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the NNI cohort, age, gender, age at onset, 
disease duration, MMSE, MoCA, UPDRS 
motor scores as well as H&Y stages of 
PD+LRRK2 patients were comparable to 
PD+LRRK+ patients. In the LLC cohort, 
age, gender and age at onset were similar 
in PD+LRRK2 and PD+LRRK+ patients, 
except for longer disease duration seen in 
PD+LRRK+ patients (p=0.023).

In the NNI cohort, serum PRDX3 levels 
were significantly reduced in PD+LRRK+ 
vs PD+LRRK patients (p<0.001; 
figure 1B) and HC (p=0.002), controlling 
for age, gender and disease duration. 
Serum PRDX3 levels were not signifi-
cantly different between PD+LRRK and 
HC (p=0.520). Serum PRDX3 levels 
did not correlate significantly with age, 
gender, age at onset and disease dura-
tion, nor with clinical variables (MMSE, 
MoCA, H&Y and motor scores) in each 
disease group (p>0.05). In the LCC 
cohort, G2019S+PD carriers had a non-
significant trend towards lower PRDX3 
levels than PD-LRRK2- (p=0.184; 
figure  1C) and PD+LRRK2- (p=1.0). 
PRDX3 levels significantly correlated with 
disease duration (rs=−0.414, p=0.017) in 
PD+LRRK2+; and with age (rs=0.474, 
p=0.001) and age at onset (rs=0.396, 
p=0.006) in PD+LRRK2-.

DISCUSSION
We showed that serum PRDX3 was 
significantly reduced in PD carriers of 
LRRK2 risk variants G2385R and R1628P 
versus PD non-carriers and controls and 
showed negative correlation with disease 
duration in G2019S carriers versus non-
carriers. PD carriers of these variants 
have shown more rapid motor decline 
compared with non-carriers.3 We found a 
similar trend towards lower PRDX3 levels 
in G2019S carriers vs non-carriers, though 
the smaller sample size may explain why 
it did not reach statistical significance. 
Functionally, LRRK2 inactivates PRDX3, 
the most important scavenger of hydrogen 
peroxide H(2)O(2) in the mitochondria.2 
In vitro, depletion of PRDX3 resulted in 
increased intracellular levels of hydrogen 
peroxide, mitochondrial damage and 
sensitised cells to apoptosis.4 In vivo, over-
expression of PRDX3 in transgenic mice 
(Tg(PRDX3) mice) conversely reduced 
hydrogen peroxide levels and increased 
resistance to stress-induced apoptosis.5

In summary, using two independent 
cohorts, we highlight for the first time 
that serum PRDX3 (biologically linked to 
LRRK2) levels are reduced in LRRK2 PD 
carriers of risk variants/mutants compared 
with non-carrier patients and controls. 

These findings provide impetus for further 
studies to evaluate PRDX3 as a possible 
biomarker for clinical progression.
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QEEG abnormalities in 
cognitively unimpaired patients 
with delirium

INTRODUCTION
Delirium is an acute fluctuation in atten-
tion with reduced awareness, orientation, 
cognitive disturbances, sleep-wake cycle 
and emotional regulation. Psychomotor 
dysfunction represents a prominent feature 
defining three different delirium subtypes: 
hyperactive, marked by agitation, hypoac-
tive, with lethargy and decreased motor 
activity, and mixed.1

Delirium prevalence increases with age. 
It is particularly frequent during hospi-
talisation (20%–60% in elderly individ-
uals), and is associated with high mortality 
rates.1

Several factors may concur to 
delirium, as neurodegenerative diseases 
(it is considered a prodromal feature 
of dementia with Lewy bodies, DLB), 
electrolyte imbalance, alcohol or 
drug intoxication or withdrawal.1 In 
neurodegenerative conditions central 
cholinergic deficiency is a leading 
hypothesised mechanism.2 Delirium 
may result from an altered mechanism 
of external information processing due 
to derangement of intrinsic oscillation 
of cholinergic thalamocortical neurons, 
which modulates excitability of wide-
spread cortical areas (the so-called thal-
amocortical dysrhythmia, TCD).2 3

In the original TCD model, the 
abnormal inputs to oscillating thalamocor-
tical neurons in quiet wakefulness disrupt 
their rhythmic neurotransmission to 
cortical neurons inducing the appearance 
of a dominant prealpha frequency (5.5–
7.5 Hz) rhythms in the resting state eyes-
closed electroencephalogram (rsEEG) 
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Table 1  Demographic, clinical and EEG characteristics of the two groups of patients included in the multicentre study

Delirium group (n=65) No-delirium group (n=41) P value

Demographic characteristics

 � Age 76.9 (11.9) 74.6 (12.1) 0.34

 � Females, n (%) 32 (49.2) 16 (39.0) 0.30

 � Death, n (%) 2 (3.1) 0 (0.0) 0.26

Delirium

 � Onset from the admittance* 2.6 (3.1) –  �

 � Hyperkinetic, n (%) 17 (26.2) –  �

 � Hypokinetic, n (%) 32 (49.2) –  �

 � Mixed, n (%) 16 (24.6) –  �

 � LOS 16.9 (11.7) 4.0 (3.7) <0.0001

Predisposing factors for delirium

 � CCI† 5.8 (2.6) 3.9 (3.1) 0.02

 � Pneumonia, n (%) 11 (16.9) 2 (5.0) 0.03

 � Urinary tract infection, n (%) 6 (9.2) 2 (5.0) 0.23

 � Bedding, n (%) 19 (29.2) 9 (22.0) 0.41

 � Bladder catheter, n (%) 23 (35.4) 10 (24.4) 0.23

Disease at the admittance, n (%)

 � Ischaemic stroke 19 (29.2) 8 (19.5) 0.26

 � Brain haemorrhage 5 (7.7) 6 (14.6) 0.26

 � Brain tumour 4 (6.2) 2 (4.9) 0.35

 � Other neurological diseases 12 (18.5) 14 (34.1) 0.06

 � Non-neurological diseases 25 (38.5) 11 (26.8) 0.22

EEG characteristics, n (%)

Anterior derivations  �   �   �

 � CSA 1 0 (0.0) 23 (62.2)  �

 � CSA 1 plus 1 (1.9) 7 (18.9)  �

 � CSA 2 10 (19.2) 4 (10.8)  �

 � CSA 3 21 (40.4) 3 (8.1)  �

 � CSA 4 20 (38.5) 0 (0.0)  �

 � Pattern CSA  �   �  <0.001

 � Normal 0 (0.0) 23 (56.1)  �

 � Pathological 52 (80.0) 14 (34.1)  �

 � Artefact 13 (20.0) 4 (9.7)  �

 � DFV  �   �  0.007

 � 0 19 (29.2) 26 (63.4)  �

 � 0.5–1.5 14 (21.5) 4 (9.8)  �

 � >1.5 19 (29.2) 7 (17.1)  �

 � MDF‡ 7.0 (2.5) 8.0 (2.0) <0.001

Temporal derivations  �   �   �

 � CSA 1 0 (0.0) 28 (70)  �

 � CSA 1 plus 2 (3.5) 6 (15)  �

 � CSA 2 17 (29.8) 5 (12.5)  �

 � CSA 3 26 (45.6) 1 (2.5)  �

 � CSA 4 12 (21.1) 0 (0.0)  �

 � Pattern CSA  �   �   �

 � Normal 0 (0.0) 28 (70) <0.001

 � Pathological 57 (87.7) 13 (31.7) <0.001

 � Artefact 8 (12.3) 1 (2.5) 0.001

 � DFV  �   �  0.001

 � 0 21 (32.3) 29 (70.7)  �

 � 0.5–1.5 15 (23.1) 5 (12.2)  �

 � >1.5 21 (32.3) 6 (14.6)  �

 � MDF‡ 7.5±1.8 8.0±2.0 <0.001

Occipital derivations  �   �   �

 � CSA 1 0 (0.0) 29 (72.5)  �

 � CSA 1 plus 2 (3.7) 6 (15)  �

 � CSA 2 19 (35.2) 4 (10)  �

 � CSA 3 24 (44.4) 1 (2.5)  �

Continued
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Delirium group (n=65) No-delirium group (n=41) P value

 � CSA 4 9 (16.7) 0 (0.0)  �

 � Pattern CSA  �   �  <0.001

 � Normal 0 (0.0) 29 (70.7)  �

 � Pathological 54 (83.1) 11 (26.8)  �

 � Artefact 11 (16.9) 1 (2.4)  �

 � DFV  �   �  <0.001

 � 0 22 (33.9) 30 (73.2)  �

 � 0.5–1.5 14 (21.5) 5 (12.2)  �

 � >1.5 18 (27.7) 5 (12.2)  �

 � MDF‡ 7.0±1.5 9.0±1.5 <0.001

All data are reported as mean (Standard Deviation,(SD)), when not differently stated. All p-value were age and sex adjusted. Pathological CSA refers to the following CSA patterns: 1 plus, 2, 3 and 
4.
*Delirium onset is expressed in days.
†Due to the not normal distribution, CCI was reported as median (IQR) and differences between groups were assessed through quantile regression analysis.
‡All variables were reported as median±IQR and differences assessed with quantile regression, age and sex adjusted.
CCI, Charlson Comorbidity Index; CSA, compressed spectral analysis; DFV, dominant frequency variability; LOS, hospital length of stay; MDF, mean dominant frequency; n, number of patients.

Table 1  Continued

activity.2 4 As a consequence, conscious-
ness level changes from quiet vigilance to 
drowsiness, sleep and dreaming, as well 
as visual hallucination, cognitive fluctua-
tion and psychotic or dissociative states.2 5 
All these conditions are characterised by 
altered states of consciousness, as typi-
cally occurs during delirium.1 4 Notably, 
the presence of those prealpha rhythms 
can be revealed measuring compressed 
spectral array (CSA), based on dominant 
frequency (DF) and DF variability (DFV).4 
This study focused on testing the possible 
association between specific EEG CSA 
patterns with prealpha DF and delirium 
in cognitively unimpaired hospitalised 
patients.

METHODS
This double-design study includes a 
cross-sectional multicentre cohort 
study and a longitudinal single centre 
prospective study that was nested in the 
multicentre.

In the multicentre cross-sectional 
study, rsEEG activity was compared 
between hospitalised patients who mani-
fested delirium and patients without 
delirium (between-group design). In the 
single-centre longitudinal study, rsEEG 
recorded in patients with delirium at the 
time of the acute delirium symptoms was 
compared with recordings performed 
when the symptom disappeared (at 
hospital discharge) and at 1-month 
follow-up (within-group design).

Online supplemental material 1 details 
methods of patient recruitment, of clinical 
and instrumental evaluation methods, and 
of EEG recording and analysis.

RESULTS
Cross-sectional multicentre study
Sixty-five subjects who experienced an 
episode of delirium during the hospital 
stay (delirium group) were enrolled and 
were matched for age and sex with 41 
control subjects, admitted during the same 
period who did not develop delirium 
(no-delirium group).

Table  1 reports demographic, clin-
ical and rsEEG characteristics of the two 
groups.

Mean DF was lower in delirium than 
no-delirium group (p<0.001) at all EEG 
electrodes. Delirium group showed a 
prealpha DF (<8 Hz) whereas no-de-
lirium group had a DF in the alpha range 
(≥8 Hz). DFV was higher in delirium than 
no-delirium group at all EEG electrodes 
(p-value ranging from 0.007 in anterior 
derivations to 0.001 in temporal deriva-
tions, to <0.001 in posterior derivations).

Abnormal CSA patterns (i.e., CSA 1 
plus, 2, 3 and 4) were found in all (100%) 
delirium patients in all the derivations, 
whereas only 14 (34%) no-delirium 
patients had an abnormal EEG. No differ-
ences in EEG characteristics were found 
between subtypes of delirium (hypoki-
netic vs hyperkinetic), thus suggesting a 
common pathophysiological mechanism 
of the two clinical manifestations of 
delirium.

Single-centre longitudinal study
The longitudinal study was performed at 
centre 1 and included 23 patients with 
delirium who were recorded with rsEEG 
at resolution of delirium and at 1 month 
after hospital discharge.

One hundred per cent of them showed 
a CSA pattern >1 during delirium (online 
supplemental table 1). After delirium 

resolution: 18 patients had an EEG 
normalisation, 2 patients still had an 
abnormal EEG (CSA pattern 2). In three 
patients, EEG was not interpretable due 
to artefacts. Similar results were observed 
at 1-month follow-up: one patient, with 
CSA 2 at both time of delirium and after 
its resolution, met the diagnostic criteria 
for DLB. Another patient met the criteria 
for mild cognitive impairment at 1-month 
follow-up. The remaining 21 patients had 
a CSA pattern 1 and resulted all cogni-
tively unimpaired.

DISCUSSION
In this study, we hypothesised that delirium 
appearing during hospitalisation may 
be characterised by a prealpha rhythm, 
strictly related to TCD, as revealed by 
CSA markers derived from EEG analysis. 
In the cross-sectional multicentre study, 
patients with delirium showed lower DF 
and higher DFV at the prealpha/theta 
frequencies as compared with patients 
without delirium, thus supporting the 
working hypothesis that delirium may be a 
clinical manifestation induced by TCD.3 In 
contrast, 70% of the no-delirium patients 
showed a normal EEG with prominent 
posterior alpha rhythms.

These results of the cross-sectional 
design were corroborated by those of the 
longitudinal design. In most of delirium 
patients, the abnormal EEG-CSA markers 
and rsEEG, performed after recovering 
from delirium, disappeared by the hospital 
dismission or 1-month follow ups.

It can be speculated that abnormal EEG-
CSA patterns (i.e., prealpha rhythms) and 
delirium may be strictly associated, and 
may reflect TCD. Further investigations, 
including functional and microstructural 

P
rotected by copyright.

 on F
ebruary 27, 2023 at U

niv of R
om

e La S
apienza.

http://jnnp.bm
j.com

/
J N

eurol N
eurosurg P

sychiatry: first published as 10.1136/jnnp-2022-330010 on 19 O
ctober 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/jnnp-2022-329433
https://dx.doi.org/10.1136/jnnp-2022-329433
https://dx.doi.org/10.1136/jnnp-2022-329433
http://jnnp.bmj.com/


254 J Neurol Neurosurg Psychiatry March 2023 Vol 94 No 3

PostScript

neuroimaging, and pharmacological 
studies, are needed to confirm the above 
speculation.

Two considerations result from our 
data. First, the cross-sectional and longi-
tudinal association between EEG prealpha 
rhythms and delirium encourages the use 
of those EEG characteristics as a surrogate 
neurophysiological marker of delirium, 
which could be used in future clinical trials 
aimed to prevent and treat it in hospital-
ised patients.

Second, the pathophysiological mech-
anisms underlying the above of EEG 
specific alterations and delirium could 
explain cognitive fluctuations, which are 
a core feature of DLB. Interestingly, DLB 
patients show prealpha EEG rhythms4 
similarly to patients with delirium. There-
fore, the present results motivate future 
longitudinal studies following the patients 
who suffered from delirium overtime, to 
define the percentage of them showing 
prodromal DLB symptoms at follow-up.
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