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Preface

Dear Participants,

we are more than happy to host the 37th International Workshop on Statistical
Modelling in Dortmund, Germany! This is the second year to meet in person after
the COVID break, and we hope to have a wonderful time like we did last year in
Trieste.

This year we will have 54 contributed talks and more than 60 posters, and it was a
tough challenge to pick among the many excellent submissions we had! Thanks again
to the scienti�c committee for putting so much work into the selection process. But
we obviously also want to give our thanks to all the researchers, who contributed
with their great submissions and made it possible to put together such an excellent
set of presentations. Having a special focus on students is a tradition of the Statistical
Modelling Society, hence we are especially happy to welcome such a large number of
younger researchers contributing to the conference. We are already excited to �nd
out who will win the awards for best student paper, best student presentation and
best student poster! The Statistical Modelling Society furthermore awarded travel
grants to two students.

We will also have �ve great invited talks, from di�erent areas in statistics: Brian
Reich, Maria Iannario, Alexander Gerharz together with Matthias Kolodziej, Gillian
Heller and Simon Wood agreed to give keynotes at the workshop. Furthermore,
Andreas Bender and Fabian Scheipl will provide a short course about Piece-wise
Exponential (Additive) Models (PEMs / PAMs) before the conference starts.

As always, the IWSM is a one-track conference, leading to a familiar atmosphere
and to the possibility for communication between the di�erent �elds of statistical
modelling.

Looking back at all the years we were participating in great workshops, hosted at so
many di�erent universities and all the amazing people we got to meet there, we are
both humble and exited to welcome you all to enjoy the conference and your stay at
the river Ruhr area with its long tradition of coal mining and steal production, beer
brewing and, of course, its omnipresent football vibe.

Andreas Groll, Elisabeth Bergherr and Andreas Mayr

Dortmund, Göttingen and Bonn, July 2023
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On the nature of one–inflation in microbial
diversity studies

Davide Di Cecco1, Andrea Tancredi1

1 Sapienza University of Rome, Italy

E-mail for correspondence: davide.dicecco@uniroma1.it

Abstract: The phenomenon of one–inflation is gaining more and more attention
in the recent literature on species abundance and capture–recapture analysis.
When analysing frequency count distribution, the excess of singletons is often as-
cribed to the erroneous inclusion of spurious cases. Various works propose to esti-
mate the true number of singletons relying on the higher, supposedly error–free,
counts (“discounting” approach). We argument that, in the case of microbial di-
versity studies, the generating process of the spurious singletons can be described
in terms of false negative record linkage errors. Errors in sequencing the RNA
genomes result in chimeric sequences that cannot be associated to the correct
species, and constitute missing links that are added to the true singletons. In
this scenario, none of the observed frequency counts is assumed to be error–free,
and we propose an ABC algorithm to estimate the true frequency counts. The
number of true singletons estimated in this way may differ considerably from the
discounting approach. This implies different estimates of the diversity as mea-
sured, e.g., by Shannon’s index. However, curiously, the total population count
estimates under the two approaches coincide.

Keywords: Species problem; Biodiversity; Linkage Errors; Approximate
Bayesian Computing.

1 Introduction

The problem of estimating the number of species in a population given a
sample arises in many applications in the natural sciences, in linguistics and
computer science. Our focus is on applications in microbial ecology. The
spread of next generation high-throughput sequencing technology allowed
to analyse an unprecedented amount of data on microbial communities. In
order to study the biodiversity in a microbial community, an environmental
sample is processed to detect, amplify and sequence RNA genomes. The

This paper was published as a part of the proceedings of the 37th Interna-
tional Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21
July 2023. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).
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sequences are clustered into distinct species (or Operational Taxonomic
Units) on the basis of a similarity score. The diversity analysis is then
conducted on the abundance frequency counts, i.e., the counts {nj}j=1,2,...

representing the number of species with j captured occurrences. In most
microbial studies, the distribution {nj}j=1,2,... is characterized by an un-
expected number of low–abundance species, in particular singletons, ac-
companied by a low number of very common species. The nature of these
singletons has been debated at length, and the presence of spurious single-
tons resulting from sequencing errors has been confirmed in various ways
(e.g., Quince et al. 2011, Haas et al. 2011). While bioinformatics focuses
on avoiding the formation of the so–called chimera sequences, or removing
them in a pre–processing step, various statistical contributions attempt to
estimate ex–post their number.
The study of one–inflation in frequency count distribution is gaining more
and more attention also in the recent capture–recapture literature on hu-
man and animal population, which shares many methodological aspects
with the species abundance problem, (see, e.g., Godwin and Böhning 2017,
Böhning et al. 2019, Tuoto et al. 2022). The possible sources of one–inflation
can be categorized as:

� a behavioural effect, where certain units, once captured, avoid subse-
quent captures;

� the presence of out-of-scope units, which enter the sample for a pe-
culiar error mechanism and should be excluded;

� the presence of missing links in the record linkage procedure employed
to create the frequency counts.

Various authors adopted a “discounting” approach to the problem of one–
inflation. That is, they propose to ignore the data affected by errors, i.e.,
the observed singletons, and re-estimate their number on the basis of the
counts nj , j ≥ 2, (see, e.g, Willis and Bunge 2015, Willis 2016, Chiu and
Chao 2016). We argument that this approach is consistent for the second
mechanism listed above: a model where out-of-scope singletons are added
to the baseline distribution of the true counts. We believe that the nature
of the spurious cases can alternatively be described by linkage errors. That
is, we assume that random errors occurring in sequencing result in the
impossibility of a correct classification of the specimen, which cannot be
associated to the right existing species. Therefore, we can describe these
cases as false negative linkage errors (or missing links), which are added
to the true singletons. This approach implies a re–estimation of the “real”
frequency counts for all the abundances, not just the singletons. We found
that treating the excess of singletons in this way leads to significant differ-
ences in the diversity estimates with respect to the discounting approach.
In this work we adopt a secondary approach to the linkage problem, i.e.,
we try to estimate the linkage errors solely on the basis of the vector
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{nj}j=1,2,... and our distributional assumptions, as we do not have access
to the actual linkage process. Modeling linkage errors in this secondary
setting, appears quite complex from a computational point of view. We fix
some simplifying assumptions on the type of error in order to tackle the
issue, but we still resorted to a Bayesian likelihood–free approach as the
most convenient approach.

2 One–inflation models

Say we get n species in our sample with abundances y1, ..., yn, and abun-
dance frequency counts {nj}j≥1. Under an out–of–scope singletons model,
the distribution of the abundances (whether the species are observed or not,
spurious or not) results in the following mixture of a baseline distribution

f̃ of the non–spurious counts, and a Dirac measure over one:

P (Yi = j ; f̃ , ψ) =

{
(1− ψ)f̃1 + ψ if j = 1;

(1− ψ)f̃j otherwise,
(1)

where ψ denotes the portion of spurious cases over the total population
count. Let ñj denote the number of species with j non spurious captures.
Then, since we assumed ñj = nj for j ≥ 2, we just have to estimate the
number of unsampled species ñ0, and the number of non–spurious single-
tons ñ1 as a portion of n1. The estimate of the total number of distinct
species Ñ will result as:∑

j≥0

ñj = ñ0 + n− n1 + ñ1.

A Bayesian estimation of this model presents no difficulties under various
parametric families choices for f̃ . A simple Gibbs sampler scheme is the
following: under a Beta prior for ψ, its posterior is easily updated. Then,
a value for ñ1 is generated from a Binomial with parameters 1 − ψ and
n1. Steps to update the values of ñ0 and of the parameters of f̃ are easily
found in literature (see, e.g., Tuoto et al. 2022).
Under our missing links proposal, we assume that each sequence has the
same probability µ of being missclassified as a singleton independently from
the other. Denote the true number of sampled distinct species as n∗, (n∗ <
n). For each species i with X∗

i true captures, we have Mi missing links,
such that the registered abundance is reduced from X∗

i to Xi = X∗
i −Mi.

Mi has the following distribution:

P (Mi = mi |X∗
i = x∗i ) =

(
x∗i
mi

)
µmi(1− µ)x

∗
i −mi , i = 1, ..., n∗. (2)

Let f∗ be the baseline distribution of the X∗
i . The distribution of the Xi

results as a thinning process where a portion µ of captures disappear. Let
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n∗j denote the true number of species with j captures, and as N∗ =
∑
j≥0 n

∗
j

the total number of distinct species according to the missing links model.
Unlike the spurious singletons model, in this case all values {n∗j}j≥0 have to
be estimated, as they will be, in general, different from the observed values.
Denote as θ the parameters defining f∗. We adopted an ABC rejection
algorithm with the following scheme:

1. generate values for (θ,N∗) from the priors π(θ) and π(N∗);

2. generate values (n∗0, n
∗
1, n

∗
2, ...) conditional on N∗ and θ;

3. generate a value for µ from the Beta prior π(µ) (independent from
all the rest);

4. generate missing links at random according to the distribution de-
scribed in (2), given (n∗0, n

∗
1, n

∗
2, ...) and µ. Each missing link modifies

the observed count, and increments accordingly the number of sin-
gletons, thus obtaining the fictitious data D∗;

5. retain the current generated values if a measure of distance ρ between
the generated data D∗ and the observed data D is below a certain
threshold ϵ:

ρ(D∗, D) < ϵ.

In our application we utilized the euclidean distance.

As the simple ABC rejection scheme can have a low acceptance rate, we
further adopted a sequential ABC to accelerate the procedure, as described
in Marin et al. 2012.
A simulation study confirmed the correctness of the ABC algorithm under a
Poisson, Geometric, and finite mixture of Poisson distributions for f∗. Our
first finding in a further simulation study comparing the spurious cases
and the missing links proposal, has been the substantial identity of the
estimates of the total number of species under the two competing models.
That is, if we choose f∗ and f̃ in the same family, despite the fact that the
estimates of the true abundance frequencies differ under the two models
(i.e., ñj ̸= n∗j for all j), we have N∗ = Ñ .
To demonstrate this identity, consider the baseline distribution f∗ of the
values X∗

i introduced above. It is easily demonstrated that, under various
parametric family for f∗, (notably, if f∗ is any mixed Poisson), the dis-
tribution of the Xi belongs to the same parametric family. Then, under
identifiability of that family, if we use model (1) and take f̃ in the same

family as f∗, f̃ will be identified as the distribution of the xi, for all xi > 0,
and ψ would represent the portion of missing links over the total population
count. Let r0 be the number of captured species whose occurrences where
all missclassified, i.e., such that Mi = X∗

i . Let M be the total number of

missing links: M =
∑n∗

i=1Mi. Then we have

n∗ = n−M + r0 and ñ1 = n1 −M.



428 One–inflation in microbial studies

The missing links mechanism does not affect the number of undetected
species n∗0, but under f̃ the r0 values are included in ñ0, i.e., we have
ñ0 = n∗0 + r0. Finally, we can write

Ñ = ñ0 + ñ1 + n− n1 = ñ0 + n−M = n∗0 + r0 + n−M = n∗0 + n∗ = N∗.

As we have said, even if the estimates of the total number of species co-
incides under the two models, the abundance distribution will differ, and
consequently, the estimated diversity will differ. To illustrate the effect of
(ignoring) a missing links mechanism on the estimation of diversity, we uti-
lized a simulation study. As a measure of diversity we considered Shannon’s
diversity H (see, e.g., Chiu and Chao 2016) calculated as:

H = exp

−∑
j≥1

nj
j

s
ln
j

s

 . (3)

We generated various datasets under Poisson and Geometric baseline dis-
tributions, then simulated the effect of missing links to simulate from our
model. Then, we estimated Shannon’s diversity on the observed data (that
is, ignoring any one–inflation mechanism), on the “adjusted” counts as de-
rived from the spurious cases model (that is, trimming the observed number
of singletons) and as derived from the ABC procedure for the missing links
model. Note that in our Bayesian approach we can easily estimate the
posterior distribution of (3). First, we concluded that ignoring an existing
one–inflating mechanism, implies a severe overestimation of the diversity.
Second, utilizing model (1) when missing links are the true source of er-
ror, reduces sensibly the overestimation, but still leads to different results
than what can be achieved with an ABC simulating the actual generating
process.
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