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A B S T R A C T

Modeling highly swirling flows via second-moment closure approaches requires properly characterizing the
turbulence dissipation tensor. In the present work, we investigate bubble-type and regular conical vortex
breakdown states through direct numerical simulation. Consequently, we analyze the anisotropic features of
the Reynolds stress and dissipation rate tensors using componentiality contours on the standard anisotropy
maps. The anisotropy analysis reveals that the turbulence dissipation process exhibits a less significant
departure from isotropic states than Reynolds stresses. Still, non-negligible anisotropy levels are envisaged
around the breakdown-induced stagnation point, within the shear layer region, and at the top end of the
central recirculation zone, highlighting the need for ad-hoc anisotropic modeling. Hence, we test a set of
algebraic dissipation tensor models against the direct numerical simulation data, and we find out that blended
formulations governed by the local turbulent Reynolds number can potentially identify the most anisotropic
dissipation regions. However, this approach tends to revert to the classical isotropic treatment under the current
formulation. Thus, improving both the blending function and the anisotropic contribution term is necessary. On
the other hand, algebraic models directly relating the dissipation tensor to Reynolds stress anisotropies show
worse agreement with the reference database, suggesting that the small-scale anisotropies instead descend from
mean local flow field properties.
. Introduction

Moderately to highly swirling flows can be encountered in various
ombustion processes due to the peculiar flow structures originating
rom the onset of the vortex breakdown (VB) phenomenon (Lucca-
egro and O’Doherty, 2001). Depending on the swirl level, two funda-
ental VB states are typically distinguished in the literature, namely,

i) the bubble-type breakdown and (ii) the regular conical breakdown.
nder both circumstances, a significant enhancement of liquid fuel
aporization and fuel-oxidizer mixing is typically observed (Liberatori
t al., 2024), and the onset of a reverse flow zone promotes the recir-
ulation of hot-gas combustion products, thus enhancing aerodynamic
lame stabilization (Syred and Beér, 1974).

Given their wide application range and beneficial effects on combus-
ion, extensive experimental and high-fidelity numerical campaigns in
he past decades provided thorough insights into VB-affected swirling
lows’ coherent structures and stability characteristics (Oberleithner
t al., 2011). Fundamental results from those studies proved vital
o developing computationally accessible Reynolds-averaged Navier–
tokes (RANS) closure models, which can be employed in large-scale
omputational fluid dynamics (CFD) and eventually offer a viable

∗ Corresponding author.
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pathway toward computer-aided design optimization of combustion
devices.

In this regard, second-moment closure (SMC) models discard Boussi-
nesq’s hypothesis and handle turbulent stresses’ anisotropic features
(Pope, 2000), constituting a valuable trade-off between predictive ac-
curacy and computational burden (Blandino et al., 2024). Notably,
SMC models address transport equations for the individual Reynolds
stresses, ⟨𝑢′𝑖𝑢

′
𝑗⟩, where 𝑢𝑖 is the 𝑖th component of the velocity field, the

superscript denotes the fluctuating part, and angled brackets indicate
an averaging operation:

𝐷
𝐷𝑡

⟨𝑢′𝑖𝑢
′
𝑗⟩ = 𝛱𝑖𝑗 + 𝑖𝑗 − 𝜀𝑖𝑗 +𝑖𝑗 . (1)

In such transport equations, the substantial derivative 𝐷∕𝐷𝑡 repre-
sents the mean-flow convection, 𝛱𝑖𝑗 = − 1

𝜌 ⟨𝑢
′
𝑖
𝜕𝑝′

𝜕𝑥𝑗
+𝑢′𝑗

𝜕𝑝′

𝜕𝑥𝑖
⟩ is the velocity-

pressure-gradient correlation tensor, 𝑖𝑗 = −⟨𝑢′𝑖𝑢
′
𝑘⟩

𝜕⟨𝑢𝑗 ⟩
𝜕𝑥𝑘

− ⟨𝑢′𝑗𝑢
′
𝑘⟩

𝜕⟨𝑢𝑖⟩
𝜕𝑥𝑘

is

the production tensor, 𝜀𝑖𝑗 = 2𝜈⟨
𝜕𝑢′𝑖
𝜕𝑥𝑘

𝜕𝑢′𝑗
𝜕𝑥𝑘

⟩ is the turbulence dissipation
tensor, and 𝑖𝑗 = 𝜕

𝜕𝑥𝑘

(

𝜈 𝜕
𝜕𝑥𝑘

⟨𝑢′𝑖𝑢
′
𝑗⟩ − ⟨𝑢′𝑖𝑢

′
𝑗𝑢

′
𝑘⟩

)

indicates the con-
tribution of viscous and turbulent diffusion, respectively. Here, 𝜌 is
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the density, 𝑝 is the pressure, 𝜈 is the kinematic viscosity. While 𝑖𝑗
and the viscous diffusion term are in closed form, ad-hoc modeling is
required for the remaining terms. Specifically, the velocity-pressure-
gradient correlation tensor is mostly modeled according to either the
LRR model by Launder et al. (1975) or the SSG model by Speziale
et al. (1991). Furthermore, a gradient-diffusion assumption is typically
adopted to model the turbulent diffusion term (Pope, 2000). Concern-
ing the turbulence dissipation tensor, the most commonly employed
SMC approaches adopt the basic isotropic formulation, 𝜀𝑖𝑗 = 2

3 𝜀𝛿𝑖𝑗 ,
here 𝜀 – obtained by its own transport equation – is the average scalar
issipation rate of the turbulent kinetic energy, 𝑘 = 1

2 ⟨𝑢
′
𝑖𝑢

′
𝑖⟩, and 𝛿𝑖𝑗

is the Kronecker delta symbol. The latter formulation descends from
Kolmogorov’s hypothesis of local isotropy (Frisch, 1995), stating the
tendency of small-scale turbulent structures to be isotropic regardless
of the anisotropy level characterizing the large-scale energy-containing
eddies in the limit of high Reynolds number (Saddoughi and Veeravalli,
1994), as a consequence of distinct scale separation between the energy
spectrum and the dissipation spectrum.

Nonetheless, the idea of systematically approximating dissipative
scales as locally isotropic was repeatedly argued from theory (Durbin
and Speziale, 1991), numerical analyses (Yeung and Brasseur, 1991;
Yeung et al., 1995), and experimental campaigns (Shen and Warhaft,
2000) under peculiar flow conditions and turbulence characteristics.
In Durbin and Speziale (1991), Durbin and Speziale demonstrated
that the local-isotropy hypothesis is erroneous in the presence of a
sufficiently high strain rate, regardless of the Reynolds number levels.
In Yeung and Brasseur (1991) and Yeung et al. (1995), Yeung et al.
explored the development of small-scale anisotropy as a consequence of
anisotropic forcing at the energy-containing scales via direct numerical
simulation (DNS), suggesting that the outcome of this analysis should
be applied even at high-Reynolds number limit. In Shen and Warhaft
(2000), Shen and Warhaft highlighted the inadequacy of Kolmogorov’s
local isotropy postulate in a wind tunnel uniform shear flow at high lab-
oratory Reynolds numbers. Concurrently, several studies demonstrated
the distinctly anisotropic nature of turbulent motions at the dissipative
scales, either within boundary layers (Antonia et al., 1994; Liu and
Pletcher, 2008; Gerolymos and Vallet, 2016), stratified mixing lay-
ers (Smyth and Moum, 2000), corner separation regions of compressor
cascades (Yan et al., 2019), or in the near-axis region of highly swirling
flows undergoing VB (Yang et al., 2015), with the latter representing
the object of study in the present work. In particular, Yang et al. (2015)
pointed out via DNS study that large-scale vortex structures resulting
from the onset of a VB phenomenon promote anisotropic turbulence
dissipation. In contrast, isotropic dissipation features are confined to
the peripheral region of swirling jets.

In this regard, improved models for the dissipation tensor were
formulated in the past decades (Antonia et al., 1994; Liu and Pletcher,
2008; Rotta, 1951; Hanjalić and Launder, 1976; Hallbäck et al., 1996;
Sjögren and Johansson, 2000; Hallbäck et al., 1990; Speziale and
Gatski, 1997; So et al., 1999; Perot and Natu, 2004; Lai and So, 1990;
Launder and Li, 1994; Oberlack, 1997). Still, none of those presented in
the literature review above has emerged as a well-established, universal
approach addressing complex industrial flows. In addition, concerning
the anisotropy characteristics of swirling jets undergoing VB, limited
databases are available (Yang et al., 2015), and anisotropic dissipation
tensor models are yet untested against high-fidelity experimental or
numerical data to the best of the authors’ knowledge. Therefore, the
objective of the present work is to provide a comprehensive anisotropy
analysis of two prototypical swirling jets undergoing a bubble-type
and a regular conical VB via DNS and to investigate a possible cor-
relation between the anisotropic features of the Reynolds stresses and
the dissipative scales. Moreover, we aim to test a collection of alge-
braic anisotropic dissipation tensor models against the DNS reference
data, providing a guideline for the improved modeling of VB-affected
2

swirling flows.
Hence, the paper is organized as follows. In Section 2, we introduce
the two flow configurations investigated in the present study and
the underlying numerical framework. Specifically, Section 2.1 illus-
trates the fundamental features of the swirling jets under examination,
whereas Section 2.2 presents the governing equations and domain
discretization. In Section 3, we provide an overview of the most com-
monly employed anisotropy maps, which are exploited to carry out the
anisotropy analysis of the Reynolds stress and dissipation tensors in
the remainder of the work by resorting to componentiality contours.
Consequently, in Section 4, we first describe the anisotropic features
of Reynolds stresses and dissipative turbulent scales under bubble-
type and regular conical VB conditions, see Section 4.1. Moreover, in
Section 4.2, in the first place, we review existing algebraic dissipation
tensor models – see Section 4.2.1 – and then we test the performance of
the isotropic model and a set of algebraic anisotropic dissipation tensor
models, see Section 4.2.2. Lastly, in Section 5, we summarize the key
results.

2. Numerical modeling

The present Section illustrates the two test configurations targeted
throughout the research work, along with the governing equations and
domain discretization.

2.1. Test case configuration

The present study addresses two prototypical single-phase swirling
jets, replicating the flow conditions of the acetone/air spray swirling
jets investigated in Liberatori et al. (2023). Specifically, we take into
consideration two single-phase air swirling jets, at a temperature of
273.15 K, flowing out from an orifice of radius 𝑅 = 5 ⋅ 10−3 m,
nd discharging in an open environment at atmospheric pressure. We
mpose the swirling motion on the inflow section by adopting a laminar
axworthy inflow profile (Ruith et al., 2004), with no coflow outside

he jet orifice. In this regard, in a cylindrical reference frame, the
imensionless form of the Maxworthy inflow profile returns the axial,
angential, and radial velocity components as:

𝑢𝑧(𝑟) = 1 − 𝛼 − 1
2𝛼

[

1 + erf
( 𝑟 − 1

𝛿

)]

, (2)

𝑢𝜃(𝑟) =
𝑆𝑟
2

[

1 − erf
( 𝑟 − 1

𝛿

)]

, (3)

𝑢𝑟(𝑟) = 0. (4)

where the velocity components are scaled by the centerline axial veloc-
ity, 𝑢𝑧,0, while the radial distance from the axis is scaled by 𝑅 to provide
he dimensionless radial distance, 𝑟. In Eq. (3), 𝑆 denotes the swirl rate
s the slope of the tangential velocity at the centerline, 𝛼 is the core-to-

coflow axial velocity ratio, expressing the ratio of the centerline axial
velocity to the freestream velocity, and 𝛿 indicates the dimensionless
hear layer thickness of the jet, i.e., the shear layer thickness scaled by
. In the present configurations, imposing no coflow on the inlet plane

eturns 𝛼 = ∞.
Two swirling regimes characterize the test case configurations,

.e., 𝑆 = 1.3 for Case 1 and 𝑆 = 1.8 for Case 2. On the other hand, the
axial velocity profile remains unaltered, ensuring a bulk axial velocity
𝑢𝑧,𝑏 = 8.1 m∕s and a centerline axial velocity 𝑢𝑧,0 = 9.25 m∕s, which
results in a fixed bulk Reynolds number 𝑅𝑒𝑏 = 2𝑢𝑧,𝑏𝑅∕𝜈 = 6000. The
latter corresponds to a configuration of technological interest regarding
swirl-stabilized burners (Choi and Do, 2018; Jalalatian et al., 2019).
Furthermore, the dimensionless shear layer thickness equals 𝛿 = 0.25
for both configurations, with the velocity components provided by
Eqs. (2)–(4) being transformed from the cylindrical to the Cartesian
coordinate system during pre-processing.

Lastly, Fig. 1(a) illustrates a three-dimensional view of the test
case geometry, along with a qualitative representation of coherent
vortex structures arising under Case 2 flow conditions by Q-criterion

isosurfaces.
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2.2. Governing equations and domain discretization

We carry out the DNS computations within the OpenFOAM CFD en-
vironment through the pressure-based rhoPimpleFoam solver, leveraging
a second-order discretization accuracy for the advective and diffusive
terms. The full set of governing equations in the Cartesian coordinate
system follows:

𝜕𝜌
𝜕𝑡

+
𝜕(𝜌𝑢𝑗 )
𝜕𝑥𝑗

= 0, (5)

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

[

𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗
]

= 0, (6)

𝜕𝜌ℎ𝑡
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

[

𝜌ℎ𝑡𝑢𝑗 + 𝑞𝑗
]

=
𝜕𝑝
𝜕𝑡

, (7)

𝑝 = 𝜌𝑅𝑚𝑇 , (8)

here 𝝉 is the viscous stress tensor, ℎ𝑡 is the total enthalpy, given by
he sum of sensible enthalpy and kinetic energy, 𝒒 is the heat transfer

rate, 𝑇 is the temperature, and 𝑅𝑚 is the specific gas constant of air.
Moreover, the Prandtl number is set to 0.71. Notably, during the post-
processing of the DNS datasets provided by Case 1 and Case 2, we
transform vector and second-order tensor fields from the Cartesian to
the cylindrical coordinate system.

As shown in Fig. 1(a), the computational domain consists of a
cylinder with a diameter 𝐷𝑑𝑜𝑚 = 16𝑅 and a longitudinal extension
𝑑𝑜𝑚 = 25𝑅. We discretize the computational domain by 45M grid
oints leveraging the blockMesh utility provided within the OpenFOAM
FD toolbox and adopting 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 425 × 425 × 450 cells in
he Cartesian reference frame with ad-hoc mesh grading, see Fig. 1(b).
he mesh resolution is twice the Kolmogorov’s length scale, 𝜂𝐾 =
𝜈3∕𝜀)0.25, on average for both Case 1 and Case 2. In this regard, the
haracteristic grid element size is taken as the cubic root of each cell’s
olume. Further details about the mesh resolution across the entire
omputational domain can be found in Liberatori et al. (2023).

The initial velocity field corresponds to quiescent conditions, while
e set the pressure and temperature to 101325 Pa and 273.15 K
niformly over the computational domain, respectively. Moreover, we
ummarize the adopted boundary conditions in Table 1. We adequately
elect the physical time-step, i.e., 𝛥𝑡 = 6.25⋅10−7 s and 𝛥𝑡 = 4.5⋅10−7s for
ase 1 and Case 2, respectively, so that the maximum Courant number
oes not exceed 0.2 within the computational domain under both test
ase configurations. Nonetheless, defining a characteristic flow-through
ime (𝐹𝑇𝑇 ) as 𝐹𝑇𝑇 = 𝐿𝑑𝑜𝑚∕𝑢𝑧,𝑏, we observe the flow developing into
statistically steady state after 20 flow-through times. Thereafter, we

verage the selected quantities of interest over 30 flow-through times.
n this regard, in the remainder of the text, mean quantities extracted
rom the DNS computations should be intended as the result of an
veraging operation taken on both time and the tangential direction,
.

Lastly, although this is not thoroughly discussed in the present
esearch study for the sake of brevity, we preliminarily validate the
penFOAM-based DNS solver against direct numerical simulations of

wirling flows undergoing bubble-type and regular conical VB states
Liberatori et al., 2024), carried out by adopting a cylindrical staggered
esh and leveraging central finite differences schemes and time inte-

ration by a low-storage, third-order, Runge–Kutta scheme (Dalla Barba
nd Picano, 2018; Ciottoli et al., 2021).

. Anisotropy characterization and tensor componentiality

The anisotropic features of second-order symmetric tensors as the
eynolds stress and turbulence dissipation tensors can be isolated by

ntroducing the anisotropy tensors, 𝑏𝑖𝑗 and 𝑑𝑖𝑗 , which exclusively retain
⟨𝑢′𝑖𝑢

′
𝑗 ⟩ − 𝛿𝑖𝑗 and 𝑑 = 𝜀𝑖𝑗 − 𝛿𝑖𝑗
3

the deviatoric part. Notably, 𝑏𝑖𝑗 = 2𝑘 3 𝑖𝑗 2𝜀 3
Table 1
Description of the boundary conditions adopted in the direct numerical simulations
of Case 1 and Case 2. Here, 𝑝0 indicates the total pressure, while ZG denotes a
zero-gradient boundary condition.

Boundary Conditions

Inlet Pressure: ZG, Temperature: 𝑇 = 273.15 K, Velocity: Eqs. (2)–(4)
Coflow Pressure: 𝑝0 = 101 325 Pa, Temperature: ZG, Velocity: ZG
Ambient Pressure: 𝑝0 = 101 325 Pa, Temperature: ZG, Velocity: ZG
Outlet Pressure: ZG, Temperature: ZG, Velocity: ZG

are the Reynolds stress and turbulence dissipation anisotropy ten-
sors, respectively (Lumley and Newman, 1977). Moreover, different
anisotropy maps were developed (Lumley and Newman, 1977; Banerjee
et al., 2007) to characterize turbulence-related tensor characteristics
and componentiality comprehensively.

In the first place, Lumley and Newman (1977) proposed the
anisotropy invariant map or Lumley triangle, illustrated in Fig. 2(a),
i.e., a confined region, defined upon the second and third principal
tensor invariants, e.g., 𝐼𝐼𝑏 = 𝑏𝑖𝑗𝑏𝑗𝑖 and 𝐼𝐼𝐼𝑏 = 𝑏𝑖𝑗𝑏𝑗𝑘𝑏𝑘𝑖 for the

eynolds-stress anisotropy, which contains any realizable turbulence
tate. The principal invariants of the dissipation anisotropy tensor, 𝐼𝐼𝑑
nd 𝐼𝐼𝐼𝑑 , are defined similarly. Notably, three limiting turbulence
tates determine the corners of the Lumley triangle: (i) 3C, or three-
omponent isotropic turbulence, with anisotropy tensor eigenvalues
1 = 𝜆2 = 𝜆3 = 0; (ii) 2C, or two-component axisymmetric turbulence,
ith anisotropy tensor eigenvalues 𝜆1 = 𝜆2 = 1∕6 and 𝜆3 = −1∕3; (iii)

1C, or one-component turbulence, with anisotropy tensor eigenvalues
𝜆1 = 2∕3 and 𝜆2 = 𝜆3 = −1∕3. Furthermore, the boundaries connecting
the fundamental limiting states designate specific turbulence character-
istics, namely: (i) 1C-2C, or two-component limit, which distinctively
describes near-wall turbulence (Antonia et al., 1994); (ii) 1C-3C, or ax-
isymmetric expansion, which corresponds to rod-like (oblate spheroid)
turbulence; (iii) 2C-3C, or axisymmetric contraction, which corresponds
to pancake-like (prolate spheroid) turbulence. Lastly, a plane-strain
region, identified through a dashed line in Fig. 2(a), constitutes the
locus of points where one anisotropy eigenvalue is zero. Specifically,
from the standpoint of the turbulent stresses, along the plane-strain
limit, the mean momentum exchange due to fluctuating velocities
exclusively acts over a plane. At the same time, perfectly isotropic
fluctuations affect the remaining principal direction and give a vanish-
ing contribution. Nonetheless, exploiting the eigenvalue decomposition
allows to visualize ellipsoid-like glyphs (Simonsen and Krogstad, 2005),
as shown in Fig. 2(a), which provide valuable information on the
componentiality of any turbulence-related tensor.

However, the non-linear dependence of the principal invariants on
the eigenvalues of the anisotropy tensors is known to induce a visual
bias in the Lumley triangle about the turbulence states, which are
primarily driven toward the axisymmetric expansion boundary (Emory
and Iaccarino, 2014). To address this issue, Banerjee et al. (2007)
introduced a barycentric map in the shape of an equilateral triangle,
as shown in Fig. 2(b), which features a linear dependence on the
anisotropy tensor eigenvalues. Notably, the three fundamental limiting
states define the corners of the barycentric map, and the intercon-
necting boundaries still designate the two-component, axisymmetric
expansion and axisymmetric contraction limits. Subsequently, any in-
termediate turbulence state can be obtained as a convex combination of
the limiting states through a set of weight coefficients {𝐶1𝐶 , 𝐶2𝐶 , 𝐶3𝐶},
namely as:

̂ = 𝐶1𝐶𝑥1𝐶 +𝐶2𝐶𝑥2𝐶 +𝐶3𝐶𝑥3𝐶 �̂� = 𝐶1𝐶𝑦1𝐶 +𝐶2𝐶𝑦2𝐶 +𝐶3𝐶𝑦3𝐶 , (9)

where �̂� and �̂� denote the barycentric coordinates of the turbulence
state under consideration, whereas 𝑥𝑖𝐶 and 𝑦𝑖𝐶 indicate the barycentric
coordinates of the 𝑖th limiting state. The linear nature of the barycentric
map is reflected in the fact that the weight coefficients are linear

functions of the anisotropy tensor eigenvalues, i.e., 𝐶1𝐶 = 𝜆1 − 𝜆2,
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Fig. 1. Computational domain for the direct numerical simulations of Case 1 and Case 2: (a) three-dimensional visualization of the test case geometry along with relevant
geometrical dimensions and representative Q-criterion isosurfaces, 𝑄 = 4.0 × 106, for Case 2, (b) longitudinal view of the discretized computational domain, displaying boundary
sections. Note that 𝑅 denotes the jet orifice radius, 𝑅 = 5 ⋅ 10−3 m.
Fig. 2. Turbulence anisotropy maps, colored with componentiality contours: (a) Lumley triangle (Lumley and Newman, 1977), (b) barycentric map (Banerjee et al., 2007). The
limiting states (1C, 2C, 3C), the boundaries of the maps, and the plane-strain limit (dashed line) are labeled, and ellipsoid-like glyphs represent the corresponding shape of Reynolds
stress and turbulence dissipation tensors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝐶2𝐶 = 2(𝜆2 − 𝜆3), and 𝐶1𝐶 = 3𝜆3 + 1, where 𝝀 = (𝜆1, 𝜆2, 𝜆3) designates
the anisotropy tensor eigenvalues in descending order.

Regardless of the linear or non-linear dependency on the anisotropy
tensor eigenvalues, the possibility of visualizing extensive amounts of
data on standard anisotropy maps presented above is limited. Indeed,
one shortcoming of the Lumley triangle and the barycentric map is
the lack of a connection between the turbulence states depicted within
the map region and their spatial distribution within the turbulent
flow field under examination. In other words, information about the
anisotropic nature of turbulence-related tensors is extracted from the
flow spatial domain and graphically represented in the anisotropy
maps, thus denying the opportunity to simultaneously characterize any
region’s anisotropic features in the flow configuration of interest. Based
on these considerations, Emory and Iaccarino (2014) proposed a novel
visualization technique, which provides anisotropy maps equipped with
componentiality contours, as illustrated in Fig. 2 for both the Lumley
triangle and the barycentric map. In particular, a red-green-blue color
system is adopted so that the limiting turbulence states are colored
in red (1C), green (2C), and blue (3C). In contrast, any other inter-
mediate state is represented by combining the red-green-blue color
channels through the weight coefficients {𝐶1𝐶 , 𝐶2𝐶 , 𝐶3𝐶}. This way, the
information about the anisotropic characteristics of turbulence-related
tensors may be directly transferred from the anisotropy maps to the
spatial domain of the turbulent flow field taken into account, pro-
viding valuable information about those flow regions mostly affected
4

by anisotropic turbulence behavior and guiding ad-hoc improvement
of the turbulence modeling. Hence, in the following, we will exploit
this kind of visualization strategy to carry out a thorough anisotropy
analysis of Reynolds stresses and dissipative scales for Case 1 and Case
2.

4. Results and discussion

Based on the theoretical framework illustrated in Section 3, we first
analyze the anisotropic features of the Reynolds stress and turbulent
dissipation tensors arising under Case 1 and 2, i.e., under bubble-type
and regular conical VB conditions, see Section 4.1. Then, we investigate
the performance of the isotropic formulation and a set of algebraic
anisotropic dissipation tensor models available in the open literature
against the reference DNS database, see Section 4.2.

4.1. Reynolds stresses and turbulence dissipation anisotropy analysis

In the first place, Fig. 3 illustrates the mean velocity field charac-
terizing Case 1 (left panel) and Case 2 (right panel). As already stated,
both configurations exhibit the establishment of a VB phenomenology,
which results in the onset of a central recirculation zone (CRZ), evi-
denced by Fig. 3(a), showing the mean axial velocity field. Notably,
the moderate swirling level of Case 1 promotes the onset of a bubble-
type VB, with a stagnation point placed in proximity of 𝑧∕𝑅 ≈ 1.5,
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Fig. 3. Mean velocity field contour maps for Case 1 (left) and Case 2 (right): (a) axial velocity, with black contour lines denoting the VB-induced central recirculation zone (CRZ),
(b) tangential velocity, (c) radial velocity.
Fig. 4. Reynolds stress tensor characteristics for Case 1 (left) and Case 2 (right): (a) mean turbulent kinetic energy, (b) componentiality of the Reynolds stress tensor, overlapped
with mean velocity field streamlines (solid lines). Here, B1 and B2 denote the smaller and larger recirculation bubbles arising under bubble-type VB conditions.
a CRZ extending up to 𝑧∕𝑅 ≈ 6, and a limited radial jet spreading,
see Fig. 3(c). The decay of tangential momentum is very pronounced,
as shown in Fig. 3(b), while the axial velocity distribution reported in
Fig. 3(a) highlights the presence of a recovery region, with an expanded
vortex core, beyond the CRZ, where a wake-like velocity profile estab-
lishes. On the contrary, the high swirling intensity characterizing Case
2 results in a regular conical VB state, which features the upstream
motion of the stagnation point compared with Case 1, namely, at 𝑧∕𝑅 ≈
1, and an enlargement of the CRZ. Furthermore, this is accompanied by
a largely enhanced jet spreading and a consequent faster decay of the
tangential momentum. In contrast, the presence of a recovery region
with significant axial momentum levels is less evident.

In Fig. 4(a), a contour map of the mean turbulent kinetic energy, 𝑘,
is reported for Case 1 (left panel) and Case 2 (right panel). Under both
swirl regimes, a fast decay of the turbulent kinetic energy along the jet
evolution is observed, whereas considerably low values characterize the
CRZ. To characterize Reynolds stress anisotropy, Fig. 4(b) illustrates a
componentiality contour map relative to the Reynolds stress tensor –
following the color notation presented in Fig. 2 – overlapped with the
mean velocity field streamlines for Case 1 (left panel) and Case 2 (right
5

panel). Concerning the moderate-swirl condition, it is worth noting that
the CRZ features a two-cell structure (Meunier and Hourigan, 2013),
which results in the onset of two toroidal recirculation bubbles, denoted
as B1 and B2 in Fig. 4(b). The componentiality contour map reveals an
almost isotropic nature of Reynolds stresses along the outer shear layer
(OSL) from 𝑧∕𝑅 ≈ 2 on, with an anisotropy level slightly increasing fur-
ther downstream. On the contrary, the jet evolution is characterized by
a one-component nature of Reynolds stresses. Perfectly two-component
behavior of turbulent stresses is observed at the lower end of the CRZ,
i.e., at 𝑧∕𝑅 ≈ 2, just upstream of the smaller recirculation bubble (B1),
which in turn exhibits a one-component nature of the Reynolds stresses,
similar to the larger recirculation bubble (B2). In the region between
the two recirculation bubbles, i.e., around 𝑧∕𝑅 ≈ 3, the Reynolds
stress anisotropy states shift toward the axisymmetric contraction (2C-
3C) boundary of the anisotropy maps. Lastly, the near-axis region
downstream of the CRZ, beyond 𝑧∕𝑅 ≈ 6, is characterized by an almost
vanishing anisotropy degree of the Reynolds stresses. Concerning Case
2, the regular conical VB gives rise to a single recirculation bubble.
Nearly perfect isotropy of the turbulent stresses can be envisaged in

the initial portion of the inner shear layer (ISL) and the OSL. At the
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Fig. 5. Turbulence dissipation tensor characteristics for Case 1 (left) and Case 2 (right): (a) mean scalar dissipation rate of the turbulent kinetic energy, (b) componentiality of the
turbulence dissipation tensor, overlapped with mean velocity field streamlines (solid lines). Note that a logarithmic scale is used for the contour map of the mean scalar dissipation
rate.
same time, a two-component nature is still evident at the bottom of the
CRZ. Lastly, Reynolds stresses again demonstrate a tendency toward the
axisymmetric contraction limit downstream of the latter.

Fig. 5 provides analogous information about the nature of the
dissipative turbulent motions. From Fig. 5(a), it is evident how the
average scalar dissipation rate of the turbulent kinetic energy is mainly
concentrated along the OSL and main jet regions, while the CRZ ex-
hibits lower values of 𝜀. Under Case 1 conditions, as shown in Fig. 5(b),
a perfectly one-component nature of the turbulence dissipation process
is observed in the proximity of the stagnation point, approximately be-
tween 𝑧∕𝑅 ≈ 1.5 and 𝑧∕𝑅 ≈ 2. At the same time, lower anisotropy levels
are envisaged elsewhere. Specifically, in the peripheral region of the
jet, the turbulence dissipation tensor oscillates between the 2C and 3C
limiting states. Within the smaller recirculation bubble (B1), small-scale
anisotropy states move toward the axisymmetric expansion (1C-3C)
limit, while the larger recirculation bubble (B2) features a turbulence
dissipation behavior close to the 2C-3C limit. On the contrary, the near-
axis region between the two recirculation bubbles features an almost
isotropic nature of the turbulence dissipation process. At the same time,
downstream of the CRZ, a virtually two-component behavior arises. The
same qualitative behavior characterizes Case 2, which is investigated
in the right panel of Fig. 5(b). Even in this configuration, one principal
direction dominates the turbulence dissipation tensor around the VB-
induced stagnation point. In contrast, perfectly isotropic dissipation
occurs along the jet evolution downstream of the stagnation point.
The near-axis region of the CRZ shows vanishing levels of dissipation
anisotropy. Concerning the recirculation bubble, two different behav-
iors are highlighted from the componentiality contour map: (i) the
lower portion of the recirculation bubble, namely, between 𝑧∕𝑅 ≈ 2
and 𝑧∕𝑅 ≈ 6, especially in proximity of the ISL, features dissipation
anisotropy states close to the axisymmetric expansion limit, similarly
to what observed within the smaller recirculation bubble (B1) of Case
1; (ii) the upper portion of the recirculation bubble, i.e., up to 𝑧∕𝑅 ≈ 9,
exhibits a dissipation behavior tending to the axisymmetric contraction
limit, similarly to what observed within the larger recirculation bubble
(B2) of Case 1. Therefore, it can be concluded that an almost opposite
behavior in terms of anisotropic characteristics of the Reynolds stress
and turbulence dissipation tensors arises under both bubble-type and
regular conical VB conditions. As further discussed in Section 4.2.2, this
6

provides meaningful information on how the dissipation tensor should
be modeled in VB-affected swirling flows, in that Reynolds stress and
small-scale anisotropies appear unrelated.

Further information about the componentiality of Reynolds stress
and turbulence dissipation tensors can be gained by graphically visu-
alizing ellipsoid-like glyphs, which are known to represent the shape
of any second-order turbulence-related tensor (Simonsen and Krogstad,
2005). This visualization technique is illustrated in Figs. 6(a) and
6(b), which report the ellipsoid-like glyphs relative to the Reynolds
stresses and dissipative turbulent scales, respectively. Consistently with
Fig. 4(b), the lowest anisotropy degrees for the Reynolds stress tensor
are envisaged within the initial portions of the ISL and OSL for both
Case 1 and Case 2. On the contrary, one-component characteristics of
the turbulent stresses affect the jet evolution region. From Fig. 6(b), it
is again evident that the turbulence dissipation tensor retains a nearly
three-component isotropic fashion along the main jet evolution and
within the near-axis region of the CRZ, coherently with what shown
in Fig. 5(b).

To further characterize the directional distribution of turbulence-
related tensors, the axial distributions of the diagonal components of
𝑏𝑖𝑗 and 𝑑𝑖𝑗 are illustrated in Figs. 7 and 8.

In this respect, Fig. 7 highlights the fact that – under both swirling
regimes – along the domain centerline, up to the VB-induced stagnation
point, the axial velocity fluctuations entirely carry the turbulent ki-
netic energy budget, remarking the one-component nature of Reynolds
stresses. Thereafter, at the bottom end of the CRZ, the flow field is
virtually two-dimensional, with a vanishing axial velocity component.
This results in an almost uniform distribution of the turbulent kinetic
energy fractions amongst the radial and tangential components for Case
1 and Case 2. In contrast, the axial component does not contribute
to any momentum exchange. This trend gradually varies beyond the
smaller recirculation bubble for Case 1, with the axial component
dominating the momentum exchange around 𝑧∕𝑅 ≈ 4. On the contrary,
Reynolds stresses immediately revert to a one-component anisotropic
behavior under Case 2 flow conditions. For both Case 1 and Case
2, a return-to-isotropy tendency arises at the upper end of the CRZ,
namely, at 𝑧∕𝑅 ≈ 6 and 𝑧∕𝑅 ≈ 10, respectively. Nonetheless, further
downstream, anisotropy levels increase again. On the other hand, the
axial distribution of the diagonal elements of 𝑑 illustrated in Fig. 8
𝑖𝑗
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Fig. 6. Mean axial velocity field, overlapped with tensor characteristics in terms of ellipsoid-like glyphs for Case 1 (left) and Case 2 (right): (a) Reynolds stresses, (b) turbulence
dissipation. Iso-lines of the barycentric weight coefficients (𝐶1, 𝐶2, 𝐶3) are shown in red, green, and blue, with 𝑏 and 𝑑 subscripts denoting Reynolds stresses and small-scale
turbulent motions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Reynolds stress anisotropy tensor, axial distribution of diagonal components: (a) Case 1, (b) Case 2.
reveals that, in the whole stagnation region, turbulence dissipation
occurs almost exclusively along the axial direction for both Case 1
and Case 2. Considerably lower anisotropy levels are envisaged within
the near-axis region of the CRZ. Nonetheless, for Case 1, turbulence
dissipation practically reverts to a two-component nature downstream
of the CRZ, i.e., beyond 𝑧∕𝑅 ≈ 6, with the radial and tangential com-
ponents carrying the most relevant fractions of the scalar dissipation
rate. In contrast, this separation amongst the components of 𝑑𝑖𝑗 is less
pronounced for Case 2.

Furthermore, Figs. 9 and 10 report the radial distribution of the
diagonal components of 𝑏𝑖𝑗 and 𝑑𝑖𝑗 for Case 1 at three axial locations.
Notably, Figs. 9(a) and 10(a) investigate the radial distribution at
𝑧∕𝑅 = 2.5. While low anisotropy levels are evident for both ⟨𝑢′𝑖𝑢

′
𝑗⟩ and

𝜀𝑖𝑗 in the proximity of the centerline, the anisotropy degree slightly
increases within the smaller recirculation bubble (B1), as also pointed
out by the inter-related oscillations of the diagonal components of both
tensors. Thereafter, the main jet region - around 𝑟∕𝑅 ≈ 1.5 - features
turbulent stresses and turbulence dissipation largely oriented along the
axial and radial directions, respectively. On the contrary, a return-to-
isotropy tendency for both tensors is envisaged in correspondence with
the OSL, namely, at 𝑟∕𝑅 ≈ 2. At the same time, radial velocity fluc-
tuations distinctly dominate the turbulent kinetic energy budget in the
7

entrainment region, i.e., beyond 𝑟∕𝑅 ≈ 2. Figs. 9(b) and 10(b) show the
radial evolution of Reynolds stress and small-scale anisotropy tensors
at 𝑧∕𝑅 = 4. For what concerns Reynolds stresses, axial velocity fluctua-
tions carry the most relevant fraction of turbulent kinetic energy in the
near-axis region. The main jet region - around 𝑟∕𝑅 ≈ 2 - is affected by
turbulent stresses largely oriented along the axial direction, while an
isotropic turbulence state is found within the OSL, i.e., at 𝑟∕𝑅 ≈ 2.5.
Then, in the entrainment region, the radial velocity fluctuations still
dominate. On the other hand, while turbulence dissipation is almost
isotropic close to the domain centerline, an anisotropic state tending
to two-component behavior is observed within the larger recirculation
bubble (B2) and the main jet region, where 𝑑𝑧𝑧 barely contributes
to the scalar dissipation rate of turbulent kinetic energy. At larger
radial distances, the OSL exhibits a rapid return to isotropy within
its outermost portion, i.e., at 𝑟∕𝑅 ≈ 3.5. Lastly, Figs. 9(c) and 10(c)
illustrate the radial distribution of 𝑏𝑖𝑖 and 𝑑𝑖𝑖 at 𝑧∕𝑅 = 8. While a
vanishing anisotropy degree of the Reynolds stresses is envisaged at
small radial distances, the evolution of Reynolds stress anisotropy in
the main jet region and the OSL closely resembles the one already
investigated at 𝑧∕𝑅 = 4. Concerning the small-scale turbulent motions,
a distinct two-component nature is observed close to the axis, with
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Fig. 8. Turbulence dissipation anisotropy tensor, axial distribution of diagonal components: (a) Case 1, (b) Case 2.
Fig. 9. Reynolds stress anisotropy tensor, radial distributions of diagonal components for Case 1: (a) z/R = 2.5, (b) z/R = 4, (c) z/R = 8.
Fig. 10. Turbulence dissipation anisotropy tensor, radial distributions of diagonal components for Case 1: (a) z/R = 2.5, (b) z/R = 4, (c) z/R = 8.
turbulence dissipation largely oriented along the 𝑟𝜃 plane. At larger
radial distances, the anisotropy level gradually decreases, with the main
jet region featuring largely isotropic dissipation characteristics.

Similarly, Figs. 11 and 12 report the radial distribution of the
diagonal components of 𝑏𝑖𝑗 and 𝑑𝑖𝑗 for Case 2 at three axial locations.
Precisely, Figs. 11(a) and 12(a) investigate the radial distribution at
𝑧∕𝑅 = 2. Regarding Reynolds stresses, the axial velocity fluctuations
mostly contribute to the turbulent kinetic energy budget inside the CRZ.
At the same time, a pronounced return to isotropy can be envisaged
in the ISL and OSL, i.e., at 𝑟∕𝑅 ≈ 2 and 𝑟∕𝑅 ≈ 4, respectively.
Furthermore, the jet evolution region exhibits a departure from isotropy
but, differently from what was observed for Case 1, there is no distinctly
dominating fluctuation amongst the diagonal components of 𝑏𝑖𝑗 . Within
the entrainment region, namely, beyond 𝑟∕𝑅 ≈ 4.5, the radial velocity
fluctuations almost entirely carry the overall turbulent kinetic energy
level. On the other hand, the turbulence dissipation process retains an
almost isotropic behavior close to the domain centerline. Thereafter,
𝑑𝑧𝑧 largely increases against the other two components within the
outermost portion of the CRZ. In contrast, the main jet region features
a perfectly isotropic dissipation state. Figs. 11(b) and 12(b) show the
radial evolution of Reynolds stress and small-scale anisotropy tensors
8

at 𝑧∕𝑅 = 6. Specifically, an almost one-component nature of the
turbulent stresses is envisaged over the entire radial direction, with
the axial velocity fluctuations providing a dominant contribution to
the turbulent kinetic energy budget. The exception to this behavior
is envisaged within the region close to the circumferential axis of the
toroidal recirculation bubble, i.e., at 𝑟∕𝑅 ≈ 3.75, with a decrease in the
anisotropy degree. In contrast, lower anisotropy levels characterize the
turbulence dissipation process along the radial direction at 𝑧∕𝑅 = 6.
Lastly, Figs. 11(c) and 12(c) illustrate the radial distribution of 𝑏𝑖𝑖 and
𝑑𝑖𝑖 at 𝑧∕𝑅 = 10. Concerning Reynolds stresses, anisotropic states close
to the axisymmetric contraction limit can be envisaged up to 𝑟∕𝑅 ≈ 3,
with a gradual shift toward the 3C isotropic limit. At larger radial
distances, within the main jet region, the turbulence behavior starts
exhibiting a one-component nature, with 𝑏𝑧𝑧 dominating the remaining
two components. On the other hand, anisotropy levels of 𝜀𝑖𝑗 are not
pronounced. Still, the behavior of the anisotropy tensor components
denotes how the turbulence dissipation along the axial direction gives
a marginal contribution compared with 𝑑𝑟𝑟 and 𝑑𝜃𝜃 .

To summarize the key results about the fundamental characteristics
of the turbulence dissipation tensor under VB flow conditions derived
from the anisotropy analysis presented above, Fig. 13 provides three-
dimensional visualization of coherent vortex structures induced by



International Journal of Heat and Fluid Flow 109 (2024) 109531J. Liberatori et al.
Fig. 11. Reynolds stress anisotropy tensor, radial distributions of diagonal components for Case 2: (a) z/R = 2, (b) z/R = 6, (c) z/R = 10.
Fig. 12. Turbulence dissipation anisotropy tensor, radial distributions of diagonal components for Case 2: (a) z/R = 2, (b) z/R = 6, (c) z/R = 10.
Fig. 13. Direct numerical simulation of vortex breakdown states: (a) Case 1, (b) Case 2. Coherent vortex structures are visualized employing Q-criterion isosurfaces, namely,
𝑄 = 2.0 × 107 for Case 1 and 𝑄 = 4.0 × 106 for Case 2, colored by the largest eigenvalue of the dissipation anisotropy tensor, 𝑑𝑖𝑗 . Iso-levels of 𝐶1,𝑑 and 𝐶3,𝑑 are shown in red and
blue, respectively, namely 𝐶1,𝑑 = 0.99 and 𝐶3,𝑑 = 0.8 for Case 1, 𝐶1,𝑑 = 0.99 and 𝐶3,𝑑 = 0.9 for Case 2. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
breakdown phenomenology, along with relevant iso-level surfaces of
weight coefficients 𝐶1,𝑑 and 𝐶3,𝑑 for the barycentric map relative to
𝜀𝑖𝑗 . Indeed, those iso-contours provide valuable information on the
topological distribution of one-component and perfectly isotropic tur-
bulence dissipation behaviors. Notably, for both Case 1 and Case 2,
one-component turbulence dissipation characteristics are exclusively
concentrated around the VB-induced stagnation point, consistently with
the componentiality contour maps shown in Fig. 5(b). Conversely,
almost isotropic turbulence dissipation occurs in the proximity of the
near-axis region inside the CRZ and within the jet evolution region.

4.2. Testing algebraic anisotropic dissipation tensor models

The anisotropy analysis carried out throughout Section 4.1 high-
lighted the distinctly one-component anisotropic nature of the Reynolds
9

stress tensor in most regions of the flow configurations of interest,
except for the lower and upper end of the CRZ and the shear layer
zones. On the contrary, an essentially anisotropic behavior of the
turbulence dissipation process is exclusively concentrated in specific
flow field regions, which feature mostly isotropic Reynolds stresses, as
remarked above. Hence, in the present Section, we first review existing
anisotropic dissipation tensor models. Notably, given that non-algebraic
models (Oberlack, 1997) - which derive the dissipation tensor from its
transport equation - introduce complexity and model uncertainties, also
considering the variety of arguments still unresolved concerning the
modeling of other terms in Eq. (1) (Jakirlić and Hanjalić, 2002), we
focus on algebraic models for the dissipation rate tensor. Thereafter,
we test a set of these algebraic models against the reference DNS data,
together with the standard isotropic formulation.
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Fig. 14. Selected flow regions to investigate the discrepancy between DNS data and algebraic dissipation tensor formulations: (a) Case 1, (b) Case 2.
4.2.1. Review of algebraic models
The most straightforward anisotropic formulation was first proposed

by Rotta (1951), 𝜀𝑖𝑗 = 𝜀
𝑘 ⟨𝑢

′
𝑖𝑢

′
𝑗⟩, directly implying that the Reynolds

stress anisotropy equals the small-scale anisotropy, namely 𝑏𝑖𝑗 = 𝑑𝑖𝑗 .
Several models (Hanjalić and Launder, 1976; Hallbäck et al., 1996)
were proposed to combine the isotropic approach and Rotta’s formu-
lation through a blending parameter, 𝑓𝑠, which is typically a function
of the turbulent Reynolds number, 𝑅𝑒𝜏 = 𝑘2

𝜈𝜀 :

𝜀𝑖𝑗 = (1 − 𝑓𝑠)
2
3
𝜀𝛿𝑖𝑗 + 𝑓𝑠

𝜀
𝑘
⟨𝑢′𝑖𝑢

′
𝑗⟩. (10)

In this context, the model by Hanjalić and Launder (1976) uses
𝑓𝑠 = 1

1+0.1𝑅𝑒𝜏
, while the model by Hallbäck et al. (1996) uses 𝑓𝑠 =

1

1+ 31
5𝜋

𝑘0.5𝐿𝑓
𝜈

, with 𝐿𝑓 denoting the integral length scale. In both cases,

a linear relationship between 𝑑𝑖𝑗 and 𝑏𝑖𝑗 , i.e., 𝑑𝑖𝑗 = 𝑓𝑠𝑏𝑖𝑗 , is returned.
Additional models were developed (Sjögren and Johansson, 2000; Hall-
bäck et al., 1990) to characterize the small-scale anisotropy tensor, 𝑑𝑖𝑗 ,
as a function of the Reynolds stress anisotropy tensor, 𝑏𝑖𝑗 , ultimately
providing:

𝜀𝑖𝑗 =
2
3
𝜀𝛿𝑖𝑗 + 𝑓𝑠,1𝜀𝑏𝑖𝑗 + 𝑓𝑠,2𝜀

[

𝑏𝑖𝑘𝑏𝑘𝑗 −
1
3
𝑏𝑖𝑗𝑏𝑗𝑖𝛿𝑖𝑗

]

. (11)

In particular, the linear model by Sjögren and Johansson (2000)
uses 𝑓𝑠,1 = 1 − 1

2 det
[

3⟨𝑢′𝑖𝑢
′
𝑗 ⟩

2𝑘

]

and 𝑓𝑠,2 = 0. In contrast, the quadratic

model by Hallbäck et al. (1990) uses 𝑓𝑠,1 = 1
2 + 3

8 𝑏𝑖𝑗𝑏𝑗𝑖 and 𝑓𝑠,2 =
− 3

4 . On the other hand, starting from the exact transport equation
for 𝜀𝑖𝑗 , Speziale and Gatski (1997) developed an algebraic relation
for 𝑑𝑖𝑗 , as a non-linear function of the mean velocity gradients for
two-dimensional strain-dominated flows, which can also be applied to
three-dimensional flows in principle. In this approach, mean velocity
gradients should enhance different anisotropy characteristics in the
Reynolds stresses and small-scale turbulent motions (So et al., 1999).
The parameterization of 𝜀𝑖𝑗 in terms of the mean flow gradients was
also adopted by Perot and Natu (2004), resulting in an exact model
in the proximity of solid walls or free surfaces, which can also be
employed away from boundaries.
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4.2.2. Performance of selected algebraic models
Along with the isotropic model derived from Kolmogorov’s the-

ory (Frisch, 1995), we investigate the performance of three different
algebraic models for 𝜀𝑖𝑗 against the available DNS datasets: (i) the
model by Hallbäck et al. (1996), from now on designated as HJB; (ii)
the model by Sjögren and Johansson (2000), from now on designated
as SJ, which is linear in Reynolds stress anisotropies; (iii) the model
by Hallbäck et al. (1990), from now on designated as HGJ, which
is quadratic in Reynolds stress anisotropies. The formulations of 𝜀𝑖𝑗
associated with these four models are summarized in Table 2.

To assess the performance of the models mentioned above, the dis-
crepancy between DNS data and the algebraic dissipation tensor formu-
lations is measured by resorting to the relative root mean square error
(𝑅𝑅𝑀𝑆𝐸) on the diagonal components of the turbulence dissipation
tensor:

𝑅𝑅𝑀𝑆𝐸(%) =

√

1
3
∑3

𝑖=1

[

𝜀(DNS)
𝑖𝑖 − �̂�𝑖𝑖

]2

∑3
𝑖=1 𝜀

(DNS)
𝑖𝑖

⋅ 100, (12)

where 𝜀(DNS)
𝑖𝑖 and �̂�𝑖𝑖 are the diagonal components of the turbulence

dissipation tensor returned by DNS computations and algebraic models,
respectively.

Precisely, we focus on four specific flow regions for Case 1 and three
specific flow regions for Case 2, as illustrated in Fig. 14.

Then, the discrepancy measure ultimately adopted is the 𝑅𝑅𝑀𝑆𝐸
conditioned on the fractional anisotropy of the dissipation tensor, 𝐹𝐴𝑑 ,
and averaged across the flow region of interest. In this regard, 𝐹𝐴𝑑 is
defined as:

𝐹𝐴𝑑 =
√

1
2

√

(�̃�1 − �̃�2)2 + (�̃�2 − �̃�3)2 + (�̃�3 − �̃�1)2
√

�̃�21 + �̃�22 + �̃�23

, (13)

with �̃� = (�̃�1, �̃�2, �̃�3) denoting the eigenvalues of 𝜀(DNS)
𝑖𝑗 in descending

order. Furthermore, the conditional PDF of 𝑅𝑅𝑀𝑆𝐸, given the value
𝐹𝐴𝑑 taken by 𝐹𝐴𝑑 , may be expressed as:

𝑓𝑅𝑅𝑀𝑆𝐸∣𝐹𝐴𝑑
(𝑅𝑅𝑀𝑆𝐸 ∣ 𝐹𝐴𝑑 ) =

𝑓𝑅𝑅𝑀𝑆𝐸,𝐹𝐴𝑑
(𝑅𝑅𝑀𝑆𝐸,𝐹𝐴𝑑 )

, (14)

𝑓𝐹𝐴𝑑

(𝐹𝐴𝑑 )
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Table 2
Collection of algebraic dissipation tensor models tested against DNS data.
Name Model Ref.

Isotropic 𝜀𝑖𝑗 =
2
3
𝜀𝛿𝑖𝑗 Frisch (1995)

HJB 𝜀𝑖𝑗 = (1 − 𝑓𝑠)
2
3
𝜀𝛿𝑖𝑗 + 𝑓𝑠

𝜀
𝑘
⟨𝑢′𝑖𝑢

′
𝑗 ⟩ with 𝑓𝑠 =

[

1 + 31
5𝜋

𝑘0.5𝐿𝑓

𝜈

]−1
Hallbäck et al. (1996)

SJ 𝜀𝑖𝑗 =
2
3
𝜀𝛿𝑖𝑗 + 𝑓𝑠,1𝜀𝑏𝑖𝑗 with 𝑓𝑠,1 = 1 − 1

2
det

[

3⟨𝑢′𝑖𝑢
′
𝑗 ⟩∕2𝑘

]

Sjögren and Johansson (2000)
HGJ 𝜀𝑖𝑗 =

2
3
𝜀𝛿𝑖𝑗 + 𝑓𝑠,1𝜀𝑏𝑖𝑗 −

3
4
𝜀
[

𝑏𝑖𝑘𝑏𝑘𝑗 −
1
3
𝑏𝑖𝑗𝑏𝑗𝑖𝛿𝑖𝑗

]

with 𝑓𝑠,1 =
1
2
+ 3

8
𝑏𝑖𝑗𝑏𝑗𝑖 Hallbäck et al. (1990)
Fig. 15. Conditional average error on the diagonal components of the turbulence dissipation tensor, 𝜀𝑖𝑗 , as a function of the small-scale fractional anisotropy, 𝐹𝐴𝑑 , for Case 1:
(a) Zone 1, (b) Zone 2, (c) Zone 3, (d) Zone 4.
where 𝑓𝑅𝑅𝑀𝑆𝐸,𝐹𝐴𝑑
(𝑅𝑅𝑀𝑆𝐸,𝐹𝐴𝑑 ) denotes the joint density of

𝑅𝑅𝑀𝑆𝐸 and 𝐹𝐴𝑑 , whereas 𝑓𝐹𝐴𝑑
(𝐹𝐴𝑑 ) indicates the marginal density

of 𝐹𝐴𝑑 .
Fig. 15 illustrates the average 𝑅𝑅𝑀𝑆𝐸 conditioned on 𝐹𝐴𝑑 within

the four different flow regions for Case 1. Precisely, Zone 1 cor-
responds to the jet region up to the VB-induced stagnation point.
As shown in Fig. 15(a), the isotropic and HJB models are perfectly
overlapped and present an increasing trend with 𝐹𝐴𝑑 . The SJ and
HGJ models constantly return higher conditional errors than the other
models, providing 10% and 25% error values, respectively, even at
vanishing anisotropy levels. Thereafter, within Zone 2 - placed at the
bottom of the CRZ - an increasing trend with 𝐹𝐴𝑑 is still shown in
Fig. 15(b). However, disparities between the four models are minimal.
In particular, while the isotropic and HJB models, still overlapped,
exhibit a similar discrepancy against DNS data compared with Zone
1, the SJ and HGJ models show improved performance. Moreover,
the average conditional errors returned by any model at extremely
anisotropic levels, i.e., 𝐹𝐴𝑑 ≈ 1, are lower compared with Zone 1.
Similar considerations apply to Zone 3, which corresponds to the CRZ,
and Zone 4, which encompasses both the main jet region and shear
layer zones, see Figs. 15(c) and 15(d), respectively. Even in these cases,
the isotropic and HJB models virtually coincide, whereas the SJ and
HGJ models always provide higher conditional error levels. Moreover,
the 𝐹𝐴 values investigated in Zone 3 and Zone 4 keep below 1,
11

𝑑

reaffirming that the maximum anisotropy degree of the dissipation
tensor can be found around the VB-induced stagnation point.

Fig. 16 illustrates the average 𝑅𝑅𝑀𝑆𝐸 conditioned on 𝐹𝐴𝑑 within
the three different flow regions for Case 2. It is worth highlighting
from the beginning that the isotropic and HJB models also perfectly
overlap under conical VB conditions, regardless of the flow zone under
consideration. Again, Zone 1 corresponds to the jet region upstream
of the VB-induced stagnation point, and Fig. 16(a) provides consistent
results compared with Zone 1 of Case 1. Thereafter, within Zone 2 -
which spans the stagnation region and the innermost portion of the CRZ
- the SJ and HGJ models only return error levels comparable with the
remaining models from 𝐹𝐴𝑑 = 0.7 on, as reported in Fig. 16(b). This
trend is confirmed in Zone 3, which encompasses the outermost portion
of the CRZ, the main jet region, and the shear layer. Nonetheless, the
models involving a relation between 𝜀𝑖𝑗 and 𝑏𝑖𝑗 , namely, the SJ and HGJ
models, provide slightly lower discrepancies with the DNS data beyond
𝐹𝐴𝑑 ≈ 0.8.

Therefore, the model comparison carried out for both Case 1 and
Case 2 shows an overall superiority of the isotropic and HJB models
compared with the SJ and HGJ formulations, which involve a linear
and quadratic relation between the dissipation tensor and the Reynolds
stress anisotropies, respectively. Nonetheless, the performance of the
former two models still deteriorates with increasing anisotropy level
in 𝜀 , returning average conditional errors up to 50% around the
𝑖𝑗
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Fig. 16. Conditional average error on the diagonal components of the turbulence dissipation tensor, 𝜀𝑖𝑗 , as a function of the small-scale fractional anisotropy, 𝐹𝐴𝑑 , for Case 2:
(a) Zone 1, (b) Zone 2, (c) Zone 3.
Fig. 17. Mean distribution of the HJB blending coefficient, 𝑓𝑠: (a) Case 1, (b) Case 2. Note that a logarithmic scale is used.
stagnation point established due to the breakdown phenomenology.
Hence, improved modeling of the turbulence dissipation tensor via
algebraic models for moderately to highly swirling flows undergoing VB
should still be pursued. Specifically, as demonstrated concerning the SJ
and HGJ models, merely relating dissipation anisotropy characteristics
to the anisotropy of the Reynolds stresses, i.e., 𝑏 , is not sufficient to
12

𝑖𝑗
capture the anisotropic nature of 𝜀𝑖𝑗 in specific regions of VB-affected
jets. Consequently, the formulation of ad-hoc algebraic dissipation
tensor models should eventually include additional flow field features,
e.g., the mean velocity gradients (Speziale and Gatski, 1997; So et al.,
1999; Perot and Natu, 2004), which will be the focus of future research
work.
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Lastly, Fig. 17 illustrates the mean spatial distribution of the HJB
model blending coefficient, 𝑓𝑠, for Cases 1 and 2. Under both VB
regimes, the blending coefficient takes vanishing values in the main jet
region and the middle area of the CRZ, causing the HJB model to revert
to the standard isotropic formulation where the dissipation tensor is
expected to experience an almost isotropic behavior, see Fig. 5(b).
On the contrary, non-vanishing values of 𝑓𝑠 can be envisaged within
the shear layer zones, around the VB-induced stagnation point and at
the upper end of the CRZ, thus reflecting the tendency of the HJB
model to tend toward the anisotropic Rotta’s model in those regions
where a remarkable departure from isotropy is observed concerning
𝜀𝑖𝑗 , as shown in Fig. 5(b). Therefore, formulating an algebraic dissi-
pation tensor model based on a blending between an isotropic and an
anisotropic approach regulated by the turbulent Reynolds number looks
promising. Still, the values taken by 𝑓𝑠 in the HJB model barely tend
to unity, resulting in a model closely resembling the standard isotropic
formulation. Therefore, although the development of such a blending
approach appears to correctly identify those flow regions where an
anisotropic treatment of the dissipation tensor is necessary, further
improvement about the definition - and consequently the magnitude
- of 𝑓𝑠 should be pursued, along with ad-hoc formulations of the
nisotropic contribution to replace the basic model by Rotta, eventually
ncluding mean local flow field properties, as stated above.

. Summary and conclusions

In the present work, we investigated two swirling jets undergoing
ubble-type and regular conical vortex breakdown via direct numer-
cal simulation. We exploited this high-fidelity database to analyze
he anisotropic characteristics of the Reynolds stress and turbulence
issipation tensors. By resorting to componentiality contours derived
rom the standard anisotropy maps, namely, the Lumley triangle and
he barycentric map, the anisotropy analysis revealed that: (i) Reynolds
tresses exhibit a one-component anisotropic behavior in most flow
egions under both vortex breakdown regimes, except for the inner
nd outer shear layer regions, and the bottom and top extremities
f the breakdown-related central recirculation zone; (ii) the dissipa-
ion tensor features a less significant departure from isotropy, yet,
emarkable anisotropic states are found where the Reynolds stresses
xperience a return-to-isotropy tendency, especially in the proximity of
he breakdown-induced stagnation point. Based on the outcome of the
nisotropy analysis, suggesting that ad-hoc modeling of the dissipation
ensor is, in principle, necessary under vortex breakdown conditions,
e tested the standard isotropic model and three algebraic anisotropic
issipation tensor formulations against the reference data: (i) the HJB
odel, combining the isotropic treatment with the basic anisotropic

ormulation proposed by Rotta through a turbulent-Reynolds-number-
ependent blending function; (ii) the SJ model, combining the isotropic
reatment with a linear expression in the Reynolds stress anisotropy
ensor; (iii) the HGJ model, combining the isotropic treatment with

quadratic expression in the Reynolds stress anisotropy tensor. On
he one hand, the blending function of the HJB model exhibited the
apability of identifying the flow regions where mostly anisotropic
urbulence dissipation occurs. However, due to the current formulation,
he HJB model generally reverts to the basic isotropic approach. On
he other hand, the SJ and HJB models showed worse agreement
ith the direct numerical simulation data, proving that exclusively

elating small-scale anisotropies to Reynolds stress anisotropic behavior
s unsuitable for breakdown-affected swirling flows. Hence, the out-
ome of the present research study suggests that ad-hoc treatment of
he turbulence dissipation tensor in swirling flows undergoing vor-
ex breakdown should target an enhancement of currently available
lended formulations regulated by the turbulent Reynolds number,
mproving the blending function definition and including mean local
13

low properties within the anisotropic contribution of the model.
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