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Abstract: Simulations of transients are an obliged step for the insulation coordination of cable lines. Although a frequency-
dependent power cable line model better takes into account real conditions since resistive and inductive parameters vary with
frequency, a distributed parameter with lumped losses power cable models can be useful to simplify and give higher flexibility to
the insulation coordination study. In such a case, a dilemma rises up when a frequency shall be selected for the determination of
the cable parameters. In this study, a comparative analysis between the two models has been performed considering a typical
configuration layout, i.e. an overvoltage coming from an overhead line and stressing the cable line terminated on a transformer.
The overvoltages stressing both cable insulation wall and cable thermoplastic jacket are evaluated using the same system
configuration with both frequency-dependent and distributed parameter with lumped losses power cable line models, in the latter
case sweeping different frequency values for the determination of the cable parameters. A frequency range that minimise the
differences between the overvoltage estimation using the two models is suggested.

1 Introduction
Insulation coordination of power cables under transient conditions
implies the study of lightning and switching overvoltages stressing
the cable insulation wall [1, 2]. Furthermore, the assessment of the
overvoltage stressing the thermoplastic jacket, although not
directly involved on the goal of the insulation coordination, shall
be evaluated since any damage to the jacket can potentially reduce
the life of the cable system [1, 2]. In this respect, the distribution of
the overvoltage peak values or the maximum expected overvoltage
peak value shall be properly evaluated in order to perform the
insulation coordination through a statistic or a deterministic
approach, respectively [3–5].

Overvoltages stressing the cable systems mainly arise from
internal system electromagnetic transients (switching, faults etc.)
and external transients (lightning) usually due to lightning strokes
striking overhead lines connected to the cable line. For this reason,
it is then necessary to analyse all the possible overvoltages
stressing the cable ends. Induced overvoltages arising from a
lightning radiated electromagnetic field that directly illuminates the
cable system are hardly dangerous for cable insulation at medium
voltage level [6] and furthermore they are not relevant for high
voltage cable systems. Direct lightning on cables are very difficult
to be predicted and furthermore hardly likelihood. Consequently,
only overvoltages originated from the terminal stations or along the
overhead lines are considered in this paper.

In order to perform a correct evaluation of the transient
overvoltage stressing the cable insulation, it is of paramount
importance the proper selection of the numerical models to be used
for the simulation. As far as cable lines are concerned, different
models have been proposed in the literature.

The frequency-dependent models [7–12] take into account the
frequency dependence of the resistance and inductance cable
matrices and then should be preferred. On the other hand,
distributed parameter with lumped losses models [13, 14] are
straightforwardly implemented in simulations, since they evaluate
resistance and inductance matrices in a single frequency, but some
concern can arise in the choice of the frequency to be used for the
parameters evaluation that gives results as much as possible similar
to those obtained with a frequency-dependent model. This is

especially true for cable models, on account of the strong
frequency dependence of transformation matrices.

The aim of this paper is to deepen this subject trying to compare
the results of two simulations of the same system, one with a
frequency-dependent cable line model, and the other with a
distributed parameter with the lumped losses cable line model. The
latter simulation is repeated at different times varying each time the
frequency for the evaluation of the cable parameters. Each
simulation with the constant-parameter model is then compared
with the results obtained from the frequency-dependent model. A
quantitative comparison has been reserved to the peak values and a
qualitative comparison to the shape of the waves. Special attention
has been given to the peak values since in the insulation
coordination approach such values mainly drive the goal.

2 Analysed configurations
A configuration typically considered in the studies of insulation
coordination of cable line systems [1, 2, 5, 15] has been taken into
account. The configuration is reported in Fig. 1 in which a cable
line is in between an overhead line of infinite length and a
transformer (de facto an open line end under a transient point of
view). This configuration is the one that represents the worst
condition for the cable line insulation coordination [1, 2, 5, 15, 16].
The overvoltage is considered coming from the overhead line and
stressing the cable line. No surge arrester is considered. Cable
screen is earthed at both cable ends only considering an earthing
surge impedance of 10 and 1 Ω at the transition overhead to cable
end (sending end) and at the transformer end (receiving end),
respectively. Although in the real world, there could be some
screen earthing connections along the cable line, earthing the
screen at the cable line ends only represents a conservative
condition [1, 2, 5].

No flashovers are considered on the cable terminations or on
overhead sections external to the cable system in order not to

Fig. 1  Sketch of the system configuration considered in the simulation
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introduce a non-linearity. Conductor-to-screen and screen-to-
ground overvoltages at both cable ends are considered.

Two cable ratings have been selected for the simulation: 150 kV
– 1600 mm2 aluminium conductor cross section and 400 kV –
2500 mm2 copper conductor cross section. Characteristics and
formation (see Fig. 2) of the two cable ratings are reported in
Table 1. 

The conductor dispositions of the overhead line are those
usually adopted for the single circuit 150 kV level (single
conductor – triangle disposition) and the single circuit 400 kV level
(three-bundle conductor – flat disposition) that for the sake of
brevity are not further illustrated. The transformer has been
represented with a lumped resistance of 5 kΩ [16].

3 Cable line models and comparison
The MATLAB© environment has been used for the numerical
simulation.

The frequency-dependent cable model has been developed
through the fast Fourier transform (FFT). For the sake of brevity, in
this paper, such model is recalled as ‘Fourier’ model.

The distributed parameter with lumped losses cable model is
based on the Bergeron's travelling wave method used by the
Electromagnetic Transient Program [13, 14]. For the sake of
brevity, in this paper, such model is recalled as ‘Bergeron’ model.
For this model, a maximum cable length of 1 km has been
considered. Consequently, for the representation of cable lengths

higher than 1 km, more than one element has been connected in
series in order to have a sequence of equal length elements, e.g. a
cable line length of 3.2 km is represented as a segmented line
composed of four elements each 0.8 km long.

In order to compare the outputs from the above mentioned
simulations, an error (1) has been introduced as the difference
between the absolute peak value of the overvoltage at a specific
location between the simulation using the Fourier model and the
simulation using the Bergeron model. Such error ɛ is frequency
dependent since the outputs of the simulations using the Bergeron
model are a set of simulations, each one performed with a different
frequency for the evaluation of the cable parameters

ε f = VB f − VF
VF

(1)

where VF and VB are the voltage peak values at specific locations
with the simulations using Fourier and Bergeron models,
respectively. The overvoltages are evaluated at the transition from
overhead line to cable (sending end) and at the cable transformer
end (receiving end). At such locations, the maximum overvoltages
are expected if no surge arresters are installed at cable end(s).

The analysis on finding the frequency for the Bergeron model
that reduces at a minimum the error (1) is performed separately for
the conductor-to-screen propagation mode and the screen-to-
ground propagation mode. As illustrated in the following section,
the frequency that gives the minimum error ɛ is the same that gives

Fig. 2  Typical XLPE cable formation: (I) conductor, (II) inner semiconductive layer, (III) insulation wall, (IV) outer semiconductive layer, (V) metallic
continuous screen, (VI) thermoplastic jacket

 
Table 1 150 and 400 kV cable characteristics and formation

150 kV cable
conductor cross section 1600 mm2 conductor radius 26 mm

inner semicon thickness 2 mm inner semicon ε 1000
insulation thickness 20 mm insulation ε 2.6
outer semicon thickness 1 mm outer semicon ε 1000
inner semicon resist. 10 Ωm outer semicon resist. 10 Ωm
insulation tan δ 0.4 × 10−3 insulation type XLPE

screen cross section 210 mm2 screen type sheath

conductor material aluminium screen material aluminium
jacket thickness 5 mm Jacket ε 2.3
jacket material PE soil resistivity 100 Ωm
disposition type flat burying depth 1.3 m

400 kV cable
conductor cross section 2500 mm2 conductor radius 28 mm

inner semicon thickness 2 mm inner semicon E 1000
insulation thickness 28 mm insulation ε 2.3
outer semicon thickness 2 mm outer semicon E 1000
inner semicon resistivity 10 Ωm outer semicon resistivity 10 Ωm
insulation tan δ 0.4 × 10−3 insulation type XLPE

screen cross section 393 mm2 screen type sheath

conductor material Copper screen material aluminium
jacket thickness 5 mm jacket ε 2.3
jacket material PE soil resistivity 100 Ωm
disposition type Flat burying depth 1.3 m
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very similar waveshapes with the Fourier model and the Bergeron
model. A frequency that reduces the error (1) for both propagation
modes is suggested. The simulation outcomes highlight that the
range of frequencies that minimises the error ɛ is substantially
independent to the overhead line configuration, cable insulation
level (cable rating), load condition at the receiving end and screen
earthing at both cable ends, but it strongly depends on the
overvoltage waveshape only.

The simulations are performed considering the standard
lightning voltage waveshape (1.2/50 µs wave) and the standard
switching voltage waveshape (250/2500 µs wave) [17] in order to
consider both fast and a slow front overvoltages, respectively. The

waveshapes have been simulated by the Heidler function [18, 19]
with adequately selected parameters, which is more realistic than
the typical double exponential function. In fact, the first derivative
of Heidler function is zero at the foot of the wave in spite of the
double exponential wave.

The evaluation of the error has been undertaken in the
frequency range 10 Hz and 500 kHz. It is important to remind that
the well-known models used for the ground return, i.e. Carson [20]
for overhead lines and Pollaczek [21, 22] for cable lines, lose their
validity for frequencies higher than 1 MHz since they do not take
into account the displacement currents [23]. On the other hand,
considering the typical overvoltage waveshapes arising from
lightning events in power systems, the frequency spectrum reduces
practically to zero at a frequency of 500 kHz for the standard
1.2/50 μs wave.

4 Discussion of results
Fig. 3 shows the error (1) for the voltage conductor-to-screen mode
versus frequency for a 1.2/50 µs waveshape coming from the
overhead line and stressing the cable line. This figure highlights
that the error is about zero in the frequency range of 40–70 kHz.
The error (1) at both sending and receiving ends are practically the
same, except for frequency values below about 100 Hz. For
frequency lower than 1 kHz the error increases as the frequency
decreases. For frequency values above 80 kHz, the error becomes
negative turning the Bergeron model non-conservative in respect of
the Fourier model. 

Fig. 4 shows the error (1) on the voltage conductor-to-screen
mode versus frequency for a 250/2500 µs waveshape coming from
the overhead line and stressing the cable line. This figure highlights
that the error is around zero in the frequency range of 0.1–2 kHz.
There are no differences between sending and receiving ends for
the whole frequency range considered except for frequency values
below about 100 Hz and above 100 kHz. For frequency values
above about 2 kHz, the error becomes negative turning the
Bergeron model non-conservative in respect of the Fourier model. 

Fig. 5 shows the variation of the error (1) for the screen-to-
ground mode at both sending and receiving ends when the stressing
overvoltage travelling from the overhead line is a 1.2/50 µs
waveshape. In such a case since the overvoltage from the overhead
line directly stresses the cable insulation wall and since no
flashover occurs, the overvoltage travelling the screen-to-ground
mode is due to the coupling with the overvoltage travelling on the
conductor-to-screen mode. The error function (1) versus frequency
at the sending end is completely different to that at the receiving
end, on the contrary to what observed for the conductor-to-screen
mode (Figs. 3 and 4). The error function (1) at sending end is
positive for frequencies higher than 50 Hz and is quite constant
around 6% from 100 Hz to 2–3 kHz, increases at a frequency
higher than 3 kHz. Considering the receiving end, the error
function (1) passes from −30 to 45% from 10 to 100 Hz and
crosses zero around 25 Hz. From 100 Hz to 2 kHz is quite constant
(around 45%) and for higher frequencies starts to decrease crossing
zero around 16 kHz. This different behaviour of the error function
(1) for the sending and receiving ends makes difficult the choice of
the frequency that better reduces the error between the two models.
The best frequency value is around 11 kHz where the error is in the
order of 15%. 

Fig. 6 shows the values of the error function (1) for the screen-
to-ground propagation mode at both sending and receiving ends
when the overvoltage travelling from the overhead line and
stressing the cable line has a 250/2500 µs standard waveshape. In
this case, except for frequency lower than 20 Hz and larger than 1 
kHz, the error function both at the sending and at the receiving
ends is very low (ranging from 0 to 5%). The error function (1) at
the sending end starts to increase for frequency above 3 kHz, while
at the receiving end crosses zero around 800 Hz and then becomes
more and more negative as far as the frequency increases. 

Table 2 reports the best frequency range values that reduce the
error function (1) to a minimum considering both the standard
overvoltage waveshapes (1.2/50 and 250/2500 µs) for the two

Fig. 3  Conductor-to screen error ɛ versus frequency at sending end and
receiving end of a 150 kV cable line with a stressing 1.2/50 µs standard
waveshape from the overhead line

 

Fig. 4  Conductor-to screen error ɛ versus frequency at sending end and
receiving end of a 150 kV cable line with a stressing 250/2500 µs standard
waveshape from the overhead line

 

Fig. 5  Screen-to ground error ɛ versus frequency at sending end and
receiving end of a 150 kV cable line with a stressing 1.2/50 µs standard
waveshape from the overhead line
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modes of propagation (conductor-to-screen and screen-to-ground)
at the sending and receiving ends. 

In general, a range of frequency for each waveshape, for each
mode of propagation and for both sending and receiving ends is not
useful under a practical point of view. Consequently, a selection of
a single frequency range per overvoltage waveshapes and per mode
of propagation shall be addressed, bearing in mind that in such a
case a higher error shall be accepted. For the reasons illustrated in
the previous section, it is important that the error is positive in
order to be conservative in the estimation of the overvoltage.
Table 3 reports the results considering this goal. 

If one frequency range only for both propagation modes is
selected, in the case of the 1.2/50 µs waveshape this range is
between 10 and 11 kHz and the error (1) varies between 2.1 and
2.2% and between 15 and 16% for the conductor-to-screen mode
and for the screen-to-ground mode, respectively. While for the
250/2500 µs wave shape this range is between 600 and 800 Hz and
the error (1) is equal to 0.1% for the conductor-to-screen mode and
around 3% for the screen-to-ground mode. Considering real
conditions, the conductor-to-screen mode overvoltage is usually at
least one order of magnitude higher than the screen-to-ground
mode, usually hundreds of kVs against some kV [1, 2]. Cable
reliability under stressing overvoltages is primarily focused on the
cable insulation wall [24]. Thermoplastic jacket faults (damages,
grazes, punctures etc.) do not impede the operation of the cable
systems in spite of a fault in the insulation wall. If the current on

the jacket fault location is negligible (high resistance fault) and
does not exceed a safety threshold, the cable can be maintained in
operation at full or reduced current rating under a proper screen
current supervision [25] postponing in this way the jacket repair at
a later stage during the forecasted maintenance spell. For these
reasons, a lower error is allowed for the conductor-to-screen mode
than for the screen-to-ground mode. Table 4 shows the suggested
frequency ranges to be adopted for the Bergeron parameters and
the relevant errors for each propagation mode for the two analysed
standard overvoltage waveshapes. 

The above analysis performed with the 150 kV cable line can be
considered valid also for the 400 kV cable line since the simulation
outcomes are very similar and for the sake of brevity are omitted
here.

With the aim to illustrate some specific case, in the following
the results of the simulations using both the Fourier and the
Bergeron models are reported.

Figs. 7 and 8 show the overvoltage at the sending end of a 150 
kV line 1 km long on the conductor-to-screen mode and on the
screen-to-ground mode, respectively when the cable model has
both the Fourier and Bergeron models. The stressing overvoltage is
the 1.2/50 µs standard waveshape. The cable parameters of the
Bergeron model have been evaluated with a frequency of 11 kHz.
Such figure highlights that the Fourier model has a smoother
waveshape especially on the tail, while the Bergeron model has a
larger damping effect on the tail (see Fig. 8). In both cases, the

Fig. 6  Screen-to ground error ɛ versus frequency at sending end and receiving end of a 150 kV cable line with a stressing 250/2500 µs standard waveshape
from the overhead line

 
Table 2 Summary of the results for the fast (1.2/50 µs) and slow (250/2500 µs) stressing overvoltages: the frequency ranges to
reduce the error function below ±0.5% for the two modes of propagation and at the sending and receiving ends

1.2/50 µs waveshape
Conductor-to screen mode Screen-to-ground mode

Sending end Receiving end Sending end Receiving end
frequency from 57 to 58 kHz from 57 to 58 kHz from 54 to 58 Hz from 15.6 to 16.0 kHz
ε <±0.5% <±0.5% <±0.5% <±0.5%

250/2500 µs waveshape
Conductor-to screen mode Screen-to-ground mode

Sending end Receiving end Sending end Receiving end
frequency from 1.0 to 2.2 kHz from 1.0 to 2.2 kHz from 23 to 24 Hz from 0.65 to 1 kHz
ε <±0.5% <±0.5% <±0.5% <±0.5%

 

Table 3 Summary of the results for the fast (1.2/50 µs) and slow (250/2500 µs) stressing overvoltages: a common frequency
range for both sending and receiving ends to minimise the error

1.2/50 µs waveshape
Conductor-to screen mode Screen-to-ground mode

frequency from 43 to 57 kHz from 10.3 to 11.1 kHz
ε <0.5% from 12 to 15%

250/2500 µs waveshape
Conductor-to screen mode Screen-to-ground mode

frequency from 1.0 to 1.4 kHz from 23 to 820 Hz
ε <0.5% from 0 to 7%
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Bergeron model gives more conservative results than the Fourier
model. In particular, Fig. 8 shows that the error, although in excess
of about 15%, it can be deemed acceptable: practically such 15%
excess does not substantially change the countermeasures to be
adopted to reduce the risk of cable jacket puncture. 

Interesting is to note the simulation results reported in Figs. 9
and 10 where the same 150 kV cable line of Figs. 7 and 8 is
reported but with a cable line length of 5 km. As already mentioned
above, for the Bergeron simulation, five models representing a
cable length section of 1 km each have been connected in series.
The effect of such a series connection can be revealed on the
simulation outcomes: between each reflection from the cable end,
five oscillations can be counted on both the conductor-to-screen
and the screen-to-ground modes. Such oscillations contribute to
give rough waveshapes but they do not alter the absolute peak
value of the overvoltage. Simulations with a single section 5 km
long have also been performed, but the final results give a higher

error than simulations performed with a segmented line composed
of five sections each 1 km long, due to the larger lumped losses.
The cascade of five cable sections allows, indeed, a better losses
distribution along the line. Using cable sections with a length lower
than 1 km does not contribute to reducing the error substantially.
Consequently, in the simulation with the Bergeron model, more
sections series connected are recommended for cable length larger
than 1 km. 

The same system analysed in Figs. 9 and 10 is further analysed
with a 250/2500 µs standard waveshape and the results of the
simulations are reported in Figs. 11 and 12 for the conductor-to-
screen and the screen-to-ground modes, respectively. In this case,
the frequency used for the estimation of the Bergeron model
parameters has been selected equal to 800 Hz in line with the
values reported in Table 4. In such a case, for the reduced errors
value, the two waveshapes (Fourier and Bergeron) for both the
conductor-to-screen and the screen-to-ground modes are quite the
same. The higher damping effect on the tail of the Bergeron model,

Table 4 Suggested frequencies for each standard overvoltage waveshape and relevant error for the conductor-to-screen and
screen-to-ground modes

1.2/50 µs waveshape
Conductor-to screen mode Screen-to-ground mode

frequency from 10 to 11 kHz
ε from 2.1 to 2.2% from 15 to 16%

250/2500 µs waveshape
Conductor-to screen mode Screen-to-ground mode

frequency from 600 to 800 Hz
ε <0.1% ≅3%

 

Fig. 7  Conductor-to-screen overvoltage at the sending end of a 150 kV
cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

Fig. 8  Screen-to-ground induced overvoltage at the sending end of a 150 
kV cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

Fig. 9  Conductor-to-screen overvoltage at the sending end of a 150 kV
cable line 5 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

Fig. 10  Screen-to-ground induced overvoltage at the sending end of a 150 
kV cable line 5 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz
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typical of the 1.2/50 µs waveshape, as shown above, disappears in
this case. The oscillations due to the sequence of five cable section
of 1 km each connected in series in the time-domain simulation
disappears due to the lower front steepness of the 250/2500 µs
wave in respect of the 1.2/50 µs wave. 

In Figs. 13 and 14, the conductor-to-screen waveshapes at the
sending and at the receiving ends of a 1 km – 400 kV cable line

stressed with a 1.2/50 µs standard waveshape are reported.
Comparing such figures with Fig. 7, it can be stated that they are
very similar except for the peak value. This fact highlights how the
analysis extended to the 400 kV system does not give different
qualitative results. Furthermore, under a qualitative point of view,
the overhead line has a very negligible impact as well. 

As far as the screen-to-ground overvoltage waveshapes of the
same 1 km long – 400 kV case considered above are concerned,
Figs. 15 and 16 show the situation at the sending and receiving
ends, respectively. Again, under a qualitative point of view, the
situation does not differ so much from the same 150 kV case. The
excess in the evaluation of the peak value, i.e. about 2 kV
(overvoltage peak 8 kV for the Fourier model against about 10 kV
for the Bergeron model) at the sending end and about 0.6 kV
(overvoltage peak 3.8 kV for the Fourier model against the 4.4 kV
for the Bergeron model) at the receiving end, has not a practical
impact on the countermeasures to be adopted to reduce the risk of
jacket puncture. 

From the same figures, it can be highlighted that, as already
mentioned for the previous cases, a stronger damping occurs on the
tail for the Bergeron model. In Fig. 16, it can be observed how the
Fourier model gives rise to a much gentle waveshape in respect of
the Bergeron model in which has a very steep front and a jagged
tail in line with what already highlighted above.

5 Conclusion
The paper has compared the results of two simulations of the same
system, one with a frequency-dependent cable line model, and the
other with a distributed parameter with the lumped losses cable line

Fig. 11  Conductor-to-screen overvoltage at the sending end of a 150 kV
cable line 5 km long for a 250/2500 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 800 Hz

 

Fig. 12  Screen-to-ground induced overvoltage at the sending end of a 150 
kV cable line 5 km long for a 250/2500 µs 100 kV peak impulsive wave
coming from the overhead line conductor. Both frequency-dependent
(Fourier) and distributed parameter with lumped losses (Bergeron) cable
line models. The parameters of the Bergeron model are evaluated with a
frequency of 800 Hz

 

Fig. 13  Conductor-to-screen overvoltage at the sending end of a 400 kV
cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

Fig. 14  Conductor-to-screen overvoltage at the receiving end of a 400 kV
cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

Fig. 15  Screen-to-ground induced overvoltage at the sending end of a 400 
kV cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave coming
from the overhead line conductor. Both frequency-dependent (Fourier) and
distributed parameter with lumped losses (Bergeron) cable line models. The
parameters of the Bergeron model are evaluated with a frequency of 11 kHz

 

6 IET Sci. Meas. Technol.
© The Institution of Engineering and Technology 2018



model. It has been considered a typical situation occurring in
practice where the cable line is in between an overhead line and a
transformer. The analysis has been focused to the overvoltages at
both the sending and receiving ends and for both the conductor-to-
screen and the screen-to-ground modes of propagation. The
overvoltage has been considered coming from the overhead line
and impinging the transition overhead to the cable end.

The difference in terms of peak values, between the frequency-
dependent and the distributed parameter with lumped losses
models, becomes small and seldom negligible if a proper frequency
is selected for the determination of the parameters in the latter
model. Such frequency is influenced only by the overvoltage
waveshape coming from the overhead line.

The frequency suggested for the estimation of the frequency-
dependent cable parameters (R and L through Schelkunoff theory)
to be used in the distributed parameter with lumped losses models
shall fall within 10–11 kHz range if the cable stressing overvoltage
has a 1.2/50 µs standard waveshape, while shall fall in the range of
600–800 Hz for a 250/2500 µs standard waveshape. With the
suggested frequency values, the distributed parameter with lumped
losses models gives very similar and conservative results in respect
of the frequency-dependent models. Under a qualitative point of
view, the waves with the two models are very similar. In particular,
as far as a fast front overvoltage stresses the cable line, the results
obtained with the distributed parameter with lumped losses models
give rise to lightly steeper fronts and lightly jagged tails if
compared with the results obtained through the frequency-
dependent models in which the wave shape are always gentler. On
the other hand, when a slow front overvoltage stresses the cable
line, the waveshapes from the two models can be quite overlapped.

The selection of a distributed parameter with the lumped losses
cable model, with a proper frequency in the estimation of its
parameters, can be useful to simplify and give higher flexibility to
the insulation coordination study, whenever the simulation is
performed considering incoming overvoltages with standard
waveshapes (1.2/50 and 250/2500 µs, respectively) and a typical
cable configuration.
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7 Appendix
 
7.1 ‘Fourier’ model

For a multi-phase transmission line, the telegrapher's equations in
the frequency domain take the form of two matrix equations:

d2 V
dz2 = Z Y ⋅ V (2)

d2 I
dz2 = Y Z ⋅ I (3)

where |V| and |I| are the vectors of voltages and currents at a
distance z along the line, respectively. [Z] and [Y] are the square
matrices of impedance and admittance, respectively.

Fig. 16  Screen-to-ground induced overvoltage at the receiving end of a
400 kV cable line 1 km long for a 1.2/50 µs 100 kV peak impulsive wave
coming from the overhead line conductor. Both frequency-dependent
(Fourier) and distributed parameter with lumped losses (Bergeron) cable
line models. The parameters of the Bergeron model are evaluated with a
frequency of 11 kHz
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For an underground single-core coaxial cable, the component
impedances and admittances per unit length are given by the
Schelkunoff theory [23, 26] properly modified to take into account
the semiconductive layers, always used in power cables from 6 kV
and above. In particular, impedance and admittance of such layers
have been considered taking into account the developments
performed by Ametani et al. [27–30]. The ground return has been
considered using the Wedepohl–Wilcox's approximated Pollaczek
formula [21, 22]. The component impedances and admittances per
unit length are frequency-dependent.

With eigenvalue theory, it becomes possible to transform the
coupled equations from phase quantities to modal quantities in
such a way that the associated matrices become diagonal. These
decoupled equations can then be solved as if they were single-
phase equations

d2 Vm

dz2 = TV
−1 Z Y TV ⋅ Vm (4)

d2 Im

dz2 = TI
−1 Y Z TI ⋅ Im (5)

where |Vm| and |Im| are the vectors of modal voltages and currents
at a distance z along the line, respectively. [TV] and [TI] are the
square matrices of the eigenvectors.

Using the Fourier transform, the incoming overvoltage can be
represented as a group of sine waves, each with a specified
amplitude and phase shift. If a sine wave at a given frequency is
injected into the modal system, if the system is linear, it will
respond at that same frequency with a certain magnitude and a
certain phase angle relative to the input.

The determination of the time domain response from its
frequency domain expression is made using the inverse Fourier
transform.

7.2 ‘Bergeron’ model

For a lossless multi-phase transmission line, the telegrapher's
equations in the time domain take the form of two matrix
equations:

d2 V
dz2 = L C ⋅ d2 V

dt2 (6)

d2 I
dz2 = C L ⋅ d2 I

dt2 (7)

where |V| and |I| are the vectors of voltages and currents at time t
and distance z along the line, respectively. [L] and [C] are the
square matrices of inductance and capacitance, respectively.

For an underground single-core coaxial cable, the component
impedances and admittances per unit length are given by the
Schelkunoff theory [23, 26] properly modified to take into account
the semiconductive layers [27–30]. The ground return has been
considered using the Wedepohl–Wilcox's approximated Pollaczek
formula [21, 22].

With eigenvalue theory, it becomes possible to transform the
coupled equations from phase quantities to modal quantities in
such a way that the associated matrices become diagonal

d2 Vm

dz2 = TV
−1 L C TV ⋅ d2 Vm

dt2 (8)

d2 Im

dz2 = TI
−1 C L TI ⋅ d2 Im

dt2 (9)

where |Vm| and |Im| are the vectors of modal voltages and currents
at time t and distance z along the line, respectively. [TV] and [TI]
are the square matrices of the eigenvectors.

The solution of the differential equation system in the phase
domain takes the following form:

I t = GL ⋅ V t − TI ⋅ Im t − τm (10)

where [GL] is a conductance matrix representing the couplings
between phases, and τm is the modal travel time. The equivalent
circuit is reported in Fig. 17, with reference to a generic node. 

There is no analytical solution for the wave equation of a lossy
transmission line in the time domain. The line losses can be
represented in the above model only by externally connected
lumped resistances.

Fig. 17  Model of a lossless multi-phase line
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