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Abstract. In this paper we propose a high-order numerical scheme for time-dependent mean field games

systems. The scheme, which is built by combining Lagrange-Galerkin and semi-Lagrangian techniques,
is consistent and stable for large time steps compared with the space steps. We provide a convergence

analysis for the exactly integrated Lagrange-Galerkin scheme applied to the Fokker-Planck equation,

and we propose an implementable version with inexact integration. Finally, we validate the convergence
rate of the proposed scheme through the numerical approximation of two mean field games systems.
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1. Introduction

This work concerns the numerical approximation of Mean Field Games (MFGs), introduced simulta-
neously by Lasry-Lions in [32, 33, 34] and by Huang-Caines-Malhamé in [26]. MFGs characterize Nash
equilibria of stochastic differential games with an infinite number of indistinguishable players. In some
specific instances, the aforementioned equilibria are described by a system of parabolic Partial Differential
Equations (PDEs) consisting of a Hamilton-Jacobi-Bellman (HJB) equation, with a terminal condition,
coupled with a Fokker-Planck (FP) equation with an initial condition.

The numerical approximation of MFGs has been an active area of research over the last decade (see
e.g. [2, 35] and the references therein). Let us mention, for instance, the articles [1] and [14] proposing a
semi-implicit finite difference scheme and a Semi-Lagrangian (SL) type scheme, respectively. The scheme
studied in [14], which allows for large time steps compared to space steps, has been extended in [15] to
deal with nonlinear FP equations and in [16] to approximate MFGs with non-local diffusions. On the
other hand, to the best of our knowledge, only few works deal with high-order numerical schemes for MFG
systems. Let us mention [43] and [36], where the authors propose finite difference based second-order
accurate methods, and the recent contribution [24], where high-order space-time finite elements are used
to approximate variational MFGs.

The main purpose of this article is to provide a new high-order approximation scheme, meaning an
order of convergence larger than two, for a class of second-order MFG systems with constant diffusion.
The scheme combines a high-order Lagrange-Galerkin (LG) discretization for the FP equation with a high-
order SL discretization for the HJB equation. The main novelty of our scheme lies in the discretization
of the FP equation which, inspired by [40] and [15], is constructed by using SL techniques for the time
discretization (see e.g. [10, 18]) and LG techniques for the space discretization (see e.g. [40, 5]). More
precisely, the stochastic characteristic curves of the FP equation are approximated with a Crank-Nicolson
method (see e.g. [28, 39]), as in high-order SL schemes for parabolic equations (see [7]), and the space
variable is discretized by using a LG scheme with a symmetric Lagrangian basis of odd order. This
last choice is inspired by the results in [20, 21], where the equivalence between SL and LG schemes has
been studied, and where symmetric odd basis have shown a good behavior in terms of stability. The
resulting scheme for the FP equation is explicit, conservative, consistent, stable, allows for large time
steps compared with space steps, is convergent, and high-order accurate. When coupled with a high-order
SL for the HJB equation, one obtains a high-order scheme for the MFG system which, because of its
forward-backward structure, is not explicit and is solved by fixed-point iterations. We numerically show
high-order accuracy of the scheme by considering two MFG systems. The first one is a linear-quadratic
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MFG with non-local couplings (see e.g. [4]), for which we are able to compute its analytical solution, and
the second one, taken from [43], is a MFG with local couplings (see e.g. [12]) and no explicit solution.

The article is organized as follows. In Section 2, we recall the MFG system we are interested in, as well
as some basic results on FP equations. Section 3 introduces a new scheme for FP equations, based on SL
techniques and LG approximations, and establish its main properties. In Section 4, we present a high-
order SL scheme for HJB equations and couple it with the scheme for the FP equation studied in Section 3
to derive a new scheme for the MFG system. Finally, in Section 5 we provide an implementable version
of the method, derived from the use of a cubic basis and Simpson’s rule in the LG approximation. The
paper concludes by showing the performance of the proposed scheme in two examples: a linear-quadratic
MFG with non-local couplings and admitting an explicit solution, and a MFG with local couplings and
without explicit solutions. In all the numerical examples, an order of accuracy between two and three is
observed. Finally, we provide in the Appendix of this work the proof of some needed technical results.

2. Preliminary results

In the following, given a function u : [0, T ]× Rd → R and (t, x) ∈ (0, T )× Rd, the notations ∇u(t, x)
and ∆u(t, x) refer to the gradient and Laplacian of u with respect to the spatial variable x. Similarly,
given v : [0, T ]×Rd → Rd, the notation Dv and div(v) refer to the Jacobian matrix and the divergence of
v with respect to the space variable, respectively. We also denote by (P1(Rd),d) be the metric space of
Borel probability measures on Rd with finite first order moment, endowed with the 1-Wasserstein distance
d (see e.g. [3, Section 7.1] for the definition of d).

We focus on the numerical approximation of the following time-dependent second-order MFG with
non-local couplings (see [33, 34]):

(MFG)

−∂tv − σ2

2 ∆v +H(x,∇v) = F (x,m(t)) in [0, T )× Rd,

∂tm− σ2

2 ∆m− div
(
∂pH(x,∇v)m

)
= 0 in (0, T ]× Rd,

v(T, ·) = G(·,m(T )), m(0, ·) = m∗
0 in Rd,

where T > 0, σ ∈ R \ {0}, Rd × Rd ∋ (x, p) 7→ H(x, p) ∈ R is convex and differentiable with respect to
p, F , G : Rd × P1(Rd) → R, and m∗

0 : Rd → R. Notice that (MFG) consists of a HJB equation, with
a terminal condition, coupled with a FP equation with an initial condition. For the sake of simplicity,
in what follows we will suppose that the Hamiltonian H is purely quadratic, i.e. H(x, p) = |p|2/2 for all
x, p ∈ Rd and we assume that:

(H1) m∗
0 is nonnegative, Hölder continuous, has compact support, and

∫
Rd m

∗
0(x)dx = 1. .

(H2) F and G are bounded and Lipschitz continuous. Moreover, for every µ ∈ P1(Rd), F (·, µ) is of class
C2 and

sup
x∈Rd,µ∈P1(Rd)

{
∥DF (x, µ)∥∞ + ∥D2F (x, µ)∥∞

}
<∞.

Under (H1)-(H2) system (MFG) admits at least one classical solution (v∗,m∗) (see e.g. [11, Theorem
3.1]). Moreover, if the coupling terms F and G satisfy a monotonicity condition with respect to m, then
the classical solution is unique (see [34, Theorem 2.4]).

In order to obtain a high-order scheme for (MFG), our first task will be to construct a high-order LG
scheme for the following linear FP equation:

(FP)
∂tm− σ2

2 ∆m+ div (bm) = 0 in (0, T )× Rd,

m(0, ·) = m∗
0 in Rd,

where σ ∈ R \ {0}, b : [0, T ]× Rd → Rd, and m∗
0 : Rd → R. We will assume that:

(H3) b ∈ C([0, T ]× Rd), b is bounded and there exists Cb > 0 such that

|b(t, x)− b(t, y)| ≤ Cb|x− y|, for t ∈ [0, T ] and x, y ∈ Rd.

In the following result, proved in the Appendix, we summarize some properties of equation (FP).

Theorem 2.1. Assume (H1) and (H3). Then the following hold:

(i) Equation (FP) admits a unique classical solution m∗ ∈ C1,2([0, T ]× Rd).
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(ii) m∗ ≥ 0.
(iii)

∫
Rd m

∗(t, x)dx = 1 for all t ∈ [0, T ].

(iv) m∗ is the unique solution in L2([0, T ]× Rd) to (FP) in the distributional sense.

Let us recall the probabilistic interpretation of the solution m∗ to (FP), which will be useful in order
to construct a LG scheme. Let W be a d-dimensional Brownian motion defined on a probability space
(Ω,F ,P) and let Y0 : Ω → Rd be a random variable, independent of W , and whose distribution is
absolutely continuous with respect to the Lebesgue measure in Rd, with density given by m∗

0. Given
(t, x) ∈ [0, T ]× Rd, we define Y t,x as the unique strong solution to the SDE:

(2.1)
dY (s) = b(s, Y (s))ds+ σdW (s) for s ∈ (t, T ),

Y (t) = x.

Denote by E(X) the expectation of a random variable X : Ω → R. Under the asspumptions of Theorem
2.1, Y 0,Y0(t) is well defined for all t ∈ [0, T ] and its distribution is absolutely continuous with respect
to the Lebesgue measure in Rd, with density given by m∗(t, ·) (see e.g. [22]). From the P-a.s. equality

Y 0,Y0(s) = Y t,Y 0,Y0 (t)(s) for every 0 ≤ t ≤ s ≤ T , we deduce that for every continuous and bounded
function ϕ : Rd → R, we have

(2.2)

∫
Rd

ϕ(x)m∗(s, x)dx =

∫
Rd

E
(
ϕ(Y t,x(s))

)
m∗(t, x)dx.

3. A Lagrange-Galerkin type scheme for a Fokker-Planck equation

Let us focus on the numerical approximation of (FP). Notice that if b is differentiable with respect to
the space variable, (FP) can be written as

∂tm− σ2

2
∆m+ ⟨b,∇m⟩+ div(b)m = 0 in (0, T )× Rd,

m(0, ·) = m∗
0 in Rd.

Using this formulation, a second-order accurate semi-Lagrangian scheme can be derived to approximate
m∗ (see e.g. [7]). However, such a scheme is not conservative, i.e. the discrete solution does not satisfy
the discrete analogous of Theorem 2.1(iii). The scheme that we consider, which will be built from (2.2),
will allow us to preserve this property (see Theorem 3.1(ii) below).

Let us fix N∆t ∈ N, set I∆t = {0, . . . , N∆t}, I∗
∆t = I∆t \{N∆t}, ∆t = T/N∆t, and tk = k∆t (k ∈ I∆t).

Let x ∈ Rd and consider the sequence of random variables (yk)
N∆t

k=0 defined by y0 = x and, for every
k ∈ I∗

∆t, yk+1 is the unique solution to

(3.1) y = yk +
∆t

2
(b(tk, yk) + b(tk+1, y)) +

√
∆tσξk,

where (ξk)
N∆t−1
k=0 is a sequence of i.i.d. Rd-valued random variables with i.i.d. components such that, for

every k ∈ I∗
∆t,

(3.2) P((ξk)i = 0) = 2/3 and P((ξk)i = ±
√
3) = 1/6 for all i = 1, . . . , d.

Since b is Lipschitz continuous, the sequence (yk)
N∆t

k=0 , called the Crank-Nicolson (CN) approximation
of Y 0,x, is well-defined for ∆t sufficiently small.

An interesting feature of the law of (ξk)i in (3.2) is that, provided that b is smooth enough, (yk)
N∆t

k=0

is a second order weak approximation of Y 0,x (see e.g. [28, Section 15.4, equation (4.11)] and also [19,
Section 2, Table 1]), i.e. for every ϕ : Rd → R smooth enough and for every k ∈ I∗

∆t, we have

(3.3)
∣∣E (ϕ(yk))− E

(
ϕ(Y 0,x(tk))

) ∣∣ = O
(
(∆t)2

)
.

Notice that this estimate is better than the one obtained by considering a classical random walk in Rd,
i.e. when distribution of (ξk)i is given by

(3.4) P((ξk)i = ±1) = 1/2 for all i = 1, . . . , d,

for which it is known that second order accuracy does not hold (see Sections 5.1.A and 5.1.B in [29]).
In order to discretize (2.2), for every k ∈ I∗

∆t and x ∈ Rd, denote by ytk,x the one-step CN approxima-
tion of Y tk,x(tk+1), given by the unique solution to (3.1). Let Id = {1, . . . , 3d}, define {eℓ | ℓ ∈ Id} ⊂ Rd
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as the set of possible values of ξk, set ω
ℓ = P(ξk = eℓ), and denote by yℓk(x) the unique solution to (3.1)

for ξk = eℓ (ℓ ∈ Id). By setting t = tk, s = tk+1, and replacing Y tk,x(tk+1) by y
tk,x in (2.2), we obtain

the following semi-discrete scheme for (FP):

(3.5)

∫
Rd

ϕ(x)mk+1(x)dx =
∑
ℓ∈Id

ωℓ

∫
Rd

ϕ(yℓk(x))mk(x)dx for ϕ continuous and bounded, k ∈ I∆t,

with m0 = m∗
0 and unknowns {mk : Rd → R | k ∈ I∆t \ {0}}. Note that the assumption that m0 has a

compact support implies the existence of L∆t = O(1/
√
∆t) such that the solution m∆t to (3.5) satisfies

(3.6) supp(m∆t,k) ⊂ [−L∆t, L∆t]
d for k ∈ I∆t.

In order to construct a space discretization of (3.5), and hence a fully-discrete scheme for (FP), we
consider a symmetric Lagrangian basis of odd order. More precisely, let us fix p ∈ N, set q := 2p+1, and

let β̂ : R → R be defined by

(3.7) (∀ ξ ∈ [0,∞)) β̂(ξ) =



p+1∏
k ̸=0, k=−p

ξ − k

−k
if ξ ∈ [0, 1],

p+2∏
k ̸=0, k=−p+1

ξ − k

−k
if ξ ∈ (1, 2],

...

2p+1∏
k=1

ξ − k

−k
if ξ ∈ (p, p+ 1],

0 if ξ ∈ (p+ 1,∞),

β̂(−ξ) if ξ ∈ (−∞, 0).

Following [20], for ∆x ∈ (0,∞), we consider the symmetric Lagrange interpolation basis functions
{βi}i∈Zd defined as

(∀ z = (z1, . . . zd) ∈ Rd, i = (i1, . . . , id) ∈ Zd) βi(z) =

d∏
j=1

β̂
( zj
∆x

− ij

)
.

For all i ∈ Zd, let us set xi = i∆x. Notice that βi has compact support, βi(xj) = 1 if i = j and
βi(xj) = 0 otherwise, and, for all x ∈ Rd,

∑
j∈Zd βj(x) = 1. Given f ∈ W q+1,∞(Rd), we define the

interpolant I[f ] : Rd → R by

(3.8) I[f ](x) =
∑
i∈Zd

f(xi)βi(x) for x ∈ Rd.

By [17, Theorem 16.1], the following estimate holds

(3.9) sup
x∈Rd

|f(x)− I[f ](x)| ≤ CI(∆x)
q+1∥Dq+1f∥L∞ ,

where CI > 0 is independent of f and ∆x. Notice that in the one dimensional case (d = 1), I[f ] restricted
to a given interval (xi, xi+1) (i ∈ Z) is the Lagrange interpolating polynomial of degree q constructed on
the symmetric stencil xi−(q−1)/2, . . . , xi+1+(q−1)/2.

Let L∆t > 0 be as in (3.6), let N∆x ∈ N, and set I∆x = {−N∆x, . . . , N∆x}d. From now on, we assume
that ∆x = L∆t/N∆x, we set

∆ = (∆t,∆x), and O∆ = [−L∆t − p∆x, L∆t + p∆x]d.

We look for an approximation m∆ of the solution m∗ to (FP) such that, for all k ∈ I∆t,

(3.10) m∆(tk, x) =
∑

i∈I∆x

mk,iβi(x) for x ∈ O∆, m∆(tk, x) = 0 for x ∈ Rd \ O∆,
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where mk,i ∈ R (k ∈ I∆t, i ∈ I∆x) have to be determined. Notice that, by definition of I∆x, for all
k ∈ I∆t we have that supp{m∆(tk, ·)} ⊂ O∆. Replacing m by m∆ and taking ϕ = βi (i ∈ I∆x) in (3.5)
yields the following explicit iterative scheme for the unknowns mk,i ∈ R (k ∈ I∆t, i ∈ I∆x)

(3.11)

∑
j∈I∆x

mk+1,j

∫
O∆

βi(x)βj(x)dx =
∑

j∈I∆x

mk,j

∑
ℓ∈Id

ωℓ

∫
O∆

βi(y
ℓ
k(x))βj(x)dx

for k ∈ I∗
∆t, i ∈ I∆x,∑

j∈I∆x

m0,j

∫
O∆

βi(x)βj(x)dx =

∫
O∆

m∗
0(x)βi(x)dx.

Let A be the (2N∆x + 1)d × (2N∆x + 1)d real mass matrix with entries given by

(3.12) Ai,j =

∫
O∆

βi(x)βj(x)dx for (i, j) ∈ I∆x × I∆x.

For k ∈ I∗
∆t and ℓ ∈ Id, let Bℓ

k be the (2N∆x + 1)d × (2N∆x + 1)d real matrix with entries given by

(3.13) (Bℓ
k)i,j =

∫
O∆

βi(y
ℓ
k(x))βj(x)dx for (i, j) ∈ I∆x × I∆x.

Let m0,∆x be the (2N∆x + 1)d dimensional real vector with entries

(m0,∆x)i =

∫
O∆

m∗
0(x)βi(x)dx for i ∈ I∆x.

Callingmk = (mk,i)i∈I∆x
, scheme (3.11) can be rewritten in the following matrix form: findmk (k ∈ I∆t)

such that

(3.14)
Amk+1 =

∑
ℓ∈Id

ωℓB
ℓ
kmk for k ∈ I∗

∆t,

Am0 = m0,∆x.

3.1. Properties of the space-time Lagrange-Galerkin scheme. We show below some important
properties of the scheme (3.11).

Theorem 3.1. Assume (H1),(H3). Then for fixed ∆, there exists a unique solution (mk,i)k∈I∆t,i∈I∆x

to (3.14) and, defining m∆ as in (3.10), the following hold:

(i)[Initial condition] ∥m∗
0 −m∆(0, ·)∥L2 = O((∆x)q+1) if m∗

0 ∈ Hq+1(Rd).

(ii)[Mass conservation]
∫
Rd m∆(tk, x)dx = 1 for k ∈ I∆t.

(iii)[L2-stability] If b(t, ·) is differentiable for all t ∈ [0, T ], then maxk∈I∆t
∥m∆(tk, ·)∥L2 is uniformly

bounded with respect to ∆ for ∆t small enough.

Proof. The well-posedness of (3.14) follows from the positive definiteness of A (see e.g. [44, Proposition
6.3.1]) and assertion (i) is proven in [44, Section 3.5]. In order to prove (ii), fix k ∈ I∗

∆t and sum over
i ∈ Zd in the first equation of (3.11) to obtain∑

j∈I∆x

mk+1,j

∑
i∈Zd

∫
O∆

βj(x)βi(x)dx =
∑

j∈I∆x

mk,j

∑
ℓ∈Id

ωℓ

∑
i∈Zd

∫
O∆

βj(x)βi(y
ℓ
k(x))dx.

Recalling that, for every y ∈ Rd,
∑

i∈Zd βi(y) = 1, the cardinality {i ∈ Zd |βi(y) ̸= 0} is bounded
uniformly in y, and

∑
ℓ∈Id

ωℓ = 1, Fubini’s theorem yields

(3.15)

∫
O∆

m∆(tk+1, x)dx =
∑

j∈I∆x
mk+1,j

∫
O∆

βj(x)dx

=
∑

j∈I∆x
mk,j

∫
O∆

βj(x)dx

=
∑

j∈I∆x
m0,j

∫
O∆

βj(x)dx

=
∫
O∆

m∆(0, x)dx.
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Analogously, using the second equation in (3.11) and summing over i ∈ Zd, we get that

(3.16)

∫
O∆

m∆(0, x)dx =

∫
O∆

m∗
0(x)dx = 1.

Assertion (ii) follows from (3.15), (3.16), and (3.10). Finally, let us show assertion (iii). For k = 0, (iii)
follows from Assumption (H1) and Theorem 3.1(i). For k ∈ I∗

∆t, (3.11) implies that

(3.17)
∥m∆(tk+1, ·)∥2L2 =

∑
ℓ∈Id

ωℓ

∑
i,j∈I∆x

mk+1,imk,j

∫
O∆

βi(x)βj(y
ℓ
k(x))dx

=
∑

ℓ∈Id
ωl

∫
O∆

m∆(tk, y
ℓ
k(x))m∆(tk+1, x)dx,

and hence, by the Cauchy-Schwarz inequality,

(3.18) ∥m∆(tk+1, ·)∥L2 ≤ max
ℓ∈Id

(∫
O∆

|m∆(tk, y
ℓ
k(x))|2dx

)1/2

.

In order to estimate the right-hand-side above, fix x ∈ Rd, ℓ ∈ Id, and notice that

(3.19) Dyℓk(x) = Id +
∆t

2

(
Db(tk, x) +Db(tk+1, y

ℓ
k(x))Dy

ℓ
k(x)

)
,

where Id denotes the d×d identity matrix. Since Db(·, ·) is bounded, there exists ∆t > 0 such that for all
k ∈ I∗

∆t and ∆t ∈ [0,∆t], yℓk is one-to-one, and, for all z ∈ Rd, the matrix Id− ∆t
2 Db(tk+1, z) is invertible.

Therefore, by (3.19),

(3.20) Dyℓk(x) =

(
Id −

∆t

2
Db(tk+1, y

ℓ
k(x))

)−1(
Id +

∆t

2
Db(tk, x)

)
,

from which we deduce that Dyℓk(x) is invertible. Then, by the change of variable formula, we get that

(3.21)

∫
O∆

|m∆(tk, y
ℓ
k(x))|2dx =

∫
yℓ
k(O∆)

|m∆(tk, z)|2
∣∣det (Dyℓk((yℓk)−1(z))

) ∣∣−1
dz.

On the other hand, by (3.20) and Jacobi’s formula, for all x ∈ Rd we have

(3.22)

[
det
(
Dyℓk(x)

)]−1
=

det
(
Id − ∆t

2 Db(tk+1, y
ℓ
k(x))

)
det
(
Id +

∆t
2 Db(tk, x

)
)

=
1− ∆t

2 Tr
(
Db(tk+1, y

ℓ
k(x))

)
+O((∆t)2)

1 + ∆t
2 Tr (Db(tk, x) +O((∆t)2)

=
1− ∆t

2 div
(
b(tk+1, y

ℓ
k(x))

)
+ O((∆t)2)

1 + ∆t
2 div (b(tk, x)) +O((∆t)2)

.

Thus, there exists a constant C > 0, independent of x, k, ℓ, and ∆t, such that

(3.23)
∣∣ [det (Dyℓk(x))]−1 ∣∣ ≤ 1 + C∆t.

Combining the previous inequality with (3.21) yields

(3.24)

∫
O∆

|m∆(tk, y
ℓ
k(x))|2dx ≤ (1 + C∆t)∥m∆(tk, ·)∥2L2 ,

and hence, by (3.18),

∥m∆(tk+1, ·)∥L2 ≤ (1 + C∆t)
1
2 ∥m∆(tk, ·)∥2L2 .

Thus,

∥m∆(tk+1, ·)∥L2 ≤
(
1 +

CT

N∆t

)N∆t/2

∥m∆(0, ·)∥L2 ≤ eCT/2∥m∆(0, ·)∥L2 ,

from which assertion (iii) follows. □



HIGH-ORDER SCHEME FOR MFGS SYSTEM 7

Remark 3.1. Notice that Proposition 3.1(iii) and the Cauchy-Schwarz inequality imply that, for any
compact set K ⊆ Rd, there exists CK > 0, independent of ∆ for ∆t small enough, such that

max
k∈I∆t

∫
K

|m∆(tk, x)|dx ≤ CK .

In the following, we still denote by m∆ its extension to [0, T ]× Rd, defined as

(3.25) m∆(t, x) =
t− tk
∆t

m∆(tk+1, x) +
tk+1 − t

∆t
m∆(tk, x) if (t, x) ∈ [tk, tk+1]× Rd (k ∈ I∗

∆t).

Notice that (3.25) and Theorem 3.1(ii)-(iii) imply that

(3.26)

∫
O∆

m∆(t, x)dx = 1 for all t ∈ [0, T ] and max
t∈[0,T ]

∥m∆(t, ·)∥L2 ≤ C,

for some C > 0, independent of ∆ for ∆t small enough.
For k ∈ N ∪ {∞}, we denote by Ck

0 (Rd) the set of functions of class Ck with compact support.

Proposition 3.1. Under (H1)-(H3), the following hold:

(i)[Equicontinuity] Let ϕ ∈ Cq+1
0 (Rd). Then there exists Cϕ > 0 such that for all ∆, with ∆t small enough

and (∆x)q+1 ≤ ∆t, we have

(3.27)

∣∣∣∣∫
Rd

ϕ(x)m∆(t, x)dx−
∫
Rd

ϕ(x)m∆(s, x)dx

∣∣∣∣ ≤ Cϕ|t− s| for all s, t ∈ [0, T ].

(ii)[Consistency] Assume that b(t, ·) ∈ Cq+1(Rd) for all t ∈ [0, T ] and let ϕ ∈ C∞
0 (Rd). Then for any

k ∈ I∗
∆t and ∆, with ∆t small enough and (∆x)q+1 ≤ ∆t, we have

(3.28)∫
Rd

ϕ(x) (m∆(tk+1, x) − m∆(tk, x)) dx =

∫ tk+1

tk

∫
Rd

(
σ2

2
∆ϕ(x) + ⟨b(s, x),∇ϕ(x)⟩

)
m∆(s, x)dxds

+O
(
(∆x)q+1 + (∆t)2 +∆tωϕ(∆t)

)
,

where ωϕ : [0,∞) → R is a modulus of continuity of b on [0, T ]× supp(ϕ).

The proof is given in the Appendix. Let us denote by D′(Rd) the space of distributions, which we
endow with the weak∗ topology. In the following, for every ∆ = (∆t,∆x) ∈ (0,∞)2 and t ∈ [0, T ], we
identify m∆(t, ·) with the map

C∞
0 (Rd) ∋ ϕ 7→

∫
Rd

ϕ(x)m∆(t, x)dx ∈ R,

which, by Remark 3.1, is a regular distribution. For every ∆, let us denote, with a slight abuse of
notation, m∆ the map [0, T ] ∋ t 7→ m∆(t, ·) ∈ D′(Rd). Notice that Proposition 3.1(i) implies that
m∆ ∈ C([0, T ];D′(Rd)).

Lemma 3.1. Suppose that (H1)(i),(H2) hold. Then there exists ∆t0 > 0 such that the family M =
{m∆ |∆t ≤ ∆t0, (∆x)

q+1 ≤ ∆t} is relatively compact in C([0, T ];D′(Rd)).

The proof is given in the Appendix. We conclude the section with the following convergence result for
scheme (3.11).

Theorem 3.2. Assume (H1) and (H3), m∗
0 ∈ Hq+1(Rd), b bounded and b(t, ·) ∈ Cq+1(Rd) for all

t ∈ [0, T ]. Consider a sequence (∆n)n∈N = ((∆tn,∆xn))n∈N ⊆ (0,∞)2 such that, as n→ ∞, ∆n → (0, 0)

and (∆xn)
q+1/∆tn → 0. Setting mn := m∆n

, as n → ∞ we have that (mn)n∈N converges to m∗ in

C([0, T ];D′(Rd)) and weakly in L2
(
[0, T ]× Rd

)
, where m∗ is the unique classical solution to (FP).

Proof. By Theorem 3.1(iii), the sequence (mn)n∈N is bounded in L2([0, T ] × Rd). Thus, there exists m̂
in L2([0, T ] × Rd) such that, as n → ∞ and up to some subsequence, mn converges weakly to m̂ in
L2([0, T ]× Rd).

Let us first show that for any ϕ ∈ C∞
0 ((0, T )× Rd), we have

(3.29)

∫ T

0

∫
Rd

[
∂tϕ(t, x)−

σ2

2
∆ϕ(t, x)− ⟨b(s, x),∇ϕ(t, x)⟩

]
m̂(t, x)dxdt = 0.
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Let η ∈ C∞
0 ([0, T ]), ψ ∈ C∞

0 (Rd) and suppose that ϕ has the form ϕ = ηψ ∈ C∞
0 ([0, T ]×Rd). Denote by

K ⊂ Rd the support of ψ. By (3.25) and Proposition 3.1(i), we have
(3.30)∫ T

0

∫
Rd ∂tϕ(t, x)m

n(t, x)dxdt =

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K

∂tϕ(t, x)m
n(tk, x)dxdt

+

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K

∂tϕ(t, x)(m
n(tk+1, x)−mn(tk, x))

t− tk
∆tn

dxdt

=

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K

∂tϕ(t, x)m
n(tk, x)dxdt+O(∆tn).

On the other hand, by Remark 3.1 we have
(3.31)

N∆tn−1∑
k=0

∫ tk+1

tk

∫
K

∂tϕ(t, x)m
n(tk, x)dxdt =

N∆tn−1∑
k=0

∆tn

∫
K

∂tϕ(tk, x)m
n(tk, x)dx+O (∆tn)

=

N∆tn−1∑
k=0

∆tnη̇(tk)

∫
K

ψ(x)mn(tk, x)dx+O(∆tn)

=

N∆tn−1∑
k=0

(η(tk+1)− η(tk))

∫
K

ψ(x)mn(tk, x)dx+O(∆tn)

=

N∆tn−2∑
k=0

η(tk+1)

(∫
K

ψ(x)[mn(tk, x)−mn(tk+1, x)]dx

)
+O(∆tn).

By (3.30), (3.31) and using that ψ vanishes outside K, we get

(3.32)

∫ T

0

∫
Rd

∂tϕ(t, x)m
n(t, x)dxdt =

N∆tn−2∑
k=0

η(tk+1)

(∫
Rd

ψ(x)[mn(tk, x)−mn(tk+1, x)]dx

)
+O(∆tn).

Using (3.32), Proposition 3.1(ii), and Remark 3.1, we have∫ T

0

∫
Rd

∂tϕ(t, x)m
n(t, x)dxdt =

N∆tn−1∑
k=0

η(tk+1)

∫ tk+1

tk

∫
Rd

(
σ2

2
∆ψ(x) + ⟨b(s, x),∇ψ(x)⟩

)
mn(s, x)dxds

+O((∆xn)
q+1/∆tn +∆tn + ω(∆tn))

=

∫ T

0

∫
Rd

(
σ2

2
∆ϕ(t, x) + ⟨b(s, x),∇ϕ(t, x)⟩

)
mn(t, x)dxdt

+O((∆xn)
q+1/∆tn +∆tn + ω(∆tn)),

where ω : [0,∞) → R is a modulus of continuity of b on [0, T ]×K. Thus,∫ T

0

∫
Rd

[
∂tϕ(t, x)−

σ2

2
∆ϕ(t, x)− ⟨b(s, x),∇ϕ(t, x)⟩

]
mn(t, x)dxdt = O((∆xn)

q+1/∆tn +∆tn + ω(∆tn))

and hence, passing to the weak limit in L2([0, T ]× Rd), we get

(3.33)

∫ T

0

∫
Rd

[
∂tϕ(t, x)−

σ2

2
∆ϕ(t, x)− ⟨b(s, x),∇ϕ(t, x)⟩

]
m̂(t, x)dxdt = 0.

Since the vector space spanned by {ηψ | η ∈ C∞
0 ((0, T )), ψ ∈ C∞

0 (Rd)} is dense in C1,2
0 ((0, T ) × Rd)

(as in [41, Corollary 1.6.2 of the Weierstrass Approximation Theorem]), we get that (3.29) holds for any

ϕ ∈ C1,2
0 ((0, T )× Rd).
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Finally, let us show that for any ϕ ∈ C0(Rd)

(3.34)

∫
Rd

ϕ(x)(m̂(t, x)−m∗
0(x))dx→ 0 as t→ 0+.

By Lemma 3.1, we have that m̂ ∈ C([0, T ];D′(Rd)). Moreover, by [22, Lemma 2.1], for any t ∈ [0, T ]
and for every ϕ ∈ C0(Rd), it holds that

(3.35) lim
s→t, s∈[0,T ]

∫
Rd

ϕ(x)m̂(s, x)dx =

∫
Rd

ϕ(x)m̂(t, x)dx.

Since Theorem 3.1(i) implies that m̂(0, ·) = m∗
0(·), (3.34) follows from (3.35) with t = 0. Thus, the

result follows from (3.29), (3.34) and the uniqueness result in Theorem 2.1(iv). □

Remark 3.2. The convergence of the sequence (mn)n∈N to m∗ in the previous theorem is rather weak.
On the other hand, to the best of our knowledge this is the first convergence result of a high-order LG
scheme for equation (FP). Notice that our proof does not depend on the smoothness of m∗ recalled in
Theorem 2.1(i), and it can be easily adapted to deal with equations whose second-order term are not
uniformly elliptic (see e.g. [19, 15]).

4. The scheme for MFG

To derive a high-order scheme that approximates a solution (v∗,m∗) of the MFG system, we are left
to derive a high-order method for the HJB equation, which coupled with (3.11) will provide the desired
discretization of system (MFG).
Given µ ∈ C([0, T ];P1(Rd)), we consider the HJB equation:

(HJB)
−∂tv − σ2

2 ∆v + 1
2 |∇v|

2 = F (x, µ(t)) in (0, T )× Rd,

v(T, ·) = G(·, µ(T )) in Rd.

Standard results for quasilinear parabolic equations (see e.g. [31, Chapter IV and V]) yield that (HJB)
admits a unique classical solution v[µ]. Moreover, using that v[µ] is the value function associated with a
stochastic optimal control problem (see e.g. [23, Chapters IV and V]), it is easy to check that (H1)-(H2)
imply the existence of R > 0 such that

|∇v[µ](t, x)| ≤ R for all t ∈ [0, T ], x ∈ Rd, µ ∈ C([0, T ];P1(Rd).

We now describe a variation of the scheme in [7] to deal with the nonlinearity of the Hamiltonian in
(HJB) with respect to ∇v (see also [38, 42] for related constructions). For a given µ ∈ C([0, T ];P1(Rd)),
let us define {vk,i | k ∈ I∆t, i ∈ I∆x} ⊂ R as the solution to

(4.1)
vk,i = S[µ](v·,k+1, k, i) for all k ∈ I∗

∆t, i ∈ I∆x,

vN∆t,i = G(xi, µ(tN∆t
)) for all i ∈ I∆x,

where, for a given f = {fi}i∈I∆x
⊂ R, k ∈ I∗

∆t, and i ∈ I∆x,

S[µ](f, k, i) = inf
α∈A

[∑
ℓ∈Id

ωℓ

(
I[f ](xi −∆tα+

√
∆tσeℓ) +

∆t

2
F (xi −∆tα+

√
∆tσeℓ, µ(tk+1))

)

+
∆t

2
|α|2

]
+

∆t

2
F (xi, µ(tk)),

(4.2)

with A = {α ∈ Rd | |α| ≤ R} and I[f ] being defined by (3.8). The following consistency result for S[µ]
follows from (4.2) and (H2).

Proposition 4.1. Let (∆tn,∆xn)n∈N ⊂ (0,+∞)2, (kn)n∈N ⊆ N, (in)n∈N ⊂ Zd, (µn)n∈N ⊂ C([0, T ];P1(Rd)),
and µ ∈ C([0, T ];P1(Rd)). Assume that (H2) holds and, as n→ ∞, (∆tn,∆xn) → (0, 0), (∆xn)

q+1/∆tn →
0, kn ∈ I∆tn , in ∈ I∆xn , tkn → t, xin → x, and µn → µ. Then, for every ϕ ∈ C1,3

b

(
[0, T ]× Rd

)
satisfying

∥∇ϕ∥L∞([0,T ]×Rd) ≤ R, we have

lim
n→∞

1

∆tn
[ϕ(tkn

, xin)− S[µn](ϕkn+1, kn, in)] = −∂tϕ(t, x)−
σ2

2
∆ϕ(t, x) +

1

2
|∇ϕ(t, x)|2 − F (x, µ(t)),

where ϕk = {ϕ(tk, xi)}i∈I∆x
.



10 ELISA CALZOLA, ELISABETTA CARLINI, AND FRANCISCO J. SILVA

The proof is given in the Appendix.

For µ ∈ C([0, T ];P1(Rd)), let us define

(4.3) v∆[µ](t, x) := I[v[t/∆t]](x) for all (t, x) ∈ [0, T ]×O∆,

where vk,i is given by (4.1). For ℓ ∈ Id and k ∈ I∗
∆t, let y

ℓ
k[µ](x) be the unique solution to

(4.4) y = x− ∆t

2
[Dv∆[µ](tk, x) +Dv∆[µ](tk+1, x), y)] +

√
∆tσeℓ,

where Dv∆[µ](tk, x) represents a numerical gradient with respect to x of v∆[µ](tk, x), computed by a
fourth-order finite difference approximation.

We propose the following scheme for (MFG): find {(vk,i,mk,i) ∈ R2 | k ∈ I∆t, i ∈ I∆x} such that, for
all k ∈ I∗

∆t and i ∈ I∆x,

(4.5)

vk,i = S∆[m∆](vk+1, k, i),

vN∆t,i = G(xi,m),∑
j∈I∆x

mk+1,j

∫
O∆

βi(x)βj(x)dx =
∑

j∈I∆x

mk,j

∑
ℓ∈Id

ωℓ

∫
O∆

βi(y
ℓ
k[m∆](x))βj(x)dx,

∑
j∈I∆x

m0,j

∫
O∆

βi(x)βj(x)dx =

∫
O∆

m∗
0(x)βi(x)dx.

In the examples considered in the following section, system (4.5) will be solved, heuristically and as in
[13, 36, 16], by using fixed-point iterations.

5. Numerical results

In this section, we show the performance of the proposed scheme on two different problems: a MFG with
non-local couplings and an explicit solution, and a MFG with local couplings and no explicit solutions.
For each test, we measure the accuracy of the scheme by computing the following relative errors in the
discrete uniform and L2 norms

E∞ =
maxi∈I∆x

|h∆(T, xi)− h(T, xi)|
maxi∈I∆x

|h(T, xi)|
, E2 =

(
IntO∆

(|h∆(T, x)− h(T, x)|2)
IntO∆

(|h(T, x)|2)

)1/2

,

where h = m, v, h∆ = m∆, v∆, and IntO∆
denotes the approximation of the Riemann integral on O∆ by

using the Simpson’s Rule. We denote by p∞ and p2 the rates of convergence for E∞ and E2, respectively.
Notice that, for the exactly integrated scheme (3.11), the local truncation error is given by the con-

tributions of (3.3) and (3.9), which yield a global truncation error of order (∆x)q+1/∆t + (∆t)2. As in
[19], we get that the order of consistency is maximized by taking ∆t = O((∆x)(q+1)/3). With respect to
the space discretization step, the previous choice suggests an order of convergence given by 2(q + 1)/3.
In all the simulations we take q = 3, which yields an heuristic optimal rate equal to 8/3, and Simpson’s
Rule to approximate the integrals in (3.11). The convergence rate of the resulting scheme is illustrated
numerically in the examples below. Indeed, the tables in the tests show rates of convergence p∞ and p2
greater than 2 in most of the cases. The positivity preservation of the discrete density is true only when
linear basis functions are used. This property is not in general verified by our method, and it holds only
asymptotically. In the first numerical test, we calculate the maximum value of the negative part of the
approximate density in the space-time mesh and call this value positivity error. We will show that with
the refinement of the mesh, the positivity error decreases until it cancels.

5.1. An implementable version of the scheme (3.11). In order to obtain an implementable version
of (3.14), an approximation of the integrals therein has to be introduced. For simplicity, we consider the
one-dimensional case, we use Simpson’s Rule on each element [xj , xj + 2∆x] (j = 2m, m ∈ Z) and cubic
symmetric Lagrange interpolation basis functions βj (p = 1 in (3.7)). Recalling that βj has support in
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[xj−2, xj+2], letting δi,j = 1 if i = j and δi,j = 0 otherwise, the entries of the mass matrix A (see (3.12))
are approximated by

(5.1)

∫
O∆

βi(x)βj(x)dx =

∫ xj

xj−2

βi(x)βj(x)dx+

∫ xj+2

xj

βi(x)βj(x)dx ≃ 2∆x

3
δi,j ,

while the entries of Bℓ
k (see (3.13)) are approximated by

(5.2) (Bℓ
k)i,j =

∫ xj+2

xj−2

βi(y
ℓ
k(x))βj(x)dx ≃ 2∆x

3
βi(y

ℓ
k(xj)).

We observe that, as usual in LG methods, the integrands in (5.1) and (5.2) have not the necessary
regularity in order to guarantee the standard accuracy order of the quadrature rule. This can lead to
fluctuations in the order of convergence, as can be observed in some instances of the numerical tests
below. However, in those tests we will see that the aforementioned quadrature rule provides an overall
order of convergence close to 8/3.

Using (5.1) and (5.2), the scheme (3.14) is approximated by

(5.3)
mk+1 =

∑
ℓ∈Id

ωℓB̃
ℓ
kmk for k ∈ I∗

∆t,

m0 = m̃0,

where B̃ℓ
k is a (2N∆x + 1)× (2N∆x + 1) matrix with entries given by

(B̃ℓ
k)i,j = βi(y

ℓ
k(xj))

and m̃0 is vector of length 2N∆x + 1 given by

m̃0,i = m∗
0(xi) for i ∈ I∆x.

Remark 5.1. Applied to a linearization of equation (HJB), scheme (5.3) is the dual of the semi-
Lagrangian scheme [19] when a Crank-Nicolson method is used to discretize the characteristic curves,
together with a cubic symmetric Lagrange interpolation to reconstruct the values in the space variable.
Moreover, scheme (5.3) is also a natural higher-order extension of the scheme proposed in [14, 15] to
approximate second-order MFGs.

5.2. Fixed-point iterations. In view of (5.3), it is natular to propose the following implementable
version of the scheme for (MFG): find (V,M) := {(vk,i,mk,i) ∈ R2 | k ∈ I∆t, i ∈ I∆x} such that, for all
k ∈ I∗

∆t and i ∈ I∆x,

vk,i = S∆[m∆](vk+1, k, i),(5.4)

vN∆t,i = G(xi,m),

mk+1,i =
∑

j∈I∆x

mk,j

∑
ℓ∈Id

ωℓβi(y
ℓ
k(xj)),(5.5)

m0,i = m∗
0(xi).

This system is heuristically solved by the fixed-point iterations described in Algorithm 1, which has as
input data a damping (or relaxation) parameter ω ∈ [0, 1], an initial guess M◦ for the density M, and
a tolerance parameter τ > 0. The iterations are stopped as soon as the L1-norm, approximated by the
Simpson’s Rule, of the difference between two consecutive approximations of M is less than τ .

5.3. Non-local MFG with analytical solution. Consider the non-local MFG system

(5.6)

−∂tv − σ2

2 ∆v + 1
2 |∇v|

2
= 1

2

(
x−

∫
Rd

ym(t, y)dy

)2

in [0, T )× Rd,

∂tm− σ2

2 ∆m− div (∇vm) = 0 in (0, T ]× Rd,

v(T, ·) = 0, m(0, ·) = m∗
0 in Rd,

where m∗
0 is the density of a Gaussian random vector with mean µ0 ∈ Rd and covariance matrix Σ0 ∈

Rd×d. For simplicity, we will assume that Σ0 is a diagonal matrix.
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Algorithm 1: Fixed-point iterations

Input : Initial guess M◦, damping parameter ω, tolerance τ > 0.
Output: Approximation (V,M) of the solution to (5.4)-(5.5).

1 Initialize M̃(0) = M(0) = M◦, p = 0,

2 do

3 compute V(p+1) solution to (5.4) with m∆ replaced by M̃(p),

4 compute Dv
(p+1)
∆ numerical gradient of V(p+1),

5 compute M(p+1) solution to (5.5) with yℓk solution to (4.4) obtained using Dv
(p+1)
∆ ,

6 compute E(p+1) = Int[0,T ]×O∆
|M(p+1) −M(p)|,

7 let M̃(p+1) = ωM̃(p) + (1− ω)M(p+1),

8 set p = p+ 1,

9 while E(p+1) > τ ;

10 return (V(p+1),M(p+1)).

In what follows, we compute explicitly the unique solution (v∗,m∗) to (5.6) (see e.g. [4]). Since v∗ is
the value function associated with a linear-quadratic optimal control problem, standard results (see e.g.
[46, Chapter 6]) show that v∗ has the form

(5.7) v∗(t, x) = 1
2 ⟨Π(t)x, x⟩+ ⟨s(t), x⟩+ c(t) for (t, x) ∈ [0, T ]× Rd,

where, setting Y (t) =
∫
Rd ym

∗(t, y)dy for all t ∈ [0, T ], Π, s, and c satisfy

(5.8)

−Π̇(t) = −Π2(t) + Id for t ∈ (0, T ),

−ṡ(t) = −Π(t)s(t)− Y (t) for t ∈ (0, T ),

−ċ(t) = σ2

2 Tr(Π(t))− 1
2 |s(t)|

2 + 1
2

∣∣Y (t)
∣∣2 for t ∈ (0, T ),

Π(T ) = 0, s(T ) = 0, c(T ) = 0.

Notice that Π satisfies a Riccati equation whose analytical solution is given by

(5.9) Π(t) =

(
e2T−t − et

e2T−t + et

)
Id for t ∈ [0, T ].

Since ∇v∗(t, x) = Π(t)x+ s(t), the SDE underlying the FP equation in (5.6) (see (2.1)) is given by

dY (t) = [−Π(t)Y (t)− s(t)] dt+ σdW (t) for t ∈ (0, T ),

Y (0) = Y0,

where Y0 is a Gaussian random variable, independent of the d-dimensional Brownian motion W , with
mean µ0 and covariance matrix Σ0. Since

(5.10) Y (t) = Y0 +

∫ t

0

[−Π(r)Y (r)− s(r)] dr + σW (t) for t ∈ (0, T ),

and the coordinates Y0,i (i = 1, . . . , d) of Y0 are independent Gaussian random variables with means µ0,i

and variance (Σ0)i,i, for every t ∈ [0, T ], Y (t) is a vector of independent Gaussian random variables Yi(t)

(i = 1, . . . , d) with mean Y i(t) and variance (Σ(t))i,i = E
(
Y 2
i (t)

)
− Y

2

i (t) to be determined. In other
words,

(5.11) m∗(t, x) = Πd
i=1m

∗
i (t, xi) for t ∈ [0, T ], x ∈ Rd,

where, for every t ∈ [0, T ] and i = 1, . . . , d, m∗
i (t, ·) is a univariate Gaussian density with parameters

Y i(t) and variance (Σ(t))i,i In order to compute these parameters, notice that (5.10) implies that

Y (t) = µ0 +

∫ t

0

(
−Π(r)Y (r)− s(r)

)
dr for t ∈ [0, T ],
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i.e. Y solves

(5.12)
Ẏ (t) = −Π(t)Y (t)− s(t) for t ∈ (0, T ),

Y (0) = µ0.

Thus, by (5.8) and (5.12), the couple (Y , s) solves the boundary value problem

Ẏ (t) = −Π(t)Y (t)− s(t) for t ∈ (0, T ),

ṡ(t) = Π(t)s(t) + Y (t) for t ∈ (0, T ),

Y (0) = µ0, s(T ) = 0,

whose unique solution is given by (see e.g. [25])

(5.13) Y (t) = µ0, s(t) = −Π(t)µ0 for t ∈ [0, T ],

where we recall that Π is given by (5.9).
On the other hand, by (5.10) and Itô’s lemma, for every i = 1, . . . , d, we have

Y 2
i (t) = Y 2

0,i −
∫ t

0

2Yi(r) [Πi,i(r)Yi(r) + si(r)] dr + 2σ

∫ t

0

Yi(r)dWi(r) + σ2t for t ∈ [0, T ].

Thus, denoting by m∗
0,i the i the marginal of m∗

0 (i = 1, . . . , d), (5.13) yields

E
(
Y 2
i (t)

)
=

∫
R
x2m∗

0,i (x) dx− 2

∫ t

0

[
Πi,i(r)E

(
Y 2
i (r)

)
+ µ0,isi(r)

]
dr + σ2t for t ∈ [0, T ].

In particular, [0, T ] ∋ t 7→ E
(
Y 2
i (t)

)
∈ R is the unique solution to

Ṁ(t) = −2Πi,i(t)M(t)− 2µ0,isi(t) + σ2 t ∈ (0, T ),

M(0) =
∫
R x

2m∗
0,i (x) dx,

which, for all t ∈ [0, T ], is given by

(5.14) E
(
Y 2
i (t)

)
=
(
e2T−t + et

)2 [2 ∫R x2m∗
0,i (x) dx− 2µ2

0,i + σ2
(
e2T + 1

)
2(e2T + 1)2

− σ2

2(e2T + e2t)

]
+ µ2

0,i.

Thus, for all i = 1, . . . , d and t ∈ [0, T ],

(5.15) (Σ(t))i,i =
(
e2T−t + et

)2 [2 ∫R x2m∗
0,i (x) dx− 2µ2

0,i + σ2
(
e2T + 1

)
2(e2T + 1)2

− σ2

2(e2T + e2t)

]
.

Altogether, for all t ∈ [0, T ], m∗(t, ·) is given by (5.11), where the parameters of the univariate Gaussian
densities m∗

i (t, ·) are given by (5.13) and (5.15), and the value function v∗ is given by (5.7), with Π and
s given by (5.9) and (5.13), respectively, and c, obtained by integrating the third equation of (5.8), is
given by

c(t) = 1
2 ⟨Π(t)µ0, µ0⟩ −

σ2d

2
ln

(
2eT

e2T−t + et

)
for t ∈ [0, T ].

In this test, the assumption on the boundedness of b is not verified in all Rd, however it is true in every
bounded domain O∆. Let us now solve system (5.6) on a bounded domain in dimension d = 1. We choose
[0, T ] × O∆ = [0, 0.25] × (−2, 2), with Dirichlet boundary conditions on ∂O∆, the latter being equal to
the exact solution of (5.6) for the HJB equation and homogeneous for the FP equation. The numerical
approximation of the boundary conditions for the HJB equation is based on the technique proposed in [7],
while for the FP equation we proceed as in the previous test. We consider two cases, one with σ2/2 = 0.05
and the other one with σ2/2 = 0.005. As input parameters for the fixed-point iterations, we set the initial
guess for the density equal to the initial datum m∗

0 at each time step, as damping parameter ω = 0, and
as tolerance τ = 10−9. Tables 1 and 2 show the errors and the convergence rates for the approximation
of the HJB and FP equations, in the case where σ2/2 = 0.05 and ∆t = (∆x)4/3/4. In order to show
the advantages of the high-order scheme in this paper, we also solve system (5.6) with the low order
numerical scheme proposed in [14]. We display in Table 2 (columns 6-9) the errors and convergence rates
for the approximation of the FP equation. The comparison between the errors and the orders of the two
schemes clearly shows the gain in accuracy achieved by the new scheme.



14 ELISA CALZOLA, ELISABETTA CARLINI, AND FRANCISCO J. SILVA

Tables 3 and 4 show the errors and the convergence rates for the approximation of the HJB and FP
equations, in the case where σ2/2 = 0.005 and ∆t = (∆x)4/3/4. The convergence rates tend to be close
to the theoretical optimal rate 8/3. Tables 5 and 6 show the errors and convergence rates for v∆(0, ·) and
m∆(T, ·), which are calculated by taking ∆t = ∆x/4, and Tables 7 and 8 consider the case ∆t = (∆x)2.
These tables show that the scheme is stable as the time steps change, however the convergence rate
deteriorates slightly, especially for the approximation of the time-dependent density.
In Figure 1 we show the solution to (5.6) on [0, T ]×O∆ = [0, 0.25]×(−2, 2) with σ2/2 = 0.005, computed
with ∆x = 1.25 · 10−2 and ∆t = (∆x)4/3/4. Figure 2 displays a zoom of the initial density m∗

0, the exact
solution m∗(T, ·) and its approximation m∆(T, ·), computed with ∆x = 6.25 · 10−3 and ∆t = (∆x)4/3/4.

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 6.20 · 10−5 7.40 · 10−5 - -
1.00 · 10−1 1.09 · 10−5 1.43 · 10−5 2.51 2.37
5.00 · 10−2 2.13 · 10−6 3.41 · 10−6 2.36 2.07
2.50 · 10−2 5.42 · 10−7 1.00 · 10−6 1.97 1.77

Table 1. Errors and convergence rates for the approximation of the value function of
problem (5.6) with d = 1, σ2/2 = 0.05, and ∆t = (∆x)4/3/4.

Figure 1. Solution to (5.6) on [0, T ] × O∆ = [0, 0.25] × (−2, 2) with σ2/2 = 0.005.
On the left, we display the exact value function v∗ at times t = 0, t = 0.25, and the
numerical approximation v∆ at time t = 0. On the right, we display the exact density
m∗ at times t = 0, t = 0.25, and the numerical approximation m∆ at time t = 0.25.

5.4. Mean field games with local couplings. In this section, we approximate the solution of the
second-order MFG system with local couplings studied in [43, Section 5.2]. Namely, we consider system

(5.16)

−∂tv − σ2

2 ∆v + 1
2 |∇v|

2
= F (x,m) in [0, T )×O∆,

∂tm− σ2

2 ∆m− div (∇vm) = 0 in (0, T ]×O∆,

v(T, ·) = 0, m(0, ·) = m∗
0 in Rd,

∆x
High-order scheme Low-order scheme

E∞ E2 p∞ p2 E∞ E2 p∞ p2
2.00 · 10−1 2.22 · 10−2 2.32 · 10−2 - - 1.90 · 10−1 1.84 · 10−1 - -
1.00 · 10−1 5.43 · 10−3 5.10 · 10−3 2.03 2.19 1.56 · 10−1 1.41 · 10−1 0.28 0.38
5.00 · 10−2 9.32 · 10−4 8.90 · 10−4 2.54 2.52 1.14 · 10−1 1.01 · 10−1 0.45 0.48
2.50 · 10−2 1.33 · 10−4 1.26 · 10−4 2.81 2.82 7.77 · 10−2 6.86 · 10−2 0.55 0.56

Table 2. Errors and convergence rates for the approximation of the density of problem
(5.6) with d = 1, σ2/2 = 0.05, and ∆t = (∆x)4/3/4.
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∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 1.68 · 10−4 1.70 · 10−4 - -
1.00 · 10−1 3.56 · 10−5 3.48 · 10−5 2.24 2.29
5.00 · 10−2 5.86 · 10−6 5.75 · 10−6 2.60 2.60
2.50 · 10−2 1.06 · 10−6 1.04 · 10−6 2.47 2.47

Table 3. Errors and convergence rates for the approximation of the value function of
problem (5.6) with d = 1, σ2/2 = 0.005, and ∆t = (∆x)4/3/4.

∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error
2.00 · 10−1 8.81 · 10−3 1.01 · 10−2 - - −3.51 · 10−4

1.00 · 10−1 3.06 · 10−3 2.53 · 10−3 1.53 2.00 −9.45 · 10−9

5.00 · 10−2 8.01 · 10−4 5.56 · 10−4 1.93 2.19 0
2.50 · 10−2 1.81 · 10−4 1.14 · 10−4 2.15 2.29 0

Table 4. Errors and convergence rates for the approximation of the density of problem
(5.6) with d = 1, σ2/2 = 0.005, and ∆t = (∆x)4/3/4.

Figure 2. Zoom of the exact density m∗ at times t = 0, t = 0.25, and of the numerical
approximation m∆ at time t = 0.25.

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 2.72 · 10−4 2.56 · 10−4 - -
1.00 · 10−1 7.62 · 10−5 6.72 · 10−5 1.84 1.93
5.00 · 10−2 1.61 · 10−5 1.44 · 10−5 2.24 2.22
2.50 · 10−2 3.69 · 10−6 3.59 · 10−6 2.13 2.00

Table 5. Errors and convergence rates for the approximation of the value function of
problem (5.6) and σ2/2 = 0.005, ∆t = ∆x/4.

with T = 0.05, O∆ = (0, 1), homogeneous Neumann boundary conditions at x = 0 and x = 1, σ2/2 =
0.05,

m∗
0(x) =

{
4 sin2(2πx− 1

4 ) if x ∈ [ 14 ,
3
4 ],

0 otherwise,
and F (x,m) = 3m∗

0(x)−min(4,m).

Notice that the coupling term F depends on the density m in a pointwise (or local) manner. The
homogeneous Neumann boundary conditions are approximated as in [9]. In this example, we do not have
an explicit expression for (v∗,m∗).
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∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error
2.00 · 10−1 5.93 · 10−3 7.01 · 10−3 - - −8.18 · 10−5

1.00 · 10−1 2.63 · 10−3 2.17 · 10−3 1.17 1.69 −3.58 · 10−10

5.00 · 10−2 1.23 · 10−3 4.80 · 10−4 1.10 2.18 0
2.50 · 10−2 3.39 · 10−4 9.61 · 10−5 1.86 2.32 0

Table 6. Errors and convergence rates for the approximation of the density of problem
(5.6) and σ2/2 = 0.005, ∆t = ∆x/4.

∆x
Errors for the approximation of v∗(0, ·)

E∞ E2 p∞ p2
2.00 · 10−1 1.98 · 10−4 1.87 · 10−4 - -
1.00 · 10−1 2.84 · 10−5 2.86 · 10−5 2.80 2.71
5.00 · 10−2 3.41 · 10−6 3.94 · 10−5 3.06 2.86
2.50 · 10−2 4.56 · 10−7 5.08 · 10−6 2.90 2.96

Table 7. Errors and convergence rates for the approximation of the value function of
problem (5.6) and σ2/2 = 0.005, ∆t = (∆x)2.

∆x
Errors for the approximation of m∗(T, ·)

E∞ E2 p∞ p2 positivity error
2.00 · 10−1 6.60 · 10−3 7.63 · 10−3 - - −1.01 · 10−4

1.00 · 10−1 3.11 · 10−3 2.60 · 10−3 1.09 1.55 −1.19 · 10−8

5.00 · 10−2 9.17 · 10−4 7.16 · 10−4 1.76 1.86 0
2.50 · 10−2 2.42 · 10−4 1.81 · 10−4 1.92 1.98 0

Table 8. Errors and convergence rates for the approximation of the density of problem
(5.6) and σ2/2 = 0.005, ∆t = (∆x)2.

We consider two cases, one with σ2/2 = 0.05 and the other one with σ2/2 = 0.005. As input parameters
for the fixed-point iterations, we set the initial guess for the density equal to the initial datum m∗

0 at
each time step, as damping parameter ω = 0.5 and as tolerance τ = 10−9. In order to compute the errors
and rates of convergence, we compare our approximations (v∆,m∆) with a reference solution, which is
still denoted by (v∗,m∗), computed with ∆x = 6.67 · 10−4 and ∆t = (∆x)3/2/3. In Tables 9 and 10,
we show the errors and convergence rates for v∆(0, ·), ∂xv∆(0, ·), and m∆(T, ·), which are computed by
taking ∆t = (∆x)3/2/3 for different values of ∆x. We observe an order of convergence greater than two
in most of the cases. In order to show the main advantage of the proposed scheme over a low-order
scheme, we compare the proposed scheme with a first-order semi-Lagrangian scheme for MFG, developed
in [14]. Table 10, columns 4 to 8, shows that, using the low-order scheme, the density is approximated
with a much lower accuracy and the convergence rate is also much lower. Finally, Figure 3 shows the
approximated density m∆ at time t = T and the approximated value function v∆, together with its
gradient Dv∆, at time t = 0. These approximations are computed with ∆x = 1.56 · 10−3.

∆x
Errors for the approximation of v∗(0, ·) Errors for the approximation of ∂xv

∗(0, ·)
E∞ E2 p∞ p2 E∞ E2 p∞ p2

5.00 · 10−2 5.38 · 10−2 3.80 · 10−2 - - 8.09 · 10−2 4.96 · 10−2 - -
2.50 · 10−2 1.43 · 10−2 1.29 · 10−2 1.91 1.55 1.37 · 10−2 1.19 · 10−2 2.53 2.05
1.25 · 10−2 4.25 · 10−3 3.24 · 10−3 1.75 1.99 3.94 · 10−3 2.79 · 10−3 1.80 2.09
6.25 · 10−3 8.84 · 10−4 7.99 · 10−4 2.27 2.02 8.34 · 10−4 7.07 · 10−4 2.23 1.98

Table 9. Errors and convergence rates for the approximation of v∗(0, ·) and ∂xv∗(0, ·)
of problem (5.16), with ∆t = (∆x)3/2/3
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∆x
High-order scheme Low-order scheme

E∞ E2 p∞ p2 E∞ E2 p∞ p2
5.00 · 10−2 9.07 · 10−2 4.82 · 10−2 - - 1.97 · 10−0 6.30 · 10−1 - -
2.50 · 10−2 1.81 · 10−2 6.79 · 10−3 2.32 2.82 1.15 · 10−0 3.63 · 10−1 0.77 0.79
1.25 · 10−2 4.81 · 10−3 1.36 · 10−3 1.91 2.32 9.03 · 10−1 2.80 · 10−1 0.35 0.48
6.25 · 10−3 7.64 · 10−4 2.06 · 10−4 2.65 2.72 1.96 · 10−1 4.96 · 10−2 0.48 0.51

Table 10. Errors and convergence rates for the approximation of m∗(T, ·) of problem
(5.16), with ∆t = (∆x)3/2/3

Figure 3. Approximated value function v∆(0, ·) (left), the derivate Dv∆[µ](0, ·) (cen-
ter), and approximated density m∆(T, ·) of problem (5.16)(right).

6. Conclusions and future perspectives

The main aim of the paper is to present a new and efficient high-order scheme to solve MFG systems
with regular solutions. In order to do so, we have developed a new high-order scheme for the (FP)
equation, based on Lagrange-Galerkin methods combined with a second-order weak approximation of
the underlying stochastic characteristic curves. A convergence analysis has been provided in the distri-
butional sense and with respect to the weak topology in L2. We have then combined the new scheme
for the (FP) equation with a high-order semi-Lagrangian scheme for the (HJB) equation to obtain a
high-order scheme for the (MFG) system. We have shown the performance of the scheme by numerical
simulations. We heuristically expect convergence rate 8/3, which is reached in some cases. The main
advantage of the scheme, as usual for semi-Lagrangian schemes, is that during the fixed point iterations
the equations (HJB) and (FP) are solved by schemes which are explicit and do not require the standard
parabolic CFL condition ∆t = O((∆x)2) in order to be stable. Recall that the CFL condition is required
by standard explicit finite difference schemes to approximate parabolic PDEs. Instead, in Theorem 3.2
and in Proposition 4.1 the relation (∆x)q+1/∆t → 0 is assumed, which implies that larger time steps
than ∆t = O((∆x)2) are allowed. The restriction on the time step is only due to accuracy. In fact,
as Tables 6 and 8 show, the accuracy may decrease for time steps that are far from the optimal one.
Similar considerations were observed in [19], where high-order semi-Lagrangian schemes are applied to
approximate linear parabolic PDEs. In addition, the scheme for the (FP) is conservative, which is not
generally true for semi-Lagrangian type schemes applied to conservation laws (see e.g. [8]). The main
drawbacks of the scheme are the loss of positivity for the discrete density, and the lack of a constant
high-order convergence rate. Both drawbacks are due to the choice of standard cubic basis functions.
Investigation on the use of a different class of basis function is an interesting point to be addressed in
the future. Concerning the observed oscillations in the rate of convergence, we attribute them mostly
to the lack of regularity of the integrands appearing in the schemes which yields, possibly, a lack of
accuracy in the approximation of the integral terms. More regular basis functions may help to improve
the quadrature error and then the overall truncation errors.
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7. Appendix: Proofs.

Proof of Theorem 2.1 We refer the reader to [6, Theorem 6.6.1] for the existence result in (i) as well
as for the nonnegativity property in (ii). The uniqueness result in (i) and the mass conservation property
in (iii) follow from [6, Theorem 9.3.6] and [6, Corollary 6.6.6], respectively. Finally, the proof of (iv) is
given in [22, Theorem 4.3]. □

Proof of Proposition 3.1. In the proof of both assertions, we fix ϕ ∈ C2
0 (Rd) and we will denote by C

a positive real number which can depend on ϕ but not on ∆. We will also use the estimate

(7.1)

∣∣∣∣∣∑
ℓ∈Id

ωℓϕ(y
ℓ
k(x))−

[
ϕ(x) + ∆t

(
σ2

2
∆ϕ(x) + ⟨b(x, tk),∇ϕ(x)⟩

)]∣∣∣∣∣ ≤ C(∆t)2 for x ∈ Rd,

which follows from the definition of yℓk(x) and a Taylor expansion (see for instance [7]).

(i) Let us first show the assertion for t = tk+1 and s = tk for some k ∈ I∗
∆t. Set ε := ϕ− I[ϕ] and fix

k ∈ I∗
∆t. Remark 3.1 yields the existence of C > 0 such that

(7.2)

∣∣∣∣∫
Rd

ϕ(x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣ ≤
∣∣∣∣∫

Rd

I[ϕ](x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣
+C∥ε∥L∞ .
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Recalling that supp{m∆(tk, ·)} ⊂ O∆ and using the definition of the scheme in (3.11), we have that
(7.3)∫

Rd

I[ϕ](x) (m∆(tk+1, x)−m∆(tk, x)) dx =

∫
O∆

∑
i∈Zd

ϕ(xi)βi(x)

 ∑
j∈I∆x

(mk+1,j −mk,j)βj(x)

 dx

=
∑
i∈Zd

ϕ(xi)

 ∑
j∈I∆x

(mk+1,j −mk,j)

∫
O∆

βi(x)βj(x)dx


=
∑
i∈Zd

ϕ(xi)

[ ∑
ℓ∈Id

ωℓ

∑
j∈I∆x

mk,j

(∫
O∆

βi(y
ℓ
k(x))βj(x)dx

−
∫
O∆

βi(x)βj(x)dx

)]
=
∑
ℓ∈Id

ωℓ

∑
j∈I∆x

mk,j

∫
O∆

[
I[ϕ](yℓk(x))− I[ϕ](x)

]
βj(x)dx

=
∑
ℓ∈Id

ωℓ

∫
O∆

[
I[ϕ](yℓk(x))− I[ϕ](x)

]
m∆(tk, x)dx.

On the other hand, since ϕ has a compact support, there exists C > 0 such that

(7.4)

∥∥∥∥∥∑
ℓ∈Id

ωℓ

(
I[ϕ](yℓk(·))− ϕ(yℓk(·))

)∥∥∥∥∥
L2

+ ∥ϕ− I[ϕ]∥L2 ≤ C∥ε∥L∞

and, by (7.1) and (H2), there exists C > 0 such that

(7.5)

∥∥∥∥∥∑
ℓ∈Id

ωℓ

(
ϕ(yℓk(·))− ϕ

)∥∥∥∥∥
L2

≤ C∆t.

Thus, by the triangular and the Cauchy-Schwarz inequalities, Theorem 3.1(iii), (7.2), (7.3), (7.4), and
(7.5), we get the existence of C > 0 such that∣∣∣∣∫

Rd

ϕ(x) (m∆(tk+1, x)−m∆(tk, x)) dx

∣∣∣∣ ≤ C (∥ε∥L∞ +∆t) .

It follows from (3.9), and the condition (∆x)q+1 ≤ ∆t, the existence of C > 0 such that (3.27) holds for
t = tk+1 and s = tk. Using this relation and the triangular inequality, we deduce that (3.27) holds for
every s = tk and t = tm with k, m ∈ I∆t.

Now, let us fix s, t ∈ [0, T ] and assume, without loss of generality, that t > s. Let k1, k2 ∈ I∗
∆t be

such that s ∈ [tk1
, tk1+1] and t ∈ [tk2

, tk2+1]. If k1 = k2, then it follows from (3.25) that (3.27) holds with
Cϕ = C. Otherwise, k2 ≥ k1 + 1 and (3.25) yield

(7.6)

∣∣∣∣∫
Rd

ϕ(x) (m∆(tk1+1, x)−m∆(s, x)) dx

∣∣∣∣ ≤ tk1+1 − s

∆t

∣∣∣∣∫
Rd

ϕ(x) (m∆(tk1+1, x)−m∆(tk1 , x)) dx

∣∣∣∣
≤ C(tk1+1 − s).

Similarly,

(7.7)

∣∣∣∣∫
Rd

ϕ(x) (m∆(tk2
, x)−m∆(t, x)) dx

∣∣∣∣ ≤ C(t− tk2
).

Altogether, it follows from the triangular inequality, (7.6), (7.7), and (3.27), with t = tk2 and s = tk1+1,
that (3.27) holds with Cϕ = C.
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(ii) By (3.9), Remark 3.1, and the definition of the scheme (3.11), for each k ∈ I∗
∆t we have

(7.8)

∫
Rd

ϕ(x)m∆(tk+1, x)dx =

∫
Rd

I[ϕ](x)m∆(tk+1, x)dx+O((∆x)q+1)

=
∑
i∈Zd

ϕ(xi)
∑

j∈I∆xn

mk+1,j

∫
Rd

βi(x)βj(x)dx+O((∆x)q+1)

=
∑
i∈Zd

ϕ(xi)
∑

j∈I∆x

mk,j

∑
ℓ∈Id

ωℓ

∫
Rd

βi(y
ℓ
k(x))βj(x)dx+O((∆x)q+1)

=
∑

j∈I∆xn

mk,j

∑
ℓ∈Id

ωℓ

∫
Rd

I[ϕ](yℓk(x))βj(x)dx+O((∆x)q+1)

=

∫
Rd

(∑
ℓ∈Id

ωℓϕ(y
ℓ
k(x))

)
m∆(tk, x)dx+O((∆x)q+1).

Using (7.1) and Remark 3.1, we obtain
(7.9)∫

Rd

ϕ(x) (m∆(tk+1, x) − m∆(tk, x)) dx = ∆t

∫
Rd

(
σ2

2
∆ϕ(x) + ⟨b(tk, x),∇ϕ(x)⟩

)
m∆(tk, x)dx

+O((∆x)q+1 + (∆t)2).

Notice that, for any s ∈ [tk, tk+1], Remark 3.1 implies that

(7.10)

∫
Rd

⟨b(tk, x),∇ϕ(x)⟩m∆(tk, x)dx =

∫
Rd

⟨b(s, x),∇ϕ(x)⟩m∆(tk, x)dx+O(ωϕ(∆t)).

By (3.25) and the fact that b(s, ·) ∈ Cq+1(Rd), together with assertion (i), we have

(7.11)

∣∣∣∣∫ tk+1

tk

∫
Rd

(
σ2

2
∆ϕ(x) + ⟨b(s, x),∇ϕ(x)⟩

)
(m∆(s, x)−m∆(tk, x))dxds

∣∣∣∣ = O((∆t)2).

Thus, (3.28) follows from (7.10), (7.11), and (7.9). □

Proof of Lemma 3.1. In view of the Arzelà-Ascoli theorem [27, Chapter 7, Theorem 18] (see also [30,
Section 4]) and Proposition 3.1(i), it suffices to show that the family M is pointwise relatively compact.
Let us consider the absolutely convex set U0 := {ϕ ∈ C∞

0 (Rd) | ∥ϕ∥L∞ < 1, suppϕ ⊆ B(0, 1)}. This
set is a neighborhood of 0 in the standard topology of C∞

0 (Rd) (see e.g. [45, Chapter 10]) and, for any
t ∈ [0, T ],

sup
ϕ∈U0

∣∣∣∣∫
Rd

m∆(t, x)ϕ(x)dx

∣∣∣∣ = sup
ϕ∈U0

∣∣∣∣∣
∫
B(0,1)

m∆(t, x)ϕ(x)dx

∣∣∣∣∣ ≤ ∥m∆(t, ·)∥L1(B(0,1)) ≤ r,

where r := sup{∥m∆(t, ·)∥L1(B(0,1)) |∆ ∈ (0,∞)2} belongs to [0,+∞) by (3.26). This proves that

{m∆(t, ·) |∆ ∈ (0,∞)2} ⊂
{
T ∈ D′(Rd) | supϕ∈U0

|T (ϕ)| ≤ r
}

which, by the Banach-Alaoglu-Bourbaki

theorem (see e.g. [37, Theorem 23.5]), is a compact subset of D′(Rd). □

Proof of Proposition 4.1. Let ∆t > 0, ∆x > 0, and α ∈ A. In the computations below, the big O
terms are uniform with respect to α ∈ A. Let us apply (7.1) to ϕ(tk+1, ·), with b(t, x) = −α, to obtain
(7.12)∑

ℓ∈Id

ωℓϕ
(
tk+1, xi −∆tα+

√
∆tσeℓ

)
= ϕ (tk+1, xi) + ∆t

(
σ2

2 ∆ϕ(tk+1, xi)− ⟨∇ϕ(tk+1, xi), α⟩
)

+O
(
(∆t)2

)
.

By (H2) and using the first-order Taylor expansion of F (·, µ(tk)) around xi, we get

(7.13)
1
2

( ∑
ℓ∈Id

ωℓF (xi −∆tα+
√
∆tσeℓ, µ(tk+1)) + F (xi, µ(tk))

)
= F (xi, µ(tk+1))

+O(∆t+ d(µ(tk+1), µ(tk))).
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Thus, by (4.2), (7.12), (7.13), and (3.9), we obtain

S[µ](ϕk+1, k, i) = ϕ (tk+1, xi)−∆t sup
α∈A

[
⟨∇ϕ(tk+1, xi), α⟩ −

|α|2

2

]
+∆t

σ2

2
∆ϕ(tk+1, xi)

+∆tF (xi, µ(tk+1)) +O
(
(∆t)2 + (∆x)q+1 +∆td(µ(tk+1), µ(tk))

)
= ϕ (tk+1, xi)−

∆t

2
|∇ϕ(tk+1, xi)|2 +∆t

σ2

2
∆ϕ(tk+1, xi)

+∆tF (xi, µ(tk+1)) +O
(
(∆t)2 + (∆x)q+1 +∆td(µ(tk+1), µ(tk))

)
.

Finally, we get

1

∆t
[ϕ(tk, xi)− S∆[µ](ϕk+1, k, i)] =− ∂tϕ(tk+1, xi)−

σ2

2
∆ϕ(tk+1, xi) +

1

2
|∇ϕ(tk+1, xi)|2 − F (xi, µ(tk+1))

+O

(
∆t+

(∆x)q+1

∆t
+ d(µ(tk+1), µ(tk))

)
,

from which the result follows. □
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