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Computational modeling of brain circuits requires the definition of many parameters

that are difficult to determine from experimental findings. One way to help interpret

these data is to fit them using a particular kinetic model. In this paper, we propose

a general procedure to fit individual synaptic events recorded from voltage clamp

experiments. Starting from any given model description (mod file) in the NEURON

simulation environment, the procedure exploits user-defined constraints, dependencies,

and rules for the parameters of the model to fit the time course of individual spontaneous

synaptic events that are recorded experimentally. The procedure, implemented in

NEURON, is currently available in ModelDB. A Python version is installed, and will be

soon available for public use, as a standalone task in the Collaboratory Portal of the

Human Brain Project. To illustrate the potential application of the procedure, we tested

its use with various sets of experimental data on GABAergic synapses; gephyrin and

gephyrin-dependent pathways were chosen as a suitable example of a kinetic model

of synaptic transmission. For individual spontaneous inhibitory events in hippocampal

pyramidal CA1 neurons, we found that gephyrin-dependent subcellular pathways may

shape synaptic events at different levels, and can be correlated with cell- or event-specific

activity history and/or pathological conditions.

Keywords: CA1 neurons, GABAergic synapses, gephyrin, fitting procedure, NEURON simulator, Python, Human

Brain Project Collaboratory

INTRODUCTION

The computational modeling of brain circuits, at practically any integration level, requires many
parameters to be defined that, ideally, should be experimentally determined or constrained by
experimental data or findings. However, many such parameters simply cannot be experimentally
determined due to technical or conceptual limitations. In such cases, we may achieve better
understanding of a neuronal function or mechanism by testing how and to what extent different
theoretical models can take into account relevant experimental data. Fitting experimental data
against a number of different models is a common way to do this (reviewed in Van Geit et al.,
2008), and can help in the subsequent interpretation of the data. In general, experimental traces
are fitted using specific approaches for specific purposes (e.g., Bekkers, 2003; Meisl et al., 2016).
However, to the best of our knowledge, there is no easy, user-friendly, general procedure available
for this purpose, especially in computational neuroscience. Our aim was thus to identify the
appropriate conceptual structure of a procedure to obtain good, reliable fits of raw experimental
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traces of spontaneous synaptic events. This is an important
step because spontaneous synaptic events have been so far
exclusively analyzed using traces obtained by averaging many
events. However, as can be easily imagined, each synapse in any
given neuron has its own, independent, history of activation. The
most likely physiological consequence is that the variables relative
to the subcellular processes underlying synaptic transmission are
different for each synapse. If a researcher is interested in testing
a specific kinetic scheme implemented for specific biochemical
pathways, the use of individual events is the most appropriate
choice, since this approach would give information on the
different combinations of model parameters that are consistent
with the observed events. Averaging traces will lose a lot of
relevant information.

We therefore present here the implementation of a procedure
leading to the development of a unifying optimization method
for individual synaptic events. Experimental data, kinetic models
of synaptic transmission, and fitting parameters and their
dependencies can be user defined/provided or gathered from
databases. They can be used to generate optimized groups of
parameters able to represent a population of synapses, either
for simulation purposes or to study the functional consequences
of a particular protein or subcellular synaptic transmission
pathway. The procedure is implemented as a general tool that
is available from the ModelDB depository (http://senselab.med.
yale.edu/ModelDB/) for offline use, or within the Human Brain
Project (HBP; Markram, 2012) infrastructure.

MATERIALS AND METHODS

Experimental Procedure
Ethical Approval
All experiments were performed in accordance with Directive
2010/63/EU of the European Parliament and of the Council
on the protection of animals used for scientific purposes, and
approved by both the Institute’s Ethical Committee and the
Italian authority veterinary service (Italian Ministry of Health).
All efforts were made to avoid animal suffering and to minimize
the number of animals used.

Hippocampal Slice Preparation
We obtained coronal hippocampal slices (300µm thick) from
juvenile (P21–30) C57Bl6/J male mice (three experiments, expA,
expC, and expD) or from 3 to 4 months old wt (B6/SJL) or
Tg2576 (carrying the Amyloid Precursor Protein KM670/671NL
Swedish mutation) female mice (experiments expB and expE,
respectively). Briefly, after being anesthetized with 2-Bromo-2-
chloro-1,1,1-trifluoroethane the animals were decapitated. The
brain was quickly removed from the skull and placed in
ice-cold cutting solution containing: 126mM choline, 17mM
glucose, 26mMNaHCO3, 2.5mMKCl, 1.4mMNaH2PO4, 7mM
MgCl2, and 0.5mM CaCl2(equilibrated with 95% O2/5% CO2).
We cut coronal slices with a vibratome and stored them for
45min at 32◦C and thereafter at room temperature (22–24◦C).
Individual slices were transferred to a recording chamber where
they were continuously superfused with an oxygenated artificial
cerebrospinal fluid (ACSF) (95% O2 and 5% CO2), at a rate of

3ml/min, containing 126mM NaCl, 2.5mM KCl, 2mM CaCl2,
2mMMgSO4, 1.25mMNaH2PO4, 26mMNaHCO3, and 10mM
glucose (pH 7.4).

Electrophysiological Recordings
From the coronal slices, we obtained whole-cell voltage clamp
recordings from CA1 pyramidal neurons (PNs) at 32◦C
under infrared differential interference contrast imaging with
borosilicate glass capillaries, which had resistances between 3
and 4 M�. We made voltage-clamp recordings of GABAA-
mediated spontaneous inhibitory post-synaptic currents (sIPSCs)
in the presence of the AMPA receptor antagonist 6,7-
Dinitroquinoxaline-2,3-dione (DNQX 20µM) and the NMDA
receptor antagonist D-(-)-2-Amino-5-phosphonopentanoic acid
(D-AP5 50µM). The recording electrodes were filled with the
following intracellular solution: 70mMKGluconate, 70mMKCl,
70mM HEPES, 10mM EGTA, 1mM MgCl2, 4mM MgATP,
and 3mMNa2GTP. The intracellular chloride concentration was
dependent on the intracellular solution of the pipette, which
yielded a calculated reversal potential for chloride of ∼ −16mV.
PNs were held at −70mV (C57Bl6/J mice) or −75mV (B6/SJL
and Tg2576 mice); GABA-mediated events were therefore
detected as inward currents. Series resistance (Rs) was monitored
throughout the experiment and recordings were discarded if Rs
changed by 25% of its initial value. The data obtained were then
used to test the performance of the fitting procedure. To this end,
data were arbitrarily divided in 5 different experiments (expA-E).

Computational Procedure
We carried out all simulations using an integrated NEURON
(v7.4, Carnevale and Hines, 2006) and Python (v2.7.10, Hines
et al., 2009) parallel code on different systems, including a
multiprocessor desktop Windows PC and a large supercomputer
(IBM BlueGene/Q, FERMI machine, Cineca, Italy). The model
and simulation files can be downloaded from the ModelDB
database (http://senselab.med.yale.edu/ModelDB/, a.n. 182129);
the HBP standalone task and jupyter notebook can be accessed
from the Collaboratory Portal (https://collab.humanbrainproject.
eu/#/collab/704/).

For the optimization, the NEURON built-in PRAXIS
principal axis method for minimizing a function was used. The
parallel implementation used the NEURON’s ParallelContext()
class with a bulletin board style analogous to LINDA. The
Python standalone version requires task-sdk, a set of tools and
libraries to develop code that can be registered, shared, launched
and tracked using the HBP Platform. The public HBP Collab
is implemented as a jupyter notebook, and allows community
use, development, and improvements. The graphical interface
of the jupyter notebook version is implemented using standard
packages as plotly and ipywidgets. More details on the design and
architecture of the procedure itself are presented and discussed in
Results.

For the biophysical implementation of the cells, we
used a simple single compartment (10µm in diameter and
length) with passive properties commonly used for CA1 PNs
(Cm = 1µF/cm2, Rm = 28,000�/cm2) and a resting potential
set to the voltage clamp value these cells were held at in the
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experiments (−70 or −75mV). However, to test for possible
systematic errors, we also ran additional simulations using a
morphologically and biophysically accurate model (cell 5038804,
from ModelDB a.c.55035, Migliore et al., 2005). Of the many
methods, error cost functions, and algorithms that can be used
to fit electrophysiological experimental traces (Van Geit et al.,
2008), we used the built-in NEURON principal axis steepest
descent method (Praxis). In preliminary simulations we also
used the new, open source, Distributed Evolutionary Algorithms
in Python (DEAP).

To test our procedure with a set of experimental traces,
we first needed to implement an appropriate kinetic model of
synaptic transmission. The classic and widely used bi-exponential
synaptic conductance change does not capture well the resulting
variabilities of the IPSCs. Most importantly, however, it cannot
give much information on the subcellular pathways underlying
synaptic transmission. We were interested in testing a model for
at least one of the biochemical pathways involving at least one
of the tens of thousands of proteins present in a synapse. We

choose to implement a relatively basic model for gephyrin. There
are three main reasons for this choice: (1) it is one of the major
players for synaptic transmission, and of particular importance in
inhibitory synapses (reviewed in Choii and Ko, 2015) (2) we were
able to implement a specific kinetic model simple enough to be,
at the same time, informative and analytically solvable, and (3)
we plan to carry out soon (for a future paper) experiments using
a new type of antibody to selectively block Gephyrin ex vivo, to
compare experimental data with the model’s prediction.

RESULTS

From five different experiments, we obtained a total of 4712 raw
experimental sIPSC recordings to use in our fitting procedure.
Representative sIPSC traces from each of the five experiments
can be seen in Figure 1 (top), showing the relatively wide range
of peak currents and duration obtained. For the purpose of this
work, we also included traces that show multiple events (thick

FIGURE 1 | Spontaneous inhibitory synaptic currents on hippocampal CA1 pyramidal neurons. Top: Representative raw experimental traces of spontaneous

events recorded from the five different experiments used; thick lines highlight examples of traces with multiple events; Bottom: distribution of peak sIPSCs (gray bars),

from raw data. The distributions were fitted by a Pseudo-Voigt, 4-parameter equation:

f = a ·
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The parameters best fitting each experiment were: expA, a = 0.2069, b = 18.7436, c = 0.8087, x0 = 40.2020 (R = 0.9681); expB, a = 0.4024, b = 9.0292,

c = 1.0000, x0 = 24.8492 (R = 0.9602); expC, a = 0.2785, b = 13.3410, c = 0.4665, x0 = 36.9253 (R = 0.9811); expD, a = 0.2998, b = 11.5380, c = 1.0000, x0 =

34.6231 (R = 0.9715); expE, a = 0.3193, b = 11.7930, c = 1.0000, x0 = 26.8240 (R = 0.9633).
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traces in Figure 1, expB and expC) or that are clearly unsuitable
for fitting due to inadequate amplitude and/or large background
noise. For all experiments, the distribution of peak currents was
well approximated from the raw data by a 4-parameter pseudo-
Voigt distribution (Figure 1, bottom). Approximately 25–30% of
the events exhibited a peak current in the range of 20–30 pA, 2–3
times larger than GABAergic spontaneous events recorded from
CA1 PNs of adult Wistar rats (Cossart et al., 2000).

To illustrate the typical range of basic properties of the
events, we plotted all traces from expC (after baseline removal)
aligned with respect to their peak time (Figure 2, top) and
normalized with respect to their peak value (Figure 2, bottom). A
comparison between the average curve (Figure 2, thick red lines)
and the traces outside the standard deviation region (Figure 2,
gray areas around the average) reveals the wide range of values
that can be recorded.

For this work, we implemented a relatively simple subcellular
transsynaptic inhibitory signaling pathway including pre- and
post-synaptic scaffolding proteins (Figure 3). In this kinetic

FIGURE 2 | Preprocessing of experimental traces before fitting. Top:

The plot shows the average (±sd) of all experimental traces selected for fitting,

after preprocessing to isolate single events and remove holding and baseline

currents; Bottom: to highlight the variability in the decay time, traces are

shown aligned and normalized to the peak current; for clarity only the decay

time course is shown.

scheme, the inhibitory current, IGABAA, elicited by synaptic
activation, is modulated by the following variables (in arbitrary
units, unless specified otherwise):

• gephyrin clusters (GEPH)
• Neuroligin/Neurexin clusters (NLG2/NRXN)
• Neurotransmitter molecules (N)
• Postsynaptic receptors (Ry)
• Basic time course of synaptic conductance (g(t))

Several rate constants form the set of fitting parameters and
are responsible for the dynamics of the overall synaptic current.
The overall kinetic scheme is implemented as a perturbation of
g(t), modeled using the phenomenological model of neocortical
synapses introduced and discussed by Tsodyks and Markram
(1997) and Abbott et al. (1997):

g(t) = w ·

[

exp

(

−
t

τd

)

− exp

(

−
t

τr

)]

FIGURE 3 | The synaptic transmission scheme used for all simulations.

Top: The scheme represents the specific pre and post-synaptic subcellular

processes that we wished to investigate (see main text for explanation);

Bottom: somatic current (calculated from the analytical solution of the

equations describing the synaptic transmission scheme) during a single

synaptic activation under control conditions (black trace), and after 50%

increase/decrease of GEPH, ϕ, and αb; we used the parameter values

obtained under control conditions for the best fit.
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where w is the peak synaptic conductance, τ r and τ d are the
rise and decay time constant, respectively. In the absence of
this additional subcellular pathway (Figure 3, top), it would
generate the typical double exponential time course. With
the addition of the mechanisms represented in Figure 3, the
set of differential equations describing the synaptic current
dynamics is:

dN

dt
= β · αf · g(t) · NLG2− αb · N

dNLG2

dt
=

Nlmax · F(GEPH)

1 + N1/2/NLG2
− ϕ · NLG2

dRy

dt
= h · GEPH− h1 · Ry

with the synaptic current defined as:

IGABAA = c1 · N · Ry · (v− erev)

where c1 is a constant, v the membrane potential and erev
the reversal potential. We assumed that GEPH is constant
throughout the duration of a synaptic event, that the peak value
of NLG2 depends on GEPH, and that it changes according to
simple Michaelis-Menten kinetics, with F (GEPH) = 1. We
preferred this minimal formulation over others that use more or
less variables and dynamics, because we considered it sufficient
to capture the overall effects of gephyrin and because it has
several important properties for our purposes. For example, the
inclusion of h and h1 means that it is easier to separate the effects
caused by additional modulation of the postsynaptic response
through GEPH-dependent mechanisms, without interfering with
presynaptic pathways. Another extremely useful feature of
this implementation is that the system permits an analytical
solution; assuming a simple relationship between GEPH and
NLG2 as

Nlmax = GEPH, Nhalf = GEPH/2

the general solution for the variables of the system is then

NLG2 =
GEPH − GEPH · ϕ

2ϕ
, Ry =

h

h1
· GEPH

N(t) = e−αb·t ·







C[1]+ β · αf ·NLG2 · w·





e
(αb −

1
τD

)·t

1 − αbτD
−

e
(αb −

1
τR

)·t

1 − αbτR











where C[1] depends on the initial conditions. Assuming
the initial condition N(0) = 0, the current IGABAA will be

IGABAA = IFACT
[(1− αbτD) − (1− αbτR)] · e

−αb·t+ (1− αbτR) · e
−

t
τD − (1− αbτD) · e

−
t

τR

(1− αbτD) · (1− αbτR)
(v− eGABAA) (1)

where

IFACT = c1 ·
h

h1
·

[

2 · GEPH2 − ϕ · GEPH2

2 · ϕ

]

.β · αf · w (2)

The overall synaptic current will then be mainly dominated
by: (1) the number of GEPH, squared, involved on the
postsynaptic side; (2) the hyperbolic dependence from the
NLG2/NRXN turnover rate, ϕ; and, (3) the rate at which released
neurotransmitter molecules diffuse away from the synaptic
cleft, αb The effect of a 50% change in these parameters is
shown on the graph on Figure 3, and demonstrates the larger
overall consequence caused by an increase or decrease of GEPH
(Figure 3 graph, blue lines), with respect to the other synaptic
parameters. These results illustrate the fundamental role of a
stable synaptic scaffolding mechanism for a reliable transsynaptic
signal transmission, which can be easily disrupted by small
changes in GEPH caused by pathological conditions. We used
this model to fit all the experimental traces.

The fitting procedure (Figure 4, top), was implemented in
NEURON and Python. A pseudocode illustrating its extremely
simple architecture is presented below. Traces were initially

1. load config and mod files
2. load experimental traces
3. for i= 1 to number of traces do
4. preprocess trace (returns trace length)
5. if trace length >=minimum length then
6. for j=1 to number of initial configurations do

7. randomize initial parameters
8. Praxis optimization (NEURON simulations,

return RMSE)
9. if RMSE < maximum tolerated error then
10. write ensemble of optimized parameters
11. end if

12. end for

13. end if

14. end for

preprocessed to remove baseline current, and clipped to avoid
overlapping synaptic activations that could significantly distort
the time course of an individual event. To do this, the program
identified relatively large current changes (more than 10% of
the peak current), found using a moving time window that was
dynamically determined for each trace. In addition, to avoid
contamination by smaller events during the late phase of the
current decay, traces were clipped when the current decayed
to 20% of the maximum value. A user-defined configuration
file provides all the information needed to fit the traces with
a given synaptic kinetic model, with equations implemented
in the usual NEURON model description language (i.e., in a
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FIGURE 4 | Schematic organization of the general fitting procedure and a typical configuration file.
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“mod” file). The configuration file includes the name of the
parameters to be fitted, their allowed range of variation, exclusion
rules, and an optional set of dependencies for other parameters.
A typical file is shown in Figure 4 (bottom). The definition
of the relevant parameters and experimental protocol in a
configuration file makes the procedure independent from the
specific kinetic model, and enhances generality and usability.
Every block inside the file is commented out to illustrate the
kind of information needed to configure the fitting process.
We tried to keep to a minimum the number of user-defined
parameters. They can be eventually expanded according to the
user community requests to include more technical parameters,
such as number of iterations or random initial conditions, error
threshold, parameters for trace extraction, etc. In preliminary
tests, we explored different cost functions considering general
features, such as the trace width when the current decayed to 10,
50, or 90% of the maximum. However, we found this approach
unreliable due to the level of noise in most traces. We thus chose
to minimize the classic root mean squared error (RMSE) between
the time course of the experimental and simulated currents. An
average RMSE lower than 10% of the peak current was chosen as
the acceptable threshold for fit. We performed preliminary tests
to find a reasonable number of randomized initial conditions
and iteration steps, in terms of computational time and quality
of fits, and found that a set of 100 initial conditions (uniformly
randomized within a user-defined range) and up to 3000 iteration
steps were sufficient; larger sets did not result in any qualitative
improvement of the fits.

To better explore the parameter space, each attempt to
fit a trace began with a randomized set of initial conditions
for all parameters (according to the relative range defined
in the configuration file) and proceeded until reaching either
convergence or the maximum number of iterations. Under
these conditions, each fit attempt required an average of ≈2000
iteration steps, corresponding to ≈940,000,000 independent
simulations to fit all 4712 experimental traces. This process is
ideally suited for parallel processing. On an IBM BlueGene/Q
using 2048 processors each fit took, on average, 1.5 s of CPU
time. At the end of the procedure, the ensemble of parameters
fitting each experimental trace was saved for further use and
analysis. Warning messages were reported in a file for traces
that either could not be fitted (i.e., with an RMSE >10% of
the maximum current), or where the RMSE was within the
threshold but one or more parameters showed an outlier value.
About 38% of the traces were excluded for these problems.
Considering that we are using non-averaged raw traces we think
that this proportion is not too restrictive. Most of the rejected
traces (25%) were excluded because of the error threshold, and
the rest (13%) were not fitted because the semiautomatic trace
selection process found them too short (<5ms after peak time),
or overlapping with another event before they returned to an
amplitude below 20% of the peak. The error threshold and the
number of iterations may change the rejection rate. However,
raising the error threshold would not be a good choice, because
it may accept fits that do not represent well the kinetic model at
study. Increasing the number of iterations could also reduce the
rejection rate but it would require more computational time. This

is part of the classic trade-off between computational time and
fitting accuracy.

It can also be argued that a cost function based on the running
mean rather than directly on the raw data might give better
results. To test this hypothesis, the running mean was used to
carry out the optimization for the 267 traces from expA. We
found that more than 50% of the events that were accepted using
the raw data were rejected using the running mean, and only
3.74% of those that were rejected were now accepted. One of
the main reason for this low performance of the running mean
may be that it tends to weight more the part of the curve around
the peak.

Typical examples of traces and fit are plotted in Figure 5A.
Larger events resulted in fits with below average RMSE
(Figure 5A, left). However, even relatively small events can be
reasonably fitted. As shown in Figure 5A (middle), clipping the
raw trace when it decayed to 80% of the peak was especially
useful in these cases (Figure 5A, dotted vertical lines). For
many small events the background noise was too strong to
obtain a reasonable fit (Figure 5A, right). Overall, a best fit was
obtained for 2925 traces, and the error distribution for these cases
(Figure 5B) reveals a substantial proportion of events (≈68%)
with an error rather uniformly distributed in the range 6–10%.
The distribution as a function of the peak current (Figure 5C)
shows that this occurred for events in the range of 25–35 pA in
many cases.

To test the performance of the DEAP approach, we carried out
test simulations using all 267 traces from expA (see Figure 5A).
Preliminary simulations showed that we could obtain fits with an
RMSE relatively close to that obtained with the NEURON built-
in Praxis method, using a population of 300 individuals and at
least 60 generations. On a Linux cluster, using 320 processors, a
fit of a single trace took≈59,500 s. Using 2048 processors, 100 fit
attempts would therefore take ≈930,000 s, i.e., more than 250 h
to fit all 267 traces. The same process took less than 2 h using
the Praxis method on a BlueGene/Q using 2048 processors. We
therefore decided not to use the DEAP algorithm in this case.

To demonstrate the flexibility, applicability, and ease of use of
the software, we used it to fit the traces from expA with another
model. We chose the simple double-exponential kinetic scheme
built-in in the NEURON simulation environment. This was done
by modifying only the configuration file as shown below:

//FITTING PARAMETERS AND INITIAL VALUES
4
0 syn[0].tau1 1.6
1 syn[0].tau2 7.7
2 nstim.start 0.2
3 nc[0].weight 1.2e-3
//CONSTRAINTS
0 2
2 10
1e-5 1e5
1e-5 1e5
//DEPENDENCY RULES FOR PARAMETERS NOT FITTED
0
//EXCLUSION RULES
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//example: (parmlist.o(9).val < syn[0].nhalf∗parmlist.o(7).val)
//means: syn[0].geph<syn[0].nhalf∗syn[0].phi
0
//PARAMETERSWARNING (ALL EXCEPT)
0

In comparison with our model, less traces were fitted with
an error below 10% (77.15% instead of 77.90%) producing less
ensembles of optimized parameters (8578 instead of 10,152).
Also, the error distribution (not shown) contained a bigger
proportion of events (65 vs. 55%) with an error in the upper range
(6–10%).

The next step was to figure out if the fit results are a reasonable
representation of the real synapses. We thus decided to use the
component of time to peak current to test if the fits obtained with
our procedure are affected by alterations in the time course of a
synaptic current due to inadequate voltage clamp of dendrites or
filtering properties of the membrane. For this purpose, we began
from the results obtained in ExpD and selected all experimental

traces for which it was possible to obtain a fit. We selected 1240
suitable traces from a total of 2130; the experimental values of
the time to peak are plotted in Figure 6 (left). They show a
relatively compact range of peak currents, with time to peak
values in the range 0.2–2ms and no correlation with peak current
values (Pearson’s correlation, p > 0.05). To assess whether these
values are consistent with synapses located in the dendrites or at
the soma, we performed simulations using the morphologically
accurate CA1 neuron; we used 1112 synapses (two for each of
the 556 dendritic membrane segments of the neuron) to generate
single synaptic events, each with an ensemble of parameters
randomly chosen among those obtained for the best fits of the
experimental traces. The results for the time to peak of each
event are plotted in Figure 6 (middle). A wide range of values
in the range of 0.4–7ms is spread over an even wider range
of measured peak current values, inversely correlated with the
distance of the synapse from the soma (Pearson’s correlation
−0.451, p < 0.001), and consistent with what can be expected
by the filtering properties of the membrane. We then repeated

FIGURE 5 | Typical results of the fitting procedure. (A) The plots show experimental traces and one fit for typical cases of good (left) and worst (middle) fit, and

one of the traces for which a reasonable fit could not be found; (B) Proportion of events with a given fit error; (C) (left) Distribution of fit error as a function of the peak

current; (right) distribution of peak current for traces with a fit error >6%.
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FIGURE 6 | Space clamp error. Left: Time to peak of synaptic current as a function of the peak, from expD experimental traces that were selected for fitting;

Middle: time to peak of synaptic current as a function of its peak, from simulations in which a synapse with a random parameter ensemble was placed at a random

dendritic location; Right: time to peak of synaptic current as a function of its peak, from simulations in which all simulations carried out for the middle panel were

repeated with the synapse in the soma.

the same set of simulations with a synapse placed at the soma.
The results (Figure 6, right) show a distribution similar to the
experimental values, with no correlation with the peak current
(Pearson’s correlation 0.0623, p < 0.05). The same result was
obtained for all experiments (not shown). A comparison of the
time to peak distributions (Kruskal–Wallis One Way Analysis of
Variance on Ranks, with multiple comparisons performed using
Tukey Test), showed a statistical difference (p < 0.05) between
the experimental values and those obtained with synapses in the
dendrites, and no difference between experiment and synapses
near the soma. Taken together, these results suggest that all the
fitted traces are from synaptic events elicited near the soma.

To assess the kind of information that can be obtained
using our procedure on individual synaptic events, and how
useful the information can be, we began with an analysis at
the highest data level, pooling results from all experiments. The
overall distribution of values obtained for each parameter is
shown in Figure 7. The results reflect the wide range of allowed
values for most parameters (as defined in the configuration
file). The only exceptions were τ r and τ d, constrained within a
relatively narrow range of experimentally plausible values (0.05–
0.5, ad 3–20ms, respectively). To test for a possible correlation
between parameters, a correlation matrix was calculated using
the Spearman Rank Order Correlation (Figure 7, bottom).
Many interesting and statistically significant positive or negative
correlations were obtained between parameters. A closer look
at the results, particularly those showing the highest correlation
(Figure 7, plots with a gray background), reveals a relationship
between specific parameters that can give useful information.
For example, h was negatively correlated with αf , αb and GEPH,
whereas h1 was positively correlated with αf , GEPH, and the
peak synaptic conductance w. These correlations very closely
reflect the true relations among parameters, as can be seen from
the analytical solution of the model equations (Equations 1, 2).
This capability of the fitting procedure, to directly point out the

relations among parameters, can be very useful when the model
at hand is too complicated to be solved analytically.

Next, we considered two example parameters (αb and IFACT)
that illustrate other type of results that can be obtained with
our procedure. The first parameter, αb, represents the rate at
which released neurotransmitter molecules diffuse away from
the synaptic cleft, and is the main mechanism modulating
extrasynaptic tonic inhibition, whereas IFACT represents the time
independent effects. In Figure 8 we show the distribution of
αb from different perspectives at different levels: experimental,
to compare the results between different experiments; cellular,
to compare the results from different neurons within the
same experiment; and, intracellular, to compare the results for
individual events recorded from the same neuron during a given
experiment. Unless stated otherwise, we selected only the best fit
for each trace, to minimize the possible bias caused by the many
(good) fits of the less noisy traces. Unless otherwise noted, in all
cases the parameter distributions were compared using Kruskal–
Wallis One Way Analysis of Variance on Ranks, with multiple
comparisons performed using Dunn’s method.

Statistical comparison of the values for αb, grouped for each
experiment (Figure 8A), indicates that the rate at which released
neurotransmitter molecules diffuse away from the synaptic cleft
can be significantly different between experiments (gray squares
indicate p < 0.05). This was true in all cases, except for
events during expA (juvenile C57Bl6/J male mice) and expE
(3–4 months old female Tg2576 mice). The set of αb values
obtained in these two experiments were indistinguishable. In
Figure 8B we show box plots of αb grouped for each neuron in
each experiment, whereas in Figure 8C we plot the correlation
matrix comparing values obtained between neurons. Statistically
significant differences are indicated with a black square, and
they reveal information that could be used to better characterize
the synaptic properties of specific neurons. For example, some
neurons (e.g., A2, D3, and E10) have αb values indistinguishable
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FIGURE 7 | Values and correlation of model parameters. Top: Box plot of the parameter values obtained for the best fit for all traces; Bottom: correlation matrix;

colored squares indicate an absolute value for Spearman’s correlation coefficient above 0.2. The actual value is reported in the relative plot and, to highlight the

correlation, points were plotted in log scale.
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FIGURE 8 | Continued
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FIGURE 8 | Continued

Typical example of multilevel analysis of simulation results for αb. (A) (Left) correlation at the experimental level; the plot shows cases (gray squares) in which

there was a significant difference in the median values between values obtained by fitting traces from different experiments; (right) box plot of αb values grouped by

experiment; (B) Analysis at the single cell level; box plots of αb values grouped by results obtained in recordings from the same cell; (C) Correlation at the single cell

level; the plot shows cases (black squares) in which there was a significant difference between the median values obtained by fitting traces from different cells; (D)

Analysis at the single trace level; selected examples of αb values grouped by results obtained from multiple fits of the same trace; (E) Typical examples of traces (left,

thin lines) and one of their fit (left, thick lines); (right) fitted traces are plotted aligned to their peak value to allow better comparison among different traces.

from those obtained for most of the other neurons, whereas other
cells (e.g., B4 or D2) showed αb values significantly different from
all the other neurons, including those from the same experiment.
Can these differences reflect specific synaptic configuration for
specific neurons? To test this hypothesis, in Figure 8D, we
grouped the αb values obtained for a randomly chosen set of
events from neurons A3, B4, and B9. Note that, as indicated in
Figure 8C, A3 and E9 have the same distribution of αb values,
whereas that for B4 is different from both. As can be seen, events
observed in cell B4 were preferentially fitted with αb values lower
than those from A3 and E9. This typically results in a faster decay
for events recorded in B4, as shown by the typical traces (and
their fit) in Figure 8E.

When we performed the same analysis for IFACT we again
found a statistically significant difference between the set of
values obtained in all experiments (i.e., the differences in the
median values are greater than would be expected by chance).
The only exception was between expE and expB (Figure 9A, left),
which showed similar percentiles and median values (Figure 9A,
right). In contrast with the results for αb, the overall range
of values for IFACT was much narrower, within one decade
(Figure 9A, right). IFACT distributions were rather different
among cells (Figure 9B), and the set of values were statistically
independent in almost all cases (Figure 9C). Typical examples
for several traces from neurons B2, D2, and E4, are shown in
Figure 9D, and a few of them are plotted in Figure 9E. Note that
neurons B2 and E4 are among the few cases with similar IFACT
(see Figure 9C), and that expB and ExpE are from different mice
species, with respect to expA, expC, and ExpD. A deeper analysis
of the functional consequences for these results was outside the
scope of this paper. However, taken together, these results show
the amount, quality, and possible usefulness of the information
that can be obtained using our procedure.

DISCUSSION

In this paper we present a general tool to study transsynaptic
signal kinetics using ex vivo data from voltage-clamp recordings.
The procedure will be available in ModelDB (acc.n. 182129),
implemented using the NEURON simulation environment
(Hines and Carnevale, 1997) and its built-in PRAXIS fitter.
A Python version is installed, and available as a standalone
task in the Collaboratory Portal of the Human Brain Project.
The procedure can run in series or in parallel on conventional
multiprocessor systems or supercomputers. Given the specific
experimental preparation and protocol used (i.e., spontaneous
inhibitory events recorded under somatic voltage clamp), the

fitting does not require, in principle, any specific realistic
biophysical implementation model of the cells (in this
case hippocampal pyramidal CA1 neurons) from which the
recordings were made.

The only limitation is that the events to be fitted need to be
unaffected by space clamp errors. One of the possible problems
in analyzing synaptic currents from somatic recordings is that,
very often the traces obtained, and thus their fit, may not give
an accurate representation of the transsynaptic signal dynamics.
Inadequate voltage clamp of distant dendrites or the filtering
properties of themembrane can significantly alter the time course
of a synaptic current observed at the soma (Spruston et al., 1993).
However, this may not be the case for GABAergic synapses, since
a substantial proportion (at least 30%) are located in the proximal
dendritic compartments (Megías et al., 2001). The issue may be
particularly relevant for the fast components of the current, such
as time to peak current. This is an important constraint, since
the calculation of time to peak current requires the activation
time and can only be determined by the fitting process. Our
analysis of the time to peak obtained from the fits shows that
the traces fitted by our procedure are not affected by space clamp
or dendritic filtering issues; therefore, the results can be reliably
used to study subcellular transsynaptic signaling pathways in
inhibitory synapses.

From an initial set of experimental data and user-defined
model kinetics, parameters, and rules, the procedure generates
several suitable parameter ensembles fitting individual
spontaneous synaptic events with an average RMSE < 10%
of the peak value. External users can upload the experimental
data and/or the model kinetics and configuration file, or choose
among the models and dataset that will be made available
in the future. Using the configuration file approach makes
the procedure independent from the specific kinetic model,
because the parameters and experimental protocol are defined
in the configuration file. The same procedure could therefore
be run several times using the same experimental data, using
a different kinetic scheme and relative configuration file to
investigate different specific pathways with different levels of
detail. However, the overall quality of the fits crucially depends
on the specific kinetic model used. The kind of information that
can be gathered also depends on the specific kinetic scheme
and experimental constraints on the fitting parameters. With a
relatively simple and generic scheme such as that used in this
work, the parameter space could be expected to have many
basins of attraction, corresponding to several different parameter
combinations that result in equally good fits. In our case, since we
had an analytical solution for the dynamic system, we could even
extract useful information on the synaptic events. To the best
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FIGURE 9 | Typical example of multilevel analysis of simulation results for IFACT . Same as in Figure 8 but for IFACT .
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of our knowledge, this is the first, publicly available, procedure
for fitting individual (rather than averaged) synaptic events with
any user-defined kinetic model and a non-convex optimization.
We think that this approach can give useful information on
the possible correlation between parameters in reproducing the
observed events, and eventually help to improve the kinetic
model with a better representation specific synaptic transmission
mechanisms. The use of a non-convex optimization method
also adds an additional source of information on the underlying
mechanisms. By analyzing the many possible ways to obtain
the same trace with different parameter combinations, one can
extract useful indications, for example, on the model limitations
or on the relative contribution of each parameter on the overall
trace. This kind of analysis depends, of course, on the specific
kinetic model used for the fitting procedure.

The results can be used/analyzed according to the user’s
plan of investigating specific neuronal systems, or carrying
out simulations using the parameter ensembles to generate a
population of synaptic inputs reproducing a statistically realistic
circuit configuration. Working with parameters representing
individual synaptic events is an important step in creating
simulations of biophysically accurate neuron and network
models. From this point of view, we have shown how the
choice to fit and analyze individual events, rather than average
traces, can lead to interesting comparisons and conclusions
for the events recorded from different experimental protocols
and conditions. Indeed, the wide range of values that can be
obtained experimentally, an example of which can be seen in
Figure 2 from our experimental data, stress the importance of
fitting individual events rather than an average. In this paper
we chose to implement a relatively simple model for gephyrin,
one of the major players in the functional organization of
inhibitory synapse. One of the reasons for this choice is that we
wanted to test our procedure against experimental recordings
of GABAergic events, and there are currently no computational
models available for gephyrin.

Although, as explicitly mentioned in Methods, we could
have used any kinetic scheme including a biochemical pathway
involving at least one of the tens of thousands of proteins
present in a synapse, we think that the choice to model a
basic gephyrin-dependent pathway turned out to be a useful
application of the procedure. The overall direct and indirect
roles of gephyrin as synaptic scaffolding mechanism appear
to be clear, but its functional modulation of the transsynaptic
signal, and the interaction with other subcellular pathways, is
less clear. Gephyrin is a tubulin-binding protein that, through
its self-oligomerizing properties, forms hexagonal lattices that
trap GABAA receptors in the right place at postsynaptic sites
by linking them to the cytoskeleton (Tretter et al., 2008).
In addition, gephyrin contributes to backward control on
presynaptic signaling via specialized adhesion molecules such
as NLGs and NRXNs which, by bridging the cleft, provide a
direct link between the post and the presynaptic sites (Lisé
and El-Husseini, 2006). Disrupting endogenous gephyrin with
selective intrabodies (scFv-gephyrin), acting at post-translational
level (Zacchi et al., 2008), leads to a reduction of GABAA

receptor clusters, a decrease in the density and size of NLG-2

clusters and loss of GABAergic innervation (Marchionni et al.,
2009; Varley et al., 2011). The model findings suggest how the
transsynaptic signal can be strongly dependent not only on the
gephyrin level, but also on the turnover rate of NLG/NRXN,
and the extrasynaptic diffusion of neurotransmitter molecules.
Small changes of these mechanisms can have large effects on
the synaptic current, and these can be cell- or event-specific,
with individual events that can be correlated with functional or
pathological aspects at different levels. The interesting significant
correlations that were noted (Figure 7) reflect the structure of a
dynamic system, suggesting, for example, that the mechanisms
involved during a given synaptic event may be determined by
a high number of receptors (controlled by gephyrin) and a low
level of neurotransmitter molecules (modulated by NLG2). In
the simple case used in this procedure, the analytical solution
gives a relatively clear and complete picture of the underlying
mechanisms. However, more detailed implementations of the
transsynaptic subcellular pathways cannot be solved analytically,
so the type of procedure outlined here may help identify critical
subcellular pathways.

Our results indicate that the rate at which neurotransmitters
diffuse away from the synaptic cleft (αb, Figure 8A) can be
significantly different for each experiment. Considering the wide
distribution observed at this investigation level (Figure 8A,
right), this result was rather surprising. We would have expected
many combination of parameters resulting in the same good fit
with widely different values of αb for each event. The fact that
some neurons have very similar αb values, while other have very
different values (Figure 8C), suggests that there may be neuron-
specific mechanisms regulating the extrasynaptic diffusion of
GABA. These differences were shown by analysis at the individual
event level, carried out using all acceptable fits for each trace (i.e.,
RMSE <10% of the peak). A high difference among different
events was observed, even if recorded from the same neuron.
In general, a qualitative examination of the data in Figure 8D

suggests that each cell may have groups of synapses with similar
αb. This may explain why the distribution of αb values for events
in cell A3 is significantly different from events in cell B4 but
not significantly different from those in cell E9. The differences
may merely reflect physiological variability in the transsynaptic
dynamics or specific differences in the underlying mechanisms.
We also found a similar lack of statistical correlation for the
values of IFACT in all the experiments, with the exception of
expE and expB, where we observed a similar distribution of
values. It should be noted that IFACT is a combination of those
parameters that directly coincide to determine the peak value of
the current; it therefore most likely reflects the effect of synaptic
plasticity mechanisms activated by the history of a synaptic
input. The results suggest that they can be cell- or event-specific,
with individual events that can be correlated with functional or
pathological aspects at different levels.

We have therefore shown that our kinetic model for fitting
individual synaptic events from voltage clamp experiments
may be used reliably to study subcellular transsynaptic
signaling pathways in inhibitory synapses, using gephyrin
as an example. For individual spontaneous inhibitory events
in hippocampal pyramidal CA1 neurons, we found that
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gephyrin-dependent subcellular pathways may shape synaptic
events at different levels, and can be correlated with cell- or
event-specific activity history and/or pathological conditions.
The functional consequences of interfering with gephyrin-
dependent mechanisms at a higher level, for example in terms of
the I/O properties of a hippocampal CA1 pyramidal neuron, will
be explored in a future paper.
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