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Abstract— Breast cancer is a heterogeneous and complex 

disease as witnessed by the existence of different subtypes with 

distinct morphologies and clinical implications. Despite the 

remarkable advances in understanding the mechanisms 

underlying breast cancer, this disease is still a major public 

health problem worldwide and poses significant open 

challenges. Here, we show how a multi-omics data integration 

analysis may provide useful insights in the identification of 

promising molecular signatures associated with the different 

breast cancer subtypes. 
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I. INTRODUCTION 

REAST CANCER (BC) is the most common female 

cancer and, despite important advances in early detection 

and research development, it continues to be the second 

leading cause of death in women worldwide [1]. BC is a 

heterogeneous pathology as witnessed by the existence of 

different subtypes with distinct morphologies and clinical 

implications [2]. These subtypes are usually defined by using 

the immunohistochemical (IHC) classification, which is 

based on immunoprofile (i.e., Estrogen Receptor-ER, 

Progesterone Receptor-PR and Human Epidermal growth 

factor Receptor2-HER2 status) and Ki67 index [3]; or by 

using the genetic (PAM50) classification, based on the 

expression of a 50-gene signature [4], [5]. According to the 

IHC classification, breast cancers are stratified into four 

subtypes, i.e. luminal A, luminal B, Her2 positive and triple 

negative. According to the PAM50 classification, they are 

classified into four molecular intrinsic subtypes that are 

luminal A, luminal B, Her2 positive and basal-like. The most 

aggressive BC pathophenotypes are the triple-negative and 

the basal-like for the two classifications, respectively. 

Although triple-negative and basal-like are not the same by 

definition, these two terms are often used interchangeably, 

since most basal-like breast cancers also have a triple-

negative phenotype (i.e., ER-negative, PR-negative, HER2-

negative) [6] and since triple-negative breast cancers overlap 

with the molecular entity of basal-like [7], [8]. The 

identification of BC-associated biomarkers and the 

development of effective therapeutic strategies for the 

different subtypes are ongoing challenges to be faced.  

Here, we present a bioinformatics approach for the 

integration of multi-omics data (e.g., transcriptomics, 

genomics, epigenomics, clinical) that can offer promising 

insights for understanding BC-related molecular mechanisms. 

II. MATERIALS AND METHODS 

A. Data retrieval 

Transcriptomic, clinicopathological, Copy Number 

Variations (CNVs) and DNA methylation data of patients 

affected by breast cancer were retrieved from The Cancer 

Genome Atlas (TCGA) repository [9]. Male samples, as well 

as samples undergoing a neoadjuvant treatment, were 

removed from the TCGA-BC cohort. The Human Protein 

Atlas (HPA) website [10] was leveraged to retrieve 

immunohistochemistry images and to evaluate changes in the 

proteins expression patterns. 

B. SWIM algorithm 

SWIM (SWItch Miner) is a recently developed tool able to 

unveil key (switch) genes within gene co-expression 

networks strongly associated with drastic changes in 

cell/tissue phenotype [11], [12]. SWIM algorithm has been 

implemented both in Matlab and in R language and 

encompasses a series of steps described in details in [11], 

[12]. 

C. In vitro and ex vivo experiments 

To validate the common gene signature found to be altered 

in all BC subtypes, in vitro and ex vivo experiments were 

performed by using BC model cell lines and tissue 

specimens. The detailed description of these experiments was 

provided in [13]. 

D. Survival analysis 

To analyze the correlation between the expression level of 

the basal-like specific switch genes and patient overall 

survival and therefore to evaluate their prognostic value, we 

used the RNA-sequencing data from TCGA to split the entire 

cohort of BC patients (1049 samples) into two groups (called 

low-expression and high-expression group) according to the 

upper and lower expression quartile. Low- and high-

expression groups refer to patients with expression levels of 

the given switch gene lower and greater than the 50th 

percentile (i.e., median), respectively. For each patient 

cohort, the cumulative survival rates were computed for each 

switch gene according to the Kaplan-Meier (KM) method 

[14] on the clinical metadata provided by TCGA. For each 

switch gene, the survival outcomes of the two patients’ 

groups were compared by the log-rank test. Switch genes 

with log-rank p-values less than 0.05 were suggested as 

candidate prognostic biomarkers.  
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E. Gene regulatory network analysis 

To investigate putative transcription factor activities on the 

regulation of the basal-like specific switch genes, we built a 

gene regulatory network by integrating information from 

Pscan web tool [15], TRRUST database [16] and the human 

interactome assembled by Cheng and coauthors [17]. In 

particular, we firstly exploited Pscan web tool to predict TFs 

putatively able to bind the promoter regions of the selected 

switch genes. Then, we filtered the Pscan predictions keeping 

only the TFs known to physically interact with at least one 

switch genes in the human interactome. These TF-target 

relationships were finally complemented with those 

experimentally validated from TRRUST database. 

 

III. RESULTS AND DISCUSSION 

A. Identification of a common gene signature altered in all 

BC subtypes 

In our recent study [13], we applied SWIM methodology 

on the transcriptomic data of TCGA-BC patients stratified 

according to two different subtype classification (i.e., PAM50 

and IHC classification) in order to identify switch genes both 

shared among all subtypes and specific for each subtype (Fig. 

1). We focused on switch genes common to all subtypes of 

both classifications and we found a common gene signature 

composed of 11 genes.  

 

 
Fig. 1: Workflow for the identification of a common gene signature altered 

in all BC subtypes 

Among them, Aurora Kinase A (AURKA) appears to be 

very promising since: i) it is a kinase known to have a key 

role in cell division and cell-cycle progression; ii) it plays a 

critical role in regulation of mitotic events like spindle 

assembly and chromosomal segregation; iii) it is deregulated 

in many human cancers; iv) it collaborates with several tumor 

suppressors like P53, BRCA1 and BRCA2; v) it is suggested 

as a pharmaceutical target for the treatment of various 

cancers [18].  

The key role of AURKA in the context of BC subtypes 

was experimentally validated by showing that the encoded 

protein is always over-expressed both in BC cell lines 

(Fig.2A) and tissues (Fig.2B). 

 

 
Fig. 2: AURKA protein expression examined in vitro by immunoblotting on 

BC subtype cell lines (A) and ex vivo by immunohistochemical analysis on 

surgical BC tissue specimens (B).  

 

Moreover, we demonstrated that the AURKA inhibition by 

using alisertib drug led to a reduction in the cell growth of all 

BC subtype cell lines (Fig.3A) and to arrest their cell cycle 

(Fig.3B) up to 72 h after the treatment. 

Taken together, all these findings supported the hypothesis 

that AURKA pathway could be a common mechanism 

univocally altered in all BC subtypes. 
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Fig. 3: Effect of AURKA’s inhibitor (alisertib) assessed on cell growth (A) 

and cell cycle (B) of BC subtype cell lines. 

 

B. Identification of a prognostic gene signature for basal-

like subtype 

Among the various recognized BC subtypes, basal-like is 

the most aggressive with a poor prognosis, a high risk of 

relapse and a high resistance to pharmacological treatments 

[19]. Currently, there are not available widely accepted 

prognostic biomarkers to predict the outcomes of basal-like 

patients. Therefore, in our recent study [20], we carried out a 

bioinformatics pipeline integrating transcriptomic, genomic, 

epigenomic, and clinical data in order to identify a prognostic 

gene signature for the basal-like subtype (Fig.4).  

Our pipeline started from the 108 basal-like specific switch 

genes identified in [13] and performed a Kaplan-Meier (KM) 

survival analysis in order to explore their clinical relevance 

with respect to BC patients’ overall survival (OS). This first 

step allowed us to identify 11 basal-like specific switch 

genes, i.e., CENPN, LRP8, DSCC1, CTPS, RCOR2, GINS4, 

TUBA1C, PRAME, SLC7A11, CDCA7, GSDMC, acting as 

unfavourable prognostic biomarkers (i.e., their higher 

expression was significantly associated with poorer BC 

patients’ OS). The clinical relevance of these 11 switch genes 

was also confirmed using other larger BC datasets collected 

in the KM plotter website [21].  

Next, we evaluated the gene expression of these 11 

putative basal-like prognostic biomarkers demonstrating that 

they always reached the highest level in the basal-like 

condition. 

 

 

 
Fig. 4: Workflow for the identification of a prognostic gene signature for 

basal-like subtype. 

 

To statistically quantify the increasing trend of their 

expression values as the phenotype varies from physiological 

to pathological condition passing across the different BC 

subtypes, we performed a linear regression analysis, where 

the index R-squared estimates the goodness-of-fit. We found 

that all of them showed a very strong straight-line 

relationship (R-squared >= 0.7) with respect to the tumor 

aggressiveness. These results were mostly confirmed also by 

performing the same analysis with respect to the pathological 

staging of the BC patients.  

Moreover, we explored the expression patterns of the 

proteins encoded by the 11 prognostic switch genes through 

the HPA. We found that six of these proteins were 

overexpressed in BC tissues compared to normal breast 

tissues. For the remaining ones, there are pending cancer and 

normal tissue analysis on the HPA and the 

immunohistochemistry images are not currently available. 

Eventually, we investigated if the overexpression of the 11 

basal-like prognostic biomarkers may depend on the action of 

important transcription factors (TFs) as well as basal-like 

specific genomic alterations (CNVs) and/or epigenomic 

alteration (DNA methylation changes). In particular, to 

provide some hints on which TFs could regulate the 

expression of the 11 basal-like switch genes, we built a gene 

regulatory network by combining information on both 

computationally predicted and experimentally validated TF-

target relationships (see Materials and Methods). The final 

gene regulatory network was composed of seven switch 

genes and twelve TFs, including well-known TFs that, if 

deregulated, contribute to neoplastic transformation as MYC, 

TP53 and NFKB. By performing hierarchical clustering 

analyses, we highlighted different CNVs (copy number 

gain/loss) and DNA methylation (hypo/hypermethylated 
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regions) status of the 11 putative prognostic biomarkers in 

basal-like subtype with respect to the less aggressive BC 

subtype, i.e., luminal A [20].  

Taken together, all these findings prompted us to propose 

the 11 basal-like specific switch genes as a specific gene 

signature to evaluate the prognosis of basal-like BC patients. 

 

IV. CONCLUSION 

In the present work, we showed how bioinformatics may be 

exploited to provide a contribution in the identification of 

putative gene signatures associated with one of the most 

heterogeneous and widespread disease, i.e. breast cancer, 

thus helping in the discovery of effective therapies as well as 

prognostic biomarkers.  
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