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Abstract
Cardiac computed tomography angiography (CCTA) is considered the standard non-invasive tool to rule-out obstructive 
coronary artery disease (CAD). Moreover, several imaging biomarkers have been developed on cardiac-CT imaging to 
assess global CAD severity and atherosclerotic burden, including coronary calcium scoring, the segment involvement 
score, segment stenosis score and the Leaman-score. Myocardial perfusion imaging enables the diagnosis of myocardial 
ischemia and microvascular damage, and the CT-based fractional flow reserve quantification allows to evaluate non-invasively 
hemodynamic impact of the coronary stenosis. The texture and density of the epicardial and perivascular adipose tissue, 
the hypodense plaque burden, the radiomic phenotyping of coronary plaques or the fat radiomic profile are novel CT imag-
ing features emerging as biomarkers of inflammation and plaque instability, which may implement the risk stratification 
strategies. The ability to perform myocardial tissue characterization by extracellular volume fraction and radiomic features 
appears promising in predicting arrhythmogenic risk and cardiovascular events. New imaging biomarkers are expanding 
the potential of cardiac CT for phenotyping the individual profile of CAD involvement and opening new frontiers for the 
practice of more personalized medicine.
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Abbreviations
AI  Artificial intelligence
AS  Agatston score
BMI  Body mass index
CAC   Coronary artery calcium
CAD  Coronary artery disease
CCTA   Cardiac computed tomography angiography
CFD  Computational flow dynamics
CM  Contrast media
CMR  Cardiac magnetic resonance

CT  Computed tomography
CT-LeSc  CT-adapted Leaman score
dCTP  Dynamic CT perfusion
sCTP  Static CT perfusion
CV  Cardiovascular
DECT  Dual energy computed tomography
DL  Deep learning
EAT  Epicardial adipose tissue
ECV  Extracellular volume
EMB  Endomyocardial biopsy
FAI  Fat attenuation index
FFR  Fractional flow reserve
FRP  Fat radiomic profile
HR  Hazard ratio
HU  Hounsfield units
ICA  Invasive coronary angiography
IHD  Ischemic heart disease
LGE  Late gadolinium enhancement
LIE  Late iodine enhancement
MACE  Major adverse cardiac events
MBF  Myocardial blood flow
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MF  Myocardial fibrosis
MI  Myocardial infarction
MINOCA  Myocardial infarction with non-obstructive 

coronary artery
ML  Machine learning
PCAT   Pericoronary adipose tissue
PCD-CT  Photon-counting detector computed 

tomography
RI  Remodeling index
SIS  Segment involvement score
SSS  Segment stenosis score
VMI  Virtual monoenergetic images

Introduction

Ischemic heart disease (IHD) is the main cause of mortal-
ity in the world, responsible for around 16% of the total 
deaths [1]. Current prevention strategies rely on the risk 
stratification, acting with pharmacological treatments or 
lifestyle habits, and early detection of obstructive coronary 
artery disease (CAD). Clinical scores systems, electrocar-
diogram and echocardiogram demonstrated low sensitivity 
and specificity for the early diagnosis of CAD and predic-
tion of major cardiovascular events (MACE) risk [2, 3]. In 
the last decades, cardiac computed tomography angiogra-
phy (CCTA) has gained a preeminent role in the evaluation 
of symptomatic patients with suspected CAD, thanks to its 
high diagnostic accuracy and high negative predictive value. 
According to recent guidelines, CCTA can be considered the 
exam of choice to rule out obstructive CAD in patients with 
chronic cardiac symptoms and low clinical pre-test likeli-
hood of disease [4–6], and in patients with acute chest pain 
with low-to-intermediate pre-test probability [7, 8]. How-
ever, the pure anatomical assessment of coronary arteries 
obtained with CCTA, does not provide functional infor-
mation on lesion-specific ischemia. Recent developments 
in hardware and software technology, particularly with the 
introduction of artificial intelligence (AI) tools, are improv-
ing image quality of CCTA, increasing the detectable fea-
tures of CAD (i.e., evaluation and quantification of coronary 
stenosis, plaque characterization, assessment of myocardial 
ischemia) and expanding the prognostic role of CCTA with 
machine-learning (ML) algorithms [9, 10]. Moreover, the 
use of dual energy CT (DECT) and the recent introduction 
of photon-counting detector scanners (PCD-CT) enabled 
the acquisition of ultra-high resolution images, with spec-
tral information obtained along with each CT scan (material 
decomposition) and the reduction of blooming or movement 
artifacts together with the elimination of electronic noise 
[11]. The introduction of sophisticated postprocessing tools 
gave rise to innovative imaging biomarkers, which are, by 
definition, “parameters that can be measured and that may 

influence or predict the incidence of outcome of diseases” 
[12]. This new quantitative approach could improve man-
agement of patients and clinical decision making, moving 
toward a progressively targeted and personalized medicine. 
This review will focus on emerging CT imaging biomarkers, 
which are expanding the role of cardiac CT in individual 
phenotyping of CAD involvement, improving assessment of 
coronary stenosis and risk stratification, and characterizing 
myocardial tissue abnormalities.

Atherosclerotic burden

Going beyond the detection of coronary stenosis, an increas-
ing role of CCTA is represented by the assessment of ath-
erosclerotic burden (even in patients with non-obstructive 
CAD). Several CCTA scores have been developed to 
guide risk stratification and clinical decision-making. The 
Agatston score (AS) quantifies the calcium load within the 
coronary arteries and is globally recognized as a robust test 
to classify the degree of CAD e to implement cardiovascular 
risk stratification [13]. The coronary artery calcium (CAC) 
scoring, indeed, represents a class-IIa recommendation test 
in patients with a borderline/intermediate risk, helping in 
management and therapeutic tailoring [14]. CAC quantifica-
tion is performed using prospective ECG-gated unenhanced 
CT scan [15]. The standard image analysis is based on the 
segmentation of any structure with density ≥ 130 Hounsfield 
Units (HU) and having an area ≥ of 1  mm2 along coronary 
walls, as calcified focus plaque. In each segmented calci-
fied plaque, a density score of 1–4 is assigned to each focus 
based on peak density (130–199 HU, 200–299 HU, 300–399 
HU and ≥ 400 HU, respectively). The total AS is the result 
of the sum the scores of every coronary artery calcified focus 
[16] (Fig. 1).

CAC may also be measured in terms of Volume and Mass 
score, which measures the absolute real volume and mass 
of coronary calcium [15, 17, 18]. CAC quantification was 
found to be an excellent index of atherosclerotic plaque bur-
den [19], showing an association between coronary calci-
fication area, plaque volume and extent of atherosclerosis 
in vivo [20, 21].

Some AS cut-offs (0 = very low, 1–100 = low, 
101–400 = intermediate, > 400 = high, > 1000 very high) 
were also proposed to differentiate in risk categories, with 
10-years event rate of 22.5–28.6% and 37% in high and very 
high category, respectively [22]. In a recent metanalysis 
focusing on the role of CAC score in patients with stable or 
acute chest pain, the absence of CAC was associated with 
a very low prevalence of obstructive CAD and low risk of 
MACE. These results suggest the CAC score may play a 
role in identifying patients with stable and acute chest pain 
who can safely avoid additional downstream testing [23]. 
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The accuracy of CAC quantification and classification has 
gradually improved over the years, in particular the CAC 
based on spectral data acquired with DECT [24] and new 
PCD-CT system allows for more accurate CAC volume esti-
mation [25]. Both DECT and PCD-CT enable the quantifica-
tion of CAC score on virtual non-contrast images (VNC), 
with a good agreement in assessing CAC risk categories 
compared to true non-contrast images [24, 26] and with a 
substantial increase in spatial resolution in PCD-CT. These 

techniques also decrease the radiation dose by eliminating 
the requirement for native scans typically used in standard 
CAC assessment.

Atherosclerotic burden may be also assessed on CCTA 
images. Segment Involvement Scoring (SIS) is a simple and 
reliable semiquantitative tool that quantifies CAD burden 
on CCTA (regardless of the stenosis degree), with a score 
ranging from 0 to 16, indicating the total number of coronary 

Fig. 1  Coronary Calcium Scoring. Non-enhanced CT image show-
ing coronary calcifications on proximal LAD and CX (a) followed 
by color-coded trans-axial images that highlights moderate calcifica-
tions on proximal LAD, CX (b) and RCA (c). Agatston Score is cal-

culated to quantify the extent of coronary calcium (d). CT, computed 
tomography; LAD, Left Anterior Descending artery, CX, Circumflex 
Artery; RCA, Right Coronary Artery
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segments affected by atherosclerotic plaques, irrespective to 
the stenosis degree caused [27, 28]

SIS considers also the non-calcified plaques, which may 
not be detected by CAC scoring scan, implementing the 
prognostic stratification also at early stages of CAD [28]. 
Based on the number of segments with disease, extent of 
CAD may be classified as non-extensive (≤ 4 segments) 
or extensive (> 4 segments). Bittencourt et al. [29] dem-
onstrated that among patients with nonobstructive CAD 
(stenosis < 50%), those with extensive plaque experienced a 
higher rate of cardiovascular death or myocardial infarction 
(hazard ratio—HR, 3.1, 95% confidence interval, 1.5–6.4), 
than those who have non-extensive disease (HR: 1.2, 95% CI 
0.7–2.4) [29]. SIS can also be combined with patients’ age, 
in the “%SIS/age score”, which adjusts SIS to the number 
of evaluable segments and normalizes it to patient age, with 
an incremental prognostic value for MACE over traditional 
risk factors, Agatston score and conventional CAD assess-
ment [27]. A further evolution of the CAD categorization 
system was the segment stenosis score (SSS), which is gen-
erated by the sum of the scores assigned for each coronary 
segment, based on the degree of the vessel lumen stenosis 
from 0 (absence of plaques) to 3 (severe stenosis), resulting 
in a total score ranging from 0 to 48. The SSS showed to be 
an independent predictor of all-cause mortality despite the 
patient’s age [30] (Fig. 2).

Coronary artery disease-reporting and data system 
(CAD-RADS) [31] aims to improve the accuracy of 

diagnosing and managing CAD patients. The updated 2022 
CAD-RADS 2.0 classification [32] includes new elements 
such as plaque burden and ischemia evaluation, enabling 
the integration of CT-FFR or myocardial CT perfusion 
(CTP) data; moreover it introduces modifiers like coronary 
stents, high-risk plaque features, ischemia test results, and 
the "P" designation to classify plaque severity, based on 
CAC, SIS, and Visual scoring for plaque categorization 
[32]. Using a scale from 0 to 5, it grades coronary artery 
stenosis observed in CCTA images. Further investigation 
or hospital admission is required only for CAD-RADS 
categories 3, 4, and 5, whereas Invasive coronary angi-
ography (ICA) is suggested for CAD-RADS 4 and 5 due 
to a likely/very likely assessment of obstructive coronary 
artery disease.

CT-adapted Leaman score (CT-LeSc), is based on three 
sets of weighting factors using a 18-segment coronary 
model: localization of plaques, accounting for the coro-
nary dominance; the type of plaque, with a multiplication 
factor of 1 for calcified plaques and of 1.5 for noncal-
cified and mixed plaque; the degree of stenosis, with a 
multiplication factor of 0.615 for nonobstructive (< 50% 
stenosis) and of 1 for obstructive (≥ 50% stenosis) lesions. 
The final score is calculated as the sum of the partial CT-
LeSc of all evaluable coronary segments [33]. CT-LeSc 
showed a significant association with some traditional 
demographic and clinical risk factors as well as scores for 
pretest CAD probability and cardiovascular risk [33, 34] 

Fig. 2  Segment Involvement Score (SIS) and Segment Stenosis Score 
(SSS). Curved multiplanar reformatted images show a total score of 
5 for SIS and a total score of 7 for SSS. Minimal stenosis both on 
proximal and mid RCA (1 point each, for SIS and SSS; a mild steno-
sis on proximal LAD (1 point for SIS and SSS; b severe stenosis on 

mid LAD (1 point for SIS and 3 points for SSS; b and mild stenosis 
on proximal CX (1 point for SIS and SSS; c. CX, Circumflex Artery; 
LAD, Left Anterior Descending artery; LM, Left Main; RCA, Right 
Coronary Artery
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and demonstrated to be an independent long-term predic-
tor of MACEs. Patients with nonobstructive CAD with a 
significant atherosclerotic load (CT-LeSc > 5) exhibited 
event-free survival compared to patients with obstructive 
CAD.

The Leiden CCTA risk score is a comprehensive semi-
quantitative evaluation of the coronary segments, that uses 
different weight factors, such as the plaque location (0–6 
points), the severity of the stenosis (1–1.4 points) and the 
composition (1–1.3 points) of coronary plaques; the score 
is the result of addition of each individual segment scores, 
which are obtained by the multiplication of these three fac-
tors [35]. It demonstrated to be able to predict major adverse 
cardiac events (MACEs) in both diabetic and non-diabetic 
patients, with suspected CAD [36].

Major limitation to the broad routine use of the quanti-
tative or semiquantitative assessment of coronary athero-
sclerotic burden is the long-time image analysis and scor-
ing calculation. AI algorithms appear promising in speeding 
up this process, warranting greater reproducibility and fast 
labeling of these data. ML and deep learning (DL) based 
techniques are improving image segmentation, quantifica-
tion of plaques extent, stenosis assessment, identification of 
culprit coronary lesions and calculation of composite scores. 
The identification of the coronary artery stenosis severity is 
the most fundamental application of ML analysis (i.e., it can 
automatically identify coronary obstructive lesions, or clas-
sify minor coronary plaques) [37]. In this regard, Sandstedt 
et al. compared AI-based automatic CAC score evaluation 
on non-contrast CT images to semiautomatic software in 
315 patients, finding an excellent correlation and agreement 
for three CAC scores (AS, volume score and mass score) 
and the number of calcified lesions (p = 0.935, 0.932, 0.934) 
[38].

High‑risk coronary plaque features

CCTA may characterize the coronary plaque identifying 
high risk plaque features [39–41], which include:

• positive remodeling: defined as a remodeling index 
(RI) ≥ 1.1 [39, 42, 43], obtained by dividing the larg-
est stenosis vessel cross-sectional area/diameter by the 
average cross-sectional area/diameter of the proximal and 
distal reference segments [44];

• intraplaque low attenuation regions: defined as mean 
attenuation < 30 HU in at least three regions of interest 
within the plaque [44] (Fig. 3);

• spotty calcifications: calcifications with more than 130 
HU and a diameter < 3 mm encircled by non-calcified 
components [45, 46];

• napkin-ring sign: a low-attenuation core surrounded by 
annular high-attenuation plaque tissue [47].

Although CAD severity proved to be associated with the 
incidence of CV death and/or myocardial infarction (MI) 
[48], the PROMISE trial demonstrated that more than a half 
of MACE occurs in patient without coronary obstruction, 
suggesting that other factors must be taken into account [49]. 
Recent studies found an increased risk of MACE when high-
risk plaques were detected on CCTA [39, 50, 51], regardless 
of CV risk factors and significant CAD, both for patients 
with stable angina and for patients admitted to the emer-
gency department [40, 52]. Moreover, the detection of high-
risk plaques can be useful in identifying significant lesions, 
as shown in the study from von Knebel Doeberitz et al. [53]: 
they found that lesion length, non-calcified plaque volume, 
RI, and “napkin-ring sign” were significant predictors for 
lesion-specific ischemia, as assessed by invasive fractional 
flow reserve (FFR).

Nevertheless, manual plaque quantification is time-con-
suming; consequently, semi-automatic plaque assessment 
using dedicated software has been recently introduced [54]. 
Semi-automated tools showed a high reproducibility (in both 
intra- and inter-observer comparisons) for CCTA geometri-
cal measurements (such as lumen and vessel area and plaque 
burden) and a higher variability for compositional measure-
ment (plaque attenuation and % of low attenuation plaques), 
ranging from 4 to 12% for inter-observer variability and 2 to 
6% for intra-observer variability.

The radiomic analysis of atherosclerotic plaque may 
further improve CCTA diagnostic accuracy, given the abil-
ity to extrapolate quantitative features of high-risk plaques 
and stratify plaque risk, with low inter-observer variabil-
ity. Kolossváry et al. found that 20.6% of radiomic features 
were significantly different between plaques with and with-
out “napkin-ring sign” and exhibit excellent discrimina-
tory power [55]. When compared with positron emission 
tomography, intravascular ultrasound and Optical Coher-
ence Tomography plaque assessment, radiomics features on 
CCTA images showed good-to-excellent diagnostic accu-
racy in identify vulnerable plaque, surpassing conventional 
parameters [56].

Fractional flow reserve

Although high negative predictive value of CCTA in ruling 
out obstructive CAD [57], the PROMISE trial demonstrated 
some limitations of CT when used as initial diagnostic strat-
egy, such as the consequent higher rate of ICA not translat-
ing into improved clinical outcomes and higher healthcare 
costs [58].
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To improve the ability of CCTA in the identification of 
flow-limiting coronary stenosis, the calculation of FFR with 
CT (FFR-CT) is emerging as a robust and valuable tool. 
The most common method for the calculation of FFR-CT is 
based on computational fluid dynamics (CFD), a mathemati-
cal three-dimensional modeling technique which simulates 
intra-coronary flow, pressure, and resistance by using semi-
automatic contouring and segmentation on CCTA images 
[59].

The generated FFR-CT values, based on patient-specific 
inflow and outflow hemodynamic conditions, are able to 
predict pressure changes along the course of the vessel. A 
FFR-CT value greater than 0.8 is normal, values between 
0.76 and 0.8 are borderline, and values lower than or equal 
to 0.75 are abnormal and suggestive for significant stenosis 
[60] (Fig. 4).

Alongside with CFD techniques, several ML and DL-
based methods for FFR-CT have been recently developed 
[61–64]. The retrospective multicenter MACHINE registry, 

comparing ML-based and CFD-based FFR-CT, showed no 
significant differences in the diagnostic performance of 
ML-approach compared to CFD algorithm [65]. ML and 
DL-based approaches have the advantage of not requiring 
transfer of imaging data into the cloud, which increases time 
consumption. For on-site measurement, the CT-FFR value 
can be provided to the physician within a day, facilitating 
prompt decision-making in subsequent steps [66].

In terms of diagnostic accuracy, several trials proved that 
FFR-CT is a valuable alternative to invasive FFR. In their 
prospective multicenter study, Bon-Kwon Koo et al. [67] 
enrolled 103 patients with stable angina who underwent 
both CCTA with FFR-CT and invasive FFR, demonstrating 
a good concordance on a per-vessel level (Spearman's rank 
correlation coefficient of 0.717 and a Pearson's correlation 
coefficient of 0.678) and no systematic differences at the per-
patient level. FFR-CT showed an accuracy of 84% compared 
to 58.5% of CCTA alone, on a per-vessel analysis; sensitivity 
and specificity were 87.9% and 83% respectively.

Fig. 3  Curved multiplanar reformatted image of LAD (d) shows 
multiple mixed plaques (a–c) involving proximal and mid segments. 
The specific components of the plaques (non-calcified, calcified and 

lipid core) are analyzed and quantified automatically with a dedicated 
software, according to their density (on the left). LAD, Left Anterior 
Descending artery
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The PLATFORM trial [68, 69] demonstrated that FFR-
CT guided strategy was associated with minor rate of MACE 
at one year compared to the standard-of-care group (6.1% 
vs. 7.6%, respectively). Moreover, FFR-CT led to a signifi-
cant reduction in the rate of downstream ICA procedures 
with median costs lower versus usual care with an invasive 
strategy (p < 0.001).

Recently Fischer et al. [70] sought to explore the role 
of FFR-CT in the acute setting. They observed that exclu-
sion of hemodynamically significant CAD with FFR-CT in 
patients with acute chest pain results in a negative predictive 
value of 100% for excluding MACE at 30 days. Accordingly, 
the “2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR 
Guideline for the Evaluation and Diagnosis of Chest Pain” 
recommended FFR-CT in intermediate-risk patients with 
acute chest pain and coronary artery stenosis of 40–90% 
in a proximal or middle segment on CCTA for diagnosis 
of vessel-specific ischemia and to guide decision-making 
regarding the use of percutaneous intervention (PCI) (IIa/B-
NR) [71].

While FFR-CT has demonstrated promising results, there 
are several factors that limit its application in clinical prac-
tice, such as the need of optimal quality of CCTA images 
for adequate post-processing. In some studies, investigating 

the accuracy of FFR-CT, the percentage of datasets rejected 
ranged from 11 to 13% [67, 72, 73], reaching 33% in the 
PROMISE study [58]. Moreover, any inaccuracies in the 
modeling process can lead to subsequent errors in FFR-CT 
values; this is particularly valid for small branch vessels 
which can be left out of modeling, resulting in lack of iden-
tification of their stenosis/occlusion by FFR-CT [59].

Despite the aforementioned limitations needs to be taken 
into account, it should be considered that the introduction 
of the next-generation hardware may sharply reduce the 
rejection rate, as demonstrated in the study from Pontone 
et al. [74], which mostly includes dual-source technology 
and wide detector scanner, who found a significantly lower 
rejection rate ranging from 2.9% in the ADVANCE Reg-
istry cohort to 8.6% in the clinical cohort. Additionally, 
they found that temporal resolution, section thickness and 
heart rate are independent predictors of CCTA scan rejec-
tion for FFR-CT analysis, thus suggesting that technological 
advanced may potentially zeroing the rejection rate by acting 
on these factors.

Fig. 4.  51  years-old man with high cardiovascular risk profile, per-
forming CCTA for recurrent atypical chest pain. Curved planar refor-
matted images of LAD show a moderate stenosis in middle segment 
(red arrow). FFR-CT analysis (DeepVessel Image) reveals a sig-

nificant flow reduction (FFR = 0.71) after the stenosis (red arrow). 
CCTA, cardiac computed tomography angiography; FFR-CT, frac-
tional flow reserve—computed tomography; LAD, left anterior 
descending artery
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Pericoronary adipose tissue

It is known that vascular wall inflammation may trigger ath-
erosclerotic plaque instability and risk of rupture, altering 
lipid accumulation and attenuation in the pericoronary adi-
pose tissue (PCAT) [75]. When inflammatory phenomena 
occur in the coronary walls, the density of PCAT changes 
from more negative to less negative values, due to edema 
and inflammatory cell infiltration (Fig. 5).

Such alterations may be assessed by the perivascular fat 
attenuation index (FAI) [76], which describes adipocyte 
lipid content and size, demonstrating excellent sensitivity 
and specificity for detecting tissue inflammation as assessed 
by tissue uptake of 18F-fluorodesossyglucose at positron 
emission tomography [77].

The perivascular FAI is defined as the weighted average 
attenuation of all voxels containing adipose tissue located 
within a radial distance from the external vessel wall equal 
to the diameter of the vessel considered [78]. It can be meas-
ured around any segment of the coronary tree, but its origi-
nal standardization was performed around prespecified seg-
ments of the proximal right coronary artery and left anterior 
descending artery.

Pericoronary FAI is a useful biomarker to detect patients 
with high levels of vascular inflammation and to identify 
vulnerable patients at risk for MACEs [79]. As stated by 
Oikonomu et al. [80], perivascular FAI increases the dis-
criminatory capacity of mortality risk and contributes to 
the reclassification of current risk stratification models. FAI 
value is useful in identifying individuals at risk of acute 
coronary syndrome even in absence of significant coronary 

stenosis, so as in the identification of vulnerable plaques 
in patients with known CAD contributing to better clinical 
and therapeutic management by also providing support in 
primary and secondary prevention [80].

Going beyond the conventional evaluation of FAI, that 
only considers the average density measures, the radiomic 
analysis of PCAT enables the possibility to analyze the 
attenuation profile considering all the spatial interactions 
and providing measures of heterogeneity. One of the new 
radiomic signature of high risk PCAT is the pericoronary Fat 
Radiomic Profile (FRP). This considers not only the attenu-
ation features included in FAI but also features like fibrosis 
and vascularity of PCAT. Whereas FAI changes dynamically 
in response to acute coronary inflammation, FRP captures 
more permanent structural changes in PCAT and provides 
additional risk stratification. The combination of FAI and 
FRP facilitates the development of a more comprehensive 
individualized cardiac risk profile for each patient [76]. In 
this regard, Lin et al. recently demonstrated that patients 
with acute MI show a different PCAT radiomic phenotype as 
compared to stable CAD patients or healthy controls. PCAT 
attenuation values were significantly higher in patients with 
acute MI (− 82.3 ± 5.5 HU) as compared to patients with 
stable CAD (− 90.6 ± 5.7 HU, P < 0.001) and controls with 
no CAD (− 95.8 ± 6.2 HU, P < 0.001) [81].

Myocardial perfusion imaging

Stress CT perfusion (CTP) is an emerging imaging tech-
nique which combines a pure anatomic evaluation of coro-
nary arteries with functional data. The principle of the tech-
nique is based on quantifying the myocardial distribution of 
the iodinated contrast agent (Fig. 6) as it first passes through 
the myocardium during pharmacological stress, using vaso-
dilator agents (e.g., Adenosine and Regadenoson) [82] and/
or at rest.

Myocardial CTP imaging may involve two types of CT 
acquisitions: static and dynamic. Static CTP (sCTP) imag-
ing consists in a single snapshot of the myocardial perfu-
sion acquired at a single specific time point during the early 
first-pass after contrast agent injection. sCTP showed high 
specificity (68–98%) and sensitivity (50–96%) values, simi-
lar to other stress imaging modalities [82]. Nevertheless, 
sCTP accuracy may be hampered by the possibility to miss 
the peak of contrast attenuation, leading to false-positive or 
false-negative results, and limited qualitative/semiquantita-
tive image analysis.

Dynamic CTP (dCTP) imaging may overcome some of 
these limitations enabling direct measurement of myocar-
dial perfusion. It consists in serial volumetric acquisitions 
in free-breathing covering the whole heart during contrast 
injection from the first-pass arterial to the wash-out phases. 

Fig. 5  Curved multiplanar reformatted (cMPR) image of LAD shows 
calcified plaques in proximal and mid segments (a). Color-coded 
cMPR image (b) highlights pericoronary adipose tissue (PCAT) 
attenuation gradients as a metric of vascular inflammation, indicating 
stable atherosclerotic plaques. LAD Left Anterior Descending artery
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However, dCTP necessitates of at least a 256–320 slice sys-
tem scanner or a dual source-CT in order to acquire multiple 
datasets of images; dCTP also gives a higher radiation dose 
than sCTP and requires longer breath holding to patients. At 
the image analysis, several hemodynamic parameters can be 
extracted, such as the myocardial blood flow (MBF), MBF 
ratio, and myocardial blood volume (MBV) [83].

Bamberg and colleagues, analyzing the feasibility of 
dCTP for the detection of significant stenosis using inva-
sive FFR as a reference, and found a significant reduction 
of MBF and MBV in myocardial segments perfused by 
stenotic vessels; they also established a cut-off of MBF of 
75 mL/100 mL/min for the differentiation between signifi-
cant and non-significant coronary artery lesions (C statistic, 
0.707; P, 0.001) [84]. Likewise, Rossi et. al computed an 
AUC of 0.95 (95% CI 0.92–0.98, p < 0.001) for MBF index, 
on a vessel-territory level, with sensitivity/specificity values 
of 90/88% in detecting significant stenosis when considering 
a cut-off value of 78 mL/100 mL/min [85].

dCTP showed greater and additional discriminative 
effectiveness compared to CCTA alone in various studies 
[83, 85–88]. In particular, the main diagnostic benefit in 
detecting significant stenosis of dCTP consists in increasing 
the specificity value from 61 to 81% as reported in a recent 
meta-analysis [89]. Moreover, in a multicenter randomized 
controlled trial, Lubbers et al. [90] demonstrated that a com-
prehensive CCTA protocol with myocardial perfusion led to 
fewer additional noninvasive testing and shorter diagnostic 
pathways.

Myocardial perfusion may also ameliorate prognostic 
prediction, as the summed stress score, determined by nor-
malizing MBF using CTP, is a better predictor of MACE 
then coronary stenosis at CCTA, with a hazard ratio of 
5.7 (95% confidence interval: 1.9–16.9; p = 0.002) [91]. 
MBF extracted from dCTP is also highly accurate in the 

assessment of microvascular obstruction [92], which is 
known to be a predictor of MACE in patients with myocar-
dial infarction and preserved ejection fraction [93].

Finally, given that iodine is delivered to myocardial tissue 
by blood flow supply, recent studies suggest iodine distribu-
tion maps by DECT as a marker of myocardial perfusion 
[94, 95]. Introducing iodine perfusion maps increases the 
diagnostic accuracy of CCTA scans compared to cardiac 
magnetic resonance (CMR), single-photon computed tomog-
raphy and ICA [96].

Late iodine enhancement

Imaging of myocardial fibrosis (MF) is based on contrast 
agent accumulating in myocardial tissue areas which dem-
onstrate an expansion of extracellular matrix or in the intra-
cellular space of necrotic myocytes [97]. Late gadolinium 
enhancement (LGE) imaging by CMR represents the refer-
ence standard to assess MF in vivo, but several contraindica-
tions to CMR exist together with the long image acquisition 
times, which limits its use. The evaluation of MF scars has 
also been developed with CT, based on the extracellular 
properties of iodine CM and the visualization of hyper-
enhanced areas due to iodine accumulation [98], showing a 
diagnostic accuracy of 88–95% as compared to CMR-LGE 
[99] and a diagnostic accuracy of 90%, with 53% sensitivity 
and 98% specificity, if compared to histological examination 
[100] (Fig. 7).

Several protocols exist regarding the injection of CM 
and the timing of late-phase acquisition: the majority of 
the authors report a single-bolus administration technique, 
so the late phase is acquired after the standard dose of 
CM injected for CCTA, with no further amount of CM; 
in other cases, a bolus-continuous protocol is performed, 

Fig. 6  Short axis color-coded 
parametric map of myocardial 
blood flow obtained during 
stress myocardial perfusion CT 
after injection of Regadenoson 
showing a perfusion defect in 
the middle lateral segment of 
the left ventricle
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with an additional continuous infusion of CM (30–90 mL 
at 0.1–0.3 mL/s) after the CCTA scan. The optimal timing 
for the late phase scan ranges between 5 and 15 min, with 
the best results reported between 10 and 15 min using the 
bolus-continuous protocol [98].

Because of poor contrast resolution in the delayed-
phase CT scan, especially for subepicardial scars, the 
assessment of MF can be challenging [99]. Values of 
diagnostic accuracy vary according to the image recon-
structions algorithms that are applied, ranging from a 
sensitivity and specificity of 56% and 93% (with filtered 
back projection) to 80% and 91% (with knowledge based 
iterative model reconstruction), respectively [101]; and 
sensitivity decreases with the increasing in tube voltage 
kVp reconstructions, ranging from 98% at 100 kVp, to 
28% at 140 kVp [102]. In this regard, the use of low tube 
voltages (80–100 kVp) and specific denoising reconstruc-
tion algorithms can improve contrast-to-noise ratio and 
reduce the radiation dose to the patients [103].

DECT and PCD-CT technology allow for spectral evalua-
tion and virtual monoenergetic images (VMI) reconstruction 
at lower KeV, resulting in improved contrast-to-noise ratio 
for LIE evaluation [100]. Spectral CT demonstrated a sen-
sitivity of 82% and a specificity of 99% among a population 
of patients with CMR-proven acute myocarditis [104]. Using 
iodine-density imaging, sensitivity was 97.1% and speci-
ficity 88.9% in patients with heart failure, with the highest 
diagnostic accuracy obtained for 40-keV VMI reconstruc-
tions (90.8%) [105]. LIE can also be used to investigate 
acute chest pain patients admitted to emergency department 

with troponin increase [106]: with this approach, patients are 
scanned in the angiographic phase to rule out (obstructive 
coronary artery disease, acute aortic syndromes and pulmo-
nary embolism) and in the late phase for myocardial tissue 
characterization. Other applications include the assessment 
of myocardial scars as a substrate for ventricular arrhythmias 
prior to radiofrequency catheter ablation procedures [107].

Extracellular volume fraction

Extracellular volume fraction (ECV) assessed using T1 map-
ping sequences by CMR  (ECVCMR) has emerged as valuable 
surrogate marker of interstitial fibrosis, calculated by the 
amount of gadolinium distributed in the myocardium in the 
equilibrium phase [108]. ECV may be assessed also with CT 
 (ECVCT) with similar approach [109], overcoming the afore-
mentioned contraindications related to CMR [110]. Recent 
studies that compared  ECVCMR with  ECVCT among patients 
with amyloidosis, aortic stenosis, pulmonary hypertension, 
or dilated cardiomyopathy achieved correlation coefficients 
ranging from 0.73 to 0.91 [111, 112], whereas the corre-
lation between collagen volume fraction at histology and 
 ECVCT values in a population with severe aortic stenosis 
was 0.71 (p = 0.0007) [109].

ECV measurements can be performed with single-energy 
acquisitions, with DECT or PCD-CT [113] (Fig. 8).

In the former method,  ECVCT is derived by combining 
the differences in attenuation in myocardial tissue and blood 
pool, between the delayed scan and the non-enhanced scan. 

Fig. 7  Late iodine enhanced (LIE) CT image reconstructed in four 
chamber view (a) and late gadolinium enhanced (LGE) image 
acquired on the corresponding plane during a cardiac-MR (b) in a 
patient with an acute myocardial infarction of the left circumflex 

artery territory. In both images is evident the contrast enhancement of 
the infarcted myocardium (white and black arrows) and the thrombi 
adherent to the apex in both ventricles (white arrowheads)
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However, this technique can be associated with misregis-
tration artifacts (non-matching images between baseline 
and late phases) and a greater radiation dose to the patients 
[114, 115]. With DECT or PCD-CT,  ECVCT is quantify 
by measuring the iodine concentration in myocardium and 
blood pool in the delayed-phase scan only, based on spec-
tral decomposition of the obtained multi-energy datasets 
[110]. The acquisition time for the delayed scan phases is 
not still unanimously shared, ranging from 5 to 12 min [114, 
116]; CM injection technique could be based on single or 
double boli (fixed or proportional to patient’s body weight 
[117–119]) or with slow intravenous infusion [109, 115].

ECVCT represents a promising biomarker, that could sup-
port the management of cardiac diseases associated to the 
development of MF, improving the prediction of MACE 
[120], mortality [121] or progression to heart failure [122, 
123] and addressing specific therapies.

Epicardial adipose tissue

Epicardial adipose tissue (EAT) typically appears as a 
hypodense layer lying between the myocardial wall and the 
visceral pericardium, with a density ranging from − 190 to 
− 30 HU containing the coronary vessels and their principal 
branches [124–126] (Fig. 9).

In the last few decades, growing attention have been 
focused on EAT as a biomarker of CV risk, as an increased 
EAT volume has shown a strong association with CV 

pathologies, including CAD and ischemic heart disease 
[127, 128]. Specifically, Mancio et al. [125] showed that 
EAT volume was associated with coronary stenosis, myocar-
dial ischemia, and MACE, irrespective from CV risk factors.

Increased EAT volume has also proven to be a strong 
predictor for the risk of atrial fibrillation [129], regardless 
of other risk factors, including left atrium diameter [130]. 
In patients with heart failure with preserved ejection frac-
tion, greater EAT deposition have been associated with 
higher body mass index (BMI), cardiac structural changes, 
and proteomic markers linked to general obesity, systemic 
inflammation, insulin resistance, endothelial dysfunction, 
and dyslipidemia [131]. EAT volume quantification is fea-
sible on both non-contrast cardiac-CT and CCTA image 
data sets, even though the presence of contrast media (CM) 
may lead to an underestimation of EAT volume [132].

Beyond the volumetric quantification, the analysis of 
EAT radiodensity may also serve as an imaging biomarker, 
as it may reflect inflammation or metabolic activity of EAT 
[133]. Franssens et al. [134] found a significant association 
between low CT attenuation of EAT and a higher amount 
of CAC in men with higher CV risk or overt CV pathol-
ogy, regardless of EAT volume and BMI. Accordingly, 
serum levels of plaque inflammatory markers, coronary 
calcification, and MACE were all linked with lower EAT 
density in a study from Goeller and colleagues [135]. 
Finally, a rise in EAT radiodensity is also associated with 
Tako-Tsubo syndrome and myocardial infarction with non-
obstructive coronary artery (MINOCA) [136].

Fig. 8  CT-derived extracellular 
volume fraction  (ECVCT) map 
on a mid-ventricular short axis 
slice acquired in a 43-years-
old woman with history of 
ventricular tachycardia and 
previous ICD implantation. The 
map shows a diffuse increase of 
ECV in the lateral wall (white 
arrows) associated to a thin 
subepicardial rim of focally 
increased ECV compatible with 
scarring fibrosis. The patient 
was diagnosed with chronic 
myocarditis. ICD: implantable 
cardioverter device 
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Besides manual quantification, which may be highly 
time-consuming, in the last few years methods allowing 
semi-automatic [135, 137, 138] and automatic segmenta-
tion [139, 140], including DL approaches [141, 142], have 
been investigated. Specifically, the adoption of fully auto-
mated segmentation techniques may provide the benefit 
of high reproducibility for EAT volumes calculation with 
quicker segmentation times, optimizing EAT quantifica-
tion for clinical use [141].

Future perspectives

The introduction of radiomics into the medical field rep-
resents a chance to explore quantitative data through the 
extraction of multiple image-based features that are imper-
ceptible to the naked eye [143]. The initial experience using 
radiomics analysis in cardiac CT imaging [144–149] indi-
cate that this technique may help in identifying vulnerable 
plaques, improve cardiac risk stratification and open new 
frontiers for personalized cardiovascular medicine [150]. On 
the other hand, research into potential applications of AI in 

diagnostic imaging has gained growing interest in the last 
decade, and cardiac imaging was not an exception. With the 
rise of commercially available or open-source AI algorithms, 
the workflow of postprocessing analysis and interpretation 
of CCTA imaging datasets is changing dramatically. The 
optimization and speeding up of procedures guaranteed by 
AI tools, are expanding the role of CCTA for risk stratifica-
tion as well as for patient treatment planning and manage-
ment [151].

The progressive validation of new CT imaging bio-
markers will expand the role of Cardiac CT in the next few 
years, moving beyond the simple assessment of stenosis to 
risk stratification and characterization of tissue alterations 
(Table 1). The automatic extraction of various quantitative 
parameters from cardiac CT imaging dataset could open a 
new era, where several features of vulnerability, functional 
parameters and markers of tissue changes will be provided, 
enabling deeper phenotyping of the disease and addressing 
to personalized therapeutic approach.

Fig. 9  Axial CT (a) and corresponding color-coded map (b) showing different pericardial (yellow) and epicardial (green) adipose tissue com-
partments
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Conclusion

The role of CCTA has progressively grown from the mere 
detection of obstructive CAD, by the anatomical assess-
ment of coronary stenosis, to an examination that enables 
the extrapolation of multiple parameters, useful for a more 
accurate evaluation of cardiovascular risk and the hemo-
dynamic effect of stenosis. In addition, new applications 
of CT (e.g.,, LIE,  ECVCT) are expanding its domain to the 
characterization of myocardial damage [152] and improv-
ing prognostic stratification, moving toward an increasingly 
comprehensive examination.

Funding Open access funding provided by Università degli Studi di 
Roma La Sapienza within the CRUI-CARE Agreement. The authors 
declare that no funds, grants, or other support were received during the 
preparation of this manuscript. The authors have no relevant financial 
or non-financial interests to disclose.

Declarations 

Conflict of interest The authors have not disclosed any Conflict of in-
terest.

Ethical statement This article does not contain any studies with human 
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. The top 10 causes of death. www. who. int/ news- room/ fact- sheets/ 
detail. Accessed 26 Jul 2023

 2. Pugliese L, Ricci F, Sica G et al (2023) Non-contrast and con-
trast-enhanced cardiac computed tomography imaging in the 
diagnostic and prognostic evaluation of coronary artery disease. 
Diagnostics 13:2074. https:// doi. org/ 10. 3390/ diagn ostic s1312 
2074

 3. Catapano F, Galea N, Pambianchi G et al (2023) Effectiveness of 
clinical scores in predicting coronary artery disease in familial 
hypercholesterolemia: a coronary computed tomography angiog-
raphy study. Radiol Med 128:445–455. https:// doi. org/ 10. 1007/ 
s11547- 023- 01610-z

 4. Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guide-
lines for the diagnosis and management of chronic coronary 

syndromes. Eur Heart J 41:407–477. https:// doi. org/ 10. 1093/ 
eurhe artj/ ehz425

 5. Kelion AD, Nicol ED (2018) The rationale for the primacy of 
coronary CT angiography in the National Institute for health 
and care excellence (NICE) guideline (CG95) for the investiga-
tion of chest pain of recent onset. J Cardiovasc Comput Tomogr 
12:516–522. https:// doi. org/ 10. 1016/j. jcct. 2018. 09. 001

 6. Esposito A, Gallone G, Palmisano A et  al (2020) The cur-
rent landscape of imaging recommendations in cardiovascular 
clinical guidelines: toward an imaging-guided precision medi-
cine. Radiol Medica 125:1013–1023. https:// doi. org/ 10. 1007/ 
s11547- 020- 01286-9

 7. Collet J-P, Thiele H, Barbato E et al (2021) 2020 ESC Guidelines 
for the management of acute coronary syndromes in patients 
presenting without persistent ST-segment elevation. Eur Heart J 
42:1289–1367. https:// doi. org/ 10. 1093/ eurhe artj/ ehaa5 75

 8. Galea N, Bellu R, Catapano F et al (2022) Coronary computed 
tomography angiography in acute chest pain: a sustainable model 
with remote support. Eur J Radiol 151:110277. https:// doi. org/ 
10. 1016/j. ejrad. 2022. 110277

 9. Muscogiuri G, Van Assen M, Tesche C et al (2020) Artificial 
intelligence in coronary computed tomography angiography: 
from anatomy to prognosis. Biomed Res Int 2020:1–10. https:// 
doi. org/ 10. 1155/ 2020/ 66494 10

 10. Lanzafame LRM, Bucolo GM, Muscogiuri G et al (2023) Arti-
ficial intelligence in cardiovascular CT and MR imaging. Life 
13:507. https:// doi. org/ 10. 3390/ life1 30205 07

 11. Alizadeh LS, Vogl TJ, Waldeck SS et al (2023) Dual-energy CT 
in cardiothoracic imaging: current developments. Diagnostics 
13:2116. https:// doi. org/ 10. 3390/ diagn ostic s1312 2116

 12. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin 
HIV AIDS 5:463–466. https:// doi. org/ 10. 1097/ COH. 0b013 e3283 
3ed177

 13. Kapoor K, Cainzos-Achirica M, Nasir K (2020) The evolving 
role of coronary artery calcium in preventive cardiology 30 years 
after the Agatston score. Curr Opin Cardiol 35:500–507. https:// 
doi. org/ 10. 1097/ HCO. 00000 00000 000771

 14. Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/
AHA guideline on the primary prevention of cardiovascular dis-
ease: a report of the American college of cardiology/American 
heart association task force on clinical practice guidelines. Cir-
culation. https:// doi. org/ 10. 1161/ CIR. 00000 00000 000678

 15. Greenland P, Blaha MJ, Budoff MJ et al (2018) Coronary calcium 
score and cardiovascular risk. J Am Coll Cardiol 72:434–447. 
https:// doi. org/ 10. 1016/j. jacc. 2018. 05. 027

 16. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantifica-
tion of coronary artery calcium using ultrafast computed tomog-
raphy. J Am Coll Cardiol 15:827–832. https:// doi. org/ 10. 1016/ 
0735- 1097(90) 90282-T

 17. Hong C, Becker CR, Schoepf UJ et al (2002) Coronary artery 
calcium: absolute quantification in nonenhanced and contrast-
enhanced multi-detector row CT studies. Radiology 223:474–
480. https:// doi. org/ 10. 1148/ radiol. 22320 10919

 18. Rumberger JA, Kaufman L (2003) A rosetta stone for coronary 
calcium risk stratification: agatston, volume, and mass scores in 
11,490 individuals. Am J Roentgenol 181:743–748. https:// doi. 
org/ 10. 2214/ ajr. 181.3. 18107 43

 19. Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary 
artery calcium area by electron-beam computed tomography and 
coronary atherosclerotic plaque area. Circulation 92:2157–2162. 
https:// doi. org/ 10. 1161/ 01. CIR. 92.8. 2157

 20. Baumgart D, Schmermund A, Goerge G et al (1997) Compari-
son of electron beam computed tomography with intracoronary 
ultrasound and coronary angiography for detection of coronary 

http://creativecommons.org/licenses/by/4.0/
http://www.who.int/news-room/fact-sheets/detail
http://www.who.int/news-room/fact-sheets/detail
https://doi.org/10.3390/diagnostics13122074
https://doi.org/10.3390/diagnostics13122074
https://doi.org/10.1007/s11547-023-01610-z
https://doi.org/10.1007/s11547-023-01610-z
https://doi.org/10.1093/eurheartj/ehz425
https://doi.org/10.1093/eurheartj/ehz425
https://doi.org/10.1016/j.jcct.2018.09.001
https://doi.org/10.1007/s11547-020-01286-9
https://doi.org/10.1007/s11547-020-01286-9
https://doi.org/10.1093/eurheartj/ehaa575
https://doi.org/10.1016/j.ejrad.2022.110277
https://doi.org/10.1016/j.ejrad.2022.110277
https://doi.org/10.1155/2020/6649410
https://doi.org/10.1155/2020/6649410
https://doi.org/10.3390/life13020507
https://doi.org/10.3390/diagnostics13122116
https://doi.org/10.1097/COH.0b013e32833ed177
https://doi.org/10.1097/COH.0b013e32833ed177
https://doi.org/10.1097/HCO.0000000000000771
https://doi.org/10.1097/HCO.0000000000000771
https://doi.org/10.1161/CIR.0000000000000678
https://doi.org/10.1016/j.jacc.2018.05.027
https://doi.org/10.1016/0735-1097(90)90282-T
https://doi.org/10.1016/0735-1097(90)90282-T
https://doi.org/10.1148/radiol.2232010919
https://doi.org/10.2214/ajr.181.3.1810743
https://doi.org/10.2214/ajr.181.3.1810743
https://doi.org/10.1161/01.CIR.92.8.2157


La radiologia medica 

atherosclerosis. J Am Coll Cardiol 30:57–64. https:// doi. org/ 10. 
1016/ S0735- 1097(97) 00147-2

 21. Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial 
calcification and not lumen stenosis is highly correlated with 
atherosclerotic plaque burden in humans: a histologic study of 
723 coronary artery segments using nondecalcifying method-
ology. J Am Coll Cardiol 31:126–133. https:// doi. org/ 10. 1016/ 
S0735- 1097(97) 00443-9

 22. Hecht HS (2015) Coronary artery calcium scanning. JACC Car-
diovasc Imaging 8:579–596. https:// doi. org/ 10. 1016/j. jcmg. 2015. 
02. 006

 23. Agha AM, Pacor J, Grandhi GR et al (2022) The prognostic value 
of CAC zero among individuals presenting with chest pain. JACC 
Cardiovasc Imaging 15:1745–1757. https:// doi. org/ 10. 1016/j. 
jcmg. 2022. 03. 031

 24. Gassert FG, Schacky CE, Müller-Leisse C et al (2021) Cal-
cium scoring using virtual non-contrast images from a dual-
layer spectral detector CT: comparison to true non-contrast 
data and evaluation of proportionality factor in a large patient 
collective. Eur Radiol 31:6193–6199. https:// doi. org/ 10. 1007/ 
s00330- 020- 07677-w

 25. van der Werf NR, Si-Mohamed S, Rodesch PA et al (2022) Cor-
onary calcium scoring potential of large field-of-view spectral 
photon-counting CT: a phantom study. Eur Radiol 32:152–162. 
https:// doi. org/ 10. 1007/ s00330- 021- 08152-w

 26. Mergen V, Ghouse S, Sartoretti T et al (2023) Cardiac virtual 
noncontrast images for calcium quantification with photon-count-
ing detector CT. Radiol Cardiothorac Imaging. https:// doi. org/ 10. 
1148/ ryct. 220307

 27. Ayoub C, Erthal F, Abdelsalam MA et al (2017) Prognostic value 
of segment involvement score compared to other measures of 
coronary atherosclerosis by computed tomography: a system-
atic review and meta-analysis. J Cardiovasc Comput Tomogr 
11:258–267. https:// doi. org/ 10. 1016/j. jcct. 2017. 05. 001

 28. Tesche C, Plank F, De Cecco CN et al (2016) Prognostic implica-
tions of coronary CT angiography-derived quantitative markers 
for the prediction of major adverse cardiac events. J Cardiovasc 
Comput Tomogr 10:458–465. https:// doi. org/ 10. 1016/j. jcct. 2016. 
08. 003

 29. Bittencourt MS, Hulten E, Ghoshhajra B et al (2014) Prognostic 
value of nonobstructive and obstructive coronary artery disease 
detected by coronary computed tomography angiography to iden-
tify cardiovascular events. Circ Cardiovasc Imaging 7:282–291. 
https:// doi. org/ 10. 1161/ CIRCI MAGING. 113. 001047

 30. Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of 
multidetector coronary computed tomographic angiography for 
prediction of all-cause mortality. J Am Coll Cardiol 50:1161–
1170. https:// doi. org/ 10. 1016/j. jacc. 2007. 03. 067

 31. Szilveszter B, Vattay B, Bossoussou M et al (2022) CAD-RADS 
may underestimate coronary plaque progression as detected by 
serial CT angiography. Eur Hear J Cardiovasc Imaging 23:1530–
1539. https:// doi. org/ 10. 1093/ ehjci/ jeab2 15

 32. Cury RC, Leipsic J, Abbara S et al (2022) CAD-RADS™ 2.0—
2022 coronary artery disease-reporting and data system. J Car-
diovasc Comput Tomogr 16:536–557. https:// doi. org/ 10. 1016/j. 
jcct. 2022. 07. 002

 33. de Araújo GP, Garcia-Garcia HM, Dores H et al (2013) Coro-
nary computed tomography angiography-adapted Leaman score 
as a tool to noninvasively quantify total coronary atherosclerotic 
burden. Int J Cardiovasc Imaging 29:1575–1584. https:// doi. org/ 
10. 1007/ s10554- 013- 0232-8

 34. Mushtaq S, Araujo de Gonçalves P, Garcia-Garcia HM et al 
(2015) Long-term prognostic effect of coronary atherosclerotic 
Burden. Circ Cardiovasc Imaging. https:// doi. org/ 10. 1161/ CIRCI 
MAGING. 114. 002332

 35. van Rosendael AR, Shaw LJ, Xie JX et al (2019) Superior risk 
stratification with coronary computed tomography angiography 
using a comprehensive atherosclerotic risk score. JACC Car-
diovasc Imaging 12:1987–1997. https:// doi. org/ 10. 1016/j. jcmg. 
2018. 10. 024

 36. van den Hoogen IJ, van Rosendael A, Lin F et al (2019) Coronary 
atherosclerosis scoring by the Leiden CCTA risk score for pre-
diction of major adverse cardiac events: a propensity score-based 
analysis of diabetic and non-diabetic patients. J Am Coll Cardiol 
73:1450. https:// doi. org/ 10. 1016/ S0735- 1097(19) 32056-X

 37. Kang D, Dey D, Slomka PJ et al (2015) Structured learning algo-
rithm for detection of nonobstructive and obstructive coronary 
plaque lesions from computed tomography angiography. J Med 
Imaging 2:014003. https:// doi. org/ 10. 1117/1. JMI.2. 1. 014003

 38. Sandstedt M, Henriksson L, Janzon M et al (2020) Evaluation 
of an AI-based, automatic coronary artery calcium scoring 
software. Eur Radiol 30:1671–1678. https:// doi. org/ 10. 1007/ 
s00330- 019- 06489-x

 39. Motoyama S, Ito H, Sarai M et al (2015) Plaque characterization 
by coronary computed tomography angiography and the likeli-
hood of acute coronary events in mid-term follow-up. J Am Coll 
Cardiol 66:337–346. https:// doi. org/ 10. 1016/j. jacc. 2015. 05. 069

 40. Puchner SB, Liu T, Mayrhofer T et al (2014) High-risk plaque 
detected on coronary ct angiography predicts acute coronary syn-
dromes independent of significant stenosis in acute chest pain. 
J Am Coll Cardiol 64:684–692. https:// doi. org/ 10. 1016/j. jacc. 
2014. 05. 039

 41. Ferencik M, Mayrhofer T, Bittner DO et al (2018) Use of high-
risk coronary atherosclerotic plaque detection for risk stratifica-
tion of patients with stable chest pain. JAMA Cardiol 3:144. 
https:// doi. org/ 10. 1001/ jamac ardio. 2017. 4973

 42. Achenbach S, Ropers D, Hoffmann U et al (2004) assessment of 
coronary remodeling in stenotic and nonstenotic coronary athero-
sclerotic lesions by multidetector spiral computed tomography. 
J Am Coll Cardiol 43:842–847. https:// doi. org/ 10. 1016/j. jacc. 
2003. 09. 053

 43. Chang H-J, Lin FY, Lee S-E et al (2018) Coronary atheroscle-
rotic precursors of acute coronary syndromes. J Am Coll Cardiol 
71:2511–2522. https:// doi. org/ 10. 1016/j. jacc. 2018. 02. 079

 44. Oikonomou EK, West HW, Antoniades C (2019) Cardiac com-
puted tomography. Arterioscler Thromb Vasc Biol 39:2207–
2219. https:// doi. org/ 10. 1161/ ATVBA HA. 119. 312899

 45. Ferencik M, Schlett CL, Ghoshhajra BB et al (2012) A com-
puted tomography-based coronary lesion score to predict acute 
coronary syndrome among patients with acute chest pain and 
significant coronary stenosis on coronary computed tomographic 
angiogram. Am J Cardiol 110:183–189. https:// doi. org/ 10. 1016/j. 
amjca rd. 2012. 02. 066

 46. Benedek T, Gyöngyösi M, Benedek I (2013) Multislice computed 
tomographic coronary angiography for quantitative assessment 
of culprit lesions in acute coronary syndromes. Can J Cardiol 
29:364–371. https:// doi. org/ 10. 1016/j. cjca. 2012. 11. 004

 47. Maurovich-Horvat P, Ferencik M, Voros S et al (2014) Compre-
hensive plaque assessment by coronary CT angiography. Nat Rev 
Cardiol 11:390–402. https:// doi. org/ 10. 1038/ nrcar dio. 2014. 60

 48. Hadamitzky M, Taubert S, Deseive S et al (2013) Prognostic 
value of coronary computed tomography angiography during 
5 years of follow-up in patients with suspected coronary artery 
disease. Eur Heart J 34:3277–3285. https:// doi. org/ 10. 1093/ 
eurhe artj/ eht293

 49. Hoffmann U, Ferencik M, Udelson JE et al (2017) Prognostic 
value of noninvasive cardiovascular testing in patients with 
stable chest pain. Circulation 135:2320–2332. https:// doi. org/ 
10. 1161/ CIRCU LATIO NAHA. 116. 024360

 50. Motoyama S, Sarai M, Harigaya H et al (2009) Computed 
tomographic angiography characteristics of atherosclerotic 

https://doi.org/10.1016/S0735-1097(97)00147-2
https://doi.org/10.1016/S0735-1097(97)00147-2
https://doi.org/10.1016/S0735-1097(97)00443-9
https://doi.org/10.1016/S0735-1097(97)00443-9
https://doi.org/10.1016/j.jcmg.2015.02.006
https://doi.org/10.1016/j.jcmg.2015.02.006
https://doi.org/10.1016/j.jcmg.2022.03.031
https://doi.org/10.1016/j.jcmg.2022.03.031
https://doi.org/10.1007/s00330-020-07677-w
https://doi.org/10.1007/s00330-020-07677-w
https://doi.org/10.1007/s00330-021-08152-w
https://doi.org/10.1148/ryct.220307
https://doi.org/10.1148/ryct.220307
https://doi.org/10.1016/j.jcct.2017.05.001
https://doi.org/10.1016/j.jcct.2016.08.003
https://doi.org/10.1016/j.jcct.2016.08.003
https://doi.org/10.1161/CIRCIMAGING.113.001047
https://doi.org/10.1016/j.jacc.2007.03.067
https://doi.org/10.1093/ehjci/jeab215
https://doi.org/10.1016/j.jcct.2022.07.002
https://doi.org/10.1016/j.jcct.2022.07.002
https://doi.org/10.1007/s10554-013-0232-8
https://doi.org/10.1007/s10554-013-0232-8
https://doi.org/10.1161/CIRCIMAGING.114.002332
https://doi.org/10.1161/CIRCIMAGING.114.002332
https://doi.org/10.1016/j.jcmg.2018.10.024
https://doi.org/10.1016/j.jcmg.2018.10.024
https://doi.org/10.1016/S0735-1097(19)32056-X
https://doi.org/10.1117/1.JMI.2.1.014003
https://doi.org/10.1007/s00330-019-06489-x
https://doi.org/10.1007/s00330-019-06489-x
https://doi.org/10.1016/j.jacc.2015.05.069
https://doi.org/10.1016/j.jacc.2014.05.039
https://doi.org/10.1016/j.jacc.2014.05.039
https://doi.org/10.1001/jamacardio.2017.4973
https://doi.org/10.1016/j.jacc.2003.09.053
https://doi.org/10.1016/j.jacc.2003.09.053
https://doi.org/10.1016/j.jacc.2018.02.079
https://doi.org/10.1161/ATVBAHA.119.312899
https://doi.org/10.1016/j.amjcard.2012.02.066
https://doi.org/10.1016/j.amjcard.2012.02.066
https://doi.org/10.1016/j.cjca.2012.11.004
https://doi.org/10.1038/nrcardio.2014.60
https://doi.org/10.1093/eurheartj/eht293
https://doi.org/10.1093/eurheartj/eht293
https://doi.org/10.1161/CIRCULATIONAHA.116.024360
https://doi.org/10.1161/CIRCULATIONAHA.116.024360


 La radiologia medica

plaques subsequently resulting in acute coronary syndrome. J 
Am Coll Cardiol 54:49–57. https:// doi. org/ 10. 1016/j. jacc. 2009. 
02. 068

 51. Otsuka K, Fukuda S, Tanaka A et al (2013) Napkin-ring sign 
on coronary ct angiography for the prediction of acute coronary 
syndrome. JACC Cardiovasc Imaging 6:448–457. https:// doi. org/ 
10. 1016/j. jcmg. 2012. 09. 016

 52. Thomsen C, Abdulla J (2016) Characteristics of high-risk coro-
nary plaques identified by computed tomographic angiography 
and associated prognosis: a systematic review and meta-analysis. 
Eur Hear J Cardiovasc Imaging 17:120–129. https:// doi. org/ 10. 
1093/ ehjci/ jev325

 53. von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ et al (2019) 
Coronary CT angiography–derived plaque quantification with 
artificial intelligence CT fractional flow reserve for the identi-
fication of lesion-specific ischemia. Eur Radiol 29:2378–2387. 
https:// doi. org/ 10. 1007/ s00330- 018- 5834-z

 54. Pérez de Isla L, Alonso R, Gómez de Diego JJ et al (2021) Coro-
nary plaque burden, plaque characterization and their prognostic 
implications in familial hypercholesterolemia: a computed tomo-
graphic angiography study. Atherosclerosis 317:52–58. https:// 
doi. org/ 10. 1016/j. ather oscle rosis. 2020. 11. 012

 55. Kolossváry M, Karády J, Szilveszter B et al (2017) Radiomic fea-
tures are superior to conventional quantitative computed tomo-
graphic metrics to identify coronary plaques with napkin-ring 
sign. Circ Cardiovasc Imaging. https:// doi. org/ 10. 1161/ CIRCI 
MAGING. 117. 006843

 56. Kolossváry M, Park J, Bang J-I et al (2019) Identification of 
invasive and radionuclide imaging markers of coronary plaque 
vulnerability using radiomic analysis of coronary computed 
tomography angiography. Eur Hear J Cardiovasc Imaging 
20:1250–1258. https:// doi. org/ 10. 1093/ ehjci/ jez033

 57. Moss AJ, Williams MC, Newby DE, Nicol ED (2017) The 
updated NICE guidelines: cardiac CT as the first-line test for 
coronary artery disease. Curr Cardiovasc Imaging Rep 10:15

 58. Lu MT, Ferencik M, Roberts RS et  al (2017) Noninvasive 
FFR derived from coronary CT angiography: management and 
outcomes in the PROMISE trial. JACC Cardiovasc Imaging 
10:1350–1358. https:// doi. org/ 10. 1016/j. jcmg. 2016. 11. 024

 59. Rajiah P, Cummings KW, Williamson E, Young PM (2022) CT 
fractional flow reserve: a practical guide to application, interpre-
tation, and problem solving. Radiographics 42:340–358. https:// 
doi. org/ 10. 1148/ rg. 210097

 60. Taylor CA, Fonte TA, Min JK (2013) Computational fluid 
dynamics applied to cardiac computed tomography for noninva-
sive quantification of fractional flow reserve: Scientific basis. J 
Am Coll Cardiol 61:2233–2241. https:// doi. org/ 10. 1016/j. jacc. 
2012. 11. 083

 61. Baumann S, Hirt M, Rott C et al (2020) Comparison of machine 
learning computed tomography-based fractional flow reserve and 
coronary CT angiography-derived plaque characteristics with 
invasive resting full-cycle ratio. J Clin Med 9:714. https:// doi. 
org/ 10. 3390/ jcm90 30714

 62. Giannopoulos AA, Keller L, Sepulcri D et al (2023) High-
speed onsite deep-learning based FFR-CT algorithm: evalua-
tion using invasive angiography as reference standard. Am J 
Roentgenol. https:// doi. org/ 10. 2214/ AJR. 23. 29156

 63. Zimmermann FM, Mast TP, Johnson NP et al (2021) Deep 
learning for prediction of fractional flow reserve from resting 
coronary pressure curves. EuroIntervention 17:51–58. https:// 
doi. org/ 10. 4244/ EIJ-D- 20- 00648

 64. Tesche C, Gray HN (2020) Machine learning and deep neural 
networks applications in coronary flow assessment. J Thorac 
Imaging 35:S66–S71. https:// doi. org/ 10. 1097/ RTI. 00000 00000 
000483

 65. Coenen A, Kim Y-H, Kruk M et al (2018) Diagnostic accu-
racy of a machine-learning approach to coronary computed 
tomographic angiography-based fractional flow reserve. Circ 
Cardiovasc Imaging. https:// doi. org/ 10. 1161/ CIRCI MAGING. 
117. 007217

 66. Yang J, Shan D, Dong M et al (2020) The effect of on-site CT-
derived fractional flow reserve on the management of decision 
making for patients with stable chest pain (TARGET trial): 
objective, rationale, and design. Trials 21:728. https:// doi. org/ 
10. 1186/ s13063- 020- 04649-9

 67. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-
causing coronary stenoses by noninvasive fractional flow reserve 
computed from coronary computed tomographic angiograms: 
results from the prospective multicenter DISCOVER-FLOW 
(Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni. J 
Am Coll Cardiol 58:1989–1997. https:// doi. org/ 10. 1016/j. jacc. 
2011. 06. 066

 68. Douglas PS, De Bruyne B, Pontone G et al (2016) 1-Year out-
comes of FFRCT-guided care in patients with suspected coro-
nary disease: the platform study. J Am Coll Cardiol 68:435–445. 
https:// doi. org/ 10. 1016/j. jacc. 2016. 05. 057

 69. Hlatky MA, Saxena A, Koo B-K et al (2013) Projected costs and 
consequences of computed tomography-determined fractional 
flow reserve. Clin Cardiol 36:743–748. https:// doi. org/ 10. 1002/ 
clc. 22205

 70. Fischer AM, van Assen M, Schoepf UJ et al (2021) Non-invasive 
fractional flow reserve (FFRCT) in the evaluation of acute chest 
pain—concepts and first experiences. Eur J Radiol 138:109633. 
https:// doi. org/ 10. 1016/j. ejrad. 2021. 109633

 71. Gulati M, Levy PD, Mukherjee D et al (2021) 2021 AHA/ACC/
ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation 
and diagnosis of chest pain: A report of the American college of 
cardiology/American heart association joint committee on clini-
cal practice guidelines. Circulation. https:// doi. org/ 10. 1161/ CIR. 
00000 00000 001029

 72. Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic perfor-
mance of noninvasive fractional flow reserve derived from coro-
nary computed tomography angiography in suspected coronary 
artery disease. J Am Coll Cardiol 63:1145–1155. https:// doi. org/ 
10. 1016/j. jacc. 2013. 11. 043

 73. Tesche C, De Cecco CN, Albrecht MH et al (2017) Coronary 
CT angiography–derived fractional flow reserve. Radiology 
285:17–33. https:// doi. org/ 10. 1148/ radiol. 20171 62641

 74. Pontone G, Weir-McCall JR, Baggiano A et al (2019) Determi-
nants of rejection rate for coronary CT angiography fractional 
flow reserve analysis. Radiology 292:597–605. https:// doi. org/ 
10. 1148/ radiol. 20191 82673

 75. Feng Y, Xu Z, Zhang L et al (2022) Machine-learning-derived 
radiomics signature of pericoronary tissue in coronary CT angi-
ography associates with functional ischemia. Front Physiol. 
https:// doi. org/ 10. 3389/ fphys. 2022. 980996

 76. Oikonomou EK, Williams MC, Kotanidis CP et al (2019) A 
novel machine learning-derived radiotranscriptomic signature of 
perivascular fat improves cardiac risk prediction using coronary 
CT angiography. Eur Heart J 40:3529–3543. https:// doi. org/ 10. 
1093/ eurhe artj/ ehz592

 77. Antonopoulos AS, Sanna F, Sabharwal N et al (2017) Detecting 
human coronary inflammation by imaging perivascular fat. Sci 
Transl Med. https:// doi. org/ 10. 1126/ scitr anslm ed. aal26 58

 78. van der Bijl P, Kuneman JH, Bax JJ (2022) Pericoronary adipose 
tissue attenuation: diagnostic and prognostic implications. Eur 
Hear J Cardiovasc Imaging 23:e537–e538. https:// doi. org/ 10. 
1093/ ehjci/ jeac1 75

 79. Sagris M, Antonopoulos AS, Simantiris S et al (2022) Peric-
oronary fat attenuation index—a new imaging biomarker and 
its diagnostic and prognostic utility: a systematic review and 

https://doi.org/10.1016/j.jacc.2009.02.068
https://doi.org/10.1016/j.jacc.2009.02.068
https://doi.org/10.1016/j.jcmg.2012.09.016
https://doi.org/10.1016/j.jcmg.2012.09.016
https://doi.org/10.1093/ehjci/jev325
https://doi.org/10.1093/ehjci/jev325
https://doi.org/10.1007/s00330-018-5834-z
https://doi.org/10.1016/j.atherosclerosis.2020.11.012
https://doi.org/10.1016/j.atherosclerosis.2020.11.012
https://doi.org/10.1161/CIRCIMAGING.117.006843
https://doi.org/10.1161/CIRCIMAGING.117.006843
https://doi.org/10.1093/ehjci/jez033
https://doi.org/10.1016/j.jcmg.2016.11.024
https://doi.org/10.1148/rg.210097
https://doi.org/10.1148/rg.210097
https://doi.org/10.1016/j.jacc.2012.11.083
https://doi.org/10.1016/j.jacc.2012.11.083
https://doi.org/10.3390/jcm9030714
https://doi.org/10.3390/jcm9030714
https://doi.org/10.2214/AJR.23.29156
https://doi.org/10.4244/EIJ-D-20-00648
https://doi.org/10.4244/EIJ-D-20-00648
https://doi.org/10.1097/RTI.0000000000000483
https://doi.org/10.1097/RTI.0000000000000483
https://doi.org/10.1161/CIRCIMAGING.117.007217
https://doi.org/10.1161/CIRCIMAGING.117.007217
https://doi.org/10.1186/s13063-020-04649-9
https://doi.org/10.1186/s13063-020-04649-9
https://doi.org/10.1016/j.jacc.2011.06.066
https://doi.org/10.1016/j.jacc.2011.06.066
https://doi.org/10.1016/j.jacc.2016.05.057
https://doi.org/10.1002/clc.22205
https://doi.org/10.1002/clc.22205
https://doi.org/10.1016/j.ejrad.2021.109633
https://doi.org/10.1161/CIR.0000000000001029
https://doi.org/10.1161/CIR.0000000000001029
https://doi.org/10.1016/j.jacc.2013.11.043
https://doi.org/10.1016/j.jacc.2013.11.043
https://doi.org/10.1148/radiol.2017162641
https://doi.org/10.1148/radiol.2019182673
https://doi.org/10.1148/radiol.2019182673
https://doi.org/10.3389/fphys.2022.980996
https://doi.org/10.1093/eurheartj/ehz592
https://doi.org/10.1093/eurheartj/ehz592
https://doi.org/10.1126/scitranslmed.aal2658
https://doi.org/10.1093/ehjci/jeac175
https://doi.org/10.1093/ehjci/jeac175


La radiologia medica 

meta-analysis. Eur Hear J - Cardiovasc Imaging 23:e526–e536. 
https:// doi. org/ 10. 1093/ ehjci/ jeac1 74

 80. Oikonomou EK, Marwan M, Desai MY et al (2018) Non-invasive 
detection of coronary inflammation using computed tomography 
and prediction of residual cardiovascular risk (the CRISP CT 
study): a post-hoc analysis of prospective outcome data. Lancet 
392:929–939. https:// doi. org/ 10. 1016/ S0140- 6736(18) 31114-0

 81. Lin A, Kolossváry M, Yuvaraj J et al (2020) Myocardial infarc-
tion associates with a distinct pericoronary adipose tissue radi-
omic phenotype. JACC Cardiovasc Imaging 13:2371–2383. 
https:// doi. org/ 10. 1016/j. jcmg. 2020. 06. 033

 82. Varga-Szemes A, Meinel FG, De Cecco CN et al (2015) CT 
myocardial perfusion imaging. Am J Roentgenol 204:487–497. 
https:// doi. org/ 10. 2214/ AJR. 14. 13546

 83. Pontone G, Baggiano A, Andreini D et al (2019) Dynamic stress 
computed tomography perfusion with a whole-heart coverage 
scanner in addition to coronary computed tomography angiog-
raphy and fractional flow reserve computed tomography derived. 
JACC Cardiovasc Imaging 12:2460–2471. https:// doi. org/ 10. 
1016/j. jcmg. 2019. 02. 015

 84. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemo-
dynamically significant coronary artery stenosis: incremental 
diagnostic value of dynamic CT-based myocardial perfusion 
imaging. Radiology 260:689–698. https:// doi. org/ 10. 1148/ radiol. 
11110 638

 85. Rossi A, Dharampal A, Wragg A et al (2014) Diagnostic per-
formance of hyperaemic myocardial blood flow index obtained 
by dynamic computed tomography: does it predict functionally 
significant coronary lesions? Eur Hear J Cardiovasc Imaging 
15:85–94. https:// doi. org/ 10. 1093/ ehjci/ jet133

 86. Coenen A, Rossi A, Lubbers MM et al (2017) Integrating CT 
myocardial perfusion and CT-FFR in the work-up of coronary 
artery disease. JACC Cardiovasc Imaging 10:760–770. https:// 
doi. org/ 10. 1016/j. jcmg. 2016. 09. 028

 87. Tanabe Y, Kido T, Uetani T et al (2016) Differentiation of myo-
cardial ischemia and infarction assessed by dynamic computed 
tomography perfusion imaging and comparison with cardiac 
magnetic resonance and single-photon emission computed 
tomography. Eur Radiol 26:3790–3801. https:// doi. org/ 10. 1007/ 
s00330- 016- 4238-1

 88. Alessio AM, Bindschadler M, Busey JM et al (2019) Accuracy 
of myocardial blood flow estimation from dynamic contrast-
enhanced cardiac CT compared With PET. Circ Cardiovasc 
Imaging. https:// doi. org/ 10. 1161/ CIRCI MAGING. 118. 008323

 89. Lu M, Wang S, Sirajuddin A et al (2018) Dynamic stress com-
puted tomography myocardial perfusion for detecting myocardial 
ischemia: a systematic review and meta-analysis. Int J Cardiol 
258:325–331. https:// doi. org/ 10. 1016/j. ijcard. 2018. 01. 095

 90. Lubbers M, Coenen A, Kofflard M et al (2018) Comprehensive 
cardiac CT with myocardial perfusion imaging versus functional 
testing in suspected coronary artery disease: the multicenter, 
randomized CRESCENT-II trial. JACC Cardiovasc Imaging 
11:1625–1636. https:// doi. org/ 10. 1016/j. jcmg. 2017. 10. 010

 91. Nakamura S, Kitagawa K, Goto Y et al (2019) Incremental 
prognostic value of myocardial blood flow quantified with stress 
dynamic computed tomography perfusion imaging. JACC Car-
diovasc Imaging 12:1379–1387. https:// doi. org/ 10. 1016/j. jcmg. 
2018. 05. 021

 92. Yu M, Chen X, Dai X et al (2019) The value of low-dose dynamic 
myocardial perfusion CT for accurate evaluation of microvascu-
lar obstruction in patients with acute myocardial infarction. Am J 
Roentgenol 213:798–806. https:// doi. org/ 10. 2214/ AJR. 19. 21305

 93. Galea N, Dacquino GM, Ammendola RM et al (2019) Microvas-
cular obstruction extent predicts major adverse cardiovascular 
events in patients with acute myocardial infarction and preserved 

ejection fraction. Eur Radiol 29:2369–2377. https:// doi. org/ 10. 
1007/ s00330- 018- 5895-z

 94. Vliegenthart R, Pelgrim GJ, Ebersberger U et al (2012) Dual-
energy CT of the heart. Am J Roentgenol 199:S54–S63. https:// 
doi. org/ 10. 2214/ AJR. 12. 9208

 95. Nakahara T, Toyama T, Jinzaki M et al (2018) Quantitative analy-
sis of iodine image of dual-energy computed tomography at rest. 
J Thorac Imaging 33:97–104. https:// doi. org/ 10. 1097/ RTI. 00000 
00000 000284

 96. Dell’Aversana S, Ascione R, De Giorgi M et al (2022) Dual-
energy CT of the heart: a review. J Imaging 8:236. https:// doi. 
org/ 10. 3390/ jimag ing80 90236

 97. Kumar V, Harfi TT, He X et al (2019) Estimation of myocardial 
fibrosis in humans with dual energy CT. J Cardiovasc Comput 
Tomogr 13:315–318. https:// doi. org/ 10. 1016/j. jcct. 2018. 12. 004

 98. van Assen M, Vonder M, Pelgrim GJ et al (2020) Computed 
tomography for myocardial characterization in ischemic heart 
disease: a state-of-the-art review. Eur Radiol Exp 4:36. https:// 
doi. org/ 10. 1186/ s41747- 020- 00158-1

 99. Palmisano A, Vignale D, Benedetti G et  al (2020) Late 
iodine enhancement cardiac computed tomography for detec-
tion of myocardial scars: impact of experience in the clinical 
practice. Radiol Med 125:128–136. https:// doi. org/ 10. 1007/ 
s11547- 019- 01108-7

 100. Pattanayak P, Bleumke DA (2015) Tissue characterization of the 
myocardium. Radiol Clin North Am 53:413–423. https:// doi. org/ 
10. 1016/j. rcl. 2014. 11. 005

 101. Tanabe Y, Kido T, Kurata A et al (2017) Impact of knowledge-
based iterative model reconstruction on myocardial late iodine 
enhancement in computed tomography and comparison with 
cardiac magnetic resonance. Int J Cardiovasc Imaging 33:1609–
1618. https:// doi. org/ 10. 1007/ s10554- 017- 1137-8

 102. Wichmann JL, Bauer RW, Doss M et al (2013) Diagnostic accu-
racy of late iodine-enhancement dual-energy computed tomog-
raphy for the detection of chronic myocardial infarction com-
pared with late gadolinium-enhancement 3-t magnetic resonance 
imaging. Invest Radiol 48:851–856. https:// doi. org/ 10. 1097/ RLI. 
0b013 e3182 9d91a8

 103. Matsuda T, Kido T, Itoh T et al (2015) Diagnostic accuracy 
of late iodine enhancement on cardiac computed tomography 
with a denoise filter for the evaluation of myocardial infarction. 
Int J Cardiovasc Imaging 31:177–185. https:// doi. org/ 10. 1007/ 
s10554- 015- 0716-9

 104. Bouleti C, Baudry G, Iung B et al (2017) Usefulness of late 
iodine enhancement on spectral CT in acute myocarditis. JACC 
Cardiovasc Imaging 10:826–827. https:// doi. org/ 10. 1016/j. jcmg. 
2016. 09. 013

 105. Ohta Y, Kitao S, Yunaga H et al (2018) Myocardial delayed 
enhancement CT for the evaluation of heart failure: comparison 
to MRI. Radiology 288:682–691. https:// doi. org/ 10. 1148/ radiol. 
20181 72523

 106. Palmisano A, Vignale D, Tadic M et al (2022) Myocardial late 
contrast enhancement CT in troponin-positive acute chest pain 
syndrome. Radiology 302:545–553. https:// doi. org/ 10. 1148/ 
radiol. 211288

 107. Esposito A, Palmisano A, Antunes S et al (2016) Cardiac CT 
with delayed enhancement in the characterization of ventricu-
lar tachycardia structural substrate. JACC Cardiovasc Imaging 
9:822–832. https:// doi. org/ 10. 1016/j. jcmg. 2015. 10. 024

 108. Scully PR, Bastarrika G, Moon JC, Treibel TA (2018) Myocar-
dial extracellular volume quantification by cardiovascular mag-
netic resonance and computed tomography. Curr Cardiol Rep 
20:15. https:// doi. org/ 10. 1007/ s11886- 018- 0961-3

 109. Bandula S, White SK, Flett AS et al (2013) Measurement of 
myocardial extracellular volume fraction by using equilibrium 
contrast-enhanced CT: validation against histologic findings. 

https://doi.org/10.1093/ehjci/jeac174
https://doi.org/10.1016/S0140-6736(18)31114-0
https://doi.org/10.1016/j.jcmg.2020.06.033
https://doi.org/10.2214/AJR.14.13546
https://doi.org/10.1016/j.jcmg.2019.02.015
https://doi.org/10.1016/j.jcmg.2019.02.015
https://doi.org/10.1148/radiol.11110638
https://doi.org/10.1148/radiol.11110638
https://doi.org/10.1093/ehjci/jet133
https://doi.org/10.1016/j.jcmg.2016.09.028
https://doi.org/10.1016/j.jcmg.2016.09.028
https://doi.org/10.1007/s00330-016-4238-1
https://doi.org/10.1007/s00330-016-4238-1
https://doi.org/10.1161/CIRCIMAGING.118.008323
https://doi.org/10.1016/j.ijcard.2018.01.095
https://doi.org/10.1016/j.jcmg.2017.10.010
https://doi.org/10.1016/j.jcmg.2018.05.021
https://doi.org/10.1016/j.jcmg.2018.05.021
https://doi.org/10.2214/AJR.19.21305
https://doi.org/10.1007/s00330-018-5895-z
https://doi.org/10.1007/s00330-018-5895-z
https://doi.org/10.2214/AJR.12.9208
https://doi.org/10.2214/AJR.12.9208
https://doi.org/10.1097/RTI.0000000000000284
https://doi.org/10.1097/RTI.0000000000000284
https://doi.org/10.3390/jimaging8090236
https://doi.org/10.3390/jimaging8090236
https://doi.org/10.1016/j.jcct.2018.12.004
https://doi.org/10.1186/s41747-020-00158-1
https://doi.org/10.1186/s41747-020-00158-1
https://doi.org/10.1007/s11547-019-01108-7
https://doi.org/10.1007/s11547-019-01108-7
https://doi.org/10.1016/j.rcl.2014.11.005
https://doi.org/10.1016/j.rcl.2014.11.005
https://doi.org/10.1007/s10554-017-1137-8
https://doi.org/10.1097/RLI.0b013e31829d91a8
https://doi.org/10.1097/RLI.0b013e31829d91a8
https://doi.org/10.1007/s10554-015-0716-9
https://doi.org/10.1007/s10554-015-0716-9
https://doi.org/10.1016/j.jcmg.2016.09.013
https://doi.org/10.1016/j.jcmg.2016.09.013
https://doi.org/10.1148/radiol.2018172523
https://doi.org/10.1148/radiol.2018172523
https://doi.org/10.1148/radiol.211288
https://doi.org/10.1148/radiol.211288
https://doi.org/10.1016/j.jcmg.2015.10.024
https://doi.org/10.1007/s11886-018-0961-3


 La radiologia medica

Radiology 269:396–403. https:// doi. org/ 10. 1148/ radio logy. 
13130 130

 110. Abadia AF, van Assen M, Martin SS et al (2020) Myocardial 
extracellular volume fraction to differentiate healthy from car-
diomyopathic myocardium using dual-source dual-energy CT. 
J Cardiovasc Comput Tomogr 14:162–167. https:// doi. org/ 10. 
1016/j. jcct. 2019. 09. 008

 111. Hayashi H, Oda S, Emoto T et al (2022) Myocardial extracellular 
volume quantification by cardiac CT in pulmonary hypertension: 
comparison with cardiac MRI. Eur J Radiol 153:110386. https:// 
doi. org/ 10. 1016/j. ejrad. 2022. 110386

 112. Aquino GJ, O’Doherty J, Schoepf UJ et al (2023) Myocardial 
characterization with extracellular volume mapping with a first-
generation photon-counting detector CT with MRI reference. 
Radiology 307:e222030. https:// doi. org/ 10. 1148/ radiol. 222030

 113. Mergen V, Sartoretti T, Klotz E et al (2022) Extracellular vol-
ume quantification with cardiac late enhancement scanning 
using dual-source photon-counting detector CT. Invest Radiol 
57:406–411. https:// doi. org/ 10. 1097/ RLI. 00000 00000 000851

 114. Lee H-J, Im DJ, Youn J-C et al (2016) Myocardial extracellular 
volume fraction with dual-energy equilibrium contrast-enhanced 
cardiac CT in nonischemic cardiomyopathy: a prospective com-
parison with cardiac MR imaging. Radiology 280:49–57. https:// 
doi. org/ 10. 1148/ radiol. 20161 51289

 115. Ohta Y, Kishimoto J, Kitao S et al (2020) Investigation of myo-
cardial extracellular volume fraction in heart failure patients 
using iodine map with rapid-kV switching dual-energy CT: seg-
mental comparison with MRI T1 mapping. J Cardiovasc Comput 
Tomogr 14:349–355. https:// doi. org/ 10. 1016/j. jcct. 2019. 12. 032

 116. Tamarappoo B, Han D, Tyler J et al (2020) Prognostic value of 
computed tomography-derived extracellular volume in TAVR 
patients with low-flow low-gradient aortic stenosis. JACC Car-
diovasc Imaging 13:2591–2601. https:// doi. org/ 10. 1016/j. jcmg. 
2020. 07. 045

 117. Nacif MS, Kawel N, Lee JJ et al (2012) Interstitial myocardial 
fibrosis assessed as extracellular volume fraction with low-radi-
ation-dose cardiac CT. Radiology 264:876–883. https:// doi. org/ 
10. 1148/ radiol. 12112 458

 118. Hamdy A, Kitagawa K, Goto Y et al (2019) Comparison of 
the different imaging time points in delayed phase cardiac CT 
for myocardial scar assessment and extracellular volume frac-
tion estimation in patients with old myocardial infarction. Int 
J Cardiovasc Imaging 35:917–926. https:// doi. org/ 10. 1007/ 
s10554- 018- 1513-z

 119. Qi R-X, Jiang J-S, Shao J et al (2022) Measurement of myocar-
dial extracellular volume fraction in patients with heart failure 
with preserved ejection fraction using dual-energy computed 
tomography. Eur Radiol 32:4253–4263. https:// doi. org/ 10. 1007/ 
s00330- 021- 08514-4

 120. Yashima S, Takaoka H, Iwahana T et al (2023) Evaluation of 
extracellular volume by computed tomography is useful for pre-
diction of prognosis in dilated cardiomyopathy. Heart Vessels 
38:185–194. https:// doi. org/ 10. 1007/ s00380- 022- 02154-4

 121. Gama F, Rosmini S, Bandula S et al (2022) Extracellular vol-
ume fraction by computed tomography predicts long-term 
prognosis among patients with cardiac amyloidosis. JACC 
Cardiovasc Imaging 15:2082–2094. https:// doi. org/ 10. 1016/j. 
jcmg. 2022. 08. 006

 122. Ishiyama M, Kurita T, Takafuji M et al (2023) The cardiac 
computed tomography-derived extracellular volume fraction 
predicts patient outcomes and left ventricular mass reductions 
after transcatheter aortic valve implantation for aortic stenosis. 
J Cardiol 81:476–484. https:// doi. org/ 10. 1016/j. jjcc. 2022. 12. 
002

 123. Han D, Tamarappoo B, Klein E et al (2021) Computed tomogra-
phy angiography-derived extracellular volume fraction predicts 

early recovery of left ventricular systolic function after transcath-
eter aortic valve replacement. Eur Hear J Cardiovasc Imaging 
22:179–185. https:// doi. org/ 10. 1093/ ehjci/ jeaa3 10

 124. Gaborit B, Sengenes C, Ancel P, et al (2017) Role of Epicardial 
Adipose Tissue in Health and Disease: A Matter of Fat? In: Com-
prehensive Physiology. Wiley, pp 1051–1082

 125. Mancio J, Azevedo D, Saraiva F et al (2018) Epicardial adipose 
tissue volume assessed by computed tomography and coronary 
artery disease: a systematic review and meta-analysis. Eur Hear 
J Cardiovasc Imaging 19:490–497. https:// doi. org/ 10. 1093/ ehjci/ 
jex314

 126. Cannavale G, Francone M, Galea N et al (2018) Fatty images 
of the heart: spectrum of normal and pathological findings by 
computed tomography and cardiac magnetic resonance imaging. 
Biomed Res Int 2018:1–13. https:// doi. org/ 10. 1155/ 2018/ 56103 
47

 127. Mahabadi AA, Berg MH, Lehmann N et al (2013) Association of 
epicardial fat with cardiovascular risk factors and incident myo-
cardial infarction in the general population. J Am Coll Cardiol 
61:1388–1395. https:// doi. org/ 10. 1016/j. jacc. 2012. 11. 062

 128. Antonopoulos AS, Antoniades C (2017) The role of epicardial 
adipose tissue in cardiac biology: classic concepts and emerging 
roles. J Physiol 595:3907–3917. https:// doi. org/ 10. 1113/ JP273 
049

 129. Zhu W, Zhang H, Guo L, Hong K (2016) Relationship between 
epicardial adipose tissue volume and atrial fibrillation. Herz 
41:421–427. https:// doi. org/ 10. 1007/ s00059- 015- 4387-z

 130. Yorgun H, Canpolat U, Aytemir K et al (2015) Association of 
epicardial and peri-atrial adiposity with the presence and sever-
ity of non-valvular atrial fibrillation. Int J Cardiovasc Imaging 
31:649–657. https:// doi. org/ 10. 1007/ s10554- 014- 0579-5

 131. Venkateshvaran A, Faxen UL, Hage C et al (2022) Associa-
tion of epicardial adipose tissue with proteomics, coronary flow 
reserve, cardiac structure and function, and quality of life in 
heart failure with preserved ejection fraction: insights from the 
<scp>PROMIS-HFpEF</scp> study. Eur J Heart Fail 24:2251–
2260. https:// doi. org/ 10. 1002/ ejhf. 2709

 132. La Grutta L, Toia P, Farruggia A et al (2016) Quantification 
of epicardial adipose tissue in coronary calcium score and CT 
coronary angiography image data sets: comparison of attenuation 
values, thickness and volumes. Br J Radiol 89:20150773. https:// 
doi. org/ 10. 1259/ bjr. 20150 773

 133. Raggi P, Gadiyaram V, Zhang C et al (2019) Statins reduce epi-
cardial adipose tissue attenuation independent of lipid lowering: 
a potential pleiotropic effect. J Am Heart Assoc. https:// doi. org/ 
10. 1161/ JAHA. 119. 013104

 134. Franssens BT, Nathoe HM, Visseren FLJ et al (2017) Relation of 
epicardial adipose tissue radiodensity to coronary artery calcium 
on cardiac computed tomography in patients at high risk for car-
diovascular disease. Am J Cardiol 119:1359–1365. https:// doi. 
org/ 10. 1016/j. amjca rd. 2017. 01. 031

 135. Goeller M, Achenbach S, Marwan M et al (2018) Epicardial 
adipose tissue density and volume are related to subclinical ath-
erosclerosis, inflammation and major adverse cardiac events in 
asymptomatic subjects. J Cardiovasc Comput Tomogr 12:67–73. 
https:// doi. org/ 10. 1016/j. jcct. 2017. 11. 007

 136. Gaibazzi N, Martini C, Botti A et al (2019) Coronary inflamma-
tion by computed tomography pericoronary fat attenuation in 
MINOCA and Tako-Tsubo syndrome. J Am Heart Assoc. https:// 
doi. org/ 10. 1161/ JAHA. 119. 013235

 137. Nichols JH, Samy B, Nasir K et al (2008) Volumetric meas-
urement of pericardial adipose tissue from contrast-enhanced 
coronary computed tomography angiography: a reproducibility 
study. J Cardiovasc Comput Tomogr 2:288–295. https:// doi. org/ 
10. 1016/j. jcct. 2008. 08. 008

https://doi.org/10.1148/radiology.13130130
https://doi.org/10.1148/radiology.13130130
https://doi.org/10.1016/j.jcct.2019.09.008
https://doi.org/10.1016/j.jcct.2019.09.008
https://doi.org/10.1016/j.ejrad.2022.110386
https://doi.org/10.1016/j.ejrad.2022.110386
https://doi.org/10.1148/radiol.222030
https://doi.org/10.1097/RLI.0000000000000851
https://doi.org/10.1148/radiol.2016151289
https://doi.org/10.1148/radiol.2016151289
https://doi.org/10.1016/j.jcct.2019.12.032
https://doi.org/10.1016/j.jcmg.2020.07.045
https://doi.org/10.1016/j.jcmg.2020.07.045
https://doi.org/10.1148/radiol.12112458
https://doi.org/10.1148/radiol.12112458
https://doi.org/10.1007/s10554-018-1513-z
https://doi.org/10.1007/s10554-018-1513-z
https://doi.org/10.1007/s00330-021-08514-4
https://doi.org/10.1007/s00330-021-08514-4
https://doi.org/10.1007/s00380-022-02154-4
https://doi.org/10.1016/j.jcmg.2022.08.006
https://doi.org/10.1016/j.jcmg.2022.08.006
https://doi.org/10.1016/j.jjcc.2022.12.002
https://doi.org/10.1016/j.jjcc.2022.12.002
https://doi.org/10.1093/ehjci/jeaa310
https://doi.org/10.1093/ehjci/jex314
https://doi.org/10.1093/ehjci/jex314
https://doi.org/10.1155/2018/5610347
https://doi.org/10.1155/2018/5610347
https://doi.org/10.1016/j.jacc.2012.11.062
https://doi.org/10.1113/JP273049
https://doi.org/10.1113/JP273049
https://doi.org/10.1007/s00059-015-4387-z
https://doi.org/10.1007/s10554-014-0579-5
https://doi.org/10.1002/ejhf.2709
https://doi.org/10.1259/bjr.20150773
https://doi.org/10.1259/bjr.20150773
https://doi.org/10.1161/JAHA.119.013104
https://doi.org/10.1161/JAHA.119.013104
https://doi.org/10.1016/j.amjcard.2017.01.031
https://doi.org/10.1016/j.amjcard.2017.01.031
https://doi.org/10.1016/j.jcct.2017.11.007
https://doi.org/10.1161/JAHA.119.013235
https://doi.org/10.1161/JAHA.119.013235
https://doi.org/10.1016/j.jcct.2008.08.008
https://doi.org/10.1016/j.jcct.2008.08.008


La radiologia medica 

 138. Barbosa JG, Figueiredo B, Bettencourt N, Tavares JMRS (2011) 
toward automatic quantification of the epicardial fat in non-
contrasted CT images. Comput Methods Biomech Biomed Eng 
14:905–914. https:// doi. org/ 10. 1080/ 10255 842. 2010. 499871

 139. Rebelo AF, Ferreira AM, Fonseca JM (2022) Automatic epicar-
dial fat segmentation and volume quantification on non-contrast 
cardiac Computed Tomography. Comput Methods Programs 
Biomed Updat 2:100079. https:// doi. org/ 10. 1016/j. cmpbup. 2022. 
100079

 140. Ding X, Terzopoulos D, Diaz-Zamudio M et al (2015) Auto-
mated pericardium delineation and epicardial fat volume quan-
tification from noncontrast CT. Med Phys 42:5015–5026. https:// 
doi. org/ 10. 1118/1. 49273 75

 141. Commandeur F, Goeller M, Betancur J et al (2018) Deep learn-
ing for quantification of epicardial and thoracic adipose tissue 
from non-contrast CT. IEEE Trans Med Imaging 37:1835–1846. 
https:// doi. org/ 10. 1109/ TMI. 2018. 28047 99

 142. Commandeur F, Goeller M, Razipour A et al (2019) Fully auto-
mated CT quantification of epicardial adipose tissue by deep 
learning: a multicenter study. Radiol Artif Intell 1:e190045. 
https:// doi. org/ 10. 1148/ ryai. 20191 90045

 143. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images 
are more than pictures, they are data. Radiology 278:563–577. 
https:// doi. org/ 10. 1148/ radiol. 20151 51169

 144. Hu W, Wu X, Dong D et al (2020) Novel radiomics features 
from CCTA images for the functional evaluation of significant 
ischemic lesions based on the coronary fractional flow reserve 
score. Int J Cardiovasc Imaging 36:2039–2050. https:// doi. org/ 
10. 1007/ s10554- 020- 01896-4

 145. Kolossváry M, Karády J, Kikuchi Y et al (2019) Radiomics ver-
sus visual and histogram-based assessment to identify atheroma-
tous lesions at coronary CT angiography: an ex vivo study. Radi-
ology 293:89–96. https:// doi. org/ 10. 1148/ radiol. 20191 90407

 146. Li L, Hu X, Tao X et  al (2021) Radiomic features of 
plaques derived from coronary CT angiography to identify 

hemodynamically significant coronary stenosis, using invasive 
FFR as the reference standard. Eur J Radiol 140:109769. https:// 
doi. org/ 10. 1016/j. ejrad. 2021. 109769

 147. Mannil M, von Spiczak J, Manka R, Alkadhi H (2018) Texture 
analysis and machine learning for detecting myocardial infarction 
in noncontrast low-dose computed tomography. Invest Radiol 
53:338–343. https:// doi. org/ 10. 1097/ RLI. 00000 00000 000448

 148. Shu Z-Y, Cui S-J, Zhang Y-Q et al (2022) Predicting chronic 
myocardial ischemia using CCTA-based radiomics machine 
learning nomogram. J Nucl Cardiol 29:262–274. https:// doi. org/ 
10. 1007/ s12350- 020- 02204-2

 149. Qian W, Jiang Y, Liu X et al (2021) Distinguishing cardiac 
myxomas from cardiac thrombi by a radiomics signature based 
on cardiovascular contrast-enhanced computed tomography 
images. BMC Cardiovasc Disord 21:152. https:// doi. org/ 10. 1186/ 
s12872- 021- 01961-3

 150. Shang J, Guo Y, Ma Y, Hou Y (2022) Cardiac computed tomog-
raphy radiomics: a narrative review of current status and future 
directions. Quant Imaging Med Surg 12:3436–3453. https:// doi. 
org/ 10. 21037/ qims- 21- 1022

 151. Motwani M, Dey D, Berman DS et al (2016) Machine learning 
for prediction of all-cause mortality in patients with suspected 
coronary artery disease: a 5-year multicentre prospective regis-
try analysis. Eur Heart J ehw. https:// doi. org/ 10. 1093/ eurhe artj/ 
ehw188

 152. Cundari G, Galea N, Mergen V et al (2023) Myocardial extracel-
lular volume quantification with computed tomography-current 
status and future outlook. Insights Imaging 14:156. https:// doi. 
org/ 10. 1186/ s13244- 023- 01506-6

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/10255842.2010.499871
https://doi.org/10.1016/j.cmpbup.2022.100079
https://doi.org/10.1016/j.cmpbup.2022.100079
https://doi.org/10.1118/1.4927375
https://doi.org/10.1118/1.4927375
https://doi.org/10.1109/TMI.2018.2804799
https://doi.org/10.1148/ryai.2019190045
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s10554-020-01896-4
https://doi.org/10.1007/s10554-020-01896-4
https://doi.org/10.1148/radiol.2019190407
https://doi.org/10.1016/j.ejrad.2021.109769
https://doi.org/10.1016/j.ejrad.2021.109769
https://doi.org/10.1097/RLI.0000000000000448
https://doi.org/10.1007/s12350-020-02204-2
https://doi.org/10.1007/s12350-020-02204-2
https://doi.org/10.1186/s12872-021-01961-3
https://doi.org/10.1186/s12872-021-01961-3
https://doi.org/10.21037/qims-21-1022
https://doi.org/10.21037/qims-21-1022
https://doi.org/10.1093/eurheartj/ehw188
https://doi.org/10.1093/eurheartj/ehw188
https://doi.org/10.1186/s13244-023-01506-6
https://doi.org/10.1186/s13244-023-01506-6

	Imaging biomarkers in cardiac CT: moving beyond simple coronary anatomical assessment
	Abstract
	Introduction
	Atherosclerotic burden
	High-risk coronary plaque features
	Fractional flow reserve
	Pericoronary adipose tissue
	Myocardial perfusion imaging
	Late iodine enhancement
	Extracellular volume fraction
	Epicardial adipose tissue
	Future perspectives
	Conclusion
	References


