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1. Three experiments, one theorem, and two conjectures

Many complex systems in nature are driven by a steady accumulation of stress released

in intermittent bursts: earthquakes, wildfires, landslides, avalanches, and so on. In a

famous 1987 paper [4], Bak, Tang and Wiesenfeld proposed both a general mechanism for

how such systems arise, and a suggestive example. Their term for the mechanism was self-

organized criticality (SOC), and their example, now called the abelian sandpile [9, 11, 14],

is the most intensively studied model of SOC. But the abelian sandpile is non-universal:

It has a lattice-dependent scaling limit [19], and due to slow mixing [13], its critical state

retains a memory of its initial state [17]. The current best candidates for a universal model

of SOC are the Manna stochastic sandpile [22, 10, 28] and Activated Random Walk [25].

Activated Random Walk is the name of a particle system with two species, active parti-

cles “A” and sleeping particles “S” that become active when an active particle encounters

them (“A+ S → 2A”). Each active particle performs a continuous time random walk on

the infinite path Z, stepping to a random neighbour at rate 1. When an active particle

is alone, it falls asleep (“A → S”) at rate λ. A sleeping particle remains asleep until and

unless an active particle steps to its location. The parameter λ > 0 is called the sleep

rate. Precise definitions are given in Section 3. To make explicit the connection to SOC,

sleeping particles represent accumulated stress in the system, and a single active particle

can cause a large burst of activity if it wakes up many sleeping particles.

The first rigorous results about Activated Random Walk were proved by Hoffman and

Sidoravicius (unpublished) in the case of totally asymmetric walks, and by Rolla and

Sidoravicius [25] in the case of symmetric walks; we refer to [24] for a complete history.

Surprisingly, many basic questions about this simple one-dimensional particle system re-

main open! In this paper we relate the outcomes of three different experiments.

Experiment 1. For ARW(Z, λ) (Activated Random Walk on Z with sleep rate λ),

start with any stationary ergodic4 configuration η : Z→ N, all initially active. If each site

of Z is visited only finitely often, then we say that η stabilizes; otherwise, we say that η

explodes. Rolla, Sidoravicius and Zindy [26] proved the remarkable fact that stabilization

depends only on the mean number of particles per site, ζ := E(η(0)). Namely, there is

a constant ζc(Z, λ) such that if ζ < ζc then η stabilizes with probability 1, and if ζ > ζc
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then η explodes with probability 1. This theorem applies to infinite configurations η on

the infinite path Z. The next experiment concerns a finite configuration.

Experiment 2. For ARW(Z, λ), start n walkers at 0. How far do they spread?

Conjecture 1 (Aggregate density ζa). There is a constant ζa(Z, λ) such that for any

ε > 0, with probability tending to 1 as n→∞, the set of visited sites contains a centered

interval of length (1− ε)n/ζa, and is contained in an interval of length (1 + ε)n/ζa.

Experiment 3. Fix a finite interval I ⊂ Z containing 0, and write ARW(I, λ) for the

finite particle system in which particles exiting I are killed. Start with one active particle

at each site in I, and let them perform ARW(I, λ) until no active particles remain. How

many of them survive? Write |SI(1I)| for the number of sleeping particles in I at the end

of this process.

Conjecture 2 (Stationary density ζs). There is a constant ζs(Z, λ) such that

lim
#I→∞

|SI(1I)|
#I

= ζs

in probability.

To explain why we call this the “stationary” density, consider the law πI of the random

configuration of sleepers, SI(1I) : I → {0, s}. The probability distribution πI is more

canonical than it might seem. It is the unique stationary distribution of the Markov chain

with state space {0, s}I , whose update rule is: add one active particle at v and stabilize.

This distribution does not depend on the choice of v ∈ I. These facts are proved in [18].

What is the relationship between the three densities ζa, ζc, ζs? It is tempting to speculate

that ζa = ζc = ζs. These and more detailed conjectures can be found in our companion

paper [21].

In the present paper we will prove inequalities of the form

ζout ≤ ζa ≤ ζin (1)

where ζout and ζin are certain variants of the critical and stationary densities, respectively.

To do this, we will prove inner and outer bounds on the aggregate S(nδ0). The inner bound

involves a comparison with the stationary configurations SI(1I), while the outer bound

involves comparison with the infinite configurations S(η) where η is an i.i.d. Bernoulli

configuration of mean < ζc.

2. Main result

We now define the outer and inner densities needed to state our main result.

Fix ζ ∈ (0, 1), and let (η(x))x∈Z be independent random variables with P (η(x) = 1) =

1 − P (η(x) = 0) = ζ. We interpret η as a particle configuration consisting of one active

particle each x ∈ Z such that η(x) = 1. Denote by w : Z→ N∪{∞} the ARWλ odometer

of η. This is the random function

w(x) = number of ARWλ firings needed at x to stabilize η.

Finally, for an interval I = [a, b] ⊂ Z write ∂I = {a−1, b+ 1} for the outer boundary of I.
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Definition 1 (Outer density). For w as above, let

ζout = ζout(Z, λ) := sup{ζ > 0 : Eζ(w(0)3) <∞}.

In words, ζout is the largest density ζ such that, if we start an ARW system with an

i.i.d. Bernoulli configuration of active particles at density ζ, then the system stabilizes

with odometer function having finite third moment. See Remark 4 for a discussion on this

integrability requirement.

To define the inner density, fix a sleep rate 0 < λ ≤ ∞ and an interval I ⊂ Z. Write

SI(1I) for the ARWλ stabilization of the all-active configuration 1I with sink at the (outer)

boundary of I. This is a random configuration of sleeping particles in I. Write |SI(1I)|
for the total number of particles in this configuration.

Definition 2 (Inner density). For any interval I ⊆ Z we let

ζin,I = ζin,I(Z, λ) := inf
{
ζ > 0 : P(|SI(1I)| > ζ#I) ≤ (#I)−20

}
,

and define

ζin := lim sup
I

ζin,I .

In words, for any large interval I we look at the smallest density ζ such that an ARW

system starting with one active particle at each site, with killing upon exiting I, stabilizes

to density at most ζ, with high probability in the length of the interval. In fact we

expect that |SI(1I)| is highly concentrated, in the sense that for ζ > ζs the probability

P(|SI(1I)| > ζ#I) decays exponentially in #I. See Remark 3 for some comments on the

exponent 20 appearing in the above definition. We also note that, simply by definition,

one can easily verify that ζin ≥ ζs.
Our main result addresses the question in the title: How far do activated random walkers

spread from a single source? Starting with n active particles at 0, let An be the random

set of sites in Z that fire at least once during ARWλ stabilization. Write Br = [−r, r]∩Z.

Theorem 1. Let ζout = ζ(Z, λ) and ζin = ζin(Z, λ) be as in Definitions 1 and 2 respec-

tively, and assume ζout > 0. Then for all ε > 0 it holds

P
(

#An ≥
n

ζin + ε
and An ⊆ B n

2ζout
(1+ε) eventually in n

)
= 1.

Note that An is an interval containing the origin, so the above result tells us that An
contains an interval (possibly not centered!) of length n

ζin+ε and is contained in a (centered)

interval of length n
ζout

(1 + ε). As a byproduct, we obtain the following inequality.

Corollary 2. ζin ≥ ζout.

Proof. By Theorem 1 we have that almost surely for all ε ∈ Q>0 it holds

n

ζin + ε
≤ #An ≤

n

ζout
(1 + ε)

eventually in n. This forces

ζin + ε ≥ ζout
1 + ε

,

and sending ε→ 0 along rationals gives the desired conclusion. �



4

In fact we conjecture equality.

Conjecture 3. ζin = ζout.

Together with Theorem 1, this conjecture would imply that the random set An is

asymptotically a centered interval, in that

P
(
B(1−ε)r ⊂ An ⊂ B(1+ε)r eventually

)
= 1

where r = n
2ζout

.

Remark 1. For any γ > 0 we can show that the event in Theorem 1 holds with probability

exceeding 1−n−γ for n large enough, at the price of changing the definition of the critical

densities ζin and ζout to make them depend on γ. See Remarks 3 and 4 for details.

It is worth mentioning an edge case which plays an important role in our proof of

Theorem 1. Activated Random Walk with sleep rate λ = ∞ goes by the name Internal

DLA. It has the simple description that each random walker continues until it reaches an

unoccupied site, which it occupies forever. The case λ =∞ of Theorem 1 follows from the

shape theorem of Lawler-Bramson-Griffeath [16]. Vastly more is known about Internal

DLA, including fluctuations [2, 15] and bounds on mixing [20, 27]. We find it remarkable

that simply by tuning the sleep rate λ < ∞, the model becomes so much more difficult

that even the shape theorem in one dimension remains unproved!

2.1. Ideas of proof and organization of the paper. Section 3 gives precise definitions

and reviews two basic features of ARW that will be used in the proof of Theorem 1, the

Abelian and Strong Markov properties. The inner and outer bounds are proved separately

and independently in Sections 4 and 5.

The outer bound is proved via a coupling argument with Internal DLA in a random

environment. To expand on the strategy of the proof, we stabilise the configuration nδ0

in two steps. To start with, we spread the particles at roughly the right density by forcing

activation if needed. This gives an odometer of roughly the right support. Then we

conclude arguing that, by definition of ζout, stabilising the particle configuration resulting

from the first step cannot significantly increase the support of the odometer function.

For the inner bound, which is more involved, we use a block decomposition similar to

the one introduced in [3, 5]. This allows us to iteratively show that the stable configuration

S(nδ0) has roughly the right density on increasing intervals, up to reaching the desired

length. See the beginning of Section 4 for an overview of the proof of the inner bound.

Some bounds on variants of Internal DLA will be needed throughout the paper: we

collect their proofs in Appendix A.

3. Precise definitions; Abelian property; Strong Markov property

Let Ns := N ∪ {s} denote the ordered set

0 < s < 1 < 2 < 3 · · ·

An Activated Random Walks (in short ARW) configuration on Z is a map

η : Z −→ Ns
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where η(x) denotes the number of active particles at x if η(x) ≥ 1, a sleeping particle at x

if η(x) = s, and no particle at x if η(x) = 0. A particle can only be sleeping if alone at its

site, and it gets instantaneously reactivated if an active particle steps on it. Set |s| = 1,

so that |η(x)| counts the number of particles at x, regardless of their state.

Definition 3. A configuration η on Z is called stable at x if η(x) ∈ {0, s}, and it is

unstable at x otherwise. We say that η is stable if it is stable at all x ∈ Z.

Next we describe how to stabilize η by a sequence of moves called firings. Let λ ∈ (0,∞]

be a fixed parameter, that we refer to as the sleep rate. To each site x ∈ Z we associate

an infinite stack ρx = (ρx(k))k≥1 of independent instructions with common distribution

ρx(1) =


s with probability λ

1+λ

x− 1 with probability 1
2(1+λ)

x+ 1 with probability 1
2(1+λ) .

(2)

The instructions s, x− 1, x+ 1 are interpreted respectively as: “fall asleep if alone”, “step

left”, “step right”. If x ∈ Z with η(x) ≥ 1 we can fire x by applying the first unused

instruction in the stack ρx. The effect of firing x is that one active particle at x steps to

a uniform neighbour with probability 1/(1 + λ), and otherwise it falls asleep if alone (that

is, if no other particles are present at x; note that applying an s instruction has no effect

if there is more than one particle at x). We denote the resulting configuration by τxη.

A firing τx is said to be legal for η if η(x) ≥ 1. Write α = (x1, x2 . . . xk) for a finite

sequence of sites, and assume that the corresponding sequence of firings τx1 , τx2 . . . τxk is

legal, that is τxj is legal for τxj−1τxj−2 · · · τx1η, for all j ≤ k. Then we write

ταη := τxkτxk−1
· · · τx1η,

and say that α stabilises η if ταη is stable.

To each legal sequence of firings α we associate the odometer function uα : Z → N
defined by

uα(x) =

k∑
j=1

1(xj = x),

which counts the number of occurrences of x in α, or, equivalently, the number of stack

instructions used at x.

It will sometimes be useful to fire vertices that contain a sleeping particle. Firing x

such that η(x) = s consists of forcing the particle at x to wake up and evolve according

to the first unused instruction at x. Following [26, 23], we say that if η(x) ≥ s then firing

x is acceptable. Note that all legal firings are acceptable, while if η(x) = s then firing x is

acceptable but not legal.

We collect below some useful properties of the ARW dynamics, namely the Abelian

Property and the Least Action Principle, for which we refer the reader to [23] (or to [8,

Lemma 4.3] where they are proved in the more general setting of abelian networks).

Proposition 3 ([23], Section 2.2). For any fixed realization (ρx(k))x∈Z,k≥1 of instruction

stacks, the following hold.
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1. (Local Abelian Property) If α, β are acceptable sequences of firings for a particle

configuration η such that uα = uβ, then ταη = τβη. The final configuration ταη

depends on α only through uα.

2. (Least action principle) If α is a finite acceptable sequence of firings that stabilises

η, and β is any finite legal sequence for η, then uβ ≤ uα.

3. (Abelian Property) If α, β are two legal stabilising sequences for η, then uα = uβ,

and in particular ταη = τβη.

Note that, in particular, the above result tells us that the stabilization of a given par-

ticle configuration η with stacks ρ does not depend on the order of the firings.

We will want to perform a random number of firings and argue that, under some con-

ditions, the stacks of unused instructions have the same distribution as the original ones.

This will require showing that ARW stacks satisfy a form of the Strong Markov Property.

To state it, let (ρz(k))z∈Z,k≥1 be a collection of independent random variables such that

for each z the sequence (ρz(k))k≥1 is i.i.d. with distribution (2). Write FS for the set of

finitely supported functions f : Z→ N. Write ρf for the shifted collection

ρf := (ρz(k + f(z)))z∈Z,k≥1.

Let F0 denote a σ-field independent of the ρz(k)’s, and write Ff for the σ-field generated

by F0 and ρz(k) for z ∈ Z and 1 ≤ k ≤ f(z).

Proposition 4 (Strong Markov Property For i.i.d. Stacks). Let F : Z → N be a random

function such that P (F ∈ FS) = 1 and {F = f} ∈ Ff for all f ∈ FS. On the event

{F ∈ FS}, the shifted stacks ρF are independent of (ρz(k))z∈Z,k≤F (z), and ρF has the

same distribution as ρ.

Proof. Write FF for the σ-field of events A satisfying A ∩ {F = f} ∈ Ff for all f ∈ FS.

We have to show for any finite sequence of distinct pairs (z1, k1), . . . , (zn, kn) in Z × N,

any sequence of instructions i1, . . . , in, and any event A ∈ FF , it holds

P(A, ρFz1(k1) = i1, . . . , ρ
F
zn(kn) = in) = P(A)

n∏
j=1

P(ρzj (1) = ij).

Since FS is countable,

P(A, ρFz1(k1) = i1, . . . , ρ
F
zn(kn) = in) =

∑
f∈FS

E
[
1(A,F = f, ρfz1(k1) = i1, . . . , ρ

f
zn(kn) = in)

]

where the sum is over all finitely supported f : Z → N. Writing the expectation on

the right as the expectation of the conditional expectation E[·|Ff ], we can pull out the
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indicator 1(A,F = f), obtaining∑
f

E
[
1(A,F = f)E[1(ρz1(k1 + f(z1)) = i1, . . . , ρzn(kn + f(zn)) = in)|Ff ]

]
=
∑
f

P(A,F = f)
n∏
j=1

P(ρzj (1) = ij)

= P(A)

n∏
j=1

P(ρzj (1) = ij). �

We will use the Strong Markov Property as follows. Fix a particle configuration η0 :

Z→ Ns, and consider a sequence of configurations (ηk)k≥1 in which each ηk is obtained by

firing ηk−1 at a single site xk, where xk may depend on the initial condition η0, the portion

of the stack instructions explored in the first k − 1 steps, and perhaps some independent

randomness, encoded in F0. Continue until some stopping time T , and let

F (x) = #{1 ≤ k ≤ T : xk = x}

be the number of times x fires during this procedure. By Proposition 4, if T is a.s. finite

then the unexplored stack instructions ρF are independent of the explored ones, and ρF

has the same distribution as ρ.

3.1. Notation. In light of the fact that the stabilization of η with sleep rate λ and the

corresponding odometer do not depend on the choice of firing sequence, we denote them

by Sλ(nδ0) and uλn respectively. Then for any legal stabilising sequence α for η we have

Sλ(nδ0) = τα(nδ0), and uλn = uα, where the equalities hold pointwise. Whenever the sleep

rate λ is fixed we omit it from the notation for brevity.

For r > 0 let Br(x) = [x − r, x + r] denote the ball of radius r in Z centred at x, and

write Br in place of Br(0) for brevity.

For a subset I ⊆ Z let 1I denote the ARW configuration consisting of exactly one active

particle at each site of I, and no particle outside I. If I = [a, b] ⊆ Z is a finite interval, let

∂I := {a− 1, b+ 1}

denote its (outer) boundary, and

Ī := I ∪ ∂I

denote its closure. The cardinality of a finite set I ⊆ Z will be denoted by #I. If a, b ∈ R
and I ⊆ Z, write I = [a, b] or I = (a, b) to mean I = [a, b]∩Z and I = (a, b)∩Z respectively.

Let η denote a finite ARW configuration on Z, and recall that |η| counts the number of

particles in η, regardless of their state. For I ⊆ Z we write |η|I for the number of particles

in η
∣∣
I
, that is

|η|I :=
∑
x∈I
|η(x)|.

Recall that S(η) denotes the stabilization of η. For an interval I ⊆ Z, with SI(η) we

denote the stabilization of η with killing upon exiting I. That is, particles that step outside
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I die immediately, and are removed from the system. Note that

|S(η)| = |η|, while |SI(η)| ≤ |η|.

We will sometimes need to allow particles to start from ∂I, in which case we let ∂I act

as a sink. If a particle starting on ∂I steps inside I on its first move, then it is killed

upon returning to ∂I. If it steps outside Ī on its first move, it is killed immediately. All

particles starting on ∂I, except for the last one, die immediately upon trying to fall asleep

on their first move. The last one is allowed to fall asleep on its first move, and it never

gets reactivated. This operation is still denoted SI(η).

It will often be useful to partially stabilise a given configuration by only performing

firings which are legal in the Internal DLA sense. To be precise, we say that a particle

configuration η is IDLA-unstable at x ∈ Z if η(x) ≥ 2. In that case we fire x by moving one

particle according to the first unused instruction at the site. Note that sleep instructions

will be ignored, since there is at least another particle at the site. We keep firing IDLA-

unstable sites until reaching a configuration with at most one particle at any given site.

This IDLA-stable configuration will be denoted by SIDLA(η). Note that if all particles

were active in η then they are all still active in SIDLA(η), since we never fire sites with one

particle. In a similar manner one can define, for an interval I ⊂ Z, the IDLA stabilization

SIDLAI (η) of η with killing upon exiting I.

Finally, whenever we write that something holds for n large enough we mean that to

hold for all n ≥ n0, for some n0 which may depend on all other constants introduced

before, such as ζ, λ, γ, Cλ, ε, δ, k0 etc., including the implicit n0 of previous instances of

the term ”large enough”.

4. The inner bound

Let ε ∈ (0, 1) be fixed throughout as in the statement of Theorem 1. Assume that

ζin < 1, since if ζin = 1 then the inner bound of Theorem 1 follows by standard IDLA

arguments (cf. Lemma 1).

Overview of the proof. To prove the inner bound for An = supp(un) we will start by

finding an interval I1 such that, with high probability, the odometer un is positive on I1

and the stabilization Sλ(nδ0) has density not much greater than ζin on I1. If the length of

I1 is less than n/(ζin + ε), then a large number of particles must escape from one or both

endpoints of I1. We use these leaked particles to find a larger interval I2 such that, again

with high probability, un is positive on I2 and Sλ(nδ0) has density not much greater than

ζin on I2. This procedure is repeated a finite number of times (depending on ε) to obtain

an interval Ik of length exceeding n/(ζin + ε).

To start with, set

I1 =
[
−n

2
(1− ε), n

2
(1− ε)

]
. (3)

The first lemma below tells us that the IDLA stabilization of η = nδ0 with killing upon

exiting I1 fills I1 with high probability.
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Lemma 1. For arbitrary ε ∈ (0, 1) define I1 as in (3). Then for any δ ∈ (0, 1/2) and n

large enough it holds

P
(
SIDLAI1 (nδ0) = 1I1

)
≥ 1− e−nδ .

This follows from simple martingale arguments; we postpone the proof to Appendix A.

The next result describes the restriction of the ARW stabilization of nδ0 to an interval I

on the event that IDLA fills I, using the crucial observation that this restriction depends

on the stacks outside I only via the odometer values on ∂I.

Lemma 2 (Coupling Between ARW On Z And ARW Killed On Exiting An Interval).

Fix n ∈ N and a, b ∈ Z with a < 0 < b. Let S(nδ0) and un denote the stabilization of

nδ0 and the odometer function respectively, using i.i.d. stacks ρ = (ρx(k))x∈Z,k≥1. For

an interval I = [a + 1, b − 1] ∩ Z, denote by FI the event that IDLA, starting from nδ0

and killed upon exiting I, using the same stacks ρ fills I. For nonnegative integers l

and r let lδa + 1I + rδb denote the configuration consisting of one active particle at each

site of I, together with l active particles at a and r active particles at b (see Figure 1

below). Denote by S̃I(lδa +1I + rδb) its stabilization with killing on ∂I, using i.i.d. stacks

ρ̃ = (ρ̃x(k))x∈Z,k≥1. Then there exists a coupling of ρ and ρ̃ such that for all l and r, on

the event FI ∩ {un(a) = l, un(b) = r} it holds

S(nδ0)
∣∣
I

= S̃I(lδa + 1I + rδb)
∣∣
I
.

n

l r

0 0

0

s s s s s s s s

S(nδ0)
∣∣∣
I

S̃I(lδa + 1I + rδb)
∣∣∣
I

a+ 1 b− 1 a+ 1 b− 1

a+ 1 b− 1

Figure 1. An illustration of the equality S(nδ0)
∣∣
I

= S̃I(lδa + 1I + rδb)
∣∣
I
.

Proof. The result follows from the Abelian Property (cf. Proposition 3) together with

the Strong Markov Property (cf. Proposition 4). We build the stacks ρ̃ from ρ as follows.

Starting with n active particles at the origin and i.i.d. stacks ρ, move the particles according

to IDLA dynamics until they either reach an empty site or reach ∂I = {a, b}, where they

stop. Note that if a moving particle encounters a sleep instruction in this phase it discards

it and looks at the next instruction, since if it is moving it cannot be alone at a site.

As soon as a particle finds an empty site in I it stops there, while particles that reach

∂I = {a, b} accumulate at a and b. Assume that this procedure fills I, i.e. the event
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FI holds, and denote by uI the associated odometer function, so that uI(x) counts the

number of used instructions at x if x ∈ I, and uI(x) = 0 otherwise. Then set

ρ̃x(k) =

{
ρx(k + uI(x)) if x ∈ I,
ρx(k) otherwise.

By the Strong Markov Property of ARWs, the shifted stacks ρ̃ have the same distribution

as ρ. It remains to show that, under this coupling, stabilising the two systems will result in

the same configuration inside I. Recall that in the ρ system the particles move according

to standard ARW dynamics on Z, while in the ρ̃ system they are killed on ∂I. We therefore

refer to these systems as the standard system and killed system respectively. To argue

that the coupled stacks give the same stable configuration in I observe that we can evolve

the standard and killed dynamics together by firing both systems at the same site x if

x ∈ Ī, and only the standard system if x /∈ Ī. In terms of particle trajectories, this is

equivalent to saying that each time a particle crosses ∂I in the standard system, a particle

gets killed and a new one starts from the same site in the killed system. This results in

indistinguishable dynamics, and therefore in the same stable configuration, in I. �

In the proof of the inner bound we will combine the above coupling with the following

observation.

Lemma 3. Fix an arbitrary interval I = [a+ 1, b− 1] and integers l, r ≥ 0. Then

SI(lδa + 1I + rδb)
∣∣
I

(d)
= SI(1I)

∣∣
I
.

Proof. Note that to build SI(lδa + 1I + rδb)
∣∣
I

we can first move the particles starting on

∂I = {a, b} (if any). If they fall inside I they will walk until returning to ∂I, at which

point they die. If they fall outside I they can never enter I again, as they are killed on

∂I. Once we have let all the particles starting on ∂I either die or settle (i.e. fall asleep at

an empty site) we are left with having to stabilize 1I inside I. Hence the above equality

in distribution follows by the Strong Markov Property of ARWs (cf. Proposition 4). �

We take I = I1 as in (3), and build S(nδ0)
∣∣
I1

as follows. First move the particles

according to IDLA in I1 killed at ∂I1, which will result in the configuration 1I1 with

high probability by Lemma 1. Then, on the event {un(a) = l, un(b) = r}, we stabilize

lδa + 1I1 + rδb with killing outside I1. To implement this program we need an a priori

bound on the ARW odometer function.

Lemma 4 (A Priori Upper Bound On The Total Odometer).

P

(∑
x∈Z

un(x) > n4

)
≤ n−2

for n large enough.

Proof. By the least action principle it suffices to exhibit a stabilization procedure with total

odometer bounded by n4 with high probability. To this end, note that forcing particles

to wake up can only increase the total odometer. We therefore proceed as follows. Let G

denote a geometric random variable with parameter λ/(1 + λ), and choose Cλ so that

P(G > 2Cλ log n) ≤ n−7/2
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for n large enough. Set ∆ = 2dCλ log ne. We release n particles from the origin one at a

time. Each particle performs a simple random walk on Z, until reaching an unoccupied

site of the ∆-grid {k∆ : k ∈ Z} where it stops, thereby changing the site into occupied.

Note that this is equivalent to running IDLA on Z with particles only allowed to stop on

the ∆-grid. At the end of this procedure all particles are at distance ∆ one another. We

release them, evolving the particle system according to ARW dynamics. By the choice of ∆

all the particles will fall asleep before they are able to interact, which entails stabilization.

n

0

0

∆

IDLA on the ∆ grid

0

s s s s s s s

Figure 2. An illustration of the proof. The particles are spread enough

so that their trajectories do not intersect before they fall asleep.

This procedure takes total odometer
n∑
k=1

(Tk +Gk),

where Tk and Gk denote the time it takes for the kth walk to occupy a site of the ∆-grid,

and to fall asleep when released, respectively. Note that

P
(

max
1≤k≤n

Gk ≥ ∆

)
≤ n−5/2

for n large enough, by the choice of ∆. Moreover, if T̃k denotes the time it takes for the

kth random walk to reach distance k∆ from the origin, we have that
n∑
k=1

Tk ≤
n∑
k=1

T̃k,

with the advantage that the T̃k’s are independent random variables. We use that by [16],

Proposition 2.4.5,

P
(
T̃k ≥ (k∆ log n)2

)
≤ n−5/2
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for all k ≤ n, and n large enough. Thus

P

(
n∑
k=1

(Tk +Gk) > n4

)
≤ P

(
n∑
k=1

T̃k + n∆ > n4

)
+ n−5/2

≤ 1

(
n∑
k=1

(k∆ log n)2 + n∆ > n4

)
+ 2n−5/2 ≤ n−2

for n large enough, which concludes the proof. �

Let B (as in bound) denote the event of the above lemma, and F (as in fill) denote the

event of Lemma 1. We are now in position to show that S(nδ0) has low density on I1 with

high probability.

Step 1. Recall that for a stable ARW configuration η on Z

|η| := |{x : η(x) > 0}|

counts the number of sleepers in η. Suppose that δ ∈ (0, 1) is fixed small enough so that

ζin + δ < 1. We will choose δ later depending on ζin and ε. Recall that F and B denote

the events of Lemma 1 and 4 respectively, and define the good event

E1 := B ∩ F ∩ {|S(nδ0)|I1 ≤ (ζin + δ)#I1}, (4)

stating that the particle configuration ηδ0 stabilizes to density at most ζin + δ on I1.

Lemma 5. For E1 as above and n large enough

P(Ec1) ≤ n−3/2.

Proof. We have

P(Ec1) ≤ P(Bc) + P(F c) + P
(
B ∩ F ∩ {|S(nδ0)|I1 > (ζin + δ)#I1}

)
.

By Lemmas 1 and 4

P(Bc) + P(F c) ≤ 2n−2,

so it remains to bound the third term above. Write I1 = [a1 + 1, b1 − 1] so that ∂I1 =

{a1, b1}. We union bound over all possible values of the odometer function on ∂I1 to find

P
(
B ∩ F ∩ {|S(nδ0)|I1 > (ζin + δ)#I1}

)
=

=
n4∑
l,r=0

P
(
B ∩ F ∩ {un(a1) = l} ∩ {un(b1) = r} ∩ {|S(nδ0)|I1 > (ζin + δ)#I1}

)
≤

n4∑
l,r=0

P
(
|SI1(lδa1 + 1I1 + rδb1)|I1 > (ζin + δ)#I1

)
= n8P

(
|SI1(1I1)| > (ζin + δ)#I1

)
.

Here the inequality follows from Lemma 2, and the last inequality from Lemma 3.

Now by Definition 2 we can take #I1 (or equivalently n) large enough that ζin + δ ≥
ζin,I1 + δ/2, which gives

P
(
|SI1(1I1)| > (ζin + δ)#I1

)
≤ P

(
|SI1(1I1)| > (ζin,I1 + δ/2)#I1

)
≤ (#I1)−20,
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and thus

P(Ec1) ≤ 2n−2 + n8(#I1)−20 ≤ n−3/2

for n large enough. �

General step. We will define events E1 ⊇ E2 ⊇ E3 ⊇ · · · by induction. For j ≥ 2

assume Ej−1 has been defined so that on Ej−1 there is an interval Ij−1 ⊇ I1 such that

|S(nδ0)|Ij−1 ≤ (ζin + δ)#Ij−1.

If

#Ij−1 ≥
n

ζin + δ
(1− 3ε)

set K = j − 1 and stop (here the random variable K will denote the number of steps in

the stabilization procedure). Otherwise K ≥ j and

n− |S(nδ0)|Ij−1 ≥ 2nε. (5)

On the event Ej−1 ∩ {K ≥ j} write Ij−1 = (aj−1, bj−1) for integers aj−1, bj−1 in the

interval ∈ [−n/(ζin + δ), n/(ζin + δ)]. Then we define Ij ⊇ Ij−1 as follows. For integers

r−, l+ ≤ n4 on the event

Ej−1 ∩ {K ≥ j} ∩ {un(aj−1) = r−, un(bj−1) = l−}

let I±j be defined by

SIDLA(−∞,aj−1)(r−δaj−1) = 1I−j
, SIDLA(bj−1,+∞)(l−δbj−1

) = 1I+j
,

where the stabilizations use the original stacks of instructions. If |I+
j | < nε (respectively

|I−j | < nε) then redefine I+
k = ∅ (respectively I−k = ∅) for all k ≥ j. Note that, by (5),

there are at least 2nε particles outside Ij−1 in S(nδ0), so at least one of I+
j and I−j must

be non-empty. Then define

Ij = I−j ∪ Īj−1 ∪ I+
j , (6)

and

Ej = Ej−1 ∩ {|S(nδ0)|Ij\Īj−1
≤ (ζin + δ)#(Ij \ Īj−1)}. (7)

Thus on Ej∩{j ≤ K} the stable configuration S(nδ0) has density at most ζin+δ+O(j/n)

on the interval Ij (here the term O(j/n) accounts for the boundary sites).

0 bj−1aj−1

Ij−1

aj bj
I−j I+j

Figure 3. An illustration of the construction of Ij from Ij−1.

Lemma 6. For all j ≥ 2

P(Ej−1 ∩ Ecj ∩ {j ≤ K}) ≤ n−3/2

for n large enough.
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Proof. We use the union bound to fix the intervals I±j together with the odometer values

on their boundaries, at which point the result follows by similar arguments to those of

Lemma 5. Fix sites aj−1 ≤ 0 ≤ bj−1 with max{−aj−1, bj−1} ≤ n/(ζin + δ), and odometer

values 0 ≤ r−, l+ ≤ n4. Then we have

P(Ej−1 ∩ Ecj ∩ {j ≤ K} ∩ {Ij−1 = (aj−1, bj−1), un(aj−1) = r−, un(bj−1) = l+})

≤
∑
aj

P
(
un(aj−1) = r−,SIDLA(−∞,aj−1)(r−δaj−1) = 1(aj ,aj−1), |S(nδ0)|(aj ,aj−1) > (ζin + δ)|aj − aj−1|

)
+
∑
bj

P
(
un(bj−1) = l−,SIDLA(bj−1,+∞)(l+δbj−1

) = 1(bj−1,bj), |S(nδ0)|(bj−1,bj) > (ζin + δ)|bj − bj−1|
)
.

We bound each term in the first summation as follows. Denote by ρ = (ρk)k∈Z the

underlying stacks of instructions, and write u∞r− for the odometer function associated to

the stabilization SIDLA(−∞,aj−1)(r−δaj−1). Then u∞r− is supported in [aj−1−n4, aj−1], since the

r− particles can fill an interval of length at most r− ≤ n4 to the left of aj−1. We define

the shifted stacks of instructions ρ̃ = (ρ̃k)k∈Z by setting

ρ̃x(k) =

{
ρx(k + u∞r−(x)) if x ≤ aj−1,

ρx(k) otherwise.

Then, by Lemma 2, on the event {un(aj−1) = r−,SIDLA(−∞,aj−1)(r−δaj−1) = 1(aj ,aj−1)} we

have that

S(nδ0)|(−∞,aj−1) = S̃(−∞,aj−1)(1(aj ,aj−1)),

where S̃I(η) denotes the stabilization of η according to stacks ρ̃ with killing upon exiting

I. This gives

P
(
un(aj−1) = r−,SIDLA(−∞,aj−1)(r−δaj−1) = 1(aj ,aj−1), |S(nδ0)|(aj ,aj−1) > (ζin + δ)|aj − aj−1|

)
≤ P

(
SIDLA(−∞,aj−1)(r−δaj−1) = 1(aj ,aj−1), |S̃(−∞,aj−1)(1(aj ,aj−1))|(aj ,aj−1) > (ζin + δ)|aj − aj−1|

)
≤ P

(
|S(−∞,aj−1)(1(aj ,aj−1))|(aj ,aj−1) > (ζin + δ)|aj − aj−1|

)
,

where the last inequality follows from the Strong Markov Property. Similarly one shows

that

P
(
un(bj−1) = l−,SIDLA(bj−1,+∞)(l+δbj−1

) = 1(bj−1,bj), |S(nδ0)|(bj−1,bj) > (ζin + δ)|bj − bj−1|
)

≤ P
(
|S(bj−1,+∞)(1(bj−1,bj))|(bj−1,bj) > (ζin + δ)|bj − bj−1|

)
.
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From this, with a similar argument to that of Lemma 5, we get

P(Ej−1 ∩ Ecj ∩ {j ≤ K} ∩ {Ij−1 = (aj−1, bj−1), un(aj−1) = r−, un(bj−1) = l+})

≤
∑
aj≤n4

P
(
B ∩ {|S(−∞,aj−1)(1(aj ,aj−1))|(aj ,aj−1) > (ζin + δ)|aj − aj−1|}

)
+
∑
bj≤n4

P
(
B ∩ {|S(bj−1,+∞)(1(bj−1,bj))|(bj−1,bj) > (ζin + δ)|bj − bj−1|}

)
=

∑
aj ,l−≤n4

P
(
B ∩ {un(aj) = l−} ∩ {|S(aj ,aj−1)(1(aj ,aj−1) + l−δaj )|(aj ,aj−1) > (ζin + δ)|aj − aj−1|}

)
+

∑
bj ,r+≤n4

P
(
B ∩ {un(bj) = r+} ∩ {|S(bj−1,bj)(1(bj−1,bj) + r+δbj )|(bj−1,bj) > (ζin + δ)|bj − bj−1|}

)
≤

∑
aj ,l−≤n4

P
(
|S(aj ,aj−1)(1(aj ,aj−1))|(aj ,aj−1) > (ζin + δ)|aj − aj−1|

)
+

∑
bj ,r+≤n4

P
(
|S(bj−1,bj)(1(bj−1,bj))|(bj−1,bj) > (ζin + δ)|bj − bj−1|

)
≤ 2n8(nε)−20 = 2ε−20n−12

for n large enough. Here again the third inequality follows by evolving all the particles

starting on boundary sites until they die, as in Lemma 3. Moreover, in the last inequality

we used that l−, r+ ≤ n4, so there are at most n8 choices for the pair (aj , bj). This gives

P(Ej−1 ∩ Ecj ∩ {j ≤ K})

≤
∑

aj−1,bj−1

∑
r−,l+

P(Ej−1 ∩ Ecj ∩ {j ≤ K} ∩ {Ij−1 = (aj−1, bj−1), un(aj−1) = r−, un(bj−1) = l+})

≤ 2ε−20

(ζin + δ)2
n−2 ≤ n−3/2

for n large enough, since on the event {j ≤ K} there are at most n/(ζin + δ) choices for

both aj−1 and bj−1. �

Now, on the event Ej ∩ {j ≤ K} we have

|S(nδ0)|Ij ≤ (ζin + δ)#Ij + 2j − 2,

where the additional term 2j − 2 comes from the boundary sites. If

#Ij ≥
n

ζin + δ
(1− 3ε)

set K = j and stop, setting Ek = Ej for all k ≥ j. Otherwise K ≥ j + 1 and we move on

to the next step.

Closing the iterative scheme. It remains to bound the number of iterations. Write

Lj = #Ij for all j ≥ 1. Let k0 ≥ 2 be and integer to be chosen later, and recall that K

was defined in the previous subsection as

K := inf

{
j ≥ 2 : Lj ≥

n

ζin + δ
(1− 3ε)

}
. (8)
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Then on the event Ek0 ∩ {K > k0} the following inequalities hold for n large enough:

L1 = 2
⌊n

2
(1− ε)

⌋
+ 1 ≥ n(1− ε)− 1 ≥ n(1− 2ε),

Lj ≥ Lj−1 + n− |S(nδ0)|Ij−1 − εn
≥ Lj−1 + n(1− 2ε)− (ζin + δ)Lj−1, 2 ≤ j ≤ k0,

where the −εn extra term in the first lower bound for Lj accounts for the fact that one of

I+
j and I−j might be empty. Now, using that for all j ≤ k0 one has Lj−1 ≤ n

ζin+δ (1 + ε),

we find n(1− 2ε)− (ζin + δ)Lj−1 ≥ εn, which shows that

Lj ≥ Lj−1 + nε ≥ n(1 + (j − 3)ε)

for all 2 ≤ j ≤ k0. Choose k0, depending only on ζin, δ and ε, such that

1 + (k0 − 3)ε ≥ 1− 3ε

ζin + δ
.

Then

Lk0 ≥
n(1− 2ε)(1− ε)

ζin + δ
≥ n

ζin + δ
(1− 3ε),

and hence event {K > k0} ∩ Ek0 is empty. Then

P(K > k0) = P({K > k0} ∩ (Ec1 ∪ Ec2 ∪ · · · ∪ Eck0))

≤ P(Ec1) +

k0∑
j=2

P(Ej−1 ∩ Ecj ∩ {K ≥ j}) ≤ (k0 + 1)n−3/2.

To close the proof of the inner bound, take δ ∈
(
0, ε− 3ε2(1− ζin)

]
, so that

LK ≥
n

ζin + δ
(1− 3ε) ≥ n

ζin + ε
.

Then {
|supp(un)| ≥ n

ζin + ε

}
⊇ {K ≤ k0},

and so

P
(
|supp(un)| < n

ζin + ε

)
≤ P(K > k0) ≤ (k0 + 1)n−3/2

which is summable in n.

Remark 2. A more careful use of the above argument shows that in fact one only needs

a logarithmic number of steps in 1/ε in order to close the iterative scheme. We leave the

details to the reader.

Remark 3. Note that the exponent 20 appearing in the definition of ζin was used for the

union bounds in the proof of Lemmas 5 and 6. At the price of increasing this exponent, one

can get an inner bound that holds with higher probability in n with the same arguments.

More precisely, for any γ > 0 we can define

ζin,I(γ) := inf
{
ζ > 0 : P(|SI(1I)| > ζ#I) ≤ (#I)−(γ+19)

}
,

and

ζin(γ) := lim sup
I

ζin,I(γ),
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to have that for any ε > 0

P
(

#An ≥
n

ζin(γ)
(1− ε)

)
≥ 1− n−γ

for n large enough.

5. The outer bound

To prove the outer bound in Theorem 1 we show that the ARW odometer un is stochas-

tically dominated by the sum of two auxiliary odometer functions, corresponding to an

IDLA process on a Bernoulli site percolation, and to the ARW stabilization of a subcritical

Bernoulli configuration on Z.

Fix ζ ∈ (0, 1), and enlarge the probability space to include an independent Bernoulli(ζ)

site percolation η ∈ {0, 1}Z, where each site x ∈ Z is declared open (η(x) = 1) with

probability ζ, and closed (η(x) = 0) with probability 1 − ζ. Write Pζ for the product

measure P× µζ , where P is the law of the stacks of ARW instructions (2) with sleep rate

λ, and µζ =
∏
x∈Z((1 − ζ)δ0 + ζδ1) is the law of the site percolation η. Write Eζ for

expectation with respect to Pζ .

We interpret η as an ARW particle configuration, consisting of exactly one active particle

at each open site. Denote by w : Z→ N ∪ {∞} the ARW λ odometer of η on Z.

The next result bounds the odometer w under Pζ on large intervals, for ζ < ζout.

Lemma 7. For any ζ ∈ (0, ζout) we have

Pζ

(
sup
x∈Br

w(x) >
r

(log r)3

)
≤ r−3/2

for r large enough.

Proof. Since ζ < ζout we have that Eζ(w(0)3) ≤ C for some finite constant C > 0. Hence

Pζ

(
sup
x∈Br

w(x) >
r

(log r)3

)
≤
∑
x∈Br

Pζ

(
w(x) >

r

(log r)3

)
≤ (#Br)

(log r)9

r3
Eζ(w(0)3)

≤ C(2r + 1)
(log r)9

r3
≤ r−3/2

for r large enough. �

We are now ready to explain the proof of the outer bound, which consists in stabilizing

the configuration nδ0 in two phases. To start with, sample an i.i.d. Bernoulli(ζ) site

percolation configuration on Z, with

ζ = ζout − δ,

δ small to be chosen later. In the initial ζ-IDLA phase we move the n particles one at

a time: each particle walks until it finds an unoccupied open site, where it stops. Note

that this is equivalent to IDLA dynamics with particles only allowed to stop at open sites.

Thus in this phase if a particle tries to fall asleep before reaching an unoccupied open site

we force it to wake up, which, by Proposition 3, can only increase the odometer.
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Definition 4 (ζ-IDLA odometer function). We let vn : Z → N denote the odometer

function of the ζ-IDLA phase, that is vn(x) counts the number of instructions used at x

until each particle finds its spot.

We remark that the odometer function counts the number of sleep instructions too,

although they have no effect on the IDLA dynamics. The next lemma tells us that vn is

supported in a ball of radius n
2ζout

(1 + ε), with high probability.

Lemma 8. For any ε > 0

Pζ

(
supp(vn) ⊆ B n

2ζout
(1+ε)

)
≥ 1− e−n/(logn)2

for n large enough.

This follows from Theorem 7 in Appendix A, by taking ζ = ζout − δ and choosing

δ = δ(ζout, ε) such that

n

2(ζout − δ)
(1 + 2ε) =

n

2ζout
(1 + ε).

0 n
2ζout

(1 + ε)− n
2ζout

(1 + ε)

Figure 4. An illustration of the particle configuration at the end of the

ζ-IDLA phase.

At the end of the ζ-IDLA phase we are left, with high probability, with a configuration

of n active particles, supported on the open sites of the ball B n
2ζout

(1+ε). It only remains

to stabilize such a configuration. By Abelianness of ARW, assuming that each open site

of the Bernoulli configuration η on Z contains an active particle cannot decrease the ARW

odometer. Hence we obtain

un ≤ vn + w, (9)

with the inequality holding pointwise in both the site x and the realization of the Bernoulli

configuration η.

Lemma 9. Let

r− =
n

2ζout
(1 + ε), r =

n

2ζout
(1 + 3ε). (10)

Then

P

(
sup

x∈Br\Br−
un(x) >

r

(log r)3

)
≤ n−5/4

for n large enough.

Proof. Note that by (9){
supp(vn) ⊆ Br−

}
⊆
{
un(x) ≤ w(x) for all |x| > r−

}
.
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We combine this with Lemma 7, which bounds w, to get

P

(
sup

x∈Br\Br−
un(x) >

r

(log r)3

)
= Pζ

(
sup

x∈Br\Br−
un(x) >

r

(log r)3

)

≤ Pζ

(
supp(vn) * Br−

)
+ Pζ

(
sup
x∈Br

w(x) >
r

(log r)3

)
≤ e−n/(logn)2 + r−3/2 ≤ n−5/4

for n large enough. In the first equality we have used that the odometer function un is

independent of the Bernoulli percolation configuration. �

It only remains to show that on the event

sup
x∈Br\Br−

un(x) ≤ r

(log r)3

it is unlikely that max{un(−r), un(r)} > 0. Let r−, r be defined as in (10) above, so that

r − r− = nε/ζout. We restrict to the event

sup
x∈Br\Br−

un(x) ≤ n

(log n)2
,

which holds with P-probability at least 1− n−5/4 for n large enough. On this event

max{un(−r−), un(r−)} ≤ n

(log n)2
.

To conclude the proof of the outer bound we will use the following fact, which is a one–sided

version of Lemma 2.

Lemma 10. Fix an integer a > 0. Let S(nδ0) and un denote the ARW stabilization of

nδ0 and the odometer function respectively, using i.i.d. stacks ρ = (ρx(k))x∈Z,k≥1. For

N ≥ 0 integer denote by S̃(a,+∞)(Nδa) the stabilization of the particle configuration Nδa
with killing on (−∞, a], with i.i.d. stacks ρ̃ = (ρ̃x(k))x∈Z,k≥1. Then there exists a coupling

of ρ and ρ̃ such that for all N ≥ 0 on the event {un(a) = N} it holds

S(nδ0)
∣∣
(a,+∞)

= S̃(a,+∞)(Nδa)
∣∣
(a,+∞)

.

This can be proved using the same argument of Lemma 2, we leave the details to the

reader. The outer bound then follows from the next result.

Lemma 11. With r defined as in (10), it holds

P
(

max{un(−r), un(r)} > 0
)
≤ 2n−5/4

for n large enough.

Proof. By Lemma 9

P
(

max{un(−r), un(r)} > 0
)
≤ P

(
un(r) > 0, un(r−) ≤ n

(log n)2

)
+ P

(
un(−r) > 0, un(−r−) ≤ n

(log n)2

)
+ n−5/4.
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We prove that

P
(
un(r) > 0, un(r−) ≤ n

(log n)2

)
≤ n−2

for n large enough, since then the same holds for the specular event. To see the above in-

equality, note that by Lemma 10 we can build the stable configuration S(nδ0) on (r−,+∞)

as follows. Let N ≤ n/(log n)2 be arbitrary but fixed. On the event un(r−) = N , release

N particles from r− according to the following rules:

(i) Particles that move to the left of r− on the first step die.

(ii) Particles that move to the right of r− on the first step evolve according to ARW

dynamics, with killing upon returning to r−.

Note that forcing particles to wake up during this procedure can only increase the proba-

bility that un(r) > 0. Take Cλ to be a positive constant such that if ∆ = 2dCλ log ne and

G ∼ Geometric(λ/(1 + λ)) then

P(G ≥ ∆/2) ≤ n−5

for n large enough. We mark all the points of the form

{r− + k∆ : 1 ≤ k ≤ Kn}, for Kn =

⌊
r − r−

∆

⌋
− 1.

Note that Kn > N . We argue that on the event {un(r−) = N} it is unlikely that un(r) > 0,

since even if we force the N particles starting at r− to move until they occupy consecutive

vertices of the ∆-grid, upon release they would all fall asleep before being able to reach

another grid site, and hence before any of them can reach r.

Restrict to the event {un(r−) = N}. Release N particles from r− according to (i)-(ii)

above, except if a particle which is alive (and hence necessarily to the right of r−) tries

to fall asleep at a non-marked point, we force it to wake up, while if a particle reaches an

unoccupied marked point we stop it there. At the end of this procedure we are left with

at most N active particles, at most one for each marked point. We let them evolve until

they all settle. By the choice of ∆, the probability that at least one of them travels by

more than ∆/2 steps before trying to fall asleep is at most Nn−5. But since the marked

points are ∆-spaced, if all the particles travel by at most ∆/2 they cannot interact, so

they all manage to fall asleep, and un(r) = 0. Hence

P
(
un(r) > 0, un(r−) ≤ n

(log n)2

)
≤
dn/(logn)2e∑

N=1

P(un(r−) = N, un(r) > 0)

≤
dn/(logn)2e∑

N=1

Nn−5 ≤ n−2

for n large enough. �

Remark 4. We point out that the above arguments would have worked with a slightly

weaker assumption on the odometer integrability, which is used in the proof of Lemma 7 to

bound the odometer function over a large ball. Indeed, one only needs Eζ(w(0)2+γ) < ∞
for some γ > 0. More precisely, for arbitrary γ > 0 we can define

ζout(γ) := sup{ζ > 0 : Eζ(w(0)γ+2) <∞}
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to have that any ε > 0

P
(

supp(un) ⊆ B n
ζout(γ)

(1+ε)

)
→ 1

as n→∞, and the speed of convergence depends on γ.

5.1. Edge cases. The main interest of Theorem 1 is that it relates Experiment 2 to

Experiments 1 and 3. But its applicability is limited by an incomplete understanding of

Experiments 1 and 3. In particular, it would be interesting to rule out the edge cases

ζout = 0 and ζin = 1. By Definition 1, ζout ≤ ζc where ζc is the critical density

ζc := sup{ζ > 0 : Pζ(w(0) <∞) = 1}

studied in [26]. In fact, we conjecture that ζout = ζc.

It would be of interest to adapt the proof that ζc ≥ λ
1+λ [24, §4] to give a lower bound

on ζout. That proof uses “traps” arising from a simple random walk in Z killed only on

one side, so the resulting upper bound on w(0) does not even have a first moment. To

obtain an upper bound with finite moments, one could instead set traps on both sides of

an interval (−a, b) as in [6], and then use the one-sided trap procedure to stabilize the

half-lines (−∞,−a) and (b,∞). This procedure succeeds in stabilizing η on Z provided

that w(−a) = w(b) = 0. The main difficulty is then to show that for small enough ζ the

random variable

b := inf{x > 0 : w(x) = 0}
has finite moments.

This difficulty disappears in the case that all particles start at the origin, because there

are no particles starting outside (−a, b). So a simple two-sided trap procedure in an

interval [−Cn,Cn] shows that there is a finite constant C = C(λ) such that

P (An ⊂ BCn eventually) = 1. (11)

Also of interest would be to adapt the proof in [12] that ζc < 1 to give an upper bound

on ζin.

Appendix A. IDLA results

In this section we collect shape theorems for standard IDLA on Z, IDLA with killing

upon exiting a given interval, and IDLA on Bernoulli percolation.

A.1. IDLA on Z. Let A(0) = {0}, and for n ≥ 1 write An for the IDLA cluster on Z
obtained by adding n particles to A(0), all starting from the origin. Then

An = An−1 ∪ {Xn},

where Xn denotes the exit location of the nth random walk from An−1. Write

An = [−an, bn], n ≥ 0

so that a0 = b0 = 0 and an + bn = n for all n ≥ 0. Then

E(bn+1|Fn) = bn + P(Xn+1 = bn + 1) = bn + 1− bn + 1

n+ 2
=

(
n+ 1

n+ 2

)
(bn + 1).

It follows that if

Mn = (n+ 1)bn −
n(n+ 1)

2
, n ≥ 0
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then the process (Mn)n≥0 is a martingale with respect to the same filtration. Moreover,

|Mn −Mn−1| = |n(bn − bn−1)− (n− bn)| ≤ n

for all n ≥ 1.

Theorem 5 (Azuma-Hoeffding). Let (Xn)n≥0 be a martingale with respect to the filtration

(Fn)n≥0, and assume that |Xk − Xk−1| ≤ ck almost surely, for all k ≥ 1. Then for all

n ≥ 1 and all δ > 0

P(|Xn −X0| > δ) ≤ 2 exp

(
− δ2

2
∑n

k=1 c
2
k

)
.

We apply the above inequality with ck = k and δ = n3/2+ε, to get

P(|Mn| > n3/2+ε) ≤ 2 exp

(
−n

2ε

2

)
≤ e−nε

where the last inequality holds for n large enough. Since on the high probability event

{|Mn| ≤ n3/2+ε} we have that∣∣∣∣bnn − 1

2

∣∣∣∣ ≤ n−1/2+ε,

∣∣∣∣ann − 1

2

∣∣∣∣ ≤ n−1/2+ε,

this proves the following shape theorem for IDLA on Z.

Theorem 6. Let (An)n≥0 denote an IDLA process on Z starting from A(0) = {0}, and

write Br for the discrete ball of radius r on Z centred at 0. Then for all ε > 0 it holds

P
(
Bn/2−n1/2+ε ⊆ An ⊆ Bn/2+n1/2+ε

)
≥ 1− e−nε , (12)

for n large enough.

A.2. IDLA with killing upon exiting I. We now use the same martingale to prove an

analogous result for IDLA stopped upon exiting a given interval. Fix δ > 0 and let

I =
[
−n

2
(1− δ), n

2
(1− δ)

]
.

We write (Ān)n≥0 for the IDLA process on Z starting from Ā(0) = {0} with particles

killed upon exiting the interval I. If Ān = [−ān, b̄n], let

T = inf
{
n ≥ 0 : b̄n =

n

2
(1− δ) or ān =

n

2
(1− δ)

}
denote the first time the cluster reaches the boundary of I. Then up to time T we can

couple the process (Ān)n≥0 with a standard IDLA process (An)n≥0 so that Ān = An for

all n ≤ T .

Fix ε ∈ (0, 1/2) and suppose that n is large enough so that (12) holds. Then with

probability exceeding 1− e−nε we have that for all k ≤ n(1− δ)(1− n−1/2+2ε)

bk ≤ bn(1−δ)(1−n−1/2+2ε) ≤
n(1− δ)

2
(1− n−1/2+2ε) + n1/2+ε ≤ n(1− δ)

2
− n1/2+ε,

which implies T > n(1− δ)(1− n−1/2+2ε).

Assume that bT = n
2 (1 − δ). Then on the high probability event T > n(1 − δ)(1 −

n−1/2+2ε)

aT = T − bT ≥
n

2
(1− δ)(1− 2n−1/2+2ε),
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so that #(I \AT ) ≤ n1/2+2ε. Moreover, since necessarily T ≤ n(1−δ), at time T there are

still at least nδ particles to be released, with killing upon exiting I. In order for Ān = I it

thus suffices that at least n1/2+2ε of them settle before reaching the right boundary of I.

Since out of nδ random walks the number of walks that reach −n
2 (1− δ) before n

2 (1− δ)
is a Binomial random variable B(nδ, 1/2), we find

P(B(nδ, 1/2) < n1/2+2ε) ≤ E(e−B(nδ,1/2))en
1/2+2ε ≤

(
e−1 + 1

2

)nδ
en

1/2+2ε ≤ e−nδ/10

for n large enough. In all,

P(Ān ( I) ≤ P(T ≤ n(1− δ)(1− n−1/2+2ε)) + P(B(nδ, 1/2) < n1/2+2ε) ≤ 2e−n
ε

for n large enough. This proves Lemma 1.

A.3. IDLA on Bernoulli percolation. Let (ωz)z∈Z denote a Bernoulli(p) vertex per-

colation configuration, in which each vertex z ∈ Z is open (ωz = 1) with probability

p ∈ (0, 1), and closed (ωz = 0) with probability 1 − p. We let (Apn)n≥0 denote an IDLA

process starting from Ap0 = {0}, with particles only allowed to settle at open sites of the

percolation configuration, and refer to such a process as p-IDLA. Denote by Pp the dis-

tribution of the p-IDLA process, averaged on the environment. We further let vn denote

the odometer function associated to the stabilization of the initial particle configuration

η = nδ0 consisting of n active particles at the origin. Note that here all the stack instruc-

tions are movement instructions, so that vn(x) counts the number of particle emissions

from x until stabilization. For p-IDLA we have the following shape theorem.

Theorem 7. For all ε > 0 and n large enough,

Pp

(
B n

2p
(1−ε) ⊆ supp(vn) ⊆ B n

2p
(1+ε)

)
≥ 1− e−n/(logn)2 .

A similar result appears in [7], Theorem 4, where the focus is on higher dimensions.

Since in dimension 1 the proof is substantially simpler, and we need quantitative estimates

that do not appear in [7], we include it here for completeness.

Proof of the inner bound. Fix ε > 0 as in the statement. Let us say that a particle

settles when it first reaches an open empty site. Following Lawler, Bramson and Griffeath

[16], we think of the random walks’ trajectories as continuing indefinitely, even after the

corresponding particles settle. Then for arbitrary z ∈ B n
2p

(1−ε) define

Nz =

n∑
k=1

1
{

The kth walk reaches z before settling
}

Mz =

n∑
k=1

1
{

The kth walk reaches z before exiting Bn/2p
}

Lz =

n∑
k=1

1
{

The kth walk settles before reaching z, and reaches z before exiting Bn/2p
}
.

Then Nz ≥Mz − Lz, and so

Pp (z /∈ supp(vn)) = Pp(Nz = 0) ≤ Pp(Mz ≤ a) + Pp(Lz ≥ a) (13)
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for a ∈ R to be chosen later.

Let Px denote the law of a simple random walk on Z starting from x, and write τz and

τBn/2p for the hitting time of z and the exit time from the ball Bn/2p respectively. Then

Ep(Mz) = npP0(τz < τBn/2p) = np

( n
2p

n
2p + |z|

)
≥ np

2− ε

where the last inequality holds for n large enough. Moreover, if

L̃z =
∑

y∈Bn/2p

ω(y)1y(τz < τBn/2p),

then Lz ≤ L̃z, and

Ep(Lz) ≤ Ep(L̃z) = p
∑

y∈Bn/2p

Py(τz < τBn/2p).

Let f denote the piecewise linear function whose graph in [−1/(2p), 1/(2p)] consists of the

two line segments connecting (−1/(2p), 0) with (|z|/n, 1) and (|z|/n, 1) with (1/(2p), 0).

Using the integral approximation

Py(τz < τBn/2p) =

∫ 1
2p

− 1
2p

f(x)dx+ o(1)

as n→∞, we find

lim
n→∞

1

n
Py(τz < τBn/2p) =

1

2
,

from which
np

2
(1− ε) ≤ Ep(L̃z) ≤

np

2

(
1 +

ε

8

)
for n large enough. Then using a standard concentration inequality for sums of indicators

(see [1], Corollary A.1.14), we obtain that there exists cε > 0 such that

Pp

(
Mz ≤ Ep(L̃z)

(
1 +

ε

4

))
≤ Pp

(
Mz ≤ Ep(Mz)

(
1− ε

16

))
≤ 2 exp {−cεEp(Mz)} ≤ exp

{
− n

log n

}
and

Pp

(
L̃z ≥ Ep(L̃z)

(
1 +

ε

4

))
≤ 2 exp

{
−cεEp(L̃z)

}
≤ exp

{
− n

log n

}
for n large enough. This shows that taking a = Ep(L̃z)

(
1 + ε

4

)
in (13) yields

Pp

(
B n

2p
(1−ε) * supp(vn)

)
≤ n

p
exp

{
− n

log n

}
≤ e−n/(logn)2

for n large enough, which proves the inner bound.
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Proof of the outer bound. Fix ε > 0 as in the statement. Then for λ > 0 small enough

Pp

( ∑
x∈B n

2p (1− ε
4 )

ω(x) ≤ n
(

1− ε

4

)2
)
≤ Ep

(
exp

{
− λ

∑
x∈B n

2p (1− ε
4 )

ω(x)

})
eλn(1−ε/4)2

= (1− p+ pe−λ)
n
p

(1−ε/4)
eλn(1−ε/4)2 ≤ e−λn(1−ε/4)ε/4 ≤ e−

n
logn

for n large enough. It follows that

Pp

(∣∣∣Apn \B n
2p

(1− ε
4

)

∣∣∣ > nε

2

)
≤

≤ Pp

( ∑
x∈B n

2p (1− ε
4 )

ω(x) ≤ n
(

1− ε

4

)2
)

+ Pp

(
B n

2p
(1−ε/4) * supp(vn)

)
≤ 2e

− n
logn

(14)

for n large enough. On the high probability event∣∣Apn \B n
2p

(1− ε
4

)

∣∣ ≤ nε

2
(15)

at most nε/2 particles settle outside the ball of radius n
2p(1 − ε

4). We now show that,

even if they all settle on one side, the outer bound is satisfied with high probability. To

this end, let (∆k)k∈Z\{0} denote the gaps between consecutive open sites to the right of

b n2p(1− ε
4)c if k > 0, and to the left of −b n2p(1− ε

4)c if k < 0.

0 b n
2p

(
1− ε

4

)
c−b n

2p

(
1 + ε

4

)
c

∆1 ∆2 ∆3∆−1∆−2

Figure 5. An illustration of the ∆k notation.

Then on the high probability event (15) it must be

supp(vn) ⊆ B n
2p

(1− ε
4

)+max
{∑nε/2

k=1 ∆k,
∑nε/2
k=1 ∆−k

}.
It thus suffices to show that

Pp

(
max

{ nε/2∑
k=1

∆k,

nε/2∑
k=1

∆−k

}
≥ nε

2p

(
1 +

ε

4

))
≤ 2e

− n
logn

for n large enough. To this end, let (Gk)k∈Z\{0} be a sequence of i.i.d. Geometric(p) random

variables, and note that since ∆1 � G1, ∆2 � G2 we have the stochastic domination

nε/2∑
k=1

∆k �
nε/2∑
k=1

Gk,

nε/2∑
k=1

∆−k �
nε/2∑
k=1

G−k.
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Thus, choosing λ > 0 small enough depending on p and ε, we find

P

nε/2∑
k=1

Gk ≥
nε

2p
(1 + ε/4)

 ≤ [E(eλG1)
]nε/2

exp
{
− nε

2p
(1 + ε/4)

}

=

(
peλ

1− (1− p)eλ

)nε/2
exp

{
− nε

2p
(1 + ε/4)

}
≤ exp

{
− nε

2p
(1 + ε/8)

}
≤ e−

n
logn

for n large enough, which concludes the proof.
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