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We discuss the sensitivity of tunneling processes to the initial preparation of the quantum state.
We compare the case of Gaussian wave packets of different positional variances using a generalized
Woods-Saxon potential for which analytical expressions of the tunneling coefficients are available.
Using realistic parameters for barrier potentials we find that the usual plane wave approximation
underestimates fusion reactivities by an order of magnitude in a range of temperatures of practical
relevance for controlled energy production.

Tunneling processes are of crucial relevance to a broad
range of physical systems, including semiconductors [1]
and hererostructures [2], α-radioactivity and nuclear fu-
sion in stars [3–5], the early Universe [6], and nuclear
fusion processes in the laboratory [7–10]. Apart from an
early contribution [11], tunneling probabilities have been
usually evaluated by considering incoming plane waves.
However in realistic settings as the ones mentioned above,
the particles undergoing tunneling cannot in general be
fully described by plane waves, either because particles
are confined in space, or because in a many-body setting
they undergo scattering with other particles, thereby lim-
iting the coherence length of the plane wave [12]. More-
over, there are discrepancies between theoretical expec-
tations and data from fusion experiments [13] and there-
fore it may be important to scrutinize all the underlying
theoretical assumptions.

It is therefore important to discuss the robustness of
tunneling coefficients and fusion reactivities with respect
to the choice of more general initial states, for instance
by considering the representative set of Gaussian wave
packets. The use of generalized Gaussian wave packets
has been already pioneered by Dodonov and collabora-
tors [14–16], with results confirming that the predictions
on tunneling rates may differ even orders of magnitude
with respect to the one arising from the Wentzel-Kramer-
Brillouin (WKB) approximation usually employed for fu-
sion reactivites. These studies, in particular [15], have
been focused on analytical expressions valid under spe-
cific conditions, not necessarily encompassing the entire
parameter space.

The main goal of the present paper is to extend the
above results evaluating the tunneling coefficient for ar-
bitrary values of the position and momentum spreading.
A key ingredient of our analysis is the discussion of a
potential admitting exact solutions for the tunneling co-
efficient in the entire energy range. This allows us to
pinpoint differences arising from the sole structure of the
incoming Gaussian wave packets, excluding other sources
of differences as the ones due to the use of approxima-
tions in the calculating techniques, for instance the WKB
method. Additionally, we provide more intuitive argu-

ments for the behavior of the fusion reactivity in both the
cases of very narrow and very broad positional variances.
Finally, we also caution about using approximations like
the WKB or the Hill-Wheeler ones, since estimates of
tunneling coefficients may differ various orders of magni-
tude from their exact evaluation.

We focus the attention on the Generalized Woods-
Saxon (GWS) potential energy for a one-dimensional sys-
tem first introduced in [18] (see also [19] for a simpler
treatment)

V (x) = − V0
1 + ea(|x|−L)

+
W0e

a(|x|−L)

(1 + ea(|x|−L))2
, (1)

where both V0 and W0 determine the peak values of the
potential energy, and L, a, as in the usual Woods-Saxon
potential, determine, respectively, the size of the effective
well around the origin and its spatial spread. For a conve-
nient choice of these four parameters, the GWS potential
represents a symmetric well with value in the origin equal
to −V0/(1+exp(−aL))+W0 exp(−aL)/(1+exp(−aL))2,
and −V0/2+W0/4 at |x| = L. At large distances |x| ≫ L
the potential energy decreases exponentially to zero as
V (x) ≃ (W0−V0) exp(−ax), i.e., within a range λ ≃ 1/a.
This means that a semiqualitative difference from poten-
tial energies of interest for instance in nuclear fusion is
that the barrier experienced by the nucleons, if schema-
tized with this potential, does not have the long range as
expected for Coulomb interactions, though in a realistic
plasma the latter are screened on the Debye length. We
choose the set of parameters as described in the caption
of Fig. 1, resulting in well depth, barrier height and width
of the well comparable to the ones of light nuclei.

Using this potential and the related solutions in terms
of tunneling coefficients T (E) evaluated for plane waves
at energy E, we have considered more general cases of
wave localized in both space and momentum. The most
practical case, though not exhaustive of all possibilities,
is a Gaussian wavepacket.

Let us consider an initial Gaussian wavepacket with
positional variance ξ2, wave vector K and mean energy
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FIG. 1: Positive abscissa plot of the symmetric Generalized
Woods-Saxon potential [18] experienced between two nuclei,
with parameters a = 0.6 fm−1, L = 5 fm, V0 = 45 MeV,
and W0 = 56 MeV. With these parameters the barrier
height (from zero to the maximum positive value of V (x))
is 0.540 MeV, the well width and depth are 7.35 fm and
40.336 MeV, respectively. All following figures are obtained
using these parameters. The inset (vertical units in MeV,
horizontal units in fm) allows to better identify the shape of
the barrier otherwise barely visible on the broader scale of the
well depth.

ℏ2K2/(2m):

ψ(x, 0) =

(
2

πξ2

)1/4

e−(x−x0)
2/ξ2+iKx. (2)

The corresponding wavefunction in wave vector space k
is

φ(k) =
1√
2π

∫ +∞

−∞
ψ(x, 0)e−ikxdx

=
1

(2π)1/4

√
ξe−ξ2(k−K)2/4ei(K−k)x. (3)

Then the probability density for a given wave vector k
is a Gaussian function of k

P (k,K) = |φ(k)|2 =
ξ√
2π
e−ξ2(k−K)2/2, (4)

where we have introduced the positional spreading ξ as
the square root of the positional variance. The probabil-
ity density P (k,K) represents a function of k peaked, for
a symmetric distribution, at the average wave vector K.
We now assume that the wave vector K belongs to a

statistical distribution determined by a one-dimensional
Maxwell-Boltzmann distribution with inverse tempera-
ture β, namely,

w(K,β)MB =

(
β

π

ℏ2

2m

)1/2

e−βℏ2K2/(2m). (5)
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FIG. 2: Transmission coefficient of a Gaussian wave packet
of width ξ and average energy E impinging on the GWS po-
tential of Fig. 1. Curves from a to d respectively correspond
to the cases ξ = 2, 8, 32, 128 fm, while the case of tunneling
of a plane wave f is also depicted, clearly showing resonant
tunneling oscillations, also noticeable for the larger and finite
ξ values in c and d.

with m = mamb/(ma +mb) the reduced mass of the two
interacting nuclei a and b.
Particularly relevant is the reactivity defined as

⟨σ(E)v(E)⟩MB where ⟨...⟩MB denotes the statistical av-
erage, in our case over the Maxwell-Boltzmann distribu-
tion (5), σ is the cross-section of a generic process, and
v is the particle velocity. In the case of fusion, the cross-
section is defined as

σ(E) =
π

k2
T (E) =

πℏ2√
2m3

1√
E
T (E), (6)

with the energy E = ℏ2k2/2m.
When referred to the wave vector decomposition, the

fusion reactivity is written as:

⟨σv⟩MB =
πℏ2√
2m3

∫ +∞

−∞
dk

∫ +∞

−∞
dK

(
ℏ2k2

2m

)−1/2

×T (ℏ
2k2

2m
)P (k,K)w(K,β)MB . (7)

The integral over K can be evaluated analytically in the
case of Gaussian wavepackets, yielding the rather com-
pact formula

⟨σv⟩MB =

√
π

2

ℏ
m

∫ +∞

−∞
dk

1

k
T (

ℏ2k2

2m
)ξeffe

−ξ2effk
2/2, (8)

where we have introduced an effective positional spread-
ing ξeff , depending on the inverse temperature, such that

1

ξ2eff
=

1

ξ2
+

m

βℏ2
. (9)
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FIG. 3: Fusion reactivity, evaluated for the same Gaussian
wave packets of Fig. 2 (and same labeling a-f) with energy E
averaged over a Maxwell-Boltzmann distribution as a function
of the temperature β−1. The dashed line (case g) is the case
in which the positional spreading depends on temperature as
ξ = λ(β)/

√
2, where λ(β) is the thermal wavelength of the

nuclei [20]. The ratio between this latter curve and the curve
for a plain wave (case f) versus β−1 is reported in the inset
to evidence their differences in a region of interest for nuclear
fusion.

For states approximating a plane wave ξ2 ≫ βℏ2/m,
therefore ξ2eff ≃ βℏ2/m, i.e., ξeff becomes the thermal De
Broglie wavelength. In the opposite limit of states highly
localized in position, ξ2 ≪ βℏ2/m, we have ξeff ≃ ξ. This
shows that even assuming an initial quantum state with
positional variance of quantum nature, at temperature
large enough the relevant lengthscale below which quan-
tum coherence of the wavepacket is maintained no longer
depends on the initial preparation. Analogous conclu-
sions have been already obtained in [20, 21]. This can
also be interpreted, in the case of a gas at given temper-
ature and density, as corresponding to the mean free path
in between two thermal collisions between two particles.

The tunneling coefficient versus the average energy of
the wave packet E is depicted in Fig. 2 for various val-
ues of the width of the Gaussian wave packet ξ. The
dependence of the tunneling coefficient on E is, quite
predictably, mild when the value of E is comparable or
higher than the barrier height. Instead its dependence
at lower energies strongly depends on ξ, with the case of
plane waves (in the limit of ξ → +∞) underestimating
the transmission coefficient by even five orders of magni-
tude at the lowest reported energies, with respect to the
case of a Gaussian wave packet with size ξ smaller than
the size of the effective well. The case of small positional
variance should correspond, for a state of minimal quan-
tum uncertainty, to a broad distribution of possible mo-
menta, including some corresponding to kinetic energies
comparable or higher than the barrier height. Notice the
presence of resonant tunneling in the case of plane waves
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FIG. 4: Fusion reactivity versus the positional spreading ξ for
four temperature values β−1 = 10, 20, 50, 100 keV of relevance
in fusion of light nuclei. The dots denote the reactivities for
the positional spreading from the thermal wavelength of the
nuclei as discussed in Fig. 3 and evaluated at the correspond-
ing temperatures shown here.

and spatially delocalized Gaussian wave packets, which
is instead washed out in the integration when considering
Gaussian wave packets of smaller width in position, and
therefore broader in momentum/wave vector space.

In Fig. 3 we present the reactivity corresponding to a
Maxwell-Boltzmann distribution versus temperature for
different values of the positional spreading ξ. Reflect-
ing the results presented in Fig. 2, the high temperature
behavior is the same for the various cases, while at low
temperature the same pattern appears, with the high-
est reactivity occurring for the Gaussian wavepacket of
smallest value. Notice a further curve (dashed) which is
evaluated for a temperature-dependent positional spread-
ing as discussed in [20]. This curve is relevant for at least
two reasons. First, without any active control of the
positional variance of the wavepacket, this is what we
expect by considering a gas of reagents with a Maxwell-
Boltzmann distribution. Secondly, in the temperature
range between 10 keV and 100 keV, of interest for con-
trolled thermonuclear fusion, we estimate a boost of the
reactivities if compared to the ones achieved by consid-
ering plane waves. This is more easily noticeable in the
inset, where we report the ratio between the dashed curve
of Fig. 3 and the curve corresponding to the prediction of
plane waves, curve f, always versus the temperature. In
the above mentioned range the ratio is about 1.5, followed
by a mild increase to almost 2, then becoming smaller
than unity at even higher temperatures. The peak value
of the ratio depends on the involved masses, as shown
in the comparison of the two nucleons with a mass of 2
a.m.u. (reduced mass of 1 a.m.u.) and 12 a.m.u. (re-
duced mass of 6 a.m.u.). While the latter example has
been chosen having in mind the case of Carbon quite rel-
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FIG. 5: Transmission coefficient of the same GWS potential
as in Fig. 1 for a plane wave versus energy E evaluated with
the exact solution, the WKB approximation, and the Hill-
Wheeler approximation.

evant in astrophysics, it should be kept in mind that the
same GWS potential is used in both cases to see the sole
dependence on the mass, which is unrealistic for Carbon
especially in regard to its actual larger well width.

We emphasize more these considerations from a com-
plementary standpoint by plotting the reactivity as a
function of the positional variance ξ for values of temper-
ature relevant to fusion processes of light nuclei, β−1 =
10, 20, 50, 100 keV, as depicted in Fig. 4. This plot al-
lows to better appreciate that there is an optimal value
of ξ maximizing the reactivity at a given temperature.
Indeed, in the case of ξ → 0 there will be increasing com-
ponents of the wave packet at large k. These components
will saturate the transmission coefficient to its maximum
value, and will strongly suppress the cross-section due to
the dependence of the latter upon 1/k2, with the overall
dependence on reactivity then scaling as the inverse of
the wave vector.

The above results have been tested for various choices
of the parameters of the potential (it is worth to point
out that by construction the GWS potential has a cusp
in the origin) with outcome qualitatively similar to the
specific case considered in this paper. We expect robust-
ness also in the case of a potential which is the sum of a
flat potential at distances smaller than the average radius
of the nuclei, and a Coulombian potential. The outcome
should also hold in the more realistic three-dimensional
setting, when including effects due to the angular mo-
mentum term, and a spherically symmetric electric field
inside the nucleus assuming uniform electric charge den-
sity. However, more extensive analyses will be necessary
to determine the quantitative gain in using optimized
Gaussian wave packets under these more realistic, yet
not susceptible of analytic solutions, situations.

Finally, we discuss the dependence of the tunneling

coefficient upon the adopted calculating scheme, under
the hypothesis of plane waves for the tunneling particles.
This allows us to contrast the widespread WKB approx-
imation, the Hill-Wheeler approximation, and the exact
evaluation of the tunneling coefficient. As noticeable in
Fig. 5, both the approximations provide unreliable results
with respect to the exact case, in a regime of crucial im-
portance for controlled nuclear fusion, i.e., at energies
well below the barrier energy. The discrepancy between
the Hill-Wheeler approximation - a further simplification
of the WKB method - and the WKB expectation is un-
derstandable due to the modelization of the barrier as
an inverted parabola, and results in overestimating the
tunneling coefficient by about one order of magnitude
with respect to the latter. More surprising is the fact
that WKB provides tunneling coefficients higher by two
orders of magnitude at E=10 keV, and three orders of
magnitude at E=1 keV, with respect to the analytical
result. This introduces a further element of uncertainty
in the estimation of fusion cross-sections if not evaluated
from exact solutions or precision numerical evaluations.
It should also be remarked that this discrepancy may be
quite sensitive to the specific form of the potential en-
ergy. In our specific case the absence of a substantial tail
for the GWS potential at large distances, instead charac-
teristic of the Coulomb case, could affect the discrepancy
among the various cases, creating less sensitivity to the
details of the potential at the base of the barrier [23].

In conclusion, we have investigated the sensitivity of
tunneling processes to the preparation of Gaussian wave
packets – and contrasted to the usually assumed case
of plane waves – in the case of an analytically solvable
potential, and we have evidenced a relevant sensitivity of
the resulting reactivities for fusion processes. It is unclear
how to engineer Gaussian states of well-defined, targeted,
positional variance. Nevertheless, we have shown that
Gaussian states weighted with Maxwell-Boltzmann en-
ergy distributions may result in a temperature-dependent
positional variance, providing a natural way to enhance
fusion reactivities. This is a further stimulus to design
thermonuclear fusion prototypes in which emphasis is put
in maximizing the plasma temperature with more mod-
erate plasma density, an important point for achieving
deuterium-deuterium fusion, with well-known advantages
with respect to the currently experimentally investigated
deuterium-tritium fusion.
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