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Efficient and accurate reconstruction and identification of tau lepton decays plays a crucial
role in the program of measurements and searches under the study for the future high-
energy particle colliders. Leveraging recent advances in machine learning algorithms,
which have dramatically improved the state of the art in visual object recognition, we have
developed novel tau identification methods that are able to classify tau decays in leptons
and hadrons and to discriminate them against QCD jets. We present the methodology and
the results of the application at the interesting use case of the IDEA dual-readout
calorimeter detector concept proposed for the future FCC-ee electron–positron collider.
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1 INTRODUCTION

The Future Circular Collider (FCC) [8] is a proposed design for a new research infrastructure
that will host a 100 km particle accelerator, in order to extend the research currently being
conducted at the LHC, once the high-luminosity phase (HL-LHC) reaches its conclusion in
2040 [24]. In the first phase as an electron–positron collider, FCC-ee is designed to deliver the
highest possible statistics and ultimate precision of Z, W, and Higgs bosons and the top quark.
FCC-ee is expected to produce ~ 1012 events Z → ττ around the Z pole, the largest sample of ττ
events foreseen at any lepton collider [12]. Several detector concepts have been studied to fully
exploit the high energy and the great luminosity that new colliders will reach, like the IDEA
(Innovative Detector for Electron–positron Accelerators) concept [1], that will provide an
innovative calorimeter [2], based on the dual-readout method, that is expected to guarantee
great performances in the event reconstruction.

Tau is the charged elementary particle belonging to the third lepton generation; its mass, around
15 times larger than the muon mass, makes the τ the only lepton that can decay into hadrons. These
decay modes, unlike the ones originated from quarks and gluons, can be described and predicted by
the weak interaction decay theory and quantum chromodynamics, since tau decays as a free, isolated
particle [32]. Several experiments leverage this property in order to find discrepancies with the theory
that could lead to new physics beyond the Standard Model, like the charged lepton flavor violation
(cLFV) processes [7, 19], the violation of the lepton universality [12], or the tau polarization [6]. Tau
provides an optimal channel for Higgs precision measurements, since a significant fraction of the SM
Higgs boson decays into the di-τ channel. In particular, the branching ratio of H→ ττ is ~ 6.3 %, a
factor 100 or 10 larger than the BR(H→ μμ) ~ 0.02 %, or the BR(H→ γγ) of ~ 0.22 %, used in the
Higgs discovery [3, 5]. For these reasons, Tau identification and reconstruction can play a relevant
role for new physics search in the Higgs sector at FCC-ee [4, 11, 13, 15, 21, 28, 30, 36].

Edited by:
Patrizia Azzi,

National Institute of Nuclear Physics of
Padova, Italy

Reviewed by:
Frank Krauss,

Durham University, United Kingdom
Christian Veelken,

National Institute of Chemical Physics
and Biophysics (NICPB) Tallinn,

Estonia

*Correspondence:
Stefano Giagu

stefano.giagu@uniroma1.it
Luca Torresi

luca.torresi@kit.edu

Specialty section:
This article was submitted to

Radiation Detectors and Imaging,
a section of the journal

Frontiers in Physics

Received: 31 March 2022
Accepted: 13 June 2022
Published: 19 July 2022

Citation:
Giagu S, Torresi L and Di Filippo M
(2022) Tau Lepton Identification With

Graph Neural Networks at Future
Electron–Positron Colliders.

Front. Phys. 10:909205.
doi: 10.3389/fphy.2022.909205

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9092051

ORIGINAL RESEARCH
published: 19 July 2022

doi: 10.3389/fphy.2022.909205

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.909205&domain=pdf&date_stamp=2022-07-19
https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.909205/full
http://creativecommons.org/licenses/by/4.0/
mailto:stefano.giagu@uniroma1.it
mailto:luca.torresi@kit.edu
https://doi.org/10.3389/fphy.2022.909205
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.909205


In the last few years, deep learning (DL) algorithms have
dramatically improved the state of the art in many fields, such as
speech recognition, visual object recognition, and object
detection, and have also been successfully applied to the
analysis of data collected in high-energy physics experiments.
In the jet tagging context, where the task is to identify the
elementary particle that originated the jet, several machine
learning methods have been explored with great results.
Representation can be crucial to highlight peculiar
characteristics of an object or a pattern; jets have been studied
viewing them as two- or three-dimensional images, as sequences,
trees, or graphs of particles. The image-based approach achieved
high performances using convolutional neural networks (CNNs)
developed in the computer vision area. For tau decay
identifications, DL techniques have been used since 1992 at
LEP [25]; however, complex multivariate analysis (MVA)
using observably motivated by the QCD theory is usually
preferred in the modern experiments [10, 22].

In this work, motivated by the ParticleNet architecture [35],
developed for jet tagging, where a jet is viewed as an unordered set
of particles (Particle Cloud) and the neural network acts on
graphs dynamically created in the analysis, we extended it for
the tau decay identification task. In the simulation, taus originate
from Z bosons and decay in the IDEA detector, where all the
particles are detected by the calorimeter. In our study, we use only
calorimetric data, and each tau event has to be recognized and
discriminated against jet events originated directly from Z. As the
inner tracking and particle flow reconstruction for the IDEA
detector is still a work-in-progress task, we have not included this
information yet in the tau identification algorithm presented
here. We have planned to include it, when ready, in a
successive development of the algorithm.

2 MATERIALS AND METHODS

2.1 Dataset
All the experiments in this study were performed on simulations
of Z boson decay events absorbed by the IDEA calorimeter. The
IDEA detector is based on the dual-readout technology, a concept
that has been extensively studied over 10 years of R&D by the
DREAM/RD52 collaboration [39, 40]. It is composed of an ultra-
light drift chamber with a low-mass superconducting solenoid
coil, as main tracker, and a dual-readout fiber calorimeter for
both hadronic and electromagnetic energy measurements. A
more exhaustive description of the parts can be found in [1].
The calorimeter has a “barrel” geometry centered around the
interaction point, whose inner length and diameter are 6 m, and
the outer diameter measures 9 m. The endcaps have an inner
radius of about 0.25 m, guaranteeing an angular acceptance above
100 mrad from the beam line. Scintillation and Cherenkov fibers
of 1 mm diameter are embedded in a copper absorber material,
displaced in a checkerboard-like structure at distances of 1.5 mm
for a total of about 13 × 107 fibers [2].

Products of the electron and positron collision at the Z pole
and the subsequent decay of Z bosons were simulated with Pythia,
a standard tool for the generation of high-energy collisions [37],

while the whole IDEA calorimeter was simulated in Geant4 [16],
considering both the solenoid material and the magnetic field in
the drift chamber. Each fiber of the calorimeter is readout with a
dedicated silicon photo-multiplier (SiPM). Their electronic
output was generated implementing a Hamamatsu SiPM
sensor through the SimSiPM library [33], developed in the
context of IDEA DRC Software. The dark count rate (DCR)
and after-pulse noise were included as well in the signal
generation. In simulation 7, main τ decay channels as well as
the hadronic jet decay of the Z boson were considered, as
summarized in Table 1, for a total of 5 k Z → qq events and
30 k Z → ττ events overall.

The process e−e+ → Z being simulated around the Z pole,
the center of mass of the Z boson is still with respect to the
interaction point and the two τs or quarks, produced in the
decay generate showers in the calorimeter in a back-to-back
configuration. This simplified setting allowed us to separate
each of the two clusters of any given event by means of simple
geometrical clustering methods, without using specific
algorithms that take into account models of the physics of
the process. Given that in each event there must be two
particle showers and that these are in back-to-back
configuration, we opted for a simple k-means. Having
identified the centroid of each cluster, we extracted the
active fibers inside a unit circle around it,

���������
Δθ2 + Δϕ2

√
< 1.

No fiducial volume has been applied; thus, the part of
information of the clusters close to the edges of the
calorimeter may have been cut out. We then considered
each cluster as an independent data point to be classified.

Performing voxelization or similar operations to regularize the
geometric structure of the data would result in the loss of spatial
resolution, which would mean hinder a distinctive point of
strength of the IDEA calorimeter. Thus, we directly formalized
our data as a point cloud. Figure 1 shows few examples of the
cluster patterns we obtained.

Given a fiber fired in an event, the following features are
collected:

• geometric information: in a first approximation, we used the
distance in polar coordinates (Δθ e Δϕ) from the center of
the cluster, which leads to a partial distortion of the patterns
close to the endcaps of the calorimeter;

• energy information: total number of photo-electrons and
total energy released in the fiber;

TABLE 1 | Decay identification dataset. Leptonic decays in blue and hadronic
ones in red.

Decay Label eight-class #Event

τ− → e−]e]τ 0 5,000
τ− → π−]τ 1 5,000
τ− → π0π−]τ 2 5,000
τ− → π0π0π−]τ 3 5,000
τ− → π−π−π+]τ 4 5,000
τ− → π0π−π−π+]τ 5 5,000
τ− → μ−]μ]τ 6 5,000
Z → q�q → jet jet 7 5,000
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• fiber type: one-hot encoding of active fiber’s type
(Cherenkov or scintillating);

• SiPM electronic information: integral and peak of the signal,
time of arrival, time over threshold, and time of peak.

A summary of the available features is reported in Table 2.
A nice advantage in using a point cloud representation is that

incorporating additional information is straightforward, and it is
sufficient to concatenate the additional vectors to the internal
representation of each point. Thus, our method can simply be
extended to include additional data coming from the calorimeter

itself or from other detectors, for e.g., the inner tracker and the
muon spectrometer.

2.2 Dynamic Graph CNN
The main property that a model has to ensure when operating on
point clouds for classification tasks is permutation invariance,
i.e., the output has to be constant regardless of the order in which
the inputs are presented to it. In the most recent literature, various
architectures can be found that ensure such a property and
directly manipulate raw point cloud structured data, for e.g.,
[29, 34, 38, 41]. Point clouds inherently lack topological

FIGURE 1 | Examples from our dataset. Columns represent Cherenkov (A) and scintillation (B) channels; rows represent events. From the top to bottom: QCD jet,
τ− → π0π0π−]τ, and τ− → π0π−π−π+]τ.
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information; thus, a model able to recover topology can enrich
their representation power. We opted for a dynamic graph
convolutional neural network (DGCNN) [38], a graph-based
model which explicitly takes advantages of local geometric
structure.

The original module introduced in the aforementioned work is
named EdgeConv, suitable for CNN-based high-level tasks on
point clouds, including classification and segmentation. It is an
operation that, while maintaining permutation equivariance,
constructs from the point cloud of a local neighborhood graph
and applies convolution-like operation on the edges connecting
neighboring pair of points, in the spirit of graph neural networks
[42, 43].

Given a point cloud X = {x1, x2, . . . , xN}, where each xi ∈ RF,
an EdgeConv block first encodes its geometrical structure
building a k-nn-directed graph with self-loops,
i.e., connections from a vertex to itself (see Figure 2). Then,
for each i − th node of the graph, it extracts its edge features eij by
means of a nonlinear function hΘ: R

F × RF → RF′ with
learnable parameters Θ, for e.g., an MLP neural network, in
the formula: eij = hΘ(xi, xj). Finally, the EdgeConv applies a
channel-wise aggregation operation □ on the edge features
associated to each point, for e.g., max-pooling or a sum. Thus,
the output of the layer is of the form:

xi′ � □j∈N xi( )hΘ xi, xj( ). (1)
In particular, in the original formulation, the operator is defined,
channel-wise, as:

eij � ReLU θ · xj − xi( ) + ϕ · xi( ),
xi′ � maxj∈N xi( )eij

{ . (2)

Overall, given an F-dimensional point cloud with n points,
EdgeConv produces an F′-dimensional point cloud with the same
number of points. A basic scheme of the module is depicted in
Figure 3.

The Edge block can be integrated into deep learning models to
improve their performance. In the original DGCNN article, it is
integrated into the basic version of PointNet [34]. Its resulting
structure, shown in Figure 4, can be schematized with:

• a hierarchical feature extractor composed by a sequence of
EdgeConv layers with skip-connections [20];

• an aggregator (max, avg, or sum) that produces a global
feature for the whole point cloud;

• a classifier, implemented in the original article with MLPs.

The characteristic that differentiates DGCNN from other
graph-based neural network architectures is that it does not
make use of a fixed graph but rather dynamically updates it in
each layer of the network. The k-neighborhood of each point may
change from layer to layer, and thus proximity in feature space
differs from proximity in the input. This leads to non-local
diffusion of information throughout the point cloud and
makes the receptive field as large as the diameter of the point
cloud, while being sparse.

The DGCNN architecture requires a fixed number of points
for each point cloud representing the events. The dataset studied
in our experiments contains a highly variable number of active
fibers per event, ranging from 150 to as much as 4,000. To tackle
this problem, as already carried out in [35], the number of fibers
considered for each event was fixed to a specific number n, which
we treated as an hyperparameter to be tuned. In the case the active
fibers were more than n, the ones with the lowest values of signal
integral were discarded; if, instead, the number of active fibers was
lower than n, a set of zero-valued artificial points is added in order

FIGURE 2 | In each EdgeConv block, a k-nn graph with self-loops is built from the point cloud, example with k = 4.

TABLE 2 | List of the observables of a fired fiber available in the dataset used in our
study.

Input type Observable Description

Geometric information Δθ Distance in polar coordinates
Δϕ from the left of the cluster

Energy information #p.e. Total number of photo-electrons in
Etot the fiber and its corresponding energy

Fiber type S/C Whether the fiber is
scintillating or Cherenkov

SiPM information Integral Signal information from the
Peak silicon photomultiplier:
ToA integral and peak of the signal,
ToT time of arrival, time over threshold,
ToP and time of the peak
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to reach the correct number. We keep track of the possibly
present artificial vectors by means of binary masks associated
to each cluster. These are used to shift far from zero coordinates
of the added vectors in such a way not to introduce artefacts when
the k-nn graph is generated and to zero-out their computed
features at the output of each EdgeConv block, as shown in
Figure 5.

2.3 Bayesian Neural Networks
It is not straightforward to extract confidence measures on the
predictions of neural networks. In particular, in classification
tasks, we should not expect that the last Softmax layer
probabilities reflect their ground truth correctness likelihood.
It has in fact been showed that, despite the recent
improvements in terms of accuracy, most modern neural
networks are not well-calibrated [18].

When performing physics experiments, the evaluation of the
uncertainty is an integral part of every measurement; a measured
value without the corresponding uncertainty only provides
partially useful physical information. For example, evaluating
the measurement uncertainty is fundamental in scientific

research to establish the validity limits of theories. Being able
to assign a reliable confidence estimate on a prediction made by a
deep learning model is therefore crucial in the context of physics
experiments and one viable solution to attain this are Bayesian
neural networks.

While in traditional neural networks, deterministic values are
inferred for the model parameters in the training phase, these
point estimates are replaced by probability distributions in the
Bayesian approach. This is carried out extending standard
networks with posterior inference, i.e., adding a prior
distribution on the model parameters. From a statistician’s
point of view, this is equivalent to switching from a maximum
likelihood estimation of traditional neural networks (or a
maximum a posteriori estimation when regularization is used)
to a Bayesian inference approach [26].

This approach allows to measure uncertainty and identify out-
of-distribution inputs while regularizing the whole network and
preventing overfitting of the training data [17]. Training a BNN
can be interpreted as training an infinite ensemble of models with
the same structure [44]. An estimate of the uncertainty of the
BNN can be obtained by comparing the predictions of multiple

FIGURE 3 | Basic EdgeConv block, as introduced in [38].

FIGURE 4 | DGCNN architecture for tau decay identification.

FIGURE 5 | EdgeConv block augmented with masks for synthetic datapoints.
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sampled model parameterizations: the uncertainty is low when
there is agreement among different models, otherwise high.

Among the various approaches to infer the posterior
distribution of the model parameters [9, 14, 23, 31], given the
complexity of our network, we opted for a variational approach,
namely, the Bayes by Backprop algorithm introduced
originally in [9].

From our point of view, the advantages of this approach are
that:

• the loss is still completely differentiable thanks to the
reparameterization trick, thus enabling the use of the
backpropagation algorithm;

• the number of parameters only doubles with respect to the
corresponding non-Bayesian model, given that each weight
wi is approximated by a normal distribution with the mean
μi and standard deviation σi;

• the training phase is fast, and any deterministic model can
be easily extended to its Bayesian counterpart.

Following the Bayes by Backprop approach, we have designed
a Bayesian DGCNN that shares essentially the same architecture
of the DGCNN but with each weight replaced by a normal
distribution described by the mean and the standard deviation
as learnable parameters.

3 RESULTS

3.1 Decay Classification
The main task we want to solve is to correctly match single tau
clusters reconstructed in the dual-readout calorimeter with the
respective decay channel of the tau lepton and distinguishing
them from clusters due to QCD jet events. As described in
Section 2.1, tau and QCD jets used in this study are produced
from Z decays. The classification was performed directly on the
raw data collected from the IDEA calorimeter, treating each
cluster of each event as an independent point cloud, with each
point exhibiting the features listed in Section 2.1.

We balanced our dataset keeping 5,000 clusters for each decay
channel, as shown in Table 1. This does not correspond to the
true probabilities of each decay type to occur but ensures that our
classifier is independent of any prior and bases its estimations
only on patterns found in the calorimeter readout signals.

We treated most of the architectural parameters of our
network as hyper-parameters to be optimized on the
validation set. The resulting architecture consists in a feature
extractor of four EdgeConv layers, each composed of two-layered
MLPs with the following dimensions: \{64, 64\}, \{64, 64\}, \{128,
128\}, and \{256, 256\}. We composed the aggregator as an MLP
of dimension 1024 followed by the parallel max and average
pooling blocks. Finally, the classifier was implemented with a
two-hidden layered MLP of dimension \{512, 256\} and an eight-
class Softmax layer as output, for a total number of parameters in
the order of 1.9M, in line with the other SOTA models for point-
cloud classification. The complete network architecture is
schematized in Figure 4.

As regularization, we introduced batch normalization layers
after each EdgeConv and dropout layers before each linear layer
in the MLP classifier. Various methods for data augmentation
were investigated to improve robustness; a random sparsification
of the input turned out to yield best results in terms of
generalization, surprisingly enough with a relatively low
retention probability (fibers zeroed out with probability ~0.7).
Finally, we applied early stopping on the validation accuracy over
a total of 200 epochs, enough to guarantee convergence.

We list here the other optimal parameters and the training
setting: learning rate: E-03, optimizer: Adam, step scheduler with
γ: 0.5 and milestones: [25, 50, 75], batch size: 64, dropout
probability: 0.5, input dimension: 2000, k: 10 (for knn in
EdgeConv), pooling: max (in EdgeConv), and activation
functions: LeakyReLU with slope 0.1.

An assumed advantage of dual-readout technology is that the
patterns generated in the calorimeter would be easily identifiable
thanks to the different properties of the fibers that constitute it.
To test the informativeness of the patterns and attest the gain in
discriminability given by the information about the two different
fiber types and as a first benchmark for our model, we trained the
DGCNN using as node features the geometric information only,
namely, the distances in polar coordinates from the cluster
centroid of the fired fibers and the geometric information
concatenated with the one-hot encoding of the fiber type; in
both cases, no energetic information was provided to the model.
We obtain an overall accuracy of 73.7% in the geometric only
configuration and of 88.3% when adding the fiber type
information; Figure 6 compares the confusion matrices
(normalized per row) obtained in these two settings. This
result provides a first interesting conclusion: leveraging the
differential information provided by the scintillation and
Cherenkov fibers of the dual readout calorimeter significantly
improves the tau identification performance compared to using
geometric information alone. The neural network in fact can
efficiently use the information coming from the dual-readout for
particle identification and the information about the fiber type
results particularly important to discriminate among the
hadronic decays (rows 2–6).

We then tested performance improvement that can be achieved
by adding as features for each fiber the quantities available from the
readout electronic simulation: energy information as the integral and
peak of the SiPM signal and temporal information, namely, the time
of arrival (ToA), time of peak (ToP), and time over threshold (ToT).
We experimented with different configurations, always including the
geometrical and fiber type information, to have an estimate of feature
importance. The results are summarized in Table 3, and confusion
matrices on the test set are reported in Figure 7. The temporal
information,more than the energy, seems particularly informative for
the model. We speculate that this is due to the fact that temporal
information can be interpreted by the model as a proxy measure of
the depth in which the particles interact with the calorimeter, adding
a third dimension to the absorption patterns. In this particular
dataset, produced around the Z pole, the use of energy
information could in principle induce in the model a bias over
the distribution of the total energy per event. We plotted (Figure 8)
such distributions for each decaymode both using the true labels and

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9092056

Giagu et al. Tau Identification With GNNs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the labels predicted by our model, and we found no systematic
variation between them. Ulterior experiments were performed in a
setting with only three classes (leptonic and hadronic tau decays and
quark jets), but we found no improvements with respect to the eight-
class model performances relative to those decay modes.

3.2 Uncertainty Estimation With a Bayesian
DGCNN
The architecture of our BNN is essentially the same as the model
described in Section 3.1, with each weight replaced by a normal
distribution defined by the trainable parameters (μ, σ), representing,

respectively, the mean and the standard deviation of the distribution,
so that the total number of parameters roughly doubles with respect
to its deterministic counterpart.

FIGURE 6 | Confusion matrices of DGCNN on the test dataset, using geometric only and geometric+fiber type information. Matrices are normalized per row.

FIGURE 7 | Confusion matrices of DGCNN on the test dataset using as features, respectively, in clockwise order from the op left: only integral, only peak, only
temporal, or whole SiPM information. In each model, geometric and fiber type information was also used. Matrices are normalized per row.

TABLE 3 | Train and validation accuracies obtained using SiPM features. In
addition to the SiPM features, both coordinates and fiber type information
were fed to the model in all experiments.

SiPM feature Train acc. Validation acc.

Integral 0.917 0.877
Peak 0.921 0.889
Temporal 0.942 0.909
All 0.940 0.914
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Frequently, when transposing a deterministic network to its
Bayesian counterpart, only the weights of the last few layers of the
network are treated as distributions, as this simplifies the
implementation and the computational complexity of the
problem. We found out instead that our model achieved better

performance in terms of generalization converting to the
Bayesian framework all convolutional and fully connected
layers of the model and removing instead all dropout and
batch normalization layers. The only other notable difference
with the deterministic DGCNN model is the use of scaled

FIGURE 8 | Distribution of total energy per event for eight decay channels. Channels are referred to Table 1.
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exponential linear units (SELUs) as an activation function, known
to induce self-normalizing properties [27] in the neural networks
improving stability and robustness.

We used the whole information as input features from the
calorimeter simulation, being the configuration, which performed
best in the deterministic case. Even if not strictly necessary to
compute the KL divergence, the values of the parameters are
sampled multiple times at each training step, to give more
stability to the optimization process. Using three samples in
each iteration provided a good trade-off between memory
usage and performances.

In Figure 9, for the four most challenging classes of decay, we
show improvements in terms of ROC curves and AUC of the
Bayesian model over the deterministic one. Table 4 shows the
accuracies reached in the test phase for different number of
samplings considering all the events and for different
minimum confidence thresholds on the final prediction. We
do not find much improvement in terms of overall accuracy
and confidence of the model when using more than 10 samples at
test time. In Figure 10, we compare confusionmatrices on the test
set applying no threshold or a 0.7 threshold on the minimum
confidence of the prediction.

FIGURE 9 | ROC curves of the Bayesian DGCNN and point-estimate DGCNN for four classes of decay.

TABLE 4 | Bayesian DGCNN test accuracies by varying number of samples of network parameters and minimum confidence in the classification prediction.

Number of samples Minimum confidence Events considered (%) Test accuracy

1 0.0 100 0.854
3 0.873
10 0.869

3 0.5 94.83 0.896
0.7 80.33 0.943
0.9 62.27 0.977

10 0.5 94.72 0.900
0.7 79.82 0.947
0.9 60.52 0.981
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4 DISCUSSION

In this study, we propose a new technique based on the use of deep
neural networks for the identification of tau lepton decays and show its
performance when applied to the IDEA dual-readout calorimeter
concept proposed for the future FCC-ee electron–positron collider.
We have implemented a dynamic graph CNN architecture that takes
in input only the raw information from the readout electronic of the
calorimeter and leveraging the high granularity, and the different
patterns produced by the dual readout is able to predict with excellent
performance the specific tau lepton decay, discriminating also taus
against signals produced by QCD jet events. An average accuracy of
91% in classifying different tau decays is obtained by using
geometrical, energy, and time information from the calorimeter’s
fibers, while the accuracy for the specific decay modes ranges from
99% for the leptonic decays of the tau to 85–90% for the hadronic
modes. The model is also able to discriminate with high-accuracy
(> 95%) tau decays from jets fromQCD. Even by using as input of the
neural network only the information relative to the geometry and the
type, scintillating or Cherenkov, of thefiring fibers, themodel is able to
achieve average accuracies between 80 and 97% depending on the
decay mode. The proposed algorithm is very flexible and can be easily
extended in terms of additional tasks and additional input features, as
for example, information from other detector systems. The ongoing
work focuses on extending the capabilities of the algorithm by
including information from other detector subsystem (inner
tracking and muon spectrometer) and in identifying the individual
contributions from the neutral and charged particles inside the tau and
QCD jet clusters, to further improve the particle identification and
particle flow reconstruction.
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