
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024 1

Distilled Gradual Pruning with Pruned Fine-tuning
Federico Fontana , Student Member, IEEE, Romeo Lanzino , Student Member, IEEE, Marco Raoul

Marini , Member, IEEE, Danilo Avola , Member, IEEE, Luigi Cinque , Senior Member, IEEE, Francesco
Scarcello , Gian Luca Foresti , Senior Member, IEEE

Abstract—Neural Networks (NNs) have been driving machine
learning progress in recent years, but their larger models present
challenges in resource-limited environments. Weight pruning
reduces the computational demand, often with performance
degradation and long training procedures. This work introduces
Distilled Gradual Pruning with Pruned Fine-tuning (DG2PF),
a comprehensive algorithm that iteratively prunes pre-trained
neural networks using knowledge distillation. We employ a
magnitude-based unstructured pruning function that selectively
removes a specified proportion of unimportant weights from the
network. This function also leads to an efficient compression
of the model size while minimizing classification accuracy loss.
Additionally, we introduce a simulated pruning strategy with the
same effects of weight recovery but while maintaining stable con-
vergence. Furthermore, we propose a multi-step self-knowledge
distillation strategy to effectively transfer the knowledge of the
full, unpruned network to the pruned counterpart. We validate
the performance of our algorithm through extensive experi-
mentation on diverse benchmark datasets, including CIFAR-10
and ImageNet, as well as a set of model architectures. The
results highlight how our algorithm prunes and optimizes pre-
trained neural networks without substantially degrading their
classification accuracy while delivering significantly faster and
more compact models.

Impact Statement—In recent times, Neural Networks have
demonstrated remarkable outcomes in various tasks. Some of the
most advanced possess billions of trainable parameters, making
their training and inference both energy-intensive and costly. As
a result, the focus on pruning is growing in response to the
escalating demand for neural networks. However, most current
pruning techniques involve training a model from scratch or
with a lengthy training process leading to a significant increase
in carbon footprint, and some experience a notable drop in
performance. In this paper, we introduce Distilled Gradual
Pruning with Pruned Fine-tuning (DG2PF). This unstructured
pruning algorithm operates on pre-trained neural networks,
allows the user to choose the proportion of parameters to prune,
and halts automatically when the pruned network has achieved
optimal performance, thereby preventing excessive training time.
We envision that with DG2PF even the most sophisticated new
neural networks could become accessible to the average user.

Index Terms—Artificial intelligence in computational sustain-

Manuscript received 27 June 2023; revised 21 November 2023; accepted
10 February 2024. Date of publication ?? ?? ????; date of current version 21
November 2023. This work was supported by the ”Smart unmannEd AeRial
vehiCles for Human likE monitoRing (SEARCHER)” project of the Italian
Ministry of Defence (CIG: Z84333EA0D) and the PNRR project FAIR -
Future AI Research (PE00000013) under the NRRP MUR program funded
by NextGenerationEU.

F. Fontana, R. Lanzino, M. R. Marini, D. Avola, L. Cinque are with the
Department of Computer Science, Sapienza University of Rome, Italy 00198
(e-mail: {avola, cinque, fontana.f, lanzino, marini}@di.uniroma1.it).

F. Scarcello is with the Department of Computer Engineering, Modeling,
Electronics and Systems, University of Calabria, Italy 87030 (e-mail: scar-
cello@dimes.unical.it).

G. L. Foresti is with the Department of Mathematics, Computer Science and
Physics, University of Udine, Italy 33100 (e-mail: gianluca.foresti@uniud.it).

This paragraph will include the Associate Editor who handled this paper.

ability, deep learning, neural networks, supervised learning

I. INTRODUCTION

Deep neural networks have shown state-of-the-art perfor-
mance on various visual tasks, such as image classification [1],
[2], [3], [4], object detection [5], [6], and semantic segmen-
tation [7], [8]. Despite their success, the substantial size and
computational demands of these models present a major chal-
lenge for their implementation on resource-limited devices.
Several compression techniques have been developed to reduce
the size and computational demands of deep neural networks
while retaining their performance and also to overcome the
previously mentioned challenges. Neural Architecture Search
(NAS) has been explored as a method to design efficient
architectures; for instance, in [9] an optimization for specific
hardware platforms is proposed, and in [10] the curriculum
search strategy is explored. They support the expansion of the
search space progressively. Techniques such as the contrastive
learning framework [11], the ”Once-for-All” approach [12],
and the Neural Architecture Transformer [13] have further
advanced the field. Lastly, the disturbance-immune update
strategy [14] addresses the performance disturbance issue in
weight-sharing NAS methods. However, while NAS offers
automated design, the need for more direct compression
techniques remains paramount. This is where pruning comes
into play. This work delves deeper into the intricacies and
advancements in pruning techniques.

The primary goal of weight pruning is to remove non-
relevant weights from a neural network. This process aims
to reduce the network’s size and computational requirements
while minimizing the loss of its performance. There are
two types of pruning methods, structured and unstructured.
Structured pruning involves modifying or removing layers or
parts of the network. This method may lead to changes in
the input and output dimensions of the layers, which can
cause issues in networks with long-range dependencies among
layers [15]. The solution to this problem is often circumvented
by constraining pruning into targeting only layers that do
not induce issues like filters [16] and channels pruning [17],
[18], or a mixed approach [19]. Whatever the pruning method
be, it usually involves careful fine-tuning [20] to maximize
its performances. However, such constraints are expected to
decrease the efficiency of pruning. Unstructured pruning, on
the other hand, produces sparse matrices that are difficult
to accelerate [21], even if some recent works withdraw this
statement [22], [23]. In this context, different strategies have
been proposed throughout the years for unstructured pruning
in several application areas. The Optimal Brain Damage al-
gorithm [24] and magnitude-based pruning algorithm [25] are

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0007-0437-7832
https://orcid.org/0000-0003-2939-3007
https://orcid.org/0000-0002-2540-2570
https://orcid.org/0000-0001-9437-6217
https://orcid.org/0000-0001-9149-2175
https://orcid.org/0000-0001-7765-1563
https://orcid.org/0000-0002-8425-6892

2 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024

two popular unstructured pruning techniques. Other popular
methods include Taylor expansion pruning [26], which prunes
based on the loss function’s second-order Taylor approxima-
tion, and random pruning [25], which prunes randomly to
improve computation times. However, a simple pruning of the
weights may lead to a drop in performance. To this extent,
weight recovery between training cycles [27], [28] and fine-
tuning the pruned model through additional training has shown
to be an effective approach to mitigate this issue [29].

As a popular approach for model compression, knowledge
distillation has received significant attention in recent years
[30], [31]. The basic idea behind this technique is to train a
smaller model, referred to as the student model, to mimic the
behavior of a larger model, referred to as the teacher model.
The student model is trained by minimizing the difference
between its predictions and the predictions of the teacher
model, which is often a pre-trained neural network. Self-
distillation refers to a knowledge distillation approach where
a neural network is distilled into a smaller, more compact
version of itself [32].

The research direction goes towards more complex pruning
and distillation strategies, but often with a large computational
cost; [28] tried to introduce a cyclical pruning and weight re-
covery schedule, but significantly increasing the complexity of
the algorithm at a price of a slight classification improvement.

We present a novel unstructured pruning algorithm that
seamlessly integrates knowledge distillation techniques to
achieve significant model compression without compromising
its accuracy. Our proposed method commences with a gradual
weight pruning phase that employs knowledge distillation to
remove unimportant weights and reduce the model size. Once
the desired sparsity level is achieved, the model undergoes
a distilled fine-tuning process until convergence. This is then
followed by a final fine-tuning process without the teacher. We
demonstrate that our approach outperforms existing methods
in terms of compression-accuracy trade-offs through exten-
sive experimental evaluations conducted on publicly available
benchmark datasets. These results show that the algorithm has
a potential impact in the field of deep learning by enabling
the deployment of large, accurate models on a wide range of
devices with limited computational resources and to average
users.

To summarize, the contributions of this work are:
• We build upon a well-known baseline function exploiting

magnitude-based unstructured pruning to minimize mem-
ory and storage requirements by selectively removing a
specified proportion of weights from a pre-trained neural
network.

• We propose a unique simulated pruning technique. This
method stands out as it replicates the benefits of weight
recovery while consistently maintaining stable conver-
gence. Notably, this is achieved at each training iteration,
setting it apart from conventional practices in weight
recovery literature.

• We introduce Distilled Gradual Pruning with Pruned
Fine-tuning (DG2PF), a comprehensive algorithm that
integrates unstructured weight pruning and knowledge
distillation to prune pre-trained neural networks without

incurring a substantial reduction in performance.
• We have conducted experiments on publicly available

benchmark datasets and models to validate the perfor-
mance of our method. The results of this evaluation
provide quantifiable evidence of the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows: Section II
presents the related work, where we review and discuss the ex-
isting literature and research relevant to our study; Section III
contains details about the proposed algorithm, comprehensive
of pseudocode; Section IV details the evaluation of DG2PF
and the comparative studies with the state-of-the-art pruning
techniques on two representative datasets; Section V discuss
and presents the conclusion and future work.

II. RELATED WORK

Pruning in neural networks can involve either structured
pruning that removes model structures, or unstructured pruning
that removes individual parameters. In general, structured
pruning methods [16], [33] do not depend on specialized
hardware. In contrast, unstructured pruning approaches [34],
[35] explicitly require support for sparse computations. Recent
advancements in structured pruning include [17], which aims
to enhance network performance through channel pruning by
eliminating redundant components. The work in [18] offers
a distinctive method for lossless channel pruning, drawing
inspiration from neurobiology, and ensures structured sparsity
without sacrificing accuracy. Meanwhile, [36] introduces a
combined approach of discrimination-aware channel and ker-
nel pruning. In the context of unstructured pruning, there are
three distinct pruning schedules: one-shot, gradual, and cycli-
cal pruning. One-shot pruning [37] involves the simultaneous
removal of unimportant weights in a single step, followed by a
final fine-tuning stage. Gradual pruning [27] gradually prunes
the network weights over multiple iterations. This approach is
interleaved with training steps and culminates in a final fine-
tuning stage. Cyclical pruning [28] involves multiple gradual
pruning schedules, with weight recovery at the beginning
of each cycle. Parameter-Efficient Masking Networks [38]
leads to a new paradigm for model compression utilizing one
random initialized layer, accompanied by different masks, so
the model can be expressed as one-layer with a bunch of
masks. The work in [39] smoothly induces sparsity while
learning pruning thresholds, providing a non-uniform sparsity
budget.

This paper, inspired by [27], proposes an algorithm that
fuses pruning and knowledge distillation techniques, introduc-
ing a novel approach called simulated pruning. The simulated
pruning introduces weight recovery without the need for cycli-
cal schedules. In [40], [41] the authors suggest automatically
tuning thresholds for magnitude pruning to improve global
sparsity by removing unimportant weights based on their abso-
lute value. Alternative approaches to magnitude pruning, such
as second-order [24], [42] and Fisher-based [43], [44] of the
loss function, have been proposed. However, recent work [45]
suggests they may not be more effective, especially when com-
bined with fine-tuning. Probabilistic pruning approaches, such

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FONTANA et al.: DISTILLED GRADUAL PRUNING WITH PRUNED FINE-TUNING 3

as those described in [46], [47], involve stochastic relaxations,
but research [48] shows they often perform similarly to simple
magnitude pruning-based methods. The works described in
[49], [50] use gradient updates computed on a sparse proxy
model by exploiting the straight-through estimator (STE),
similar to [51], [52], and claim that this method can lead
to weight recovery. These approaches make use of one-shot
pruning. However, [28] shows weight recovery is complicated
to achieve in practice in this setting.

Knowledge distillation is a form of compression strategy
that transfers relevant feature representation from a larger
teacher network to a smaller student network, followed by
fine-tuning. This method was proposed by [53] for networks
that tackle the classification task. The approach introduces
a distillation loss that utilizes the softened output of the
teacher network’s last layer. In [30], the authors improved
the performance of this approach by using an intermediate
representation of the teacher model as a hint in addition to the
output layer. In [54] knowledge distillation is applied to the
ResNet architecture by minimizing the L2 loss of the Gramian
feature matrix in the ResNet modules between teacher and
student. Like for our paper, recent works [55], [56] try to mix
pruning and distillation for optimal performance.

III. PROPOSED METHOD: DISTILLED GRADUAL PRUNING
WITH PRUNED FINE-TUNING

In this section, we will describe our proposed method,
called Distilled Gradual Pruning with Pruned Fine-tuning
(DG2PF). The algorithm is composed of two phases. The first
phase, called Distilled Gradual Pruning (DGP) (Algorithm 1),
incorporates two distinct types of pruning mechanisms. The
first type of pruning is carried out according to the procedure
outlined in Section III-A. This pruning approach is gradually
applied, once per epoch, during the first phase, until the desired
sparsity level is attained. We called the other kind of pruning
”simulated”, as described in Section III-B. This type of prun-
ing is performed during each iteration of every epoch of the
DGP phase. It selectively removes and recovers a portion of
the weights that have not yet been pruned in the network. The
second phase is called Pruned Fine-tuning (PF) (Algorithm
2) and starts upon completion of the previous one. Here, the
network has already been pruned to its intended sparsity level
and the simulated pruning strategy is terminated. This phase
aims at recovering most of the performance lost during DGP.
In Section III-C a knowledge distillation strategy is presented.
It merges two knowledge distillation losses, named Kullback-
Leibler divergence and performance-weighted loss. In Section
III-D, we present DG2PF, our novel two-phase algorithm that
merges the techniques mentioned above.

A. Pruning function

In line with previous research [41], [40], we operate with
the assumption that weights with magnitudes closer to zero
have less impact on the final output of a neural network.
Therefore, we propose to prune these weights by collapsing
them to zero and flagging them as pruned [37], [27], [28].
The rationale behind this assumption is that the weights

Fig. 1. A histogram representation of the 90% of weights that would be
pruned on an unpruned ResNet-50 model [3]. The abscissa depicts the values
of the weights, while the ordinate depicts the frequency count of weights with
the corresponding value. The vertical bars represent the left and right margins,
respectively. The amount of the margin delimits the weights to the p-percentile
of the total weights, where p is the arbitrary percentage of pruning set to 0.9
in the plot.

with smaller magnitudes have minor effects on the output of
the neural network. It can be deducted by considering the
activation functions commonly used in neural networks. In
these activation functions, the signal is passed through a hard
or soft threshold, which means that small changes in the input
signal do not or marginally affect the output unless they cross
this threshold. Thus, weights with smaller magnitudes have a
lower probability of crossing the threshold and therefore are
less influential in determining the final output. Based on these
assumptions, we can remove the weights with smaller magni-
tudes without a significant loss of accuracy. Consequently, the
number of parameters in the network is reduced, improving
its efficiency without significant performance degradation.

Let s ∈ R be the chosen sparsity of the network, with
0 < s < 1. Each weight θi of a neural network parameterized
by θ is pruned as follows:

θi =

{
θi, if θi < ml and θi > mr

0, otherwise
, (1)

where ml,mr ∈ R are the margins computed as
(
1−s
2

)
-th and(

s+ 1−s
2

)
-th percentiles of the weights θ, respectively. The

weights falling inside these margins are set to zero and thus
pruned. Figure 1 shows an example of margins and weights
to prune on a pre-trained network.

B. Simulated pruning function

We assume that the reduction of the importance of weights
likely to become zero during the upcoming pruning stage
has a comparatively minor impact on the network’s overall
performance. When we employ this technique, we essentially
carry out a cyclical pruning step in a single training iteration on
a single batch of data. It means that in each iteration we start

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024

with the (simulated) pruning stage and we recover the pruned
weights by the end of the iteration. This methodology stands in
contrast to the approach presented in [28], where the pruning
process is initiated only after completing a predetermined
number of training epochs. In particular, in [28] each cycle
spans several training epochs and ensures that weights undergo
a gradual pruning, in order to only have a fraction restored
at the end of the cycle. A notable limitation emerges when
these weights, especially in the earlier stages of the cycle, are
pruned based on a constrained pool of information. It predom-
inantly happens when specific policies, such as magnitude-
based pruning, are adopted. Despite the evident efficacy of the
cyclical pruning mechanism, our methodology compares and
rectifies its core shortcomings. We guarantee that the heuristic
responsible for the pruning decision is perpetually equipped
with a uniform data set for each weight, facilitating both
the pruning and recovery within each iteration, ensuring an
informed decision-making process, and enabling more stable
convergence. We use Straight Through Estimation (STE), thus
allowing the gradient to pass through the weights pruned in
this phase. As theoretically proved by [57], this technique
speeds up the learning process and helps ensure stability.

Let ssim ∈ R be the chosen simulated sparsity of the net-
work, with 0 < s < 1. At the start of each training step of the
first phase of the algorithm, a fraction ssim of unpruned weights
are pruned and then recovered after the backpropagation of the
loss. Each weight θi of a neural network parameterized by θ
is pruned according to the probability:

θi =

{
θi, if pi < ms

0, otherwise
, (2)

where ms corresponds to the (1− ssim)-th percentile of a
vector p ∈ [0, 1]|θ| obtained as follows:

p = 1− abs(θ)

max(abs(θ))
, (3)

where 1 = [1]|θ| is a vector of the same length of θ where
each position is filled with 1.

C. Knowledge distillation procedure
As will be described in Section III-D, the proposed method

follows two phases. The first one entails knowledge distillation
from the original, unpruned model. The loss used to train
the student model during these steps combines a variation
of performance-weighted loss [58] and pointwise Kullback-
Leibler divergence loss [59].

The rationale under their combination is to use performance-
weighted loss to get resilience against outliers and challenging
instances, and pointwise Kullback-Leibler divergence to align
the student model’s distribution with the teacher model’s
distribution.

The performance-weighted loss is a modification of the
well-known cross-entropy loss. The cross-entropy loss is
commonly used for training classification networks and is
expressed mathematically as:

LCE = − 1

B

B∑
i=1

yi log (ŷi), (4)

where B is the batch size, yi is the ground truth label vector
for the i-th sample, and ŷi contains the predicted probabilities
for sample i. The logarithm in the formula is used to amplify
the loss when the model is highly confident but incorrect.
In fact, the logarithm grows as the predicted probability
approaches 0, penalizing the model for being overly confident
in incorrect predictions. As a more robust alternative to the
cross-entropy loss, during the distillation phase of the algo-
rithm, an alternative version of the performance-weighted loss
[58] is employed. In this procedure, each sample is given a
proportional weight to the teacher network’s confidence when
classifying. Thus, the weight wi of a sample of index i in a
batch is defined starting from the score of the teacher network
for the correct class ci, ŷ

(t)
i,ci
∈ R, as follows:

wi = (1− ŷ
(t)
i,ci

)γ + β, (5)

with γ > 0 set to 1 and β ∈ [0, 1] set to 0.1. Since (5)
puts more emphasis on incorrect labels, the original authors
propose to compare student network’s predictions to corrected
soft-labels ŷ∗

i instead of always the ground truth labels yi:

ŷ∗
i =

{
ŷi, if the sample is correctly classified
yi, otherwise

, (6)

where student network’s predictions ŷi are used instead of
the one-hot encoded ground truth vector yi where the model
has made a correct classification. Given that, the modified
performance-weighted loss is defined as:

LPW =
1

B

B∑
i=1

wi · LCE(ŷ
∗
i , ŷi), (7)

where B is the batch size, LCE is the cross-entropy function
(4), wi is the weight of the i-th sample in the batch (5) and
ŷ∗
i is the corrected soft-labels vector (6).
The pointwise Kullback-Leibler divergence (KL) loss mea-

sures the dissimilarity between two probability distributions. It
is commonly used in knowledge distillation to match the soft
predictions of a more extensive, pre-trained teacher network
to those of a smaller student network [53], [59]. The formula
for the pointwise KL loss is defined as follows:

LKL =
1

B

B∑
i=1

y
(t)
i · (log(y

(t)
i)− yi), (8)

where B is the batch size, while y
(t)
i and yi respectively

contain the predictions of the teacher and the student networks
on the i-th sample.

The final loss function utilized in the first two stages of
the procedure is a modified version of the one proposed in a
previous study [53], which is calculated as follows:

LKD = (α · LKL + (1− α) · LPW) · τ2. (9)

In this equation, LKD emerges as a linear combination
of the two sub-losses LKL (8) and LPW (7), modulated by
parameters α ∈ [0, 1] and τ ∈ R. The coefficient α acts
as a balancing factor, determining the proportional influence
of LKL on the overall loss. Meanwhile, τ functions as a
temperature parameter. Notably, the combination is weighted

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FONTANA et al.: DISTILLED GRADUAL PRUNING WITH PRUNED FINE-TUNING 5

by τ2, thereby adjusting the scale and sensitivity of the
combined loss. In a broader sense, α and τ adjust the balance
and sensitivity of the loss function, determining the importance
of replicating the teacher network’s behavior via LKL and
classifying examples through LPW .

D. Distilled Gradual Pruning with Pruned Fine-tuning

The proposed algorithm is composed of two phases.
The first phase, called Distilled Gradual Pruning (DGP),

involves gradually removing parts of the model while min-
imizing the loss in classification performance. This process
is executed by using self-distillation to make sure the pruned
model behaves as much like the original model as possible.
The algorithm works by gradually pruning the model over
a specific number of se epochs and then continuing to train
until it reaches convergence. The procedure’s pseudocode is
shown in Alg. 1. Let δ ∈ [0, s]se be a vector containing se
evenly spaced numbers in increasing order. At the beginning
of each epoch, i ≤ se the model is pruned to a sparsity of
δi and then trained on the batched training dataset D(b)

t . At
the beginning of each training step, the model undergoes an
additional simulated pruning process, as explained in Section
III-B. This procedure happens only if epoch i ≤ se and targets
the unpruned weights, reducing their sparsity to ssim. Then,
the algorithm makes predictions ŷ, ŷ(t) ∈ Rbs×c using the
pruned and teacher models, respectively, where bs denotes
the batch size and c is the number of labels in the datasets.
These predictions are compared to the actual labels y ∈ Rbs ,
and the knowledge distillation loss L is calculated using (9).
From this loss, we compute the gradients ∆θ and eventually
restore the weights set to zero during the simulated pruning
step. After that, the algorithm updates the unpruned weights
and proceeds to the next batch in the epoch. At the end
of each training epoch, the model is tested on the batched
validation dataset D(b)

v , and its top-1 accuracy score is saved.
We use AdamW [60] as the optimizer function to speed up
convergence. The Distilled Gradual Pruning (DGP) process
ends when the maximum number of epochs has been reached
or if the top-1 accuracy score on the batched validation
dataset D(b)

v does not improve after a fixed number of epochs,
triggering an early stop.

The second phase of the algorithm, known as Pruned Fine-
tuning, follows the first phase of Distilled Gradual Pruning. In
this phase, the model is fine-tuned without a teacher, allowing
it to focus on classification scores without being constrained
by the teacher’s predictions. Additionally, the model is not
pruned further as the desired sparsity level was achieved
during the previous phase. The pseudocode for Pruned Fine-
tuning is provided in Alg. 2. The algorithm loops through the
batches of the training dataset D(b)

t with the same stopping
criteria as the previous phase. During training, the unpruned
weights are trained using the cross-entropy loss (4) to en-
hance classification performance. The unpruned parameters are
updated through Stochastic Gradient Descent (SGD) with a
low learning rate. We opted for SGD over AdamW since our
experiments yielded better generalization performance.

Algorithm 1 Distilled Gradual Pruning
i← 1
δ ← linearly sample se numbers in [0, s]
while i ≤ se or the score keeps improving do

if i ≤ se then
prune δi percent of the model

end if
for b ∈ D(b)

t do
if i ≤ se then

apply simulated pruning to the weights (2)
end if
y ← ground truth labels for the b-th batch
ŷ ← model’s predictions for the b-th batch
ŷ(t) ← teacher’s predictions for the b-th batch
L ← KD loss (9)
∆θ ← gradients from L
if i ≤ se then

recover the weights of the simulated pruning
end if
update unpruned weights with ∆θ using AdamW

end for
score ← top-1 validation accuracy (10) on D(b)

v

i← i+ 1
end while

Algorithm 2 Pruned Fine-tuning
while the score keeps improving do

for b ∈ D(b)
t do

y ← ground truth labels for the b-th batch
ŷ ← model’s predictions for the b-th batch
L ← CE loss (4)
∆θ ← gradients from L
update unpruned weights with ∆θ using SGD

end for
score ← top-1 validation accuracy (10) on D(b)

v

end while

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposal on two widely
adopted datasets and compare them to several state-of-the-art
methods regarding unstructured pruning.

A. Datasets

CIFAR-10 [61] is a small dataset containing 60,000 training
images and 10,000 test images, split into 10 classes. The
images in CIFAR-10 are relatively simple and small, making
it a popular dataset for testing algorithms and architectures in
their early stages of development.

ImageNet (also known as ImageNet-1K) [62] is a much
larger and more complex dataset, containing over 1 million
training images and 50,000 validation images, split into 1000
classes. ImageNet offers various classes, from ordinary objects
to abstract concepts, e.g., mountains and handwriting. The
larger image size of ImageNet provides a more realistic and
challenging benchmark for computer vision models.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024

Fig. 2. Illustration of pruned and unpruned parameters within a layer of a
70% sparse MobileNet V2 network. Each 3× 3 matrix depicts a channel of
the layer’s weights. Within each filter, the pruned parameters are shaded in a
darker tone, whereas the unpruned parameters are highlighted in yellow.

B. Metrics

The metric we used to quantify the classification perfor-
mance of a model is the top-k accuracy. When classifying a
sample, the model outputs a probability distribution among
the possible labels and is trained to give more weight to the
more plausible labels. The top-k predictions Ŷi,k for a sample
of index i are the labels with the highest scores. This metric
measures the proportion of times the model predicts the correct
label to be among the top-k predictions:

accuracy(k) =
1

N

N∑
i=1

{
1, if yi ∈ Ŷi,k

0, otherwise
(10)

where N is the number of samples in the dataset, with 1 ≤ i ≤
N , yi is the true label for the i-th sample, and Ŷi,k is the set of
the top-k predicted labels for the i-th sample, with |Ŷi,k| = k.
According to typical practices in related literature, we have
decided to present the top-1 accuracy results in comparison
with the state-of-the-art in Section IV-E.

We assessed the effectiveness of our compression method
using the compression rate metric. The compression rate
is calculated using the target sparsity, which represents the
percentage of weights that are pruned from the original model.
The metric is computed as follows:

compression rate =
1

1− s
, (11)

where 0 < s < 1 represents the target sparsity of the network.

C. Implementation Details

The experiments were conducted on a high-performance
computer (HPC) equipped with an Nvidia Quadro RTX6000
GPU and 24GB of VRAM. Minimal data augmentation was
applied to ensure a fair comparison with previous literature
[3], [37], [27], [28]. In addition, this procedure also reduces
the potential confounding effects that could be introduced by
more complex data preprocessing and allows for a more fair

TABLE I
CLASSIFICATION PERFORMANCES OF RESNET-18 ON CIFAR-10 AT

INCREASING TARGET SPARSITY s.

s (%) Params Flops acc@1 (%)
20 9.2M 0.8× 92.80± 0.08
40 6.9M 0.6× 92.79± 0.01
60 4.6M 0.4× 92.78± 0.02
80 2.3M 0.2× 92.78± 0.04
90 1.15M 0.1× 92.91± 0.01
95 0.57M 0.05× 91.26± 0.03

and comprehensive evaluation of the impact of the proposed
methods. The optimizer used during the self-distillation phase
is AdamW [60], with a learning rate of 10−5, β1 and β2 equal
to 9 ·10−1 and 9.99 ·10−1, and a weight decay of 10−2. After
the teacher is detached from the pruned model, AdamW is
replaced with plain Stochastic Gradient Descent (SGD) with
a learning rate of 10−4, a momentum of 9 ·10−1 and a weight
decay of 5 · 10−4. This optimization swap is motivated by
the fact that in our experiments AdamW tended to converge
in fewer epochs while SGD has shown better generalization
capabilities. We made this change to improve our model’s
classification performance. During all experiments the max
epochs were set to 100 to be fair in comparison with other
works, however thanks to the early stop strategy and AdamW
no experiments reached the max epochs limit.

D. Ablation Study

In this section, we assess the impact of the hyperparam-
eters used in the method’s pruning and distillation stages.
To conduct the ablation study, we selected the CIFAR-10
dataset [61] and the ResNet-18 model, which are relatively
small and enable quicker and more comprehensive evalua-
tion of various combinations of hyperparameters. The model
was initially configured with 95% sparsity, 10% simulated
sparsity percentage during self-distillation with α = 0.75,
and 10 pruning epochs. We trained and tested the model in
this base configuration for each experiment, varying single
hyperparameters. Each table row shows the mean and standard
deviation of top-1 accuracy obtained from three runs of the
same experiment with different seeds. The notation ”acc@1”
is utilized as an abbreviation for the top-1 accuracy.

1) Effect of s for Sparsity: In this study, we have examined
how increasing the target sparsity s of the model affects clas-
sification accuracy. The results are presented in Tab. IV-D1.
From the results, we can observe that the loss in accuracy
is negligible for sparsity values up to 90%, after which the
accuracy begins to decline significantly. Specifically, the drop
in accuracy from 90% to 95% amounts to 1.65%, which is
consistent with the findings of other studies on unstructured
pruning [37], [27], [28]. These results demonstrate that while
higher sparsity levels can lead to a more compact and efficient
model, there is a trade-off between sparsity and accuracy.
Therefore, the target sparsity s should be carefully selected,
considering the specific model, dataset, and desired trade-off
between size and accuracy.

2) Number of pruning epochs se: In this study, we have
investigated whether increasing the number of pruning epochs

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FONTANA et al.: DISTILLED GRADUAL PRUNING WITH PRUNED FINE-TUNING 7

TABLE II
CLASSIFICATION PERFORMANCES OF RESNET-18 ON CIFAR-10 AT

INCREASING NUMBER OF PRUNING EPOCHS se .

se acc@1 (%)
1 90.16± 0.45
3 90.56± 0.23
5 90.43± 0.15
7 91.10± 0.04

se (%) acc@1 (%)
9 91.14± 0.13
11 91.14± 0.14
13 91.20± 0.23
15 91.49± 0.05

TABLE III
CLASSIFICATION PERFORMANCES OF RESNET-18 ON CIFAR-10 AT

INCREASING SIMULATED SPARSITY sSIM .

ssim (%) acc@1 (%)
0 90.89± 0.56
1 90.89± 0.54
3 91.22± 0.09

ssim (%) acc@1 (%)
5 91.17± 0.15

10 91.26± 0.03
20 90.78± 0.13

leads to a more accurate model. The results are shown in
Tab. IV-D2 and demonstrate a clear trend of higher accuracy
with increased pruning epochs. The peak gain of 1.33% was
observed at se = 15 compared to the one-shot pruning setting.
The gradual and careful selection of the parameters to prune
explains this improvement. However, it should be noted that
this result may be further improved if the pruning is performed
multiple times per epoch, as proved in [28]. However, it is a
field of future research and requires further investigation.

3) Simulated sparsity ssim: The objective of this study was
to observe how the network behaves as the percentage of
simulated sparsity is increased. The outcomes of the exper-
iments are presented in Table IV-D3. The performance of the
network without simulated pruning was better than that with
20% simulated sparsity by 0.11% but inferior to that with
10% simulated sparsity by 0.37%. It implies that the simulated
sparsity level must be cautiously selected, as a higher level
may remove too many parameters, making learning more
difficult.

4) Knowledge distillation α: This study aimed to measure
the impact of α in the Knowledge Distillation loss (9) on the
accuracy of the model. The results are in Table IV-D4. The
experiments revealed that the best results were achieved with α
values of 25% and 90%. Specifically, the mean top-1 accuracy
was improved by 1.71% and 1.74%, respectively, compared
to the undistilled setting. It was observed that generally, the
experiments with an α greater than 0 showed better mean top-
1 accuracy and reduced standard deviation, indicating that the
application of knowledge distillation can improve the model’s
accuracy.

5) Loss temperature τ : This study aimed to measure the
impact of τ in the Knowledge Distillation loss (9) on the
accuracy of the model. The results are in Table IV-D5. The

TABLE IV
CLASSIFICATION PERFORMANCES OF RESNET-18 ON CIFAR-10 AT

INCREASING DISTILLATION α IN (9).

α (%) acc@1 (%)
0 89.68± 0.51

10 91.10± 0.28
25 91.39± 0.07

α (%) acc@1 (%)
50 91.15± 0.19
75 91.26± 0.03
90 91.42± 0.07

100 91.10± 0.21

TABLE V
CLASSIFICATION PERFORMANCES OF RESNET-18 ON CIFAR-10 AT

INCREASING TEMPERATURE τ IN (9).

τ acc@1 (%)
0.1 92.65± 0.11
0.5 92.79± 0.08
1 92.59± 0.10

τ (%) acc@1 (%)
2 92.63± 0.07
4 92.70± 0.17
8 92.61± 0.10

experiments revealed that the best result was achieved with a
τ value of 0.5, where the mean top-1 accuracy was 92.79%.
The accuracy achieved at this temperature was slightly higher
than the others, with a very low standard deviation of 0.08%,
indicating a consistent performance. Furthermore, it can be
observed that varying the temperature τ from 0.1 to 8 led
to minimal variations in the top-1 accuracy, with all values
hovering around the 92.59% to 92.79% range. The standard
deviations also were relatively low for all the experiments,
suggesting that the model’s performance was stable across
different τ settings. This suggests that the Knowledge Dis-
tillation process is robust to changes in temperature τ within
the explored range for the ResNet-18 model on the CIFAR-10
dataset.

E. Comparison with SOTA

In order to provide a quantitative assessment of the efficacy
of DG2PF, we conducted a comprehensive set of experiments
on two widely-used benchmark datasets, namely CIFAR-10
[61] and ImageNet [62]. We compared our proposed algorithm
with various state-of-the-art techniques to demonstrate its
effective performance in network pruning. Throughout our
experiments, we set the number of pruning epochs, denoted as
se, to 15, while ssim to 10%, the distillation factor α to 90%
and the temperature τ to 0.5. The results for the two datasets
are shown in Tables IV-E1 and IV-E2. The tables show the
baseline top-1 accuracy (acc@1) of both the unpruned models
and the pruned ones, sided with the difference between the
two. It is crucial to note a few disparities when comparing
pruning methods. While we focused on keeping uniformity
in our implementations, the baseline accuracy among models
with the same architecture may differ. This variation stems
from different pre-trained weights adopted by each study. As
a significant number of these weights are inaccessible to the
public, the replication of the exact initializations is unfeasible.
Based on these assumptions, our evaluation criteria do not
involve directly comparing the best scores between models
with the same architecture but possibly different weights. In-
stead, we gave prominence to the relative accuracy difference
between the pruned and unpruned versions of the same model,
offering a more insightful measure of a method’s efficacy.

1) CIFAR-10: We compared VGG-16 [2], ResNet-18, and
ResNet-50 [3] architectures for CIFAR-10 [61] classifica-
tion and evaluated our DG2PF algorithm against One-Cycle
Pruning [63], SNIP [64], Iterative Pruning [65], Gradual
Pruning [27], and DPF [52]. The performance comparisons
are presented in Tab. IV-E1. The results of our experiments
showed that DG2PF outperformed all the benchmarked mod-
els, achieving the highest top-1 accuracy on all the tested

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024

architectures given the same sparsity levels. Specifically, on
VGG-16, our algorithm achieved an improvement of 0.23%
top-1 accuracy over the baseline and 0.1% over [52]. ResNet-
18 and ResNet-50 both overcome the baseline by 0.31% and
0.89%, respectively. To the best of our knowledge and also
according to a recent review [65], our work is the first one
which deals with the ResNet-50 architecture in this specific
application area.

2) ImageNet: As part of our research, we tested several
deep learning architectures for ImageNet [62] classification,
including ResNet-18, ResNet-50 [3], MobileNet v2 [68]. We
evaluated the effectiveness of our DG2PF algorithm against
state-of-the-art pruning techniques, such as One-Shot Pruning
[37], Gradual Pruning [27], Cyclical Pruning [28], and SWD
[69]. The performance comparison is shown in Tab. IV-E2.
We can see that DG2PF outperforms the competitors on all
the benchmarked models, yielding an improvement of 0.32%
top-1 accuracy on ResNet-18 and ResNet-50, and 1.19% on
MobileNet V2 against the previous best scores of [28]. The re-
sults show that DG2PF performed well on this more extensive
dataset, achieving better accuracy than existing methods.

V. CONCLUSION, LIMITATIONS AND FUTURE WORKS

We have introduced DG2PF, a novel and comprehensive
algorithm that gradually prunes pre-trained neural networks
using magnitude-based unstructured pruning techniques and
knowledge distillation. The method has been designed to min-
imize performance loss due to compression. Based on a well-
known pruning function, a specified proportion of weights
from a pre-trained neural network is selectively removed to
minimize memory and storage requirements. A novel simu-
lated pruning strategy with the advantages of weight recovery
and without the disadvantages of unstable convergence has
also been presented. The combination of those techniques
is used in the DGP phase of the algorithm. Then, the PF
phase further supports the performance recovery due to the
pruning. The algorithm’s effectiveness has been rigorously
evaluated on publicly available benchmark datasets and mod-
els, demonstrating significant improvements in memory usage
and computational efficiency while maintaining high accuracy.
Consequently, this method provides a promising avenue for
optimizing pruned pre-trained neural networks with potential
applications in various domains.

For future works, there are several areas to explore. One
avenue is to investigate different pruning functions to deter-
mine their effectiveness in reducing memory and storage re-
quirements while maintaining accuracy. The simulated pruning
strategy can also be enhanced to achieve even better weight
recovery and convergence properties. Additionally, exploring
domain-specific applications and scaling up the algorithm to
larger models would further validate its effectiveness. This
study supports the following assumption: weights closer to
zero have less impact on the final prediction in comparison
to larger values for magnitude-based pruning methods [28],
[27], [45]. Despite the actual results shown in this method
and the related work, it’s crucial to recognize the limita-
tions of this assumption. For instance, research indicates that

Transformer-based networks typically achieve a lower level
of sparsity using this class of pruning algorithms [75], [76],
[77]. Acknowledged that our method can indeed be adapted
to different activation functions and network architectures, the
correct adjustments might be essential to accommodate the
specific attributes of these networks in future work findings.
Lastly, integrating the algorithm with other optimization tech-
niques, such as quantization or network architecture search,
could yield even better results. Overall, the DG2PF algorithm
presents a comprehensive solution for optimizing pruned pre-
trained neural networks, and future research can further im-
prove its performance and applicability in various domains.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference
on Learning Representations (ICLR), 2015. [Online]. Available:
https://arxiv.org/abs/1409.1556

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA:
IEEE Computer Society, jun 2016, pp. 770–778. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2020. [Online]. Available:
https://arxiv.org/abs/2010.11929

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, jun 2016, pp. 779–788. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.91

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran
Associates, Inc., 2015. [Online]. Available: https://proceedings.neurips.
cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[7] E. Mohamed, A. M. Shaker, H. Rashed, A. E. Sallab, and M. M.
Hadhoud, “Insta-yolo: Real-time instance segmentation,” ArXiv, vol.
abs/2102.06777, 2021. [Online]. Available: https://arxiv.org/abs/2102.
06777

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2980–2988. [Online]. Available: https://openaccess.thecvf.com/content
ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf

[9] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun,
Y. Wu, Y. Tian, P. Vajda, and Y. Jia, “Fbnet: Hardware-aware
efficient convnet design via differentiable neural architecture
search,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2019. [Online]. Available:
https://openaccess.thecvf.com/content CVPR 2019/html/Wu FBNet
Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search CVPR 2019 paper.html

[10] Y. Guo, Y. Chen, Y. Zheng, P. Zhao, J. Chen, J. Huang,
and M. Tan, “Breaking the curse of space explosion: Towards
efficient nas with curriculum search,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3822–3831. [Online]. Available:
https://proceedings.mlr.press/v119/guo20b.html

[11] Y. Chen, Y. Guo, Q. Chen, M. Li, W. Zeng, Y. Wang, and M. Tan,
“Contrastive neural architecture search with neural architecture
comparators,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 9502–9511.
[Online]. Available: https://openaccess.thecvf.com/content/CVPR2021/

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1409.1556
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2010.11929
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://arxiv.org/abs/2102.06777
https://arxiv.org/abs/2102.06777
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
https://proceedings.mlr.press/v119/guo20b.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html

FONTANA et al.: DISTILLED GRADUAL PRUNING WITH PRUNED FINE-TUNING 9

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART ON THE CIFAR-10 DATASET. THE COMPRESSION RATE IS SHOWN ALONGSIDE SPARSITY PERCENTAGES.

MODELS MARKED WITH ∗ ARE OBTAINED FROM THE AUTHORS OF [63] REIMPLEMENTING THE ORIGINAL METHODS.

Setting acc@1 (%)
Model Sparsity Method Params Flops Baseline Pruned Difference

VGG-16 95% (20×)

Iterative Pruning∗ [65]

6.9M x0.05

- 81.46 -
Gradual Pruning∗ [27] - 90.56 -

One-Cycle Pruning [63] - 90.67 -
SNIP [64] 93.24 92.91 -0.33
DPF [52] 93.74 93.87 +0.13

DG2PF (ours) 93.45 93.68 +0.23

ResNet-18 95% (20×)

Iterative Pruning∗ [65]

0.57M x0.05

- 87.54 -
Gradual Pruning∗ [27] - 92.04 -

One-Cycle Pruning [63] - 92.76 -
DG2PF (ours) 92.59 92.90 +0.31

ResNet-50 95% (20×)
GraNet [66]

1.28M x0.05
94.75 94.44 -0.31

Opt [67] 94.75 94.56 -0.19
DG2PF (ours) 92.79 93.68 +0.89

TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART ON THE IMAGENET DATASET. THE COMPRESSION RATE IS SHOWN ALONGSIDE SPARSITY PERCENTAGES.
MODELS MARKED WITH ∗ ARE OBTAINED FROM THE AUTHORS OF [28] REIMPLEMENTING THE ORIGINAL METHODS. METHOD WITH SUPERSCRIPT †

INDICATES THAT THE DATA REPORTED IS OBTAINED FROM REIMPLEMENTATION BY [70]

Setting acc@1 (%)
Model Sparsity Method Params Flops Baseline Pruned Difference

ResNet-18 90% (10×)

One-shot Pruning⋆ [37]

1.15M 0.10x

69.70 63.50 -6.20
Gradual Pruning⋆ [37] 69.70 63.60 -6.10
Cyclical Pruning [28] 69.70 64.90 -4.80

DG2PF (ours) 69.70 65.22 -4.48

ResNet-50 90% (10×)

SWD [69] 2.56M 0.10x - 73.10 -
MLPrune [71] 2.56M 0.10x 77.01 60.98 -16.03

PBW [72] 2.56M 0.10x 77.01 69.44 -7.57
RIGL [49] 2.56M 0.13x 77.01 72.0 -5.01

Gradual Pruning⋆ [37] 2.56M 0.10x 76.16 71.90 -4.26
One-shot Pruning⋆ [37] 2.56M 0.10x 76.16 72.80 -3.36

GMP [73]† 2.56M 0.10x 77.01 73.91 -3.1
DNM [74]† 2.56M 0.10x 77.01 74.0 -3.01

Cyclical Pruning [28] 2.56M 0.10x 76.16 73.30 -2.86
STR [70] 2.49M 0.09x 77.01 74.31 -2.7

GraNet [66] 2.56M 0.16x 76.8 74.2 -2.6
DG2PF (ours) 2.56M 0.10x 76.13 73.62 -2.51

MobileNet V2 70% (3.33×)

Gradual Pruning⋆ [37]

1.03M 0.33x

71.70 61.30 -10.40
One-shot Pruning⋆ [37] 71.70 62.70 -9.00
Cyclical Pruning [28] 71.70 64.40 -7.30

DG2PF (ours) 71.71 65.59 -6.12

html/Chen Contrastive Neural Architecture Search With Neural
Architecture Comparators CVPR 2021 paper.html

[12] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all:
Train one network and specialize it for efficient deployment,”
arXiv preprint arXiv:1908.09791, 2019. [Online]. Available: https:
//arxiv.org/abs/1908.09791

[13] Y. Guo, Y. Zheng, M. Tan, Q. Chen, Z. Li, J. Chen, P. Zhao, and
J. Huang, “Towards accurate and compact architectures via neural
architecture transformer,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 10, pp. 6501–6516, 2021. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9447923?
casa token=y OTboxHRbEAAAAA:RO3n414-jNsa jXsoeEpzE
tr4Wlf7r-SvLkEZ2FZiLA pHzgiT0qtdU8PejmsUIy9FMOzO1Qw

[14] S. Niu, J. Wu, Y. Zhang, Y. Guo, P. Zhao, J. Huang, and M. Tan,
“Disturbance-immune weight sharing for neural architecture search,”
Neural Networks, vol. 144, pp. 553–564, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S089360802100352X

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
[Online]. Available: https://openaccess.thecvf.com/content cvpr 2016/
html/He Deep Residual Learning CVPR 2016 paper.html

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” International Conference
on Learning Representations (ICLR), 2017. [Online]. Available:
https://openreview.net/forum?id=rJqFGTslg

[17] S. Gao, F. Huang, W. Cai, and H. Huang, “Network
pruning via performance maximization,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021, pp. 9270–9280. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2021/html/Gao Network
Pruning via Performance Maximization CVPR 2021 paper.html

[18] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding,
“Resrep: Lossless cnn pruning via decoupling remembering
and forgetting,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 4510–4520. [Online].
Available: https://openaccess.thecvf.com/content/ICCV2021/html/Ding
ResRep Lossless CNN Pruning via Decoupling Remembering and
Forgetting ICCV 2021 paper.html?ref=https://githubhelp.com

[19] J. Liu, B. Zhuang, Z. Zhuang, Y. Guo, J. Huang, J. Zhu, and
M. Tan, “Discrimination-aware network pruning for deep model
compression,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 8, pp. 4035–4051, 2022. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9384353

[20] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370–403, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231221010894

[21] X. Ma, S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. H. Tan, Z. Li,
D. Fan, X. Qian et al., “Non-structured dnn weight pruning—is it
beneficial in any platform?” IEEE transactions on neural networks
and learning systems, vol. 33, no. 9, pp. 4930–4944, 2021. [Online].

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Contrastive_Neural_Architecture_Search_With_Neural_Architecture_Comparators_CVPR_2021_paper.html
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://ieeexplore.ieee.org/abstract/document/9447923?casa_token=y_OTboxHRbEAAAAA:RO3n414-jNsa_jXsoeEpzE_tr4Wlf7r-SvLkEZ2FZiLA_pHzgiT0qtdU8PejmsUIy9FMOzO1Qw
https://ieeexplore.ieee.org/abstract/document/9447923?casa_token=y_OTboxHRbEAAAAA:RO3n414-jNsa_jXsoeEpzE_tr4Wlf7r-SvLkEZ2FZiLA_pHzgiT0qtdU8PejmsUIy9FMOzO1Qw
https://ieeexplore.ieee.org/abstract/document/9447923?casa_token=y_OTboxHRbEAAAAA:RO3n414-jNsa_jXsoeEpzE_tr4Wlf7r-SvLkEZ2FZiLA_pHzgiT0qtdU8PejmsUIy9FMOzO1Qw
https://www.sciencedirect.com/science/article/pii/S089360802100352X
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openreview.net/forum?id=rJqFGTslg
https://openaccess.thecvf.com/content/CVPR2021/html/Gao_Network_Pruning_via_Performance_Maximization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Gao_Network_Pruning_via_Performance_Maximization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Ding_ResRep_Lossless_CNN_Pruning_via_Decoupling_Remembering_and_Forgetting_ICCV_2021_paper.html?ref=https://githubhelp.com
https://openaccess.thecvf.com/content/ICCV2021/html/Ding_ResRep_Lossless_CNN_Pruning_via_Decoupling_Remembering_and_Forgetting_ICCV_2021_paper.html?ref=https://githubhelp.com
https://openaccess.thecvf.com/content/ICCV2021/html/Ding_ResRep_Lossless_CNN_Pruning_via_Decoupling_Remembering_and_Forgetting_ICCV_2021_paper.html?ref=https://githubhelp.com
https://ieeexplore.ieee.org/abstract/document/9384353
https://www.sciencedirect.com/science/article/pii/S0925231221010894

10 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. ??, NO. ?, MONTH 2024

Available: https://ieeexplore.ieee.org/abstract/document/9381660
[22] S. Huang, C. Pearson, R. Nagi, J. Xiong, D. Chen, and W.-m. Hwu,

“Accelerating sparse deep neural networks on fpgas,” in IEEE High
Performance Extreme Computing Conference (HPEC), 2019, pp. 1–7.
[Online]. Available: https://ieeexplore.ieee.org/document/8916419

[23] J. Li and A. Louri, “Adaprune: An accelerator-aware pruning technique
for sustainable cnn accelerators,” IEEE Transactions on Sustainable
Computing, vol. 7, no. 1, pp. 47–60, 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9359522

[24] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–
605. [Online]. Available: https://proceedings.neurips.cc/paper/1989/
hash/6c9882bbac1c7093bd25041881277658-Abstract.html

[25] W. Lei, H. Chen, and Y. Wu, “Compressing deep convolutional networks
using k-means based on weights distribution,” in Proceedings of the
2nd International Conference on Intelligent Information Processing, ser.
ICIIP ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3144789.3144803

[26] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,”
arXiv preprint arXiv:1611.06440, 2016. [Online]. Available: https:
//arxiv.org/abs/1611.06440

[27] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv e-prints, p. arXiv:1710.01878,
Oct. 2017. [Online]. Available: https://arxiv.org/abs/1710.01878

[28] S. Srinivas, A. Kuzmin, M. Nagel, M. van Baalen, A. Skliar,
and T. Blankevoort, “Cyclical pruning for sparse neural networks,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2022, pp. 2761–2770. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00312

[29] Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. V.
Gool, “Revisiting random channel pruning for neural network
compression,” in 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2022, pp. 191–201. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00029

[30] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” 2014. [Online]. Available:
https://arxiv.org/abs/1412.6550

[31] M. Kang and S. Kang, “Data-free knowledge distillation in neural
networks for regression,” Expert Systems with Applications, vol. 175,
p. 114813, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417421002542

[32] L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards efficient and
compact neural networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 8, pp. 4388–4403, 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9381661

[33] Y. He, X. Zhang, and J. Sun, “Channel pruning for
accelerating very deep neural networks,” International Conference
on Computer Vision (ICCV), pp. 1398–1406, 2017. [Online].
Available: https://openaccess.thecvf.com/content ICCV 2017/papers/
He Channel Pruning for ICCV 2017 paper.pdf

[34] J. Choquette and W. Gandhi, “Nvidia a100 gpu: Performance &
innovation for gpu computing,” in IEEE Hot Chips 32 Symposium
(HCS). IEEE Computer Society, 2020, pp. 1–43. [Online]. Available:
https://ieeexplore.ieee.org/document/9220622

[35] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “Ai benchmark: Running deep neural networks on android
smartphones,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, 2018, pp. 0–0. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-11021-5 19

[36] J. Liu, B. Zhuang, Z. Zhuang, Y. Guo, J. Huang, J. Zhu, and
M. Tan, “Discrimination-aware network pruning for deep model
compression,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 8, pp. 4035–4051, 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9384353

[37] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1. Cambridge, MA, USA: MIT Press, 2015, p. 1135–1143.
[Online]. Available: https://dl.acm.org/doi/10.5555/2969239.2969366

[38] Y. Bai, H. Wang, X. Ma, Y. Zhang, Z. Tao, and Y. Fu, “Parameter-
efficient masking networks,” Advances in Neural Information
Processing Systems, vol. 35, pp. 10 217–10 229, 2022. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2022/hash/
427048354ac2db22d43149c51346bafd-Abstract-Conference.html

[39] Y. Chen, Z. Ma, W. Fang, X. Zheng, Z. Yu, and Y. Tian, “A unified
framework for soft threshold pruning,” arXiv preprint arXiv:2302.13019,
2023. [Online]. Available: https://arxiv.org/abs/2302.13019

[40] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain,
S. Kakade, and A. Farhadi, “Soft threshold weight reparameterization
for learnable sparsity,” in Proceedings of the International Conference
on Machine Learning (UCML), July 2020. [Online]. Available:
https://dl.acm.org/doi/10.5555/3524938.3525452

[41] K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort, “Learned threshold
pruning,” arXiv preprint arXiv:2003.00075, 2020. [Online]. Available:
https://arxiv.org/abs/2003.00075

[42] B. Hassibi and D. G. Stork, “Second order derivatives
for network pruning: Optimal brain surgeon,” in Advances
in neural information processing systems, 1993, pp. 164–
171. [Online]. Available: https://proceedings.neurips.cc/paper/1992/
hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html

[43] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster gaze
prediction with dense networks and fisher pruning,” arXiv preprint
arXiv:1801.05787, 2018. [Online]. Available: https://arxiv.org/abs/1801.
05787

[44] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approx-
imations for model compression,” Advances in Neural Information Pro-
cessing Systems, 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html

[45] C. Laurent, C. Ballas, T. George, P. Vincent, and N. Ballas, “Revisiting
loss modelling for unstructured pruning,” 2021. [Online]. Available:
https://openreview.net/forum?id=jpm1AfJucwt

[46] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for
deep learning,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 3288–3298. [Online]. Available: https://papers.nips.cc/paper files/
paper/2017/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html

[47] B. Dai, C. Zhu, B. Guo, and D. Wipf, “Compressing neural networks
using the variational information bottleneck,” in International Confer-
ence on Machine Learning (ICML). PMLR, 2018, pp. 1135–1144.
[Online]. Available: http://proceedings.mlr.press/v80/dai18d/dai18d.pdf

[48] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” arXiv preprint arXiv:1902.09574, 2019. [Online]. Available:
https://arxiv.org/abs/1902.09574

[49] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging
the lottery: Making all tickets winners,” in Proceedings of the 37th
International Conference on Machine Learning (ICML). JMLR.org,
2020. [Online]. Available: http://proceedings.mlr.press/v119/evci20a/
evci20a.pdf

[50] S. Jayakumar, R. Pascanu, J. Rae, S. Osindero, and E. Elsen, “Top-kast:
Top-k always sparse training,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 20 744–20 754. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/ee76626ee11ada502d5dbf1fb5aae4d2-Paper.pdf

[51] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” Advances in Neural Information Processing Systems, 2016.
[Online]. Available: https://dl.acm.org/doi/10.5555/3157096.3157251

[52] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi,
“Dynamic model pruning with feedback,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=SJem8lSFwB

[53] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015. [Online].
Available: https://arxiv.org/abs/1503.02531

[54] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from
knowledge distillation: Fast optimization, network minimization
and transfer learning,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 7130–7138.
[Online]. Available: https://openaccess.thecvf.com/content cvpr 2017/
papers/Yim A Gift From CVPR 2017 paper.pdf

[55] J. Park and A. No, “Prune your model before distill it,” in
European Conference on Computer Vision (ECCV), S. Avidan,
G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds. Cham:
Springer Nature Switzerland, 2022, pp. 120–136. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-20083-0 8

[56] N. Aghli and E. Ribeiro, “Combining weight pruning and
knowledge distillation for cnn compression,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2021, pp. 3191–3198. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2021W/EVW/papers/

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://ieeexplore.ieee.org/abstract/document/9381660
https://ieeexplore.ieee.org/document/8916419
https://ieeexplore.ieee.org/document/9359522
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://doi.org/10.1145/3144789.3144803
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1710.01878
https://doi.ieeecomputersociety.org/10.1109/CVPRW56347.2022.00312
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.00029
https://arxiv.org/abs/1412.6550
https://www.sciencedirect.com/science/article/pii/S0957417421002542
https://www.sciencedirect.com/science/article/pii/S0957417421002542
https://ieeexplore.ieee.org/document/9381661
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Channel_Pruning_for_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Channel_Pruning_for_ICCV_2017_paper.pdf
https://ieeexplore.ieee.org/document/9220622
https://link.springer.com/chapter/10.1007/978-3-030-11021-5_19
https://ieeexplore.ieee.org/abstract/document/9384353
https://dl.acm.org/doi/10.5555/2969239.2969366
https://proceedings.neurips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/427048354ac2db22d43149c51346bafd-Abstract-Conference.html
https://arxiv.org/abs/2302.13019
https://dl.acm.org/doi/10.5555/3524938.3525452
https://arxiv.org/abs/2003.00075
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://arxiv.org/abs/1801.05787
https://arxiv.org/abs/1801.05787
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://openreview.net/forum?id=jpm1AfJucwt
https://papers.nips.cc/paper_files/paper/2017/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/69d1fc78dbda242c43ad6590368912d4-Abstract.html
http://proceedings.mlr.press/v80/dai18d/dai18d.pdf
https://arxiv.org/abs/1902.09574
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
https://proceedings.neurips.cc/paper/2020/file/ee76626ee11ada502d5dbf1fb5aae4d2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ee76626ee11ada502d5dbf1fb5aae4d2-Paper.pdf
https://dl.acm.org/doi/10.5555/3157096.3157251
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
https://arxiv.org/abs/1503.02531
https://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-031-20083-0_8
https://openaccess.thecvf.com/content/CVPR2021W/EVW/papers/Aghli_Combining_Weight_Pruning_and_Knowledge_Distillation_for_CNN_Compression_CVPRW_2021_paper.pdf

FONTANA et al.: DISTILLED GRADUAL PRUNING WITH PRUNED FINE-TUNING 11

Aghli Combining Weight Pruning and Knowledge Distillation for
CNN Compression CVPRW 2021 paper.pdf

[57] Z. Tang, L. Luo, B. Xie, Y. Zhu, R. Zhao, L. Bi, and C. Lu, “Automatic
sparse connectivity learning for neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–15, 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9690593

[58] R. Meyer and A. Wong, “A fair loss function for network pruning,” in
Workshop on Trustworthy and Socially Responsible Machine Learning
(TSRML), 2022. [Online]. Available: https://arxiv.org/abs/2211.10285

[59] T. Kim, J. Oh, N. Kim, S. Cho, and S.-Y. Yun, “Comparing
kullback-leibler divergence and mean squared error loss in
knowledge distillation,” arXiv preprint arXiv:2105.08919, 2021.
[Online]. Available: https://arxiv.org/abs/2105.08919

[60] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
arXiv e-prints, p. arXiv:1711.05101, Nov. 2017. [Online]. Available:
https://arxiv.org/abs/1711.05101

[61] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
pp. 32–33, 2009. [Online]. Available: https://www.cs.toronto.edu/∼kriz/
learning-features-2009-TR.pdf

[62] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015. [Online]. Available: https://link.springer.com/article/10.
1007/s11263-015-0816-y

[63] N. Hubens, M. Mancas, B. Gosselin, M. Preda, and T. Zaharia, “One-
cycle pruning: Pruning convnets with tight training budget,” in IEEE
International Conference on Image Processing (ICIP), 2022, pp. 4128–
4132. [Online]. Available: https://ieeexplore.ieee.org/document/9897980

[64] N. Lee, T. Ajanthan, and P. H. S. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” 2018. [Online]. Available:
https://arxiv.org/abs/1810.02340

[65] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020,
pp. 129–146. [Online]. Available: https://proceedings.mlsys.org/paper
files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf

[66] S. Liu, T. Chen, X. Chen, Z. Atashgahi, L. Yin, H. Kou, L. Shen,
M. Pechenizkiy, Z. Wang, and D. C. Mocanu, “Sparse training
via boosting pruning plasticity with neuroregeneration,” Advances in
Neural Information Processing Systems, vol. 34, pp. 9908–9922, 2021.
[Online]. Available: https://openreview.net/pdf?id=MNVjrDpu6Yo

[67] Y. Zhang, M. Lin, M. Chen, F. Chao, and R. Ji, “Optg: Optimizing
gradient-driven criteria in network sparsity,” 2022. [Online]. Available:
https://arxiv.org/abs/2201.12826

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. [Online]. Avail-
able: https://openaccess.thecvf.com/content cvpr 2018/html/Sandler
MobileNetV2 Inverted Residuals CVPR 2018 paper.html

[69] H. Tessier, V. Gripon, M. Léonardon, M. Arzel, T. Hannagan, and
D. Bertrand, “Rethinking weight decay for efficient neural network
pruning,” Journal of Imaging, vol. 8, no. 3, 2022. [Online]. Available:
https://www.mdpi.com/2313-433X/8/3/64

[70] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain,
S. Kakade, and A. Farhadi, “Soft threshold weight reparameterization for
learnable sparsity,” in Proceedings of the 37th International Conference
on Machine Learning (ICML). JMLR.org, 2020. [Online]. Available:
http://proceedings.mlr.press/v119/kusupati20a/kusupati20a.pdf

[71] W. Zeng and R. Urtasun, “MLPrune: Multi-layer pruning for
automated neural network compression,” 2019. [Online]. Available:
https://openreview.net/forum?id=r1g5b2RcKm

[72] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015. [Online]. Available:
https://arxiv.org/abs/1510.00149

[73] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017. [Online]. Available: https://arxiv.org/abs/1710.01878

[74] M. Wortsman, A. Farhadi, and M. Rastegari, “Discovering neural
wirings,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf

[75] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang,
“Chasing sparsity in vision transformers: An end-to-end exploration,”
in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 19 974–
19 988. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2021/file/a61f27ab2165df0e18cc9433bd7f27c5-Paper.pdf

[76] F. Yu, K. Huang, M. Wang, Y. Cheng, W. Chu, and L. Cui, “Width
& depth pruning for vision transformers,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 3, pp. 3143–3151,
Jun. 2022. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/20222

[77] L. Yu and W. Xiang, “X-pruner: explainable pruning for vision
transformers,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2023,
pp. 24 355–24 363. [Online]. Available: https://openaccess.thecvf.
com/content/CVPR2023/html/Yu X-Pruner eXplainable Pruning for
Vision Transformers CVPR 2023 paper.html

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3366497

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://openaccess.thecvf.com/content/CVPR2021W/EVW/papers/Aghli_Combining_Weight_Pruning_and_Knowledge_Distillation_for_CNN_Compression_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/EVW/papers/Aghli_Combining_Weight_Pruning_and_Knowledge_Distillation_for_CNN_Compression_CVPRW_2021_paper.pdf
https://ieeexplore.ieee.org/document/9690593
https://arxiv.org/abs/2211.10285
https://arxiv.org/abs/2105.08919
https://arxiv.org/abs/1711.05101
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://link.springer.com/article/10.1007/s11263-015-0816-y
https://link.springer.com/article/10.1007/s11263-015-0816-y
https://ieeexplore.ieee.org/document/9897980
https://arxiv.org/abs/1810.02340
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://openreview.net/pdf?id=MNVjrDpu6Yo
https://arxiv.org/abs/2201.12826
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://www.mdpi.com/2313-433X/8/3/64
http://proceedings.mlr.press/v119/kusupati20a/kusupati20a.pdf
https://openreview.net/forum?id=r1g5b2RcKm
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1710.01878
https://proceedings.neurips.cc/paper_files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a61f27ab2165df0e18cc9433bd7f27c5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a61f27ab2165df0e18cc9433bd7f27c5-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/20222
https://ojs.aaai.org/index.php/AAAI/article/view/20222
https://openaccess.thecvf.com/content/CVPR2023/html/Yu_X-Pruner_eXplainable_Pruning_for_Vision_Transformers_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Yu_X-Pruner_eXplainable_Pruning_for_Vision_Transformers_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Yu_X-Pruner_eXplainable_Pruning_for_Vision_Transformers_CVPR_2023_paper.html

	Introduction
	Related work
	Proposed method: Distilled Gradual Pruning with Pruned Fine-tuning
	Pruning function
	Simulated pruning function
	Knowledge distillation procedure
	Distilled Gradual Pruning with Pruned Fine-tuning

	Experimental results
	Datasets
	Metrics
	Implementation Details
	Ablation Study
	Effect of s for Sparsity
	Number of pruning epochs se
	Simulated sparsity ssim
	Knowledge distillation alpha
	Loss temperature tau

	Comparison with SOTA
	CIFAR-10
	ImageNet

	Conclusion, Limitations and Future works
	References

