and the function x 7→ wx(x, t)

belongs to C1+ϑ([0, τ̃ ]). Thus, for every (x, t) ∈ (xl − δ, xl + δ)\{xl} × (0, τ̃ ), by (27) we have

|wx(x, t)− αl| = |wx(x, t)− wx(xl, 0)| ≤ |wx(x, t)− wx(x, 0)|+ |wx(x, 0)− wx(xl, 0)|

=
|wx(x, t)− wx(x, 0)|

t
ϑ
2

t
ϑ
2 +

|wx(x, 0)− wx(xl, 0)|
|x− xl|

|x− xl|

≤ ‖w‖
C2+ϑ,1+ϑ

2 (QT )
(t

ϑ
2 + |x− xl|) ≤ C(t

ϑ
2 + |x− xl|) ≤ C(τ̃

ϑ
2 + δ). (29)

Since δ < 1
2C and τ̃ ≤

(
1
2C − δ

) 2
ϑ , we have C(τ̃

ϑ
2 + δ) ≤ 1

2 , so by (29) we deduce

∣∣∣|wx(x, t)| − |αl|
∣∣∣ ≤ |wx(x, t)− αl| ≤ C(τ̃

ϑ
2 + δ) ≤ 1

2
.

Therefore, for every l = 1, . . . , n, having in mind that |αl| = 1, we obtain

|wx(x, t)| ≥ |αl| −
1

2
=

1

2
, ∀(x, t) ∈ (xl − δ, xl + δ)× (0, τ̃) . (30)

Then, by (27) and (30), keeping in mind that τ̃ ≤ δ2

3 and δ < min{ 1
2C , ρ}, we deduce

|ξl(t)− xl| =
∣∣∣∣
∫ t

0

ξ̇l(s) ds

∣∣∣∣ ≤
∫ τ̃

0

|wxx(ξl(s), s)|
|wx(ξl(s), s)|

ds ≤
τ̃‖w‖

C2+ϑ,1+ϑ
2 (QT )

min
s∈[0,τ̃ ]

|wx(ξl(s), s)|

≤ τ̃C

min
s∈[0,τ̃ ]

|wx(ξl(s), s)|
≤ 2τ̃C <

τ̃

δ
≤ 1

δ

δ2

3
<
ρ

3
, ∀t ∈ [0, τ̃ ]. (31)

10We note that τ̃ = τ̃(ρ) is not dependent on l.
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Step 4: Uniqueness of the curves of sign change. We note that, although one cannot claim
uniqueness for the Cauchy problem (28), a posteriori the ξl’s turn out to be uniquely determined.
Indeed, setting ξ0(t) ≡ 0, ξn+1(t) ≡ 0, ∀t ∈ [0, τ̃ ], one can apply the maximum principle for
semilinear parabolic equations (see Remark 2.1) on the domains

{(x, t)|x ∈ [ξl(t), ξl+1(t)] , t ∈ [0, τ̃)} ,

for every l = 0, . . . , n. The fact that the initial datum wk(x) doesn’t change sign on (xl, xl+1)
and the boundary conditions in (25) imply that, for every t∗ ∈ [0, τ̃),

w(x, t∗) = 0 ⇐⇒ x = ξl(t
∗), l = 0, . . . , n+ 1,

this completes the proof of Lemma 4.2. ⋄

Remark 4.3 An alternative proof of Lemma 4.2 can be obtained by using the implicit function
theorem instead of solving problem (28).

4.2 Construction of Order Processing Steering sets of Times and Ini-

tial Data

In this section we define the set of Order Processing Steering sets of Times and Initial Data

that permit to move the points of sign change towards the desired targets.

Notation

Let us consider the initial state u0 ∈ H1
0 (0, 1). For simplicity of notation let us set x00 := 0 and

x0n+1 := 1, and let us consider the set of n points of sign change of u0, X
0 = (x01, . . . , x

0
n), where

0 = x00 < x0l < x0l+1 ≤ x0n+1 = 1, l = 1, . . . , n. Let ρ0 = min
l=0,...,n

{
x0l+1 − x0l

}
. Let us define

λ(x0l ) =

{
1, if u0(x) > 0 on (x0l , x

0
l+1),

−1, if u0(x) < 0 on (x0l , x
0
l+1),

l = 0, . . . , n and λ(x0n+1) = −λ(x0n). (11) (32)

For simplicity of notation let us set x∗0 := 0 and x∗n+1 := 1, and let us also consider the set of n
target points X∗ = (x∗1, . . . , x

∗
n), where 0 = x∗0 < x∗l < x∗l+1 ≤ x∗n+1 = 1, l = 1, . . . , n.

Order Processing Steering sets of Times and Initial Data

Let us consider the same ϑ ∈ (0, 1) that was fixed at the beginning of Section 3.
Now, we define the set of the Order Processing Steering Times and Initial Data associated to
u0 and X∗

W∗(u0) :=
{
WN |WN =

{
(τk)

N
1 , (wk)

N
1

}
, N ∈ N

}
,

where a generic set WN =
{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0) is defined below. Let us fix any (σk)

N
1 ∈

R
N
+ and, recalling the notation introduced in (3)-(4) in Section 3, for k = 1, . . . , N, we consider

the initial value pure diffusion problems on disjoint time intervals (5)





wt = wxx + f(w) in QEk
= (0, 1)× [Sk, Tk]

w(0, t) = w(1, t) = 0, t ∈ [Sk, Tk]

w |t=Sk
= wk(x), w′′

k (x) |x=0,1= 0.

11Since x0
l
, l = 1, . . . , n, are points of sign change, we note that λ(x0

l+1) = −λ(x0
l
), l = 0, . . . , n.
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Properties of
{
τ1, w1

}
. By Lemma 4.1, there exists w1 ∈ C2+ϑ([0, 1]), with ‖w1‖C2+ϑ([0,1]) ≤

c1, for some positive constant c1 = c(ρ0), such that

• w1(x) = 0 ⇐⇒ x = x0l , l = 0, . . . , n+ 1;

• w′
1(x

0
l ) = λ(x0l ), w

′′
1 (x

0
l ) = −λ(x0l )µ1(x

∗
l − x0l ), l = 0, . . . , n+ 1,

where µ1(x
∗
l − x0l ) := sgn(x∗l − x0l ) =





1, if x0l < x∗l ,

0, if x0l = x∗l ,

−1, if x0l > x∗l .

Let w be the solution to




wt = wxx + f(w) (x, t) ∈ (0, 1)× (S1,+∞)

w(0, t) = w(1, t) = 0 t ∈ (S1,+∞)

w(x, S1) = w1(x) x ∈ (0, 1),

where S1 = σ1. By Lemma 4.2, for every ρ ∈ (0, ρ0] there exist τ̃1 = τ̃1(ρ) > 0, M1 =
M1(ρ) > 0 and n small curves of sign change (associated to the set of n initial points of

sign change X0 = (x01, . . . , x
0
n)) ξ

1
l ∈ C1+ϑ

2 ([S1, T̃1]), T̃1 = S1 + τ̃1, l = 1, . . . , n, such that

w(ξ1l (t), t) = 0, ∀t ∈ [S1, T̃1]. Moreover,

{
ξ̇1l (t) = −wxx(ξ

1
l (t),t)

wx(ξ1l (t),t)
, t ∈ [S1, T̃1],

ξ1l (S1) = x0l ,
and ‖ξ1l ‖C1+ϑ

2 ([S1,T̃1])
≤M1. (33)

Let us set ξ10(t) ≡ 0 and ξ1n+1(t) ≡ 1 on [S1, T̃1]. Furthermore, for every l = 1, . . . , n− 1,
by Remark 4.2 we have

0 = ξ10(t) < ξ1l (t) < ξ1l+1(t) < ξ1n+1(t) = 1, ∀t ∈ [S1, T̃1]. (34)

Let us introduce the Inactive Set

L0
IS := {l | l ∈ {1, . . . , n}, x0l = x∗l }

and let us consider the set of the stopping times

Θ1 := {s ∈ (0, τ̃1] | ξ1l (S1 + s) = x∗l , for some l ∈ {1, . . . , n}\L0
IS}.

Let us set

τ1 =

{
τ̃1 if Θ1 = ∅,

minΘ1, otherwise ,
(35)

by (3) we have T1 = S1 + τ1.

Properties of
{
τk, wk

}
, k = 2, . . . , N .By iterate application of Lemma 4.1 and Lemma 4.2, one

can set xk−1
l := ξk−1

l (Tk−1), l = 1, . . . , n andXk−1 = (xk−1
1 , . . . , xk−1

n ), where ξk−1
l (t), t ∈

[Sk−1, Tk−1], are the n curves of sign change associated to the initial state wk−1 and to
the set of n points of sign change Xk−2 = (xk−2

1 , . . . , xk−2
n ). For simplicity of notation, let

us set xk−1
0 := 0 and xk−1

n+1 := 1. Let ρk−1 = min
l=0,...,n

{
xk−1
l+1 − xk−1

l

}
.

Let us introduce the Inactive Set

Lk−1
IS := {l, l ∈ {1, . . . , n}|∃hl ∈ {1, . . . , k − 1} : xhl

l = x∗l }, (12)
12We note that Lk−1

IS
⊆ {1, . . . , n} is a family of sets increasing in k.
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that is, the set of the indexes of the points of sign change that have already reached the
corresponding target points of the sign change set X∗ = (x∗1, . . . , x

∗
n) in some previous

time instant. Then, let us set

µk(x
∗
l − x0l ) =

{
0, if l ∈ Lk−1

IS ,

sgn(x∗l − x0l ) if l 6∈ Lk−1
IS .

(13)

Thus, by Lemma 4.1 we can choose wk ∈ C2+ϑ([0, 1]), with ‖wk‖C2+ϑ([0,1]) ≤ ck, for some
positive constant ck = c(ρk−1), such that

• wk(x) = 0 ⇐⇒ x = xk−1
l , l = 0, . . . , n+ 1;

• w′
k(x

k−1
l ) = λ(x0l ), w

′′
k (x

k−1
l ) = −λ(x0l )µk(x

∗
l − x0l ), l = 0, . . . , n+ 1.

Let w be the solution to





wt = wxx + f(w) (x, t) ∈ (0, 1)× (Sk,+∞)

w(0, t) = w(1, t) = 0 t ∈ (Sk,+∞)

w(x, Sk) = wk(x) x ∈ (0, 1),

where Sk =

k−1∑

h=1

(σh + τh) + σk. By Lemma 4.2, for every ρ ∈ (0, ρk−1] there exist τ̃k =

τ̃k(ρ) > 0, Mk =Mk(ρ) > 0 and n small curves of sign change (associated to the set of n

intermediate points of sign changeXk−1), ξkl ∈ C1+ϑ
2 ([Sk, Tk]), T̃k = Sk+ τ̃k, l = 1, . . . , n,

such that w(ξkl (t), t) = 0, ∀t ∈ [Sk, T̃k]. Moreover,

{
ξ̇kl (t) = −wxx(ξ

k
l (t),t)

wx(ξkl (t),t)
, t ∈ [Sk, T̃k],

ξkl (Sk) = xk−1
l ,

and ‖ξkl ‖C1+ϑ
2 ([Sk,T̃k])

≤Mk. (36)

Let us set ξk0 (t) ≡ 0 and ξkn+1(t) ≡ 1 on [Sk, T̃k]. Furthermore, for every l = 1, . . . , n− 1,
by Remark 4.2 we have

0 = ξk0 (t) < ξkl (t) < ξkl+1(t) < ξkn+1(t) = 1, ∀t ∈ [Sk, T̃k]. (37)

Let us introduce the set of the stopping times

Θk := {s ∈ (0, τ̃k] | ξkl (Sk + s) = x∗l , for some l ∈ {1, . . . , n}\Lk−1
IS },

and let us set

τk =

{
τ̃k if Θk = ∅,

minΘk, otherwise .
(38)

Then, by (3) we have Tk = Sk + τk.

Now, we give some remarks about the above introduced set of the order processing steering
times and initial data associated to u0 and X∗.

Remark 4.4 We note that τk < τ̃k for at most n values of k ∈ {1, . . . , N}.
13We observe that the definition of µk, k = 2, . . . , N, is consistent with the one of µ1.
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Remark 4.5 We note that, for each index l 6∈ Lk−1
IS (k = 1, . . . , N), by (36) and the choice of

the initial data wk we deduce

ξ̇kl (Sk) = −wxx(ξ
k
l (Sk), Sk)

wx(ξkl (Sk), Sk)
= −−λ(x0l )µk(x

∗
l − x0l )

λ(x0l )
= µk(x

∗
l − x0l ), ξkl (Sk) = xk−1

l .

Then, if x0l < x∗l we have ξ̇kl (Sk) = µk(x
∗
l − x0l ) > 0, so the initial conditions wk permits to

move the points of sign change xk−1
l on the right toward the desired x∗l . Otherwise, if x∗l < x0l

the initial conditions wk permits to move the points of sign change on the left.

Remark 4.6 We note that, for each inactive index l ∈ Lk−1
IS (k = 1, . . . , N), we choose the

initial data such that the second derivative is equal to 0 in the intermediate points of sign
change xk−1

l . So, as we will see later, such points will remain forever near the corresponding
target points of sign change already reached (we will see it in the next inequality (59) in the
proof of Proposition 4.1).

Curves of Sign Change, Gap and Target Distance functional

Given WN =
{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0), we introduce the n Curves of Sign Change associated

to WN , as the functions ξWl :
N⋃

k=1

[Sk, Tk] −→ R, l = 1, . . . , n, such that

ξWl (t) = ξkl (t), Sk ≤ t ≤ Tk, k = 1, . . . , N,

where any curve ξkl , k = 1, . . . , N, is given by Lemma 4.2 and is defined on [Sk, Tk]. For simplicity
of notation, let us set ξW0 (t) ≡ 0 and ξWn+1(t) ≡ 1. Moreover, for every l = 1, . . . , n− 1, by (34)
and (37), we deduce that

0 = ξW0 (t) < ξWl (t) < ξWl+1(t) < ξWn+1(t) = 1, ∀t ∈
N⋃

k=1

[Sk, Tk].

Definition 4.2 We define the gap functional ρ : W∗(u0) → [0, 1] in the following way

ρ(WN ) = min
l=0,...,n

min
t∈ E

{
ξWl+1(t)− ξWl (t)

}
, ∀WN =

{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0),

where E :=

N⋃

k=1

[Sk, Tk].

Definition 4.3 We define the target distance functional associated to the set X∗,
J∗ : W∗(u0) → [0, 1] such that

J∗(WN ) =

n∑

l=1

∣∣ξWl (TN )− x∗l
∣∣ , ∀WN =

{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0).
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4.3 End of the proof of Theorem 2

Notation

Let us consider the initial state u0 ∈ H1
0 (0, 1). Let us set x00 := 0 and x0n+1 := 1, and let us

consider the set of n points of sign change of u0, X
0 = (x01, . . . , x

0
n) where 0 = x00 < x0l < x0l+1 ≤

x0n+1 = 1, l = 1, . . . , n. Let ρ0 = min
l=0,...,n

{
x0l+1 − x0l

}
be.

Let us set x∗0 := 0 and x∗n+1 := 1, and let us consider the set of n target pointsX∗ = (x∗1, . . . , x
∗
n),

where 0 = x∗0 < x∗l < x∗l+1 ≤ x∗n+1 = 1, l = 1, . . . , n.

Let ρ∗0 = min
l=0,...,n

{
x∗l+1 − x∗l , x

0
l+1 − x0l

}
be. Let us consider the same ϑ ∈ (0, 1) that was fixed

at the beginning of Section 3. Let sϑ =

∞∑

k=1

1

k1+
ϑ
2

be. Let τ∗0 = τ(
ρ∗

0

2 ) > 0 andM∗
0 =M(

ρ∗

0

2 ) > 0

be the positive time and constant of Lemma 4.2, associated to ρ =
ρ∗

0

2 ∈ (0, ρ0].
To obtain the proof of Theorem 2 it need the following Proposition 4.1.

Proposition 4.1 There exists ε∗0 = ε∗0(
ρ∗

0

2 ) ∈ (0, 1) such that for every ε ∈ (0, ε∗0], N ∈ N, there
exists

WN =
{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0) with τk ≤ τ̃k :=

(
ερ∗0

4M∗
0 sϑ

) 2
2+ϑ 1

k
, k = 1, . . . , N (14). (39)

For every N ∈ N, N > n and WN ∈ W∗(u0), as in (39), we have ρ(WN ) ≥ ρ∗

0

2 and

J∗(WN ) ≤
n∑

l=1

|x0l − x∗l |+ c1(ε)

N∑

k=1

1

k1+
ϑ
2

− c2(ε)

N∑

k=n+1

1

k
, (40)

where c1(ε) =
ερ∗

0n
4 sϑ

, c2(ε) =
(

ερ∗

0

4M∗

0 sϑ

) 2
2+ϑ

.

Let us give the following definition.

Definition 4.4 We call Separating order processing steering set of times and initial data a

WN ∈ W∗(u0) such that ρ(WN ) ≥ ρ∗

0

2 . We denote with W∗
S(u0) the set of all the Separating

order processing steering strategies, that is

W∗
S(u0) =

{
WN ∈ W∗(u0) : ρ(W

N ) ≥ ρ∗0
2

}
.

Before proving Proposition 4.1, we show how thanks this proposition, we can easily obtain
the proof of Theorem 2.
Proof (of Theorem 2). To prove Theorem 2 it is sufficient to show that

∀ε > 0 ∃Nε ∈ N, WNε ∈ W∗
S(u0) : J∗(WNε) < ε (15) and LNε

IS = {1, . . . , n}. (41)

This follows from Proposition 4.1. Indeed, by contradiction,

⋆ if inf
WN∈W∗

S
(u0)

J∗(WN ) > 0,

∃ε̄ > 0 : ∀N ∈ N, ∀WN ∈ W∗
S(u0) we have J∗(WN ) > ε̄;

14τ̃k and τk are defined in (35) and (38), see also Remark 4.4.
15 inf

WN∈W∗

S
(u0)

J∗(WN ) = 0.
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⋆ if LN
IS 6= {1, . . . , n}, ∀N ∈ N, ∃j 6∈ LN

IS , for every N ∈ N, that is

∃ε̃ > 0 : ∀N ∈ N, ∀WN ∈ W∗
S(u0) we have ε̃ < |ξNj (TN)− x∗j |.

Let us consider ε∗ := min{ε̄, ε̃, ε∗0}, where ε∗0 ∈ (0, 1) is given by Proposition 4.1. In both the
previous cases, for every N ∈ N, N > n, choose WN =

{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0) such that

τk ≤ τ̃k =

(
ε∗ρ∗0

4M∗
0 sϑ

) 2
2+ϑ 1

k
, k = 1, . . . , N. By inequality (40) of Proposition 4.1, we obtain

that, for every N ∈ N, N > n, the following inequality holds

ε∗ < |ξNj (TN)− x∗j | ≤ J∗(WN ) ≤
n∑

l=1

|x0l − x∗l |+ c1(ε
∗)

N∑

k=1

1

k1+
ϑ
2

− c2(ε
∗)

N∑

k=n+1

1

k
.

Keeping in mind that

+∞∑

k=1

1

k
= +∞ , for N enough large, from the previous inequality we have

a contradiction, then (41) holds. ⋄

Now, we give the proof of Proposition 4.1.
Proof (of Proposition 4.1). Let (σk)

N
1 ∈ R

N
+ be. Given N ∈ N and a generic WN ={

(τk)
N
1 , (wk)

N
1

}
∈ W∗(u0), let us recall that the curves of sign change associated to WN (see

Section 4.2) are defined in the following way

ξWl (t) = ξkl (t), ∀t ∈ [Sk, Tk], k = 1, . . . , N, l = 0, . . . , n+ 1,

where all the curves ξkl , l = 0, . . . , n + 1, are defined on [Sk, Tk] and are associated to the
initial state wk. Let us recall that in Section 4.2, for every k = 2, . . . , N, we have defined
xk−1
j := ξk−1

j (Tk−1) = ξkj (Sk), j = 0, . . . , n + 1 and ρk−1 = min
l=0,...,n

{xk−1
l+1 − xk−1

l }. We recall

that by Lemma 4.2 (see also the properties of
{
τk, wk

}
, k = 1, . . . , N, in Section 4.2)

∀ρ ∈ (0, ρk−1] ∃ τk = τk(ρ) > 0, Mk =Mk(ρ) > 0, ξkl ∈ C1+ϑ
2 ([Sk, Tk]), l = 0, ..., n+ 1,

(42)

such that ‖ξkl ‖C1+ϑ
2 ([Sk,Tk])

≤Mk.

By the properties of {τk, wk} , keeping in mind Remark 4.5, we observe that

ξ̇kl (Sk) = µk(x
∗
l − x0j), l = 0, . . . , n+ 1. (43)

Step 1: Some preliminary evaluations.

Gap estimate. Let k = 1, . . . , N and l = 0, . . . , n be. We note that

ξkl+1(t)− ξkl (t) =ξ
k
l+1(t)− xk−1

l+1 + xk−1
l+1 − xk−1

l + xk−1
l − ξkl (t)

=xk−1
l+1 − xk−1

l +

∫ t

Sk

(
ξ̇kl+1(s)− ξ̇kl (s)

)
ds

=xk−1
l+1 − xk−1

l +

∫ t

Sk

(
ξ̇kl+1(s)− ξ̇kl+1(Sk)

)
ds−

∫ t

Sk

(
ξ̇kl (s)− ξ̇kl (Sk)

)
ds

+
(
ξ̇kl+1(Sk)− ξ̇kl (Sk)

)
(t− Sk) , ∀t ∈ [Sk, Tk] . (44)
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By (42), for every j = 0, . . . , n+ 1, we deduce that

∫ t

Sk

∣∣∣ξ̇kj (s)− ξ̇kj (Sk)
∣∣∣ ds ≤Mk

∫ t

Sk

(s− Sk)
ϑ
2 ds ≤Mk (t− Sk)

1+ϑ
2 , ∀t ∈ [Sk, Tk]. (45)

By (45) we have

∣∣∣∣
∫ t

Sk

(
ξ̇kl+1(s)− ξ̇kl+1(Sk)

)
ds−

∫ t

Sk

(
ξ̇kl (s)− ξ̇kl (Sk)

)
ds

∣∣∣∣ ≤ 2Mk (t− Sk)
1+ϑ

2, ∀t ∈ [Sk, Tk].

(46)
By (43), (44) and (46), for every t ∈ [Sk, Tk], we deduce

ξkl+1(t)− ξkl (t) ≥ xk−1
l+1 − xk−1

l − 2Mkτ
1+ ϑ

2

k +
(
µk(x

∗
l+1 − x0l+1)− µk(x

∗
l − x0l )

)
(t− Sk) . (47)

Distance evaluation. Let k = 1, . . . , N and l = 1, . . . , n be. By (43) we have

ξkl (t)− x∗l =ξkl (t)− xk−1
l + xk−1

l − x∗l = xk−1
l − x∗l +

∫ t

Sk

ξ̇kl (s)ds

=xk−1
l − x∗l + ξ̇kl (Sk) (t− Sk) +

∫ t

Sk

(
ξ̇kl (s)− ξ̇kl (Sk)

)
ds

=xk−1
l − x∗l + µk(x

∗
l − x0l ) (t− Sk) +

∫ t

Sk

(
ξ̇kl (s)− ξ̇kl (Sk)

)
ds, ∀t ∈ [Sk, Tk]. (48)

Step 2: Uniform time τ∗0 and constant M∗
0 . Let k = 1, . . . , N . Without loss of generality, we

can suppose, by an induction argument, that we have already proved that

ρh−1 = min
l=0,...,n

{xh−1
l+1 − xh−1

l } ≥ ρ∗0
2
, for every h = 1, . . . , k. (16) (49)

Then, choosing ρ =
ρ∗

0

2 ∈ (0, ρh−1], h = 1, . . . , k in (42), we obtain

Mh =Mh

(ρ∗0
2

)
=M∗

0 , τh = τh

(ρ∗0
2

)
= τ∗0 , ∀h = 1, . . . , k. (50)

Define ε∗0 = min
{

4M∗

0 sϑ
ρ∗

0
τ∗0

1+ϑ
2 , 1
}
, fix ε ∈ (0, ε∗0], and let

τh ≤ τ̃h = τ̃h(ε) :=

(
ερ∗0

4M∗
0 sϑ

) 2
2+ϑ 1

h
, h = 1, . . . , k . (17) (51)

So, we have
τ̃h(ε) ≤ τ∗0 , h = 1, . . . , k. (52)

In the final Step.5, by (47), (50)-(52), and a technical proof, for every l = 0, . . . , n and k =
1, . . . , N, we will prove the following alternative inequalities

ξkl+1(t)− ξkl (t) ≥xk−1
l+1 − xk−1

l − 2M∗
0 τ

1+ϑ
2

k , ∀t ∈ [Sk, Tk],

or (53)

ξkl+1(t)− ξkl (t) ≥ρ∗0 − ε
ρ∗0
4

≥ 3

4
ρ∗0, ∀t ∈ [Sk, Tk].

16Let us recall that by definition ρ0 = min
l=0,...,n

{x0
l+1 − x0

l } ≥
ρ∗0

2
.

17τ̃h and τh are defined in (35) and (38), see also Remark 4.4.
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Step 3: Let us prove ρ(WN ) ≥ ρ∗

0

2 . In this step, we will prove that ξkl+1(t) − ξkl (t) ≥
ρ∗

0

2 , ∀t ∈
[Sk, Tk], k = 1, . . . , N. By (51), (53) for k=1, we have

min
l=0,...,n

min
t∈[S1,T1]

(
ξ1l+1(t)− ξ1l (t)

)
≥min

{
min

l=0,...,n

(
x0l+1 − x0l

)
− 2M∗

0 τ
1+ϑ

2
1 ,

3

4
ρ∗0

}

≥min

{
ρ∗0 − 2M∗

0

ερ∗0
4M∗

0 sϑ
,
3

4
ρ∗0

}

=min

{
ρ∗0

(
1− ε

2sϑ

)
,
3

4
ρ∗0

}
≥ ρ∗0

2
.

By (51), (53) for k = 2 and k = 1, we obtain

min
t∈[S1,T1]

min
l=0,...,n

(
ξ2l+1(t)− ξ2l (t)

)
≥min

{
min

l=0,...,n

(
x1l+1 − x1l

)
− 2M∗

0 τ
1+ ϑ

2
2 ,

3

4
ρ∗0

}

≥min

{
min

l=0,...,n

(
x0l+1 − x0l

)
− 2M∗

0

(
τ
1+ ϑ

2
1 + τ

1+ ϑ
2

2

)
,
3

4
ρ∗0

}

≥min

{
ρ∗0 − 2M∗

0

ερ∗0
4M∗

0 sϑ

(
1 +

1

21+
ϑ
2

)
,
3

4
ρ∗0

}

=min




ρ
∗
0


1−

1 + 1

21+
ϑ
2

2sϑ
ε


 ,

3

4
ρ∗0




 ≥ ρ∗0
2
.

In general, in the case N ≥ 3, for every k = 3, . . . , N, by (51) and (53) we deduce

min
l=0,...,n

min
t∈[Sk,Tk]

(
ξkl+1(t)− ξkl (t)

)
≥ min

{
min

l=0,...,n

(
xk−1
l+1 − xk−1

l

)
− 2M∗

0 τ
1+ ϑ

2

k ,
3

4
ρ∗0

}

≥min

{
min

l=0,...,n

(
x0l+1 − x0l

)
− 2M∗

0

(
τ
1+ ϑ

2
1 + τ

1+ ϑ
2

2 + . . .+ τ
1+ ϑ

2

k

)
,
3

4
ρ∗0

}

≥min

{
ρ∗0 − 2M∗

0

ερ∗0
4M∗

0 sϑ

(
1 +

1

21+
ϑ
2

+ . . .+
1

k1+
ϑ
2

)
,
3

4
ρ∗0

}

=min




ρ
∗
0


1−

1 + 1

21+
ϑ
2
+ . . .+ 1

k1+ ϑ
2

2sϑ
ε


 ,

3

4
ρ∗0




 ≥ ρ∗0
2
.

Thus, it follows

ρ(WN ) := min
l=0,...,n

min
t∈E

{
ξWl+1(t)− ξWl (t)

}
= min

l=0,...,n
min

k=1,...,N
min

t∈[Sk,Tk]

(
ξkl+1(t)− ξkl (t)

)
≥ ρ∗0

2
.

Step 4: Proof of (40). For N ∈ N, N > n, let WN =
{
(τk)

N
1 , (wk)

N
1

}
∈ W∗(u0), as in (39).

Let k = 1, . . . , N and l = 1, . . . , n. Since in Step. 3 we have proved that ρ(WN ) ≥ ρ∗

0

2 , we note

that inequality (45) holds with Mk =Mk(
ρ∗

0

2 ) =M∗
0 . Then,

⋆ if l ∈ Lk−1
IS , keeping in mind that µk(x

∗
l − x0l ) = 0, by (48) and (45) with Mk = M∗

0 , we
obtain

|ξkl (t)− x∗l | ≤ |xk−1
l − x∗l |+M∗

0 (t− Sk)
1+ϑ

2 , ∀t ∈ [Sk, Tk] ; (54)
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⋆ if l ∈ {1, . . . , n}\Lk−1
IS , keeping in mind that xk−1

l 6= x∗l , we have

xk−1
l − x∗l + µk(x

∗
l − x0l ) (t− Sk) =(xk−1

l − x∗l )

(
1 +

µk(x
∗
l − x0l )

xk−1
l − x∗l

(t− Sk)

)

=(xk−1
l − x∗l )

(
1− t− Sk

|xk−1
l − x∗l |

)
, ∀t ∈ [Sk, Tk]. (55)

Thus, by (48), (55) and (45) with Mk =M∗
0 , keeping in mind that by the definition of τk

(see (35) and (38)) it follows that τk ≤ min
l∈{1,...,n}\Lk−1

IS

|xk−1
l − x∗l |, we deduce

|ξkl (t)− x∗l | ≤ |xk−1
l − x∗l |

∣∣∣∣∣1−
t− Sk

|xk−1
l − x∗l |

∣∣∣∣∣+M∗
0 (t− Sk)

1+ϑ
2

= |xk−1
l − x∗l | − (t− Sk) +M∗

0 (t− Sk)
1+ϑ

2 , ∀t ∈
[
Sk, Tk

]
. (56)

Let us set Jk(t) :=
n∑

l=1

|ξkl (t)− x∗l |, t ∈ [Sk, Tk].

By (54) and (56), for every k = 1, . . . , N, for every t ∈ [Sk, Tk] , we obtain

Jk(t) =
∑

l∈{1,...,n}\Lk−1
IS

|ξkl (t)− x∗l |+
∑

l∈Lk−1
IS

|ξkl (t)− x∗l |

≤
∑

l∈{1,...,n}\Lk−1
IS

|xk−1
l − x∗l | −

(
n− card(Lk−1

IS )
)
(t− Sk)

+
(
n− card(Lk−1

IS )
)
M∗

0 (t− Sk)
1+ϑ

2 +
∑

l∈Lk−1
IS

|xk−1
l − x∗l |+ card(Lk−1

IS )M∗
0 (t− Sk)

1+ϑ
2

=Jk(Sk)−
(
n− card(Lk−1

IS )
)
(t− Sk) + nM∗

0 (t− Sk)
1+ϑ

2

≤Jk(Sk) + nM∗
0 τ

1+ ϑ
2

k − (t− Sk) , ∀t ∈ [Sk, Tk] . (57)

Now, keeping in mind that Jh(Sh) = Jh−1(Th−1), h = 2, . . . , N, by (57) we can deduce that

J1(t) =

n∑

l=1

|ξ1l (t)− x∗l | ≤ J1(S1) + nM∗
0 τ

1+ ϑ
2

1 − (t− S1) , ∀t ∈ [S1, T1],

J2(t) =

n∑

l=1

|ξ2l (t)− x∗l | ≤ J2(S2) + nM∗
0 τ

1+ϑ
2

2 − (t− S2) = J1(T1) + nM∗
0 τ2

1+ϑ
2− (t− S2)

≤J1(S1) + nM∗
0

(
τ
1+ ϑ

2
1 + τ

1+ϑ
2

2

)
− (τ1 + t− S2) , ∀t ∈ [S2, T2],

Jk(t) =

n∑

l=1

|ξkl (t)− x∗l | ≤ Jk(Sk) + nM∗
0 τ

1+ ϑ
2

k − (t− Sk)

≤J1(S1) + nM∗
0

(
τ
1+ϑ

2
1 + . . .+ τ

1+ ϑ
2

k

)
− (τ1 + . . .+ τk−1 + t− Sk) ,

∀t ∈ [Sk, Tk], ∀k = 3, . . . , N. (58)
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By (58), keeping in mind that J1(S1) =
n∑

l=1

|x0l − x∗l | and LN−1
IS ⊆ {1, . . . , n}, by the definition

of τ̃k and τk (see (35) and (38)) and Remark 4.4, inequality (40) follows. Indeed,

J∗(WN ) =

n∑

l=1

|ξWl (TN )− x∗l | = JN (TN ) ≤
n∑

l=1

|x0l − x∗l |+ nM∗
0

N∑

k=1

τ
1+ ϑ

2

k −
N∑

k=1

τk

≤
n∑

l=1

|x0l − x∗l |+
ερ∗0n

4sϑ

N∑

k=1

1

k1+
ϑ
2

−
∑

{k |Θk 6=∅}

τk −
(

ερ∗0
4M∗

0 sϑ

) 2
2+ϑ∑

{k |Θk=∅}

1

k

≤
n∑

l=1

|x0l − x∗l |+
ερ∗0n

4sϑ

N∑

k=1

1

k1+
ϑ
2

−
(

ερ∗0
4M∗

0 sϑ

) 2
2+ϑ

N∑

k=n+1

1

k
.

Step 5: Proof of (53). In this final step, assuming that (49) holds, we prove that inequality
(47) implies the two alternative inequalities in (53). Let us set

Ak
l := µk(x

∗
l+1 − x0l+1)− µk(x

∗
l − x0l ), ∀k = 1, . . . , N, ∀l = 0, . . . , n.

Let k = 1, . . . , N and l = 0, . . . , n.
We note that if l, l+1 ∈ Lk−1

IS it follows Ak
l = 0, thus we obtain the first of the two alternatives

in (53). Instead, if at least one between l and l+1 is not an inactive index (that is l, l+1 6∈ Lk−1
IS

or l ∈ Lk−1
IS , l + 1 6∈ Lk−1

IS or l 6∈ Lk−1
IS , l+ 1 ∈ Lk−1

IS ), since the conditions

xk−1
l < xk−1

l+1 and x∗l < x∗l+1, l = 0, . . . , n,

hold, we have to distinguish six possible configurations to calculate Ak
l , that are presented in

the following table:

Table 1

Configurations of the points i) ii)

a xk−1
l < xk−1

l+1 ≤ x∗l < x∗l+1 x∗l < x∗l+1 ≤ xk−1
l < xk−1

l+1

b xk−1
l ≤ x∗l ≤ xk−1

l+1 ≤ x∗l+1 x∗l ≤ xk−1
l ≤ x∗l+1 ≤ xk−1

l+1

c xk−1
l ≤ x∗l < x∗l+1 ≤ xk−1

l+1 x∗l ≤ xk−1
l < xk−1

l+1 ≤ x∗l+1

Thus, in the following table we can compute Ak
l in any configuration in the 3 cases:

l, l+ 1 6∈ Lk−1
IS ; l ∈ Lk−1

IS and l+ 1 6∈ Lk−1
IS ; l 6∈ Lk−1

IS and l + 1 ∈ Lk−1
IS .

Table 2: l, l + 1 6∈ Lk−1
IS l ∈ Lk−1

IS , l + 1 6∈ Lk−1
IS l 6∈ Lk−1

IS , l + 1 ∈ Lk−1
IS

Ak
l i) ii)
a 0 0
b 0 0

c -2 ♣ 2

Ak
l i) ii)

a 1 -1♦

b 1 -1♦

c -1♦ 1

Ak
l i) ii)

a -1♠ 1

b -1♠ 1
c -1♠ 1

We can observe that when Ak
l ≥ 0 (in Table 2), that is in the cases and in the configurations

without superscript symbols (without ♣ or ⋄ or ♠), by (47) we easily obtain the first of the two
alternative inequalities in (53).
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Before analyzing the cases with superscript symbols, we remark that if j ∈ Lk−1
IS , there

exists hj , 0 ≤ hj ≤ k − 1 such that x
hj

j = x∗j , then keeping in mind that µhj
(x∗j − x0j) = . . . =

µk(x
∗
j − x0j ) = 0, thus, by (48), (45), (49)-(52), we obtain

|ξkj (t)− x∗j | ≤|xk−1
j − x∗j |+M∗

0 τ
1+ϑ

2

k ≤ |xk−2
j − x∗j |+M∗

0

(
τ
1+ϑ

2

k−1 + τ
1+ ϑ

2

k

)

≤|xhj

j − x∗j |+M∗
0

(
τ
1+ ϑ

2

hj+1 + . . .+ τ
1+ ϑ

2

k−1 + τ
1+ ϑ

2

k

)

=M∗
0

k∑

s=hj+1

τ
1+ϑ

2
s ≤M∗

0

ερ∗0
4M∗

0 sϑ

k∑

s=hj+1

1

k1+
ϑ
2

≤ ε
ρ∗0
4
, ∀t ∈ [Sk, Tk], (59)

so, the point of sign change with index j ∈ Lk−1
IS remain forever near the corresponding target

point of sign change already reached.

Now, we can analyze the following 3 cases:

♣ In the case of l, l+ 1 6∈ Lk−1
IS , by the configuration i.c), for every t ∈ [Sk, Tk] we have

xk−1
l ≤ ξkl (t) ≤ x∗l < x∗l+1 ≤ ξkl+1(t) ≤ xk−1

l+1 =⇒ ξkl+1(t)− ξkl (t) ≥ x∗l+1 − x∗l ≥ ρ∗0,

from which the second option of (53) follows.

♦ In the case of l ∈ Lk−1
IS , l + 1 6∈ Lk−1

IS , we analyze the following 3 configurations:

ii.a) By (59), we deduce x∗l < x∗l+1 ≤ xk−1
l ≤ x∗l +

ερ
4 , then ρ

∗
0 ≤ x∗l+1−x∗l ≤ xk−1

l −x∗l ≤
ερ∗

0

4 ≤ ρ∗

0

4 , from which a contradiction follows, so this configuration is not admissible.

ii.b) By (59), we deduce

ξkl (t) ≤ x∗l +
ερ∗0
4

≤ x∗l+1 ≤ ξkl+1(t) ≤ xk−1
l+1 =⇒ ξkl+1(t)− ξkl (t) ≥x∗l+1 −

(
x∗l +

ερ∗0
4

)

≥ρ∗0 −
ερ∗0
4

≥ 3

4
ρ∗0,

from which the second option of (53) follows.

i.c) It is similar to the configuration ii.b).

♠ In the case of l 6∈ Lk−1
IS , l + 1 ∈ Lk−1

IS , we analyze the following 3 configurations:

i.a) It is similar to ii.a) of the case ♦.

i.b) By (59), we deduce

xk−1
l ≤ ξkl (t) ≤ x∗l ≤ x∗l+1 −

ερ∗0
4

≤ ξkl+1(t) =⇒ ξkl+1(t)− ξkl (t) ≥
(
x∗l+1 −

ερ∗0
4

)
− x∗l

≥ρ∗0 −
ερ∗0
4

≥ 3

4
ρ∗0,

from which the second option of (53) follows.

i.c) It is similar to the configuration i.b). ⋄
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5 Proof of Theorem 3

In this section, we prove Theorem 3. Without loss of generality, we can reformulate problem
(6) with a generic time interval (0, T ), in the following way





ut = uxx + v(x, t)u + f(u) in QT = (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u |t=0 = uin + rin,

(60)

where uin, rin ∈ H1
0 (0, 1), and uin have exactly n points of sign change at xl ∈ (0, 1), with

0 =: x0 < xl < xl+1 ≤ xn+1 := 1, l = 1, . . . , n.
Throughout this section, we represent the solution of (60) as the sum of two functions w(x, t)
and h(x, t), which solve the following problems in QT





wt = wxx + v(x, t)w + f(w)

w(0, t) = w(1, t) = 0

w |t=0 = uin,





ht = hxx + v(x, t)h + (f(w + h)− f(w))

h(0, t) = h(1, t) = 0

h |t=0 = rin.

(61)
In this section, we denote the target state by u ∈ H1

0 (0, 1) instead of the specific wk introduced
in the statement of Theorem 3.

Lemma 5.1 Let u ∈ H1
0 (0, 1) have the same points of sign change of uin, in the same order of

sign change. Let us suppose that

∃ν > 0 : ν ≤ u(x)

uin(x)
< 1, ∀x ∈ (0, 1) \

n⋃

l=1

{xl} . (62)

Then, for every η > 0 there exist a sufficiently small time T = T (η, uin, u) > 0 and a piecewise

static bilinear control v = v(η, uin, u) ∈ L∞(QT ) such that

‖u(·, T )− u(·)‖L2(0,1) ≤ η +
√
2‖rin‖L2(0,1), (63)

where u is the solution of (60) on QT .

Proof. Here, we adapt the proof introduced in Section 2 of [11] from the linear case to the
semilinear problem (60). We consider the following function defined on [0, 1]

v0(x) =

{
ln
(

u(x)
uin(x)

)
, for x 6= 0, 1, xl, l = 1 . . . , n

0, for x = 0, 1, xl, l = 1 . . . , n

By (62) we note that v0 ∈ L∞(0, 1) and v0(x) ≤ 0, for every x ∈ [0, 1]. We select the bilinear
control

v(x, t) :=
1

T
v0(x).

Then, let us represent the solution u of (60), associated to the previous choice of the coefficient
v, as a sum of two functions w(x, t) and h(x, t), which solve the two problems introduced in
(61), respectively.
Step 1: Representation formula for w(·, T ). For every fixed x̄ ∈ (0, 1), let us consider the

non-homogeneous first-order ODE w′(x̄, t) = v0(x̄)
T w(x̄, t) +

(
wxx(x̄, t) + f(w(x̄, t))

)
, t ∈ (0, T ),
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associated to the first problem in (61). Then, we easy deduce that the corresponding solution
w to the first problem in (61) admits the following representation

w(x, t) = ev0(x)
t
T uin(x) +

∫ t

0

ev0(x)
(t−τ)

T (wxx(x, τ) + f(w(x, τ)))dτ, ∀(x, t) ∈ QT ,

and, at time t = T we have

w(x, T ) = u(x) +

∫ T

0

ev0(x)
(T−t)

T (wxx(x, τ) + f(w(x, τ)))dt, ∀x ∈ (0, 1). (64)

Let us show that the integral in the right-hand side of (64) tends to zero in L2(0, 1) as T → 0+,
which would mean that w(·, T ) → u in L2(0, 1) at the same time.
Note that, since v0(x) ≤ 0, we deduce the following estimate

‖w(x, T )− u(x)‖2L2(0,1) =

∫ 1

0

(∫ T

0

ev0(x)
(T−τ)

T (wxx(x, τ) + f(w(x, τ)))dτ

)2

dx

≤ T ‖ wxx + f(w) ‖2L2(QT ) . (65)

Step 2: Evaluation of ‖ wxx + f(w) ‖2L2(QT ) . In this step, let us suppose that v0 ∈ C2([0, 1]);
this assumption will be removed in Step. 3.
Multiplying by wxx the equation in the first problem in (61) with v(x, t) = 1

T v0(x) ≤ 0, inte-
grating over QT and applying Hölder’s inequality, we have

‖ wxx ‖2L2(QT ) =

∫ T

0

∫ 1

0

wtwxxdxdt − 1

T

∫ T

0

∫ 1

0

v0wwxxdxdt−
∫ T

0

∫ 1

0

f(w)wxxdxdt

≤
∫ T

0

∫ 1

0

wtwxxdxdt −
1

T

∫ T

0

∫ 1

0

v0wwxxdxdt+
1

2

∫ T

0

∫ 1

0

f2(w)dxdt+
1

2

∫ T

0

∫ 1

0

w2
xxdxdt .

Thus, integrating by parts and recalling that v0(x) ≤ 0, we obtain

‖ wxx ‖2L2(QT ) ≤ 2

∫ T

0

∫ 1

0

wtwxxdxdt − 2

T

∫ T

0

∫ 1

0

v0wwxxdxdt +

∫ T

0

∫ 1

0

f2(w)dxdt

= −
∫ T

0

∫ 1

0

(w2
x)tdxdt +

2

T

∫ T

0

∫ 1

0

v0w
2
xdxdt +

1

T

∫ T

0

∫ 1

0

v0x(w
2)xdxdt +

∫ T

0

∫ 1

0

f2(w)dxdt

≤
∫ 1

0

u2in xdx −
∫ 1

0

w2
x(T, x)dxdt − 1

T

∫ T

0

∫ 1

0

v0xxw
2dxdt +

∫ T

0

∫ 1

0

f2(w)dxdt

≤
∫ 1

0

u2in xdx+
1

T
max
x∈[0,1]

| v0xx |
∫ T

0

∫ 1

0

w2dxdt+

∫ T

0

∫ 1

0

f2(w)dxdt. (66)

Now, we have to evaluate ‖ w ‖C([0,T ];L2(0,1)) and ‖ f(w) ‖C([0,T ];L2(0,1)). Since v0(x) ≤ 0,
multiplying by w the equation in the first problem of (61) and integrating by parts yields

1

2

∫ t

0

∫ 1

0

(w2)tdxds =

∫ t

0

∫ 1

0

wtwdxds

=

∫ t

0

∫ 1

0

wxxw dxds+
1

T

∫ t

0

∫ 1

0

v0w
2dxds+

∫ t

0

∫ 1

0

f(w)wdxds

≤−
∫ t

0

∫ 1

0

w2
x dxds+ L

∫ T

0

∫ 1

0

w2dxdt ≤ L

∫ T

0

∫ 1

0

w2dxdt,
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where L is the Lipschitz constant in (2). Then, for T ∈
(
0, 1

4L

)
we deduce

∫ 1

0

w2(x, t)dx ≤
∫ 1

0

u2in(x)dx + 2L

∫ T

0

∫ 1

0

w2dxdt

≤
∫ 1

0

u2in(x)dx + 2LT ‖w‖2C([0,T ],L2(0,1)) ≤‖ uin ‖2L2(0,1) +
1

2
‖w‖2C([0,T ],L2(0,1)), t ∈ (0, T ), (67)

so,
‖ w ‖C([0,T ];L2(0,1)) ≤

√
2 ‖ uin ‖L2(0,1) . (68)

From assumption (2) and (68) it follows that f(w) ∈ C([0, T ];L2(0, 1)) and the following esti-
mate holds

‖ f(w) ‖C([0,T ];L2(0,1)) ≤ L ‖ w ‖C([0,T ];L2(0,1))≤
√
2L ‖ uin ‖L2(0,1) . (69)

Due to (66) and (68)-(69), we also have

‖ wxx+f(w) ‖2L2(QT )≤ 2 ‖ wxx ‖2L2(QT ) +2 ‖ f(w) ‖2L2(QT )

≤2

∫ 1

0

u2in xdx+
2

T
max
x∈[0,1]

| v0xx |
∫ T

0

∫ 1

0

w2dxdt + 3

∫ T

0

∫ 1

0

f2(w)dxdt

≤2

∫ 1

0

u2in xdx+
2

T
max
x∈[0,1]

| v0xx | ·T ‖ w ‖2C([0,T ];L2(0,1)) + 3T ‖ f(w) ‖2C([0,T ];L2(0,1))

≤2

∫ 1

0

u2in xdx+
(
4 max
x∈[0,1]

| v0xx | +6TL2
) ∫ 1

0

u2indx

≤2

(
1 + 2 max

x∈[0,1]
| v0xx | + 3TL2

)
‖ uin ‖2H1

0(0,1)
. (70)

Step 3: Convergence of w(·, T ) to u(·). Note that in the previous step we can remove the
assumption v0 ∈ C2([0, 1]). Namely, if v0 6∈ C2([0, 1]) we could consider a sequence of uni-
formly bounded functions {v0j}j∈N, v0j ∈ C2([0, 1]), v0j(x) ≤ 0, ∀x ∈ [0, 1], approximating v0 in
L2(0, 1). Then making use of the following limit relation

ev0j(x)t/Tuin(x) |t=T → ev0(x)t/Tuin(x) |t=T = u(x) in L2(0, 1) as j → ∞,

we conclude that equality (64) still holds. Moreover, by (65) and (70), we deduce that

‖w(x, T )− u(x)‖L2(0,1) ≤ C(T ) ‖ uin ‖2H1
0(0,1)

, where C(T ) → 0 as T → 0+. (71)

Step 4: Evaluation of ‖ h(·, T ) ‖L2(0,1). Multiplying by h in the equation of the second problem
of (61) and integrating by parts over QT , proceeding similarly to Step 2 (see in particular (67))
and keeping in mind (2), for every T ∈ (0, 1

4L), yields

∫ 1

0

h2(x, t)dx ≤
∫ 1

0

r2in(x)dx + 2

∫ T

0

∫ 1

0

(f(w + h)− f(w))h dxdt

≤
∫ 1

0

r2in(x)dx + 2L

∫ T

0

∫ 1

0

h2dxdt ≤ ‖rin‖2L2(0,1) + 2LT ‖h‖2C([0,T ];L2(0,1))

≤‖rin‖2L2(0,1) +
1

2
‖h‖2C([0,T ];L2(0,1)), t ∈ (0, T ).

Hence,
‖ h ‖C([0,T ];L2(0,1)) ≤

√
2 ‖ rin ‖L2(0,1) . (72)
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Conclusions. Thus, recalling (61), (71) and (72), we obtain the conclusion. ⋄

Now we need to extend this result to the general case, that is, we have to prove Theorem 3.
Proof (of Theorem 3). Let us fix η > 0.
Step 0: Approximating argument. Without loss of generality we can suppose uin, u ∈ C1([0, 1])
and

|u′in(xl)| = 1, l = 0, . . . , n+ 1. (73)

Namely, if uin, u 6∈ C1([0, 1]) we could consider two sequences in C1([0, 1]), approximating in
L2(0, 1), uin and u, respectively, such that any function of the sequence approximating uin
satisfies condition (73).
Step 1: Steering the system from uin to Kuin, with K > 1. We consider the auxiliary function
ψ : [0, 1] −→ R, defined in the following way

ψ(x) =





u(x)

uin(x)
, if x ∈ (0, 1) \⋃n

l=1 {xl}

|u′(x)|, if x = xl, l = 0, . . . , n+ 1.

By (73) we have that lim
x→xl

u(x)

uin(x)
= |u′(xl)|, ∀l = 0, . . . , n+1, so ψ ∈ C([0, 1]). Let us introduce

the universal constant
K = K(uin, u) := max

x∈[0,1]
ψ(x) + 1 > 1.

For any 0 < ρ <
ρ0
2

:=
1

2
min

l=0,...,n

{
xl+1 − xl

}
, consider the following set

Aρ :=
n⋃

l=0

(
xl + ρ, xl+1 − ρ

)
.

From the definition of K it follows that

K > max
x∈Aρ

{ u(x)

uin(x)

}
, ∀ρ ∈

(
0,
ρ0
2

)
. (74)

Let us select

v(x, t) = m :=
lnK

t1
, (t, x) ∈ (0, 1)× (0, t1),

for some arbitrarily small t1 > 0. Then, let us apply the auxiliary constant bilinear control
v(x, t) = m > 0, ∀x ∈ (0, 1) on the interval (0, t1). For t = t1 the solution of the first problem in
(61) has the following representation in Fourier series

w(x, t1) = H(x, t1) + emt1

∞∑

p=1

2e−(pπ)2t1

(∫ 1

0

uin(r) sin pπr dr

)
sin pπx

= H(x, t1) + emt1

∞∑

p=1

2(e−(pπ)2t1 − 1)

(∫ 1

0

uin(r) sin pπr dr

)
sin pπx + emt1uin(x)

= H(x, t1) +R(x, t1) +Kuin(x), (75)

where

H(x, t1) :=

∞∑

p=1

2

[∫ t1

0

e(m−(pπ)2)(t1−t)

(∫ 1

0

f(w(r, t)) sin pπr dr

)
dt

]
sin pπx,

R(x, t1) := K
∞∑

p=1

2(e−(pπ)2t1 − 1)

(∫ 1

0

uin(r) sin pπr dr

)
sin pπx .
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By Parseval’s equality, we deduce

‖R(·, t1)‖2L2(0,1)= K2

∥∥∥∥∥

∞∑

p=1

(e−pπ2t1 − 1)

(∫ 1

0

uin(r)
√
2 sin pπr dr

)√
2 sin pπx

∥∥∥∥∥

2

L2(0,1)

= K2
∞∑

p=1

(e−pπ2t1 − 1)2
∣∣∣∣
∫ 1

0

uin(r)
√
2 sin pπr dr

∣∣∣∣
2

≤ K2(1 − e−π2t1)2
∞∑

p=1

∣∣∣∣
∫ 1

0

uin(r)
√
2 sin pπr dr

∣∣∣∣
2

= K2(1 − e−π2t1)2‖uin‖2L2(0,1). (76)

In the same way, using assumption (2), f(0) = 0, and Hölder’s inequality we obtain

‖ H(·, t1) ‖2L2(0,1) =

∥∥∥∥∥

∞∑

p=1

[∫ t1

0

e(m−(pπ)2)(t1−t)

(∫ 1

0

f(w(r, t))
√
2 sin pπr dr

)
dt

]√
2 sin pπx

∥∥∥∥∥

2

L2(0,1)

=

∞∑

p=1

∣∣∣∣
∫ t1

0

e(m−(pπ)2)(t1−t)

(∫ 1

0

f(w(r, t))
√
2 sin pπr dr

)
dt

∣∣∣∣
2

≤
∞∑

p=1

(∫ t1

0

e2(m−(pπ)2)(t1−t)dt

)∫ t1

0

∣∣∣∣
∫ 1

0

f(w(r, t))
√
2 sin pπr dr

∣∣∣∣
2

dt

≤
∞∑

p=1

e2mt1t1

∫ t1

0

∣∣∣∣
∫ 1

0

f(w(r, t))
√
2 sin pπr dr

∣∣∣∣
2

dt

= K2t1

∫ t1

0

∞∑

p=1

∣∣∣∣
∫ 1

0

f(w(r, t))
√
2 sin pπr dr

∣∣∣∣
2

dt = K2t1

∫ t1

0

∫ 1

0

f2(w(r, t))drdt

≤ L2K2t1

∫ t1

0

∫ 1

0

w2(r, t)dr dt ≤ L2K2t21 ‖ w ‖2C([0,t1];L2(0,1)) . (77)

Now, we have to evaluate ‖w‖C([0,t1];L2(0,1)). Multiplying by w the equation in the first problem
of (61), integrating by parts, and arguing as in the proof of (67), for every t ∈ (0, t1), we have

1

2

∫ t

0

∫ 1

0

(w2)tdxds = −
∫ t

0

∫ 1

0

w2
x dxds+m

∫ t

0

∫ 1

0

w2dxds+

∫ t

0

∫ 1

0

f(w)wdxds

≤ (m+ L)

∫ t

0

∫ 1

0

w2dxds,

where L is as in (2). Then

∫ 1

0

w2(x, t)dx ≤
∫ 1

0

u2in(x)dx + 2(m+ L)

∫ t

0

∫ 1

0

w2dxds, t ∈ (0, t1).

Thus, applying Grönwall’s inequality we deduce ‖w(t, ·)‖2L2(0,1) ≤ e2(m+L)t1‖uin‖2L2(0,1), t ∈
(0, t1). So,

‖w‖C([0,t1];L2(0,1)) ≤ e(m+L)t1‖uin‖L2(0,1) = KeLt1‖uin‖L2(0,1) . (78)
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Making use of (75)-(78), we have that

‖w(·, t1)−Kuin‖L2(0,1) = ‖H(x, t1) +R(x, t1)‖L2(0,1)

≤ K
[
(1− e−π2t1) + t1K LeLt1

]
‖uin‖L2(0,1). (79)

Now, we evaluate ‖ h(·, t1) ‖L2(0,1). Multiplying by h both members of the equation in the
second problem of (61) and integrating by parts, proceeding similarly to (78) and to the proof
of Lemma 5.1, and keeping in mind (2) we obtain

∫ 1

0

h2(x, t)dx ≤
∫ 1

0

r2in(x)dx + 2m

∫ t1

0

∫ 1

0

h2dxdt+ 2

∫ t1

0

∫ 1

0

(f(w + h)− f(w))h dxdt

≤
∫ 1

0

r2in(x)dx + 2(m+ L)

∫ t1

0

∫ 1

0

h2dxdt .

Hence, using Grönwall’s inequality, we have ‖h(t, ·)‖2L2(0,1) ≤ e2(m+L)t1‖rin‖2L2(0,1), t ∈ (0, t1),
so

‖h(t1, ·)‖2L2(0,1) ≤ ‖h‖C([0,t1];L2(0,1)) ≤ KeLt1‖rin‖L2(0,1). (80)

Thus, by (79) and (80), there exists t1 = t1(η) > 0, t1 ≪ 1 such that the following inequality
holds

‖u(·, t1)−Kuin(·)‖L2(0,1) ≤
√
2

8
η +KeL‖rin‖L2(0,1). (81)

Step 2: Steering the system from Kuin + rin to u. In this step, let us represent again the
solution u of (60) as a sum of two functions w(x, t) and h(x, t), which solve the problems in (61) in
(0, 1)×(t1, T ), with the modified initial statesKuin instead of uin and rin(·) = u(·, t1)−Kuin(·).
By (74) it follows that

u(x)

Kuin(x)
< 1, ∀x ∈ Aρ, ∀ρ ∈

(
0,
ρ0
2

)
, (82)

moreover,

∀ρ ∈
(
0,
ρ0
2

)
, ∃ ν = ν(ρ) > 0 : ν ≤ u(x)

Kuin(x)
, ∀x ∈ Aρ. (83)

Keeping in mind the proof of Lemma 5.1, we consider the following function defined on [0, 1]

v0(x) =

{
ln
(

u(x)
Kuin(x)

)
, x ∈ Aρ,

0, elsewhere in [0, 1] .
(84)

By (83) v0 ∈ L∞(0, 1), and by (82) we have v0(x) ≤ 0, ∀x ∈ [0, 1]. Let us select the bilinear
control

v(x, t) :=
1

T
v0(x) ∀x ∈ (0, 1)× (t1, T ).

We remark that, thanks to (82)-(83), the assumption (62) of Lemma 5.1 holds. Then proceeding
similarly to Lemma 5.1, with a proof essentially identical, there exists T = T (η) > t1 with T −t1
sufficiently small (0 < T − t1 ≪ 1

4L ) we can obtain the following inequality (similar to (63) of
Lemma 5.1)

‖u(·, T )− uρ‖L2(0,1) ≤
η

4
+
√
2‖u(·, t1)−Kuin(·)‖L2(0,1), (85)

with

uρ(x) =

{
u(x), x ∈ Aρ,
0, elsewhere in [0, 1].
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Note that here exists ρ = ρ(η) > 0 such that

‖ uρ − u ‖L2(0,1)<
η

2
. (86)

Then, from (85), (86) and (81) we obtain the conclusion

‖ u(·, T )−u(·) ‖L2(0,1)≤‖ u(·, T )−uρ(·) ‖L2(0,1) + ‖ uρ−u ‖L2(0,1)≤ η+
√
2KeL‖rin‖L2(0,1) . ⋄
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