

IWSN 2023 37th International Workshop on Statistical Modelling

16.07. - 21.07.2023

Dortmind

Proceedings book

Proceedings of the 37th International Workshop on Statistical Modelling

July 17-21, 2023 - Dortmund, Germany

Editors Elisabeth Bergherr Andreas Groll Andreas Mayr

TU Dortmund University

International Workshop on Statistical Modelling (37°. 2023. Dortmund)

Proceedings of the 37th International Workshop on Statistical Modelling : July 17-21, 2022 Dortmund, Germany / Elisabeth Bergherr, Andreas Groll, Andreas Mayr (editors). – Dortmund : TU Dortmund University, 2023. – 1 copy online : PDF (693 S. : ill.)

ISBN: 978-3-947323-42-5

Authors:

Bergherr, Elisabeth Groll, Andreas Mayr, Andreas

Topics:

1. Statistics congress. 2. Econometrics models congress 330.015195 = Mathematical statistics

Editors:

ELISABETH BERGHERR University of Göttingen, Chair of Spatial Data Science and Statistical Learning

ANDREAS GROLL TU Dortmund University, Department of Statistics

ANDREAS MAYR

University of Bonn, Department of Medical Biometry, Informatics and Epidemiology

Copyright TU Dortmund University, Dortmund 2023

This work is licensed under a CC-BY-license.

https://creativecommons.org/licenses/by/4.0/

Exception: the rights for all graphs and figures in this proceeding volume remain with the authors.

ISBN 978-3-947323-42-5 (online)

TU Dortmund University Department of Statistics Vogelpothsweg 78 44227 Dortmund Germany

https://ub.tu-dortmund.de/ https://statistik.tu-dortmund.de/

Scientific Committee

Ruggero Bellio University of Udine (Italy) Elisabeth Bergherr (Co-Chair) University of Göttingen (Germany) Fernanda De Bastiani University of Pernambuco (Brazil) María L. Durbán Reguera University of Madrid (Spain) Jan Gertheiss Helmut Schmidt University, Hamburg (Germany) Andreas Groll (Chair) TU Dortmund (Germany) Thomas Kneib University of Göttingen (Germany) Dae-Jin Lee IE University, School of Science and Technology, Madrid (Spain) Andreas Mayr (Co-Chair) University of Bonn (Germany) Fulvia Pennoni University of Milano-Bicocca (Italy) María Xosé Rodríguez Álvarez University of Vigo (Spain) Gunther Schauberger TU München (Germany) Nicola Torelli University of Trieste (Italy) Lola Ugarte University of Navarra (Spain) Nikolaus Umlauf University of Innsbruck, (Austria) Helga Wagner University of Linz, (Austria)

Local Organising Committee

Chiara Balestra TU Dortmund University Elisabeth Bergherr (Co-Host) University of Göttingen Guillermo B. Sánchez TU Dortmund University Jennifer Engel TU Dortmund University Alexander Gerharz TU Dortmund University Colin Griesbach University of Göttingen Andreas Groll (Host) TU Dortmund University Tobias Hepp University Erlangen-Nürnberg Hannah Klinkhammer University of Bonn Andreas Mayr (Co-Host) University of Bonn Hendrik van der Wurp TU Dortmund University

Preface

Dear Participants,

we are more than happy to host the 37th International Workshop on Statistical Modelling in Dortmund, Germany! This is the second year to meet in person after the COVID break, and we hope to have a wonderful time like we did last year in Trieste.

This year we will have 54 contributed talks and more than 60 posters, and it was a tough challenge to pick among the many excellent submissions we had! Thanks again to the scientific committee for putting so much work into the selection process. But we obviously also want to give our thanks to all the researchers, who contributed with their great submissions and made it possible to put together such an excellent set of presentations. Having a special focus on students is a tradition of the Statistical Modelling Society, hence we are especially happy to welcome such a large number of younger researchers contributing to the conference. We are already excited to find out who will win the awards for best student paper, best student presentation and best student poster! The Statistical Modelling Society furthermore awarded travel grants to two students.

We will also have five great invited talks, from different areas in statistics: Brian Reich, Maria Iannario, Alexander Gerharz together with Matthias Kolodziej, Gillian Heller and Simon Wood agreed to give keynotes at the workshop. Furthermore, Andreas Bender and Fabian Scheipl will provide a short course about Piece-wise Exponential (Additive) Models (PEMs / PAMs) before the conference starts.

As always, the IWSM is a one-track conference, leading to a familiar atmosphere and to the possibility for communication between the different fields of statistical modelling.

Looking back at all the years we were participating in great workshops, hosted at so many different universities and all the amazing people we got to meet there, we are both humble and exited to welcome you all to enjoy the conference and your stay at the river Ruhr area with its long tradition of coal mining and steal production, beer brewing and, of course, its omnipresent football vibe.

> Andreas Groll, Elisabeth Bergherr and Andreas Mayr Dortmund, Göttingen and Bonn, July 2023

Contents

Part I

1 Data science meets football	20
Alexander Gerharz, Mathias Kolodziej	
2 Robust regression modelling for ordinal categorical data	28
Maria Iannario	
3 Back to the future: model what you measure	38
Gillian Heller	
4 Modeling extremal streamflow using deep learning approximations	
and a flexible spatial process	47
Reetam Majumder, Brian Reich, Banjamin Shaby	
5 On Covid, dynamic models and inferring smooth functions	57
Simon Wood	
Part II	
6 State-switching decision trees	69
Timo Adam, Marius Ötting, Rouven Michels	
7 Efficient stochastic learning of graphical structures for large-scale	
mixed data surveys	74
Giuseppe Alfonzetti, Ruggero Bellio, Yunxiao Chen, Irini Moustaki	
8 Flexible habitat selection analysis with generalized additive models	80
Rafael Arce Guillen, Jennifer Pohle, Björn Reineking, Ulrike Schlägel	
9 An information-theoretic perspective on double descent in flooded	
boosting	86
Chiara Balestra, Andrés Madariaga, Emmanuel Müller, Christian Staerk,	
Andreas Mayr	

10 Adaptive random forests for high-dimensional regression	91
Moritz Berger, Christian Staerk	
11 Evolutionary algorithm for the estimation of discrete latent	
variables models	97
Luca Brusa, Fulvia Pennoni, Francesco Bartolucci	
12 Coherent cause-specific mortality forecasting via constrained	
penalized regression models	103
Carlo G. Camarda, María Durbán	
13 The influence of resolution on the predictive power of spatial	
heterogeneity measures as a biomarker of disease severity	109
Jari Claes, Annelies Agten, Alfonso Blázquez-Moreno, Marjolein Crabbe, Mar	ianne
Tuefferd, Hinrich Goehlmann, Helena Geys, Thomas Neyens, Christel Faes	
14 A multi-state model for the natural history of prostate cance	r;
using data from a screening trial	115
Ilse Cuevas Andrade, Ardo van den Hout, Nora Pashayan	
15 Bayesian smoothing for joint extremes	121
Miguel de Carvalho, Junho Lee	
16 Semi-parametric estimation of growth curves	125
Chiara Di Maria, Vito M. R. Muggeo	
17 Modelling time-of-day variation in hidden Markov models using	
cvclic P-splines	131
Carlina C. Feldmann, Sina Mews, Roland Langrock	
18 Bayesian inference of dynamic models emulated with a time serie	es
Gaussian process	135
Yuzhang Ge, Arash Rabbani, Hao Gao, Dirk Husmeier	
19 Gradient boosting for parsimonious additive covariance matrix	
modelling	141

modelling

Vincenzo Gioia, Matteo Fasiolo, Ruggero Bellio

20 Functional multilevel modelling of the influence of the menstrual
cycle on the performance of female cyclists 147
Steven Golovkine, Tom Chassard, Alice Meignié, Emmanuel Brunet, Jean-Francois
Toussaint, Juliana Antero
21 Confidence intervals for finite mixture regression based on
resampling techniques 152
Colin Griesbach, Tobias Hepp
22 Component-wise boosting for mixture distributional regression
models 157
Tobias Hepp, Jakob Zierk, Elisabeth Bergherr
23 Fusion, smoothing and model selection for item-on-item regression 163
Aisouda Hoshiyar, Jan Gertheiss
24 Induced nonparametric BOC surface regression 160
Vanda Inácio María Xosé Rodríguez-Álvarez
25 Assessing spatial trends in health outcomes using primary care
registry data 173
Arne Janssens, Pieter Libin, Gijs Van Pottelbergh, Jonas Crèvecoeur, Bert Vaes,
Thomas Neyens
26 Statistical inference for high-dimensional logistic regression:
Variable selection and levels fusion for categorical covariates 178
Lea Kaufmann, Maria Kateri
27 Advanced statistical modelling for polygenic risk scores based on
large cohort data 183
Hannah Klinkhammer, Christian Staerk, Carlo Maj, Peter M. Krawitz,
Andreas Mayr
28 Sparse modality regression 188
Chris Kolb, Bernd Bischl, Christian L. Müller, David Rügamer
29 On prediction via equal-tailed intervals with an application to
Michele Lambardi di San Miniato Ruggero Bellio Luca Grassetti Paolo Vidoni

30 Asymmetry issues with non-penalized parameters in Laplace Psplines models 199

Philippe Lambert, Oswaldo Gressani

31 Local moment matching with Gamma mixtures and automatic smoothness selection $\mathbf{204}$

Oskar Laverny, Philippe Lambert

32 Linear mixed modelling of federated data when only the mean, covariance, and sample size are available 208

Marie Analiz April Limpoco, Christel Faes, Niel Hens

33 Feedforward neural networks from a statistical-modelling	
perspective	$\phantom{00000000000000000000000000000000000$
Andreau MaIn ann cau Koasin Burko	

Andrew McInerney, Kevin Burke

34	Modell	ing	me	edical	claims	data	using	Mar	kov	/-mo	dulated	marked
	Poisson	ı pr	oce	sses								219
<i>a</i> .	17	р		~	т	тт		a		T 1 1	7	

Sina Mews, Bastian Surmann, Lena Hasemann, Svenja Elkenkamp

35	5 Estimating what is under the tip of gender-based violence:	
	A statistical modelling approach	225
т		

Isabel Millán, Amanda Fernández-Fontelo, Pere Puiq, David Moriña

36 A bivariate Poisson regression model for radiation dose estimation 231 Dorota Młynarczyk, Pedro Puig, Carmen Armero, Virgilio Gómez-Rubio, Jayne Moquet

37 Bayesian spatio-temporal conditional overdispersion models proposals

Mabel Morales-Otero, Vicente Núñez-Antón

38 Lasso-based order selection in hidden Markov models: a case study using stock market data 243

Marius Ötting, Roland Langrock

39 Bayesian survival analysis using pseudo-observations 247Léa Orsini, Caroline Brard, Emmanuel Lesaffre, David Dejardin, Gwénaël Le Teuff

237

40 Clustering anterior cruciate ligament reconstruction patients using functional walking biomechanics 253

Garritt L. Page, Matthew K. Seeley, Brian G. Pietrosimone

41 Forecasting insect abundance using time series embedding and environmental covariates 258

Gabriel R. Palma, Rodrigo F. Mello, Wesley A. Godoy, Eduardo Engel, Douglas Lau, Charles Markham, Rafael A. Moral

42 Studying animal interactions with Markov-switching step-selection models 262

Jennifer Pohle, Johannes Signer, Jana A. Eccard, Melanie Dammhahn, Ulrike E. Schlägel

43 Prediction-based variable selection for component-wise gradient boosting 267

Sophie Potts, Elisabeth Bergherr, Constantin Reinke, Colin Griesbach

44 Computationally efficient ranking of groundwater monitoring locations 273

Peter Radvanyi, Claire Miller, Craig Alexander, Marnie Low, Wayne R. Jones, Luc Rock

45	A dist	tributional	regression	approach	for	Gaussian	process	
	respo	nses						27

Hannes Riebl, Nadja Klein, Thomas Kneib

46 Multi-state models for double transitions associated with parasitism in biological control 285

Idemauro Antonio Rodrigues de Lara, Gabriel Rodrigues Palma, Victor José Bon, Carolina Reigada, Rafael de Andrade Moral

47 Bias reduced predictions for black-box models 290Philipp Sterzinger, Ioannis Kosmidis

48 Autoregressive hidden Markov models for high-resolution animal movement data 294

Ferdinand V. Stoye, Roland Langrock

9

49 Complexity reduction via deselection for boosting distributiona	1
copula regression	300
Annika Strömer, Nadja Klein, Christian Staerk, Hannah Klinkhammer, Andreas	Mayr
50 Devesion nonacting with Loplacian D spling	205
D Dayesian nowcasting with Laplacian-P-spines	200
Bryan Sumalinab, Oswaldo Gressani, Niel Hens, Christel Faes	
51 Boosting distributional soft regression trees	311
Nikolaus Umlauf, Johannes Seiler, Mattias Wetscher, Nadja Klein	
52 A one-step spatial + approach to mitigate spatial confounding in	1
multivariate spatial areal models	317
Arantxa Urdangarin, Thomás Goicoa, María Dolores Ugarte	
53 Extending central statistical monitoring to electronic patient-repor	ted
outcomes in clinical trials	321
Lawson Wang, Sebastiaan Höppner, Laura Trotta	
54 Ordinal compositional data and time series	325
Christian H. Weiß	
55 Stagewise boosting distributional regression	331
Mattias Wetscher, Johannes Seiler, Reto Stauffer, Nikolaus Umlauf	
56 Gaussian process models: From astrophysics to industrial data	337
Jamie Wilson, Kevin Burke, Norma Bargary	
57 A multilevel multivariate response model for data with latent	
structures	343
Yingjuan Zhang, Jochen Einbeck, Reza Drikvandi	010
58 Flexible modelling of time-varying training exposures on the risl	Ś
of recurrent injuries in football	349

Lore Zumeta-Olaskoaga, Andreas Bender, Dae-Jin Lee

Part III

59 Modelling single-nucleotide polymorphism to assess genetic	
contribution to disease progression	355
Mazin Aouf, Kenan M. Matawie	
60 Spatially adaptive Bayesian P-splines	361
Paul Bach, Nadja Klein	
61 A weighted curve clustering approach for analyzing pass rush routes	S
in american football	366
Robert Bajons, Kurt Hornik	
62 Playful introduction to data competencies for economic students	371
Julia Berginski, Alexander Silbersdorff	
63 Accounting for clustering in automated variable selection using	
hospital data: A comparison of different LASSO approaches	377
Stella Bollmann, Andreas Groll, Michael M. Havranek	
64 An active deep learning method for high out-of-sample predictive	9
performance in image classification	383
Ludwig Bothmann, Lisa Wimmer, Omid Charrakh, Tobias Weber, Hendrik Edel	hoff,
Wibke Peters, Hien Nguyen, Caryl Benjamin, Annette Menzel	
65 A smooth Laplace regression model	207
Versige Durch	301
Kevin Burke	
66 TwoTimeScales: an B-nackage for smoothing hazards with two time	L
scales	- 300
Angela Carollo Jutta Campe Paul Filers Hein Putter	000
Angela Carollo, Julia Gampe, I dal Ellers, Meth I aller	
67 A new statistical methodology to detect earnings management	394
M Chavent V Darmendrail D Feral H Lorenzo F Pourtier I Saracco	001
68 Automatic effect selection for generalized additive models	400
Claudia Collarin, Matteo Fasiolo, Claudio Agostinelli	
69 A multifidelity framework for wind speed data	405

Pietro Colombo, Claire Miller, Ruth O'Donnell, Xiaochen Yang

CONTENTS	13
70 Group penalized models with an adaptive non-convex penalty	
function	409
Daniele Cuntrera Vito M.R. Muggeo Luigi Augualiaro	100
Daniele Cantrela, Vilo M.R. Maggeo, Dalgi Augaglialo	
71 Gradient boosting for GAMLSS using adaptive step lengths	414
Alexandra Daub Andreas Maur Bougo Zhang Elisabeth Bergherr	TTT
Alexandra Dado, Anareas Magr, Dogao Zhang, Elisabelli Dergherr	
72 Mixture confidence sequences for regression coefficients in	
generalized linear models	420
Claudia Di Catarina Alassandra Salvan Nicola Sartori	120
Ciuaaia Di Calerina, Alessanara Salvan, Nicola Sariori	
73 On the nature of one-inflation in microbial diversity studies	191
Davido Di Casso, Andrea Tanandi	424
Daviae Di Cecco, Anarea Tancreai	
74 Prediction of record performances in sports in a record-values	
model	130
Christing Empresham Uda Kamana	400
Christina Empacher, Uao Kamps	
75 Competing risk modelling for in-hospital length of stay	136
Juan Carlos Faninosa Morano Formando Caraía Caraía Das lin Los Mar	ноо Ма I
Juan Carlos Espinosa-moreno, Fernando Garcia-Garcia, Due-Jin Lee, Mar	iu J.
Legarreta-Olabarrieta, Susana Garcia-Gutierrez, Nala Mas	
76 Mixed nonlinear modelling in food engineering: determination of	of
the salting time of boneless dry-cured Cerretan hams	440
Xavier Esnuña Lesly Acosta Josen A Sanchez-Esnigares Xavier Tort-Marto	rell
	1000
77 Learning Gaussian Bayesian networks from incomplete data -	
the Bayesian way	445
Marco Grzegorczyk	
	4 3 1
18 Grouped regression modeling of proteins	451
Jonas Heiner, Jan Hengstler, Andreas Groll	
70 A new sealer on function concredized additive model for partial	* 7
absorved survey on application to ansurvem patients	y 157
D but it is an application to aneurysm patients	497
Pavel Hernandez-Amaro, Maria Durban, M. Carmen Aguilera-Morillo	
80 Detecting betarogenaity of treatment effect between conters in	
by Detecting neverogeneity of treatment effect between centers in	400
<u>multicenter randomized clinical trials</u>	463

Sebastiaan Höppner, Marc Buyse, Laura Trotta

81 Rate of return to education of compliers: Estimation based on	
Rubin causal models	467
Caizhu Huang, Jierui Du, Claudia Di Caterina	
82 Understanding the role of conditional residual distances from	
simulated envelopes in half normal plots	472
Darshana Jayakumari, Jochen Einbeck, John Hinde, Rafael A. Moral	
83 Targeted bias reduction for generalised additive models	477
Oliver Kemp, Ioannis Kosmidis	
84 A novel gradient boosting framework for generalised additive mixe	d
models	482
Lars Knieper, Elisabeth Bergherr, Torsten Hothorn, Nadia Müller-Voggel, Colin Griesbach	
85 Interval-censored covariates in regression models	488
Klaus Langohr, Andrea Toloba López-Egea, Guadalupe Gómez Melis	
86 Bayesian regularisation for tail index regression	493
M.W. Lee, M. de Carvalho, D. Paulin, S. Pereira, R. Trigo, C. Da Camara	
87 Best subset selection for principal components analysis and partia	al
least square models using continuous optimization	497
Benoit Liquet, Sarat Moka, Samuel Muller	
88 The consequences of not completing the generational cohort in	
estimating age-at-menopause	502
Rui Martins, Bruno de Sousa, Thomas Kneib, Maike Hohberg, Nadja Klein,	Elisa
Duarte, Vítor Rodrigues	
89 Information retrieval models with GPT-3: Techniques for improvir	ıg
ranking performance through text enhancement	507
Kenan M. Matawie, Sargon Hasso	

90 Analysis of climatological drivers of low-flow events in hydrologicalBavaria using large ensemble climate projections513

Theresa Meier, Nikita Paschan, Andrea Böhnisch, Henri Funk, Alexander Sasse, Helmut Küchenhoff

91 Modeling women's football scores with bivariate distributions fromthe Sarmanov family519

Rouven Michels, Marius Ötting, Dimitris Karlis

92	Usin	ig I	meas	sures	of	effect	size	and	decis	sion	trees	for	variable	
	selec	etic	on											525
					~	•	~	T		~ ~				

Annette Möller, Ann Cathrice George, Jürgen Groß

93 A comparison of time series forecasting models on industrial	
process data	531

Jack Moore, Jamie Wilson, Norma Bargary, Kevin Burke

94 Comparing trial and variable association in contingency table datausing multinomial models for clustered data536

Darcy Steeg Morris, Andrew M. Raim

95	Covariate-adjusted association of sensor outputs using a non-	
	parametric estimate of the conditional covariance	543

Lizzie Neumann

96 Bayesian probit models for preference classification: An analysis of
chess players' propensity for risk-taking549

Lennart Oelschläger, Dietmar Bauer

97 Kriging wind on pressure levels to enrich the statistical modelling of aircraft trajectories 554

Rémi Perrichon, Xavier Gendre, Thierry Klein

98 Wind speed/direction in complex alpine terrain and snow avalancheaccidents in the western part of Austria560

Christian Pfeifer

99 Wastewater analysis in the light of Covid-19: A GAMLSS approach564 Roman Pfeiler, Helga Wagner, Hans Peter Stüger, Karin Weyermair, Sabrina Kuchling, Patrick Hyden

100Evaluating academic performance using nonparametric regression570 *Hildete P. Pinheiro, Fernando H.S. Barreto*

101 Bayesian effect selection in structured piecewise additive joint	
models using the NBPSS prior	575
Anja Rappl, Elisabeth Bergherr	
102 Multivariate survival trees for prediction of lower limb injuries in	1
professional male and female football players	579
Jone Renteria, Lore Zumeta-Olaskoaga, Eder Bikandi, Jon Larruskain, Dae-Jin	Lee
103 Focussed information criteria for model selection - a Bayesian	
perspective	584
Bijit Roy, Emmanuel Lesaffre	
104 Spatio-temporal modelling using an opportunistically sampled ope	en-
survey data: a simulation study based on the Belgian Great Corona	ો
Study	590
Alejandro Rozo, Thomas Neyens, Christel Faes	
105 Meta-analysis of variability in survival outcomes in precision	
oncology trials	595
Maximilian Schuessler, Elizaveta Skarga, Pascal Geldsetzer, Ying Lu, Maike	Ho-
hberg	
106 Challenges in statistical consulting for animal science	601
Sabine K. Schnabel	
107 Neural additive quantile regression	605
Quentin E. Seifert, Elisabeth Bergherr, Benjamin Säfken	
108 Mixed effects neural networks for longitudinal k -inflated count	
responses	611
Nastaran Sharifian, Kevin Burke	
109 A flexible non-mixture cure model for recurrent gap time data	615

110 A tool to detect nonlinearity and interactions in generalized	
regression models	620

Nikolai Spuck, Matthias Schmid, Moritz Berger

111 Variable selection for statistical fine-mapping and prediction	
modelling of polygenic traits	624

Christian Staerk, Carlo Maj, Oleg Borisov, Hannah Klinkhammer, Peter Krawitz, Andreas Mayr

112 Long-term foehn reconstruction combining unsupervised and	
supervised learning	628

Reto Stauffer, Georg J Mayr, Achim Zeileis

113 Asymmetry model and its properties for square contingencytables632

Kouji Tahata, Yusuke Kori

114 A superiority test for comparing sensitivity, specificity, and predictivevalues of two diagnostic tests636

Kanae Takahashi, Kouji Yamamoto

115Individual participant data meta-analysis: pooled effect	of EEF
funded educational trials on low baseline attaining group	640

Germaine Uwimpuhwe, A. Singh, N. Akhter, B. Ashraf, T. Coolen-Maturi, T. Robinson, S. Higgins, J. Einbeck

116 Estimating short-term air pollution effects on health via spectralmethods644

Massimo Ventrucci, Garritt L. Page

117 Examining quantiles of sensor outputs in structural health	
monitoring	648
Enclosed and the Versel	

Frederike Vogel

118 Change point regression for estimated time series: An applicationto COVID-19 hospitalization data653

Maximilian Weigert, Kai Becker, Helmut Küchenhoff

119 A consistent way to define *p*-values

Paul Wilson, Jochen Einbeck

120 Modelling SHM sensor outputs: A functional data approach 664

Philipp Wittenberg, Jan Gertheiss

658

121 Analyzing blonded loarning education with eve tracking a	nd doon
	lu ueep
learning methods	669
III I Verineli III e Dennineli Alemanden Gillenedenff	
Hilat Yagimii, Julia Berginski, Alexander Silversdorjj	
122 Crime predicting models in the São Paulo state of Brazil	675
122 Office predicting models in the Sao I auto state of Drazil	010
Wellington Yuanhe Zhao, Luis Gustavo Nonato, Cibele M. Russo	
	0.01
123 A scalable and embedded diachronic sense change model	681
Schuan Zafar Ceoff K Nicholls	
124 Bayesian nonparametric inference for the three-class co	variate-
anogifia overlan ecofficient	697
specific overlap coefficient	087
Zhaoxi Zhana, Vanda Inácio	

On the nature of one–inflation in microbial diversity studies

Davide Di Cecco¹, Andrea Tancredi¹

¹ Sapienza University of Rome, Italy

E-mail for correspondence: davide.dicecco@uniroma1.it

Abstract: The phenomenon of one-inflation is gaining more and more attention in the recent literature on species abundance and capture-recapture analysis. When analysing frequency count distribution, the excess of singletons is often ascribed to the erroneous inclusion of spurious cases. Various works propose to estimate the true number of singletons relying on the higher, supposedly error-free, counts ("discounting" approach). We argument that, in the case of microbial diversity studies, the generating process of the spurious singletons can be described in terms of false negative record linkage errors. Errors in sequencing the RNA genomes result in chimeric sequences that cannot be associated to the correct species, and constitute missing links that are added to the true singletons. In this scenario, none of the observed frequency counts is assumed to be error-free, and we propose an ABC algorithm to estimate the true frequency counts. The number of true singletons estimated in this way may differ considerably from the discounting approach. This implies different estimates of the diversity as measured, e.g., by Shannon's index. However, curiously, the total population count estimates under the two approaches coincide.

Keywords: Species problem; Biodiversity; Linkage Errors; Approximate Bayesian Computing.

1 Introduction

The problem of estimating the number of species in a population given a sample arises in many applications in the natural sciences, in linguistics and computer science. Our focus is on applications in microbial ecology. The spread of next generation high-throughput sequencing technology allowed to analyse an unprecedented amount of data on microbial communities. In order to study the biodiversity in a microbial community, an environmental sample is processed to detect, amplify and sequence RNA genomes. The

This paper was published as a part of the proceedings of the 37th International Workshop on Statistical Modelling (IWSM), Dortmund, Germany, 16–21 July 2023. The copyright remains with the author(s). Permission to reproduce or extract any parts of this abstract should be requested from the author(s).

sequences are clustered into distinct species (or Operational Taxonomic Units) on the basis of a similarity score. The diversity analysis is then conducted on the abundance frequency counts, i.e., the counts $\{n_j\}_{j=1,2,...}$ representing the number of species with j captured occurrences. In most microbial studies, the distribution $\{n_j\}_{j=1,2,...}$ is characterized by an unexpected number of low-abundance species, in particular singletons, accompanied by a low number of very common species. The nature of these singletons has been debated at length, and the presence of spurious singletons resulting from sequencing errors has been confirmed in various ways (e.g., Quince et al. 2011, Haas et al. 2011). While bioinformatics focuses on avoiding the formation of the so-called chimera sequences, or removing them in a pre-processing step, various statistical contributions attempt to estimate ex-post their number.

The study of one-inflation in frequency count distribution is gaining more and more attention also in the recent capture-recapture literature on human and animal population, which shares many methodological aspects with the species abundance problem, (see, e.g., Godwin and Böhning 2017, Böhning et al. 2019, Tuoto et al. 2022). The possible sources of one-inflation can be categorized as:

- a behavioural effect, where certain units, once captured, avoid subsequent captures;
- the presence of out-of-scope units, which enter the sample for a peculiar error mechanism and should be excluded;
- the presence of missing links in the record linkage procedure employed to create the frequency counts.

Various authors adopted a "discounting" approach to the problem of oneinflation. That is, they propose to ignore the data affected by errors, i.e., the observed singletons, and re-estimate their number on the basis of the counts n_j , $j \ge 2$, (see, e.g., Willis and Bunge 2015, Willis 2016, Chiu and Chao 2016). We argument that this approach is consistent for the second mechanism listed above: a model where out-of-scope singletons are added to the baseline distribution of the true counts. We believe that the nature of the spurious cases can alternatively be described by linkage errors. That is, we assume that random errors occurring in sequencing result in the impossibility of a correct classification of the specimen, which cannot be associated to the right existing species. Therefore, we can describe these cases as false negative linkage errors (or missing links), which are added to the true singletons. This approach implies a re-estimation of the "real" frequency counts for all the abundances, not just the singletons. We found that treating the excess of singletons in this way leads to significant differences in the diversity estimates with respect to the discounting approach. In this work we adopt a secondary approach to the linkage problem, i.e., we try to estimate the linkage errors solely on the basis of the vector

426 One–inflation in microbial studies

 $\{n_j\}_{j=1,2,\ldots}$ and our distributional assumptions, as we do not have access to the actual linkage process. Modeling linkage errors in this secondary setting, appears quite complex from a computational point of view. We fix some simplifying assumptions on the type of error in order to tackle the issue, but we still resorted to a Bayesian likelihood-free approach as the most convenient approach.

2 One-inflation models

Say we get n species in our sample with abundances $y_1, ..., y_n$, and abundance frequency counts $\{n_j\}_{j\geq 1}$. Under an out-of-scope singletons model, the distribution of the abundances (whether the species are observed or not, spurious or not) results in the following mixture of a baseline distribution \tilde{f} of the non-spurious counts, and a Dirac measure over one:

$$P(Y_i = j \; ; \; \tilde{f}, \psi) = \begin{cases} (1 - \psi)\tilde{f}_1 + \psi & \text{if } j = 1; \\ (1 - \psi)\tilde{f}_j & \text{otherwise,} \end{cases}$$
(1)

where ψ denotes the portion of spurious cases over the total population count. Let \tilde{n}_j denote the number of species with j non spurious captures. Then, since we assumed $\tilde{n}_j = n_j$ for $j \ge 2$, we just have to estimate the number of unsampled species \tilde{n}_0 , and the number of non–spurious singletons \tilde{n}_1 as a portion of n_1 . The estimate of the total number of distinct species \tilde{N} will result as:

$$\sum_{j\geq 0} \widetilde{n}_j = \widetilde{n}_0 + n - n_1 + \widetilde{n}_1.$$

A Bayesian estimation of this model presents no difficulties under various parametric families choices for \tilde{f} . A simple Gibbs sampler scheme is the following: under a Beta prior for ψ , its posterior is easily updated. Then, a value for \tilde{n}_1 is generated from a Binomial with parameters $1 - \psi$ and n_1 . Steps to update the values of \tilde{n}_0 and of the parameters of \tilde{f} are easily found in literature (see, e.g., Tuoto et al. 2022).

Under our missing links proposal, we assume that each sequence has the same probability μ of being missclassified as a singleton independently from the other. Denote the true number of sampled distinct species as n^* , $(n^* < n)$. For each species i with X_i^* true captures, we have M_i missing links, such that the registered abundance is reduced from X_i^* to $X_i = X_i^* - M_i$. M_i has the following distribution:

$$P(M_i = m_i \mid X_i^* = x_i^*) = {\binom{x_i^*}{m_i}} \mu^{m_i} (1 - \mu)^{x_i^* - m_i}, \quad i = 1, ..., n^*.$$
(2)

Let f^* be the baseline distribution of the X_i^* . The distribution of the X_i results as a thinning process where a portion μ of captures disappear. Let

 n_j^* denote the true number of species with j captures, and as $N^* = \sum_{j\geq 0} n_j^*$ the total number of distinct species according to the missing links model. Unlike the spurious singletons model, in this case all values $\{n_j^*\}_{j\geq 0}$ have to be estimated, as they will be, in general, different from the observed values. Denote as θ the parameters defining f^* . We adopted an ABC rejection algorithm with the following scheme:

- 1. generate values for (θ, N^*) from the priors $\pi(\theta)$ and $\pi(N^*)$;
- 2. generate values $(n_0^*, n_1^*, n_2^*, ...)$ conditional on N^* and θ ;
- 3. generate a value for μ from the Beta prior $\pi(\mu)$ (independent from all the rest);
- 4. generate missing links at random according to the distribution described in (2), given $(n_0^*, n_1^*, n_2^*, ...)$ and μ . Each missing link modifies the observed count, and increments accordingly the number of singletons, thus obtaining the fictitious data D^* ;
- 5. retain the current generated values if a measure of distance ρ between the generated data D^* and the observed data D is below a certain threshold ϵ :

$$\rho(D^*, D) < \epsilon.$$

In our application we utilized the euclidean distance.

As the simple ABC rejection scheme can have a low acceptance rate, we further adopted a sequential ABC to accelerate the procedure, as described in Marin et al. 2012.

A simulation study confirmed the correctness of the ABC algorithm under a Poisson, Geometric, and finite mixture of Poisson distributions for f^* . Our first finding in a further simulation study comparing the spurious cases and the missing links proposal, has been the substantial identity of the estimates of the total number of species under the two competing models. That is, if we choose f^* and \tilde{f} in the same family, despite the fact that the estimates of the true abundance frequencies differ under the two models (i.e., $\tilde{n}_j \neq n_j^*$ for all j), we have $N^* = \tilde{N}$.

To demonstrate this identity, consider the baseline distribution f^* of the values X_i^* introduced above. It is easily demonstrated that, under various parametric family for f^* , (notably, if f^* is any mixed Poisson), the distribution of the X_i belongs to the same parametric family. Then, under identifiability of that family, if we use model (1) and take \tilde{f} in the same family as f^* , \tilde{f} will be identified as the distribution of the x_i , for all $x_i > 0$, and ψ would represent the portion of missing links over the total population count. Let r_0 be the number of captured species whose occurrences where all missclassified, i.e., such that $M_i = X_i^*$. Let M be the total number of missing links: $M = \sum_{i=1}^{n^*} M_i$. Then we have

$$n^* = n - M + r_0$$
 and $\tilde{n}_1 = n_1 - M$.

428 One-inflation in microbial studies

The missing links mechanism does not affect the number of undetected species n_0^* , but under \tilde{f} the r_0 values are included in \tilde{n}_0 , i.e., we have $\tilde{n}_0 = n_0^* + r_0$. Finally, we can write

$$\widetilde{N} = \widetilde{n}_0 + \widetilde{n}_1 + n - n_1 = \widetilde{n}_0 + n - M = n_0^* + r_0 + n - M = n_0^* + n^* = N^*$$

As we have said, even if the estimates of the total number of species coincides under the two models, the abundance distribution will differ, and consequently, the estimated diversity will differ. To illustrate the effect of (ignoring) a missing links mechanism on the estimation of diversity, we utilized a simulation study. As a measure of diversity we considered Shannon's diversity H (see, e.g., Chiu and Chao 2016) calculated as:

$$H = \exp\left(-\sum_{j\geq 1} n_j \frac{j}{s} \ln \frac{j}{s}\right).$$
(3)

We generated various datasets under Poisson and Geometric baseline distributions, then simulated the effect of missing links to simulate from our model. Then, we estimated Shannon's diversity on the observed data (that is, ignoring any one-inflation mechanism), on the "adjusted" counts as derived from the spurious cases model (that is, trimming the observed number of singletons) and as derived from the ABC procedure for the missing links model. Note that in our Bayesian approach we can easily estimate the posterior distribution of (3). First, we concluded that ignoring an existing one-inflating mechanism, implies a severe overestimation of the diversity. Second, utilizing model (1) when missing links are the true source of error, reduces sensibly the overestimation, but still leads to different results than what can be achieved with an ABC simulating the actual generating process.

References

- Böhning, D., Kaskasamkul, P., van der Heijden, P. G. (2019). A modification of Chao's lower bound estimator in the case of one-inflation. *Metrika*, 82(3), 361–384.
- Chiu, C. H., Chao, A. (2016). Estimating and comparing microbial diversity in the presence of sequencing errors. *PeerJ*, 4, e1634.
- Godwin, R. T., Böhning, D. (2017). Estimation of the population size by using the one-inflated positive Poisson model. *Journal of the Royal Statistical Society. Series C*, 425-448.
- Haas, B.J., Gevers, D., Earl, A.M. et al. (2011) Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced pcr amplicons. *Genome research*, 21(3), 494–504.

- Marin, J. M., Pudlo, P., Robert, C. P., Ryder, R. J (2012). Approximate Bayesian computational methods. *Statistics and computing*, 22(6), 1167-1180.
- Quince, C., Lanzen, A., Davenport, R. J. (2011). Removing noise from pyrosequenced amplicons. *BMC bioinformatics*, **12(1)**, 1–18.
- Tuoto, T., Di Cecco, D., Tancredi, A. (2022). Bayesian analysis of oneinflated models for elusive population size estimation. *Biometrical Journal*, 64(5), 912–933.
- Willis, A., Bunge, J. (2015). Estimating diversity via frequency ratios. Biometrics, 71(4), 1042-1049.
- Willis, A. (2016). Species richness estimation with high diversity but spurious singletons. arXiv preprint arXiv:1604.02598.