IWSM 2023

$37^{\text {th }}$ International Workshop on Statistical Modelling
16.07. - 21.07.2023

Dortmund

Proceedings book

Proceedings of the 37th International Workshop on Statistical Modelling

July 17-21, 2023 - Dortmund, Germany

Editors
Elisabeth Bergherr
Andreas Groll
Andreas Mayr

International Workshop on Statistical Modelling (37 ${ }^{\circ}$. 2023. Dortmund)
Proceedings of the 37th International Workshop on Statistical Modelling : July 17-21, 2022
Dortmund, Germany / Elisabeth Bergherr, Andreas Groll, Andreas Mayr (editors). - Dortmund : TU Dortmund University, 2023. - 1 copy online : PDF (693 S. : ill.)

ISBN: 978-3-947323-42-5
Authors:
Bergherr, Elisabeth
Groll, Andreas
Mayr, Andreas
Topics:

1. Statistics congress. 2. Econometrics models congress
$330.015195=$ Mathematical statistics

Editors:

ELISABETH BERGHERR

University of Göttingen, Chair of Spatial Data Science and Statistical Learning

ANDREAS GROLL

TU Dortmund University, Department of Statistics
ANDREAS MAYR
University of Bonn, Department of Medical Biometry, Informatics and Epidemiology

Copyright TU Dortmund University, Dortmund 2023
This work is licensed under a CC-BY-license.

https://creativecommons.org/licenses/by/4.0/
Exception: the rights for all graphs and figures in this proceeding volume remain with the authors.
ISBN 978-3-947323-42-5 (online)
TU Dortmund University
Department of Statistics
Vogelpothsweg 78
44227 Dortmund
Germany
https://ub.tu-dortmund.de/
https://statistik.tu-dortmund.de/

Scientific Committee

Ruggero Bellio
University of Udine (Italy)
Elisabeth Bergherr (Co-Chair)
University of Göttingen (Germany)
Fernanda De Bastiani
University of Pernambuco (Brazil)
María L. Durbán Reguera
University of Madrid (Spain)
Jan Gertheiss
Helmut Schmidt University, Hamburg (Germany)
Andreas Groll (Chair)
TU Dortmund (Germany)
Thomas Kneib
University of Göttingen (Germany)
Dae-Jin Lee
IE University, School of Science and Technology, Madrid (Spain)
Andreas Mayr (Co-Chair)
University of Bonn (Germany)
Fulvia Pennoni
University of Milano-Bicocca (Italy)
María Xosé Rodríguez Álvarez
University of Vigo (Spain)
Gunther Schauberger
TU München (Germany)
Nicola Torelli
University of Trieste (Italy)
Lola Ugarte
University of Navarra (Spain)
Nikolaus Umlauf
University of Innsbruck, (Austria)
Helga Wagner
University of Linz, (Austria)

Local Organising Committee

Chiara Balestra
TU Dortmund University
Elisabeth Bergherr (Co-Host)
University of Göttingen
Guillermo B. Sánchez
TU Dortmund University
Jennifer Engel
TU Dortmund University
Alexander Gerharz
TU Dortmund University
Colin Griesbach
University of Göttingen
Andreas Groll (Host)
TU Dortmund University
Tobias Hepp
University Erlangen-Nürnberg
Hannah Klinkhammer
University of Bonn
Andreas Mayr (Co-Host)
University of Bonn
Hendrik van der Wurp
TU Dortmund University

Preface

Dear Participants,

we are more than happy to host the 37th International Workshop on Statistical Modelling in Dortmund, Germany! This is the second year to meet in person after the COVID break, and we hope to have a wonderful time like we did last year in Trieste.

This year we will have 54 contributed talks and more than 60 posters, and it was a tough challenge to pick among the many excellent submissions we had! Thanks again to the scientific committee for putting so much work into the selection process. But we obviously also want to give our thanks to all the researchers, who contributed with their great submissions and made it possible to put together such an excellent set of presentations. Having a special focus on students is a tradition of the Statistical Modelling Society, hence we are especially happy to welcome such a large number of younger researchers contributing to the conference. We are already excited to find out who will win the awards for best student paper, best student presentation and best student poster! The Statistical Modelling Society furthermore awarded travel grants to two students.

We will also have five great invited talks, from different areas in statistics: Brian Reich, Maria Iannario, Alexander Gerharz together with Matthias Kolodziej, Gillian Heller and Simon Wood agreed to give keynotes at the workshop. Furthermore, Andreas Bender and Fabian Scheipl will provide a short course about Piece-wise Exponential (Additive) Models (PEMs / PAMs) before the conference starts.
As always, the IWSM is a one-track conference, leading to a familiar atmosphere and to the possibility for communication between the different fields of statistical modelling.

Looking back at all the years we were participating in great workshops, hosted at so many different universities and all the amazing people we got to meet there, we are both humble and exited to welcome you all to enjoy the conference and your stay at the river Ruhr area with its long tradition of coal mining and steal production, beer brewing and, of course, its omnipresent football vibe.

Andreas Groll, Elisabeth Bergherr and Andreas Mayr
Dortmund, Göttingen and Bonn, July 2023

Contents

Part I

1 Data science meets football 20
Alexander Gerharz, Mathias Kolodziej
2 Robust regression modelling for ordinal categorical data 28
Maria Iannario
3 Back to the future: model what you measure 38 Gillian Heller
4 Modeling extremal streamflow using deep learning approximations and a flexible spatial process 47
Reetam Majumder, Brian Reich, Banjamin Shaby
5 On Covid, dynamic models and inferring smooth functions 57 Simon Wood
Part II
6 State-switching decision trees 69
Timo Adam, Marius Otting, Rouven Michels
7 Efficient stochastic learning of graphical structures for large-scale mixed data surveys 74
Giuseppe Alfonzetti, Ruggero Bellio, Yunxiao Chen, Irini Moustaki
8 Flexible habitat selection analysis with generalized additive models 80Rafael Arce Guillen, Jennifer Pohle, Björn Reineking, Ulrike Schlägel
9 An information-theoretic perspective on double descent in flooded boosting 86Chiara Balestra, Andrés Madariaga, Emmanuel Müller, Christian Staerk,Andreas Mayr
10 Adaptive random forests for high-dimensional regression 91
Moritz Berger, Christian Staerk
11 Evolutionary algorithm for the estimation of discrete latent 97
Luca Brusa, Fulvia Pennoni, Francesco Bartolucci
12 Coherent cause-specific mortality forecasting via constrained penalized regression models 103
Carlo G. Camarda, María Durbán
13 The influence of resolution on the predictive power of spatial heterogeneity measures as a biomarker of disease severity 109
Jari Claes, Annelies Agten, Alfonso Blázquez-Moreno, Marjolein Crabbe, Marianne Tuefferd, Hinrich Goehlmann, Helena Geys, Thomas Neyens, Christel Faes
14 A multi-state model for the natural history of prostate cancer; using data from a screening trial 115
Ilse Cuevas Andrade, Ardo van den Hout, Nora Pashayan
15 Bayesian smoothing for joint extremes 121
Miguel de Carvalho, Junho Lee
16 Semi-parametric estimation of growth curves 125
Chiara Di Maria, Vito M. R. Muggeo
17 Modelling time-of-day variation in hidden Markov models using cyclic P-splines 131
Carlina C. Feldmann, Sina Mews, Roland Langrock
18 Bayesian inference of dynamic models emulated with a time series135Gaussian processYuzhang Ge, Arash Rabbani, Hao Gao, Dirk Husmeier
19 Gradient boosting for parsimonious additive covariance matrix modelling 141
Vincenzo Gioia, Matteo Fasiolo, Ruggero Bellio
20 Functional multilevel modelling of the influence of the menstrualcycle on the performance of female cyclists147
Steven Golovkine, Tom Chassard, Alice Meignié, Emmanuel Brunet, Jean-FrancoisToussaint, Juliana Antero
21 Confidence intervals for finite mixture regression based on resampling techniques 152
Colin Griesbach, Tobias Hepp
22 Component-wise boosting for mixture distributional regression models 157
Tobias Hepp, Jakob Zierk, Elisabeth Bergherr
23 Fusion, smoothing and model selection for item-on-item regression 163
Aisouda Hoshiyar, Jan Gertheiss
24 Induced nonparametric ROC surface regression 169
Vanda Inácio, María Xosé Rodríguez-Álvarez
25 Assessing spatial trends in health outcomes using primary care
registry data 173
Arne Janssens, Pieter Libin, Gijs Van Pottelbergh, Jonas Crèvecoeur, Bert Vaes,Thomas Neyens
26 Statistical inference for high-dimensional logistic regression: Variable selection and levels fusion for categorical covariates 178
Lea Kaufmann, Maria Kateri
27 Advanced statistical modelling for polygenic risk scores based on large cohort data 183
Hannah Klinkhammer, Christian Staerk, Carlo Maj, Peter M. Krawitz, Andreas Mayr
28 Sparse modality regression188Chris Kolb, Bernd Bischl, Christian L. Müller, David Rügamer
29 On prediction via equal-tailed intervals with an application to sensor data analytics 193
Michele Lambardi di San Miniato, Ruggero Bellio, Luca Grassetti, Paolo Vidoni
30 Asymmetry issues with non-penalized parameters in Laplace P- splines models 199
Philippe Lambert, Oswaldo Gressani
31 Local moment matching with Gamma mixtures and automatic smoothness selection 204
Oskar Laverny, Philippe Lambert
32 Linear mixed modelling of federated data when only the mean, covariance, and sample size are available 208
Marie Analiz April Limpoco, Christel Faes, Niel Hens
33 Feedforward neural networks from a statistical-modelling perspective 214
Andrew McInerney, Kevin Burke
34 Modelling medical claims data using Markov-modulated marked Poisson processes 219
Sina Mews, Bastian Surmann, Lena Hasemann, Svenja Elkenkamp
35 Estimating what is under the tip of gender-based violence:
A statistical modelling approach 225
Isabel Millán, Amanda Fernández-Fontelo, Pere Puig, David Moriña
36 A bivariate Poisson regression model for radiation dose estimation 231
Dorota Młynarczyk, Pedro Puig, Carmen Armero, Virgilio Gómez-Rubio,Jayne Moquet
37 Bayesian spatio-temporal conditional overdispersion models proposals 237
Mabel Morales-Otero, Vicente Núñez-Antón
38 Lasso-based order selection in hidden Markov models: a case study using stock market data 243
Marius Otting, Roland Langrock
39 Bayesian survival analysis using pseudo-observations 247
Léa Orsini, Caroline Brard, Emmanuel Lesaffre, David Dejardin, Gwénaël Le Teuff

40 Clustering anterior cruciate ligament reconstruction patients using
functional walking biomechanics
Garritt L. Page, Matthew K. Seeley, Brian G. Pietrosimone

41 Forecasting insect abundance using time series embedding and	
environmental covariates	$\mathbf{2 5 8}$

42 Studying animal interactions with Markov-switching step-selection models 262
Jennifer Pohle, Johannes Signer, Jana A. Eccard, Melanie Dammhahn, Ulrike E. Schlägel
43 Prediction-based variable selection for component-wise gradient boosting 267
Sophie Potts, Elisabeth Bergherr, Constantin Reinke, Colin Griesbach
44 Computationally efficient ranking of groundwater monitoring locations 273Peter Radvanyi, Claire Miller, Craig Alexander, Marnie Low, Wayne R. Jones,Luc Rock
45 A distributional regression approach for Gaussian process responses 279
Hannes Riebl, Nadja Klein, Thomas Kneib
46 Multi-state models for double transitions associated with parasitism in biological control 285
Idemauro Antonio Rodrigues de Lara, Gabriel Rodrigues Palma, Victor José Bon, Carolina Reigada, Rafael de Andrade Moral
47 Bias reduced predictions for black-box models 290
Philipp Sterzinger, Ioannis Kosmidis
48 Autoregressive hidden Markov models for high-resolution animal movement data 294
Ferdinand V. Stoye, Roland Langrock
49 Complexity reduction via deselection for boosting distributionalcopula regression300
Annika Strömer, Nadja Klein, Christian Staerk, Hannah Klinkhammer, Andreas Mayr
50 Bayesian nowcasting with Laplacian-P-splines305
Bryan Sumalinab, Oswaldo Gressani, Niel Hens, Christel Faes
51 Boosting distributional soft regression trees 311
Nikolaus Umlauf, Johannes Seiler, Mattias Wetscher, Nadja Klein
52 A one-step spatial+ approach to mitigate spatial confounding in multivariate spatial areal models 317
Arantra Urdangarin, Thomás Goicoa, María Dolores Ugarte
53 Extending central statistical monitoring to electronic patient-reported outcomes in clinical trials 321
Lawson Wang, Sebastiaan Höppner, Laura Trotta
54 Ordinal compositional data and time series 325
Christian H. Weiß
55 Stagewise boosting distributional regression 331
Mattias Wetscher, Johannes Seiler, Reto Stauffer, Nikolaus Umlauf
56 Gaussian process models: From astrophysics to industrial data 337
Jamie Wilson, Kevin Burke, Norma Bargary
57 A multilevel multivariate response model for data with latentstructures343
Yingjuan Zhang, Jochen Einbeck, Reza Drikvandi
58 Flexible modelling of time-varying training exposures on the risk of recurrent injuries in football 349
Lore Zumeta-Olaskoaga, Andreas Bender, Dae-Jin Lee

Part III

59 Modelling single-nucleotide polymorphism to assess genetic	
contribution to disease progression	355
Mazin Aouf, Kenan M. Matawie	
60 Spatially adaptive Bayesian P-splines	361
Paul Bach, Nadja Klein	
61 A weighted curve clustering approach for analyzing pass rush routes	
in american football	366
Robert Bajons, Kurt Hornik	

62 Playful introduction to data competencies for economic students 371 Julia Berginski, Alexander Silbersdorff
63 Accounting for clustering in automated variable selection using hospital data: A comparison of different LASSO approaches 377
Stella Bollmann, Andreas Groll, Michael M. Havranek
64 An active deep learning method for high out-of-sample predictive performance in image classification 383
Wibke Peters, Hien Nguyen, Caryl Benjamin, Annette Menzel
65 A smooth Laplace regression model 387
Kevin Burke
66 TwoTimeScales: an R-package for smoothing hazards with two time scales 390
Angela Carollo, Jutta Gampe, Paul Eilers, Hein Putter394
M. Chavent, V. Darmendrail, D. Feral, H. Lorenzo, F. Pourtier, J. Saracco
68 Automatic effect selection for generalized additive models 400
Claudia Collarin, Matteo Fasiolo, Claudio Agostinelli
69 A multifidelity framework for wind speed data405Pietro Colombo, Claire Miller, Ruth O'Donnell, Xiaochen Yang
70 Group penalized models with an adaptive non-convex penalty function 409
Daniele Cuntrera, Vito M.R. Muggeo, Luigi Augugliaro
71 Gradient boosting for GAMLSS using adaptive step lengths 414
Alexandra Daub, Andreas Mayr, Boyao Zhang, Elisabeth Bergherr
72 Mixture confidence sequences for regression coefficients in generalized linear models 420
Claudia Di Caterina, Alessandra Salvan, Nicola Sartori
73 On the nature of one-inflation in microbial diversity studies 424
Davide Di Cecco, Andrea Tancredi
74 Prediction of record performances in sports in a record-values model 430
Christina Empacher, Udo Kamps
75 Competing risk modelling for in-hospital length of stay 436
Juan Carlos Espinosa-Moreno, Fernando García-García, Dae-Jin Lee, María J. Legarreta-Olabarrieta, Susana García-Gutiérrez, Naia Mas
76 Mixed nonlinear modelling in food engineering: determination of the salting time of boneless dry-cured Cerretan hams 440
Xavier Espuña, Lesly Acosta, Josep A. Sanchez-Espigares, Xavier Tort-Martorell
77 Learning Gaussian Bayesian networks from incomplete data - the Bayesian way 445
Marco Grzegorczyk
78 Grouped regression modeling of proteins 451
Jonas Heiner, Jan Hengstler, Andreas Groll
79 A new scalar-on-function generalized additive model for partially observed curves: an application to aneurysm patients 457
Pavel Hernández-Amaro, María Durbán, M. Carmen Aguilera-Morillo
80 Detecting heterogeneity of treatment effect between centers in multicenter randomized clinical trials 463
Sebastiaan Höppner, Marc Buyse, Laura Trotta
81 Rate of return to education of compliers: Estimation based on
Rubin causal models 467
Caizhu Huang, Jierui Du, Claudia Di Caterina
82 Understanding the role of conditional residual distances from simulated envelopes in half normal plots 472
Darshana Jayakumari, Jochen Einbeck, John Hinde, Rafael A. Moral
83 Targeted bias reduction for generalised additive models 477
Oliver Kemp, Ioannis Kosmidis
84 A novel gradient boosting framework for generalised additive mixed models 482
Lars Knieper, Elisabeth Bergherr, Torsten Hothorn, Nadia Müller-Voggel, Colin Griesbach
85 Interval-censored covariates in regression models 488
Klaus Langohr, Andrea Toloba López-Egea, Guadalupe Gómez Melis
86 Bayesian regularisation for tail index regression 493
M.W. Lee, M. de Carvalho, D. Paulin, S. Pereira, R. Trigo, C. Da Camara
87 Best subset selection for principal components analysis and partialleast square models using continuous optimization497
Benoit Liquet, Sarat Moka, Samuel Muller
88 The consequences of not completing the generational cohort inestimating age-at-menopause502
Rui Martins, Bruno de Sousa, Thomas Kneib, Maike Hohberg, Nadja Klein, ElisaDuarte, Vitor Rodrigues
89 Information retrieval models with GPT-3: Techniques for improving
ranking performance through text enhancement 507
Kenan M. Matawie, Sargon Hasso
90 Analysis of climatological drivers of low-flow events in hydrological Bavaria using large ensemble climate projections 513
Theresa Meier, Nikita Paschan, Andrea Böhnisch, Henri Funk, Alexander Sasse,Helmut Küchenhoff

99 Wastewater analysis in the light of Covid-19: A GAMLSS approach 564 Roman Pfeiler, Helga Wagner, Hans Peter Stüger, Karin Weyermair, Sabrina Kuchling, Patrick Hyden
101 Bayesian effect selection in structured piecewise additive joint models using the NBPSS prior 575
Anja Rappl, Elisabeth Bergherr
102 Multivariate survival trees for prediction of lower limb injuries in 579
Jone Renteria, Lore Zumeta-Olaskoaga, Eder Bikandi, Jon Larruskain, Dae-Jin Lee
103 Focussed information criteria for model selection - a Bayesian perspective 584
Bijit Roy, Emmanuel Lesaffre
104 Spatio-temporal modelling using an opportunistically sampled open- survey data: a simulation study based on the Belgian Great Corona
Study 590
Alejandro Rozo, Thomas Neyens, Christel Faes
105 Meta-analysis of variability in survival outcomes in precision oncology trials 595
Maximilian Schuessler, Elizaveta Skarga, Pascal Geldsetzer, Ying Lu, Maike Ho- hberg
106 Challenges in statistical consulting for animal science 601
Sabine K. Schnabel
107 Neural additive quantile regression 605
Quentin E. Seifert, Elisabeth Bergherr, Benjamin Säfken
108 Mixed effects neural networks for longitudinal k-inflated count responses 611
Nastaran Sharifian, Kevin Burke
109 A flexible non-mixture cure model for recurrent gap time data 615
Ivo Sousa-Ferreira, Ana Maria Abreu, Cristina Rocha
110 A tool to detect nonlinearity and interactions in generalized regression models 620
Nikolai Spuck, Matthias Schmid, Moritz Berger
111 Variable selection for statistical fine-mapping and prediction modelling of polygenic traits 624
Christian Staerk, Carlo Maj, Oleg Borisov, Hannah Klinkhammer, Peter Krawitz,Andreas Mayr
112 Long-term foehn reconstruction combining unsupervised and 628
Reto Stauffer, Georg J Mayr, Achim Zeileis
113 Asymmetry model and its properties for square contingency tables 632
Kouji Tahata, Yusuke Kori
114 A superiority test for comparing sensitivity, specificity, and predictive values of two diagnostic tests 636
Kanae Takahashi, Kouji Yamamoto
115ndividual participant data meta-analysis: pooled effect of EEF
funded educational trials on low baseline attaining group 640
Germaine Uwimpuhwe, A. Singh, N. Akhter, B. Ashraf, T. Coolen-Maturi, T. Robinson, S. Higgins, J. Einbeck
116 Estimating short-term air pollution effects on health via spectral 644
Massimo Ventrucci, Garritt L. Page
117 Examining quantiles of sensor outputs in structural health monitoring 648
Frederike Vogel
118 Change point regression for estimated time series: An application
to COVID-19 hospitalization data 653
Maximilian Weigert, Kai Becker, Helmut Küchenhoff
119 A consistent way to define p-values 658
Paul Wilson, Jochen Einbeck
120 Modelling SHM sensor outputs: A functional data approach 664
Philipp Wittenberg, Jan Gertheiss

121 Analyzing blended learning education with eye tracking and deep learning methods
Hilal Yagimli, Julia Berginski, Alexander Silbersdorff

122 Crime predicting models in the São Paulo state of Brazil
Wellington Yuanhe Zhao, Luis Gustavo Nonato, Cibele M. Russo

123 A scalable and embedded diachronic sense change model 681

Schyan Zafar, Geoff K. Nicholls
124 Bayesian nonparametric inference for the three-class covariatespecific overlap coefficient
Zhaoxi Zhang, Vanda Inácio

On the nature of one-inflation in microbial diversity studies

Davide Di Cecco ${ }^{1}$, Andrea Tancredi ${ }^{1}$
${ }^{1}$ Sapienza University of Rome, Italy
E-mail for correspondence: davide.dicecco@uniroma1.it

Abstract

The phenomenon of one-inflation is gaining more and more attention in the recent literature on species abundance and capture-recapture analysis. When analysing frequency count distribution, the excess of singletons is often ascribed to the erroneous inclusion of spurious cases. Various works propose to estimate the true number of singletons relying on the higher, supposedly error-free, counts ("discounting" approach). We argument that, in the case of microbial diversity studies, the generating process of the spurious singletons can be described in terms of false negative record linkage errors. Errors in sequencing the RNA genomes result in chimeric sequences that cannot be associated to the correct species, and constitute missing links that are added to the true singletons. In this scenario, none of the observed frequency counts is assumed to be error-free, and we propose an $A B C$ algorithm to estimate the true frequency counts. The number of true singletons estimated in this way may differ considerably from the discounting approach. This implies different estimates of the diversity as measured, e.g., by Shannon's index. However, curiously, the total population count estimates under the two approaches coincide.

Keywords: Species problem; Biodiversity; Linkage Errors; Approximate Bayesian Computing.

1 Introduction

The problem of estimating the number of species in a population given a sample arises in many applications in the natural sciences, in linguistics and computer science. Our focus is on applications in microbial ecology. The spread of next generation high-throughput sequencing technology allowed to analyse an unprecedented amount of data on microbial communities. In order to study the biodiversity in a microbial community, an environmental sample is processed to detect, amplify and sequence RNA genomes. The

[^0]sequences are clustered into distinct species (or Operational Taxonomic Units) on the basis of a similarity score. The diversity analysis is then conducted on the abundance frequency counts, i.e., the counts $\left\{n_{j}\right\}_{j=1,2, \ldots}$ representing the number of species with j captured occurrences. In most microbial studies, the distribution $\left\{n_{j}\right\}_{j=1,2, \ldots}$ is characterized by an unexpected number of low-abundance species, in particular singletons, accompanied by a low number of very common species. The nature of these singletons has been debated at length, and the presence of spurious singletons resulting from sequencing errors has been confirmed in various ways (e.g., Quince et al. 2011, Haas et al. 2011). While bioinformatics focuses on avoiding the formation of the so-called chimera sequences, or removing them in a pre-processing step, various statistical contributions attempt to estimate ex-post their number.
The study of one-inflation in frequency count distribution is gaining more and more attention also in the recent capture-recapture literature on human and animal population, which shares many methodological aspects with the species abundance problem, (see, e.g., Godwin and Böhning 2017, Böhning et al. 2019, Tuoto et al. 2022). The possible sources of one-inflation can be categorized as:

- a behavioural effect, where certain units, once captured, avoid subsequent captures;
- the presence of out-of-scope units, which enter the sample for a peculiar error mechanism and should be excluded;
- the presence of missing links in the record linkage procedure employed to create the frequency counts.
Various authors adopted a "discounting" approach to the problem of oneinflation. That is, they propose to ignore the data affected by errors, i.e., the observed singletons, and re-estimate their number on the basis of the counts $n_{j}, j \geq 2$, (see, e.g, Willis and Bunge 2015, Willis 2016, Chiu and Chao 2016). We argument that this approach is consistent for the second mechanism listed above: a model where out-of-scope singletons are added to the baseline distribution of the true counts. We believe that the nature of the spurious cases can alternatively be described by linkage errors. That is, we assume that random errors occurring in sequencing result in the impossibility of a correct classification of the specimen, which cannot be associated to the right existing species. Therefore, we can describe these cases as false negative linkage errors (or missing links), which are added to the true singletons. This approach implies a re estimation of the "real" frequency counts for all the abundances, not just the singletons. We found that treating the excess of singletons in this way leads to significant differences in the diversity estimates with respect to the discounting approach. In this work we adopt a secondary approach to the linkage problem, i.e., we try to estimate the linkage errors solely on the basis of the vector
$\left\{n_{j}\right\}_{j=1,2, \ldots}$ and our distributional assumptions, as we do not have access to the actual linkage process. Modeling linkage errors in this secondary setting, appears quite complex from a computational point of view. We fix some simplifying assumptions on the type of error in order to tackle the issue, but we still resorted to a Bayesian likelihood-free approach as the most convenient approach.

2 One-inflation models

Say we get n species in our sample with abundances y_{1}, \ldots, y_{n}, and abundance frequency counts $\left\{n_{j}\right\}_{j \geq 1}$. Under an out-of-scope singletons model, the distribution of the abundances (whether the species are observed or not, spurious or not) results in the following mixture of a baseline distribution \tilde{f} of the non-spurious counts, and a Dirac measure over one:

$$
P\left(Y_{i}=j ; \widetilde{f}, \psi\right)= \begin{cases}(1-\psi) \widetilde{f}_{1}+\psi & \text { if } j=1 \tag{1}\\ (1-\psi) \widetilde{f}_{j} & \text { otherwise }\end{cases}
$$

where ψ denotes the portion of spurious cases over the total population count. Let \widetilde{n}_{j} denote the number of species with j non spurious captures. Then, since we assumed $\widetilde{n}_{j}=n_{j}$ for $j \geq 2$, we just have to estimate the number of unsampled species \widetilde{n}_{0}, and the number of non-spurious singletons \widetilde{n}_{1} as a portion of n_{1}. The estimate of the total number of distinct species \widetilde{N} will result as:

$$
\sum_{j \geq 0} \widetilde{n}_{j}=\widetilde{n}_{0}+n-n_{1}+\widetilde{n}_{1} .
$$

A Bayesian estimation of this model presents no difficulties under various parametric families choices for \widetilde{f}. A simple Gibbs sampler scheme is the following: under a Beta prior for ψ, its posterior is easily updated. Then, a value for \widetilde{n}_{1} is generated from a Binomial with parameters $1-\psi$ and n_{1}. Steps to update the values of \widetilde{n}_{0} and of the parameters of \tilde{f} are easily found in literature (see, e.g., Tuoto et al. 2022).
Under our missing links proposal, we assume that each sequence has the same probability μ of being missclassified as a singleton independently from the other. Denote the true number of sampled distinct species as $n^{*},\left(n^{*}<\right.$ $n)$. For each species i with X_{i}^{*} true captures, we have M_{i} missing links, such that the registered abundance is reduced from X_{i}^{*} to $X_{i}=X_{i}^{*}-M_{i}$. M_{i} has the following distribution:

$$
\begin{equation*}
P\left(M_{i}=m_{i} \mid X_{i}^{*}=x_{i}^{*}\right)=\binom{x_{i}^{*}}{m_{i}} \mu^{m_{i}}(1-\mu)^{x_{i}^{*}-m_{i}}, \quad i=1, \ldots, n^{*} . \tag{2}
\end{equation*}
$$

Let f^{*} be the baseline distribution of the X_{i}^{*}. The distribution of the X_{i} results as a thinning process where a portion μ of captures disappear. Let
n_{j}^{*} denote the true number of species with j captures, and as $N^{*}=\sum_{j \geq 0} n_{j}^{*}$ the total number of distinct species according to the missing links model. Unlike the spurious singletons model, in this case all values $\left\{n_{j}^{*}\right\}_{j \geq 0}$ have to be estimated, as they will be, in general, different from the observed values. Denote as θ the parameters defining f^{*}. We adopted an ABC rejection algorithm with the following scheme:

1. generate values for $\left(\theta, N^{*}\right)$ from the priors $\pi(\theta)$ and $\pi\left(N^{*}\right)$;
2. generate values $\left(n_{0}^{*}, n_{1}^{*}, n_{2}^{*}, \ldots\right)$ conditional on N^{*} and θ;
3. generate a value for μ from the Beta prior $\pi(\mu)$ (independent from all the rest);
4. generate missing links at random according to the distribution described in (2), given $\left(n_{0}^{*}, n_{1}^{*}, n_{2}^{*}, \ldots\right)$ and μ. Each missing link modifies the observed count, and increments accordingly the number of singletons, thus obtaining the fictitious data D^{*};
5. retain the current generated values if a measure of distance ρ between the generated data D^{*} and the observed data D is below a certain threshold ϵ :

$$
\rho\left(D^{*}, D\right)<\epsilon
$$

In our application we utilized the euclidean distance.
As the simple ABC rejection scheme can have a low acceptance rate, we further adopted a sequential ABC to accelerate the procedure, as described in Marin et al. 2012.
A simulation study confirmed the correctness of the ABC algorithm under a Poisson, Geometric, and finite mixture of Poisson distributions for f^{*}. Our first finding in a further simulation study comparing the spurious cases and the missing links proposal, has been the substantial identity of the estimates of the total number of species under the two competing models. That is, if we choose f^{*} and \widetilde{f} in the same family, despite the fact that the estimates of the true abundance frequencies differ under the two models (i.e., $\widetilde{n}_{j} \neq n_{j}^{*}$ for all j), we have $N^{*}=\widetilde{N}$.

To demonstrate this identity, consider the baseline distribution f^{*} of the values X_{i}^{*} introduced above. It is easily demonstrated that, under various parametric family for f^{*}, (notably, if f^{*} is any mixed Poisson), the distribution of the X_{i} belongs to the same parametric family. Then, under identifiability of that family, if we use model (1) and take \tilde{f} in the same family as f^{*}, \tilde{f} will be identified as the distribution of the x_{i}, for all $x_{i}>0$, and ψ would represent the portion of missing links over the total population count. Let r_{0} be the number of captured species whose occurrences where all missclassified, i.e., such that $M_{i}=X_{i}^{*}$. Let M be the total number of missing links: $M=\sum_{i=1}^{n^{*}} M_{i}$. Then we have

$$
n^{*}=n-M+r_{0} \quad \text { and } \quad \tilde{n}_{1}=n_{1}-M
$$

The missing links mechanism does not affect the number of undetected species n_{0}^{*}, but under \widetilde{f} the r_{0} values are included in \widetilde{n}_{0}, i.e., we have $\widetilde{n}_{0}=n_{0}^{*}+r_{0}$. Finally, we can write
$\widetilde{N}=\widetilde{n}_{0}+\widetilde{n}_{1}+n-n_{1}=\widetilde{n}_{0}+n-M=n_{0}^{*}+r_{0}+n-M=n_{0}^{*}+n^{*}=N^{*}$.
As we have said, even if the estimates of the total number of species coincides under the two models, the abundance distribution will differ, and consequently, the estimated diversity will differ. To illustrate the effect of (ignoring) a missing links mechanism on the estimation of diversity, we utilized a simulation study. As a measure of diversity we considered Shannon's diversity H (see, e.g., Chiu and Chao 2016) calculated as:

$$
\begin{equation*}
H=\exp \left(-\sum_{j \geq 1} n_{j} \frac{j}{s} \ln \frac{j}{s}\right) \tag{3}
\end{equation*}
$$

We generated various datasets under Poisson and Geometric baseline distributions, then simulated the effect of missing links to simulate from our model. Then, we estimated Shannon's diversity on the observed data (that is, ignoring any one-inflation mechanism), on the "adjusted" counts as derived from the spurious cases model (that is, trimming the observed number of singletons) and as derived from the ABC procedure for the missing links model. Note that in our Bayesian approach we can easily estimate the posterior distribution of (3). First, we concluded that ignoring an existing one-inflating mechanism, implies a severe overestimation of the diversity. Second, utilizing model (1) when missing links are the true source of error, reduces sensibly the overestimation, but still leads to different results than what can be achieved with an ABC simulating the actual generating process.

References

Böhning, D., Kaskasamkul, P., van der Heijden, P. G. (2019). A modification of Chao's lower bound estimator in the case of one-inflation. Metrika, 82(3), 361-384.
Chiu, C. H., Chao, A. (2016). Estimating and comparing microbial diversity in the presence of sequencing errors. PeerJ, 4, e1634.

Godwin, R. T., Böhning, D. (2017). Estimation of the population size by using the one-inflated positive Poisson model. Journal of the Royal Statistical Society. Series C, 425-448.

Haas, B.J., Gevers, D., Earl, A.M. et al. (2011) Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced pcr amplicons. Genome research, 21(3), 494-504.

Marin, J. M., Pudlo, P., Robert, C. P., Ryder, R. J (2012). Approximate Bayesian computational methods. Statistics and computing, 22(6), 1167-1180.

Quince, C., Lanzen, A., Davenport, R. J. (2011). Removing noise from pyrosequenced amplicons. BMC bioinformatics, 12(1), 1-18.

Tuoto, T., Di Cecco, D., Tancredi, A. (2022). Bayesian analysis of oneinflated models for elusive population size estimation. Biometrical Journal, 64(5), 912-933.

Willis, A., Bunge, J. (2015). Estimating diversity via frequency ratios. Biometrics, 71(4), 1042-1049.

Willis, A. (2016). Species richness estimation with high diversity but spurious singletons. arXiv preprint arXiv:1604.02598.

[^0]: This paper was published as a part of the proceedings of the 37th International Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16-21 July 2023. The copyright remains with the author(s). Permission to reproduce or extract any parts of this abstract should be requested from the author(s).

