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Abstract: Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promis-
ing alternatives to the common thermoset ones, providing quite comparable thermo-
mechanical properties while enabling a circular and green end-of-life scenario of the com-
posite materials. In addition to being designed to incorporate a bio-based resin greener than
the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners
that enable, under mild thermo-chemical conditions, the total recycling of the composite
material through the recovery of the fiber and matrix as a thermoplastic. This research
addressed the characterization, processability, and recyclability of a new commercial cleav-
able bio-resin formulation (designed by the R-Concept company) that can be used in the
fabrication of fully recyclable polymer composites. The resin was first studied to investigate
the influence of the different post-curing regimes (room temperature, 100 ◦C, and 140 ◦C)
on its thermal stability and glass transition temperature. According to the results obtained,
the non-post-cured resin displayed the highest Tg (i.e., 76.6 ◦C). The same post-curing
treatments were also probed on the composite laminates (glass and carbon) produced via
a lab-scale vacuum-assisted resin transfer molding system, evaluating flexural behavior,
microstructure, and dynamic-mechanical characteristics. The post-curing at 100 ◦C would
enhance the crosslinking of polymer chains, improving the mechanical strength of compos-
ites. With respect to the non-post-cured laminates, the flexural strength improved by 3%
and 12% in carbon and glass-based composites, respectively. The post-curing at 140 ◦C was
instead detrimental to the mechanical performance. Finally, on the laminates produced, a
chemical recycling procedure was implemented, demonstrating the feasibility of recovering
both thermoplastic-based resin and fibers.

Keywords: bio-based thermoset; ecological recycling of thermoset; ecofriendly epoxy
system; composite laminates; fibers recovery

1. Introduction
Today, thermosetting matrix composite materials are used in countless industrial sec-

tors and applications, including the civil and transport industries, aeronautical, aerospace,
and automotive fields, the military sector, and the production of sports equipment. These
materials are recognized to be reliable solutions for high-performance and light-weight
applications due to their retained dimensional stability, chemical inertia, and rigidity over
a wide range of temperatures. However, once fully cured, they cannot be easily reshaped
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or reprocessed, thus leaving still unsolved the issues of recycling and the lack of tech-
nological flexibility [1]. These properties derive from the presence of cross-links in the
molecular structure of thermosets, which have the same energy level as polymerization
bonds. Both are covalent bonds, conferring on thermosetting materials high thermal and
mechanical stability. However, this stability makes thermosets difficult to recycle, so current
recycling technologies do not align well with modern concepts of material circularity and
eco-design [2]. The primary challenge in recycling thermosetting composites lies in the
degradation of the matrix and the incomplete recovery of reinforcing fibers. The leading
recycling methods for thermosetting composite materials are mechanical, thermal, and
chemical recycling [3–5]. Mechanical recycling involves several steps (crushing, grinding,
milling) aimed at reducing the size of the waste composite material. These resulting frac-
tions can be used as fillers in short fiber composites, suitable for producing sheet molding
compounds. However, the equipment often suffers damage from the friction with the
composite fibers, increasing the process’s operating costs. Although mechanical recycling
has advantages such as non-toxicity and the ability to work at room temperature, the main
issue is the generation of dust, which poses health and safety risks to operators. Thermal
recycling uses high-temperature treatment or fluids to degrade the thermoset matrix and
recover the fibers through processes such as pyrolysis or using a fluidized bed. Pyrolysis
occurs in an inert gas atmosphere without oxygen, heating the composite to 400–1000 ◦C [6]
to recover fibers. The matrix degrades, producing gas, oil, coal tar, and dust, necessitating
fiber cleaning post-process. Fluidized bed thermal recycling, still under development,
poses challenges due to polluting gases, organic solvents, and high energy requirements.
Rapid heating degrades the matrix, separating it from the fibers by friction. Chemical recy-
cling, including supercritical or subcritical solvolysis, degrades the thermoset matrix using
various solvents and process variables like temperature and pressure, often with catalysts.
This method yields long fibers with minimal surface residue and minor degradation in
mechanical properties compared to virgin reinforcement. For instance, solvolysis can be
performed at atmospheric pressure, minimizing fiber damage and retaining up to 98% of
the initial fibers’ tensile strength. Although the processing temperatures involved are lower
than pyrolysis, it requires expensive, corrosion-resistant equipment, and solvents can harm
the environment and plant personnel. The drawback of joining these recycling routes is the
lack of recovering the polymer matrix [4].

In recent years, industry and academic research teams addressed the study on the
design of thermoset systems with built-in recyclability by modifying the polymer matrix
with labile linkage, which makes the materials much easier to break down while retaining
their mechanical characteristics [7–9]. Specifically, the approach is based on introducing
in the polymer network degradable cross-linkers or converting permanent cross-linked
structures into dynamic cross-linked ones to achieve de-crosslink and re-crosslink by ex-
change reactions of cleavable bonds. Indeed, the dynamic bonds implemented into the
network are stimuli-responsive to specific conditions (heat, irradiation, chemical attack,
or a combination of that) but not under severe conditions, resulting in the recovery of the
original monomers or simpler polymers that are readily soluble [8,9]. Then, thermosets
containing cleavable bonds find attractive usage for the manufacturing of fiber-reinforced
polymer composites in which fibers could be easily recovered after the resin removal, pre-
serving good thermo-mechanical characteristics for new applications [10–12]. Si et al. [10]
proposed an epoxy vitrimer with a high concentration of exchangeable aromatic disulfide
crosslinks to accelerate disulfide bond exchange reactions within the networks and enhance
the recycling efficiency of epoxy vitrimers and composites. The dual disulfide vitrimer
was degraded by a dilute solution of dithiothreitol (DTT). Furthermore, composites were
manufactured, and the carbon fibers were reused to form new carbon fiber-reinforced
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polymer (CFRP) composites. However, these techniques require high-temperature con-
ditions, which increase the cost and complexity of the recycling method. Liu et al. [11]
investigated a novel epoxy network cross-linked by imine bonds and hydrogen bonds.
The recycling process occurred under non-aggressive conditions at 50 ◦C. The fibers were
recycled non-destructively and reused to prepare new composite materials, while the re-
coverable monomer from the matrix resin was used to cure the brittle material. Pastine [12]
highlighted a series of acetal-containing amine hardeners (Recyclamine®, patented by
Connora Technologies [7]) to cross-link commercially available epoxy resins for use in
composite materials. Recyclamine® hardeners have a generic polyamine structure with an
innovative feature: separable terminal groups held together by a central cleavage point
with acetal bonds. These bonds degrade in mild acidic solutions at certain temperatures,
allowing the recovery and reuse of the remaining linear polymers. This enables the cre-
ation of cross-links that can later be broken, converting the thermoset epoxy matrix back
into a reusable thermoplastic polymer (Figure 1). These novel hardening systems were
implemented by other researchers to produce fully recyclable fiber-reinforced compos-
ites via resin transfer molding [13]. Saitta et al. [14] analyzed two different commercial
bio-based thermoset resins to design flax fiber-reinforced composites showing recycling
characteristics. The authors studied the optimum process parameters to be implemented
for the composite preparation as well as the recyclability yield through a specific chemical
protocol, verifying the feasibility of separating and recovering both the fibers and resin
from the composite samples.
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Figure 1. Schematic of the cleavage mechanism induced by Recyclamine® hardener and conversion
to the thermoplastic system (authors’ own figure).

Research efforts on the design, synthesis, and processing of fully recyclable thermoset-
ting formulations are continually expanding, with the major target of implementing these
polymeric systems in industrial sectors of high technological value. For instance, these
recyclable thermosets are considered promising directions of development in the wind
energy industry for producing novel recyclable wind turbine blades [15], providing compa-
rable mechanical performance with respect to traditional epoxy resin composites and the
recyclability characteristic of thermoplastics [16]. To the best of the authors’ knowledge,
new recyclable epoxy systems are emerging to address the upcoming market demand
and in-depth investigation is needed regarding processability for composite material fab-
rication as well as recyclability aimed at recovering fibers and matrix to reintroduce in
new applications.

The present work addressed the recycling pathway of a new cleavable bio-based epoxy
resin system (R-Concept, Barcelona, Spain) implemented in the fabrication of fully recy-
clable composite materials. These bio-epoxy systems combine double benefit towards more
sustainable products: (1) incorporation of a bio-based component in the resin formulation
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to reduce the environmental impact associated with the use of toxic and expensive fossil
sources as feedstocks and (2) implementation of a Recyclamine®-type hardener that enables
the recovery of reinforcement (carbon fibers, glass fibers) and the epoxy matrix as recy-
clable thermoplastic, both further integrable into new processes and applications. The resin
formulation was first characterized by thermal analysis to evaluate the effect of different
curing conditions on the matrix performance. Carbon and glass fiber-reinforced composites
were then fabricated via vacuum-assisted resin transfer molding. Thermal, mechanical,
and microstructural characterization was performed on the composite materials obtained.
Finally, an experimental chemical recycling protocol was developed for the recovery of
fibers and the thermoplastic fraction.

2. Materials and Methods
2.1. Materials

The Beluga Whale epoxy resin and the Recyclamine-type hardener R*LAB 005, both
provided by R-Concept (Barcelona, Spain), were used as the thermoset matrix for the
composites. The manufacturer specifies that R*LAB 005 is an “extra slow” hardener, with
a gel time of 100–130 min at 60 ◦C. While detailed chemical structures for these materials
are not yet available in the literature, they are part of the bio-based epoxy resin and
Recyclamine™ hardener family, known for enabling the recyclability of thermoset systems.

Previous studies [17] have characterized the Recyclamine™ R*101 hardener, which
contains cleavable ketal groups within the cross-linked network. These groups can be
selectively broken under mildly acidic conditions, allowing for the depolymerization of the
cured matrix and the recovery of both the polymer and reinforcing fibers. The chemical
structure of R*101, shown in Figure 2a, serves as a representative example of this class of
materials. Similarly, Recyclamine™ R*LAB005 can be assumed to share this functional
mechanism, as it belongs to the same family of cleavable hardeners. Furthermore, the
Beluga Whale resin shares similarities with the Polar Bear resin described in the literature [4],
which contains 28% bio-based carbon (expressed as a fraction of total organic carbon), as
shown in Figure 2b. By referencing these well-characterized systems, such as Recyclamine™
R*101 and Polar Bear, we provide a solid framework to understand the chemical behavior
and recyclability of the Beluga Whale/Recyclamine™ R*LAB005 system studied here.
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Figure 2. Chemical structure of (a) RecyclamineTM R*101 [17] and (b) Polar Bear (part A) [4].

Carbon and glass fabrics were used as reinforcement for different composites. The
carbon fabric was a plain weave with an areal density of 160 g/m2, while the glass fabric
was a twill weave with an areal density of 290 g/m2. Both fabrics were supplied by
Angeloni Group S.r.l. (Venice, Italy).

2.2. Resin System Formulation

The resin-to-hardener ratio was set to 100:35 as recommended by the R-Concept resin
manufacturer. Furthermore, this bio-epoxy system cures at room temperature, and post-
cure options are not indicated in the technical datasheet. Therefore, given the lack of
studies in the literature on this resin and to establish the best processing parameters for the
subsequent manufacturing of composites, three post-curing conditions were investigated:
no post-curing (RT), 100 ◦C for 3 h (PC100), and 140 ◦C for 3 h (PC140). Similar post-curing
treatments were probed by Ferrari et al. [18], who investigated R-Concept resins in the
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production of biocomposites incorporating waste flour. The resin was poured into a steel
mold to manufacture specimens with dimensions suitable for the thermal analysis.

2.3. Composite Laminates Manufacturing

Composite laminates (200 mm × 150 mm) were realized using a lab-scale vacuum-
assisted resin transfer molding system; see Figure 3a. System schematization and auxiliary
materials used in the infusion process are shown in Figure 3b. The infusion layout con-
sisted of: (a) a glass mold surface, (b) the fiber reinforcement stack (10 layers with 0/90
orientation), (c) a polyethylene perforated release film to control the resin content into the
laminate (Flow mesh), (d) a polyester fabric bleeder cloth to allow airflow throughout the
vacuum bagging process as well as bleed out an excess resin in a composite part (Breather),
and (e) a polytetrafluoroethylene (PTFE) film sealed to the mold by a tackifier tape to form
a sealed chamber (Vacuum bag). Silicon tubes were used to let the resin enter the bag and
to allow the suction of the air, and then the resin itself. The system was connected to a
Divac 0.6L diaphragm pump (Leybold, Cologne, Germany) to ensure a relative vacuum
pressure of −0.8 bar. For each type of fabric, three composite plates have been produced,
one for each post-curing condition implemented for the neat resin (RT, PC100, and PC140).
The obtained glass and carbon composites had an average thickness of 2.5 mm. Specimens
for thermal and mechanical characterization were obtained from the plates by means of a
computerized numerical control (CNC) cutting machine (Falcon 1500 by Valmec, Pescara,
Italy). The carbon and glass fiber volume fractions were determined using a commercial
density measurement kit paired with a 0.1 mg resolution analytical balance based on the
principle of hydrostatic thrust, Mettler Toledo ME54 (Mettler Toledo, Worthington, OH,
USA). The glass and carbon fiber-reinforced composites exhibited fiber volume contents of
47% and 36%, respectively.
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2.4. Procedure for Composites Recycling: Fiber and Polymer Recovery

After the thermal and mechanical characterization of the composite laminates, the
materials were subjected to a recycling process following the experimental protocol im-
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plemented by Cicala et al. [19]. The first step is an acid attack, where about 10–11 g of
composite material is immersed in 300 mL of acetic solution (40 vol.% of acetic acid). Acetic
acid (purity level ≥ 99.8%) was purchased from Honeywell. The solution is brought up
to 80 ◦C and left to react for 2.5 h. Once the thermoset matrix is dissolved, the fibers are
filtered from the solution, then washed in distilled water and left to dry. At this point,
the acid solution, remaining at a temperature of 80 ◦C, is neutralized with 105 mL of a
2 M aqueous solution of NaOH (Carlo Erba Reagents S.A.S., Val-de-Reuil, France). By
introducing the basic solution into the acid, therefore, a precipitate forms progressively.
That corresponds to the thermoset matrix recovered as a thermoplastic polymer. Once all
the basic solutions have been introduced with a pipette, the system is left to react and cool
to a temperature of 40 ◦C. Next, the thermoplastic is filtered from the solution and washed
with 150 mL of distilled water. A few drops of basic solution are added to aggregate the
precipitates, always using a pipette. In the end, the polymer obtained is filtered and left to
dry. The workflow of the recycling procedure is illustrated in Figure 4.
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Figure 4. Schematization of the chemical recycling process.

2.5. Testing Methods
2.5.1. Thermogravimetric Analysis (TGA)

TGA was performed on both the bio-epoxy neat matrix and the recovered polymer
from the recycling process using a TG 209 F1 Libra analyzer by Netzsch (Selb, Germany).
The samples (~20 mg) were tested in an inert nitrogen atmosphere from room temperature
to 800 ◦C, employing a heating ramp of 10 ◦C/min.

2.5.2. Differential Scanning Calorimetry (DSC)

DSC was carried out with a DSC 214 Polyma by Netzsch (Selb, Germany) in a nitrogen
atmosphere, with a temperature range from −40 ◦C to 170 ◦C and a scanning rate of
20 ◦C/min. The mass of the tested samples (bio-epoxy neat matrix at the different post-
curing conditions and the recovered polymer) was ~10.5 mg. The glass transition (Tg) values
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were recorded on the second heating scan to avoid interference from the endothermic peak
of the polymer’s relaxation enthalpy. The relaxation enthalpy occurs in the glass transition
region and corresponds to the release upon heating of degrees of freedom after the material
has been cooled below its Tg [20].

2.5.3. Mechanical Testing on Composite Laminates

Hardness and flexural tests were conducted to evaluate the influence of the type of
fabric (glass and carbon) and the post-curing regime on the mechanical behavior of the
manufactured laminates.

Shore D hardness measurements were performed using an analog hardness tester
(Zwick/Roell GmbH, Ulm, Germany) according to ASTM D-2240 [21]. The hardness value
for each sample was calculated as an average of ten measurements.

Three-point flexural tests were conducted on a Zwick/Roell Z010 machine (Zwick/Roell
GmbH, Ulm, Germany), following the standard method ASTM D7264 [22]. Samples
(100 mm length and 10 mm width) were tested at 2 mm/min with a span of 70 mm. The
strain was recorded with a displacement transducer in contact with the samples. At least
three replicates were performed on each formulation.

2.5.4. Dynamic Mechanical Analysis (DMA)

Following the study of the mechanical properties of the composite laminates, DMA was
conducted considering the optimum post-curing condition. The analysis was performed
according to ISO 6721 [23] with a DMA 242 E Artemis by Netzsch (Selb, Germany) in a
three-point bending configuration from 30 ◦C to 140 ◦C using a heating ramp of 2 ◦C/min
and a frequency of 1 Hz.

2.5.5. Scanning Electron Microscopy (SEM)

The fiber-matrix interface in the produced composite laminates as well as the surface
morphology of the fibers recovered from the recycling process were analyzed by means
of SEM (Tescan Mira 3, Brno, Czech Republic). Prior to the investigation, the specimens
(cross-section of the composite specimens and recovered fibers) were gold-coated using an
Edwards S150B sputter-coater (Edwards Ltd., Burgess Hill, UK).

3. Results
3.1. TGA on Bio-Epoxy Resin Matrices

The thermogravimetry (TG) and derivative thermogravimetry (DTG) curves of the
resin post-cured under different conditions (RT, PC100, and PC140) are reported in Figure 5.
The graph clearly shows that the weight loss occurs in two steps. The first degradation stage
was concentrated in the 180–200 ◦C temperature range with a mass change of about −5 wt.%.
Within the temperature range of 340–370 ◦C, the main degradation event was observed,
with a massive loss in weight of about 80%. In this stage, the thermal decomposition took
place for the bio-epoxy resins. Table 1 summarizes the maximum temperature of the two
degradative processes undergone by the resin. TI stands for the maximum temperature
related to the first weight loss, whereas Tmax refers to the maximum temperature at which
the main degradation process occurs. TGA results highlighted that the non-post-cured resin
showed slightly superior thermal stability compared to the cured ones. Furthermore, as the
post-cure temperature increases, the thermal stability of the polymer decreases. This result
can be explained by considering the thermo-degradative effects that the resin experiences
due to the presence of a “bio” component in its chemical structure. Indeed, these types of
polymers have a substantial portion of the carbon content replaced by a biomass origin that
is sensitive to high-temperature stress [24]. In agreement with the DTG analyses reported
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by di Mauro et al. [25] and considering the chemical structure of the R-Concept bio-epoxy
system [4], bio-based thermosets follow a two-step thermal degradation mechanism, as
also reported by Supanchaiyamat et al. [26]. The first degradation step is attributed to
the breakage of ester linkages in the polymer’s crosslinked structure. These linkages,
introduced during the curing process through the reaction between epoxy groups and
functional groups of the hardeners, are chemically labile and break at low temperatures.
This process leads to the formation of low molecular weight intermediate fragments. The
second degradation step, on the other hand, is related to the thermal cleavage of these
intermediate fragments, occurring at higher temperatures. This phenomenon represents
the complete disintegration of the polymer network, causing a rapid increase in mass loss.
The presence of two distinct degradation events is clearly visible in the DTG curves [25]
and allows for the identification of the contribution of each phase to the overall thermal
behavior of bio-based thermosets.
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Table 1. TI and Tmax values determined by TGA.

Post-Curing Condition TI (◦C) Tmax (◦C)

RT 203.8 366.9
PC100 202.0 367.7
PC140 185.8 362.9

This behavior, although like that of systems containing disulfide dynamic bonds,
highlights lower thermal stability compared to resins crosslinked with more rigid dicar-
boxylic acids or longer carbon chains [27,28]. However, the statistical heat-resistant index
temperature values (Ts) [25] of bio-based thermosets with low epoxy content are higher
than those of resins such as epoxidized sucrose soyate crosslinked with citric or malic
acids [29]. This apparent discrepancy reflects the ability of some bio-based systems to better
withstand initial temperatures before degradation begins, despite showing lower overall
thermal stability compared to systems crosslinked with more rigid hardeners.

3.2. DSC on Bio-Epoxy Resin Matrices

Figure 6 shows the DSC curves, with (a) representing the first heating cycle and (b) the
second one. Tg values from both cycles are listed in Table 2: the first cycle provides insight
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into the initial state of the resins, while the second cycle values, used for the analysis,
represent their stabilized thermal properties. Comparing the first and second cycles, we
observe that additional curing reactions occur during the first heating for the non-post-
cured (RT) and PC100 samples. For the RT sample, the Tg increases from 69.7 ◦C in the
first cycle to 76.6 ◦C in the second cycle, indicating that the resin undergoes further curing
during the first heating. A similar trend is observed for the PC100 sample, with the Tg

increasing from 68.0 ◦C in the first cycle to 72.7 ◦C in the second cycle. In contrast, for the
PC140 sample, the Tg remains almost unchanged (51.7 ◦C in the first cycle versus 50.9 ◦C
in the second cycle), suggesting that the polymer network is already significantly degraded
due to the high post-curing temperature. These results confirm that the first heating cycle is
critical for understanding the thermal behavior and cure state of the resins. The significant
increase in Tg between the first and second cycles for RT and PC100 samples indicates
that their polymer networks are not fully stabilized initially. Referring to the second table,
the non-post-cured resin had the highest Tg value (76.6 ◦C). By implementing thermal
post-cure treatments, the Tg was progressively reduced. The PC100 condition did not
significantly alter the thermal characteristics of the material (approximately 4 ◦C lower
than the RT condition), while at 140 ◦C post-curing a drop of almost 25 ◦C compared to the
RT sample was found. The results confirm the evidence highlighted by the TGA analysis,
namely that thermal stress due to excessive post-curing temperature induces degradation
of the biomass-deriving fraction of the resin, resulting in Tg decline. The influence of
post-curing conditions on the thermo-mechanical properties of bio-based epoxy resins was
investigated by Lascano et al. [30]. The authors found that excessively high temperatures
potentially restricted the formation of homogeneously cross-linked structures by limiting
the molecular diffusion during the resin curing, resulting in a wide distribution of gaps
between the cross-linked regions. As a result, a reduction in Tg was detected due to the
increased free volume fraction in the polymeric network. The Tg values obtained under RT
and PC100 conditions are consistent with the range declared by the supplier (55–85 ◦C).
This bio-resin system that achieves optimal thermal performance without special thermal
curing conditions can certainly be valuable for industrial mass production reasons and for
fabricating large-sized components (e.g., wind turbine blades).
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Table 2. Tg values determined by DSC analysis.

Post-Curing Condition T1◦
g (◦C) T2◦

g (◦C)

RT 69.7 76.6
PC100 68 72.7
PC140 51.7 50.9

3.3. Mechanical Testing on Composite Laminates

Figure 7 displays the effect of different post-curing regimes on the flexural behavior of
carbon and glass composite laminates. As expected, the carbon laminates outperformed
the glass-based ones. From Figure 7a, the carbon fiber-reinforced laminate showed higher
flexural strength for RT and PC100 conditions (607 MPa and 624 MPa, respectively). The
flexural strengths of glass fiber-reinforced composites were 510 MPa and 569 MPa for RT
and PC100 post-curing, respectively. Therefore, compared to the neat matrix, the post-cure
treatment at 100 ◦C on composites was effective in improving the mechanical properties.
Although the insertion of the fiber layer reduces the macromolecular mobility and the
proper matrix crosslinking degree, a well-balanced post-cure treatment would assist the
increment in crosslink density and interfacial bonding with the fibers [31]. However, the
post-cure treatment at 140 ◦C was excessive, leading to a reduction in flexural strength
(–10% for glass laminate and −23% for carbon laminate over to the composites post-
cured under PC100 condition). Too high post-curing temperatures would cause excessive
resin shrinkage and the development of residual stresses at the fiber-matrix interface
(debonding) [32]. PC140 treatment degraded carbon-based laminates more significantly
than glass-reinforced ones. It is plausible that this effect is also associated with the different
degrees of compaction experienced by the two types of fabrics under the same processing
conditions used to produce the composites. The SEM investigation in the next section
will clarify this aspect. As shown in Figure 7b and on the stress-strain plots displayed in
Figure 7c,d, post-cure has a negligible effect on the laminate stiffness in their corresponding
groups. This evidence agrees with the one reported in earlier works by Umarfarooq
et al. [31].
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Figure 7. Flexural test results on composite laminates at different post-curing regimes: (a) flex-
ural strength, (b) elastic modulus, (c) flexural stress-strain curve for glass-reinforced laminates,
and (d) flexural stress-strain curve for carbon-reinforced laminates.

Shore D hardness of the laminates (Figure 8) was weakly influenced by both the
type of reinforcement and the post-cure treatment. However, the results show a slight
improvement in hardness in the case of PC100 laminates, corroborating the flexural test
results. An optimal post-curing regime improves the bonding between fibers and resin, due
to an increase in cross-linking and stacking, which, although generally reducing polymer
chain mobility, may also lead to an increment in Tg, thus enhancing resistance to the
penetration of the indenter [33].
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3.4. SEM Analysis on Composite Laminates

SEM micrographs in Figure 9 illustrate the cross-section surface of the glass
(Figure 9a,c) and carbon (Figure 9b,d) laminates post-cured at the best condition (PC100).
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Figure 9. SEM analysis on the composite over PC100 condition: (a) glass laminate (polished surface),
(b) carbon laminate (polished surface), (c) detail on the glass-resin interface (polished surface), and
(d) fracture surface of carbon-based laminate.

In Figure 9c, the scale bar differs from the others due to the higher magnification used
for this image, providing a more detailed view of the specific features of the material. At the
same post-curing regime, the laminates showed marked differences in terms of microstruc-
ture. The glass-based composite displayed a non-defective cross-section free of inter-layer
and inter-fiber voids. The carbon-based composite laminate, although over the PC100
post-cure conditions had superior mechanical performance compared to glass-reinforced
composite, showed several defects dispersed throughout the surface, which limited the
potential improvement of carbon fibers on the strength of the final composite. Figure 9d
highlights more evident delamination of the composite due to the poor compaction of the
fabric. The formation of voids in the composite is attributable to two main aspects, already
discussed in the review work by Xueshu and Fei [34]: vacuum pressure and resin flow.
Under the pressure conditions implemented in the present study, the carbon fabric, being
significantly more rigid than glass, provided greater resistance to the compaction and resin
flow, resulting in non-impregnated zones inside the laminates. Therefore, optimization of
the process parameters of resin transfer molding (the pressure) is challenging to increase
the performance of carbon-based composites by minimizing the percentage of voids.

As verified by mechanical tests, post-cure treatment at 140 ◦C significantly degraded
the performance of the carbon-based laminate. The SEM micrograph of Figure 10 shows the
fracture surface of the PC140 carbon-reinforced composite specimen, highlighting extensive
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fiber pull-out and interfacial debonding, indicative of poor fiber-matrix adhesion caused
by the excessive post-curing temperature. This deterioration in interfacial bonding compro-
mises the load transfer efficiency between the matrix and the fibers, thereby reducing the
overall mechanical properties of the composite. Fiber pull-out occurs when composites are
post-cured at elevated temperatures above the glass transition of the matrix. As the polymer
becomes critically softer, adhesive and cohesive failures turn out to be more dominant. This
phenomenon then allows for fiber and matrix materials to be more easily debonded [35].
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Figure 10. SEM analysis on the carbon-based composite laminate over PC140 condition: detail on
fiber-pull-out.

3.5. DMA on Composite Laminates

Thermo-mechanical properties of the composites were studied by DMA on the samples
post-cured at 100 ◦C (PC100), representing the laminates with the highest mechanical
strength properties. Plain resin post-cured at the same condition was taken as a reference
to evaluate the change in Tg as a function of the type of reinforcing fabric and fiber-matrix
interaction. Variations of the damping factor (tan δ) with respect to temperature curves are
compared in Figure 11. Tg was then evaluated as the peak temperature of the curve, and
the inherent values were summarized in Table 3. As might be expected, the composites
lead to a shift of Tg towards a higher temperature compared to pure resin because of the
lower molecular mobility of the polymer chain due to the presence of fibers [36]. However,
the extent of the increase in the glass transition is quite different between carbon and
glass-based laminates, reflecting different fiber-matrix interfacial properties experienced
in the two materials. The microstructural defectiveness found in carbon-based laminates
was responsible for a limited increase in Tg (about 1 ◦C higher than pure resin). On the
other hand, glass composite showed a more marked increment (+4 ◦C) justifying the
homogeneous fiber impregnation and better interfacial fiber-matrix adhesion. The different
fiber-matrix bonding was also interpreted in terms of tan δ values. The damping factor
is a sensitive indicator of all kinds of molecular motions that are going on in a material.
Logically, in a composite, the molecular motions at the interface contribute to the damping
of the material. The strong cohesion of fibers and polymer matrix reduces the mobility of
the molecular chains at the interface and therefore brings a damping reduction [37]. The
lowest tan δ peak value detected in the glass-based composite sample corroborated the
evidence of better interfacial adhesion between glass fiber and resin.
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Figure 11. DMA test results: tan δ vs. temperature for plain resin, glass, and carbon laminates
post-cured under the PC100 regime.

Table 3. DMA test results: Tg and tan δ peak-values.

Sample Tg (◦C) tan δ Peak

Resin PC100 68.4 0.71
Glass PC100 73.1 0.35

Carbon PC100 69.5 0.57

3.6. Chemical Recycling on Composite Laminates

The chemical recycling procedure implemented in the present work showed material
recovery yields exceeding 95%. As detailed in Table 4, it was feasible not only to recover
clean fibers suitable to produce new fabrics from recycled feedstock (such as woven mats)
for composites but also possible to convert the thermoset matrix into a reprocessable ther-
moplastic polymer. Furthermore, the recycling process has an extremely low environmental
impact, both in terms of energy consumption and in terms of pollutants. In fact, the maxi-
mum temperature achieved is about 80 ◦C, and the chemical additives employed are acetic
acid and sodium hydroxide. In addition, acetic acid could be recovered and used for further
chemical recycling stage or used in other industrial processes involving sectors such as
food, pharma, chemical, textile, polymer, medicinal, and cosmetics [38]. Such an aspect
would lead to a totally eco-sustainable production and disposal of thermosetting matrix
composite materials.

Table 4. Results of the chemical recycling process on composites.

Treated Sample Starting Mass
(g)

Recovered Fibers
(g)

Recovered Polymer
(g)

Recovery Yield
(%)

Glass composite 10.97 7.05 3.43 95.5
Carbon composite 10.84 5.85 4.86 98.8

3.6.1. Thermal Characterization of the Recovered Polymer

Figure 12 reports the TGA thermogram of recovered polymer from composite laminate
post-cured at 100 ◦C. Thermal degradation of the polymer occurred in two regions. The
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initial mass loss (10%) was related to the release of moisture remaining trapped in the
polymer’s structure during drying after recycling treatment. The main degradation took
place around 340 ◦C (onset temperature of 315.3 ◦C) due to the total decomposition of
the recovered thermoplastic. The result agrees with those from Dattilo et al. [17], who
studied the thermomechanical properties of thermoplastic polymers deriving from an
R-Concept bio-based epoxy resin system (Polar Bear + R*101) recovered from a similar
chemical recycling protocol. The authors ascribed the degradation to the chain scission of
the C–O bond.
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The observed difference in degradation profiles, where a single degradation peak is
seen in the TGA analysis of the recycled thermoplastic while two distinct peaks appear
for the cured epoxy resin, can be primarily attributed to the molecular structure [17].
The cured bio-based epoxy resin consists of a crosslinked network that undergoes two
distinct degradation phases due to the complexity of the crosslinks [25,39]. Upon chemical
recycling, this crosslinked structure is cleaved, converting the material into a simpler, linear
polymer thermoplastic, which undergoes thermal degradation in a single, unified step. In
Figure 13 [4,17], the chemical structure studied by Dattilo et al. [17] of the recycled polymer
is shown, which was characterized using advanced techniques such as MALDI (Matrix-
Assisted Laser Desorption/Ionization) spectroscopy, Gel Permeation Chromatography
(GPC), and Nuclear Magnetic Resonance (NMR) spectroscopy. Dattilo et al. [17] state that
two distinct chemical structures were identified for the recycled polymer, resulting from the
selective cleavage of bonds in the cured network during the chemical recycling process. The
recycled polymers obtained resembled poly(hydroxyaminoethers) with thermal stability
up to 400 ◦C. Furthermore, a clear correlation was observed between the curing degree
of the epoxy resin and the molecular mass of the recycled polymer, indicating that higher
curing degrees lead to a recycled polymer with a greater molecular mass.
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It Is worth mentioning that for the TG curve, a 20% remaining mass appears at 800 ◦C.
This value determines that some fibers pass through the solution’s filtration system during
the second step of the recycling process, remaining embedded inside the polymer mass. It
is important to underline that at an industrial scale, with an optimized filtration system, the
remaining small portion of fibers within the polymer can be avoided by obtaining a “clean”
matrix for new processing. However, the “contamination” of the recovered thermoplastic
with the fibers can also represent an added value when the aim is to obtain fiber-filled
pellets intended for injection molding processing.

The DSC thermogram of the recovered polymer is displayed in Figure 14. As also
verified from TGA, the first heating curve showed a broad endotherm around 100–150 ◦C,
representing the loss of moisture from the sample. The Tg was determined from the second
heating curve, obtaining a value of 59.4 ◦C. This value falls within the representative
range of glass transition temperature of these polymer systems listed in Ref. [40]. As
expected, the achieved Tg is lower than those of bio-epoxy resins due to the conversion
of the network into a linear structure typical of thermoplastics. The referenced study also
reported promising mechanical properties for these recovered polymers (tensile modulus of
2.4 GPa and tensile strength of 57 MPa), demonstrating good potential for new applications
and competitiveness with other well-established thermoplastic polymers on the market.
This will require a more extensive characterization of the polymer recovered in the present
work and a related study on its processing feasibility (such as by injection molding or
3D printing).
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3.6.2. Morphological Characterization of the Recovered Fibers

The morphology of the fibers recovered from the chemical process was observed via
SEM. Figure 15a,b show the micrographs of glass and carbon fibers, respectively. The
surfaces were quite clean, with just a few polymeric residues along carbon fibers. However,
by means of ultrasonic bath cleaning, most of the loosely attached residue on the surface can
be easily removed. In addition, the implemented chemical treatment does not affect the fiber
surface quality in terms of roughness and defects. Single-fiber mechanical characterization
will be necessary to investigate in detail the influence of the recycling process on the
structural integrity of the reclaimed fibers. This is a fundamental aspect to know also to
direct the use of the recovered fibers in new engineering applications.
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4. Conclusions
This paper studied the properties, processability for composite laminate manufactur-

ing, and recyclability of a room-temperature curable and fully recyclable bio-epoxy resin
system. First, the bio-based resin was thermally characterized to assess the influence of
different post-curing conditions on its thermal stability and glass transition temperature.
Then, glass and carbon composite laminates were produced, investigating the mechanical,
microstructural, and thermal properties as a function of the selected curing regimes. Fi-
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nally, a recycling procedure was implemented to verify the possibility of recovering the
thermoplastic-based matrix and fibers reusable for new applications.

The main results are listed below:

• For the neat bio-epoxy resin, the post-cure at 140 ◦C progressively reduced the thermal
stability and the glass transition temperature due to degradation phenomena of the
bio component of the resin. The best condition was the non-post-cured resin showing
a glass transition temperature of 76.6 ◦C.

• The post-curing at 100 ◦C on the produced composite laminates positively influenced
the enhancement of the cross-linking of polymer chains, which was reflected in the
improvement in the mechanical strength. With respect to the non-post-cured lam-
inates, the flexural strength improved by 3% and 12% in carbon and glass-based
composites, respectively. The post-curing at 140 ◦C was instead detrimental to the
mechanical performance.

• Carbon laminates were more affected by structural defects due to the combined effect
of the high stiffness of the fabric and the unoptimized pressure conditions of the resin
transfer molding system. This was evident from both the SEM microstructural analysis
and the glass transition analysis using DMA. The results show that, although car-
bon fiber composites exhibit superior mechanical performance, their glass transition
temperature (Tg) increased by only 1 ◦C compared to pure resin, due to microstruc-
tural defects and poor fiber impregnation. In contrast, glass fiber-based composites
show a greater Tg increase (+4 ◦C), owing to better fiber-matrix adhesion and more
homogeneous fiber impregnation. This highlights the importance of impregnation
quality and fiber-matrix interface cohesion in determining the thermal properties of
the composites.

• A successful chemical recycling procedure was developed accounting for recovery
yields up to 98.8%. The recovered thermoplastic showed relevant thermal properties
for new engineering applications (thermal stability of up to 400 ◦C and glass transi-
tion temperature of 59.4 ◦C). The fibers were recovered cleaner and without evident
damage. This approach enables a circular economy scenario within the composite
materials sectors.

These outcomes are encouraging for further research efforts. The next works will
focus on the optimization of the composites’ manufacturing procedure to achieve the best
performance and enable the possibility of creating fully recyclable components intended
for a lot of industrial sectors (automotive, energy, etc.). Special focus will be on the
characterization and processability of the secondary raw materials recovered from the
recycling process. Reclaimed polymers and fibers can represent new “circular” feedstock
within the composite industry.
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