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Abstract

Gaining knowledge about the size of an animal population in a given area is of
particular interest for wildlife management and conservation. Indeed, over the last
decades, thousands of species worldwide have been experiencing either an outsize
expansion or, more often, a dramatic shrinkage in their abundances: in the worst
cases, the latter trend has even led to their extinction. Since carrying out a complete
count of animal populations is generally a challenging task, Capture-Recapture
models have arisen as valuable tool to estimate the population abundance in the
chosen study area, along with some other demographically meaningful parameters. A
further ecological key issue for wildlife managers involves the identification of distinct
groups of individuals that share similar biological patterns. In this spirit, we bring
to light how finite mixtures can be easily embed into Capture-Recapture models in
order to carry out jointly the estimation and the classification task. We adopt a
Bayesian modelling perspective and this requires ad-hoc solutions in this specific
context. Indeed, the literature about Bayesian finite mixture Capture-Recapture
models is scarce in addressing some issues that arise in the implementation of the
model, such as the common label-switching problem that affects finite mixtures and
the specification of suitable prior distributions on component-specific parameters.
Notably, we deal with these two issues by proposing two novel flexible classes of joint
priors for parameters bounded in the [0, 1] set. The idea is to specify joint priors
that both retain the flexibility to induce the desired marginal behaviour on the
component-specific parameters and help the correct identification of their posterior
distributions. The proposals are enhanced by the derivation of some theoretical
results. Moreover, we propose a class of parsimonious cross-classified mixture models
which can be successfully used to identify different residency patterns in wildlife
populations. Notably, when the existence of such patterns is known in advance, finite
mixtures can be leveraged to model the structure of the population under study.
For each proposed methodology, a simulation study is carried out to investigate its
inferential benefits and pitfalls. The application of the outlined models and methods
is illustrated on wildlife datasets, revealing their merits and validity in real-world
examples and giving insights that may be useful to practitioners.
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Chapter 1

Motivation and overview

Climate change is recognised as a major threat to global biodiversity, since it may lead
to a very dramatic redistribution - and even to the extinction - of thousands of animal
species over the next decades (Thomas et al., 2004; Pecl et al., 2017). Besides, the
effects of global warming have already been visible over the past decades, producing
numerous shifts in the distributions and abundances of species. For example, a recent
study (Soroye et al., 2020) pointed out that an increasing frequency of unusually hot
days is leading to the decline of lots of bumble bee species across North America
and Europe. A very recent paper (Huvier et al., 2023) warns about the possible
future extinction of the boreal linx (Lynx lynx) in the French Jura Mountains: severe
inbreeding depression has led to drastic reduction of their size and any environmental
change can have serious negative effects, since this population is not strong enough
to adapt to these new changes.

In contrast, some wild animal species are seen as growing too fast: for example,
while previously confined to natural areas with low human presence, in the last
decades the wild boar has colonised urban environments, establishing a permanent
presence in several European cities. This is the case of the municipality of Rome,
which is currently facing a serious issue in the boar-human cohabitation, often due
to collisions of the wild animal with vehicles, damages to gardens and ransacking of
rubbish containers (Amendolia et al., 2019). There is an increasing international
awareness about the need both to conserve as much as possible of the current
biological diversity and to control the too rapid expansion of some wild species.
Indeed, government institutions may adopt strategies to preserve some endangered
species. An example is the Western Shield, a widespread fox control campaign
organised by the Government of Western Australia to protect smaller native species
of mammals from the European red fox (Vulpes vulpes): this campaign has been
successful, having led to an increase in abundance and range of several species
(Burbidge and Manly, 2002).

A central focus of conservation biology is, thus, the maintenance of biodiversity
by preventing the uncontrolled expansion of some species and the total extinction
of some others. To achieve this goal, wildlife managers need simple quantitative
approaches and tools that could help them to make better management decisions.
In this regard, the monitoring of marked animals and the analyses of the resulting
data by Capture-Recapture statistical models have become a common and powerful
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wildlife conservation paradigm. Indeed, in absence of a census of the individuals
belonging to a wildlife population in a limited area, multiple Capture-Recapture
samplings of these individuals - in combination with suitable statistical models
- allows to estimate the population size and to obtain an associated measure of
uncertainty (Amstrup et al., 2005; McCrea and Morgan, 2014).

A further concern consists in understanding the diversity between the animals that
constitute a population: in ecology, this diversity is called individual heterogeneity
(Gimenez et al., 2018). This heterogeneity may be due to observable and measurable
traits of the individual (e.g. age, sex, location, weight, breeding status) or to latent
traits, and plays a key role in population dynamics. Therefore, along with the
estimation of the population abundance and of its evolution over time, it is often
interesting to identify groups of individuals that share similar biological patterns.
When covariates are available, these can be used to try to explain differences between
individuals. However, unexplained heterogeneity is often present among individuals
and several approaches have been proposed in literature to account for it. Notably,
finite mixtures have arisen in the Capture-Recapture context as a means to capture
heterogeneity across group of individuals. In these models, a latent variable is used
to assign individuals to one of the mixture components characterised by specific
parameters.

In Capture-Recapture literature, the grouping induced by finite mixtures is often
deemed to be an artifact to allow for heterogeneity and correct for the bias in the
estimate of the population size (e.g. Pledger (2000); Pledger et al. (2010)). In this
thesis we restore finite mixture models in the context of Capture-Recapture analysis
as a valuable model-based clustering tool to jointly estimate model’s parameters
and identifying groups of individuals that share similar profiles. In general, finite
mixtures can be useful as a mean for finding groups of individuals that are similar:
what similar means strictly depends on the underlying parametric distribution that
is assumed for each component of the finite mixture model. Remarkably, when
suitable considerations lead to a grouping being plausible biologically, the groupings
from a finite mixture model can also give insights into the nature of the population.

We adopt a Bayesian approach throughout the whole thesis, following the original
idea of Royle et al. (2007) for successfully fitting Bayesian Capture-Recapture models
and embedding finite mixtures within this framework. We believe that literature
about such Bayesian implementation of this class of models is rather scarce and it does
not usually address some related challenges that may arise, such as the elicitation of
prior distributions or the correct identification of the component-specific parameters:
we feel that these topics would deserve more attention since, after all, these kinds of
models are mostly used by ecologists and biologists, who may generally have limited
statistical knowledge and skills. In this spirit, we try to address some issues related
to the implementation of Capture-Recapture finite mixture models in a Bayesian
context, for example by focusing on the prior specifications of their component-
specific parameters. Moreover, we propose and investigate parsimonious mixture
models whose components are characterised by a partially common set of parameters.
Parsimony represents a trade-off between too few parameters and too little model
structure - which may induce to model bias and underestimates of sampling variation
- versus too many parameters and too much model structure - which may lead to
overfitting and a lack of precision in estimates. For this reason, parsimonious models
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should be pursued whenever possible. In addition, finite mixtures are not only useful
to let emerge clusters of individuals sharing similar patterns, but they can also be
used to model the already known structure of a population of individuals. Specifically,
we adopt an ad-hoc finite mixture model to estimate and classifying individuals
belonging to a bottlenose dolphin (Tursiops truncatus) population. Several ecological
studies (Dinis et al., 2016; Estrade and Dulau, 2020; Haughey et al., 2020; Pace
et al., 2021; La Manna et al., 2022) on this kind of population have identified three
different types of individuals showing distinct residency patterns and we try to
provide a model that takes into account this particular structure.

1.1 Structure of the thesis
After this general introduction to the motivations that inspire this work, we outline
the structure of the thesis.

Chapter 2 is an introduction to Capture-Recapture analysis: basic models are
presented, along with the necessary definitions, hypotheses and notation. A first
main distinction is made between closed and open populations, depending whether
the assumption of no births, no deaths and no migration during the whole survey may
hold or not. The main closed-population and open-population models (Jolly-Seber)
are illustrated, along with the sources of variability that may affect the models’
parameters and lead to relax some basic Capture-Recapture hypotheses. Finally, the
parameter-expanded data augmentation approach is carefully detailed: it consists in
a valuable alternative formulation of Capture-Recapture models that allows an easy
way to fit Bayesian models in this context.

Bayesian finite mixture models in the context of Capture-Recapture analysis are
introduced in Chapter 3 as a tool to handle unexplained heterogeneity across groups
of individuals. Emphasis is given to closed-population models with individuals
presenting heterogeneous capture probabilities. Challenges related to these kinds of
models are discussed by focusing on specifications of the prior distributions of the
model’s parameters. Notably, when dealing with finite mixtures, Bayesian machinery
is often affected by the so-called label-switching problem. A common solution
for practitioners to overcome this issue consists in assigning ordering constraints
between class-specific parameters, so as to identify their relative roles. That is
usually achieved by specifying conditionally uniform densities that respect such
constraints, preventing the possibility to shape the prior according to available prior
knowledge; however, the implication of this choice on the marginal prior distributions
of the class-specific parameters is not usually discussed in literature. We address
this issue and we generalise this approach by proposing two novel flexible classes of
joint priors based on manipulating Beta distributions. The idea is to specify a joint
prior that retains the flexibility to induce the desired marginal behaviour while still
guaranteeing the desired ordering. Our proposals are enhanced by the proof of some
original theoretical results concerning Beta truncated and Beta restricted probability
distributions. Then, a simulation study that compares several alternative prior
specifications is carried out to investigate the inferential benefits of the proposed
methodology. Finally, the practical use of this approach is illustrated on a real
dataset concerning a closed population.
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Chapter 4 starts with the review of the finite mixtures within the Jolly-Seber
model framework. These models are used to handle heterogeneity between recruit-
ment, survival and detection across group of individuals. Along with the classical
single mixture grouping in G classes, a double mixture grouping in G×H classes
can be specified (these are the so-called cross-classified models). The latter allows to
consider components that share some common parameters. In this spirit, we propose
a class of more parsimonious cross-classified models that may turn to be useful to
identify different residency patterns in animal open populations. We illustrate their
use on a real data example based on a robust design analysis, a particular sampling
scheme in which a series of closely spaced samples are separated by longer intervals.
Motivated by the real data example, we further investigate the performance of the
considered class of models in a simulation experiment.

On the wake of what discussed in the previous chapters, in Chapter 5 finite
mixtures are adopted to characterise the residency patterns in marine wildlife
populations (e.g. dolphin populations). In this case, several ecological studies have
identified a recurring structure in some marine species, which tend to dwell in the
study area over time with different propensities. They have recognised three distinct
behavioural patterns that are followed by these species: specifically, they can be
deemed to be either residents, long-term visitors (or part-times) or short-term visitors
(transients). In the light of this structure, we propose an original parsimonious
cross-classified model to jointly estimate the population abundance - along with the
main ecological parameters of interest - and classify the encountered individuals
according to their residency pattern. Model performances are assessed through a
simulation experiment and, finally, an application to a common bottlenose dolphin
(Tursiops truncatus) population is illustrated at the end of the chapter.

The final remarks at the end of the chapters briefly resume their main content,
highlight some benefits and pitfalls of the presented methodologies and give some
insights about future interesting directions to follow and further developments that
might be welcomed to expand our proposals.

As customary, we include in appendices those written parts that would otherwise
have overloaded the reading of the main part of the thesis. Appendix A presents
BUGS code listings for implementing all the presented models with through the
Bayesian software JAGS. Appendix B shows the mathematical derivation of the
multinomial likelihood for the basic Capture-Recapture closed-population model.
Appendix C contains original theoretical proofs on prior specifications of class-specific
probabilities. Finally, Appendix D reports the details of the time-lags between the
sampling occasions considered in the simulation study of Chapter 5.
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Chapter 2

Introduction to
Capture-Recapture analysis

The abundance of wildlife populations, along with other demographic information
(e.g. birth, death, migration, etc.), is a key factor in ecology to help conservation
managers in understanding the underlying dynamics of an ecosystem, monitoring
the evolution of the population over time and developing suitable strategies for
biodiversity preservation (Lebreton et al., 1992; Morrison et al., 2012; Fryxell et al.,
2014). Researchers are typically concerned with the analysis of a specific wildlife
species in a limited natural area. However, a census of all the individuals belonging to
a population is usually infeasible, so that statistical methods are needed to estimate
the total abundance of the population and an associated measure of uncertainty
(Williams et al., 2002; Schmidt, 2005; Nichols et al., 2009). In this context, Capture-
Recapture (CR, henceforth) methods have been extensively used to estimate the size
of wildlife populations which are subject to multiple capture occasions: recapture
information can be then exploited to estimate the number of uncaptured individuals
and, consequently, the total size of the population.

If samples are repeated over a short time period, the population can be considered
closed, i.e. there are neither births, deaths nor migrations beyond the study area
throughout the whole study period. If this cannot hold, population should be
considered open and the process of entry and exit must be taken into consideration.
A key assumption is that all individuals in the population behave independently from
one another, so that the capture of an individual does not affect the catchability of
the others. Researchers may design a trapping experiment in a way that guarantees
the reliability of the main assumptions of the CR. For example, captures may be
carried out in a very short time period and in a well-bounded area, so that the
population can be reasonably considered as closed.

The term Capture-Recapture is due to the most common way to identify wild
animals across multiple detection occasions, namely through capture, marking and
release: the animal is typically caught using a bait, marked with a unique identifier
(e.g. a numbered tag) and then released unharmed into the environment. Once
animals have been marked, then recapturing some of them in subsequent samples
provides information about the total number of animals in the area (Pradel, 1996).
Observations do not only correspond to physical captures, but they may also consist
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in less invasive techniques, such as photographic identification of natural markings
(Auger-Méthé et al., 2010; Gardner et al., 2009; Pace et al., 2021) or DNA matching
(Lukacs and Burnham, 2005; Morin et al., 2016), where genetic material (e.g. hairs,
faeces) is collected in the field and used to identify individuals. Less invasive or non-
invasive techniques usually tend to implicitly exclude the possibility of individuals’
behavioral response, since the researcher do not physically interact with the animal.

Interestingly, Capture-Recapture analysis can be more widely applied to multiple
data sources through the linkage of individuals across multiple lists. This approach -
often referred to as multiple systems estimation - is preferred when estimating hard-
to-reach human populations, including those who are sclerosis patients (Farcomeni,
2020), individuals affected by Covid-19 infections (Böhning et al., 2020), victims of
modern slavery (Sharifi Far et al., 2021), refugees and migrants (Farcomeni, 2022)
or drug dealers (Altieri et al., 2022). Although the paramount relevance of such
scope - which also presents interesting challenges due to the higher complexity of
human behaviours -, in the following we only focus on Capture-Recapture models in
the ecological field.

2.1 Closed populations
We start considering a closed population whose size is assumed to be fixed, where
all units are supposed to act independently each other and no misidentification of
the units occurs.

In the simplest case in which only two visits are made in the study area, the
population size of a closed population can be estimated through the Lincoln-Petersen
estimate (Seber et al., 1982),

N̂LP = n1 n2
m2

, (2.1)

where n1 is the number of animals captured and marked in the first visit, n2 is the
number of animals captured in the second visit and m2 is the number of marked
animals that were recaptured in the second visit. By assuming that all individuals
have the same probability to be recaptured in the second visit, the idea behind this
simple estimate is that the proportion of marked individuals that are caught in the
second sample should be approximately equal to the proportion of individuals that
were caught in the first visit, namely that m2

n2
≃ n1

N . Of course, basic assumptions
are that the researcher correctly records all marks and that animals do not lose their
marks.

Although the intuitive derivation, the previous estimator is biased at small
sample sizes and can be replaced by the Chapman estimator, i.e.

N̂C = (n1 + 1) (n2 + 1)
(m2 + 1) − 1 ,

which is less biased than (2.1) (Brittain and Böhning, 2009).
This simple scheme can be generalized to the case of T > 2 sampling occasions.

Let D be the number of distinct units observed at least once during T sampling
occasions. Observed data can be thus represented by a D × T binary matrix,
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Y = [yit], where

yit =
{

1 unit i has been captured at occasion t

0 otherwise

The matrix Y contains all the observed capture histories for the D observed individ-
uals on its rows. An example of matrix Y is provided in Table 2.1.

1 1 1
1 0 1
1 0 1
0 1 0
0 1 0
0 1 1
0 0 1

Table 2.1. Capture histories of D = 7 individuals encountered during T = 3 sample
occasions.

In this case, estimator (2.1) can be generalised by the Schnabel estimator (Schnabel,
1938; Overton, 1965), i.e.

N̂S =
∑T

t=1 ntAt∑T
t=1 mt

,

where nt is the number of individuals captured on the t-th occasion, mi is the number
of marked individuals captured on the t-th occasion and At is the number of marked
individuals available to the capture on the t-th occasion.

Under independence both among capture occasions and among individuals, it is
reasonable to assume that

yit
iid∼ Bernoulli(pit) ,

where pit = Pr(yit = 1) is the probability that individual i is observed at occasion t
(i = 1, . . . , N and t = 1, . . . , T ). These probabilities are often referred to as capture
probabilities or detection probabilities. The first basic CR model assumes that capture
probabilities do not vary with time and are constant for all the individuals, namely
pit = p, ∀i, t. This is often referred to as model M0.

2.1.1 Sources of variability in capture probabilities

It most of the cases, it is unreasonable to use the same capture probability for all
individuals and all the sampling periods. Otis et al. (1978) distinguish between three
factors that may affect the detection probability, namely the time effect (model
Mt), the individual heterogeneity effect (Mh) and the behavioural effect (Mb), or a
combinations of two (Mth, Mtb Mbh) or all of them (Mtbh).

Time effect makes detection probability varying among different encounter oc-
casions. This consists in assuming that every animal in the population has the
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same probability of capture at each sampling occasion, namely pit = pt, ∀i, t. These
temporal changes in capture probabilities may be due, for instance, to different
weather conditions that may affect the behaviour of the individuals or different
efforts among sampling occasions.

Individual effect highlights differences in detection among individuals; therefore,
they are supposed to have different detection probabilities, namely pit = pi, ∀i, t:
some may appear more elusive than others, according to observable or latent factor.
Heterogeneity of captures among individuals often causes negative bias in estimates
of population abundance (N), when one does not account for it: intuitively, if some
individuals are more likely to be captured on each occasion than the rest of the
population, the estimated overall capture probability will tend to be higher, by
causing an underestimation of the uncaptured individuals. This problem has been
treated by several authors (Burnham and Overton, 1979; Alho, 1990; Tardella, 2002;
Gimenez et al., 2018).

Individual effect may be fixed or random, categorical or continuous, latent or
explained by means of measurable covariates (e.g. sex, age, weight, breeding status,
location). For example, when individual heterogeneity depends on K fixed covariates,
we can model pi as

logit(pi) = α+ β1xi1 + · · · + βkxiK , (2.2)

where α, β1, . . . , βK are regression parameters and xi = (xi1, . . . , xiK) is the vector
of K covariates giving the characteristics of individual i relevant to the capture
(Huggins, 1989; Alho, 1990).

To model unobserved (or latent) heterogeneity, popular choices have been finite
(Pledger, 2000) and continuous mixtures (Burnham, 1972; Coull and Agresti, 1999;
Dorazio and Andrew Royle, 2003). In particular, finite mixture (or latent-class)
models consider the population as divided in two or more classes, each characterised
by a different capture probability. Class membership is latent and, thus, the
proportion of individuals in each class has to be estimated. These kinds of models
seem to be appropriate when the target population indeed contains groups of
individuals with different catchability (e.g. juveniles and adults). The fact that a
latent-class model fits the data well does not imply that those classes really exists: in
general, the grouping may serve as artefact to allow for heterogeneity and correct for
the bias in the estimate of the population size (Pledger, 2000). Of course, when there
is some reason to postulate the existence of such a population, posterior probabilities
of class membership can be useful to get insights about the population’s structure.

Since additional variation may exist among individuals within each class, a
possible alternative is to consider a different capture probability for each one by
using, for instance, the following logistic-normal model (Coull and Agresti, 1999),

logit(pi) = ηi , (2.3)

where ηi ∼ N(µ, σ2). Of course, the greater σ, the more heterogeneous are the
capture probabilities.
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Behavioral response denotes the situation where the detection probability of
an individual depends on whether this has been previously detected. This kind of
effect is reasonable in live-trapping experiments, where individuals are captured,
marked and then released: in fact, animals can react in a positive (trap-happiness) or
negative (trap-shyness) way to the capture and, consequently, be less or more elusive
in next capture occasions (Yang and Chao, 2005; Farcomeni, 2011; Alunni Fegatelli
and Tardella, 2016).

2.1.2 Multinomial model formulations

The multinomial distribution is fundamental in Capture-Recapture analysis, since
it is a natural choice for modelling frequencies of discrete outcomes. Consider the
classical problem of estimating the size N of a closed population, whose individuals
are sampled with replacement on T occasions. Under the assumption of model
M0, each binary observation yit is the result of a Bernoulli trial with probability of
success (namely, capture probability) p. Let

yi =
T∑

t=0
yit

be the capture frequency of the i-th individual in T capture attempts.
By using this data representation, the matrix in Table 2.1 is rewritten as a

D-dimensional observed vector of detections, namely (y1, . . . , yD) = (3, 2, 2, 1, 1, 2, 1).
By considering the whole population of N individuals, we have that

yi ∼ Binom(T, p) , i = 1, . . . , N .

The corresponding likelihood function is thus

L(p|y1, . . . , yN , D) =
N∏

i=1
Binom(yi|T, p) ,

where, of course, yD+1, . . . , yN = 0, corresponding to the detection frequency of the
N −D uncaptured individuals.

Alternatively, it is possible to group the information contained in y1, . . . , yN by
considering the frequency of individuals detected in k out of T sampling occasions,

fk =
N∑

i=1
1(yi = k) ,

for k = 0, 1, . . . , T . The matrix of all the observed capture histories in Table 2.1
can be rewritten as a T -dimensional vector, namely (f1, . . . , fT ) = (3, 3, 1), while
f0 = N −D is unknown. Notice that D =

∑T
k=1 fk.

The joint distribution of (f0, f1, . . . , fT ) is multinomial and the corresponding
likelihood function is

L(N, p|f1, . . . , fT ) = N !
(N −D)! f1! · · · fT ! π

N−D
0 πf1

1 · · ·πfT
T ,
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where πk =
(T

k

)
pk(1 − p)T −k corresponds to a binomial probability mass function

(Sanathanan, 1972). By exploiting the relation between πk and p, the likelihood for
M0 can be expressed in a more straightforward way, namely

L(N, p|f1, . . . , fT ) ∝ N !
(N −D)! p

∑T

k=1 kfk(1 − p)T N−
∑T

k=1 kfk .

Observing that
∑D

i=1 yi =
∑T

k=1 kfk, the previous likelihood can be easily expressed
in terms of the individual frequencies y1, . . . , yD, namely

L(N, p|y1, . . . , yD) ∝ N !
(N −D)! p

∑D

i=1 yi(1 − p)T N−
∑D

i=1 yi . (2.4)

A sketch of the proof is provided in Appendix B.

When the assumption of time-constant capture probabilities cannot hold, a more
general way to summarise capture histories is required. A convenient way consists in
building encounter history frequencies, by listing all the possible 2T unique capture
histories which can occur in T capture attempts. Let nk be the number of individuals
having a certain capture history k, with k = 0, 1, . . . , 2T − 1. For convenience, n0 is
the frequency of the unobserved individuals. Table 2.2 summarises the information
contained in Table 2.1 in a encounter history frequencies fashion. It is important

history nk cell probability

(0, 0, 0) ? (1 − p1)(1 − p2)(1 − p3)
(1, 0, 0) 0 p1(1 − p2)(1 − p3)
(0, 1, 0) 2 (1 − p1)p2(1 − p3)
(0, 0, 1) 1 (1 − p1)(1 − p2)p3

(1, 1, 0) 0 p1p2(1 − p3)
(1, 0, 1) 2 p1(1 − p2)p3

(0, 1, 1) 1 (1 − p1)p2p3

(1, 1, 1) 1 p1p2p3
Table 2.2. Encounter history frequencies derived by the data matrix in Table 2.1. Here,

a model with time-varying capture probabilities (i.e. model Mt) is assumed. The
parameter pt is the capture probability at occasion t (t = 1, 2, 3).

to notice that this kind of formulation can be used only in absence of individual
effects on p; otherwise, pooling all the individuals in groups of unique encounter
histories would make information about observed heterogeneity unusable. The vector
of encounter history frequencies (n0, n1, . . . , n2T −1) is multinomial with vector of cell
probabilities (π0, π1, . . . , π2T −1), where πk is the probability of observing the k-th
encounter history. Therefore, the corresponding likelihood has the following form:

L(N, π1, . . . , π2T −1|n1, . . . , n2T −1) ∝ N !
(N −D)!

(2T −1∏
k=1

πnk
k

)
πN−D

0 ,
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where D =
∑2T −1

k=1 nk and

π0 =
(

1 −
2T −1∑
k=1

πk

)
is the probability of not encountering an individual during the T attempts.

Notice that the multinomial cell probabilities are function of the parameters that
describe the detection process. For example, in the case of model Mt, the multinomial
cell probabilities correspond to the probabilities of T independent Bernoulli trials,
as shown in the last column of Table 2.2.

2.1.3 Bayesian estimation via PX-DA

In a Bayesian framework, we require prior distributions for the parameters that
control the detection process and for the population size. Notably, the population
abundance N itself - which is often the main object of inference - determines the
dimension of the model parameter space and it can vary within D and infinity,
making the Capture-Recapture estimation a challenging task. In fact, if we at-
tempt to fit this model using Bayesian methods, such as Markov chain Monte Carlo
(MCMC), each update of N changes the number of parameters in the model because
some parameters (e.g. pi’s, in the case of models like (2.3)) may be created or
deleted depending on whether N increases or decreases from its previous value. This
challenging MCMC problem has been resolved using specialized algorithms such
as reversible-jump MCMC (Brooks et al., 2000), regarding the problem as a model
selection task (Durban and Elston, 2005). However, these methods appear to be
inaccessible to many ecologists since their implementation may require a high level
of statistical and computational knowledge.

A quite appealing alternative has been provided by Royle et al. (2007) who fix
the dimension of the parameter space by embedding the original dataset into a
larger zero-inflated version. Notably, the original dataset Y containing the capture
histories of the D encountered individuals is augmented with M −D rows of zeros
(i.e. all-zero histories), where M ≫ N is an arbitrarily large upper bound for N .
Royle et al. (2007) refer to this approach as parameter-expanded data augmentation
(PX-DA, henceforth), since the Capture-Recapture model must be expanded to
account for the number of all-zero histories in the augmented dataset Yaug.

Differently by the reversible-jump MCMC, the PX-DA is not an MCMC algorithm
but it is rather a reformulation of the CR model which aims at simplifying the
analysis and providing a conventional implementation of MCMC. For this reason,
complex CR PX-DA models can be easily fitted with MCMC softwares like JAGS
(Plummer et al., 2003), a popular program which allows for analysis of complex
hierarchical models using Markov Chain Monte Carlo (MCMC) simulations. JAGS
is an implementation of the BUGS language, introduced by Gilks et al. (1994).

Notice that the N − D among the M − D rows of zeros are sampling zeros,
namely corresponding to individuals who belong to the population but have never
been encountered during the whole study. The remaining M −N rows of zeros are
structural zeros, which correspond to pseudo-individuals who do not belong to the
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population. The augmented dataset may be as referred to a pseudo-population of M
individuals that potentially could belong to the real population of size N .

Let ψ be the probability that an individual in the pseudo-population of size M
is a member of the population of N individuals exposed to sampling. Therefore, the
parameter ψ can be thought as an inflation parameter or inclusion probability and
it is straightforward to assume that

N |ψ ∼ Bin(M, ψ) . (2.5)

Royle et al. (2007) shows that the likelihood function for the PX-DA reparameterised
version of model M0 can be written as

L(N, p, ψ|y1, . . . , yD) ∝[
N !

(N −D)! p
∑D

i=1 yi (1−p)T N−
∑D

i=1 yi
][

M !
N !(M −N)! ψ

N (1 − ψ)M−N
]
,

where the first term is the joint likelihood for p and N in (2.4) and the second term
is the probability mass function corresponding to (2.5).

In a Bayesian context, a standard Unif [0, 1] can be assumed for p. Moreover,
if ψ ∼ Unif [0, 1], then the resulting marginal prior distribution for N is a discrete
uniform on {1, 2, . . . ,M} (Royle et al., 2007). In effect, under data augmentation,
the parameter N is replaced by the parameter ψ.

In order to obtain a convenient parameterisation which allows to easily implement
a CR PX-DA model in BUGS, one can introduce a further level in the hierarchy
of the model by introducing a set of independent and identically distributed (iid)
latent binary variables z1, . . . , zM , which indicates whether the i-th individual of
the augmented dataset belongs to the real population (zi = 1) or not (zi = 0). We
assume that zi

iid∼ Bern(ψ), ∀i. Notice that this set of variables is actually partially
observed, since an amount of D individuals has been encountered at the end of the
survey: indeed, z1 = · · · = zD = 1. Under this formulation, it is straightforward to
observe that the true population abundance is a derived parameter, i.e.

N =
M∑

i=1
zi .

The observation process of the PX-DA version of model M0 is, thus, given by

yi ∼ Bin(T, zi · p) , i = 1, . . . ,M ,

which formally represents a zero-inflated binomial model, since yi is almost surely
equal to 0 when the individual i does not belong to the real population (i.e. when
zi = 0). The BUGS code of the PX-DA version of model M0 is provided in Listing
A.1 in Appendix A.
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2.2 Open populations
In many long-term Capture-Recapture studies it is not reasonable to assume that
the population remains the same for the whole survey, since individuals may be
subject to additions and to removals from the population throughout the considered
time-frame.

2.2.1 The Jolly-Seber model

The Jolly-Seber (JS, henceforth) model (Jolly, 1965; Seber, 1965) extends the closed-
population models by assuming the presence of recruitment, mortality and migration
of the individuals. Individuals are thus allowed to enter (i.e. via birth or immigration)
and exit (i.e. via death or emigration) the population during the study. Migration
cannot be separated from the birth and death processes without additional informa-
tion; thus, one does not distinguish between sources of new animals or between the
ways animals leave the population. For identifiability purposes, the emigration must
be considered permanent (once an individual has left the population, it cannot get
back into it). All the encounters are assumed to be independent across individuals
and along time.

When one considers an open population, the object of the study is a dynamic
population which changes over time. Along with the estimate of the population size
at some intervals (e.g. a month, a year, etc.), ecologists are often interested in the size
of the super-population, Nsuper, that is the number of individuals ever alive during
all sampling periods: if an individual has been part of the population for at least one
sampling period, then it does belong to the super-population (Schwarz and Arnason,
1996). It is reasonable to assume that a fraction of the Nsuper individuals is already
into the population at the first capture occasion and the remaining individuals will
join the population by the end of the survey.

To model ecological process, JS model requires the definition of two parameters
that control the way individuals are added to the population (i.e. recruitment
process) and the way individuals remain into the population (i.e. survival process):
they are, respectively, the entry probability and the apparent survival probability.

The entry probability bt (t = 1, . . . , T ) is the probability that an individual is
new in the population at time t, that is, that it has entered the population between
occasion t− 1 and t. This parameter can be also interpreted as the probability that
a member of the super-population of size Nsuper enters the population at occasion t.
Notably, since at the end of the T occasions all individuals in the super-population
have been alive for at least once, the entry probabilities b1, . . . , bT must sum to 1.
Notice that the first entry probability b1 has not a clear ecological meaning because
it includes all the individuals that were already part of the population before the
start of the survey and, thus, that the model virtually adds to the population at the
first occasion.

The apparent survival probability (survival probability, henceforth) ϕt (t =
2, . . . , T ) is the probability that a recruited individual who belongs to the population
at occasion t− 1 remains in the population at occasion t. The adjective apparent
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is included as permanent emigration and mortality are indistinguishable and, thus,
treated as the same phenomenon in JS-type models. Marshall et al. (2004) show that,
generally, the larger a study area the closer the match between apparent and true
survival probability since dispersing individuals tend to have a higher probability to
remain in the study area.

Of course, the capture probability pt is the probability of encountering (i.e.
catching or sighting) an individual, provided that the individual is part of the
population. The basic JS model assumes that recruitment, survival and capture
probabilities remain constant over time and are identical for all individuals; however,
we will see in the next chapters that, in practice, one may want to relax some of
these assumptions.

2.2.2 Robust design

Pollock (1982)’s robust design is a sampling scheme that combines the features of
both closed and open population surveys. One assumes a sampling scheme divided in
T periods (primary sampling sessions) and, for each period t = 1, . . . , T , a number
Jt of encounter occasions (secondary sampling sessions). The idea is that secondary
sampling sessions within the same primary sampling session are close in time, so close
that the population can be assumed as closed between those encounter occasions.
Each primary sampling session can be thus regarded as a closed detection survey.
Between primary sessions the population is considered open, as more time goes by
between each period.

Let D be the number of distinct individuals that have been observed at least once
during the T sampling periods. In this case, data are collected in a D × T matrix,
Y, where its generic element yit ∈ [0, Jt] is the detection frequency of individual i
at period t. Each row of Y contains the detection history of an individual. It is
reasonable to assume that

yit ∼ Binom(Jt, pit) , ∀i, t .

When Jt = 1, ∀t, the previous model corresponds to the original JS model described
in Subsection 2.2.1, which does not consider a hierarchical structure in the sampling
design.

By pooling the data of a series of short-term studies, the robust design improves
the estimation of the demographic characteristics of the population and allow the
estimation of abundances for each primary period. Notably, with these two levels
of sampling one aims at minimising the influence of unequal catchability on the
population abundance estimates (Pollock et al., 1990). An example of data collected
through a robust design is provided in Section 4.3.

2.2.3 PX-DA implementation of the Bayesian JS model

When we deal with open populations, individual encounter histories are the result
of the combination between two distinct processes: the detection process and the
population dynamics. The former describes how individuals appear in the sample,
while the latter decides when individuals can appear in the sample.
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Modelling the population dynamics

The population dynamics is controlled through two time-varying latent binary
variables: the first one indicates the recruitability of the individual into the population,
that is

rit =
{

1 individual i is recruitable at time t
0 otherwise

, ∀i, t ,

while the second one indicates the presence of the individual in the population, that
is

zit =
{

1 individual i belongs to the population at time t
0 otherwise

, ∀i, t .

All the M individuals are recruitable at the first time (i.e. ri1 = 1, i = 1, . . . ,M),
while they become permanently non-recruitable once they have entered the popula-
tion.

Let ρt be the recruitment probability, i.e. the probability that an available (not
yet entered) individual in the augmented dataset is recruited in the population at
time t. This parameter is the product of the probability of entry in the population,
given not previously entered, and the inclusion probability. In formulas,

ρ1 = ψ b1 and ρt = ψ
bt

1 −
∑t−1

i=1 bi

, t > 1 ,

where bt is the probability of entry the population at period t and ψ is the inclusion
probability. Thus, the PX-DA formalization in the open-population models merely
changes the interpretation of the recruitment parameter, which now controls the
potential entrance in the real population of the individuals in the pseudo-population.

At the first occasion we have that

zi1 ∼ Bern(ρ1) ,
while, for t = 2, . . . , T ,

rit = min{ri,t−1, 1 − zi,t−1}
zit | zi,t−1, rit ∼ Bern(ϕt · zi,t−1 + ρt · rit)

for i = 1, . . . ,M .

Marginally, this hierarchical specification implies that Nsuper ∼ Binom(M, ψ).
Royle and Young (2008) show that ψ is linked to the recruitment probabilities
through the following equation:

ψ = 1 −
T∏

t=1
(1 − ρt),
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which implies that the conditional expectation of the super-population abundance is

E[Nsuper|M,ρ1, . . . , ρT ] = M
[
1 −

T∏
t=1

(1 − ρt)
]

= M ψ .

Hence, the choice of the prior distribution for ρ1, . . . , ρT is crucial as it determines the
marginal prior on Nsuper. Dorazio (2020) demonstrates that the prior specification

ρt ∼ Beta

( 1
T
, 2 − t

T

)
, t = 1, . . . , T, (2.6)

induces an objective marginal prior on Nsuper.
In the case of constant recruitment, namely ρ1 = · · · = ρT = ρ, (2.6) can be

replaced by

ρ ∼ Beta(1, T ) ,

which yields

ψ = 1 − (1 − ρ)T ∼ Unif [0, 1] ,

and, consequently, a discrete uniform prior distribution for Nsuper (Dorazio, 2020).
In terms of practical inference, the estimated population size at each time t and

the overall super-population size can be derived through the latent variables zit’s,
namely

Nt =
M∑

i=1
zit

Nsuper =
M∑

i=1
1{
∑T

t=1 zit>0} .

An alternative multi-state formulation

The population dynamics described so far can be also seen as a multi-state process,
where at each occasion t each individual (or pseudo-individual) is into one and only
one state. We first notice that when an individual becomes part of the population,
it cannot be recruited any more: this implies that for t > 1, rit and zit cannot be
simultaneously equal to 1. At period t > 1, the i-th individual is into one of the
following three states:

1. it has never been part of the population (rit = 1 ∧ zi,t = 0);

2. it is part of the population (rit = 0 ∧ zi,t = 1);

3. it was part of the population, but now it is not (rit = 0 ∧ zit = 0).

In the JS modelling framework, individuals that leave the population cannot get back
and hence state 3 is an absorbing state. If one allows temporal heterogeneity, then
the transition probability matrix associated to the three states at times t = 2, . . . , T
is
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1 2 3
1 1 − ρt ρt 0
2 0 ϕt 1 − ϕt

3 0 0 1

where rows and columns represent, respectively, the states at time t and t + 1.
At time t = 1, all individuals can be recruited in the population. As t increases,
more and more individuals enter the population or, equivalently, are removed from
state 1. All the observed individuals will eventually be recruited in the population
before time T , but not all of them will leave it (they may have survived to future,
unobserved, periods). Figure 2.1 illustrates the multi-state formulation of the
population dynamics.

1

2 3

1 − ρt

ρt

ϕt

1 − ϕt

Figure 2.1. Multi-state formulation of the PX-DA Jolly-Seber population dynamics.

Remember that individuals are exposed to capture, with probability pt, only
during their transitory stay in state 2. Hence, also a portion of never observed
individuals may have been recruited in the population at some point without never
being captured. They represent the unknown part one wants to estimate.

The detection process

As for the case of closed populations (cfr. Subsection 2.1.3), we can express the
distribution of the generic element of the augmented data matrix conditionally on
zit as

yit|zit ∼ Bern(pt · zit). (2.7)

Since yit = 0 almost surely when zit = 0, (2.7) is a zero-inflated binomial model.
A BUGS code of the basic JS-model with a PX-DA reparameterisation is provided

in Listing A.2 in Appendix A, where we suppose constant recruitment, survival and
detection parameters.
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Chapter 3

Modelling latent heterogeneity
via finite mixtures

Finite mixtures models are often used in CR analyses to account for latent heterogene-
ity between individuals (e.g. Norris III and Pollock (1996); Pledger (2000)). However,
literature about Bayesian implementation of finite mixture models within the CR
framework seems to be scarce: more importantly, common issues like identifiability
or prior specification of the component-specific parameters are often disregarded.

This chapter illustrates the use of finite mixture models within the PX-DA
Capture-Recapture framework presented in Chapter 2. Notably, we propose and
investigate a strategy to properly identify mixture components which allows a prac-
titioner to directly specify suitable prior distributions on the component-specific
parameters and avoid label-switching, without adopting post-hoc relabelling schemes.
The proposed approach involves order constraint on the component-specific param-
eters which are employed through a meaningful specification of conditional prior
distributions on the parameters. In particular, two alternative classes of prior spec-
ifications are introduced and some theoretical results are provided (see Appendix
C for the formal proofs). The inferential benefits of the proposed methodology is
highlighted in the simulation study, by comparing different alternative prior speci-
fications on component-specific parameters. Finally, an illustration based on real
data is presented to show the practical use of the method.

3.1 A general introduction to Finite mixture models
Let y1, . . . ,yn be n realizations of a l-dimensional random vector with distribution
Y ∼ f (· | p,w), where p = (p1, . . . , pG), w = (w1, . . . , wG) and

f (y | p,w) =
G∑

g=1
wg · h(y | pg). (3.1)

This is a finite mixture distribution with G components and w1, . . . , wG are the
component weights such that wg > 0, ∀g and

∑
g wg = 1. The probability (density

or mass) function h(y | pg) is often called g-th mixture component. There are mainly
to ways in which a mixture model can be used: either for clustering or as a tool to
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approximate nonstandard distributions in a parametric model framework.
In the following we will employ finite mixture models as a tool to perform

model-based clustering. In this regard, the model in (3.1) can be more efficiently
represented through a missing data formulation, by augmenting the space with a
latent indicator variable ζ ∈ {1, . . . , G} that denotes from which of the G densities
each observation come from. The prior weight wg can be interpreted as the prior
probability that a unit belongs to the g-th class (or group), namely

P (ζi = g) = wg, i = 1, . . . , n, g = 1, . . . , G .

Mixture weights, thus, represent the relative proportion of observations coming from
the G groups.

The idea behind this formulation is that each component is responsible for
generating a particular observation (or vector of subsequent observations, in the
case of longitudinal data as the ones provided by CR experiments) and the true
component label of each unit is unknown: therefore, the goal is to determine which
component each individual belongs to.

An appealing advantage of the model-based clustering is that it performs soft
classification, that is, once the model has been fitted, each unit is provided with a
probability to belong to a given component: this avoids potential biases introduced
by a crisp classification, yielding a well-interpretable measure of uncertainty in the
classification (McLachlan et al., 2019).

In this context, Bayesian inference is usually pursued through the following
hierarchical specification:

Y | p, ζ ∼ f(· | pζ)
ζ | w ∼ Mult(w)
w ∼ Dir(α), p ∼ πp(·)

where Mult(·) is the multinomial distribution, Dir(α) the Dirichlet distribution
with hyperparameter vector α, and πp(·) is the joint prior on the class-specific
probabilities p1, . . . , pG.

3.2 Finite mixtures in CR experiments
Detection heterogeneity among animals of the same population can exist due to
many different reasons, like heterogeneous sampling effort, unbalanced observer skills
or variation in the individual behaviour. Ideally, covariates could be measured and
incorporated in ecological models to account for detection heterogeneity. However,
latent heterogeneity may still remain or measuring the relevant covariates may
simply be impossible. When unexplained heterogeneity exists, it can be accom-
modated using finite mixtures in which discrete latent variables are used to assign
individuals to mixture components (i.e. homogeneous groups), each characterised
by group-specific parameters (Pledger, 2000; Royle, 2006; Louvrier et al., 2018).
In simulation studies, finite mixtures have appeared to be successful in decreasing
bias in abundance estimates that was introduced by heterogeneity in the detection
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process (e.g. Pledger (2005)).

Finite mixture models have been successfully employed both in closed-population
(Norris III and Pollock, 1996; Pledger, 2000; Dorazio and Andrew Royle, 2003;
Pledger, 2005) and open-population (Pledger et al., 2003, 2010; Guéry et al., 2017)
studies to model unobserved heterogeneity in detection and survival between different
classes of individuals. The main contributions have been made from a frequentist
perspective. In particular, Pledger (2000) proposes a unified theory for closed
populations using finite mixture models.

A Bayesian CR analysis which allows for both heterogeneity of detection prob-
abilities between animals and trap effects through discrete finite mixtures have
been conducted by Ghosh and Norris (2005), but restricted to closed populations.
More importantly, practitioners who deals with Bayesian finite mixture models in
the context of CR data may have to cope with several challenges, ranging from
non-identifiability issues to a suitable definition of the priors distribution on the
model’s parameters. In this regard, we feel that literature on how to implement
these types of models in a Bayesian framework is scarce.

Pledger et al. (2003) use finite mixture models as an artifact to capture hetero-
geneity in the detection and survival processes, by discouraging the use of mixture
models to bring evidence of the true existence of classes. On the other hand, model-
based clustering may be worth to be considered as a useful tool to identify classes
of individual histories sharing similar profiles when one has reasonable belief that
a particular structure in the target population may exist (Cubaynes et al., 2012;
Guéry et al., 2017).

3.2.1 A Bayesian model for closed populations

We consider the component-specific parameters’ prior specification in the context of
Capture-Recapture methods. In particular, we embed finite mixture models within
the PX-DA formalization of the CR closed-population model illustrated in Subsection
2.1.3 by adding one layer of hierarchy in the original hierarchical specification.

Let yi be the capture frequency of the i-th unit across the T occasions, for
i = 1, . . . , N , and let D be the total number of distinct observed individuals (i.e.
captured at least once). The unknown population size is N and we bound its
parameter space with a large (at will) upper bound M and augment the data sample
with null capture frequencies (yD+1, . . . , yM ) = (0, . . . , 0).

With the purpose of modelling the capture heterogeneity between individuals,
we consider finite mixture of G binomial distributions (Pledger, 2000) for the counts
yi’s, that is

yi|zi ∼
G∑

g=1
wg ·Bin(T, pg · zi) , i = 1, . . . ,M ,

where wg is the probability that individual i belongs to the g-th mixture component
and pg is the capture probability of the g-th component. Notice that yi = 0 almost
surely when zi = 0, so that the previous model corresponds to a finite mixture of
zero-inflated binomial distributions.
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The Bayesian estimation of this kind of model can be performed via JAGS. The
BUGS code to fit the model in JAGS is presented in Listing A.3 in Appendix A,
where we consider the case of G = 2 mixture components and standard Uniform
priors for probability parameters.

3.3 Challenges in fitting Bayesian finite mixtures
The implementation of Capture-Recapture methods in a Bayesian context involves
the specification of distributions to model the prior beliefs on the capture (or
survival) probabilities of the individuals. The Beta distribution is a very common
candidate as a prior for such parameters: it is compactly supported on [0, 1]. It
can be shaped to represent non-informative or informative settings by manipulating
its two shape parameters. When dealing with finite mixture models, a suitable
Beta prior distribution should be placed on each component-specific parameter,
pg, g = 1, . . . , G, where G is the number of components of the mixture model.

The naive application of finite mixture models within the Bayesian machinery is
affected by the so-called label-switching problem, due to the fact that the likelihood
function is invariant under permutation of the indices of the components: at each
Markov Chain Monte Carlo (MCMC) step, the groups may interchange their relative
role (Jasra et al., 2005). An example is provided in Figure 3.1, where a 2-component
finite mixture model is considered. A review of the label switching issue and a wide
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Figure 3.1. Example of posterior distributions of the component-specific parameters of a
2-component mixture model. Posterior distributions have been estimated via MCMC.

range of potential solutions can be found in Stephens (2000) and Jasra et al. (2005).
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A first effective solution to this issue is to uniquely identify the components
by including prior information about their marginal and relative behaviour, as by
imposing ordering constraints that define the group-specific parameters’ positions
in a hierarchy (Diebolt and Robert, 1994). An increasingly popular approach is
to employ a relabelling scheme, such as that proposed by Celeux (1998), where
the posterior samples of the parameter of interest are clustered according to a
k-means algorithm. This method converges to local minima, so the results based on
multiple starting points are compared to identify the optimal solution. A possible
extension have been proposed by Marin et al. (2005). Another strategy is to use
label invariant loss functions (e.g. Hurn et al. (2003)), although this approach can
incur a high computational cost for mixtures with many components and rapidly
become impractical.

In the following, we investigate the first type of solution (i.e. the one which
exploits order constraints) and we focus on a finite mixture model with G = 2
components, whose density is given by

f(y|p1, p2, w) = w · h(y|p1) + (1 − w) · h(y|p2) .

In order to avoid the label-switching problem, the prior on p shall envision an
ordering constraint to solve the symmetry in the posterior distribution and make the
two components identifiable. For instance, we could enforce p1 < p2 by specifying
the joint prior in a conditional fashion:

πp(p1, p2) = πp1(p1) · πp2 | p1(p2), (3.2)

where πp2 | p1(·) guarantees p2 > p1, e.g. has a support depending on p1.
When p1 and p2 are probabilities (i.e. ∈ (0, 1)), the most straightforward solution

is to have a Beta prior on p1 and then specify πp2 | p1(·) = Unif (· | p1, 1). In practice,
any other specification of πp2 | p1(·) complying with the ordering constraint could
be valid. Nevertheless, it is rather uncommon to find literature that explores
the marginal distribution induced on p2 ∼ πp2(·) obtained by integrating p1 out
from (3.2). This inevitably jeopardizes the possibility of eliciting informative priors
whenever the information is available.

For example, in the context of Capture-Recapture experiments, Turek et al. (2021)
propose to impose order constraints on the component-specific parameters, simply by
using the specification p1 ∼ Unif [0, 1] and pg ∼ Unif [pg−1, 1], for g = 2, . . . , G, but
no mention is made about the consequence of this choice on the resulting marginal
prior distributions of the component-specific parameters. An example is provided by
Figure 3.2, which considers this prior specification of component parameters when
G = 2: such kind of truncation may indeed radically modify the prior modelling,
by inducing a prior on p2 which places most of its density close to the boundary 1.
This may occasionally turn out to be undesired and beyond the real intention of the
practitioner.
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0.0 0.2 0.4 0.6 0.8 1.0

Marginal priors on component−specific capture probabilities

p1~Unif[0,1]
p2 with density π(p2)=− log(1 − p2)

Figure 3.2. Marginal prior induced on the parameter p2 of a 2-component mixture model
when p1 ∼ Unif [0, 1] and p2|p1 ∼ Unif [p1, 1].

3.4 Flexible prior specifications on class-specific proba-
bility parameters

We investigate some alternative specifications that allow for controlling the marginal
expected value and variance, and possibly also the form of the two marginal prior
distributions of the component-specific parameters. These tools can be exploited
to embed prior information in the estimation process, which can, in turn, favour
the proper identification of the two components. This extends the work sketched in
Alaimo Di Loro et al. (2022).

3.4.1 The Beta and truncated Beta

It is possible to derive the marginal prior distribution of p2, when

p1 ∼ Beta(α1, β1)
p2|p1 ∼ tBeta(α2, β2, p1, 1)

where tBeta(·, ·, l, u) denotes the truncated Beta in (l, u), whose probability density
function is given by the following expression:

tBeta(p2 | α2, β2, p1, 1) = 1
B(α2, β2)

pα2−1
2 (1 − p2)β2−1

1 − FBeta(α2,β2)(p1) 1{p1,1}(p2) .

However, the expression of the resulting marginal πp2(·) is not trivial unless we set
α2 = 1, for which we obtain:

πp2(p2) = B(α1, β1 − β2)
B(α1, β1) β2(1 − p2)β2−1 FBeta(α1,β1−β2)(p2) ,

with β1 > β2.

In particular, when α1 = β2 = k and β1 = k + 1, i.e.
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p1 ∼ Beta(k, k + 1)
p2|p1 ∼ tBeta(1, k, p1, 1) ,

(3.3)

then we obtain the following convenient result for the marginal prior distribution of
p2:

p2 ∼ Beta(k + 1, k), k > 0.

Notice that, in this specific case, the marginal distribution induced on p2 is sym-
metrical with respect to the distribution of p1 around the vertical line p∗ = 0.5;
equivalently, we can say that p2

d= 1 − p1. Formal proof of the previous results is
provided in Appendix C (Theorem 1). Examples of prior distributions resulting
from this kind of specification are provided in Figure 3.3, where the four different
couple of marginal density functions of p1 and p2 were derived by choosing different
values for k.

0.0 0.2 0.4 0.6 0.8 1.0

p1~Beta(0.8,1.8)
p2~Beta(1.8,0.8)

0.0 0.2 0.4 0.6 0.8 1.0

p1~Beta(1,2)
p2~Beta(2,1)

0.0 0.2 0.4 0.6 0.8 1.0

p1~Beta(2,3)
p2~Beta(3,2)

0.0 0.2 0.4 0.6 0.8 1.0

p1~Beta(3,4)
p2~Beta(4,3)

Figure 3.3. Marginal prior densities for component-specific parameters p1 and p2 resulting
from p1 ∼ Beta(k, k + 1) and p2|p1 ∼ tBeta(1, k, p1, 1).

This kind of prior specification may turn out to be useful as regularization
tool which helps in separating the distributions of the couple of component-specific
parameters. In this sense, the hyperparameter k may be seen as a measure of the
degree with which the two prior distributions are separated: the smaller is k the
more repulsed are the two priors.
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3.4.2 The Beta and restricted Beta

The restricted Beta (also called 4-parameters Beta) is a Beta random variable
which has been shifted and scaled to lie on a different domain (l, u). In particular, if
X ∼ Beta(α, β) and Z = l+X ·(u− l), then Z ∼ rBeta(α, β, l, u), whose probability
density function is as follows:

rBeta (z |α, β, l, u) = Γ (α+ β)
Γ(α)Γ(β) · (z − l)α−1 · (u− z)β−1

(u− l)α+β−1 1{l,u}(z).

The expected value and variance of Z are

E [Z] = α

α+ β
· (u− l) + l = uα+ lβ

α+ β
,

V [Z] = αβ

(α+ β)2(α+ β + 1) · (u− l)2

In this context, the restricted Beta can be exploited to specify a compelling joint
prior for p1 and p2, such that p1 < p2.

If we consider

p1 ∼ Beta(α1, β1)
p2 | p1 ∼ rBeta (α2, β2, p1, 1)

then the corresponding marginal expected value and variance of p2 can be derived
as a function of mean and variance of p1 using the Law of iterated expectations:

E [p2] = α2
α2 + β2

+ µ1
β2

α2 + β2

V [p2] =σ2
1 · β2

2
(α2 + β2)2

(
1 + α2

β2(α2 + β2 + 1)

)
+ (1 − µ1)2 · α2β2

(α2 + β2)2(α2 + β2 + 1)

(3.4)

where µ1 = E[p1] and σ2
1 = V[p1]. Thus, once chosen α1 and β1 to comply with some

prior information on µ1 and σ2
1, we can elicit the values of α2 and β2 to respect prior

knowledge on µ2 and σ2
2 simply by solving a linear system based on Eq. (3.4).

Examples of marginal prior distributions resulting from this kind of specification
are provided in Figure 3.4. Formal proof is provided in Appendix C (Theorem 2).

A convenient parameter setting

A very convenient parameter setting turns up if we fix α2 = 1 and let β1 = β + 1
and β2 = β. Indeed, if

p1 ∼ Beta(α1, β + 1)
p2 | p1 ∼ rBeta (1, β, p1, 1) ,
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Figure 3.4. Marginal prior densities for component-specific parameters p1 and p2 resulting
from p1 ∼ Beta(α1, β1) and p2|p1 ∼ rBeta(α2, β2, p1, 1).

then the joint distribution for (p1, p2) is

pp1,p2 (p1, p2) = (α1 + β)Γ(α1 + β)
Γ(α1)Γ(β) · pα1−1

1 (1 − p2)β,

and the marginal πp2(·) is a Beta density; more specifically,

πp2 (p2) = Beta(p2 |α1 + 1, β) .

The relevance of this result lies on the fact that, taking a Beta prior on p1 and a
particular Beta on p2 restricted to the set [p1, 1], the resulting marginal prior for p2
is still a Beta distribution.

3.5 Simulation experiment
This section shows comparative merits of alternative prior specifications in dealing
with label switching and exploiting prior information on group-specific parameters.

We simulate K = 50 alternative Capture-Recapture datasets from closed popula-
tions with two groups (cfr. the model illustrated in Subsection 3.2.1). The simulation
scheme mimics results which can be obtained from real data applications, such as
the one that will be illustrated in Section 3.6.
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We repeat the same experiments for an increasing number of occasions, i.e.
T = {5, 10, 15, 20}, with the aim of assessing the results as the amount of information
increases. Captures are generated by sampling individuals from a super-population
of size M = 500, with a probability for a pseudo-individual to be included in the
actual population of ψ = 0.3, for all datasets. This yields an expected value of
E [Nk] = 150 across all datasets.

Individuals are allocated to the two groups according to w = 0.85, where w is
the weight of the first component. The group-specific capture probabilities are set to
p1 = 0.05 and p2 = 0.20. Under the closure hypothesis, the capture histories of each
dataset can be collapsed into the vector of individual overall capture frequencies
yk = (y1, . . . , yDk

), k = 1, . . . ,K, where Dk is the number of distinct observed
individuals of the simulated set k.

The following seven prior specifications on the group-specific capture probabilities
are considered, which correspond to those represented in Figure 3.5:

I) p1 ∼ Unif [0, 1] and p2 ∼ Unif [0, 1];

II) p1 ∼ Beta(1.091, 1.230) and p2 ∼ Beta(1.230, 1.091), with means E[p1] = 0.47
and E[p2] = 0.53 and variance V(p1) = V(p2) = 0.075;

III) p1 ∼ Beta(1.70, 15.30) and p2 ∼ Beta(2.39, 6.46), with modes 0.05 and 0.20,
respectively, and variances V(p1) = 0.005 and V(p2) = 0.02;

IV) p1 ∼ Unif [0, 1] and p2|p1 ∼ Unif [p1, 1];

V) p1 ∼ Beta(1.091, 1.230) and p2|p1 ∼ rBeta(0.139, 1.091, p1, 1), inducing a
marginal prior distribution on p2 with the same mean and variance of the one
considered in setting II;

VI) p1 ∼ Beta(1.222, 4.889) and p2|p1 ∼ rBeta(1.295, 11.653, p1, 1), inducing a
marginal prior distribution on p2 with the same mode and variance of the one
considered in setting III;

VII) p1 ∼ Beta(1, 2) and p2|p1 ∼ tBeta(1, 1, p1, 1) which induces a marginal prior
p2 ∼ Beta(2, 1) favoring a slight repulsion between the two components.

Notice that the identifiability constraint p1 < p2 - commonly adopted for finite
mixture modelling - is not considered for specifications I, II and III.

In particular, setting I consists in two priors which are both uniform on the
interval [0, 1] and can be seen as a default choice; one could be tempted to compare
this naive prior setting with the one resulting from setting IV: however, in the latter
case, p1 is still Unif [0, 1] while the marginal prior induced on p2 by the constraint
is a distribution which gives support to higher values: 85% of its density is placed
on values greater than 0.5, while 20% on values greater than 0.95.

Setting II and setting V both consider marginal priors on p1 and p2 which tend to
be quite vague, reflecting a lack of information a priori on the true parameter values.
Though the two settings results similar, marginal prior distributions resulting from
setting V are obtained by respecting the constraint p1 < p2; this should encourage
the identifiability of the two components.
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Figure 3.5. Marginal prior distributions on the two component-specific capture
probabilities according to the seven considered settings: I) p1 ∼ Unif [0, 1] and
p2 ∼ Unif [0, 1]; II) p1 ∼ Beta(1.091, 1.230) and p2 ∼ Beta(1.230, 1.091); III)
p1 ∼ Beta(1.70, 15.30) and p2 ∼ Beta(2.39, 6.46); IV) p1 ∼ Unif [0, 1] and p2|p1 ∼
Unif [p1, 1]; V) p1 ∼ Beta(1.091, 1.230) and p2|p1 ∼ rBeta(0.139, 1.091, p1, 1); VI)
p1 ∼ Beta(1.222, 4.889) and p2|p1 ∼ rBeta(1.295, 11.653, p1, 1); VII) p1 ∼ Beta(1, 2)
and p2|p1 ∼ tBeta(1, 1, p1, 1).

Similarly, setting III and setting VI both lead to marginal prior distributions which
are centered around the true values of the parameters (of course, this information
is available only when the data are indeed simulated), but setting VI involves the
prior constraint.

Finally, setting VII may be seen as a choice who merely favours a repulsion
between the two components, which can turn out to be useful in a situation where a
regularization tool may be required.

The model illustrated in Sec. 3.2.1 is then estimated in JAGS separately on each
dataset and, mutatis mutandis, for each prior specification. We run four parallel
chains from different random starting points; notably, capture probabilities are
initialised such that the value provided for p1 is always smaller than the one provided
for p2. For each chain, the MCMC algorithm is ran for 20, 000 iterations, discarding
the first 15, 000 as burn-in and thinning by 4 the remainder to save storage space
(Brooks et al., 2004).

Estimated posterior distributions for each parameter have been obtained by
merging all the four parallel chains. However, it should be pointed out that Gelman-
Rubin’s R̂ convergence statistics is occasionally larger than 3 for prior settings
where order constraints have not been used and always smaller than 1.01 in the
other considered prior settings: high values of R̂ in this context are ascribable to
the presence of label-switching, an issue which appears to be fixed when ordering
constraints are placed.

Posterior samples of the capture probabilities p1 and p2 corresponding to different
datasets have been merged (by prior setting) to analyze their overall behavior:
in particular, for each prior specification and for all the considered number of
capture occasions, this merge allows to obtain an average of the marginal posterior
distributions obtained with the K = 50 different samples. Figure 3.6 shows the
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resulting average estimated posterior distributions, highlighting how they seem to
fail to be correctly identified when an ordering constraint between p1 and p2 is
not considered (cfr. settings I-III). As T increases, information provided by the
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Figure 3.6. Marginal estimated posterior densities for p1 (solid orange line) and p2 (dotted

red line), for several number of capture occasions (T = 5, 10, 15, 20) and for several prior
settings (I-VII).

likelihood tends to prevail over the prior specifications and the estimated posterior
distributions tend to set around the true values of the parameters; however, slight
multimodality persists in settings I-III. It is interesting to see that prior settings
which introduce the same kind of prior information on the capture probabilities (i.e.
II vs V and III vs VI) lead to substantially different component-specific posterior
distributions, above all when T is small and the prior contribution is more relevant
to the inference: in those cases, posterior densities corresponding to priors with
constraints show a more pronounced separation.

Additionally, the overlapping index (OV, Pastore (2018); Pastore and Calcagnì
(2019)) between estimated posterior distributions on p1 and p2 is shown in Figure
3.7: this measure gives an estimate of the area shared by two densities and, in this
context, it is used to measure the degree of separability between the two posteriors.
If OV = 0, the two distributions are completely separated, while if OV = 1, the two
distributions are identical. Notably, while for constrained prior settings (IV-VII) the
overlapping index tends to vanish in most of the datasets as T increases, it keeps
persisting for higher T in settings where constraints have not been used (i.e. I-III).
Notice that marginal priors on p1 and p2 corresponding to setting II and V have
the same high overlapping index between priors, but overlapping between posteriors
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Figure 3.7. Boxplots of the overlapping index between the estimated posteriors of p1 and
p2 for the K = 50 replicas and for each prior setting. The four panels represent scenarios
with different number of sampling occasions (i.e. T = 5, 10, 15, 20). Overlapping index
between component-specific marginal prior distributions is indicated with an asterisk.

tends to decrease more rapidly with T for setting V. The same happens for settings
III and VI, where the latter leads to a larger separation between the posteriors of
the two component-specific parameters.

For different number of capture occasions T , the overall accuracy on estimating
the true component-specific capture probabilities of the different prior settings has
been compared in terms of Mean Absolute Error (MAE). The results are provided
in Table 3.1, where setting VI seems to perform slightly better on average than its
direct competitor (i.e. setting III) and among the other constrained settings. As
expected, settings I and II both correspond to the worst performances in estimating
p1 and p2.

Posterior inference on the population abundance N shows a general robustness
against different prior specifications on the component-specific capture probabilities,
as shown by the distributions of estimated errors in Figure 3.8. This was somehow
expected since - unlike the component-specific parameters - the population abun-
dance parameter does not suffer identifiability issues under these mixture model
assumptions. In addition, setting V seems to lead to a little underestimate of the
true abundance for smaller values of T , but which tends to vanish as T increases.
Additionally, distributions of estimated errors are also provided for p1 (Figure 3.9)
and for p2 (Figure 3.10), by showing - ceteris paribus - the better performances of
the proposed class of Beta prior specifications over the classical unconstrained Beta
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Parameter T Prior setting
I II III IV V VI VII

p1

5 0.058 0.054 0.017 0.018 0.045 0.012 0.018
10 0.059 0.048 0.013 0.010 0.029 0.008 0.009
15 0.027 0.030 0.012 0.012 0.017 0.010 0.013
20 0.017 0.020 0.008 0.010 0.009 0.008 0.009

p2

5 0.097 0.087 0.063 0.062 0.091 0.060 0.059
10 0.104 0.093 0.058 0.058 0.079 0.054 0.060
15 0.072 0.071 0.042 0.046 0.057 0.041 0.046
20 0.055 0.058 0.037 0.039 0.043 0.036 0.039

Table 3.1. MAEs associated to the estimates of p1 and p2 for each prior setting and number
of capture occasions. Posterior medians have been used as point estimates.

priors. Reasonably, such gain is more evident for smaller values of T .
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Figure 3.8. Boxplots of the errors (posterior median - true value) in estimating N for the
K = 50 replicas and for each prior setting. The four panels represent scenarios with
different number of sampling occasions (i.e. T = 5, 10, 15, 20).
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Figure 3.9. Boxplots of the errors (posterior median - true value) in estimating p1 for the
K = 50 replicas and for each prior setting. The four panels represent scenarios with
different number of sampling occasions (i.e. T = 5, 10, 15, 20).
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Figure 3.10. Boxplots of the errors (posterior median - true value) in estimating p2 for
the K = 50 replicas and for each prior setting. The four panels represent scenarios with
different number of sampling occasions (i.e. T = 5, 10, 15, 20).
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3.6 Real data illustration: Giant Day Geckos
We consider giant day gecko’s capture histories recorded in Masoala rain-forest
exhibit at the Zurich Zoo (Wanger et al., 2009), where D = 68 individuals were
encountered during T = 30 capture occasions.

Data have been collected through a photographic capture method: since it is
harder to spot and photograph juvenile compared to adult geckos, at least two
groups of individuals with different capture probabilities are expected. Notably,
Wanger et al. (2009) found that age indeed has an almost significant effect on capture
probability.

Here, we are mainly interested in illustrating our methodology in absence of
additional information that may be used as covariate. Thus, we only make use of
the individuals’ capture frequencies to make inference on the component-specific
capture probabilities and on the population abundance.

We fit the CR model for closed population illustrated in Subsection 3.2.1 by
using JAGS. We fix M = 500: this value allows to widely explore the space of N , yet
avoiding a cumbersome computational burden. We consider the same prior settings
presented in Section 3.5 and shown in Figure 3.5, with the exception of settings
III and VI which were only suitable in the simulation framework where the ground
truth was indeed available. We run five parallel chains for each setting. For each
chain, the MCMC algorithm is ran for 20, 000 iterations, discarding the first 15, 000
as burn-in. Thinning is not necessary in this context.

Table 3.2 shows point and interval estimates of the main parameters of interest.
Population abundance estimates are in line with those found by Alunni Fegatelli
and Tardella (2016)), though a quite different model is considered. Notably, point

Prior Setting N̂ p̂1 p̂2

I 111 (77, 165) 0.06 (0.01, 0.20) 0.15 (0.01, 0.23)
II 108 (78, 156) 0.06 (0.01, 0.20) 0.15 (0.02, 0.23)
IV 110 (76, 161) 0.03 (0.01, 0.05) 0.18 (0.13, 0.24)
V 108 (77, 152) 0.03 (0.01, 0.05) 0.18 (0.12, 0.23)

VII 112 (75, 166) 0.03 (0.01, 0.05) 0.18 (0.12, 0.24)
Table 3.2. Posterior means and 95% credible intervals for the main model’s parameters of

interest for the five considered prior settings.

estimates on N range between 108 and 112 - according to different prior settings -,
with the smaller lower bound of the 95% credible interval being 75 and the largest
upper bound of the interval being 166 (both correspond to the prior setting VII,
which is thus the one associated with the largest credible interval width on N).
Point and interval estimates differ for prior settings without (I and II) and with
order constraint (IV, V and VII): the former present much larger credible intervals,
presumably because of the lack of identifiability due to label-switching.

All the prior settings which involves constraints (i.e. IV, V and VII) agree in
assigning 78% of the observed individuals to the group of more elusive geckos and
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the rest to the group of less elusive ones, according to the Maximum a Posteriori
criterion (MAP). The median probability with which an individual is assigned to a
given group via MAP is 0.93 for setting VII and 0.94 for settings IV and V.

3.7 Discussion
In this chapter we have proposed two flexible classes prior specifications on component-
specific parameters based on manipulating Beta distributions. This is a general
setting which can conveniently be applied in the case of component-specific parame-
ters which lie in [0, 1], which is the case of the probability parameters of a mixture
of binomial distributions. Finite mixture CR models are thus an appealing and
straightforward example of application of the proposed methodology.

The outlined strategy allows to simultaneously avoid label-switching and elicit
prior distributions in a quite flexible way. In particular, the explicit form of the mean
and the variance of the marginal prior distribution of p2 have been derived for those
cases where a restricted Beta prior is considered on p2|p1: when prior information is
available and conveniently used to elicit such a marginal prior on p2, a more accurate
posterior inference on component-specific parameters is yielded. Indeed, results on
simulated data have shown how the proposed methodology can perform better than
the unconstrained Beta prior specifications, above all when the number of occasions
T is small and when some prior knowledge on the parameters is available. When
scarce prior information is available, a conveniently specified conditional truncated
Beta prior on p2|p1 may lead to a repulsion between the marginal priors on p1 and
p2, working as a regularisation tool. We thus suggest the use of the specification
(3.3) as a default choice when no (or very few) prior information is available: if
needed, the hyperparameter k can be tuned to select the desired degree of repulsion
between the two marginal priors (cfr. Figure 3.3). A rigorous sensitive analysis to
investigate the way the posterior inference on p1 and p2 change with k can be of
interest for future research. Interestingly, the prior specification p1 ∼ Unif [0, 1] and
p2|p1 ∼ Unif [p1, 1] - which is often exploited in literature without any discussion
about the consequences of this choice on the resulting marginal priors (e.g. Turek
et al. (2021)) - is a special case of the more general class of prior specifications
illustrated in Subsection 3.4.1.

Theoretical results have been derived only for the case of couples of component-
specific parameters and this can sound as restrictive at a first glance. However,
Capture-Recapture datasets are typically not large enough to be fitted by models that
consider too many component-specific parameters (Pledger, 2000; Cubaynes et al.,
2012), therefore we believe that this situation was worth to be investigated (also in
light of its application to the models illustrated in the following chapters). Anyway,
an extension to the case of G > 2 could be necessary to provide a generalisation of
this methodology to some broader contexts.
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Chapter 4

Modelling different residency
patterns in open populations

In this chapter we review Jolly-Seber finite mixture models introduced by (Pledger
et al., 2010) and we define a way to express them in the PX-DA context described
in Subsection 2.2.3. In particular, we focus on models based on a single mixture
grouping in G classes and models based on a double mixture grouping in G × H
classes (cross-classified models).

Moreover, we propose and investigate more parsimonious models based on cross-
classification. These types of models can turn out to be useful to characterise
different residency patterns in animal open populations in a more economic way
with respect to the models proposed by Pledger et al. (2003, 2010).

We illustrate the use of the considered models on a CR dataset from a live-
trapping study, by highlighting the advantage in using our proposal over existing
models. Motivated by the real data example, we further investigate the performance
of the considered class of models in a simulation experiment. Data based on a robust
design are considered both on the real application and the simulation experiment.

4.1 Modelling class heterogeneity using finite mixtures
within the Jolly-Seber framework

In open-population CR studies individuals belonging to different groups may be
allowed to have different capture and survival probabilities, eventually time-varying.
In the most general specification, the relative order among the parameters of groups
can change at each time t (i.e. group 1 could have the highest detection rate at the
first period, but the lowest at the second one). This model is known as Interactive
Heterogeneous Models (IHM) and its very rich specification may be an issue, since
it has too many parameters for successful model fitting (for further discussion, see
Pledger et al. (2010)).

Pledger et al. (2003, 2010) explore simpler specifications that could adequately
represent the population structure and introduce a convenient notation to navigate
through all possible sub-models. Let t and h be the time and group heterogeneity
effects, respectively. Different expressions would correspond to different modelling
structures: constant in time and homogeneous across groups (·); time-varying, but
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homogeneous across groups (t); constant in time, but heterogeneous across groups (h);
separable interaction of time-varying and heterogeneous across groups effects (t+ h);
non-separable interaction of time-varying and heterogeneous across groups effects
(t× h). For example, the IHM corresponds to {[ρt×h, ϕt×h, pt×h]G}, where G is the
number of mixture components. If we want to specify a model whose heterogeneous
group effect lies in the capture probabilities only, we write {ρt, ϕt, pt×hG

}. The
subscript is moved to highlight that the mixture of G components is related only
to detection. Conversely, if the heterogeneous effect also applies to the survival
probabilities, the we write {ρt, [ϕt×h, pt×h]G}.

The separable interaction between time and heterogeneity effect can be modelled
through a logit link on the probability parameter to avoid problems on estimates
going outside the set [0, 1]: for example, if we consider a model with time and
heterogeneous across group additive effects like {ρt, ϕt, pt+hG

}, then the capture
probability at time t of an individual belonging to the g-th class may be modelled as

logit(pgt) = µ+ ηg + τt , (4.1)

where two constraints like
∑

g ηg = 0 and
∑

t τt = 0 are often needed (Pledger et al.,
2003).

This choice leads to additive effects, where an average capture probability
fluctuating through time is modified either up or down by adding a different constant
for each class. Of course, it is possible to exploit the logit link just to model either
the time or the heterogeneity across group effect too. Similarly, such a kind of
modelling could be applied also to recruitment and survival probabilities.

Anyway, it is relevant to notice that in terms of survival probabilities, constant
survival implies that the same value should hold in identical time scales. For example,
when capture occasions are not equally spaced but present uneven time differences
between subsequent pairs, the survival probabilities should be appropriately com-
pounded. Let lt = τt − τt−1 (t = 2, . . . , T ) be the time-lag between occasion t − 1
and occasion t. Once the time scale is set (e.g. days, weeks, months, years, etc.),
we have that ϕt = ϕlt , where ϕ represents the survival probability across a single
time-unit on the chosen scale.

PX-DA formalization

We can embed finite mixture models within the PX-DA formalization presented in
Subsection 2.2.3 by adding one layer of hierarchy in the Bayesian model specification.

Let ζi ∈ {1, . . . , G} be the latent membership label of each individual i = 1, . . . ,M
in Yaug. The hierarchical specification follows:

yit | zit, ζi = g ∼ Binom(Jt, pgt · zit),
zit | zi,t−1, rit, ζi = g ∼ Bern(ϕgt · zi,t−1 + ρt · rit), rit = min{ri,t−1, 1 − zi,t−1},
pgt ∼ πpg (·), ϕgt ∼ πϕg (·), ρt ∼ πρ(·), ζi ∼ Multinom (1, (w1, . . . , wG)) ,
(w1, . . . , wG) ∼ πw(·) .

(4.2)
The hierarchical formulation of (4.2) includes a multitude of possible specifications,
according to what varies with time and across groups. As example, a graphical
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visualization of the main components of model {[ρ, ϕ, phG
]} is provided by Figure 4.1,

where a directed acyclic graph (DAG) highlights the relations between deterministic,
observable and latent variables of the model.

ri1

zi1

. . .

. . .

ri,t−1 ri,t

zi,t−1 zi,t

ρ ϕ

yi,1 . . . yi,t−1 yi,t

pg

wg ζi

t in 2:T
∀i

∀i∀g

Figure 4.1. Bayesian DAG with the main components of the model {ρ, ϕ, phG
}. White

rhombi represent deterministic variables. White circles represent latent variables and
parameters. Grey circles represents observable variables.

4.2 Cross-classified parsimonious CR mixture models
In this chapter we will consider homogeneous recruitment parameter and survival and
capture probability that are constant over time, that is the subclass of models like
{ρt, [ph, ϕh]G} or with less parameters. These models use a single mixture grouping
into G classes, even when both survival and capture probability are heterogeneous
across groups. This means that, for example, the 2-class model {ρt, [ph, ϕh]2} only
considers two mixture components characterised by (p1, ϕ1) and (p2, ϕ2). This may be
unsatisfactory in the case one wants to allow for all the possible combinations between
capture and survival probabilities (i.e. (p1, ϕ1), (p2, ϕ1), (p1, ϕ2) and (p2, ϕ2)).

As alternative, one can consider a (G × H)-class model which shows cross-
classification of individuals into G capture probability classes and H survival proba-
bility classes. To characterise each parameter without any ambiguity (i.e. class 1
is the one characterised by the lowest survival and capture probabilities), we will
state that p1 < · · · < pG and ϕ1 < · · · < ϕH . In the following, we will restrict to the
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case of G = H = 2, which is a more reasonable situation in a real world application
where the number of encountered individuals (and, thus, the size of the resulting
data matrix) is not large. This choice yields the 4-class model illustrated in Table
4.1, which can be written as {ρt, ph2 , ϕh2}. These kinds of models allows to express
a 4-class model that is much more parsimonious than {ρt, [ph, ϕh]4} (Pledger et al.,
2003).

ϕ1 ϕ2

p1 Class 1 Class 2
p2 Class 3 Class 4

Table 4.1. Description of 4-class cross-classified model, i.e. {ρt, ph2 , ϕh2}.

In the same spirit, a parsimonious 3-class alternative to model {ρt, [ph, ϕh]3} may
adopt the model described in Table 4.1, but collapsing one of the four classes. Such a
3-class model may be specified in four different way (see Table 4.2), depending on the
combination (p·, ϕ·) which is excluded. For example, {ρt, ph2 , ϕh2}−(p1, ϕ1) indicates

ϕ1 ϕ2

p1 Class 1
p2 Class 2 Class 3

(a)

ϕ1 ϕ2

p1 Class 1
p2 Class 2 Class 3

(b)

ϕ1 ϕ2

p1 Class 1 Class 2
p2 Class 3

(c)

ϕ1 ϕ2

p1 Class 1 Class 2
p2 Class 3

(d)

Table 4.2. Description of model {ρt, ph2 , ϕh2}(p., ϕ.), where (a) excludes combination
(p1, ϕ1), (b) excludes combination (p1, ϕ2), (c) excludes combination (p2, ϕ1) and (d)
excludes combination (p2, ϕ2).

a 3-class cross-classified model where the couple (p1, ϕ1) has been excluded. This
alternative specification configures a more parsimonious and less complex model,
with some mixture components sharing common parameters.

4.3 Real data illustration: Microtus Pennsylvanicus
We illustrate the proposed class of models using Capture-Recapture data from a
livetrapping study of meadow voles (Microtus Pennsylvanicus) at Patuxent Wildlife
Research Center in Laurel, Maryland (Nichols et al., 1994). As illustration, we only
consider the reduced version of the data set, which is available in the R package
Rcapture (Baillargeon and Rivest, 2007). This dataset concerns a robust design
with 30 capture occasions pertaining to T = 6 primary periods having J = 5 capture
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occasions each. These capture occasions represent five consecutive days of trapping
every month from June to December 1981. A total of D = 171 meadow voles have
been encountered in the considered time frame.

We consider different alternative models, all having time-varying recruitment
parameters and time-constant capture and survival probabilities. In the simplest
case, we consider a model with homogeneous capture and survival probability
({ρt, ϕ, p}). Regarding single mixture grouping into G classes, we consider models
with components that varies by capture probability ({ρt, ϕ, phG

}, for G = 2, 3),
by survival probability ({ρt, ϕhG

, p}, for G = 2, 3) or by both ({ρt, [ϕh, ph]G}, for
G = 2, 3, 4). Regarding cross-classified models, we consider the 4-class cross-classified
models (i.e. {ρt, ϕh2 , ph2}) and the four 3-class cross-classified more parsimonious
alternative depicted in Table 4.2.

Prior distribution in (2.6) is chosen for ρt for all the considered models. A
flat Dirichlet distribution is used for the vector of mixture weights, i.e. w ∼
Dirichlet(α1, . . . , αG) with α1 = · · · = αG = 1. When p (or ϕ) is the same for all
the individuals, a standard Uniform prior is placed on the parameter. When two
capture (or two survival) probabilities are considered, prior specification of setting
VII presented in Section 3.5 is chosen to favour a slight repulsion between the two
components. When one considers more than three capture or survival parameters,
constrained Uniform priors are instead chosen. These different prior choices for the
models does not substantially affect the model selection criterion associated with
each model; conversely, such a prior choice for models with two capture (or two
survival) probabilities turns out to be useful to induce a better separation between
couples of capture (or couple of survival) parameters.

All models are fitted in JAGS (BUGS code is provided in Appendix A), by
using two parallel chains of 20, 000 iterations each and discarding the first 10, 000
of them as burn-in. The overall goodness-of-fit is measured via Watanabe-Akaike
Information Criterion (WAIC, Watanabe and Opper (2010)), following the good
practice of Gelman et al. (2014) whenever complex hierarchical models are fitted.
WAIC is measured on the scale of deviance, and therefore lower values of WAIC
indicate a more parsimonious fit to the data. This measure has been recently used
in the context of Capture-Recapture mixture models by Turek et al. (2021).

Table 4.3 shows posterior estimates on Nsuper for the 12 fitted models that are
listed in an increasing order according to the corresponding WAIC. The lowest
WAIC value is attained by model {ρt, ph2 , ϕh2}−(p2, ϕ1), which yields an estimated
super-population abundance of 186 individuals. It is interesting to notice that all
the models that assume two capture probabilities yield similar estimates of Nsuper.
The same happens for all the models that consider a higher or lower number of
capture probabilities: notably, all models with homogeneous capture probability
tend to agree with an estimate of 173 individuals and a very short 95% credible
interval, while the two models that assume three capture probabilities yield the
highest abundance estimates. The model with the second lowest WAIC is the 4-class
cross-classified model, which considers one more class than the best model, i.e. the
class characterised by the combination (p2, ϕ1). Nevertheless, this class is associated
with a mixture weight whose estimated posterior density tends to concentrate close to
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Model N̂super 95% CI WAIC

{ρt, ϕh2 , ph2}−(p2, ϕ1) 186 (176, 197) 1493.72
{ρt, ϕh2 , ph2} 185 (176, 196) 1500.34
{ρt, [ϕh, ph]2} 185 (176, 196) 1503.15
{ρt, ϕh2 , ph2}−(p1, ϕ2) 185 (176, 196) 1503.31
{ρt, [ϕh, ph]3} 196 (179, 218) 1511.52
{ρt, ϕ, ph2} 185 (176, 196) 1522.00
{ρt, ϕh2 , ph2}−(p2, ϕ2) 185 (175, 196) 1524.98
{ρt, ϕh2 , ph2}−(p1, ϕ1) 185 (175, 196) 1525.43
{ρt, [ϕh, ph]4} 227 (181, 302) 1534.46
{ρt, ϕ, ph3} 202 (178, 248) 1535.90
{ρt, ϕh3 , p} 173 (171, 176) 1601.17
{ρt, ϕh2 , p} 173 (171, 176) 1601.27
{ρt, ϕ, p} 173 (171, 176) 1606.34

Table 4.3. Posterior estimates (posterior median and 95% high posterior density credible
interval) for Nsuper and WAIC. Models are sorted by increasing values of WAIC.

0 (cfr. bottom left panel of Figure 4.2b): this may suggest that a more parsimonious
model is needed. We thus select {ρt, ϕh2 , ph2}−(p2, ϕ1) as most suitable model among
the considered ones.

For the selected model, the estimated capture probabilities are p̂1 = 0.26
(0.19, 0.33) and p̂2 = 0.70 (0.65, 0.75), while the estimated survival probabilities are
ϕ̂1 = 0.40 (0.09, 0.67) and ϕ̂2 = 0.76 (0.69, 0.83). The estimated posterior density
of ϕ1 is bell-shaped but quite vague, as suggested by the large 95% credible interval:
indeed, the latent nature of the survival process and the fact that ϕ1 controls the
survival of those individuals that remain in the population for a shorter period may
make the estimate of this parameter a challenging task. The estimate is expected to
improve with either a much larger number of primary periods or with the elicitation
of strong prior information on the parameter. Anyway, the choice of mild repulsive
priors on ϕ1 and ϕ2 does help to separate the posterior densities of the two survival
parameters, whose credible intervals do not overlap.

Figure 4.3a represents the evolution of the estimated population size over the
six considered months. The trend is in line with findings of Baillargeon and Rivest
(2007), who apply different types of CR models on these data. Figure 4.3b shows the
estimated recruitment parameters. Notice that ρ̂1 and ρ̂6 are higher than the other
estimates: in the first case, this may attributed to the fact that all the individuals
belonging to the population before June 1981 are virtually added to the population
at time t = 1; in the second case, such a large recruitment parameter may be due
to the exceptional number of individuals which have been observed for the first
time in the last primary period (42% of the individuals encountered in only one
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Figure 4.2. Estimated posterior densities of the mixture weights for the 3-class (a) and the
4-class (b) cross-classified models. Bottom left panel in (a) is blank, since combination
(p2, ϕ1) does not exist in the considered 3-class model.

primary period have been encountered at t = 6). Moreover, the wider 95% credible
interval for ρ6 reflects the combination between the exceptional number of first
encounters in the last primary period and the lack of further information about the
new encountered individuals due to censoring.

Post-hoc inspection of the probabilities of belonging to each class using the
selected model shows that long dense capture histories are clearly allocated to the
third class, characterised by the combination of high capture and high survival, i.e.
(p2, ϕ2). For example, an individual with capture history 1 3 1 4 5 2 is assigned to
class 3 with probability 0.91. Notably, 52% of the observed individuals allocated
to the third class via Maximum a Posteriori (MAP) are assigned to that class with
probability greater than 0.9. On the other hand, long sparse capture histories are
assigned to class 2, characterised by the couple (p1, ϕ2): for example, an individual
with capture history 0 1 1 1 0 1 is allocated to this class with probability 0.85. On
average, observed individuals have been assigned to this second class with a posterior
probability of 0.65. Individuals that have been encountered a few number of times
during one or few primary periods are all assigned to the third class, characterised
by small capture and small survival, i.e. (p1, ϕ1). As expected, the situation
associated with the highest uncertainty of allocation is the one where the individual
is encountered for the first time in the last primary period and for very few secondary
periods. In this case, the individuals is likely to be either a short-term survivor or a
long-term survivor that have just entered the population. Short capture histories
are of course less informative since they can be attributed to either elusive long-term
survivors which enter the population at some occasion t > 1 or to elusive short-term
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Figure 4.3. Estimated population abundance (a) and recruitment parameter (b) at each
occasion t, corresponding to months from June to December 1981. Dashed lines represent
95% credible intervals.

survivors.

4.4 Simulation experiment
We conduct a simulation experiment to assess the performances of the model selected
in Section 4.3 whenever it is well-specified. Therefore, we generate multiple sets of
artificial data from model {ρt, ϕh2 , ph2}−(p2, ϕ1) and then estimate a pool of models
on them. These candidate models are the thirteen models presented in the previous
real data illustration and reported in Table 4.3. The main objective is to evaluate
the ability to recover the true value of the super-population abundance (Nsuper).

Design details and true values of the parameters have been inspired by the
results obtained in Section 4.3. We consider a number of primary sampling occasions
T ∈ {4, 6, 8, 10} and constant secondary sampling occasions Jt = J = 5. The choice
of different values for T aims at assessing models’ performance with increasing sample
size. True survival probabilities are ϕ1 = 0.35 and ϕ2 = 0.75, while true capture
probabilities are p1 = 0.25 and p2 = 0.70. The recruitment parameters are fixed to
ρ1 = 0.25 and ρt = 0.05 for t = 2, . . . , T . Such a higher value for ρ1 aims at taking
into account of individuals which are already part of the population before the be-
ginning of the study, but that are virtually added to the population at that occasion.
The three mixture components are chosen to be balanced on the pseudo-population,
i.e. w1 = w2 = w3 = 1

3 . We simulate independent encounter histories for K = 50
pseudo-populations, assuming an expected super-population size of E [Nsuper] = 200.
That corresponds to ψ = 0.36, 0.42, 0.48, 0.53 for T = 4, 6, 8, 10, and then requires
creating pseudo-populations with M = 561, 477, 420, 380 pseudo-individuals, re-
spectively. Any of the M pseudo-individuals not recruited into the population or
not captured are, of course, excluded to produce an observable set of capture histories.

We fit all the considered models on the K simulated datasets, augmenting each
dataset by 200 all-zero capture histories for the implementation of the PX-DA
approach. The prior setting is the one considered in Section 4.3. Estimation is
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carried out using JAGS (Plummer et al., 2003). We run 2 parallel chains with 20, 000
iterations each, discarding 10, 000 as burn-in.

We report median posterior estimates as a robust measure to outlier point
estimate, mitigating the effect of anomalies that can result in occasionally low-
informative datasets. In the same spirit, we rely on the mean absolute error (MAE)
as an accuracy measure for posterior estimates. We also report the overlapping
index OV (see Section 3.5) between the posterior distributions of the couple of
capture (or survival) probabilities, averaged over K = 50 replicas. This metric is
particularly appealing to understand whether the posterior distributions of these
parameters are well-separated or not. Finally, we investigate the classification ability
of the true model. Recall that classification performances can be evaluated in a
simulation setting as the true group labels are known, while they are not known in
real data applications. We compute the multiclass AUC (mAUC) to assess the overall
performance of the fuzzy classification (Hand and Till, 2001) when the true model is
considered. Notice that classification performances are only evaluated for individuals
that have been actually encountered, since all-zero histories do not provide useful
information about the class an individual belongs to (we are only provided with
the posterior probability for an uncaptured individual to belong to a particular class).

Table 4.4 reports summaries of the estimated posterior on Nsuper for the thirteen
considered models, highlighting how the true data generating process tends to return
the lowest MAEs as T increases. Models that do not take into account the existing
heterogeneity in capture probabilities do fail in recovering the true super-population
abundance in all the cases: indeed, their MAEs associated with the estimated of
Nsuper are large, while their 95% posterior credible intervals are short and never
cover the true value of the parameter (cfr. xi-xiii).

T = 4 T = 6 T = 8 T = 10

Model MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW

(i) {ρt, ϕh2 , ph2}−(p1, ϕ1) 4.70 0.88 18.10 6.30 0.78 16.78 5.10 0.80 16.92 4.32 0.80 15.80
(ii) {ρt, ϕh2 , ph2}−(p1, ϕ2) 4.34 0.90 19.36 5.42 0.82 18.10 4.60 0.88 18.14 3.48 0.94 17.00
(iii) {ρt, ϕh2 , ph2}−(p2, ϕ1) 4.40 0.92 20.32 4.62 0.90 19.82 4.58 0.94 20.04 3.30 1.00 19.02
(iv) {ρt, ϕh2 , ph2}−(p2, ϕ2) 4.58 0.88 18.22 6.20 0.78 16.90 5.00 0.80 17.16 4.10 0.90 16.08
(v) {ρt, ϕh2 , ph2} 4.44 0.88 20.06 4.92 0.88 19.36 4.60 0.94 19.56 3.32 0.98 18.50
(vi) {ρt, [ϕh, ph]2} 4.30 0.90 19.52 5.32 0.86 18.28 4.56 0.88 18.42 3.54 0.94 17.14
(vii) {ρt, [ϕh, ph]3} 5.50 1.00 43.68 6.12 0.96 45.58 6.82 0.98 47.46 5.06 1.00 46.16
(viii) {ρt, [ϕh, ph]4} 6.17 1.00 52.74 5.92 1.00 55.66 7.44 1.00 52.60 5.54 1.00 49.64
(ix) {ρt, ϕ, ph2} 4.60 0.88 18.36 6.14 0.78 16.96 4.92 0.80 17.16 4.06 0.92 16.06
(x) {ρt, ϕ, ph3} 7.82 0.98 52.56 7.36 0.94 53.06 9.76 0.88 52.04 9.50 0.96 66.14
(xi) {ρt, ϕh2 , p} 14.36 0.00 6.84 15.82 0.04 6.76 14.06 0.00 7.04 13.34 0.00 6.60
(xii) {ρt, ϕh3 , p} 14.36 0.00 6.86 15.74 0.04 6.78 13.96 0.00 7.06 13.26 0.00 6.66
(xiii) {ρt, ϕ, p} 14.58 0.00 6.70 16.14 0.02 6.44 14.40 0.00 6.62 13.72 0.00 6.16

Table 4.4. Estimates of MAE, coverage (Cov.) and width of the 95% credible intervals
(CIW) for Nsuper, obtained when data are simulated from model {ρt, ϕh2 , ph2}−(p2, ϕ1)
(the corresponding row is highlighted in light grey). For convenience, labels (i)-(xiii) are
assigned to the thirteen models.

Similar considerations can be supported by Figure 4.4, which shows the differences
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between the estimated (N̂super) and true (Nsuper) super-population size for each of
the K = 50 replicas by all considered models. We notice that, for some replicas,
the true value of N̂super tends to be dramatically overestimated by models that
consider a larger number of capture probabilities than necessary, i.e. {[ϕg, pg]G=3}
and {[ϕg, pg]G=3}. On the other hand, as already pointed out, models that do not
consider heterogeneity between capture probabilities persistently underestimate the
super-population abundance.
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Figure 4.4. Difference between the estimated (N̂super) and true (Nsuper) super-population
abundance for each of the K = 50 independent replicas and for the candidate models
listed in Table 4.4. Each panel reports the values for a different number of primary
occasions T . All the replicas are simulated from the same data generating process - i.e.
{ρt, ϕh2 , ph2}−(p2, ϕ1) - which corresponds to (iii).

The lowest values of the WAIC are systematically those related to the 3-class
model {ρt, ϕh2 , ph2}−(p2, ϕ1) and to the 4-class model {ρt, ϕh2 , ph2}, attaining values
for the two models whose difference is negligible in most of the replicas. Anyway, if
we look at the mixture weight of the latter model corresponding to the combination
(p2, ϕ1), we notice that its estimated posterior density tends to concentrate around
0 in most of the simulated datasets (see Figure 4.5). This highlights a potential over-
fitting of model {ρt, ϕh2 , ph2} and suggests a reasonable collapse of the component
characterised by the combination (p2, ϕ1) in favour of the more parsimonious model
{ρt, ϕh2 , ph2}−(p2, ϕ1).

Regarding the estimation of group-specific detection and survival probabili-
ties, the high coverage of the credible intervals in Table 4.5 shows that model
{ρt, ϕh2 , ph2}−(p2, ϕ1) correctly recovers the true parameter values in most of the
cases. Although ϕ1 has quite wide 95% credible intervals in all the scenarios (cfr.
Section 4.3), the estimated posterior densities of the two survival probabilities turn
to be well-separated (OVϕ1, ϕ2 ≤ 0.03 for each T ).
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Figure 4.5. Estimated posterior distributions of the mixture weights of the component of
model {ρt, ϕh2 , ph2} which is characterised by the combination (p2, ϕ1).

p1 p2 ϕ1 ϕ2

T Cov. CIW Cov. CIW OVp1, p2 Cov. CIW Cov. CIW OVϕ1, ϕ2

4 0.96 0.08 0.88 0.08 0.00 0.94 0.53 0.92 0.16 0.03
6 0.98 0.07 0.96 0.07 0.00 0.96 0.52 1.00 0.13 0.01
8 0.86 0.06 0.98 0.07 0.00 0.96 0.54 0.94 0.12 0.02
10 0.96 0.06 0.94 0.06 0.00 0.96 0.52 0.94 0.11 0.01

Table 4.5. Estimates of coverage (Cov.) and width of the 95% credible intervals (CIW)
for capture and survival probabilities and average overlapping index between posterior
densities of p1 and p2 and between the ones of ϕ1 and ϕ2. The fitted model coincides
with the data generating process, i.e. {ρt, ϕh2 , ph2}−(p2, ϕ1).

Finally, classification performances of the true model are quantified by the mAUC
score, which is pretty high also in the case of few primary capture occasions (i.e.
average mAUC is 0.87 when T = 4) and tends to slowly increase with T . It is
important to remark that there are aspects of CR data that might unavoidably
affect the performance of the classification. For example, encounter histories are
right-censored and this makes it hard to classify an individual that is captured for
the first time close to the end of the study (Cubaynes et al., 2012).
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4.5 Discussion
In this chapter we have reviewed the Pledger et al. (2010)’s class of JS finite mixture
models and we have extended it to the Bayesian PX-DA framework of Subsection
2.2.3. These types of models can be used to jointly estimate the population abundance
and classify individuals according to their capture and survival tendencies.

Along with the classical single mixture grouping in G classes, we considered
model based on a double mixture grouping too. In the latter case, for example,
different mixture components may share some common parameters by avoiding
the use of too many parameters. Notably, we explored a parsimonious class of
cross-classified JS-type models, which can be used to highlight groups of individuals
with different patterns of residency in the study area. Notably, this model comes
from a parsimonious reduction of the 4-class cross-classified model {ρt, ϕh2 , ph2}
obtained by collapsing one of the mixture component: therefore, the proposed 3-class
cross-classified model was named {ρt, ϕh2 , ph2}−(p., ϕ.), that corresponds to model
{ρt, ϕh2 , ph2} without the combination (p., ϕ.).

When true data are generated by the 3-class cross-classified model, the 4-class
cross-classified model still performs well in estimating the true super-population
abundance and attains values of WAIC which are comparable with those of the true
model; however, from a further inspection of the mixture weights, it is possible to
find out that the 4-class model introduces an additional but unnecessary mixture
component which seems to capture some random noise in the data.

Mild repulsive priors turned to be useful in separating the posterior densities
of the two survival parameters. However, the latent nature of the survival process
makes the estimation of the lower survival probability quite challenging, above all
in presence of few primary sampling periods: whenever ecological information is
available, suitable prior should be elicited to reduce the uncertainty on the final
parameter estimate.

The model selection has been supported by the WAIC, a measure of the goodness-
of-fit of a hierarchical model structure to a given dataset. This measure has been
recently used by Turek et al. (2021) in the context of CR mixture models and seems
a valid alternative to the most common DIC, whose use is not recommended for
models involving mixtures of distributions (Spiegelhalter et al., 2003). An interesting
alternative which may be worth exploring in the future is the Gelfand and Ghosh
(1998)’s model selection criterion, which has been adopted in the context of Bayesian
Capture-Recapture models by Ghosh and Norris (2005).

For simplicity, throughout all the applications in this chapter, we have considered
the recruitability parameter ρt to vary across primary sampling periods but to be
homogeneous across groups. However, for example, it can happen that two different
groups of individuals may share the same capture and survival probabilities but being
characterised by different recruitment parameters; or even more complex situations
may be taken into account, as shown in Chapter 5, where constant recruitments
are assumed for a group of individuals and time-varying recruitments are assumed
for the rest of the population. Summing up, there are plenty of options with which
one can built a cross-classified model and reasonable model assumptions should be
based on several factors, such as previous knowledge about the population under
study and the way Capture-Recapture samplings have been designed and carried



4.5 Discussion 49

out. Here, we have focused on a situation which will serve as the basis for what
will be presented afterwards: specifically, in the next chapter we will move a step
forward by extending the 3-class cross-classified model to depict the structure of a
population whose residency patterns are already known in literature.
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Chapter 5

Modelling residency patterns in
marine wildlife populations

In Chapter 4 we introduced parsimonious cross-classified JS mixture models which
allow to jointly estimate the population abundance and classify individuals according
to their capture and survival tendencies: individuals which show similar capture
histories tend to be assigned to the same group.

In some cases, ecological information about the population - or, more generally,
about the species - of interest is available to the researcher and it can be suitably
used to specify a statistical model which attempts to describe the real phenomenon
in mathematical terms. Common practice in this very general setting is to include
covariates to explain differences in population’s members and use them to induce
changes in the detection or survival mechanisms through link functions. However,
informative covariates are often unavailable and, as seen in Chapter 3 and 4, a
natural solution is represented by finite mixture models. In addition, we believe
that finite mixtures represent a valuable tool to outline - in statistical terms -
classes of individuals sharing similar profiles whenever strong scientific evidence of
population groups’ existence is available. The identification of common profiles is
crucial to describe different individual residency patterns and quantify the number
and proportion of individuals that correspond to each profile, a task that is highly
relevant in animal conservation management.

In this spirit, in this chapter we focus on the study of an open population of
bottlenose dolphins composed of individuals that are known to cluster in groups
which vary according to their level of site-fidelity. This motivates the subsequent
definition of a tailored Bayesian mixture model to describe and characterising this
known structure. Notably, we show how prior scientific knowledge on the structure
of the population of interest can be leveraged to specify a more parsimonious model
and to improve on the final estimates of the population groups and sizes. We
assess the performance of our proposal through a simulation study, comparing it
with two alternative models: the first assuming a similar but less parsimonious
structure, while the second not assuming a group-wise structure of the population.
We finally provide an illustration on a dataset from a recent survey on a population
of bottlenose dolphins.

Part of this chapter is currently published (pre-print) in Caruso et al. (2023),
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while undergoing the review process.

5.1 Residency patterns of common bottlenose dolphins
Most of the recent literature about common bottlenose dolphins converges towards
the identification of three groups characterized by different levels of site-fidelity with
respect to a specific study area: from the most to the least frequently present (Dinis
et al., 2016; Estrade and Dulau, 2020; Haughey et al., 2020; La Manna et al., 2022).

The first group is composed by individuals that almost never leave the study area;
these are usually referred to as resident individuals, that are observable throughout
many occasions and for long periods of time (e.g. across multiple years). The second
group includes individuals that are not continuously present in the study area but
regularly visit it; these are called part-time resident individuals, that are observable
throughout a wide time window but are usually encountered at occasions far apart
in time. The third and last group is composed of individuals that enter the study
area only once in their lifetime and stay there for a short time window; these are
transient individuals, that are observable only at occasions occurring on close dates.

This population structure is of utter interest for marine biologists, who are
mostly interested in disentangling the permanent or semi-permanent population
from the transient one. They usually apply clustering methods on some site-fidelity
metrics derived from the capture histories to deterministically assign each individual
to its group. After that, the group labels are used in the Jolly-Seber framework
to model heterogeneity in the entrance, detection, and survival probabilities of the
individuals (see, for example, Estrade and Dulau (2020); Pace et al. (2021)). While
practical for understanding the underlying structure of the population of interest,
this two-step approach has some relevant issues. First of all, there is no quantification
nor propagation of the uncertainty of the classification step onto the modeling step;
this can bias the final estimates and yield over-confident conclusions. Second, the
same information set is used twice in two different statistical procedures, where the
latter is performed after conditioning on the first; this can lead to a confirmation
bias in favor of the original hypothesis.

Here, we propose to unify the two steps into a joint statistical procedure which
allows population size estimation and classification at the same time. This lets
the same estimation procedure find the best fuzzy classification to explain the
observed capture histories and properly propagate the uncertainty at all levels (Clark
and Gelfand, 2006). In particular, what we propose is a tailored version of the
parsimonious cross-classified models illustrated in Chapter 4 which incorporates the
prior knowledge about the population’s structure.

5.2 RPT model for characterising residency patterns
The population structure illustrated in Section 5.1 and characterised by individuals
with either resident (R), part-time (P) or transient (T) pattern can be translated in
mathematical terms to reflect variations in the parameters of the open-population
PX-DA framework.
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We can see individuals as separated in two large distinct groups with two
different ecological behaviours: specifically, they can be either short-term survivors
(transient) or long-term survivors (non-transient, that is either resident or part-
time) according to their tendency to stay in the study area for a shorter or wider
time window, respectively. Therefore, we suppose that transient individuals has a
survival probability (ϕT R) which is smaller than the one of the other two groups
(ϕNT R), that is ϕT R < ϕNT R. Notice that these two survival parameters represent
the survival probabilities across a single time-unit on the chosen scale. In fact,
when subsequent capture occasions are not equally spaced, the survival probabilities
should be appropriately compounded (cfr. Section 4.1), that is ϕT R, t = ϕlt

T R and
ϕNT R, t = ϕlt

NT R, where l2, . . . , lT are the time differences between the T subsequent
occasions.

Moreover, we assume that transient individuals are characterised by a constant
recruitability parameter ρT R, t = ρT R, ∀t, while resident and part-time individuals
are characterised by a time-varying recruitability parameter, i.e. ρNT R, t. In fact,
while transient individuals may randomly pop up in the population at any occasion,
most of the resident and part-time individuals are expected to be already part of the
population before the start of the survey and, consequently, to be virtually added
into the population in the very first capture occasions.

Notice that these two sets of recruitment parameters induce a clusterisation in
the relationship between the recruitment parameters and the super-population size
Nsuper. In practice, it yields group-specific inflation parameters that modify the
expected super-population size as

E [Nsuper|ψT R, ψNT R, w3] = M · [w3ψT R + (1 − w3)ψNT R] ,

where w3 is the mixture weight of transient individuals, ψT R = 1 − (1 − ρT R)T is
the inflation parameter for transient individuals and ψNT R = 1 −

∏T
t=1 (1 − ρNT R, t)

is the inflation parameter for non-transient individuals.
The only difference between resident and part-time individuals lies in the partial

undetectability of the latter group, whose individuals (if alive) may not be present
in the study area at some random occasions with probability δ ∈ (0, 1). The
biological interpretation of a time-constant undetectability parameter is that the
probability of being in the study area during the current sighting is the same for
those part-time individuals in and those out of the study area during the previous
sighting. Interestingly, this parameter plays a similar role to the completely random
emigration parameter of Kendall et al. (1997). Anyway, although the undetectability
parameter is part of the ecological process, it directly affects the capture probability
of part-time individuals. In fact, if the capture probability at time t for resident and
transient individuals is

pNP T, t = logit−1 (µ+ τt) , t = 1, . . . , T ,

the capture probability at time t for part-time individuals is given by

pP T, t = (1 − δ) · pNP T, t = (1 − δ) · logit−1 (µ+ τt) , t = 1, . . . , T .
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Of course, pP T, t < pNP T, t, ∀t. Notice that the larger δ the more separated the part-
time group from the resident group. General-purpose and weakly informative priors
can be ascribed to µ. In order to induce a little time variation (in the logit-scale) on
the capture probabilities, we suggest considering

τt ∼ N(0, σ2),∀t , (5.1)

with σ small.

We name this model RPT as it encompasses the three illustrated residency
patterns ordered on a progressively lower degree of site fidelity. However, we would
like to stress how the model does not enforce this interpretation. For instance, both
survivals could be estimated to be high, or the undetectability parameter estimated
to be close to 0. Table 5.1 provides a summary of the parameters which characterise
each group of the RPT model, highlighting the fact that some mixture components
share common parameters.

mix. weight recruitment zero-inflation survival capture undetect.

Group w1 w2 w3 ρT R ρNT R, t ψT R ψNT R ϕT R ϕNT R pP T, t pNP T, t δ

Resident ✓ ✓ ✓ ✓ ✓

Part-time ✓ ✓ ✓ ✓ ✓ ✓

Transient ✓ ✓ ✓ ✓ ✓

Table 5.1. Description of the main parameters of the RPT model.

5.3 Simulation experiment
We conduct a simulation experiment to assess the performances of the RPT model
whenever it is well-specified, i.e. the data are generated according to the structure
described in Section 5.2. We generate multiple sets of artificial data under alternative
scenarios from the RPT model with fixed parameters and then estimate a pool
of models on them. Our main objective is twofold: i) to evaluate the ability of
recovering the true values of the parameters, with a particular focus on Nsuper; ii)
to verify whether the RPT model is chosen as the best one among other alternatives
according to some model selection criterion.

5.3.1 Simulation setup

Experimental design

We consider four scenarios characterised by different number of sampling occasions,
i.e. T ∈ {10, 20, 30, 40}, to verify the model performances with an increasing time
horizon. We suppose that in the first scenario (i.e. T = 10) all the captures are
recorded within a relatively short period (e.g. within a year). Longer time horizons
are considered in the subsequent scenarios, where a larger time-gap (year gap) is
assumed to occur every 10 occasions. Further details about the time lags are available
in Appendix D.
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The month (and portion of months) is taken as the basic time unit to avoid
the possible numerical instability related to the large values of the lags in terms of
days. Note that this has an effect on the interpretation of the survival probability
parameter that will represent the probability to survive one month. We adopt the
following parameters’ values in all the scenarios. The (monthly) survival probabilities
are set to ϕT R = 0.01 and ϕNT R = 0.997. These two values may seem quite extreme
at a first glance, but they actually assure that the short-time survivors (transient
individuals) almost surely stay in the population for less than a year and that the
long-term survivors (non-transient individuals) stay in the population for more
than three months with very high probability (> 0.99). Furthermore, notice that a
monthly survival probability equal to 0.01 corresponds to a survival probability equal
to a probability of 0.86 on a daily scale and of 0.34 on a weekly scale. On the other
hand, a monthly survival probability equal to 0.997 corresponds to a probability
of 0.87 on a quadrennial scale. Therefore, the monthly scale appears as a good
compromise to avoid both a too low value for ϕT R and a too high value for ϕNT R.

The capture probabilities are obtained by setting µ = 0 and δ = 0.7, and
generating τt’s from a N(0, 0.25) in each scenario.

The recruitment parameter for transient individuals is fixed to ρT R = 0.02
for all capture occasions, while for resident and part-time individuals we consider
time-varying recruitment parameters. Specifically,

ρNT R, t =


0.4 , t = 1
0.04 , t = 10k + 1 , k = 1, 2, 3
0.005 , otherwise

.

The mixture weights for the three groups in the pseudo-population are set to w1 = 0.2
(resident), w2 = 0.45 (part-time) and w3 = 0.35 (transient).

We envision a pseudo-population of M = 500, that yields an expected super-
population size E [Nsuper] ∈ {171, 213, 248, 278}, as T increases. Notice that Nsuper

increases with T as more individuals can visit the study area during a longer time
horizon.

We simulate independent encounter histories for K = 50 pseudo-populations
from the RPT model by using the above parameters’ specification.

Model’s competitors

We compare the proposed model with two competitors: an under-parameterised
alternative, {ρt, ϕ, pt}, and an over-parameterised alternative, {[ρt×h, ϕh, pt+h]G=3},
with capture probabilities modelled as in equation (4.1) and temporal random effects
τt supposed to be shared by the three components.

Notably, model {[ρt×h, ϕh, pt+h]G=3} resembles the 3-class structure of the RPT
model, but without the use of cross-classification. Thus, in our opinion, this model
may represent a Pledger et al. (2010)’s benchmark alternative to the proposed model.

On the other hand, model {ρt, ϕ, pt} excludes the presence of different classes
of individuals in the population. As already noted (cfr. Section 5.2), such a kind
of model is probably unsuitable to characterise the target population, since it does
not account for heterogeneity; nevertheless, it can still be interesting to see what
happens if the underlying structure of the population is ignored in this context.
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Prior specifications

We briefly illustrates the prior specification for the RPT model’s parameters.
Following the methodology illustrated in Chapter 3, we use the following condi-

tional specification for the survival probabilities:

ϕT R ∼ Beta(1, 2)
ϕNT R|ϕT R ∼ tBeta(1, 1, ϕT R, 1) ,

with the latter marginally yielding ϕNT R ∼ Beta(2, 1). This enforces ϕT R < ϕNT R

and also induces a slight repulsion between the two parameters. The two sets of
recruitment parameters are ascribed the priors ρT R ∼ Beta(1, T ) and ρNT R, t ∼
Beta(1/T, 2 − t/T ), t = 2, . . . , T . A standard Dirichlet distribution is placed on
the group weights vector, namely w ∼ Dirichlet(3, (1, 1, 1)). In absence of relevant
prior information, we consider δ ∼ Unif [0, 1]. Regarding the parameters of the
detection process, we consider µ ∼ N(0, 10) and τt ∼ N(0, 0.25), ∀t.

The priors on the parameters of the other two candidate models basically resemble
their counterparts used for the RPT model. Notably, the survival parameter of
model {ρt, ϕ, pt} is provided with a standard Unif [0, 1], while constrained Uniform
priors are chosen for the survival parameters of model {[ρt×h, ϕh, pt+h]G=3} (cfr.
Chapter 3).

Model fitting

Each simulated dataset is augmented by 500 all-zero capture histories for the
implementation of the PX-DA approach and we fit the three considered models on
each of them, separately. In particular, estimation is carried out using JAGS and
the BUGS codes for the three considered model is reported in Listing A.14 and A.15
in Appendix A. We run 2 parallel chains with 20, 000 iterations each, discarding
15, 000 as burn-in.

5.3.2 Results

Figure 5.1 shows the differences between the estimated (N̂super) and true (Nsuper)
super-population size for each of the K = 50 replicas by all considered models.
To allow for a meaningful comparison between scenarios having expected super-
population sizes of different magnitudes, the error is divided by the expected value
of Nsuper of the corresponding scenario. We notice that the RPT uniformly provides
the best results overall. On the contrary, the super-population size is consistently
overestimated by the model {[ρt×h, ϕh, pt+h]G=3}, while it is always underestimated
by the simpler model {ρt, ϕ, pt}.

Table 5.2 reports some summaries useful to assess models’ performance in
estimating Nsuper, along with the WAIC associated to each model. When the true
model is fitted, we also report the median multi-AUC (mAUC) for each scenario.
Notice that MAE and CIW are scale-dependent measures and do not allow for
comparisons between scenarios. Again, we consider relative versions of these measures
by dividing both by the corresponding expected value of Nsuper. RPT model returns
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Figure 5.1. Relative estimation error of the super-population (Nsuper) abundance for
increasing number of sampling occasions (T ), calculated for each of the K = 50 indepen-
dent replicas, by the three competing models: RPT (lightblue), {[ρt×h, ϕh, pt+h]G=3}
(wheat) and {ρt, ϕ, pt} (salmon).

the lowest relative MAEs in each scenario, with the error decreasing as the number
of occasions increases. The WAIC tends to favour model {ρt, ϕ, pt} over the other
two alternatives only when the number of sampling occasions is rather small, i.e.
T = 10. This is not alarming as it is very hard to estimate such a complex set
of interplaying parameters when the amount of capture occasions is scarce. In
particular, it is extremely complicated to distinguish individuals with low and high
survivals when the occasions span only one year. The WAIC favours the true model
in all other scenarios, yielding the lowest median score and also selecting it (i.e.
returning the lowest WAIC) in most of the replicas when T > 10 (96% when the
number of sampling occasions is the largest).

The classification performances of the RPT model are quite good in all the
scenarios, with the mAUC improving as T increases. Notably, the resulting median
mAUC is always greater or equal than 0.84 and it is above 0.95 when at least one
change of year occurs. Furthermore, by assigning the labels to each individual
according to the Maximum a Posteriori (MAP) rule, the median accuracy (across
replicas) is between 72% and 92% in all scenarios (once again improving as T
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RPT {ρt, ϕ, pt} {[ρt×h, ϕh, pt+h]G=3}

T MAErel Cov. CIWrel WAIC %waic mAUC MAErel Cov. CIWrel WAIC %waic MAErel Cov. CIWrel WAIC %waic

10 0.05 1 0.23 1613.7 16 0.84 0.06 0.70 0.14 1589.0 68 0.21 0.84 0.69 1603.5 16
20 0.03 1 0.15 3173.7 80 0.95 0.08 0.12 0.09 3293.2 2 0.27 0.64 0.67 3229.0 18
30 0.03 1 0.15 4640.7 92 0.97 0.11 0 0.07 4984.1 0 0.34 0.38 0.64 4782.7 8
40 0.02 0.98 0.14 6365.6 96 0.98 0.12 0 0.06 6869.8 0 0.42 0.12 0.57 6542.2 4

Table 5.2. Estimates of relative MAE (MAErel), coverage (Cov.) and relative average width
of the 95% credible intervals (CIWrel) for Nsuper, median WAIC and percentage of times
each competing model has achieved best WAIC (%waic). When RPT model is fitted,
median multi-AUC (mAUC) is reported. All these summaries have been obtained when
data are simulated from the RPT model. Summaries concern data that are simulated
from the RPT model.

increases).
Table 5.3 shows the RPT model performance in estimating some time-constant

parameters. The estimates of ϕNT R and δ have a very small MAE but fail in attaining
the nominal credible interval coverage of 95% in most scenarios. This indicates a
good accuracy of the point-estimates but a slight over-confidence (visible in the low
average CIWs), which leads to a reduction of the nominal coverage. Nonetheless,
they both settle to a fair and acceptable level. All things considered, this is not
particularly surprising as such component-specific parameters are governing a latent
process and are potentially mutually confounded. The average credible interval
width of ϕT R is high for the first scenario (i.e. T = 10), but it rapidly decreases
in the following scenarios, indicating that the transient component is indeed well
separated from the non-transient one whenever the study is conducted for a large
period (i.e. at least two year of sightings).

Finally, we verify the overlapping between the posterior distribution of the two
survival probabilities, i.e. ϕT R and ϕNT R. They are well separated in all scenarios,
with an overlapping index (OV ) estimated to be equal to 0.015 when T = 10 and
equal to 0 for larger T .

ϕT R ϕNT R δ µ

T MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW

10 0.06 1 0.59 0.04 0.72 0.08 0.08 0.82 0.29 0.15 1 1.04
20 0.02 1 0.11 0 0.82 0.01 0.05 0.50 0.10 0.10 0.98 0.56
30 0.02 0.96 0.11 0 0.96 0.01 0.03 0.60 0.07 0.05 1 0.44
40 0.01 1 0.07 0 0.88 0 0.02 0.72 0.06 0.04 1 0.37

Table 5.3. Estimates of MAE, coverage (Cov.) and average width of the 95% credible
intervals (CIW) for Nsuper for some time-constant parameters of model RPT. Summaries
concern data that are simulated from the RPT model.

5.4 Real data illustration: Tursiops truncatus
We consider a population of common bottlenose dolphins (Tursiops truncatus)
inhabiting the area of the Tiber river estuary (Mediterranean Sea, Rome, Italy)
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(Pace et al., 2021). The coastal area and nearby regions surrounding the Tiber River
estuary represent a suitable habitat for bottlenose dolphins, despite their proximity
to the city of Rome - one of the major urban centers in Europe.

Boat-based daily surveys to collect photographic data of the dolphins were
conducted between June 2018 and November 2020 in favorable weather conditions
to reduce the detection probability bias. The photo-identification technique was
used to identify unique individuals over multiple sampling occasions and to build
single encounter histories. The individual distinctiveness was scored as well-marked
(individuals with highly distinctive dorsal fins and scars on the body), fairly marked
(individuals with moderately distinctive dorsal fins), and unmarked (individuals with
no distinctive features on dorsal fins). We will only consider well-marked individuals
in this analysis, since they are the ones for whom identification is deemed to be
reliable. The resulting data matrix consists in the detection histories of D = 195
well-marked dolphins that have been sighted in the area between June 2018 and
November 2020, for a total of T = 87 occasions.

We apply the RPT model to estimate the total population size of the common
bottlenose dolphins inhabiting the Tiber river estuary in the considered time-window.
Since time-lag between capture occasions is really variable, we adapt the survival
mechanism to describe not equally spaced capture occasions, as already discussed in
Section 5.2.

After some preliminary runs with numbers of all-zero rows, we finally choose
to add 500 rows of pseudo-individuals (i.e. null capture histories), thus yielding an
augmented data matrix of 695 rows. Further additions of all-zero rows led to similar
results but strain the computational burden, both in terms of runtime and storage.

As for the simulation study, we compare the performances of the RPT model with
a lower and higher-parameterised alternative: {ρt, ϕ, pt} and {[ρg×t, ϕg, pg+t]G=3},
respectively. The comparison among these three models allows testing whether there
is unobserved heterogeneity or not, and if the more parsimonious RPT is a better fit
than the more general {[ρg×t, ϕg, pg+t]G=3} model.

We consider the same prior settings used in Section 5.3 and we run 2 parallel
chains, each with 20, 000 iterations with a burn-in of 10, 000 and no thinning.

Table 5.4 reports the results on abundance estimation along with the WAIC
associated to each competing model. Notice that the same labels of the RPT model
are used for the classes of model {[ρg×t, ϕg, pg+t]G=3}, since its estimated mixture
components identify three classes of individuals that resembles the ones which
characterised the RPT model: the first with low survival and capture probabilities,
the second with similar capture probability but higher survival and the third with
both higher survival and capture probabilities. It is important to stress that one
could have placed order constraints on the group-dependent intercepts ηg’s of model
{[ρg×t, ϕg, pg+t]G=3} - i.e. η1 < η2 < η3 - to better identify the three components;
however, in this case it was not necessary since the estimated η̂1, η̂2 and η̂3 do respect
this sorting, with a difference between η1 and η2 that is actually negligible. On the
other hand, the estimated posterior distributions of the three survival parameters
do not overlap each other.

Notably, the RPT model yields an estimated abundance of well-marked in-
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Model WAIC N̂super N̂R N̂P N̂T

RPT 5045.5 299 (256, 343) 62 (51, 73) 87 (64, 105) 150 (99, 204)
{[ρt×g, ϕg, pt+g]G=3} 5071.4 517 (357, 638) 53 (45, 60) 90 (56, 169) 379 (154, 506)

{ρt, ϕ, pt} 5101.8 227 (213, 242) - - -
Table 5.4. WAIC and estimated super-population abundance for the whole population and

by group. 95% high posterior credible interval is reported along with the point estimate.

dividuals of N̂super = 299 (CI0.95 = [256, 343]), with yearly variations N̂y (y =
2018, 2019, 2020) that show a peak in 2019 and a decrease in the last year of ob-
servation. The same trend is observed for the other two candidate models, as
shown by Figure 5.2. However, the estimated abundance of well-marked individuals
in 2019 is much higher and associated with much more uncertainty when model
{[ρg×t, ϕg, pg+t]G=3} is adopted: this yearly estimate seems to be the main compo-
nent that affects the final abundance estimate, by dragging it to a very high value
(i.e. N̂super = 517).

●

●

●
●
●

●

●●

●
●

●

●●

●

●

●

●
●●●●●●
●●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●
●●
●
●
●
●●

●

●

●

●
●

●

●

●●
●●●
●
●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●●
●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●
●●
●●
●

●

●●●
●●●●

●

●
●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●●
●

●●

●
●
●●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

●●●●
●

●

●
●
●

●

●

●
●
●

●

●
●

●

●

●
●

●

●●●●●

●

●●●

●
●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●
●
●●

●

●
●

●●

●

●

●

●

●

●
●●●
●
●●

●
●
●●●

●●●●●
●

●

●

●

●●
●●
●
●●

●

●●

●

●●●●●●
●
●
●
●●●
●
●
●
●●●●●

●●
●●

●
●

●●
●●●

●●
●

●

●
●
●●

●

●●●

●

●
●

●

●
●
●

●●
●●
●
●

●

●●●

●

●
●
●

●●
●●
●
●

●

●
●
●

●●●●

●

●●
●
●●●●●●

●

●●
●●
●●

●

●●●●

●

●●
●

●

●●

●●
●
●●
●

●

●
●
●●
●●

●

●

●

●
●
●
●
●
●
●

●
●

●●●
●
●

●●
●●

●●

●

●

●
●●●
●●●●●●

●

●●●
●
●

●●●
●
●●

●
●
●

●●
●
●
●●●●●

●

●●●●●
●
●

●

●
●
●

●

●●●
●
●
●
●●●
●

●

●●
●

●

●●
●
●

●

●●●
●●●

●

●●
●●●
●●
●

●

●

●●

●
●

●
●●

●
●

●●●●●●
●●
●

●

●
●●
●●
●●

●●

●
●●
●

●
●●●
●

●
●
●

●●

●
●
●

●

●

●●

●
●
●
●

●●●

●

●

●

●

●●
●●●●●●●
●●

●
●●
●

●

●
●

●●●
●

●

●●●●●
●●
●●

2018 2019 2020

0
10

0
20

0
30

0
40

0
50

0

A

●

●

●●●

●●●

●

●●

●

●
●

●●

●

●
●

●

●●
●

●●

●●●●
●●
●●
●
●●
●
●●

●
●
●
●
●

●

●
●●●●

●

●

●●●

●●

●
●
●

●●●
●
●
●●●●
●
●

●
●
●●●●●

●

●
●
●●
●
●
●

●
●●●●●●●
●

●
●●
●●
●
●

●
●
●
●
●●

●
●●●
●
●
●●
●
●●

●

●●●

●

●●●

●

●●
●
●
●

●●●
●●●●●
●

●
●
●

●

●
●

●●●●
●
●●

●●●
●

●
●
●●●

●●●●

●

●
●
●

●●

●
●●

●

●

●
●●
●

●●
●●●●
●
●

●
●
●●
●
●●●
●

●

●●

●

●
●
●
●●●
●●●●

●

●
●
●
●
●●

●
●
●●
●

●●
●
●
●●●
●

●

●●●
●
●
●
●

●
●●●

●

●

●
●
●
●●
●

●

●●

●

●

●●●
●
●●
●
●●●
●●

●
●

●●

●

●●
●
●●
●●
●●
●
●●
●●
●●●●●

●

●●●

●
●

●●

●

●●●
●
●
●
●●●
●

●●

●
●
●
●

●●
●●
●●
●●
●●●
●
●●
●
●●●●●
●●●●
●

●

●●
●

●
●

2018 2019 2020

0
10

0
20

0
30

0
40

0
50

0

B

●●●●●
●●●●●●●●●

●
●●●●●●
●●
●●●
●
●

●●●

●●

●
●
●●●●
●
●
●
●●
●

●

●

●
●
●●

●

●

●

●●
●●
●

●
●●
●
●●●

●
●
●
●●
●
●●●●●
●
●

●
●●
●●
●●●

●
●
●
●
●
●
●●

●

●
●●
●●●
●●

●

●

●

●●●
●
●●●●
●
●●●●●

●
●
●

●●

●

●

●●
●
●

●

●●
●
●●
●●

●

●
●

●●●●●

●

●
●●
●
●●

●

●

●

●
●●

●

●

●

●
●●

●

●●
●
●●●●

●
●●●

●

●
●

●

●

●

●
●●
●●

●●
●●
●
●●●●●●
●●●●●●

●

●
●
●●●

●
●
●●●
●
●●
●

●
●
●●
●●●●●●●

●●

●

●
●
●

●●●●●

●
●

●●

●
●
●●

●

●

●●
●
●
●

●

●
●

●

●
●●●●●

●

●●
●
●●

●
●

●

●
●●
●●●●●●
●
●
●●

●●

●
●
●

●

●
●●

●

●
●
●

●●

●
●
●●●●

●
●
●●
●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●
●●
●●●●●

●

●●
●

●
●
●

●

●

●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2018 2019 2020

0
10

0
20

0
30

0
40

0
50

0

C

Figure 5.2. Boxplots of the estimated super-population size by year for model RPT (A),
{[ρt×g, ϕg, pt+g]G=3} (B) and {ρt, ϕ, pt} (C).

As previously shown by Table 5.4, the RPT model does yield the lowest WAIC
score. This suggests the presence of unobserved heterogeneity in the population,
which is better described by the more parsimonious structure of the RPT model
than by the more generic 3-class specification. The RPT model is thus selected and
the associated estimates are analysed more in depth.
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The two annual survival probabilities are well separated, with an overlapping
index equal to 0. Posterior estimates are ϕ̂T R = 6.6 × 10−7 (CI0.95 = [0, 5.5 × 10−6])
and ϕ̂NT R = 0.69 (CI0.95 = [0.60, 0.78]). Notice that the estimated smaller survival
parameter ϕ̂T R = 6.6 × 10−7 is of little interpretability in annual scale, but it
corresponds to a probability of 0.76 on weekly scale and of 0.31 in monthly scale.

The parameter δ regulating the undetectability of the part-time group is estimated
to be δ̂ ≈ 0.75. This means that individuals in that group - when alive - are present in
the area approximately 25% of the times. The resulting average capture probability
of part-time individuals is 0.0425, while for the rest of the individuals is about four
times larger. The corresponding temporal variations, captured by τt, results in the
time-dependent posterior distributions of pP T, t and pNP T, t reported in Figure 5.3.
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Figure 5.3. Posterior median and 95% credible intervals of the two capture probabilities.

It is interesting to see in Figure 5.4 how the recruitment of resident and part-time
individuals is high at the first occasion and then rapidly decreases to low values.
This indeed accounts for all individuals that were already present in the population
before the starting of the survey and that are virtually recruited at the first occasion.
On the other hand, the estimated recruitment parameter of transient individuals is
0.032, with 95% credible interval (0.019, 0.046).

By assigning the 195 well-marked individuals that were encountered between June
2018 and November 2020 to a single group according to the Maximum a Posteriori
(MAP) allocation, we have that: 48 are assigned to the group of resident individuals,
56 to the group of part-time individuals, and 91 to the group of transient individuals.
The fuzzy nature of this clustering allows to quantify how decisively each individual
is assigned to one group or the other. For instance, 90% of the individuals classified
into the first group have been assigned to it with a probability greater than 0.9. This
probability is greater than 0.54 and than 0.53 for the individuals assigned to the
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Figure 5.4. Posterior median and 95% credible intervals of the recruitment parameter for
resident and part-time individuals (i.e. ρNT R, t).

second and to the third group, respectively. Given the little information provided by
their capture histories, the classification of the individuals deemed to be transient is
slightly more vague compared to the other groups, especially for those that have
only been observed in the last sampling occasions. Remarkably, the classification of
the individuals who have been assigned to the part-time group is crisp if they have
been encountered for the first time toward the beginning of the study period, while
it is dicey when they have been only encountered for the first time at the end of the
study: they indeed might be either new part-time individuals that have joined the
population from a year to another or transient individuals who are bounded not to
show up in future occasions. A longer time-window should be able to clarify the
role of these individuals in the population.

It is relevant to notice that the proportions of the three groups do not align with
the estimated weights ŵ = (0.32, 0.45, 0.23). This is because the prior weights are
not a good indicator of the true impact of each component in the super-population,
but only of their impact on the pseudo-population: individuals with all-zero histories
cannot be reliably assigned to any group since they are merely the result of the data
augmentation (indeed, they have never been encountered - or even been part of the
population).

Figure 5.5 show that the classification of the observed individuals is able to
highlight three well-distinguishable patterns of capture histories, that indeed seem
to comply with the typical RPT behavior. Resident individuals tend to be available
in the area until the end of the study period and are spotted very frequently in
subsequent sampling occasions. Part-time individuals are available in the area for
the most part of the study period and are frequently spotted, but not as often as
resident ones. Finally, transient individuals show short capture histories with few
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captures that never cross two years; this reflects the fact that they are spotted only
few times and tend to stay in the population only for a short time period.
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Figure 5.5. Cumulative frequencies of detection of the encountered individuals divided by
group. The x-axis report the number of days elapsed since the start of the survey: the
begin and the end of each line correspond to the days when an individual is estimated
to have (respectively) joined and left the population.

5.5 Discussion
Estimating the abundance of a marine wildlife species is a challenging but crucial
activity that can tell much about the undergoing ecological processes. Thus, com-
bining high-quality data with solid analytical approaches is essential to improve our
knowledge of these dynamics and increase the potential for management actions
(Vella et al., 2021).

In this chapter, we have pursued the estimation of the size of a common bottlenose
dolphin population which is known to be organised in three groups with different
residency and site-fidelity patterns. Accounting for such unobserved heterogeneity is
a very common problem in the environmental literature. In this context, the main
concern has not been whether such a kind of population structure exists or not, since
the issue had already been investigated in several works. Here, we have decided to
move a step forward, by proposing a suitable and parsimonious model to characterise
such a type of population. Indeed, most of the current literature on the topic tends
to adopt two-step approaches, where parameter estimation and classification are



64 5. Modelling residency patterns in marine wildlife populations

carried out separately. We believe that this does not yield a quantification nor a
propagation of the uncertainty of the classification step onto the modeling step.
Thus, we have considered a one-step approach based on finite mixture models, where
estimation and classification are performed jointly. Moreover, we have carried out all
the analysis in a Bayesian framework; this is pretty unusual in most of the marine
ecology literature about Capture-Recapture, where only few approach the problem
from the Bayesian perspective and develop ad-hoc solutions based on prior scientific
knowledge of the population of interest. Indeed, we believe that this has been an
opportunity to give some insights about the Bayesian implementation of models that
are commonly used by practitioners and, more specifically, ecologists.

Notably, we have proposed a parsimonious specification of a finite mixture model
within the PX-DA setting for Capture-Recapture analysis, that we have named RPT.
This specification reflects the typical bottlenose dolphin residency pattern, with
individuals showing high, partial or low site-fidelity (Dinis et al., 2016; Hunt et al.,
2017; Haughey et al., 2020; La Manna et al., 2022). Its adoption, characterised by
less free-parameters, simplifies the identification of all the models’ components with
respect to more generic and flexible alternatives (Pledger et al., 2010). In addition,
it also allows for the convenient use of the classes of prior specifications presented in
Chapter 3. We have verified the performances of our proposal through a simulation
study in a setting which attempts to retrace a real situation, where encounters do not
necessarily occur at evenly spaced sampling occasions. We have considered scenarios
with increasing lengths of the study period, and hence of the capture histories (i.e.
mimicking a continuous monitoring of a population of interest over time). We have
observed the influence of the number of sampling occasions on the estimates’ quality:
as expected, the larger the sample size the better is the accuracy and coverage of
the estimates. Comparison with alternative model versions over many replicas has
shown that the model estimation exhibits satisfying and robust performances when
the observation window is long enough (more than one year of monitoring). Finally,
we have estimated the RPT model and two other alternatives on a real dataset
concerning a common bottlenose dolphin population. The analysis has shown that
the proposed model outplays both under and over-parameterised versions in terms
of the WAIC score. The results correspond to biologically meaningful findings and
are in line with those of previous research works. The estimated abundance is of
N̂∗

super = 299, close to the one obtained by Pace et al. (2021) for the well-marked
population in the triennium 2018-2020. The new estimates better quantify the
overall uncertainty of the model and this is particularly important in this context as
the major interest lies in estimating a reasonable range that account for both the
worst and best case scenario.

Recall that the reported estimates only refer to well-marked individuals, who
represent only a proportion of the whole population (approximately 60% of all
sighted individuals across the three years). This choice has been made so as to
consider those individuals that were correctly identifiable through natural markings.
Although this was not the focus here, inferring the overall size from the well-marked
abundance estimate is possible; further details can be found in Wilson et al. (1999).
However, it is important to point out that the process of photo-identification of the
individuals may be affected by the temporal evolution of natural markings. In this
regard, several solutions have been proposed in literature to account for uncertainty
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on individual photo-identification (Yoshizaki et al., 2009; Tancredi et al., 2013).
One basic assumption of CR experiments is that captures of different individuals

are independent one another. However, this assumption may be sometimes unrealistic
for species that are gregarious: for example, bottlenose dolphin populations can
form structured societies with complex social networks (Pace et al., 2022). In
future developments, we would like to build a model which relax the assumption
of independence among captures by incorporating - when available - information
on the social structure of the population. It would also be interesting to include
the effect of external or individual covariates. For instance, it is possible for some
individuals to recognise their gender and age-class through the photo-identification.
This partial information may be incorporated in the Bayesian framework and could
help for a better assessment, for example, of the membership of different individuals
in different groups or of their marking probability (Wu et al., 2021). Last but not
least, it would be extremely interesting to conduct the survey on a larger spatial
scale and include external information to account for the spatial heterogeneity (Wu
and Holan, 2017).
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Appendix A

BUGS code listings

In this appendix, we report the BUGS code listings of the models which have been
fitted via JAGS throughout the thesis. All the models are formulated in terms of
the PX-DA formalisation of Royle et al. (2007).

A.1 Notation
In the following, we define some notation that will be used in most of the considered
BUGS code listings. Specifically, T is the number of encounter occasions or - in the
case of a robust design - number of primary sampling periods, while M is the number
of pseudo-individuals in the augmented data matrix. Moreover, we will consider the
following nodes:

• psi: inclusion probability;

• p: constant capture probability;

• phi: constant survival probability;

• rho: constant recruitment parameter.

• z[i]: binary variable that indicates whether the i-th individual is part of the
population (for closed populations);

• r[i,t]: binary variable that indicates whether the i-th individual is recruitable
into the population at time t (for open populations);

• z[i,t]: binary variable that indicates whether the i-th individual is part of
the population at time t (for open populations);

• Nind[i]: number of occasions the i-th individual was in the population;

• Nalive[i]: binary variable which counts whether the i-th individual belongs
to the super-population;

• N[t]: number of individuals in the population at time t;

• Nsuper: size of the super-population.
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Notice that in BUGS the function dnorm(mu, tau) is associated with a normal
distribution with mean mu and precision tau. Further details about the BUGS
language and JAGS are available in Plummer et al. (2003).

A.2 Models from Chapter 2:

A.2.1 Basic closed-population model

Since data consists in a zero-inflated vector of detection frequencies, y[i] indicates
the frequency of detection of the i-th individual. The population size is the node N.

1 # Priors
2
3 p ~ dunif (0 ,1)
4 psi ~ dunif (0 ,1)
5
6 # Likelihood
7
8 for (i in 1:M){
9

10 z[i] ~ dbern (psi)
11 y[i] ~ dbin(z[i]*p,T)
12
13 }
14
15 # Derived parameters
16
17 N = sum(z[1:M])

Listing A.1. Closed-population CR model with constant capture probability (model M0).

A.2.2 Basic open-population model

Notation:

• y[i,t]: binary variable that indicates whether the i-th individual is detected
at occasion t;

• muy[i,t]: capture probability at time t for the i-th individual of the pseudo-
population. It is null if the individual i does not belong to the population at
time t;

• muz[i,t]: probability for the i-th individual of being in the population at
time t. It is null if, at time t, the individual i was already recruited in the past
but was not into the population at time t− 1.

1 # Priors
2
3 rho ~ dbeta (1,T) # prior Dorazio (2020)
4 phi ~ dunif (0 ,1)
5 p ~ dunif (0 ,1)
6
7 # Likelihood
8
9 for (i in 1:M){

10
11 y[i ,1] ~ dbin(muy[i ,1] ,1)
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12 muy[i ,1] = z[i ,1]*p
13 z[i ,1] ~ dbin(rho ,1)
14 r[i ,1] = 1
15
16 for (t in 2:T){
17
18 y[i,t] ~ dbin(muy[i,t] ,1)
19 muy[i,t] = z[i,t]*p
20 z[i,t] ~ dbin(muz[i,t] ,1)
21 muz[i,t] = phi*z[i,t -1] + rho*r[i,t]
22 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
23
24 }
25
26 }
27
28 # Derived parameters
29
30 for(t in 1:T){
31 N[t] = sum(z[1:M,t])
32 }
33
34 for (i in 1:M){
35
36 Nind[i] = sum(z[i ,1:T])
37 Nalive [i] = 1- equals (Nind[i] ,0)
38
39 }
40
41 Nsuper = sum( Nalive [1:M])

Listing A.2. Open-population Jolly-Seber model with constant recruitment, survival and
detection parameters.

A.3 Models from Chapter 3:
Here, we introduce the node clust[i] which indicates the cluster the i-th individual
belongs to. The constant G is the number of components of the mixture models.
Node w[g] contains the weight of the g-th component of the mixture, while node
p[g] contains the capture probability of individuals in the g-th class.

1 # Priors
2
3 p[1] ~ dunif (0 ,1)
4 p[2] ~ dunif (0 ,1)
5
6 psi ~ dunif (0 ,1)
7
8 w ~ ddirch (rep (1 ,2))
9

10 # Likelihood
11
12 for (i in 1:M){
13
14 clust [i] ~ dcat(w [1:2])
15 z[i] ~ dbern (psi)
16 y[i] ~ dbin(z[i]*p[ clust [i]],T)
17
18 }
19
20 # Derived parameters
21
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22 N = sum(z[1:M])

Listing A.3. 2-class finite mixture CR model for closed populations.

Notice that the priors on p1 and p2 correspond to setting I of Section 3.5, but
other prior specifications can be used simply by modifying the code above. For
example, one could use a constrained specification based on Uniform priors, such as

p[1] ~ dunif(0,1)
p[2] ~ dbeta(1,1) T(p[1],1)

which corresponds to setting IV of Section 3.5. Notice that the truncation T( , ) is
used to bound the support of the uniform distribution (i.e. Beta(1, 1)) into the set
[p1, 1].

A.4 Models from Chapter 4:
All the following open-population models consider a time-varying recruitment pa-
rameter, ρt, indicated through the node rho[t]. The constant node J[t] indicates
the number of secondary sampling occasions in the t-th primary sampling period,
for t = 1, . . . , T .

Notice that, here, the stochastic node y[i,t] corresponds to the number of
secondary sampling occasions the i-th individual is encountered during the t-th
primary sampling period.

A.4.1 Homogeneous capture and survival probabilities

1 # Priors
2
3 phi ~ dunif (0 ,1)
4 p ~ dunif (0 ,1)
5
6 for(t in 1:T){
7 rho[t] ~ dbeta (1/T,2-t/T) # prior Dorazio (2020)
8 }
9

10 # Likelihood
11
12 for (i in 1:M){
13
14 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
15 muy[i ,1] = z[i ,1]*p
16 z[i ,1] ~ dbin(rho [1] ,1)
17 r[i ,1] = 1
18
19 for (t in 2:T){
20
21 y[i,t] ~ dbin(muy[i,t],J[t])
22 muy[i,t] = z[i,t]*p
23 z[i,t] ~ dbin(muz[i,t] ,1)
24 muz[i,t] = phi*z[i,t -1] + rho[t]*r[i,t]
25 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
26
27 }
28
29 }
30
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31 # Derived parameters
32
33 for(t in 1:T){
34 N[t] = sum(z[1:M,t])
35 }
36
37 for (i in 1:M){
38
39 Nind[i] = sum(z[i ,1:T])
40 Nalive [i] = 1- equals (Nind[i] ,0)
41
42 }
43
44 Nsuper = sum( Nalive [1:M])

Listing A.4. CR model for open populations with homogeneous capture and survival
probabilities, i.e. {ρt, ϕ, p}.

A.4.2 Finite mixture models with single mixture grouping

Nodes p[g] and phi[g] will be used to indicate the g-th component-specific capture
and survival probability, respectively.

1 # Priors
2
3 phi ~ dunif (0 ,1)
4
5 p[1] ~ dunif (0 ,1)
6
7 for (g in 2:G){
8 p[g] ~ dbeta (1 ,1) T(p[g -1] ,1)
9 }

10
11 for(t in 1:T){
12 rho[t] ~ dbeta (1/T,2-t/T)
13 }
14
15 w ~ ddirch (rep (1,G))
16
17 # Likelihood
18
19 for (i in 1:M){
20
21 clust [i] ~ dcat(w[1:G])
22
23 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
24 muy[i ,1] = z[i ,1]*p[ clust [i]]
25 z[i ,1] ~ dbin(rho [1] ,1)
26 r[i ,1] = 1
27
28 for (t in 2:T){
29
30 y[i,t] ~ dbin(muy[i,t],J[t])
31 muy[i,t] = z[i,t]*p[ clust [i]]
32 z[i,t] ~ dbin(muz[i,t] ,1)
33 muz[i,t] = phi*z[i,t -1] + rho[t]*r[i,t]
34 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
35
36 }
37
38 }
39
40 # Derived parameters
41
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42 for(t in 1:T){
43 N[t] = sum(z[1:M,t])
44 }
45
46 for (i in 1:M){
47
48 Nind[i] = sum(z[i ,1:T])
49 Nalive [i] = 1- equals (Nind[i] ,0)
50
51 }
52
53 Nsuper = sum( Nalive [1:M])

Listing A.5. Finite mixture CR model for open populations with heterogeneous capture
probabilities, i.e. {ρt, ϕ, phG

}. When G = 2, alternative constrained prior specification
can be also used (see Section 3.4).

1 # Priors
2
3 p ~ dunif (0 ,1)
4
5 phi [1] ~ dunif (0 ,1)
6
7 for (g in 2:G){
8 phi[g] ~ dbeta (1 ,1) T(phi[g -1] ,1)
9 }

10
11 for(t in 1:T){
12 rho[t] ~ dbeta (1/T,2-t/T)
13 }
14
15 w ~ ddirch (rep (1,G))
16
17 # Likelihood
18
19 for (i in 1:M){
20
21 clust [i] ~ dcat(w[1:G])
22
23 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
24 muy[i ,1] = z[i ,1]*p
25 z[i ,1] ~ dbin(rho [1] ,1)
26 r[i ,1] = 1
27
28 for (t in 2:T){
29
30 y[i,t] ~ dbin(muy[i,t],J[t])
31 muy[i,t] = z[i,t]*p
32 z[i,t] ~ dbin(muz[i,t] ,1)
33 muz[i,t] = phi[ clust [i]]*z[i,t -1] + rho[t]*r[i,t]
34 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
35
36 }
37
38 }
39
40 # Derived parameters
41
42 for(t in 1:T){
43 N[t] = sum(z[1:M,t])
44 }
45
46 for (i in 1:M){
47
48 Nind[i] = sum(z[i ,1:T])
49 Nalive [i] = 1- equals (Nind[i] ,0)
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50
51 }
52
53 Nsuper = sum( Nalive [1:M])

Listing A.6. Finite mixture CR model for open populations with heterogeneous survival
probabilities, i.e. {ρt, ϕhG

, p}. When G = 2, alternative constrained prior specification
can be also used (see Section 3.4).

1 # Priors
2
3 p[1] ~ dunif (0 ,1)
4 phi [1] ~ dunif (0 ,1)
5
6 for (g in 2:G){
7 p[g] ~ dbeta (1 ,1) T(p[g -1] ,1)
8 phi[g] ~ dbeta (1 ,1)
9 }

10
11 for(t in 1:T){
12 rho[t] ~ dbeta (1/T,2-t/T)
13 }
14
15 w ~ ddirch (rep (1,G))
16
17 # Likelihood
18
19 for (i in 1:M){
20
21 clust [i] ~ dcat(w[1:G])
22
23 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
24 muy[i ,1] = z[i ,1]*p[ clust [i]]
25 z[i ,1] ~ dbin(rho [1] ,1)
26 r[i ,1] = 1
27
28 for (t in 2:T){
29
30 y[i,t] ~ dbin(muy[i,t],J[t])
31 muy[i,t] = z[i,t]*p[ clust [i]]
32 z[i,t] ~ dbin(muz[i,t] ,1)
33 muz[i,t] = phi[ clust [i]]*z[i,t -1] + rho[t]*r[i,t]
34 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
35
36 }
37
38 }
39
40 # Derived parameters
41
42 for(t in 1:T){
43 N[t] = sum(z[1:M,t])
44 }
45
46 for (i in 1:M){
47
48 Nind[i] = sum(z[i ,1:T])
49 Nalive [i] = 1- equals (Nind[i] ,0)
50
51 }
52
53 Nsuper = sum( Nalive [1:M])
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Listing A.7. Finite mixture CR model for open populations with heterogeneous capture
and survival probabilities, i.e. {ρt, [ϕh, ph]G}. When G = 2, alternative constrained
prior specification can be also used (see Section 3.4).

A.4.3 Cross-classified models

When some components share common parameters, a harmless trick is needed in
BUGS to select the correct survival or capture probability for each individual (see
lines 21-22 of Listing A.8). This trick is necessary as an if-else construct is not
provided in BUGS. Notably, for this purpose, we introduce two further classes of
nodes:

• p_ind[i]: capture probability for the i-th individual;

• phi_ind[i]: survival probability for the i-th individual.

1 # Priors
2
3 phi [1] ~ dbeta (1 ,2)
4 phi [2] ~ dbeta (1 ,1) T(phi [1] ,1)
5
6 p[1] ~ dbeta (1 ,2)
7 p[2] ~ dbeta (1 ,1) T(p[1] ,1)
8
9 for(t in 1:T){

10 rho[t] ~ dbeta (1/T,2-t/T)
11 }
12
13 w ~ ddirch (rep (1 ,4))
14
15 # Likelihood
16
17 for (i in 1:M){
18
19 clust [i] ~ dcat(w [1:4])
20
21 p_ind [i] = (3- clust [i]) *(4 - clust [i]) *3^( clust [i]) /18*p[1]+
22 ( clust [i] -1) *( clust [i] -2) *3^(5 - clust [i]) /18*p[2]
23 phi_ind [i] = ( clust [i] -2) ^2*(4 - clust [i])* clust [i]/3* phi [1]+
24 ( clust [i] -3) ^2*(1 - clust [i]) *( clust [i] -5) /3* phi [2]
25
26 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
27 muy[i ,1] = z[i ,1]* p_ind [i]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t],J[t])
34 muy[i,t] = z[i,t]* p_ind [i]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi_ind [i]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
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44
45 for(t in 1:T){
46 N[t] = sum(z[1:M,t])
47 }
48
49 for (i in 1:M){
50
51 Nind[i] = sum(z[i ,1:T])
52 Nalive [i] = 1- equals (Nind[i] ,0)
53
54 }
55
56 Nsuper = sum( Nalive [1:M])

Listing A.8. CR 4-class cross-classified model for open populations, i.e. {ρt, ϕh2 , ph2}.

1 # Priors
2
3 phi [1] ~ dbeta (1 ,2)
4 phi [2] ~ dbeta (1 ,1) T(phi [1] ,1)
5
6 p[1] ~ dbeta (1 ,2)
7 p[2] ~ dbeta (1 ,1) T(p[1] ,1)
8
9 for(t in 1:T){

10 rho[t] ~ dbeta (1/T,2-t/T)
11 }
12
13 w ~ ddirch (rep (1 ,3))
14
15 # Likelihood
16
17 for (i in 1:M){
18
19 clust [i] ~ dcat(w [1:3])
20
21 p_ind [i] = ( clust [i] -2) *( clust [i] -1) /2*p[1]+
22 (3- clust [i]) *( clust [i]/2)*p[2]
23 phi_ind [i] = (3- clust [i]) *( clust [i] -1)*phi [1]+
24 ( clust [i] -2) ^2* phi [2]
25
26 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
27 muy[i ,1] = z[i ,1]* p_ind [i]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t],J[t])
34 muy[i,t] = z[i,t]* p_ind [i]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi_ind [i]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
44
45 for(t in 1:T){
46 N[t] = sum(z[1:M,t])
47 }
48
49 for (i in 1:M){
50
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51 Nind[i] = sum(z[i ,1:T])
52 Nalive [i] = 1- equals (Nind[i] ,0)
53
54 }
55
56 Nsuper = sum( Nalive [1:M])

Listing A.9. CR 3-class cross-classified model for open populations that excludes the
combination (p1, ϕ1), i.e. {ρt, ϕh2 , ph2}−(p1, ϕ1).

1 # Priors
2
3 phi [1] ~ dbeta (1 ,2)
4 phi [2] ~ dbeta (1 ,1) T(phi [1] ,1)
5
6 p[1] ~ dbeta (1 ,2)
7 p[2] ~ dbeta (1 ,1) T(p[1] ,1)
8
9 for(t in 1:T){

10 rho[t] ~ dbeta (1/T,2-t/T)
11 }
12
13 w ~ ddirch (rep (1 ,3))
14
15 # Likelihood
16
17 for (i in 1:M){
18
19 clust [i] ~ dcat(w [1:3])
20
21 p_ind [i] = ( clust [i] -2) *( clust [i] -1) /2*p[1]+
22 (3- clust [i]) *( clust [i]/2)*p[2]
23 phi_ind [i] = (3- clust [i]) /2*(2 - clust [i])*phi [2]+
24 ( clust [i] -1) /2*(4 - clust [i])*phi [1]
25
26 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
27 muy[i ,1] = z[i ,1]* p_ind [i]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t],J[t])
34 muy[i,t] = z[i,t]* p_ind [i]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi_ind [i]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
44
45 for(t in 1:T){
46 N[t] = sum(z[1:M,t])
47 }
48
49 for (i in 1:M){
50
51 Nind[i] = sum(z[i ,1:T])
52 Nalive [i] = 1- equals (Nind[i] ,0)
53
54 }
55
56 Nsuper = sum( Nalive [1:M])
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Listing A.10. CR 3-class cross-classified model for open populations that excludes the
combination (p1, ϕ2), i.e. {ρt, ϕh2 , ph2}−(p1, ϕ2).

1 # Priors
2
3 phi [1] ~ dbeta (1 ,2)
4 phi [2] ~ dbeta (1 ,1) T(phi [1] ,1)
5
6 p[1] ~ dbeta (1 ,2)
7 p[2] ~ dbeta (1 ,1) T(p[1] ,1)
8
9 for(t in 1:T){

10 rho[t] ~ dbeta (1/T,2-t/T)
11 }
12
13 w ~ ddirch (rep (1 ,3))
14
15 # Likelihood
16
17 for (i in 1:M){
18
19 clust [i] ~ dcat(w [1:3])
20
21 p_ind [i] = (3- clust [i]) /2*(2 - clust [i])*p[2]+
22 ( clust [i] -1) /2*(4 - clust [i])*p[1]
23 phi_ind [i] = ( clust [i] -2) *( clust [i] -1) /2* phi [1]+
24 (3- clust [i]) *( clust [i]/2)*phi [2]
25
26 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
27 muy[i ,1] = z[i ,1]* p_ind [i]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t],J[t])
34 muy[i,t] = z[i,t]* p_ind [i]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi_ind [i]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
44
45 for(t in 1:T){
46 N[t] = sum(z[1:M,t])
47 }
48
49 for (i in 1:M){
50
51 Nind[i] = sum(z[i ,1:T])
52 Nalive [i] = 1- equals (Nind[i] ,0)
53
54 }
55
56 Nsuper = sum( Nalive [1:M])

Listing A.11. CR 3-class cross-classified model for open populations that excludes the
combination (p2, ϕ1), i.e. {ρt, ϕh2 , ph2}−(p2, ϕ1).
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1 # Priors
2
3 phi [1] ~ dbeta (1 ,2)
4 phi [2] ~ dbeta (1 ,1) T(phi [1] ,1)
5
6 p[1] ~ dbeta (1 ,2)
7 p[2] ~ dbeta (1 ,1) T(p[1] ,1)
8
9 for(t in 1:T){

10 rho[t] ~ dbeta (1/T,2-t/T)
11 }
12
13 w ~ ddirch (rep (1 ,3))
14
15 # Likelihood
16
17 for (i in 1:M){
18
19 clust [i] ~ dcat(w [1:3])
20
21 p_ind [i] = (3- clust [i]) /2*(2 - clust [i])*p[2]+
22 ( clust [i] -1) /2*(4 - clust [i])*p[1]
23 phi_ind [i] = (3- clust [i]) *( clust [i] -1)*phi [2]+
24 ( clust [i] -2) ^2* phi [1]
25
26 y[i ,1] ~ dbin(muy[i ,1] ,J[1])
27 muy[i ,1] = z[i ,1]* p_ind [i]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t],J[t])
34 muy[i,t] = z[i,t]* p_ind [i]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi_ind [i]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
44
45 for(t in 1:T){
46 N[t] = sum(z[1:M,t])
47 }
48
49 for (i in 1:M){
50
51 Nind[i] = sum(z[i ,1:T])
52 Nalive [i] = 1- equals (Nind[i] ,0)
53
54 }
55
56 Nsuper = sum( Nalive [1:M])

Listing A.12. CR 3-class cross-classified model for open populations that excludes the
combination (p2, ϕ2), i.e. {ρt, ϕh2 , ph2}−(p2, ϕ2).
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A.5 Models from Chapter 5:
In Chapter 5 we considered the more general case of not evenly spaced sampling
occasions. To account for this and to compute a yearly super-population abundance,
we have to feed the model with some additional information about the structure of
the structure of the encounter occasions. More specifically, we should provide two
information: first, the information about the time-lag between the t− 1-th and the
t-th occasion (t_lag[t-1]), t = 2, . . . , T ; second, the information about which is
the first occasion of each year (year_start).

In addition, three new nodes are included in the BUGS model in order to compute
yearly estimates of the population size:

• Nind.y[i,year]: number of occasions the i-th individual is in the population
in a given year;

• Nalive.y[i,year]: binary variable which counts whether the i-th individual
belongs to the population in a given year;

• N.y[year]: population size in a given year.

Finally, to model the logit on the capture probability, we add a node mu for the
intercept and a vector of nodes tau for the temporal random effect.

A.5.1 RPT model

We introduce the node delta which represents the undetectability parameter. Tem-
poral random effects τt’s may be set to sum to zero for identifiability purpose (Pledger
et al., 2003).

1 # Priors
2
3 phi_TR ~ dbeta (1 ,2)
4 phi_NTR ~ dbeta (1 ,1) T(phi_TR ,1)
5
6 delta ~ dunif (0 ,1)
7 mu ~ dnorm (0 ,0.1)
8 tau [1] = -sum(tau [2:T]) #to help identifiability tau ’s sum to 0
9 p_NPT [1] = ilogit (mu + tau [1])

10 p_PT [1] = (1- delta )* p_NPT [1]
11
12 rho_TR ~ dbeta (1,T)
13 rho_NTR [1] ~ dbeta (1/T ,2 -1/T)
14
15 for(t in 2:T){
16
17 tau[t] ~ dnorm (0 ,4)
18 p_NPT [t] = ilogit (mu + tau[t])
19 p_PT[t] = (1- delta )* p_NPT [t]
20
21 rho_NTR [t] ~ dbeta (1/T,2-t/T)
22
23 }
24
25 w ~ ddirch (rep (1 ,3))
26
27 # Likelihood
28
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29 for (i in 1:M){
30
31 clust [i] ~ dcat(w [1:3])
32
33 p_ind [i ,1] = (3- clust [i]) *( clust [i] -1)*p_PT [1]+
34 ( clust [i] -2) ^2* p_NPT [1]
35 phi_ind [i] = ( clust [i] -2) *( clust [i] -1) /2* phi_TR +
36 (3- clust [i]) *( clust [i]/2)* phi_NTR
37 rho_ind [i ,1] = ( clust [i] -2) *( clust [i] -1) /2* rho_TR +
38 (3- clust [i]) *( clust [i]/2)* rho_NTR [1]
39
40 y[i ,1] ~ dbin(muy[i ,1] ,1)
41 muy[i ,1] = z[i ,1]* p_ind [i ,1]
42 z[i ,1] ~ dbin( rho_ind [i ,1] ,1)
43 r[i ,1] = 1
44
45 for (t in 2:T){
46
47 p_ind [i,t] = (3- clust [i]) *( clust [i] -1)*p_PT[t]+
48 ( clust [i] -2) ^2* p_NPT [t]
49 rho_ind [i,t] = ( clust [i] -2) *( clust [i] -1) /2* rho_TR +
50 (3- clust [i]) *( clust [i]/2)* rho_NTR [t]
51
52 y[i,t] ~ dbin(muy[i,t] ,1)
53 muy[i,t] = z[i,t]* p_ind [i,t]
54 z[i,t] ~ dbin(muz[i,t] ,1)
55 muz[i,t] = phi_ind [i]^ t_lag [t -1]*z[i,t -1] + rho_ind [i,t]*r[i,t]
56 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
57
58 }
59
60 }
61
62 # Derived parameters
63
64 for(year in 1:( length ( year_start ) -1)){
65
66 Nind.y[i,year] = sum(z[i, year_start [year ]:( year_start [year +1] -1) ])
67 Nalive .y[i,year] = 1- equals (Nind.y[i,year ] ,0)
68
69 N.y[year] = sum( Nalive .y[1:M,year ])
70 }
71
72 for (i in 1:M){
73
74 Nind[i] = sum(z[i ,1:T])
75 Nalive [i] = 1- equals (Nind[i] ,0)
76
77 }
78
79 Nsuper = sum( Nalive [1:M])

Listing A.13. RPT for bottlenose dolphin populations.

A.5.2 Alternatives to RPT model

For the next model, we consider p[t] as the detection probability at time t.
1 # Priors
2
3 phi ~ dunif (0 ,1)
4
5 mu ~ dnorm (0 ,0.1)
6
7 tau [1] = -sum(tau [2:T])
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8 p[1] = ilogit (mu + tau [1])
9

10 rho [1] ~ dbeta (1/T ,2 -1/T)
11
12 for(t in 2:T){
13
14 tau[t] ~ dnorm (0 ,4)
15 p[t] = ilogit (mu + tau[t])
16
17 rho[t] ~ dbeta (1/T,2-t/T)
18
19 }
20
21
22 # Likelihood
23
24 for (i in 1:M){
25
26 y[i ,1] ~ dbin(muy[i ,1] ,1)
27 muy[i ,1] = z[i ,1]*p[1]
28 z[i ,1] ~ dbin(rho [1] ,1)
29 r[i ,1] = 1
30
31 for (t in 2:T){
32
33 y[i,t] ~ dbin(muy[i,t] ,1)
34 muy[i,t] = z[i,t]*p[t]
35 z[i,t] ~ dbin(muz[i,t] ,1)
36 muz[i,t] = phi^ t_lag [t -1]*z[i,t -1] + rho[t]*r[i,t]
37 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
38
39 }
40
41 }
42
43 # Derived parameters
44
45 for(year in 1:( length ( year_start ) -1)){
46
47 Nind.y[i,year] = sum(z[i, year_start [year ]:( year_start [year +1] -1) ])
48 Nalive .y[i,year] = 1- equals (Nind.y[i,year ] ,0)
49
50 N.y[year] = sum( Nalive .y[1:M,year ])
51 }
52
53 for (i in 1:M){
54
55 Nind[i] = sum(z[i ,1:T])
56 Nalive [i] = 1- equals (Nind[i] ,0)
57
58 }
59
60 Nsuper = sum( Nalive [1:M])

Listing A.14. JS model with homogeneous parameters, i.e. {ρt, ϕ, pt}. Temporal effect
affects the capture probability through a logit link.

Finally, for the next model we introduce the group-dependent intercept eta[g]
and the time-dependent intercept tau[g] to model the logit on the capture proba-
bilities. The capture probability at time t for an individual in group g is p[g,t].

1 # Priors
2
3 phi [1] ~ dunif (0 ,1)
4 phi [2] ~ dunif (phi [1] ,1)
5 phi [3] ~ dunif (phi [2] ,1)
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6
7 eta [1] = -sum(eta [2:3])
8 eta [2] ~ dnorm (0 ,0.1)
9 eta [3] ~ dnorm (0 ,0.1)

10
11 tau [1] = -sum(tau [2:T])
12
13 p[1 ,1] = ilogit (eta [1] + tau [1])
14 p[2 ,1] = ilogit (eta [2] + tau [1])
15 p[3 ,1] = ilogit (eta [3] + tau [1])
16
17 rho [1 ,1] ~ dbeta (1/T ,2 -1/T)
18 rho [2 ,1] ~ dbeta (1/T ,2 -1/T)
19 rho [3 ,1] ~ dbeta (1/T ,2 -1/T)
20
21 for(t in 2:T){
22
23 tau[t] ~ dnorm (0 ,4)
24 p[1,t] = ilogit (eta [1] + tau[t])
25
26 rho [1,t] ~ dbeta (1/T,2-t/T)
27
28 for(g in 2:3){
29
30 p[g,t] = ilogit (eta[g] + tau[t])
31
32 rho[g,t] ~ dbeta (1/T,2-t/T)
33
34 }
35
36 }
37
38 w ~ ddirch (rep (1 ,3))
39
40 # Likelihood
41
42 for (i in 1:M){
43
44 clust [i] ~ dcat(w [1:3])
45
46 y[i ,1] ~ dbin(muy[i ,1] ,1)
47 muy[i ,1] = z[i ,1]*p[ clust [i] ,1]
48 z[i ,1] ~ dbin(rho[ clust [i] ,1] ,1)
49 r[i ,1] = 1
50
51 for (t in 2:T){
52
53 y[i,t] ~ dbin(muy[i,t] ,1)
54 muy[i,t] = z[i,t]*p[ clust [i],t]
55 z[i,t] ~ dbin(muz[i,t] ,1)
56 muz[i,t] = phi[ clust [i]]^ t_lag [t -1]*z[i,t -1] + rho[ clust [i],t]*r[i,t]
57 r[i,t] = r[i ,(t -1) ]*(1 -z[i,t -1])
58
59 }
60
61 }
62
63 # Derived parameters
64
65 for(year in 1:( length ( year_start ) -1)){
66
67 Nind.y[i,year] = sum(z[i, year_start [year ]:( year_start [year +1] -1) ])
68 Nalive .y[i,year] = 1- equals (Nind.y[i,year ] ,0)
69
70 N.y[year] = sum( Nalive .y[1:M,year ])
71 }
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72
73 for (i in 1:M){
74
75 Nind[i] = sum(z[i ,1:T])
76 Nalive [i] = 1- equals (Nind[i] ,0)
77
78 }
79
80 Nsuper = sum( Nalive [1:M])

Listing A.15. JS 3-class mixture model with component-specific recruitment, survival
and capture parameters, i.e. {[ρt×g, ϕg, pt+g]G=3}. Temporal and heterogeneous across
group effect affect the logit of capture probabilities in an additive way.
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Appendix B

Proof of likelihood for
multinomial grouped data

Let yi be the capture frequency of the i-th individual in T capture attempts and let
fk =

∑N
i=1 1(yi = k) be the frequency of individuals detected in k out of T sampling

occasions.
Consider the following likelihood function for the abundance N and the capture

probability p

L(N, p|f1, . . . , fT ) = N !
(N −D)! f1! · · · fT ! π

N−D
0 πf1

1 · · ·πfT
T , (B.1)

which is written in terms of f1, . . . , fT . Of course,

πk =
(
T

k

)
pk(1 − p)T −k .

The likelihood in (B.1) can be easily expressed as function of p, that is

L(N, p|f1, . . . , fT ) = N !
(N −D)!

∏T
k=1 fk!

(1 − p)T (N−D)
T∏

k=1

[(
T

k

)
pk(1 − p)T −k

]fk

= N !
(N −D)!

∏T
k=1 fk!

(1 − p)T (N−D)+
∑T

k=1 (T −k)fk p
∑T

k=1 kfk

T∏
k=1

(
T

k

)fk

.

Exploiting the fact that

D∑
i=1

yi =
T∑

k=1
kfk ,

the previous likelihood can be alternatively formulated in terms of the individual
frequencies y1, . . . , yD, namely

L(N, p|y1, . . . , yD) = N !
(N −D)!

∏T
k=1 fk!

p
∑D

i=1 yi (1 − p)T N−T D+T
∑T

k=1 fk−
∑T

k=1 kfk

T∏
k=1

(
T

k

)fk

∝ N !
(N −D)! p

∑D

i=1 yi (1 − p)T N−
∑D

i=1 yi .
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Appendix C

Proof of results on prior
specifications of class-specific
probabilities

C.1 Beta and truncated Beta
Theorem 1. Suppose that X ∼ Beta(α1, β1) and Y |X = x ∼ tBeta(α2, β2, x, 1),
namely a truncated Beta whose density is

pY |X(y|x) = 1
B(α2, β2)

yα2−1 (1 − y)β2−1

1 − FBeta(α2,β2)(x) 1{x,1}(y) ,

with FBeta(1,β2)(·) being the cdf of a Beta(1, β2). Then, if α2 = 1, the marginal
density function of Y is given by

pY (y) = B(α1, β1 − β2)
B(α1, β1) β2(1 − y)β2−1 FBeta(α1,β1−β2)(y) , with β1 > β2 ,

where FBeta(α1,β1−β2)(·) is the cdf of a Beta(α1, β1 − β2).

In particular, when α1 = β2 = k and β1 = k + 1, that is

X ∼ Beta(k, k + 1) and Y |X = x ∼ tBeta(1, k, x, 1) ,

the marginal prior induced on Y is Beta(k + 1, k).

Proof. Consider X ∼ Beta(α1, β1) and Y |X = x ∼ tBeta(1, β2, x, 1), whose proba-
bility density functions are, respectively,

pX(x) = 1
B(α1, β1) x

α1−1(1 − x)β1−1

and
pY |X(y|x) = β2 (1 − y)β2−1

1 − FBeta(1,β2)(x) 1{x,1}(y) ,
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with FBeta(1,β2)(·) being the cdf of a Beta(1, β2).

Then, the marginal prior distribution induced on Y is given by

pY (y) =
∫ ∞

−∞
pY |X(y|x)pX(x) dx

=
∫ 1

0

β2 (1 − y)β2−1

1 − FBeta(1,β2)(x) 1{x,1}(y) 1
B(α1, β1) × xα1−1(1 − x)β1−1 dx

= β2 (1 − y)β2−1

B(α1, β1)

∫ y

0

xα1−1(1 − x)β1−1

1 − FBeta(1,β2)(x) dx

= β2 (1 − y)β2−1

B(α1, β1)

∫ y

0
xα1−1(1 − x)(β1−β2)−1 dx

= B(α1, β1 − β2)
B(α1, β1) β2 (1 − y)β2−1

∫ y

0

xα1−1(1 − x)(β1−β2)−1

B(α1, β1 − β2) dx

= B(α1, β1 − β2)
B(α1, β1) β2(1 − y)β2−1 FBeta(α1,β1−β2)(y) ,

where we exploited the fact that FBeta(1,b)(z) =
∫ z

0 (1 − t)b−1 dt = 1 − (1 − z)b.
Observe that the constraint β1 > β2 is essential to avoid the divergence of the beta
function.

Now, if we consider α1 = β2 = k and β1 = k+ 1, the previous probability density
function becomes

pY (y) = 1
B(k, k + 1)

1
k
k (1 − y)k−1 FBeta(k,1)(y)

= 1
B(k + 1, k) (1 − y)k−1 yk ,

which implies that Y ∼ Beta(k + 1, k).

C.1.1 Beta and restricted Beta

Theorem 2. If X ∼ Beta(αx, βx) and Y |X = x ∼ rBeta (αy, βy, x, 1), then the
joint prior is

pXY (x, y) = Γ(αx + βx)Γ(αy + βy)
Γ(αx)Γ(βx)Γ(αy)Γ(βy) x

αx−1(1 − x)βx−βy−αy (x− y)αy−1(1 − y)βy−1 .

There is no easy way to express the marginal distribution of Y, but using the Law of
iterated expectation we can derive the marginal expected value and variance for p2:

E [Y ] = αy

αy + βy
+ µx

βy

αy + βy

V [Y ] = σ2
x

β2
y

(αy + βy)2

(
1 + αy

βy(αy + βy + 1)

)
+ (1 − µx)2 αyβy

(αy + βy)2(αy + βy + 1)
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where µx = E[X] and σ2
x = V[X].

Proof. The joint distribution is obtained by direct application of the conditional
equivalence of Equation (3.2).
Marginal expected value and variance are obtained by the application of the Law
of iterated expectations. First, the expected value and variance of Y |X = x ∼
rBeta(αy, βy, x, 1) are:

E [Y |X] = αy

αy + βy
∗ (1 −X) +X = αy

αy + βy
+X

βy

αy + βy

V [Y |X] = αyβy

(αy + βy)2(αy + βy + 1)(1 −X)2

Then:
E [Y ] = E [E [Y |X]]

= αy

αy + βy
+ E [X] βy

αy + βy

= αy

αy + βy
+ αxβy

(αx + βx)(αy + βy)

= αy

αy + βy
+ µx

βy

αy + βy

V [Y ] = E [V [Y |X]] + V [E [Y |X]]

= αyβy

(αy + βy)2(αy + βy + 1)E
[
(1 −X)2

]
+ V [X]

β2
y

(αy + βy)2

= αyβy

(αy + βy)2(αy + βy + 1)
(
1 − 2µx + E

[
X2
])

+ σ2
x

β2
y

(αy + βy)2

= αyβy

(αy + βy)2(αy + βy + 1)
(
1 − 2µx + µ2

x + σ2
x

)
+ σ2

x

β2
y

(αy + βy)2

= σ2
x

β2
y

(αy + βy)2

(
1 + αy

βy(αy + βy + 1)

)
+ (1 − µx)2 αyβy

(αy + βy)2(αy + βy + 1)

C.1.2 A convenient parameter setting

Theorem 3. Let X ∼ Beta(αx, β + 1) and Y |X = x ∼ rBeta (1, β, x, 1), then the
joint distribution for (X,Y ) is

pXY (x, y) = (αx + β)Γ(αx + β)
Γ(αx)Γ(β) xαx−1(1 − y)β .

Hence, the marginal on Y is a Beta density, namely

Y ∼ Beta(αx + 1, β)
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with marginal expected value and variance given by

E [Y ] = αx + 1
αx + β + 1

V [Y ] = (αx + 1)βy

(αx + β + 1)2(αx + β + 2) .

Proof. The derivation of the joint density is trivial.
The marginal distribution of Y is:

pY (y) =
∫

X
pXY (x, y)1x,1(y)dx

=
∫ 1

0
pXY (x, y)10,y(x)dx

=
∫ y

0
pXY (x, y)dx

= (αx + β)Γ(αx + β)
Γ(αx)Γ(β) · (1 − y)β−1 ·

∫ y

0
xαx−1dx

= Γ(αx + β + 1)
Γ(αx)Γ(β) · (1 − y)β−1 · y

αx

αx

= Γ(αx + β + 1)
Γ(αx + 1)Γ(β) · yαx+1−1(1 − y)β−1 ,

which corresponds to a Beta(αx + 1, β).
Expected value and variance follow from basic properties of the Beta distribution.
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Appendix D

Details about time-lags used in
Subsection 5.3.1

The number of days between two consecutive capture occasions (daily time lags,
henceforth) within a single year have been simulated from a shifted geometrical
distribution with probability 0.05, which has an expected value equal to 20 and a
standard deviation equal to 19.5. The resulting random sequence of time lags is

(20, 1, 12, 15, 56, 9, 9, 12, 10)

and, for scenarios that contemplate more than one year of study, the same sequence
is repeated during each new year. The shift of year occurring each 10 occasions is
achieved by using a higher constant time lag (i.e. 240 days) between the (10k)th
occasion and the (10k + 1)th occasion, with k = 1, 2, 3. This results in a scenario k
composed by k years of study, for k = 1, 2, 3, 4. For example, scenario 2 (T = 20)
is composed by the following sequence of time lags, resulting in 2 years of capture
occasions:

(20, 1, 12, 15, 56, 9, 9, 12, 10, 240, 20, 1, 12, 15, 56, 9, 9, 12, 10) .
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