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If I had to choose, I would not choose you
If I had to stop, I would turn around and choose glue

If I had to hit the brakes, I’ma stop right here

Don’t waste your mind
I’ll be the one to say it all

To do what I am
To say what I am

Non è stata la sfortuna. Non è stata la congiura.
Non è stato il destino. Nemmeno gli alieni, l’Isis,

l’arbitro o quel burlone di Dio.
Sono stato, sono stato io.

Sono stato io. Sono stato io. Sono stato io.
(Sono stato io) Colpo di frusta sul colpo di mano.

Colpo di grazia chiesta al dio dell’Uragano.
(Sono stato io) Quando appare la noia in paranoia
ma, in quanto a pare, il vero condannato è il boia.

(Sono stato io) Non perdonatemi che so quello che faccio
e dentro al buio, a quanto pare, non c’è niente

a parte il rimorso di essere innocente.

(Siamo stati Noi) A domare il mare con la frusta,
scatenando la reazione opposta

(Siamo stati Noi) Ad affrontare la stessa tempesta
ma con una nave a testa.

Siamo stati Noi.

E come Damocle
non abbiamo mai ballato meglio
che con quella spada sulla testa.
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Abstract

This project of applied science was undertaken to provide evidence to face complex and
multifaceted issues posed by the control of zoonotic foodborne pathogens and the related
challenges for public health, veterinary medicine, food and environmental safety.

The thesis is divided in two different parts, each addressing a specific zoonotic patho-
gens: Hepatitis E virus (HEV) and Shiga toxin-producing E.coli (STEC). The main goal
was to produce estimations to help targeting intervention strategies in livestock and in
food production chain.

In Part I, a bottom-up risk assessment approach has been followed using original and
existing data, to analyse the risk of consumers exposure to HEV through the consumption
of contaminated food, following the from farm to fork approach, i.e. considering the two
main compartments of the food production chain: the primary production level and the
consumer level. In the pre-harvest block the HEV transmission dynamic was modeled to
identify risk factors influencing the prevalence of HEV positive pigs entering the food-
production chain at slaughtering. In the post-harvest block we compared several foodstuff
to evaluate the risk of transmission of HEV to humans and to underline possible risk
factors in the primary production that can lead to higher contamination of food products.

In Part II, the objective of our quantitative assessment were Shiga toxin-producing
E.coli (STEC). In this case the availability of subtyping characterisation data of STEC
isolated from different non-human sources and the complexity of transmission cycle of
the STEC led us to choose a top-down approach, from the reported cases of infection
in humans, through the food chain up to the primary source of STEC infection. This
project was carried out within an ongoing European project (DISCOVER) were a original
dataset were put together. We were able to adapt classical source attribution model to
STEC using a novel approach for pathogenicity definition that allowed us to weigh the
importance of the different sources in causation of human infection.
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Introduction

Public health challenges in infectious diseases in the global
world

Infectious diseases are one of the major cause of human morbidity and mortality in
many countries with between 13 and 15 million deaths worlwide annually [32]. While
at the beginning of the XX century high-income countries dominated some of the most
dangerous infectious diseases, in most of the medium and low income countries they are
still one of the main cause of death, especially in pediatric age. In the last fifty years
a number of emerging and re-emerging pathogens caused large outbreaks in Europe and
North America.

Infectious disease epidemiology is characterised by the presence of at least one active
player in addition to the human or animal population, namely the infectious agent or
parasite. Transmission from one host to another is fundamental to the survival strategy
of the infectious agent since any host will eventually either clear the infection or die. A
consequence of transmission is that the occurrence of infectious disease events in indi-
viduals depends on the occurrence of that disease or infection in other members of the
population. Sir Ronald Ross (1916) called this dependence of disease events in infectious
diseases “dependent happenings”.
Globalization, soil exploitation, demographic rise, deforestation and several other factors
contributed to make this process of emergence, re-emergence and spread of pathogenic
organisms to humans even more complex. In this context the dynamic of pathogen spread
among species and ecological niches can be very complex and highly nonlinear.

Quantitative studies are to date one of the most efficient way to understand this
complexity and to inform control policies to reduce the burden of infectious diseases on
human health. The possibility to predict and simulate different kind of scenarios and/or
to address data collection and analysis made mathematical modelling one of the most
important phase in the infectious disease research activity.

Basic concepts in infectious disease epidemiology

Infectious diseases can be classified based on many different criteria. Among these,
the most frequently adopted for this purpose include the etiological agent, that refers to
the nature and biology of the causative agent (bacteria, viruses, parasites, fungi etc.),
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Introduction Public health challenges

the hosts implicated in the epidemiological transmission pathways (e.g. human diseases,
zoonoses) and the main transmission routes: airborne disease (e.g. measles, influenza,
etc.), sexual diseases (e.g. HIV), vectorborne (e.g. Lyme disease, dengue, malaria, etc.),
foodborne and waterborne disease (Salmonella, Hepatitis A).
Box 1 (Infectious disease epidemiology – basic concept and glossary)

Infectious (transmissible, contagious) disease: a disease due to a specific infectious agent
or its toxic products that arises through transmission of that agent or its products from an
infected host (person, animal or reservoir) to a susceptible host, either directly or indirectly
through an intermediate plant or animal host, vector, or the inanimate environment.
Exposed: a person or animal coming into contact with a potential causal virus or bacteria
or other infectious agent and placed in a situation where effective transmission could occur.
The exposure does not necessarily succeeds in the transmission of the disease agent and the
infection and the development of the disease.
Infection: Invasion by and multiplication of pathogenic microorganisms in a bodily part or
tissue, which may produce subsequent tissue injury and progress to overt disease through a
variety of cellular or toxic mechanisms.
Reservoir: any person, animal, plant, or environmental medium (soil, water) in which the mi-
croorganisms normally lives and multiply, on which depends primarily for survival, and where
they multiply in such a manner that they can be transmitted to the susceptible host/s.
Source of infection: actual person, animal, or object from which the infection was acquired.
Vehicle: inanimate object that served to communicate disease.
Vector: live organism that serves to communicate disease.
Latent period: the time interval from infection to development of infectiousness.
Period of infectiousness: the time period during which the host can infect other host. The
host can become non-infectious either by recovery from infection possibly developing immunity,
or death. The host can be an asymptomatic carrier if the status of infectious is not associated
with clinical symptoms.
Incubation period: the period from infection to the development of symptomatic disease
and symptomatic period.
Symptomatic period: the time period during which the host show symptoms and signs cau-
sed by the infection. The host become an infectious carrier if he/she recovers from symptoms
but remains infectious.
Inapparent case or silent infection: a successful infection that does not develop detected
symptoms. Inapparent cases can be infectious.
Transmission probability: is the probability that given contact between an infective source
and susceptible host, successfully transfer of the infectious agent will occur so that the suscep-
tible host becomes infected.
Contact: the type of interaction (or situation) between a person acting as a source of an
infectious agent and a person susceptible when the interaction may lead to transmission of the
infectious agent.

In epidemiology of infectious disease, fundamental concepts are needed to describe the
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Introduction Public health challenges

Figure 1. Timeline and dynamic for infection and disease [26]

Figure 2. Transmission from an infective to a susceptible host during contact [26]

phenomena resulting from dependence of disease events. Exposure to infection plays a
pivotal role because exposure to the infectious agent is necessary for infection and disease
to occur. The components of exposure to infectious agent such as the contact of the
infective and susceptible hosts as well as the degree and duration of infectiousness need
to be taken into account in infectious disease epidemiology. We summarise in Box 1 a few
concepts commonly used in infectious disease epidemiology to describe the pathogen/host
relationship and the transmission pathways, we followed [8, 26,29].

The basic paradigm for infection and disease events, following exposure to infectious
agents, is represented in Figure 1. Within a population/group, the dependent happening
structure of the transmission of infectious diseases is based on infectious agent passing
from one host to another, as represented in Figure 2. This structure illustrates that the
transmission probability depends on the characteristics (pathogenicity) of the infectious
agent, the infectious host, the susceptible host and the contact.

This basic paradigm is not directly applicable to zoonoses, a group of infectious disea-
ses shared between animals – including livestock, wildlife, and pets – caused by bacterial,
viral, parasitic or unconventional agents (e.g. prions) that jump from non-human animals
to humans. In this case the dependent happening structures of disease events may be com-
plex or very complex with multiple transmission steps at the human-animal-environment
interface – where people and animals interact with each other in their shared environment.
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Figure 3. Timeline for zoonoses spread and exponential growth of outbreak cost [24]

For zoonoses, the dependent happening structure is peculiar for each disease, depending
on various factors including the nature of the zoonotic agent and its pathogenicity, the
number of implicated hosts (reservoir, intermediate and final host), the intensity and the
mode through which humans come into contact with the agent (the transmission route)
and eventually the possibility that secondary transmission cycle could be established in
humans. Basically the spread of zoonotic agents from animal to humans occur through
direct contact with animals and their excreta, ingestion of contaminated food and/or wa-
ter (foodborne/ waterborne), bites of mosquitos, ticks etc. (vectorborne), or indirectly
by fomites or environmental contamination. More rarely the transmission may be airbor-
ne. The dynamic of infection for zoonoses and timeline considering the whole cycle from
animals to humans must therefore take into account the happening structures within the
different components implicated in the transmission (Figure 3).

Zoonoses are indeed an important portion of human infectious diseases. The majority
of human infectious diseases have animal-origin and 75% of emerging and new diseases
are linked to spillover events from animal to humans [25]. In some cases, animals involved
in emergence are wildlife, despite the majority are caused by domestic animals interfa-
cing humans. Emerging diseases represent a huge problem for huaman health and, once
emerged, can become epidemic and pandemic, as Covid19 taught us, or also endemic and
remain in a specific region constantly and sometimes become neglected, meaning that they
receive less attention and resources.

One category of diseases that largely affects humans, but generally underestimated,
is represented by foodborne diseases. The burden of foodborne zoonoses was estimated
from WHO to be of the same order of magnitude of each of the “big three” infectious
diseases (malaria, HIV/AIDS and tuberculosis) and air pollution [11]. In high income
countries food system represents the main transmission route for infectious disease to
humans making this category of diseases a crucial research area.
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Figure 4. The foodborne transmission paradigm from the pre-harvesting compartment
to the exposed consumer

Foodborne zoonoses and food safety

Foodborne zoonoses are an important public health threat. According to EFSA more
than 230,000 human cases are confirmed in the EU each year, with a likely high under-
reporting factor [3]. This type of diseases is caused by consumption of contaminated food
or water. The contamination of food, as shown in Figure 4, may occur either upstream
in the food production chain, i.e. at the primary level as a result of direct contamination
of products by the infected animals (e.g. eggs, milk) and/or at the time of harvesting
(e.g. fecal contamination of milk during the milking process) or downstream, during the
manipulation and processing of food in the production chain. Thus, the basic paradigm
for foodborne transmission of zoonotic agents to human involves a complex network of
compartment in a flow that goes from the primary production in the livestock and agri-
culture compartment (pre-harvest level), to the final consumer (exposure level), passing
through the food-processing and distribution chain (post-harvest level). Infection could
be influenced by any of the steps involved and any type of production could have a diffe-
rent effect on the contamination process, given the specific features of the agent but also
of produced foodstuff or commodities. Usually the contamination process starts in the
primary production compartment through the infection of animals or, via environmental
contamination, crops. During this phase the pathogen spreads into the population follo-
wing, especially in animal populations, the dynamic of a classical infectious disease where
transmission happens mainly by direct contact. The post-harvesting segment of the food
chain can be a crucial phase for contamination of food. The hygienic condition and type of
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food processing have a direct effect on the level of food contamination. Zoonotic bacteria
(e.g. Salmonella) can growth and multiplicate in food matrices, if the food is manipulated
and processed under poor hygienic condition or preserved in inadequate time/temperatu-
re condition. Virus do not growth in food but can only survive and viral contamination
of food occurred at the pre-harvest level can only decrease in the post-harvest level or
even be inactivated. Finally, the consumer can be exposed to the pathogen through food
consumption or In the last steps, from retail points to consumer the variables influencing
possible human infections are highly connected with the household handling and exposure
level of the population (frequency of consumption, habits, average size of servings, etc.).

In late 90s Europe faced several food crises, starting from bovine spongiform encepha-
lopathy (mad cow diseases), to dioxins contamination of food. These events triggered the
development of a new food regulations at the EU level and program of scientific advice
and communication of the risk in food safety. In particular, the general food law (Regula-
tion 178/20021) conceptualised the new food safety framework and approach to consumer
protection with a new paradigm for food safety which was named ‘farm to fork’. This
paradigm lies on two main crucial principles: i) all food business operators involved in the
food production chain (from primary production to the retail level) are responsible for the
safety of food consumed by consumers; ii) the adoption of control policies in food safety
(risk management) must be supported by scientific evidence obtained through a formal
process of risk analysis in food safety. This new conceptual framework based on the se-
gregation of risk assessment, carried out by independent organisms, and risk management
(responsibility of the competent authorities) enhanced enormously the implementation of
research in the area of food safety and in particular of risk assessment at both the national
and EU level. The European Food Safety Authority (EFSA), was founded in 2002 with
the task of providing independent scientific evidence to the EU Commission and Member
States on food safety issue. The authority was legally established by the EU under the
General Food Law – Regulation 178/200211.

Several methods for risk assessment have been developed to support microbiological
food safety and to inform control policies in the framework described above. There are
three main possible approaches: “top-down”, “bottom-up” or a combination of these two
(see Figure 5). The “top-down” approach, or surveillance based, starts from infections and
illnesses in humans to gain knowlege on source and transmission pathways and is informed
by epidemiological system data. The “bottom-up” approach, conversely, follows the agent
along the production chain steps or from a specific point of the production chain (e.g.
retail) to the consumer. A combined approach of these two can be used, when information
on both sides are available, to gain more information at once. The most classical approach
is based on a four-step bottom-up risk assessment process that follows the foodborne in-
fection paradigm as shown in Figure 4. The four steps of risk assessment bottom-up are:
hazard identification, exposure assessment, hazard characterization and risk characteriza-

1https://www.efsa.europa.eu/en

x
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Figure 5. Top-down and bottom-up approached to risk assessment

tion (see Figure 6).
During the first step, the biological or chemical agent (hazard) is identified and specific

Figure 6. The four-step stricture of risk assessment

epidemiological and microbiological features information are collected. The exposure as-
sessment is the part of the process where the pathogen transmission process is identified
and described to allow the evaluation of the exposure of a given population. The hazard
characterization, often known also as the dose-response assessment, is the step where the
relationship between the pathogen exposure and the outcomes in the population are set.
Finally, in the risk evaluation is carried out the actual estimation of the risk for the po-
pulation chosen. The concept of risk is intended as a combination between probability
of infection and probability of exposure for the population considered in the study, so
it involves all the three previous steps. The tipology of study for this process is highly
varied, going from the qualitative to the quantitative studies passing through the semi-
quantitative. Qualitative-like risk assessment is used especially in early emergency phases
or in absence of data to take fast preliminary actions, here the risk is expressed in terms
of qualitative categories (e.g. low/medium/high, acceptable/non acceptable, etc.). See
for example [7, 31]. The semi-quantitative approach are less frequent and it is used, for
instance, when only partial quantitative data are available or a faster assessment is needed
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(see for example [30]). In quantitative microbiological risk assessment studies (QMRA)
risk is numerically quantified through quantitative data (e.g. probability of infection gi-
ven certain conditions, incidence of a disease, etc.). See for example [12, 17, 18, 28]. Each
of these methods have advantages and limitations but the golden standard is represen-
ted for sure by quantitative methods. Quantitative studies can include different types of
techniques, as statistical models, network analysis, Bayesian modeling, deterministic or
stochastic mechanistic models, etc.

The “top-down” approach studies starts instead from human cases data to gain know-
ledge on transmission pathways and sources. Among them are epidemiological methods or
microbiological methods. Microbiological methods include a variety of different methods
and models, including population genetic model or frequency-matching models that can
use frquentist and Bayesian framework or, recently, machine learning techniques. See for
example [10,19,21–23].

xii



Introduction Aim and motivations

Aim and motivations

To reduce the health impact caused by zoonotic foodborne pathogens in humans, it
is necessary to get knowledge about the animal sources and the transmission pathways
implicated in human diseases. The availability of this evidence is important to support
decision makers (i.e. health competent authorities) adopt and prioritize control poli-
cies, in livestock production and in food production chain. For longtime this process has
relied just on experts’ knowledge and beliefs. In more recent decades, qualitative and
semi-quantitative methods progressively replaced such a poor evidence-based approach, in
order to overcome limitations of opinion-based approaches and better support the decision-
making process. The development of quantitative methods and approaches enabling to
deal with the complexity of food-production chain and epidemiological cycles of zoonotic
diseases, and incorporate the wealth of available monitoring and surveillance data, gave an
important boost to the development of the risk assessment science in food-safety. Nowa-
days, quantitative methods represent the gold standard in food safety and animal health
risk assessment (QMRA) science.

The aim of this project is to develop a framework of quantitative methods to support
the risk assessment for two different zoonotic agents: Hepatitis E virus and Shiga toxin-
producing E.coli. The goal was to produce estimations that help to target intervention
strategies in livestock and food production chain. Both agents are considered emergent
pathogens in the EU and consumers’ protection against risk connected to foodborne ex-
posure to these agents is regulated by the general food safety measures only, meaning that
there are no specific dedicated management plans at EU level2.

Hepatitis E Virus (HEV), is a viral pathogen that emerged very recently as zoonotic
agent and spread rapidly in the EU. It is mainly considered a cause of mild or even
asymptomatic infection in human population (Hepatitis E) even if severe cases, especially
in immunocompromised patients, have been documented. Hepatitis E is subjected to
passive reporting in humans, though it is well know that its occurrence is highly under-
detected and underreported. Pigs and wild boars are considered the main animal HEV
reservoirs. No compulsory monitoring of HEV exist in animal population and food chain.
For these reasons, the available data are scarce and several blind spots on important
pathogenic mechanisms and epidemiological aspects (i.e. environmental survival of the
virus) exist. Despite the lack of scientific knowledge, public health and industry are
committed to control HEV along the food production chain in order to protect public
health. According to several literature studies, this pathogen is highly diffused in some
European countries as France, Spain and Italy.

STEC Shiga Toxin-producing Escherichia coli, are a group of pathogenic bacteria of the
Escherichia coli species. textitShiga Toxin-production Escherichia Coli (STEC). STEC are

2Only STEC in seeds and sprouts are subjected to food safety criteria according to Reg. 2073/2005/CE
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considered among the priority zoonotic pathogens in the EU3 because of their potential
to cause severe and even fatal illnesses in humans, particularly in children. STEC also
occur as large epidemic outbreaks such as the recent epidemic linked to the consumption
of contaminated frozen pizza, which in winter 2022 caused tens of cases and deaths in
small children. Surveillance of STEC in humans is well established in the EU even if
not fully harmonized, with some countries only reporting severe cases and others having a
more sensitive surveillance able to capture also mild symptomatic and asymptomatic cases.
Tough, the very complex epidemiology of this pathogen and genetic plasticity brings other
type of difficulties to the risk assessment analysis.

Approaching these two zoonotic agents means exploring two complementary approa-
ches. In the first case, i.e. HEV, we followed a classical bottom-up risk assessment
approach (see Figure 4) based on a from-farm-to-consumer approach, analyzing the two
main compartments of the foodborne infection paradigm: the primary production and
the exposure through food of the consumer. This approach allow us to built a model
“around the existing data” and to characterize the production chain focusing on the main
transmission pathways of the pathogen.

In the second case, i.e. STEC, the availability of subtyping characterisation data
around the pathogens isolated in different sources and the complexity of transmission cy-
cle of the STEC led us to choose a top-down approach, from the observed human cases,
through the food chain up to the primary source of STEC infection.

3According to Dir. 99/2003 (EC)
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Introduction Mathematical tools for epidemiology

Mathematical tools for epidemiology

Mathematical models are widely used tools in infectious disease epidemiology to in-
vestigate epidemics and to improve the capacity building to control the infectious disease
spread intro the population. In the last 50 years this mathematical modelling has been
largely employed in decision making, vaccination coverage assessment, intervention and
so on. In the last decades, mathematical models resulted extremely important in early
response to important outbreaks like HIV, Bovine Spongiform Encephalitis (BSE), Food
and Mouth Disease (FMD), Severe Acute Respiratory Sindrome SARS and last but non
least 2019 SARS-Cov2 pandemic. The stochastic nature and the high nonlinearity of in-
fection dynamics are the two main factors that makes this interdisciplinary cooperation
essential to address investigation and intervention in epidemic investigations.

The first recognized mathematical model for epidemiology was developed by Daniel
Bernoulli in 1766 to analyse the benefits of smallpox vaccination [6]. The begin of the
modern mathematical epidemiology though is referred to the publication of the model by
the biochemist William Kermack and the physician Anderson McKendrick in 1927 [15].
This model and its variations are among the most used in this research field.

The Kermack-McKendrick models is also known as SIR model and is one of the basic
but also fundamental epidemiological model. The individuals in the population are divided
into compartments according to their epidemiological states. In the SIR model the states

Figure 7. SIR model diagram. The capital letters represent the total number of individual
in each epidemiological state, the lowercase letters are the proportion of individuals in the
compartment over the entire population N .

are: Susceptibles, Infected and Recovered. Several extension of this basic framework
are developed to include other states like Exposed, Asymptomatic and so on. In the
SIR model, several assumptions are made: the population is assumed to be closed and
homogeneously mixed and all the transitions rates are constant in time. Latent periods
and changes in individual behaviour are not taken into account. The models is determined
by the transition rates between the classes S, I and R. It is generally assumed that the
infection per capita rate is proportional to the prevalence of infected individual in the
population, following the law of mass action, and that the recovery rate is constant.
We call S, I and R the total number of individual in each class and s = S

N , i = I
N , and

r = R
N , where N = S+ I+R is constant. The differential equation system for this specific
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model is 
ds
dt = −βsi
di
dt = βsi− γi
dr
dt = γi

(1)

Exahustive tractation of this argument are available in [1, 14,20].

Stochastic epidemiological models

For many years, deterministic models were the only models used in epidemiological
study of infectious diseases. Deterministic models are usually simple to analyse and allow
complex and more realistic frameworks and parameterizations. On the other hand, sto-
chastic models represents often a very natural way to describe transmission and spread
of a disease. These models allow to quantify uncertainty and to analyse the possibility of
extinction of diseases in finite time. In late 40s Bartlett published the first stochastic ver-
sion of Kermack-McKendrick model [5] beginning the development of stochastic epidemic
models field.

We present the standard SIR stochastic model as defined by Ball in 1995 [4] and
by Andersson and Britton in 2012 andersson2012stochastic. We have m initial infected
individuals and n susceptibles. The infectious periods are independent and identically di-
stributed according to some random variable I with mean i and variance σ2. Any infected
individual has contact with others at the time point of a homogeneous Poisson process
with intensity λ

n . As soon as a susceptible individual comes into contact with an infected
individual, the susceptible becames immediately infected. All Poisson processes are inde-
pendent between them and independent also of I.

Selke construction
A very interesting construction of the standard SIR stochastic model is due to Selke [27].
Any susceptible individual is associated with an individual threshold and is exposed to a
total “infection pressure”. As soon as the pressure reaches the threshold, the susceptible
individual became infected.

The m initially infectives individuals are labelled as −(m − 1),−(m − 2), . . . , 0 and
n initial susceptibles with label 1, 2, . . . , n. Individuals have independent identically di-
stributed infectious periods I−(m−1), I−(m−2), . . . , In. Furthermore, let Q1, Q2, . . . , Qn be
the individual thresholds of the susceptible individuals and independent and identically
distributed Qi ∼ exp(1). If we denote with Y (t) the total infective individuals at time t,
we can define the totale infection pressure as

A(t) = λ

n

∫ t

0
Y (u)du. (2)

For i = 1, 2, . . . , n the susceptible labelled i becomes infected when A(t) reaches Qi and
remains infectious for a time Ii and then is removed.
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The Markovian case
In the Markovian version of the model we have X(t) susceptible and Y (t) infected indivi-
duals at time t and, of course, the

(
X,Y

)
=
{(
X(t), Y (t)

)
, t ≥ 0

}
is a Markov process.

If we suppose that I is exponentially distributed with intensity γ, we have the following
transition’s rate

(i, j)→ (i− 1, j + 1) λ

n
ij

(i, j)→ (i, j − 1) γj

(3)

Inference likelihood-based for Partially Observed Markov Processes (POMP)

Parameter estimation is a crucial step in model implementation. One of the most used
approach is the likelihood-based inference. Here we present a useful method to implement
likelihood-based inference for epidemiological models in a frequentist environment. We
report the methodology as presented in the official documentation of R pomp package4.

Suppose we have y∗
1, . . . , y

∗
N noisy, incomplete and indirect observations of a Markov

process X(t) at time t1 < t2 < · · · < tN . Let’s define Yn the random variable modeling
the observation or measurement process at time tn and Xn := X(tn). If we are able to
describe the one-step transition density fXn|Xn−1(xn|xn−1; θ), the measurement density
fYn|Xn

(yn|xn; θ) and an initial density for the Markov process fX0(x0; θ) we can specify
the entire POMP model. In the following sections we will define a formal POMP model
and its likelihood function and we will introduce a useful factorization for the likelihood
and an iterative algorithm that allows to maximize the likelihood.

POMP models

Let’s θ ∈ Rdθ be a parameter vector and
(
X(t; θ)

)
t∈T a Markov process that takes

values in Rdx , with T ⊆ R.
Now, suppose we are able to observe the process at given times {ti ∈ T, i = 1, . . . , N},
with t0 ∈ T the initial time and assume we have t0 ≤ t1 ≤ · · · ≤ tN . We say that we have
a partially observed Markov process if X0:N := (X0, . . . , XN ) are observed only by way of
another process Y1:N := (Y1, . . . , YN ) with values in Rdy .
Given that Xn is Markovian and Yn depends only on the process at tn time, if we assume

that Y1:N are conditionally independent given X0:N we can write the joint density of the
two processes as follow:

fX0:N ,Y1:N (x0:N , y1:N ; θ) = fX0(x0; θ)
N∏
n=1

fXn|Xn−1(xn|xn−1; θ)fYn|Xn
(yn|xn; θ).

Hence, the marginal density for Y1:N evaluated at the observation data y∗
1, . . . , y

∗
N is the

likehood function for the model result to be

L(θ) = fY1:N (y∗
1:N ; θ) =

∫
fX0:N ,Y1:N (x0:N , y0:N ; θ)dx0:N . (4)

4https://kingaa.github.io/pomp/
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Figure 8. Schematic representation of a pomp model

Sometimes is more practicle to use the log transformed version of the likelihood, meaning
the log-likelihood

ℓ(θ) = log(L(θ)).

Now, we can rewrite the equation 4

L(θ) =
∫ { N∏

n=1
fYn|Xn

(y∗
n|Xn; θ)

}
fX0:N (x0:N ; θ)dx0:N

and it can therefore be written as an expected value

L(θ) = E
[
N∏
n=1

fYn|Xn
(y∗
n|Xn; θ)

]
(5)

Hence, thanks to the Law of Large Numbers (LLN) we could approximate likelihood with
a Monte Carlo sampling as

L(θ) ≈ 1
J

J∑
j=1

N∏
n=1

fYn|Xn
(y∗
n|Xj

n; θ), (6)

where Xj
n are sampled from fX0:N (x0:N ; θ), for j = 1, . . . , J .

Unfortunately, this classical approach is most of the time not reliable, especially if time-
series data is very long. We present an approach where a different factorization of the
likelihood is used, named the particle filtering [2, 9, 16].
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Sequential Monte Carlo

The particle filtering technique is based on a specific factorization of the likelihood
function, we begin writing

L(θ) = fY1:N (y∗
1:N ; θ) =

N∏
n=1

fYn|Y1:n−1(y∗
n|y∗

1:n−1; θ)

=
N∏
n=1

∫
fYn|Xn

(y∗
n|Xn; θ)fXn|Y1:n−1(xn|y∗

1:n−1; θ)dxn,
(7)

defining fX1|Y1:0 = fX1 .
We can now use the Markov property and Bayes’ theorem to obtain a recursive expression
for fXn|Y1:n−1(xn|y∗

1:n−1; θ):

fXn|Y1:n−1(xn|y∗
1:n−1; θ) =

=
∫
fXn|Xn−1(xn|xn−1; θ)fXn−1|Y1:n−1(xn−1|y∗

1:n−1; θ)dxn−1.
(8)

Bayes’ theorem allows to rewrite fXn−1|Y1:n−1(xn−1|y∗
1:n−1; θ) as follow:

fXn|Y1:n(xn|y∗
1:n; θ) =

= fXn|Yn,Yn−1(xn|y∗
n, y

∗
1:n−1; θ)

=
fYn|Xn

(y∗
n|xn; θ)fXn|Y1:n−1(xn|y∗

1:n−1; θ)∫
fYn|Xn

(y∗
n|un; θ)fXn|Y1:n−1(un|y∗

1:n−1; θ)dun

(9)

The two distributions fXn|Y1:n−1(xn|y∗
1:n−1; θ) and fXn|Y1:n(xn|y∗

1:n; θ) are called prediction
and filtering distribution, respectively, and allow to produce a two step recursion to esti-
mate the likelihood for each time step of the data time serie. The steps of a sequential
Monte Carlo or particle filtering are the following:

1. We have J sample drawn from the filtering distribution at time tn−1 XF
n−1,j , for

j = 1, . . . , J .

2. We draw a sample from the prediction model, meaning simulating the process model

XP
n,j ∼ process(XF

n−1,j ; θ), j = 1, . . . , J

3. We obtain a sample from the filtering distribution at time tn resampling from
{XP

n,j , j = 1, . . . , J} with weights

wn,j = fYn|Xn
(y∗
n|XP

n,j ; θ)

4. Given that XP
n,j is a drawn from fXn|Y1:n−1(xn|Y ∗

1:n−1; θ) can approximate the condi-
tional likelihood as

L̂n(θ) ≈ 1
J

∑
j

fYn|Xn
(y∗
n|XP

n,j ; θ)

We can iterate the procedure for all the N time steps and approximate the full likelihood

ℓ(θ) = logL(θ) =
∑
n

logLn(θ) ≈
∑
n

L̂n(θ)
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Iterated filtering algorithm

Iterated filtering is a procedure to maximize likelihood. The algorithm build and pre-
sented by Ionides and collegues [13] consists of an iteration of particle filtering procedure
where the parameter vector does a random walk for each particle as the process had non
constant parameters. After each iteration, the output parameter swarm is used as input in
the next iteration. The variance of the random-walk decreases at each iteration going to
zero. It is possible to prove that, this way, the algorithm converges to an area of the para-
meter space that maximizes likelihood. We report here the pseudocode as presented in [13].

input:
Simulator for fX0(x0; θ)
Simulator for fXn|Xn−1(xn|xn−1; θ), n = 1, . . . , N
Evaluator for fYn|Xn

(yn|xn; θ), n = 1, . . . , N
Data y∗

1, . . . , y
∗
N

algorithmic input:
Number of iterations, M
Number of particles, J
Initial parameter swarm, {Θ0

j , j = 1, . . . , J}
Perturbation density, hn(θ|ϕ;σ), n = 1, . . . , N
Perturbation sequence, (σ1, . . . , σM )
output: Final parameter swarm, {ΘM

j , j = 1, . . . , J}

Algorithm (IF2 algorithm). For m in 1 : M

ΘF,m
0,j ∼ h0(θ|Θm−1

j ;σm), for j = 1, . . . , J}

XF,m
0,j ∼ fX0(x0; ΘF,m

0,j ), for j = 1, . . . , J}

For n in 1 : N

ΘP,m
n,j ∼ hn

(
θ | ΘF,m

n−1,j , σm
)
, for j = 1, . . . , J}

XP,m
n,j ∼ fXn|Xn−1

(
xn | XF,m

n−1,j ; ΘP,m
j

)
, for j = 1, . . . , J}

wmn,j = fYn|Xn

(
y∗
n | X

P,m
n,j ; ΘP,m

n,j

)
, for j = 1, . . . , J}

Draw k1,j with P (kj = i) = wmn,i/
∑J
u=1w

m
n,u

ΘF,m
n,j = ΘP,m

n,kj
and XF,m

n,j = XP,m
n,kj

, for j = 1, . . . , J}

End For

Set Θm
j = ΘF,m

N,j for j = 1, . . . , J}

End For

We give in input simulator for initial state of the Markov chain and for the transition,
then we need an evaluator for the measaurement process. Θ0

j is the swarm of initial para-
meters. hn is the perturbation density, that will be Gaussian in this case. The outer loop
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over m is for the number of iteration we want to perform of the algorithm, the inner loop
is the particle filtering over the entire time series of dat y∗

1, . . . , y
∗
N .
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Parte I

Quantitative bottom-up approach
for hepatitis E in humans
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Capitolo 1

Hepatitis E. Background and
epidemiology

Background
Hepatitis E virus (HEV) is the causative agent of Hepatitis E, an emerging disease

of worldwide occurrence causing 20 million human infection events yearly [87]. For many
decades Hepatitis E was considered in Europe and in the USA a health problem limited to
travellers coming back from area where this pathogen was endemic [50,56,69] but since the
early 90s autochthonous cases have been increasingly reported. In Europe and other high-
income countries Hepatitis E is considered a foodborne zoonosis causing mainly sporadic
cases [56, 58, 69]. Clusters and small outbreaks of HEV infection were also occasionally
reported in the European Union (EU) [33, 35, 66]. In the EU, however, surveillance of
HEV infection is sparse and not harmonised hampering the possibility to adequately cha-
racterise the epidemiology of Hepatitis E, including the accurate identification of the food
items implicated in the transmission of HEV to humans.

HEV is a RNA virus belonging to the species Orthohepevirus of the family of Hepe-
viridae, and was first described in 1978. This virus has a wide range of hosts including
humans, domestic and wild animals (domestic swine, wild boar, deer, rabbit, mongoo-
se, ferret, rat and chicken to bat and cutthroat trout). The Orthohepevirus A species
includes seven genotypes (HEV1–HEV7) but only four HEV genotypes (HEV1, 2, 3, 4)
are reported in humans. HEV-1 and HEV-2 affect primarily humans and are endemic in
Asia, Africa and Latin America where large outbreaks have been reported [55]. HEV3
and HEV4 are more frequently reported in high-income countries and have a wider host
range including both animals and humans (Figure 1.1). These genotypes include most of
the zoonotic HEV variants which usually cause sporadic and chronic diseases in humans
in high-income countries and also small outbreaks. HEV 3 and HEV4 affect a broad range
of species but pigs and wild boars are considered the main HEV animal reservoirs.

Hepatitis E Virus (HEV) infection in humans
Infection with the HEV causes hepatitis E, which usually presents as an acute, self-
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Figure 1.1. Worldwide presence of HEV genotypes. Schematic representation of the
distribution of the different hepatitis E virus (HEV) genotypes. (Source [40])

limiting liver inflammation. Clinical signs include fever, anorexia, and jaundice. Extrahe-
patic manifestations and serious sequelae including chronic condition leading to cirrhosis,
liver failure and death may occur especially in immunocompromised patients and in pre-
sence of comorbidity [39, 43, 64, 85, 86]. A major risk for chronic and fulminant hepatitis
E is reported for pregnant women, with possibility of abortion or infant mortality [34].

The clinical course of Hepatitis E in humans is frequently asymptomatic especially
in young adults and children. In Europe, the prevalence of hepatitis E differs between
regions. Hepatitis E is hyperendemic in southwest France, with seroprevalence rates in
population of >50%, it is endemic in northern France, the United Kingdom, Belgium,
the Netherlands, Luxembourg and Germany where 10–30% of individuals have serological
evidence of previous HEV exposure. However, the seroprevalence is only 2% in children
aged 2–4 years living in southwest France despite the fact that this is a hyperendemic
area [40].

In industrialised countries, the majority of human cases are due to zoonotic transmis-
sion and are attributable to the consumption of pork and wild boar meat and products
thereof [30,43,78]. Contamination of surface and coastal waters can lead to a possible risk
of HEV infection due to the consumption of HEV contaminated foodstuff of non-animal
origin, as vegetables or shellfish [8, 24, 42, 47, 67]. An outline of the dependent happening
structure for HEV is shown in Figure 1.2. Iatrogenic transmission of HEV through infected
blood and blood products has also been documented. However, in England, transfusion-
transmitted HEV infection was estimated to account for <1% of all human infections with
HEV. Most iatrogenic transmissions remain asymptomatic [40].
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Figure 1.2. Dependent happening structure for HEV [29]

HEV in domestic animals and foods
HEV is highly prevalent in pig herds [39] where transmission occur primarily throu-

gh the fecal-oral route (i.e. ingestion of contaminated food), direct contact with infec-
ted animals or contaminated water [1, 7]. Indeed, anti-HEV antibodies were detected in
46%–100% of swine farms from many countries. Clinical manifestations in animals are
usually not detectable with microscopic liver lesions [50]. Pigs inoculated intravenously
with swine HEV developed viremia prior to seroconversion, had histological evidence of
hepatitis, but did not display clinical symptoms [25]. Infection in pigs has been proof to
be highly age-dependent, with a peak of viral fecal shedding between 10 and 16 weeks of
age [11,49].

Similarly to any other virus, HEV requires the host cellular machinery to replicate
meaning that outside the host, the virus can only survive. HEV survival in the environ-
ment or in food matrices is highly dependent on the time outside the host and on the
environmental conditions [5, 88]. Hence, food handling and preparation are important
factors to prevent a possible infection. Cooking at low-medium temperatures (56◦) re-
sulted insufficient to inactivate the virus [28], while Barnaud et al. [5] showed that HEV
inactivation in food matrices requires at least 20 minutes cooking at 20◦.

Unfortunately, HEV cannot be routinely cultivated on cells making really challenging
to perform infectivity assay on the agent [55]. For this same reason, it is difficult to eva-
luate the potential infectivity of the virus when it is detected in any matrix, including
food and water or to assess the efficacy of inactivation treatments, like cooking [5].

Epidemiology of HEV infections in Italy
Between 2007 and 2019, nearly 17,000 possible cases of acute Hepatitis E cases have

been reported to the Italian national surveillance system (SEIEVA) [82] of which only 385
cases were confirmed. The 72.5% of these confirmed cases were autochthonous, meaning
that the infection was acquired in Italy and was non-travel related. The human epidemio-
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logy of the Hepatitis E along the territory is highly nonhomogeneous, with higher number
of cases reported from the regions in central Italy, in particular Abruzzo, Lazio, The Mar-
che, Umbria, and in Sardinia. A survey among blood donors conducted by Spada et al.
indicated mean seroprevalence the 8.7% at the national level with a range among provinces
from the 0% of Barletta-Andria-Trani province in Puglia to the 38.5% of Nuoro province
in Sardinia. While the difference resulted non-statistically significant for the number of
cases reported to the SEIEVA system [82], Spada et al. [75] reported that the prevalence
of serum antibodies against HEV in the population >18 years living in these areas were
statistically significantly higher compared with the estimated average HEV-antibodies se-
roprevalence at national level. Since the seroprevalence rate of anti-HEV antibodies can be
used as a marker for present and past infections (IgM and IgG are markers of an acute or
past infection, respectively), this finding suggests that many cases of Hepatitis E remains
undetected in the population and corroborates the hypothesis that the population expo-
sure to HEV differs importantly among regions mainly due to different food consumption
habits.

Evidences from several studies indicate that the consumption of food containing raw
or undercooked pork and wild boar meat are important risk factors [2,78,82] also in Italy.
Alfonsi and collegues [2] estimated a 4.6 adjusted odds ratio for pork consumption as risk
factor and 2.9 for undercooked sausages consumption. Similar results are reported in [82],
where cured pork meat has a odds ration of 2 and undercooked or raw pork meat 3.1.
Some studies also reported shellfish as vehicles potentially implicated in foodborne tran-
smission of HEV [2, 9, 82]. The odds ratio are smaller for this foodstuff with 0.9 reported
in [82]. Evidence is also available of a higher risk for professionally-exposed workers such
as veterinarians, farmers and hunters [10,15,52,54].

Circulation of HEV in farmed pigs in Italy is widely documented [14, 22, 51, 59, 60].
Positivity of blood samples ranges from about 56% [57] to 93% found by Ponterio and
collegues [60]. Fecal positivity is obviously lower with a range between 7.4% [14] and
42% [22]. Furthermore, Pavia et al. [57] reported a significative difference in seropositivity
in smaller farms (<100 pigs) compared to other sizes (p-value < 0.001) and in fattening
farms compared to farrow-to-finish (p-value=0.002).

In the food chain, HEV has been detected in pork foods such as dry and fresh sau-
sages at retail level [12, 20, 21], but also in shellfish sampled in the production areas at
retail [45,76], or in biomonitoring points [26]. Observational studies documented also HEV
contamination of vegetables and fruits in Italy [74, 80]. HEV RNA was found in sewage
and surface water samples suggesting possible environmental contamination via recycled
water [38,44,45].

The main goal of the study is to highlight the factors involved in the foodborne tran-
smittion of hepatitits E to humans to help reduce circulation of the pathogen with suitable
and effective interventions on both the primary production and/or the consumer level. To
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do so, we worked to build a comprehensive model to understand the transmission dyna-
mics along the whole production chain allowing to plan intervention and to exploit all the
available data.

In chapter 2 we reported the results of the exposure study where we used original data
at retail point to estimate the number of new infected people in a year over the Italian
population, given the consumption of specific foodstuff. In chapter 3 we repotred the
pre-harvest model, where a transmission model on farm has been developed to understand
the transmission dynamics among pigs based on the different farming types present on the
Italian territory.

6



Capitolo 2

Post-harvest model: the consumer
level

In this part of the study, we developed a mathematical model to rank the importance of
various types of food potentially implicated in the transmission of HEV to humans in the
adult Italian population (around 50,000,000). The food categories considered in our study
are pork products with liver (PL), pork products without liver (PNL), bivalve shellfish
(SH), green leafy vegetables (GV), and raw milk (RM). These results were published
here [53].

2.1 Model description

In order to obtain the ranking of food items most frequently implicated in HEV tran-
smission in Italy, we developed a parametric stochastic model to estimate the expected
number of newly infected persons who develop HEV infection in the Italian population
(≥18 years) through the consumption of the different foods, in one year period.

The analyses were carried out with the R software version 3. 6. 0 ( [61]). For the
heviest calculation the Gauss Cluster at the Turing Lab of Mathematics Department
“Guido Castelnuovo” of Rome “La Sapienza” was used (http://centrocalcolo.mat.
uniroma1.it, http://turinglab.mat.uniroma1.it).

2.1.1 The mathematical model

We modelled the individual infectious dose distribution S to HEV using a proxy of the
infectious dose based on data available in the literature. We thus build the distribution
Ci of HEV concentration in a food serving of category i, based on data on prevalence
of HEV contamination of food at retail obtained from a recent sampling study in Italy.
Using these two quantities we estimated the probability qi for a single person to develop
a HEV infection after the consumption of a single serving of food belonging to catego-
ry i. The average number of portions of each food consumed per year per person and
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Figure 2.1. The model sketch

over the number of susceptible individuals in the Italian population (Figure 2.1) were
then summed up to estimate the average number of newly infected cases in the Italian
population in one year. All the parameters used in the model are summarised in Table 2.1.

The model framework is showed in Figure 2.1.
We build the distribution of concentration per serving Ci for each food category using

HEV load data in food expressed in genome equivalent per gram of food (g.e./gram) (see
section 2.1.2), and defining a mean serving size servi (grams) for each food category, ac-
cording to guidelines of Council for Agricultural Research and Analysis of the Agricultural
Economy [48]. Multiplying these two quantities we obtained the distribution of the total
genome equivalent HEV per serving (g.e./serving). The distribution was built as a mixture
of random variables as follow

Ci = αiC
i
0 + βiC

i
1 where Ci0 ∼ δ0, Ci1 ∼ exp(λi)

Ci0 is a Dirac delta with point mass in zero and represents the HEV negative food samples
belonging to category i. The random variable Ci1 models the distribution of the viral
concentration in the HEV positive samples belonging to category i and it is distributed
according to an exponential distribution. The rate of the exponential distribution is the
inverse of the mean viral concentration λ−1

i of HEV positive samples that we estimated
using the Maximum Likelihood Estimation (MLE). The weights αi and βi are the fraction
of HEV negative and positive food samples, respectively.

To model the individual infectious dose distribution S we used data from outbreaks
for which the HEV load in implicated food (g.e./gr) was documented [63, 65, 66, 79]. We
fitted S on the estimated foodborne HEV intake (g.e.) of cases involved these outbreaks.
The individual intake of HEV (g.e.) was estimated based on the viral concentration in
the implicated food (HEV g.e./gr) for a mean serving size (gr) of the implicated food.
The mean serving size (serv0) was estimated according with the same data source used

8
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Tabella 2.1: Model parameters

Parameter Description

i ∈{PL, PNL, SH, GV, RM} food category as listed in the Introduction

αi = 1− βi contamination probability for food category i

Ci ∼ αi exp(λi) + βiδ0 viral concentration per serving (g.e. HEV/serving)

λ−1
i average viral concentration per serving (g.e. HEV/serving)

servi mean serving size for food category i (gr)

(considay)
−1 mean daily intake of food category i in a year per person (gr/day)

dai = consi
day ·365
servi

total servings consumed per year per person (no. serving/year)

S ∼ exp(µ) individual HEV infectious dose distribution (g.e.)

µ−1 mean individual infectious dose (g.e.) [63, 65,66,79]

servout mean serving size (gr) of food implicated in outbreaks [63,65,66,79]

N Italian population 18+ (1st January 2021. ISTAT)

h proportion of HEV seropositive population [75]

N = N · (1− h) susceptible population

qi = P(Ci > S) probability of infection after consumption of one single serving

Ti ∼ Geom(qi) number of failures before first successful exposure to HEV

pi = P(Ti ≤ dai ) probability of HEV infection per individual per year

Xi ∼ Bin(N, pi) distribution of new HEV infected individuals per year

N i
inf = E(Xi) expected number of HEV infected individuals per year (no.)

for servi. We modelled S as an exponential distribution with parameter µ, which was
estimated using MLE.

Any exposure to HEV, through the consumption of a single food serving, leading to an
intake of HEV g.e. higher than the individual infectious threshold was defined as a new
HEV infection event. We defined qi as the probability of infection given the consumption
of one single food serving. Each foodborne exposure to HEV was considered independent
and no cumulative exposure to HEV in multiple meals was assumed possible.

Based on the available data on food consumption in Italy, we estimated the number of
average servings consumed in one year per person dia, for each food category i. Considering
each meal as a Bernoulli trial of probability qi, we built a geometrical random variable T
of parameter qi modelling the number of failures before the first successful exposure (i.e.
infection). We estimated the probability pi for an individual to become infected in one
year as

pi = P (T ≤ dia)

meaning the probability that the first successful exposure happens within one single year.
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The number N of susceptible individuals in the Italian adult population was estimated
subtracting to the total Italian population the fraction of HEV seropositive individual.
These latter fraction was estimated based on data from a HEV seroprevalence survey
among blood donors in Italy. We assumed a long-life immunization status against HEV
of seropositive subjects (i.e. no reinfection possible). Moreover we assumed immune
individuals homogeneously distributed all over the Italian population. We considered the
total number of new infections per year X, given the consumption of food belonging to
category i, to be Binomially distributed with parameters (N, pi). Whence, we obtained
the average number of new infected individuals in one year, as the expected value of X,
meaning N i

inf = E(X) = Npi.

2.1.2 Data and data sources

Data on HEV prevalence and concentration in food were generated from a sampling
study carried out in Italy between 2016 and 2019 within the project “CCM 2016 – Hepati-
tis E, an emerging problem in food safety” (Suffredini, personal communication). Briefly,
730 samples were collected at retail level in different area of Italy: North, Centre and
South (see Table 2.2). Samples were analysed using matrix-specific viral concentration
procedure for pork products [77], bivalve shellfish, green leafy vegetables (ISO, 2017), and
raw milk [35]. Detection and quantification of HEV in samples was performed by real-time
RT-qPCR as detailed in Di Pasquale et al. [23].

Tabella 2.2: Survey sample size

Food category Sample size

PNL 104
PL 92
RM 142
SH 204
GV 108

The number of individuals susceptible to HEV in the Italian population was estima-
ted based on official demography data (as of 1st January 2021) (ISTAT (http://dati.
istat.it/) and on a HEV seroprevalence study conducted among 10,011 blood donors’
plasma unit samples (≥ 18 years) in 2018 (0.02% of the adult Italian population as of 31st
December 2018) [75].

The number of food servings consumed in one year by a single person was esti-
mated based on food consumption data sourced from a nation-wide consumption sur-
vey conducted in Italy in 2005-2006 [46] available on FAO/WHO GIFT tool platform
(http://www.fao.org/gift-individual-food-consumption/en/). Observations from
the consumption survey database were filtered from the survey data to select the products
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belonging to each food category using the “ingredient” variable. For RM and PL it was
not possible to filter directly from data. For the former, we assumed that all the dairy
caw milk consumed was raw, choosing a worst-case scenario. For the latter, data were
not available for all the processed and/or seasoned food items. Therefore, we assumed the
20% of all pork sausages could contain liver.

Data collected during outbreak investigations with implicated food analysis were used
to estimate the dose-response curve [63,65,66,79].

Uncertainty and sensitivity

We performed uncertainty and sensitivity analysis to quantify the variability in the
output due to the variability in the input parameters [31]. We followed a sampling-based
method as described in Saltelli [72, 73] and generated 10,000 samples for each estimated
parameters (i.e. considay, λ and µ) using parametric bootstrap [27,84] and ran the model
obtaining a sample of the same size for the output. This output sample was used to
quantify the uncertainty and to perform the sensitivity steps with the aim to explore the
effect of each parameter on the model output. We followed a two-step approach. We first
analysed the scatter plots of input parameters versus the output and then calculated the
standardized regression coefficient for each of the parameters by linear regression analysis.
This latter step gave us the metric to rank the parameters. Details are described in
Appendix A.

Evidence from the Italian surveillance system

Information on food consumption in cases of hepatitis E reported to the Italian sur-
veillance system for acute viral hepatitis (SEIEVA) between 2016 and 2019 was used to
discuss the outputs of the model. The SEIEVA is a voluntary system set up in 1985 by the
Italian National Institute of Health now covering 83% of the Italian population [81, 82].
Since 2007 the local health units voluntary participating to the surveillance are required
to perform and report HEV laboratory testing. Hepatitis E case definition is based on
the positivity to IgM anti-HEV antibodies and elevate serum transaminases level (with
or without clinical symptoms). Since the start of the SEIEVA activities, information on
risk factors including food exposures were collected using a standardized questionnaire for
all cases of acute viral hepatitis. The questionnaire was revised and released to include
specific hepatitis E risk factors in late 2016. This activity was also completed within the
national project CCM 2016 – Hepatitis E, an emerging problem in food safety.

2.2 Results

2.2.1 Parameter estimation

Food-specific parameter estimations are reported in Table 2.3. We reported also 95%
interval confidence for the parameters estimated directly from data.
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Tabella 2.3: Parameter estimations per food category. 95% CI are reported between
brackets.

Category Parameter Estimation

PL-Liver pork products

αPL 0.11 [0.06− 0.20]
λPL 8.55 · 10−6 [4.27 · 10−6 − 1.43 · 10−5]
servPL 150 g
consPLday 0.73 g

day [0.70− 0.752]

PNL-No liver pork products

αPNL 0.028 [0.006− 0.082]
λPNL 1.94 · 10−5 [4 · 10−6 − 4.67 · 10−5]
servPNL 150 g
consPNLday 20 g

day [19.58− 20.59]

SH-Shellfish

αSH 0.0048 [0.00012− 0.027]
λSH 1.15 · 10−5 [2.91 · 10−7 − 4.24 · 10−5]
servSH 150 g
consSHday 10 g

day [9.99− 11.7]

GV-Leafy vegetables

αGV 0 [0− 0.033]
λGV Inf
servGV 100 g
consGVday 29 g

day [28.62− 30.15]

RM-Raw milk

αRM 0 [0− 0.025]
λRM Inf
servRM 50 g
consRMday 54.43 g

day [52.77− 56.16]

The results of food sampling survey indicated that the highest proportion of HEV
positive samples (i.e. HEV food prevalence αi) belongs to PL products (11%), followed
by PNL (2.8%) and SH (0.48%). No positive samples were found for the GV and RM
categories (0% prevalence) (Table 2.3).
The number of expected genome equivalent per 100gr size of serving (i.e. λ−1

i = E(Ci1))
for PL and PNL products were 7.8 ·104 g.e./serving and 3.4 ·104 g.e./serving, respectively.
The average servings consumed per person per year was 3 and 73, respectively for PL
and PNL. The only positive sample for SH resulted in 8.7 · 104 g.e. per a 150g average
serving size. The expected number of SH servings consumed yearly are 26. For GV and
RM categories we did not obtain results for λi because no positive samples were detected.
These estimates are shown in Table 2.4, where all the parameters directly involved in the
ranking activity are also reported. We included in Appendix B a risk matrix that uses
these parameters to profile also a qualitative ranking of the food categories.
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Tabella 2.4: Mean viral load per serving (g.e./gr) E(Ci1), meaning λ−1
i , the average number

of serving consumed in one year dai , and the prevalence of HEV positive food samples for
each category αi.

Category E(Ci1) (g.e/serving) dai (no.serving/year) Prevalence αi

PL 78, 000 3 0.11
PNL 34, 000 49 0.028
SH 87, 000 26 0.0048
GV 0 132 0
RM 0 107 0

The other parameter estimations are reported in Table 2.5. The average serving size
consumed at outbreak events servout resulted to be 100 gr, yielding to a mean individual
infectious dose of 7.3 · 106 g.e. (i.e. µ−1). The proportion of seropositive individuals of
Italian population h was derived by Spada et al. [75] and resulted to be 8.3%. We subtract
this proportion to the total Italian population to get the amount of susceptible individuals.
The total population as of 1st January 2021 was estimated to be 50,208,329 yielding to
45,840,205 susceptible individuals.

Tabella 2.5: General model parameters. 95% CI are reported between brackets.

Parameter Value Reference/Comment

µ 1.37 · 10−7 [5.51 · 10−8 − 2.55 · 10−7] [63, 65,66,79]
servout 100 g Assumed
h 0.087 [75]
N 50,208,329 ISTAT data as of 1st January 2021
N 45,840,205 h ·N

2.2.2 Model output

For each food category, the outputs of each step of the model are presented in Table 2.6,
including individual probability of infection following the consumption of a single serving
qi, individual probability of infection in a year pi, and the expected number of new infected
per year N i

inf = E(Xi).
We reported in addition density and cumulative probability sketches for new HEV

infected individuals per year XPL, XPNL, and XSH (Figure 2.2). Standard deviations of
these three binomial random variables are 409 for PL, 668 for PNL, and 260 for SH.
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Tabella 2.6: Probability of infection following the consumption of a single serving (qi)
and in one year (pi) and expected number of new infected individuals per year per food
category in the Italian population (Ninf )

Category qi pi N i
inf

PL 1.22 · 10−3 3.65 · 10−3 167,200
PNL 1.35 · 10−4 9.81 · 10−3 449,917
SH 5.67 · 10−5 1.47 · 10−3 67,473
GV 0 0 0
RM 0 0 0

Figure 2.2. They are named from a to f from the top left corner to bottom right.
(a) Density distribution of new HEV infected individuals per year XPL. The green line
indicates the mean value NPL

inf . (b) Density distribution of new HEV infected individuals
per year XPNL. The green line indicates the mean value NPNL

inf . (c) Density distribution
of new HEV infected individuals per year XSH . The green line indicates the mean value
NSH
inf . (d) Cumulative distribution of XPL. (e) Cumulative distribution of XPNL. (f)

Cumulative distribution of XSH .

2.2.3 Uncertainty analysis

We obtained bootstrap samples from input parameters and model output as described
in section 2.1.2. We considered parameters uncorrelated given the Pearson correlation test
results that are reported in Appendix A, where standard deviations of input parameter
samples are also shown (see Table A.1).

In Table 2.7 we reported summary statistics of the output distribution for the three
categories involved in the analysis. In Figure 2.3, 2.4, and 2.5 we displayed the histogram
and the sample cumulative distribution of the output samples for category PL, PNL, and
SH respectively. The output shown for this analysis is the individual infection probability
in a year pi.
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Figure 2.3. (a) Histogram of pPL samples. (b) Sample cumulative distribution of pPL.

Figure 2.4. (a) Histogram of pPNL samples. (b) Sample cumulative distribution of
pPNL.

Figure 2.5. (a) Histogram of pSH samples. (b) Sample cumulative distribution of pSH .
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Tabella 2.7: Summary statistics of output samples

Category Parameter Mean 1st Qu. Median 3rd Qu.

PL
pPL 4.2 · 10−3 2.6 · 10−3 3.7 · 10−3 5.1 · 10−3

NPL
inf 190,000 120,000 170,000 230,000

PNL
pPNL 1.1 · 10−2 5.6 · 10−3 9.2 · 10−3 1.4 · 10−1

NPL
inf 520,000 250,000 420,000 670,000

SH
pSH 3.3 · 10−3 8.8 · 10−4 2.1 · 10−3 4.5 · 10−3

NSH
inf 150,000 40,000 99,000 200,000

Figure 2.6. Scatterplot of input parameters for category PL versus the output considered
(pPL). (a) λPL. (b) consPLday (c) µ.

2.2.4 Sensitivity analysis

From uncertainty analysis, we obtained samples of input parameters and output used
for perform the sensitivity analysis. The three scatter plots (Figures 2.6, 2.7, and 2.8)
show the variations of the output samples versus the three parameters involved in the
analysis, underlying the strength of the dependencies between them. The shape considay
plot is a bit flattened on the bottom with no strong structure for all the food categories,
suggesting a very light dependency between the output and this parameter. λ seems to
have a little more structured outline, especially for PL category, but the output exhibits
the strongest dependency with the µ parameter whose plots shows a well defined shape,
especially for PL and PNL.

To quantify the relative importance of input parameters we conducted a regression

Figure 2.7. Scatterplot of input parameters for category PNL versus the output
considered (pPNL). (a) λPNL. (b) consPNLday (c) µ.
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Figure 2.8. Scatterplot of input parameters for category SH versus the output considered
(pSH). (a) λSH . (b) consSHday (c) µ.

analysis using λi, considay, and µ as covariates. This, as explained in [73, Cap.1], allowed
us to rank these three input parameters based on their impact on the output. Results are
reported in Tables 2.8, 2.9, and 2.10.

Tabella 2.8: Regression analysis coefficients result for category PL

Coefficient Estimate Standardized estimate Std. error p-value

λ̂PL −2.2 · 102 −7.21 · 10−1 1.39 < 2 · 10−16

̂consPLday 5 · 10−3 8.13 · 10−1 3.27 · 10−5 < 2 · 10−16

µ̂ 2.26 · 104 8.47 · 10−1 8 · 10 < 2 · 10−16

Tabella 2.9: Regression analysis coefficients result for category PNL

Coefficient Estimate Standardized estimate Std. error p-value

λ̂PNL −9.25 · 10 −3.93 · 10−1 1.39 < 2 · 10−16

̂consPNLday 2 · 10−4 3 · 10−1 7.8 · 10−6 < 2 · 10−16

µ̂ 7.14 · 104 8.76 · 10−1 8.13 · 102 < 2 · 10−16

As already suggested by scatter plots, µ was the parameter that most influences the
output for both the categories PL, PNL. The overall influence order for each category is
the following:

|µ̂| > | ̂consPLday| > |λ̂PL|

and
|µ̂| > |λ̂PNL| > | ̂consPNLday |

From the value of the standardized estimates of the coefficients, we can evaluate the
impact of each of them for perturbations equal to a fixed fraction of parameter’s standard
deviation [72, Cap. 6]. For the PL category, µ has an impact 4% higher than consPLday
and 14% higher than λPL, while λPL has a impact 11% higher than consPLday. For the
PNL category, µ has a impact 55% higher than λPNL and 68% higher than consPNLday .
The impact of λPNL is about 29% higher than consPNLday . For PL category it is clear that
consPLday and λPL are very close and all the three parameters have an impact relatively
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Tabella 2.10: Regression analysis coefficients result for category SH

Coefficient Estimate Standardized estimate Std. error p-value

λ̂SH −1.57 · 10−2 −1.45 · 10−2 7.53 · 10−3 3.6 · 10−2

̂consSHday 1.18 · 10−5 4.92 · 10−2 3.96 · 10−6 3.51 · 10−3

µ̂ 1.99 · 104 6.76 · 10−1 4.98 · 102 < 2 · 10−16

small.
The R2 statistics for both categories is high, 0.97 for PL and 0.83 for PNL, meaning that
these three parameters account for almost the entire uncertainty in the output.
Slightly different pattern is shown by SH category, where

|µ̂| > | ̂consSHday| > |λ̂SH |.

We found that µ has an impact 98% higher that λ and 92% higher than consSHday, for a
perturbation equal to a fixed fraction of parameter’s standard deviation. The R2 for this
parameter resulted much smaller with a 0.51, suggesting that other factors are contributing
to the uncertainty. This is not surprising, given that we have only one positive sample for
this category.

Last, in order to have a final quantification of the stability of the output we made
a simple experiment on dai parameter (so, indirectly on considay). We increased the daPL
to actually see the results in number of exposed people per year. We observed that with
daPL = 6 the number of infected people reached 335, 446 and with daPL = 8 NPL

inf = 446, 715.
More details on results of these analysis are reported in Appendix A.

2.2.5 Food consumption in Italian hepatitis E cases

Between 2016 and 2019, a total of 213 autochthonous cases of hepatitis E were reported
to the SEIEVA system. The availability of information on foods consumed by patients
before the onset of the disease varied considerably among the different foods, depending
on the type of questionnaire administered to hepatitis E patients. Information on shellfish
consumption was available for a high proportion of cases (N=186; 87%) because the ex-
posure to this foodstuff was investigated through both the general questionnaire for acute
viral hepatitis and the specific questionnaire for hepatitis E, in place from late 2016. For
all the other food items, which were investigated with the hepatitis E questionnaire only,
this proportion did not exceed the 43% of the hepatitis E cases (Table 2.11) making the
uncertainty around the exposure prevalence to these foods much higher. Pork meat and
pork cured meat were by far the food items most frequently consumed by hepatitis E cases
with more than 69% of the patients having consumed these foods, followed by pork liver,
fruits, shellfish, vegetables and wild boar meat (Table 2.11).
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Tabella 2.11: Information on food consumption among hepatitis E cases reported between
2016 and 2019 to the Italian surveillance system for acute viral hepatitis (SEIEVA)

Food
Cases with information

on consumption available
Cases reporting

consumption of the food

N N % (of cases with
information available)

pork meat 90 69 76
pork cured meat 83 58 70
pork liver meat 51 14 29
fruit 36 10 28
shellfish 186 49 26
wild boar meat 77 17 22
vegetables 34 5 15
wild boar cured meat 55 8 14
offal 53 6 11
other game meat 53 4 7

2.3 Discussion

The model output shows that the consumption of PNL led to the greatest exposure
to HEV in the Italian population and was associated with the highest number of new
expected HEV infections per year, followed by the consumption of PL and SH. Based on
these findings the risk posed by PNL is ranked first at the population level among foods
implicated in the transmission of HEV, followed by PL and SH. For the other foods consi-
dered by our study (i.e. GV and RM) no expected cases of HEV infections were estimated
by our model. The consumption of pork products has been frequently indicated as a risk
factor for foodborne HEV infection [47]. This type of food has also been frequently linked
to foodborne outbreaks of hepatitis E [13, 16, 63, 65]. The consumption of shellfish has
also been pointed out as a possible risk factor in some studies [6, 63], although to our
knowledge no outbreaks implicating the consumption of contaminated shellfish have ever
been reported in Europe.
PNL are consumed much more frequently than PL and SH and by a larger proportion of
population and this explains why the highest expected number of new cases in the popu-
lation are associated with this food despite the mean prevalence of HEV contamination
and the viral load per serving are higher for PL and SH.

The sensitivity analysis indicates that even slight increase in the consumption of PL
servings at the individual level results in a remarkable increase in the expected number
of new cases of HEV infection. As an example passing from three to eight portions of PL
consumed per person per year, which is a realistic variation at individual level, the number
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of new HEV infections in the population increases from about 168,000 to approximately
450,000 cases, revealing that the number of servings of PL at the individual level is a
critical element to be taken into account for food risk ranking. Similar variations in the
consumption of PNL do not result in comparable increases in the number of new HEV
infection cases in the population. These findings provide evidence of the importance of
collecting very accurate data on PL consumption at the population level, in order to
strengthen the HEV food risk ranking and highlight the importance of PL consumption
for the risk of HEV transmission, at the individual level.

The consumption of PL in Italy varies hugely among both individuals and population
subgroups, depending not only on personal preferences but also on traditional differences
in consumption habits. There is a wide geographic variability in the recipes and mode
of preparation of pork products with important local peculiarities especially for products
like cured meat and offal. This may lead to highly heterogeneous consumption of PL and
exposure to HEV in specific population subgroups and geographical area. Unfortunately,
the food consumption data source used in our study lacks of sufficient details to allow for
a more accurate estimations of HEV exposure associated with the different types of PL

Food consumption data from hepatitis E cases reported to the SEIEVA (see sec-
tion 2.2.5) are too scarce to support a formal validation process of our model. However,
they are in line with the evidence obtained in our study about the importance of both PNL
and PL as top risk foods for the transmission of HEV to humans. The consumption of
pork meat and pork cured meat was reported by a high proportion of cases (>70%) while
pork liver as well as shellfish by a much lower proportion of cases (i.e. each food group not
exceeding the 30% of the cases). Although the SEIEVA data would indicate that a minor
proportion of hepatitis E cases had consumed pork liver, it is necessary to consider that
this food is not usually consumed as single food but it is much more frequently consumed
as ingredient in mixed pork cured meat such as sausages, salami, mortadella etc., which
were consumed by a high proportion of cases. Unfortunately, the lack of food consumption
data from healthy controls hampers drawing more specific conclusions on the magnitude of
the association between PNL and PL food consumption and hepatitis E, at the individual
level.

Our model was build to support risk ranking. The sensitivity analysis shows that the
parameter that brings the larger uncertainty is the mean µ−1 of the HEV individual infec-
tious dose distribution. This is not surprising, given that the scarce availability of data to
estimate µ affected the possibility to build a robust dose-response model similarly to many
other exposure study in humans. In our study we used the total HEV load (g.e.) in food
implicated in hepatitis E outbreaks as a proxy for the individual HEV infectious dose in
humans. It is impossible, however, to evaluate to what degree the quantitative assessment
of HEV in food differs from the true individual infectious dose. In addition, two different
sources of uncertainty affect our dose-response model. On one hand, we only found four
outbreak reports in the literature providing the information needed. On the other hand
the uncertainty associated with the quantitative methods used for the assessment of HEV
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in food should be also considered.
To obtain more reliable estimates of the actual number of HEV infections in humans a
more robust estimation of parameter µ would be needed. Nonetheless, the food ranking
does not appear to be influenced by the uncertainty introduced by this specific parame-
ter since the dose-response model acts in the same way on all type of food considered in
our study. The parameters potentially introducing differences in the ranking are the ones
displayed in Table 2.4. To have a more direct view of how these parameters affect the
ranking, we have provided a qualitative risk classification by building a risk matrix. The
analysis is reported in the Appendix B.

Other important factors affecting the model outcomes are the mean quantity of food
consumed in a year consday and the mean viral concentration in food λ−1 . While the
λ parameter was estimated from data from a large national sampling study, the consday
was estimated from consumption dataset whose current reliability is difficult to assess
for several reasons. First, the survey was conducted in the Italian population more than
fifteen years ago and data might no longer reflect the current consumption in terms of
type of food, frequency of consumption and quantity with the same level of accuracy.
Second, the consumption data refer to general food categories and the lack of details
on the food ingredients makes it difficult to extract the true quantities of food consu-
med for some categories, introducing uncertainty in particular for PL. Finally, estimates
were only available at the national level and did not allow to take account for regional
and local differences, which in the case of PL and PNL may be critical, as described above.

Another limitation of our study is the use of one single dataset for the estimation of
the prevalence of HEV contamination in food. This methodological choice was driven by
the lack of full comparability of the prevalence estimates among different studies, due to
a poor harmonisation of laboratory methods used to detect HEV in food. In addition, the
uncertainty analysis that we performed in our study would have been impossible using
estimates from other studies. Due to the extremely high variety of foods and mode of
preparation, estimating the prevalence of HEV contamination in food based one single
survey may introduce a selection bias depending on the goodness of randomization of the
samples. In our study, this type of bias may be suspected for GV and SH prevalence
estimation. For both these foodstuffs the estimated prevalence was 0.5% and 0% respecti-
vely, representing a highly discrepant value compared with other similar studies conducted
in Italy and abroad. In SH, Suffredini et al. and La Rosa et al. [45, 76] reported much
higher prevalence of HEV contamination with values ranging up to 8.1%. The prevalence
of GV contamination, although considerably lower than SH, was never estimated to be
0% in other studies [42, 74, 80]. These considerations suggest that the role of SH and GV
for HEV transmission in the Italian population may be more important than our study
showed. In terms of risk ranking, however, this does not appear to substantially change
our results. Different is the case of RM. This food was included in our study because it
was focused as a potential risk food for HEV transmission in China in 2016 where a high
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prevalence of active HEV infection in cows was reported [37]. However, no further studies
confirmed these findings [4, 32,83].
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Capitolo 3

Pre-harvest model: the farm level
and pig demography

In this part of the study, we aimed at modelling the transmission dynamic of HEV at
the pig farm level in Italy, in order to estimate the number of infected animals entering
the food chain at slaughtering. To do that we build a SEIR stochastic model, which was
applied to three different types of pig production farms. These farm types were defined
on the basis of the animal husbandry practice adopted in the farm, the production type,
the farm size and the demographic characteristics.
To the best of our knowledge, this is the first mathematical modeling study of hepatitis E
in Italian farms.

3.1 Farming types and Italian pig population analysis

In Chapter 2 we developed a model to estimate the number of infected people in the
population per year, given the consumption of specific food categories. The exposure
study, conducted using point prevalence data of HEV contamination of food sampled at
retail, allowed us to have a simple assessment of the risk posed by some food products.
A limitation of this approach, however, is that the representativeness of point prevalence
estimates despite accurate and valid (i.e. obtained from large or very large sampling study)
is limited to the geographical and temporal context of the study. Estimating probability
of HEV contamination for pork carcasses at slaughterhouse would allow to estimate the
level of food contamination at retail, considering also that differently from bacteria viruses
do not growth on meat and that HEV load in meat and offal could only progressively de-
crease during processing and seasoning of meat and meat products. HEV contamination
of carcasses and offal at slaughter depends directly on the infectious status of pigs ente-
ring the slaughterhouse (pre-harvest) at the end of the production cycle, which in turn
depends on the epidemiological situation of HEV in the farms that can be affected by
other multiple factors connected to the primary production of pigs, i.e. animal husbandry
practice, length of the production cycle, biosecurity measures etc.
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To strengthen the assessment of HEV transmission to humans through food, it is crucial
to consider all the possible factors connected to the primary production, from farm to
slaughterhouse. Hence, a pre-harvest model has been developed to gain deeper knowledge
of the possible factors affecting transmission of HEV among animals and viral persistence
in pig farms.

As reported in Chapter 1, the geographical distribution of hepatitis E in Italy is quite
heterogeneous. The variability of HEV seroprevalence in human population at regional
level reflects a different risk of consumers exposure to HEV, through food. Although this
could be explained by several factors, higher intake of HEV depends on either a greater
consumption of food considered at risk for HEV (e.g. traditional recipes and regional con-
sumption habits) or by higher level of HEV contamination of food at the consumer level
(i.e. at retail). Pig industry in Italy is indeed characterised by a remarkable geographic
variability with different types of production in the various regions. This heterogeneity
suggests a possible correlation between circulation of the virus and farming practice (i.e.
pigs production type). For these reasons, we performed a preliminary analysis of pig de-
mographic distribution in Italian regions to characterise, compare, and finally define farm
classes according to specific factors.

Characteristics of the Italian pig population
The total pig population in Italy accounts for 8,8 million pigs which are raised in 31,373

farms, as of 30 June 2021. In addition, there are 101,568 familiar farms (<15 pigs per
farm) where animals are raised for domestic self-consumption, often not continuously over
time.
The main pig productions are represented by:

1. Live breeding stock, including sows, breeding boars and young gilts. These animals
are intended for the production of piglets for breeding return or fattening.

2. Weaner (7-30 Kg) or grower animals (50-100 Kg) intended for fattening farms.

3. Light fattener animals (up to 120 Kg corresponding to 7-8 months of age) intended
for slaughter for fresh consumption and industrial processes.

4. Heavy fattener animals (up to 180 Kg corresponding to 9 months of age) intended
for slaughtering mainly for production of seasoned or processed products, like hams,
sausages or salami.

The management of production cycle consists of five main phases: mating, gestation/deli-
very, nursery, weaning and growing-finishing. Breeding is a continuous-cycle activity over
the year.
Italian pig population is therefore characterized by three main types of farm:

Open-cycle breeding farms (Site 1) for the production of piglets up to the weaning
stage. Mainly sows and boars are farmed in these farms;
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Growing farms (Site 2): farms where pigs are growth up to the end of weaning and/or
magronage, intended for fattening farms (Site 3) or breeding gilts production;

Fattening farms (Site 3): farms where pigs are growth up from the weaning and / or
growing phase to the end of the production cycle, intended exclusively for slaughter;

Closed-cycle breeding farms : farms in which there are breeding sows and boars and
pigs growing up to the fattening stage intended exclusively for slaughtering, and/or
growing pigs intended to be transferred for farms from reproduction. These type of
farms are also known as “farrow-to-finish”.

While closed-cycle farms are usually derived from most traditional farms where all the
phases are directly realised in the same structure, three-sites farms are considered the
most intensive rearing facilities. In this intensive farm units the entire production cycle
is segmented into specialised production sites. These units (sites) are very often, but not
exclusively, owned by the same company which adopts this functional organisation (i.e.
the so called “filiera”= chain) to increase the business volume and exploit scale economies.

Pork production chain
The pork production chain is composed by two main production steps, The first, inclu-

des the pre-harvest animal production cycle and the slaughtering. The second includes the
post-harvest production steps, downstream of the previous one, represented from (meat
and offal) processing of products (processed meats and cured meats) (see Figure 3.1). The
central node of the production chain is represented by the slaughtering industry, which is
generally supplied through direct purchase of pigs from farmers raised in Italy and other
EU country (mainly Denmark, Netherlands, Poland). Slaughtering is mainly concentra-
ted in industrial facilities with CE authorization and the activity of limited and marginal
capacity plants is residual. In 2021, more than 2,000 slaughterhouses were present in the
national Italian databank [19]. Despite this large number though, the activity is mainly
concentrated in a very limited number of plants with considerable production capacity.

The second part of the pork production chain, the processing activity, is more fragmen-
ted. The slaughterhouse represents an important node of the supply chain. The majority
of the production (about 65%) coming from the slaughterhouses is delivered to the pro-
cessing industry (salumi), while the remaining portion for the fresh-meat market. The
production of the processing industry continues through ham and sausages factories and,
after the seasoning and the other processes are completed, reaches the consumer market
through wholesalers, agents and dealers [17].

Pig population and farms in Italy
Data on Italian pig population and farms are regularly collected by the Veterinary

Services of the local health authorities (ASL) and other organisations, according to the
EU regulations, and are provided to the Istituto Zooprofilattico dell’Abruzzo e Molise
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Figure 3.1. The main operators of the swine supply chain in Italy (Source [17])

that has been tasked by the Ministry of Health to manage the National Official Animal
Registry. Pigs and pig farms are subjected to identification and registration. The basic
data and summary statistics are public accessible on the web [19] and include a series of
information on the location of the farm, the number of farmed pigs stratified by age/type,
the main characteristics of the farms, the density of pig farms and heads by geographical
area (ASL/ municipality/province/region), etc.

We analysed farm data from National Official Animal Registry, as of 31/12/2020. We
observed a highly heterogeneous farming pattern between northern and central-southern
regions, as shown in Figure 3.2. The top five Italian regions for total amount of heads of
pig are northern regions as shown in Table 3.1.

Tabella 3.1: Top five Italian regions for the total amount of head of pig.

Region Number of heads Percentage on the total (%)

Lombardia 4,319,000 50.2
Piemonte 1,245,000 14.5
Emilia-Romagna 1,103,000 12.8
Veneto 641,000 7.5
Friuli-Venezia Giulia 240,000 2.8
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Figure 3.2. Territorial distribution of pig heads and farms (Source [18])

If we look at the total number of farms instead, the top five regions are southern
and central, as shown in Table 3.2. Furthermore, more than 30% of farms in central and
southern areas, except for islands, are classified as “familiar” farms. Excluding islands,
the familiar farms are almost 90% of the regional farms for these areas.

Tabella 3.2: Top five Italian regions for the total amount of pig farms.

Region Number of heads Percentage on the total (%)

Campania 18,000 13.37
Sardinia 14,000 10.45
Lazio 13,700 10.33
Calabria 13,600 10.22
Abruzzo 13,300 10.02

The data show that pig population in the northern regions is characterised by much
larger farms than in southern Italy where a large number of small sixe farms exist. Pigs
farm in north Italy are mostly organized as intensive Site 1, Site 2, Site 3 farms while the
farms located in central and south Italy are mostly closed-cycle breeding farms.
Another interesting feature is the mean age of pigs at slaughtering which reflect different
production type. Pigs raised in Sardinia are usually slaughtered at a much younger age
than in all other regions, at the end of the weaning phase (see Table 3.3), meaning around
the 8th and the 10th week of age.

A deeper analysis of the demographic data of Italian pigs has been carried out and is
available in Appendix C.
We analysed the demographical distribution of animal types in the different farms to define
possible farm classes, based on specific factors including

• Farm size

• Relative distribution of reared animals by animal type
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Tabella 3.3: Slaughtered animals in Sardinia by age class.

Age class Total slaughtered Percentage on the total (%)

Weaning 191,404 67.7
Growing 21,732 7.7
Light fattening 64,404 22.8
Heavy fattening 1,743 0.6
Other 3,227 1.2

• Farming activity and production stage

• Location of the farm

We defined fourteen classes that we pooled into nine macro-classes. All details of the data
analysis carried out are reported in Appendix C. Here we isolated the most diffused farms
in the country to define five representative farming types:

Type A Very large farms organized in the three the sites as described above (open-cycle
breeding, growing and fattening farm) where mainly light pigs are reared.

Type B Medium/large size farms organised in the same three sites as for the type A with
more heavy pigs reared.

Type C Closed-cycle farming type with at least 10% of sows of medium/small size.

Type D Small closed-cycle farms with less than 500 heads per farm.

Type SAR Sardinian farms with a high number of weaning and growing animals and
mixed slaughtering age.

These types are heterogeneously diffused in the country, as shown in Figure 3.3 and
already described in Table 3.2, with type A and B mostly diffused in the Northern regions
and in part of the Center while C and D are more representative of the Southern area.
The SAR type is of course exclusive of Sardinian region.

We will refer to the A and B types as “open-cycle farm” after its preeding com-
partment’s name and in opposition with the other three types that are all organized as
closed-cycle.

3.2 Model description

We developed, for the five farm types defined in section 3.1, an individual-based
discrete-time SEIR stochastic model [3] with three age classes for HEV transmission in
pigs. The desired primary outcome of this model is the prevalence of HEV infected pigs
entering at the slaughterhouse for the different farm types.
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Figure 3.3. Distribution of heads (left) and farms (right) over the areas by types

We focused on the weaning-finishing production cycle, meaning that we are not con-
sidering in our model suckling pigs that are mostly covered by antibodies acquired by
maternal colostrum. Hence, the three age classes analysed are weaning (W), growing (G)
and fattening (F). We indicated with a superscript the variables referred to one of the
three classes (•W , •G, •F ).
We choose to represent four epidemiological status: susceptibles (S), exposed (E), infec-
tious (I) and recovered (R). All animals are born susceptible and can became exposed
after a successful contact event with an infectious animal. Even if infectivity can last for
a longer time we considered only the shedding period as “infectious”. Hence, an animal
is considered infectious as long as they shed virus in faeces meaning when can spread the
virus in shared environment. The exposed phase corresponds therefore with the latent
period of the animal infection. Once an animal enters in the exposed compartment we
keep track of the day post infection (DPI) a (in days). An infected animal experiences
therefore two phases: a latent period from the exposure event to the beginning of the
fecal shedding during which the animal is considered exposed, an infectious period until
the end of the fecal shedding. After these two phases, when the animal is no longer able
to infect others, it is considered recovered. We therefore will call infected any animal in
the exposed or infectious compartment. The sequence of the epidemiological statuses is
shown in Figure 3.4. We modelled infection and recovery transitions as explained below.
All the model parameters are reported in Table 3.4.

Infection
We modelled the infection dynamics as a Poisson point process defined as explained below.
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Figure 3.4. Epidemiological statuses sequence

We called the mean number of daily per capita contacts λ and with p the daily exposure
probability, given an infectious contact.
The number of contacts happen at the time point of a homogeneous Poisson process of
rate λ. Therefore, the number of daily per capita contacts are distributed as follow

Dayc ∼ Poisson(λ).

The number of daily infectious contacts per capita depends on the density on infectious
animals at that time and on the value of p. Hence, we obtain

Effc ∼ Poisson
(
λ · pI(t)

N

)
where I(t) are the total number of infectious individuals in the population. We can now
calculate the daily per capita infection probability qt as the probability to have at least
an infectious contact per day

qt = P(Effc ≥ 1) = 1− e−λ I(t)
N
p

Let’s now call eo(t) the number of newly exposed individuals at the end of day t. e0(t)
results to be

e0(t) ∼ Poisson(qts(t)). (3.1)

Following [71] we assumed a latent period distributed according to a Gamma distribution
with shape αEI and scale sEI

TEI ∼ Gamma(αEI , sEI)
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Parameter Description

t time (days)
a day post infection – DPI (days)

s(t) number of susceptible individuals at day t

e(t, a) number of exposed individuals at day t which have been exposed for a days
i(t, a) number of infectious individuals at day t which have been infected for a days
r(t) number of recovered individuals at day t

E(t) =
∑

a≥1 e(t, a) number of exposed individuals at day t

e0(t) number of newly exposed individuals at the end of day t.
I(t) =

∑
a≥1 i(t, a) number of infectious individuals at day t

i0(t) number of newly infectious individuals at the end of day t

p infection probability, given an infective contact, in a day
λ mean number of contact per animal per day

β = λ · p mean number of infective contact per animal per day
R0(t) total number of newly recovered idividuals at the end of day t

r0(t, a) total number of newly recovered individuals at the end of day t with a day post
infection

µEI rate at which an exposed animal became infectious
µIR recovery rate

ν birth rate
δ death rate

γW G migration rate between W and G age class
γGF migration rate between G and F age class
γF • slaughtering rate

Tabella 3.4: Model parameters

So, each individual has its own individual latent period modelled as an independent sample
from TEI . At the end of each day t we calculate the new infectious animals with a DPI as

i0(t, a) = e(t− 1, TEI = a)

Recovery
For the recovery, we used a deterministic infectious period TIR. As soon as the day post
infection of the animal reaches the sum of its latent period and its shedding period the
animal became recovered. At the end of each day we will have r0(t, a) new recovered
animals, calculated as

r0(t, a) = i(t− 1, TIR + TEI = a).

The total number of newly recovered animal at day t will be indicated with R0(t)

In Figures 3.5 and 3.6 are shown the diagram of the two farm types chosen. The first
represents the open-cycle intensive production with the three sites (Site 1, 2 and 3) hand-
ling the three age classes in several smaller closed subpopulation representing the large
herds mostly diffused in Northern and some central regions of the country. The second
represents the weaning to finishing type, with a closed-cycle production for the smaller
herds located in the central and especially southern areas. To the first macro-category
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belong the first two different farm types A and B, in the second macro-category we have
the other three farm types C, D and SAR.

Open-cycle intensive farms (type A and B)
We considered here a farming activity highly structured in a intensive farming orientation
with high biosecurity in a all-in-all-out orgainisation form. In this kind of organisation
we considered that several batches are reared together separated in subpopulations and
that no inflow is possible nor cohexistence between animal of different ages. During the
transition between one age class to the following the whole population is redistributed into
the subpopulations, representing the movements of the animals between sites. No births
or deaths are considered.

For this farm types we have three systems of equation for the three age classes that
we considered. Each equation describes the evolution of individual of the same age reares
in a single subpen.

The system of equation is the same for each age class and within each pens.

sX(t+ 1) = sX(t)− eX
0 (t)

eX(t+ 1, a) =

e
X(t, a− 1)− i0(t, a− 1) for a ≥ 2

eX
0 (t) for a = 1

iX(t+ 1, a) = iX(t, a− 1) + iX0 (t, a− 1)− rX
0 (t, a− 1)

rX(t+ 1) = rX(t) +RX
0 (t)

where RX
0 (t) = ∑

a r
X
0 (t, a) and X ∈ {W,G,F}.

Based on the age class considered we have:

1 ≤ t ≤ 30 for the weaning class (about 1 month);

31 ≤ t ≤ 90 for the growing class (about 2 months);

91 ≤ t ≤ 180 for light pigs in the fattening class (about 3 months);

91 ≤ t ≤ 240 for heavy pigs in the fattening class (about 5 months);

Furthermore, for all times t, we have

sW (t)+eW (t)+iW (t)+rW (t) = sG(t)+eG(t)+iG(t)+rG(t) = sF (t)+eF (t)+iF (t)+rF (t) = N

where N is the size of the subpopulations.
Closed-cycle farm (type C, D)

We assumed, for these types, a continuous-flow production from weaning to finishing
where pigs are collected in larger groups, depening on the age class. We included here
birth and deaths (slaughtering), whence in each age class animals of different ages are
reared together. The diagram of the infection and growth dynamic is shown in Figure 3.7.
The dynamics are very similar for the three age classes, so we have similar systems of
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Figure 3.5. Flow of the A and B farm types – open-cycle three sites farm. The population
is closed and segregated in smaller pens. The pens in each age class are populated picking
at random from the previous age class based on their production type.

33



Pre-harvest model Model description

Figure 3.6. Flow of the C, D and SAR farm types – closed-cycle farm. Inflow and outflow
were considered and within each age class animals of different ages are reared together.

Figure 3.7. Diagram of infection and growth in closed-cycle model farms

34



Pre-harvest model Model description

equation for t ≥ 0.

sW (t+ 1) = sW (t)− eW
0 (t) + ν − γW Gs

W (t)

eW (t+ 1, a) =

e
W (t, a− 1)− iW0 (t, a− 1)− γW Ge

W (t, a− 1) for a ≥ 2

eW
0 (t) for a = 1

iW (t+ 1, a) = iW (t, a− 1) + iW0 (t, a− 1)− rW
0 (t, a− 1)− γW Gi

W (t, a− 1)

rW (t+ 1) = rW (t) +RW
0 (t)− γW Gr

W (t)



sG(t+ 1) = sG(t)− eG
0 (t)− γGFs

G(t) + γW Gs
W (t)

eG(t+ 1, a) =

e
G(t, a− 1)− i0(t, a− 1)− γGFe

G(t, a− 1) + γW Ge
W (t, a− 1) for a ≥ 2

eG
0 (t) for a = 1

iG(t+ 1, a) = iG(t, a− 1) + iG0 (t, a− 1)− rG
0 (t, a− 1)− γGF i

G(t, a− 1) + γW Gi
W (t, a− 1)

rG(t+ 1) = rG(t) +RG
0 (t)− γGFr

G(t) + γW Gr
W (t)



sF (t+ 1) = sF (t)− eF
0 (t)− γF•s

F (t) + γGFs
G(t)

eF (t+ 1, a) =

e
F (t, a− 1)− i0(t, a− 1)− γF•e

F (t, a− 1) + γGFe
G(t, a− 1) for a ≥ 2

eF
0 (t) for a = 1

iF (t+ 1, a) = iF (t, a− 1) + iF0 (t, a− 1)− rF
0 (t, a− 1)− γF•i

F (t, a− 1) + γGF i
G(t, a− 1)

rF (t+ 1) = rF (t) +RF
0 (t)− γF•r

F (t) + γGFr
G(t)

where RX
0 (t) is defined as above RX

0 (t) = ∑
a r0(t, a).

Closed-cycle and early slaughtering age (type SAR)
To model the Sardinia farming type we used again a closed-cycle type farming with the
same features of the previous two types (C and D). In this case, though, we have a early
slaughtering age. We considered therefore only two age classes with a different slaughtering
rates for weaning γW• and growing γG•.

sW (t+ 1) = sW (t)− eW
0 (t) + ν − γW Gs

W (t)− γW•s
W (t)

eW (t+ 1, a) =

e
W (t, a− 1)− iW0 (t, a− 1)− γW Ge

W (t, a− 1)− γW•e
W (t, a− 1) for a ≥ 2

eW
0 (t) for a = 1

iW (t+ 1, a) = iW (t, a− 1) + iW0 (t, a− 1)− rW
0 (t, a− 1)− γW Gi

W (t, a− 1)− γW•i
W (t, a− 1)

rW (t+ 1) = rW (t) +RW
0 (t)− γW Gr

W (t)− γW•r
W (t)



sG(t+ 1) = sG(t)− eG
0 (t)− γG•s

G(t) + γW Gs
W (t)

eG(t+ 1, a) =

e
G(t, a− 1)− i0(t, a)− γGFe

G(t, a− 1) + γW•e
W (t, a− 1) for a ≥ 2

eG
0 (t) for a = 1

iG(t+ 1, a) = iG(t, a− 1) + iG0 (t, a− 1)− rG
0 (t, a− 1)− γG•i

G(t, a− 1) + γW Gi
W (t, a− 1)

rG(t+ 1) = rG(t) +RG
0 (t)− γG•r

G(t) + γW Gr
W (t)
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3.3 Parameter estimation

To estimate the disease-specific parameters, meaning p and λ and µIR, we performed
a likelihood-based inference using the R pomp package [41]. To strenghten the estimation
process we choose to estimate directly the product between λ and p, meaning β = λ · p.
To feed the inference process we looked at data on IgM prevalence from the study of [11],
we used the average IgM prevalence among the all-in-all-out farms (see Table 3.5). We
used the appearance of IgM as a proxy for the beginning of the shedding phase, meaning
the transition between the exposed compartment and the infected one. The measurement
made by Casas and collegues [11] are collected at weeks 3, 7, 13, 18 and 25. To fill the
missing values we used a linear interpolation and then rounded the estimation to obtain an
integer number (see Figure 3.9). Using these data we performed our parametric inference.

As described in the package documentation and in the literature, we first approximated
our model dynamics. We used an SEIR model with constant rates as follow

S(t) = S(0)−NSE(t)

E(t) = E(0) +NSE(t)−NEI(t)

I(t) = I(0) +NEI(t)−NIR(t)

R(t) = R(0) +NIR(t)

(3.2)

where N∗∗(t) are the counting processes modelling the total amount of individual transi-
tioned from one compartment to another at day t. The transition probabilities for these
processes are

P
[
NSE(t+ δ) = NSE(t) + 1

]
= µSE(t)S(t)δ + o(δ)

P
[
NEI(t+ δ) = NEI(t) + 1

]
= µEI(t)E(t)δ + o(δ)

P
[
NIR(t+ δ) = NIR(t) + 1

]
= µIR(t)I(t)δ + o(δ)

(3.3)

where µ∗∗ are the constant rates between compartments.
We used the Euler method to find the numerical solutions for the state variables S̃(kδ),

Ẽ(kδ), Ĩ(kδ) and R̃(kδ) and we approximated the counting process using a binomial
approximation with exponential probabilities, as follow

ÑSE(t+ δ) = ÑSE(t) +Bin
[
S̃(t), 1− e−µSE

(
Ĩ(t)
)
δ
]

ÑEI(t+ δ) = ÑEI(t) +Bin
[
Ẽ(t), 1− e−µEIδ

]
ÑIR(t+ δ) = ÑIR(t) +Bin

[
Ĩ(t), 1− e−µIRδ

]
where µSE

(
Ĩ(t)

)
= β Ĩ(t)

N . We assumed that the weekly reported seroprevalence in the
dataset follows a negative binomial distribution with dispersion coefficient k and with a
certain reporting rate ρ ∈ [0, 1].

We performed a global search for the maximum of the log likelihood over the parameter
space using the IF2 algorithm presented in the introduction. We picked 400 parameter
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combinations from a subset of the parameter space and chosen following a preliminary
local search. We used each of the 400 combination as stating value for the algorithm
and set a 0.02 initial standard deviation for the random walk of the parameter vector.
We iterated the IF2 algorithm for 150 iteration with 2000 particles each. On the results
we repeat 10 other particle filtering with 5000 particles to estimate the likelihood of the
original model, with constant parameters.
From the global search results we extracted an additional search box to build a profile
likelihood of each parameter and calculate a 95% confidence integral via profile likelihood.
Profile likelihood and confidence interval are defined as follow:

Definition 1. Let’s θ = (ϕ, ψ) be the parameter vector of a model. The profile likelihood
for ϕ is a function of ϕ defined

ℓprofile(ϕ) = max
ψ

ℓ(ϕ, ψ)

To build a 95% confidence interval for the profile likelihood we refer to Wilk’s Theorem
obtaining

{ϕ : ℓ(θ̂)− ℓprofile(ϕ) < 1.92}

3.4 Model simulation

We developed an individual-based model where, for each animals, we kept track of

ID Id progressive number

Age Age (in days) initialized at 1.

Inf_state Infectious state (S, E, I, R)

DPI Age post infection (in days) initialized at 0

Pr_type Production type (“l” low pig, “h” heavy pig)

Class Age class (“w” weaning, “g” growing, “f” finishing, “s” slaughtered)

Lat_per Latent period (i.i.d. samples from TEI ∼ Gamma(αEI , βEI))

Inf_per Infectious period ( 1
µIR

)

We initialised the population with starting epidemiological statuses as described in follo-
wing paragraphs. The initial ages were set equals to 1 day for open-cycle farms and were
uniformly chosen over the age range for the closed-cycle farms. Then for each day t we
perform the following steps:

1. Calculate the number of animal in each compartment I(t), E(t), S(t)

2. Compute the number of new infected E0(t)

3. From S(t) pick at random E0(t) individuals and switch Inf_state← “E′′
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4. If any exposed individual has DPI > Lat_period: Inf_state← “I ′′

5. If any infected individual has DPI > Inf_per + Lat_period: Infstate← “R′′

6. For each exposed or infected animal: DPI = DPI + 1

7. Age = Age+ 1

Open-cycle three-sites farm
For the intensive farm model we have three separated phases corresponding to the three
age classes: weaning, growing and finishing. The animals inside the farm are divided
into subpens. We followed [36] to set the pen size pensize to 40 animals. We simulated
a number of pens equals to Npen = N

pensize
, based on the average number of animals per

farm type N .
We inizialised the pig population with IW (0) = ηI · N infected and RW (0) = ηR · N

recovered animals. The total population was then distributed into the pens randomly in
the weaning age class. For the type A we simulated only light pigs, while for the type B
farm we choose the proportion of light and heavy pig to be reared based on the proportion
of light and heavy pigs slaughtered in the area yearly. In the weaning compartment light
and heavy pigs are mixed all together, while from the growing to the finishing phase they
are separated (see Figure 3.5).

We ran the Npen pens for 30 days for the weaning phase and then redistributed the
animals at random to populate the growing compartment subpopulations. After 60 days
we redistributed again the animals in finishing pens for a number of days depending on the
production type, three other months for light pigs and five for heavy pigs. We simulated
the all cycle five times to account for random variations. A representation of the flow for
this model is shown in Figure 3.5.

Closed-cycle and Sardinian farm
For the other three farm types we structured a closed-cycle farm where the three age
classes (weaning, growing and fattening) are reared in the same site. We assumed that
the animals are grouped together based on the age classes. Within age classes the animals
can contact each other animal (see Figure 3.6). We used a daily inflow for larger farms
and weekly for the smaller, where the number of piglets per day resulted less than one.

We initialised the model with a mean population of N animals of ages distributed in
the different age classes according to the average distribution indicated by national animal
registry and slightly adjusted to mantain the poulation balanced. In particular, the distri-
bution of the total population into the age classes were set to have balanced population,
based on the calculated inflow. The proportion of initially infected and recovered animal
per age class is reported in Table 3.9 and choosen according to literature data [49, 57].
The number of new piglets entering in the weaning phase daily is calculated based on the
number of sow per farm nsow and assuming a number of birth per sow per year ndelivery
equals to 2 and a mean litter size littersize = 10, so we got the number of new piglets per
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day or week
newpiglets = ndelivery · nsow · littersize

tunit

where tunit is equal 52 for weekly inflow and 365 per daily inflow. The birth rate therefore
will be equals to

ν = 1
newpiglets

.

The mean litter size is intended to reflect also the suckling mortality, it represents there-
fore the average number of animals weaned alive per sow.
For the Sardinian subtype the inflow was modelled differently. As soon as an animal is
slaughtered, a weaner is introduced again in the farm.

As soon as an animal reaches the max number of day in an age class it is moved to
the next age class or to slaughterhouse. The number of days spent in each class are the
same for open and closed-cycle farm and are 30 days for weaners, 60 days for growers, 90
days for light fatteners and 150 for heavy fatteners. We simulated 700 days of farming
activity for different simulations to account for randomicity. We simulated C type for 20
times and D and SAR for 50 times.

3.5 Statistical analysis

Statistical analysis were performed to evaluate differences between subtypes among the
closed-cycle farms. We perform the ANOVA test on the total number of animal slaughte-
red while in the infectious or exposed compartment during the 700 days of simulation. We
did preliminary test on the variance and distribution of the samples produced to decide
which kind of ANOVA test to perform.

All the model simulations and statistical analysis have been carried out using the R
software (version 4.1.2) [61]. Codes are available at https://github.com/Mezzanenne/
HEV_Codes/tree/Farm-simulations.

3.6 Results

3.6.1 Parameter inference

The maximum likelihood search was performed for the β = λ · p and µIR parameters
with starting point chosen at random from a R2 box (β, µIR) = [1, 80] × [0.25, 1]. The
global search gave a maximum loglikelihood of -71 with a standard error of 0.000347
for the pair (β, µIR) = (151, 0.176). The simulated dynamics for the inference were set
with weekly rates therefore we obtained a β = 21 and a µIR = 0.025 corresponding to a
mean infectious period of 40 days. The final results are plotted in Figure 3.8. The other
parameters used for the model building were the same used for all the simulations. The
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population size was set to 40 animals considering the size of a single pen and the mean
latent period µ−1

EI was set, according to [71] to 13 days, corresponding to E(TEI) as defined
(see Table 3.6). Furthermore, we set an initial proportion of infected ηI equals to 0.02 and
an initially proportion of recovered ηR equals to 0.06. The reporting rate ρ was set to 0.9
to account for possible measurement errors. The data available to perform the estimation
were not enough to have a significant 95% confindence interval for the profile likelihood
evaluated for the two parameters. The global search and profile likelihoods results are
shown in Figure 3.8.

Figure 3.8. Final likelihood estimation for β and µIR

The original data from Casas [11] are reported in Table 3.5. The interpolated values
used to feed the inference POMP model are shown in Figure 3.9.

3.6.2 Model simulations

The variables used for the simulations of each farm types are summarised in Table 3.7
and Table 3.8. For each type, we run several simulations to account for random variability,
the number of simulations varied from a minimum of 20 to a maximum of 50 simulations.

40



Pre-harvest model Results

Tabella 3.5: Mean IgM prevalence (%) over the all-in-all-out farms as reported in [11]

week IgM prevalence (%)

3 0
7 25
13 89.3
18 61
25 68,7

Figure 3.9. Interpolated values of IgM prevalence (%) from original data published by
Casas and collegues [11]

Tabella 3.6: Model parameters

parameter description value reference

β = pλ no. infective contacts per day 21
section 3.6.1

µIR recovery rate 0.025
TEI latency period ∼ Gamma(αEI , sEI)

[71]αEI shape parameter of latency period 25.7
sEI scale parameter of latency period 0.5

Open-cycle intensive farm

The specific parameters chosen for the simulations of the type A and B farms are
reported in Table 3.7. In the type B farm we selected light and heavy pigs at random from
the total population reared with probaility plight and pheavy, respectively.

In Figure 3.10 are shown the mean trajectories over the simulations of the total amount
of animals per infective state up to day 150 of the simulation. The weeks on the x-axis
represent the the simulation evolution and the age of the animals reared. We begin the
simulations from week 5 that is the beginning of the weaning phase. The disease extincts
in about 19 weeks. At the end of all the simulations (slaughter) the animals were all in
the recovered compartment (for details see Figure 3.10).

The same pattern resulted from the type B farm. In Figure 3.11 are shown the tra-
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Tabella 3.7: Parameter used for simulations of open-cycle farm types

farm type parameter description value

A

Npens total number of pens simulated 85
pr_type farm production type “h”

ηI fraction of initially infected animals 0.02
ηR fraction of initially recovered animals 0.06

B

Npens total number of pens simulated 50
plight probability that a pen is for light production 0.5
pheavy probability that a pen is for heavy production 0.5
ηI fraction of initially infected animals 0.02
ηR fraction of initially recovered animals 0.06

Figure 3.10. Trajectories for type A farm up to day 150. The weeks on the x-axis
represent the the simulation evolution and the age of the animals reared

jectories for the type B farm. The lines are the average number of animal per week per
epidemiological status while the bands represent minimum and maximum number of ani-
mal over the simulations performed. Even here the infection extincts around the 19th week
therefore no differences resulted between the two production types (light and heavy).

To test how the β parameter affect the trajectories of the system, we repeated the one
single simulation for the A type farm over different values of the parameter. In Figure 3.12
we reported only the lowest values tested. The transmission overall dynamics is affected
only by values of β strictly under 0.4. The peak of infected increases with β until, for
β = 0.4, the total number of infected animals is enough to extinct all the susceptibles.

42



Pre-harvest model Results

Figure 3.11. Trajectories for type B farm with minimum and maximum values over
the five simulations up to day 150. The weeks on the x-axis represent the the simulation
evolution and the age of the animals reared

Closed-cycle farm

The specific parameters used for the simulations of farms C, D and SAR are reported
in Table 3.8, while in Table 3.9 are reported the fraction of initially infected and recovered
animals per age class used to inizialise the different closed-cycle farm types. We refer
to [49] and [57] to initialise infectious and recovered animals, respectively. To test the
evolution of the process we repeated the simulations using different initial values for the
epidemiological statuses.

We reported here for each farm type the smoothed trajectories for the 700 simulation
days (see Figures 3.13, 3.15 and 3.17) and the average number of animals slaughtered
while in the infectious or exposed compartment per day (see Figures 3.14, 3.16 and 3.18).
Since for this type of farm on x-axis are represented the simulation days that do not
correspond to the animal ages, we additionally reported the trajectories for each age class
in Figures 3.19, 3.20 and 3.21.

The overall evolutions of the trajectories is quite similar for the three farm types, while
the number of slaughtered animals varied a lot (see Figures 3.14, 3.16 and 3.18). For the
first two types, the probability of slaughter an infected animal became very small after the
60th day, while for the SAR type this probability remains high for the entire simulation
period. This difference does not reflect in the age class dynamic (see Figures 3.19, 3.20
and 3.21), suggests that the differences in the slaughtering of infected animals are driven
mainly by the different slaughtering process modeled for the SAR farm type.

Furthermore, we reported the number of slaughtered animals in the infectious or ex-
posed compartment per farm type per different values of β > 1 (see Figures 3.22, 3.23
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Figure 3.12. Transmission dynamics trajectories of the farm type A with varying β < 1

Figure 3.13. Smoothed trajectories for type
C farm

Figure 3.14. Number of infectious or expo-
sed animal slaughtered in C farm type

and 3.24). The number of animals slaughtered while infected seems not to be highly de-
pendent from the value of β. The higher variatons showed by the D farm type is possibly
dependent on the effect of stochasticity on a smaller population size.

44



Pre-harvest model Results

Tabella 3.8: Parameter used for simulations of closed-cycle farm types

farm type parameter description value

C

N total population simulated 728
nsow total number of sow 76

newpiglets number of piglets introduced daily 4
pW initial proportion of weaning pigs 0.33
pG initial proportion of growing pigs 0.17
pF initial proportion of fattening pigs 0.5

D

N total population simulated 104
nsow total number of sow 10

newpiglets number of piglets introduced weekly 4
pW initial proportion of weaning pigs 0.17
pG initial proportion of growing pigs 0.3
pF initial proportion of fattening pigs 0.53

SAR

N total population simulated 175
nsow total number of sow 30

newpiglets number of piglets introduced daily 2
pW initial proportion of weaning pigs 0.33
pG initial proportion of growing pigs 0.27
pF initial proportion of fattening pigs 0.5

Tabella 3.9: Initial values used for simulations of closed-cycle farm types

parameter description value ref.

ηW

I fraction of initially infected weaners 0.26
[49]ηG

I fraction of initially infected growers 0.44
ηF

I fraction of initially infected fatteners 0.09
ηW

R fraction of initially recovered weaners 0.24
[57]ηG

R fraction of initially recovered growers 0.45
ηF

R fraction of initially recovered fatteners 0.64

Figure 3.15. Smoothed trajectories for type
D farm

Figure 3.16. Number of infectious or expo-
sed animal slaughtered in D farm type
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Figure 3.17. Smoothed trajectories for
SAR farm type

Figure 3.18. Number of infected or exposed
animal slaughtered in SAR farm

Figure 3.19. Trajectories for type C farm by age
class

Figure 3.20. Trajectories for type D farm by
age class

Figure 3.21. Trajectories for type SAR farm by age class

Figure 3.22. Total
of slaughtered animal per
farm type C with varied va-
lues of β.

Figure 3.23. Total
of slaughtered animal per
farm type D with varied
values of β.

Figure 3.24. Total
of slaughtered animal per
farm type SAR with varied
values of β.

3.6.3 Statistical analysis

To analyse differences between farm types we used the total number of slaughtered ani-
mals that were infected at the moment of slaughter per each simulation (data sheet is avai-
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lable at https://github.com/Mezzanenne/HEV_Codes/tree/Statistical-analysis_closedcycle).
Boxplots of the samples used are shown in Figure 3.25 where different scales were applied to allow
better visualization. We first tested the normality of the samples using the Shapiro test. The

Figure 3.25. Boxplot representing the distributions of the number of infectious or expo-
sed animals slaughtered per farm type for each simulation. Each plot has a different scale.

p-values obtained resulted all higher than 0.05 therefore we considered the samples normally di-
stributed. We then used both the Bartlett and the Fligner tests to verify the homoscedasticity
of the samples. Neither of the tests resulted significant, whence we used the ANOVA test for
heteroscedastic samples.

We performed the Welch one way ANOVA test in R using the welch_anova_test() function
from the rstatix package. The test resulted significant with very small p-values (see 3.10). Given

Tabella 3.10: Welch one way ANOVA test on the farm types C, D and SAR.

F statistic DF denom DF p-value.

46410 2 39 1.45 · 10−66

the significance of the ANOVA test we perform a pairwise t test with Bonferroni family-error
correction. The results show a significant difference between all the possible pairs of farm types,
with all the p-values smaller than 2 · 10−16.

3.7 Discussion
In our model, the HEV transmission dynamics resulted highly affected by the management

process and the organization of the farm. These findings are, to some extent, in line with observa-
tional studies found in literature, although it is not always possible to compare data reported in
literature with our findings when no details on the farm management or organization are reported.
For both types of farm (open and closed cycle) the peak of HEV infected animals was reached in
the growing phase, especially between the 8th and 15th weeks of age. This finding is consistent
with several observational studies conducted in the Europe showing that the peak of HEV shedding
is reached in animals aged between 3 and 4 month of age (see [70]) that exactly corresponds to the
growing phase. In northern Italy’s intensive farms, Caruso et al. [10] reported a seroprevalence in
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weaning phase of 26.3% and a prevalence of HEV shedders in the same age class of 16%. Pavoni
and colleagues [59] reported for growing animals reared in the same area, a prevalence of shedders
of 27% for open-cycle farms. Other studies reported similar findings, with a seroprevalence of 12%
for weaners, 30% for growers and 36% for fatteners. Especially for the first two age classes the
magnitude orders seem to be comparable with our findings. A few details are available in the
scientific literature for small farms located in center south of Italy. Costanzo and colleagues [14]
reported of 75% of seroprevalence in animals < 6 months of age and of 96% for older animals and
a prevalence of shedders equals to 6.8% in younger animals (<6 months of age) and 8% in older pigs.

Regarding the estimations on slaughtered animals, we showed that the probability to slaughter
an infected animal in closed-cycle farms, more common in south Italy, is importantly higher re-
spect to the open-cycle farms, more diffused in central and northern part of Italy, where we got no
infected animal at the slaughterhouse. This result is corroborated by a recent study of Chelli and
colleagues [12] conducted in several Italian slaughterhouses. According to this study, the location of
the slaughterhouse and the origin of the animal represent a significant factor for the contamination
of organic samples, especially for HEV RNA presence in faeces or liver. While positive samples
of animals coming from north- and central-Italy farms are the 0.9 and 0.8%, respectively, animals
coming from southern farms resulted positive for HEV RNA in liver and/or feces in 15.5% of the
samples.

Parameter estimation
Given the lack of specific observational and experimental data on HEV pathogenesis and infection
in pigs, the results of the parameter estimations are difficult to corroborate, which represent a
limitation of our study. While the mean infectious period µIR has been estimated in different
experimental studies, the β parameter reflects highly the model structure and it is indeed very dif-
ficult to compare it with others estimation for similar parameters. The infectious period estimated
by our inference process equals to 40 days, which is very similar to the one estimated in [71]. In this
study, pathogenesis of HEV in pigs were evaluated in presence of co-infection between hepatitis
E and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a very common virus in
farmed pigs. In this study, Salines and colleagues estimated an infectious period of 48.6 days [95%
CI 27.9 – 84.6 days], pointing out how co-infections could prolong the duration of HEV shedding.
Since pathogens circulation in farms is quite common [21, 51] it seems reasonable to adopt a rate
more similar to this one. It is important to underline that we did not take into account the va-
riation of HEV quantity release during the period of shedding, since quantitative data are largely
missed. Several studies on HEV shedding, based on detection of virus in fecal samples either at
slaughterhouse in adult pigs [12, 21] or at farms in old sows [22] show that pathogenesis of HE
in pigs is very complex and that the duration of shedding period could vary significantly. Unfor-
tunately, the absence of strong quantitative data makes very challenging to study the shedding
dynamics in pig population.

Open-cycle farms
The spread of HEV among pigs in open-cycle farms show the typical behavior observed in early
phases of epidemics, when a new pathogen enters into a naïve population. In a first phase, the
susceptible pigs progressively decrease while exposed and infectious animals increase. In a second
phase, recovered animals start to increase when infected animals start to decrease. Overall, the
main factor positively influencing the extinction of the infection is the lack of introduction of new
animals (naïve) in the farm.
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The infection rate per day is significantly influenced by the number of infectious individuals present
because of the low size of the subpopulations. However, important modifications on β and on other
characteristics of the farm seem not to be critical in the overall transmission dynamic. Significant
changes in the dynamic are visible only for β below 1, exhibiting a good stability of the dynamics
under perturbations. The use of a deterministic shedding period represents a possible additional
factor of uncertainty in our study. As already pointed out, the duration of the shedding period
seems to be highly variable and, given the short time simulated, it could represent a critical factor
for the overall transmission dynamic.

Closed-cycle farms
For the closed-cycle farms simulation, the process seems to converge quickly to an equilibrium
for all the three types of farms. We ran all the models from five different initial epidemiological
statuses obtaining always the same long-term dynamic, with a larger variability in the D type
farms that have the smallest population size.
The number of infected animal slaughtered per day is larger in the very first phase of the simulation,
until the 60th day, especially for type C and D farms. After this period, as the trajectories became
closer to the equilibrium, the number of HEV infected fatteners seems to reach zero, as slaughtered
pigs also do. However, persistence of infected animals in growers and weaners compartment could
represent a risk. Any slight change in the farm management, organization, etc. could indeed
trigger the spread of the infection to the fatteners compartment.

In the Sardinian farming type, the number of animals slaughtered while infected is much hi-
gher compared to the other two types. Since the infection levels in the different age classes are
comparable with the other two types, it seems reasonable that the main driver affecting the risk
of slaughter infected animals is the slaughtering of pigs at a much younger age.

The statistical analysis results showed that the difference between the three farming types is
significant. This possibly means that arrangements in the farming management could contribute
importantly in the reduction of risk of HEV transmission in slaughterhouse and, consequently, in
humans.

Limitations and future improvements
The study pointed out importantly how the differences in farming condition and pig production
setting, housing and management of animals affect the transmission dynamics of the virus inside
the farm and the probability to deliver HEV positive animals at slaughter. This is a very im-
portant finding because the level of HEV contamination of foodstuff at retail (i.e. at consumer
level), depends only on the magnitude of the initial HEV contamination of pork meat and offal at
slaughtering. Downstream of slaughterhouse HEV contamination in food chain can only be miti-
gated by the adoption of adequate food manufacturing practice that should be part of HACCP1

programs of food business operators (FBOs). No information is available to us about how FBOs
actually implement their HACCP programs to control the risk of HEV contamination of pork meat.
The possibility to control the risk of HEV contamination of food at the consumer level through the
adoption of good farming practice at primary level seems therefore a very interesting perspective
from the public health point of view. Unfortunately, the lack of detailed information on internal
farm organization, management practice and the high heterogeneity of pig farming system in Italy
did not allow to also introducing these components in our model. However, understanding how
animal management practices are effective in reducing the risk of HEV prevalence at slaughter in

1Hazard analysis and critical control points.
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different type of farms is an attractive perspective for HEV control. In addition, slaughterhouse
HEV contamination data could be used to fill the modelling gap between production stage and
human exposure. This would be a crucial step to strengthen the estimation of the actual exposure
of human population to hepatitis E. Data on HEV contamination at slaughterhouse including de-
tails on carcasses origin, location, characteristics, etc. are difficult to collect and, to date, are just
a few [12].

Data on pathogenesis represented an additional challenge for the study, especially for the para-
meter estimation. To better differentiate the farm transmission dynamics, based on the farm types,
it would be important to strongly estimate a different λ parameter at least for the two macro-types,
representing the average number of contact per day. To this purpose, good longitudinal data for
the specific farm types are needed. Due to the lack of these data we directly estimated β = p · λ.
We have neither the possibility to represent these two different quantities nor to specify λ for each
farm category.

An expected improvement for the modelling that we proposed in this study would be to
fine-tune and test possible within-farm intervention strategies, based on animal group segrega-
tion policies, manure managements, biosanitary measures in particular for light pigs and piglets
productions.
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Uncertainty analysis

A.1 Standard deviations of input parameters

Tabella A.1: Uncertainty analysis for input parameters

Parameter Standard deviation

λPL 7.76 · 10−6

consPLday 2.14 · 10−2

λPNL 1 · 10−4

consPNLday 2.5 · 10−1

λSH 3 · 10−2

consSHday 1.21

µ 7 · 10−8

A.2 Parameter correlations
We report the correlation test results and the scatterplots between them for the three categories

involved in the analysis, meaning PL, PNL, and SH.
We can see from tables and plots that some of the parameters show a certain structure in

plots especially for PL category, even if the numbers seem rather small. However, we considered
parameter uncorrelated given the small correlation coefficients.
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Tabella A.2: Parameter correlations for category PL

Parameters Estimate 95%CI p-value

λPL|µ −0.018 [−0.03− 0.001] 0.06
µ|consPLday 0.01 [−0.0095− 0.03] 0.3
consPLday|λPL −0.0056 [−0.025− 0.014] 0.5

Figure A.1. Scatterplots paired between input parameters for category PL.

Tabella A.3: Parameter correlations for category PNL.

parameters estimate 95%CI p-value

λPNL|µ −0.0043 [−0.023− 0.015] 0.06
µ|consPNLday −0.02 [−0.021− 0.017] 0.82

consPNLday |λPNL −0.007 [−0.026− 0.012] 0.46

Tabella A.4: Parameter correlations for category SH.

parameters estimate 95%CI p-value

λSH |µ −0.014 [−0.034− 0.0048] 0.13
µ|consSHday 0.016 [−0.002− 0.03] 0.09
consSHday|λSH 0.0001 [−0.019− 0.019] 0.9

A.3 Parameter impact
As explained above, we can use the SRCs to rank the parameters used in the analysis based

on their effect on the output. Our linear regression with SRCs resulted in the following expression
for the two categories:

yP L = −0.864λP L + 0.865 consP L
day + 0.99µ (A.1)
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Figure A.2. Scatterplots paired between input parameters for category PNL.

Figure A.3. Scatterplots paired between input parameters for category SH.

yP NL = −0.9λP NL + 0.88 consP NL
day + 0.995µ (A.2)
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Risk matrix

We report here a risk matrix to qualitatively score the risk of each food category, based on
the severity and likelihood of food contamination [62]. We are here considering the parameters
reported in Table 2.4.

We defined the severity as the expected HEV genome equivalents per serving E(Ci
1) = λ−1

i ,
transformed in loge. Severity scores definition are reported in Table B.1. The likelihood is defined
as the fraction of contaminated servings consumed in one year. Meaning the number of servings
consumed in a year da

i times the prevalence of HEV contaminated food samples αi. Likelihood
scores are displayed in Table B.1.

Tabella B.1: Severity (left side) and likelihood (right side) scores definition

loge
(
E(Ci1)

)
score dai · αi score

< 9 1 < 0.2 1
9− 11 2 0.2− 0.5 2
11− 13 3 0.5− 1 3
> 13 4 > 1 4

Based on the definitions and on the data sheet reported in Table B.2, we can calculate the risk
for each of the food categories as risk = likelihood x severity (see Table B.2) and assign to each
category a qualitative risk level, as illustrated in Figure B.1.

Tabella B.2: Data sheet and scores for each food category

Category loge
(
E(Ci1)

)
dai · αi Severity Likelihood risk

PL 11.2 0.33 3 2 6 (medium)
PNL 10.4 2 2 4 8 (medium)
SH 11.3 0.124 3 1 3 (low)
ML 0 0 0 0 0

VGT 0 0 0 0 0
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Risk matrix

Figure B.1. Risk matrix
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Appendice C

Farm class definition

Breeding for reproduction
The production cycle related to this type of breeding involves the following operations:

1. reception of gilts;

2. inseminations, gestation and delivery;

3. shipping-transfer to fattening.

Gilt receipt
The replacement gilts are purchased from farms specialized in the selection of breeding animals

or are selected within the company. The gilts selected within the company are gathered in the
heat waiting area ready for insemination.

Delivery
The delivery room is a room equipped with several cages capable of hosting the sow and the

litter until the end of the suckling period (21 - 28 days). The sow usually gives birth without the
need for assistance from the operator, who intervenes only in case of problematic farrowing. The
sow in this phase is particularly aggressive and protective of the litter so any intervention by the
operator to assist the sow or piglets can constitute a risk factor. It is clear that in this area of
the farm it is necessary to implement a correct hygiene practice with cleaning and disinfection of
the structures when the sows leave the farrowing room to return to the gestation sector (for the
stimulation of a new heat).

Weaning of piglets
Piglets are removed from their mother around days 28 (7 kg) and are generally transferred

to the weaning room or it is the farrowing room itself which, once the sow has been removed,
fulfills this function. The weaned piglets, which have reached a weight of 30 - 40 kg depending
on the farm management, are then ready to be shipped and / or transferred to the fattening sector.

Fattening breeding
Reception pigs

The pigs are transferred from the weaning sector to the fattening sector or arrive at the farm
from other farms. Piglets are destined within the shelters where they will be reared up to the
expected slaughter weight (160 kg for the production of ham or up to a weight of 100 - 120 kg for
the butchery pig).

56



Farm class definition Demographic data analysis

The pigs are divided into more or less homogeneous groups according to age and weight, and the-
refore confined to the pens. After unloading, the truck reaches the washing area where it is washed
and disinfected before carrying out another load of animals.
Food management almost everywhere involves liquid feeding with automated distribution to trou-
ghs. During the fattening cycle, in some situations, the operators usually isolate the best subjects
from the different boxes in order to group them in homogeneous boxes. This operation, known
as equalization, is usually carried out a couple of times at the beginning of the first lean phase
(weight loss 50 - 60 kg) and at the beginning of the fattening phase (80 - 100 kg body weight).
Once the expected slaughter weight has been reached, the pigs are loaded truck for transport to
the slaughterhouse.

C.1 Demographic data analysis
We classified the farms starting from the official categorization and taking into account the

production type, meaning open cycle fattening, open cycle reproduction, closed cycle. Pig farms
with less than 20 pigs were excluded from the analysis. Factors considered for this purpose included:

• Farm size

• Relative distribution of reared animals by animal type

• Farming activity and production stage

• Location of the farm

A Fisher exact test were performed over the classes defined to look for significant differences bet-
ween Italian areas.
All the analysis were carried out with R software (vers. 4.1.2).

The classes defined are nine and are described, base on the distribution of animal type, in the
Figure C.1. The nine farm husbandry classes defined, as shown in Figure C.1, are summarizable
as follow

A Growing only

B Mainly fattening

C Mainly breeding

D Other types

E Weaning only

F Breeding boar only

G Mainly sow

H Sows only

I Gilt only

We observed a heterogeneous distribution of pig population and type of farm across the country.
In the northern area the majority of pigs are reared (50% only in region Lombardia) with a mean
number of animals per farm of 1439 (median = 979, IQR = 1511). Here the production seems to be
more oriented towards the fattening steps with a majority of husbandry farm from classes A, B and
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Farm class definition Demographic data analysis

Figure C.1. Animal type distribution per farm class defined

Figure C.2. Distribution of pig husbandry farm classes by production type (as defined
in National Animal Registry)

C. In central and southern regions the distribution of animals is more uniform over all husbandry
farm classes in smaller farms. Here mean reared animals per farm are 301 in the center (median =
106, IQR = 328) and 210 in south (median = 54, IQR 164). Islands seems to be the most peculiar
areas with a consistent number of closed cycle farm distributed mostly over the husbandry farm
classes C and G. Here the mean number of reared animals is just 71 per farm (med = 28, IQR =
22).
We performed a Fisher exact test on farm numbers over macro-areas in pairs and all of the tests
result in a significant difference between areas with p-values < 0.0001
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Farm class definition Demographic data analysis

Figure C.3. Distribution of animals by pig husbandry farm classes, farm production
type, macro-area and regions

Figure C.4. Distribution of farm by pig husbandry farm classes, production type, macro-
area and regions
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Capitolo 1

Source attribution model for Shiga
Toxin-producing Escherichia Coli
(STEC)

In this chapter we report risk assessment activities carried out to quantify how much animal
and other non-human sources of STEC weigh in the causation of human illnesses. This source
attribution (SA) estimation has been carried out within the framework of the on-going research
project of the One Health European Joint Program DiSCoVeR: Discovering the sources of Sal-
monella, Campylobacter, VTEC and antimicrobial resistance. The overall aim of thi project is
to strenghten the capacity building at the EU level for the implementation of routine source
attribution assessment, as a main component of the surveillance and control strategies for the
priority zoonotic foodborne pathogens (i.e. Salmonella, Campylobacter, STEC) and antimicrobial
resistant-bacteria (ESBL- Extended Spectrum Beta-lactamase Enterobatteriacee). This is done by
mapping the availability of SA methods and gaps in the knowledge of pathogens population data,
in particular of the genetic markers, as well as in the availability of surveillance and monitoring
data to address classical and innovative SA methods. SA assessment is conducted within the DI-
SCOVER by combining partners’ know-how on the specific pathogens biology, epidemiology and
ecology with methodological (modelling) skills and existing data, shared by DISCOVER partners.
Zoonotic foodborne pathogens transmission to humans occurs mainly through food consumption
but the dependent happening structure of a pathogen can include also other infection routes such
as direct contact with infected animals or exposure through environmental matrices (for instance
contaminated water). Weigh the relative importance of specific food sources (i.e. animal popu-
lations) or transmission routes to the overall burden of disease to humans is a crucial step to
effectively address intervention strategies to reduce the health impact of foodborne pathogens in
humans. To do that, several source attribution techniques have been developed. We can define
human illness source attribution, quoting [13], as

[...] the partitioning of the human disease burden of one or more foodborne in-
fections to specific sources, where the term source includes animal reservoirs and
vehicles.

There are several approaches used to attribute sources for foodborne pathogens. We focused here on
approaches based on microbial subtyping where microbiological features of the pathogen are used
as markers to compare the distribution of the pathogens’ subtypes in humans and in the different
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non-human sources. Microbial subtyping allows to classify the pathogen into subtypes based on the
phenotypic and/or genotypic characteristics. Given the subtype distribution in observed human
cases and in the potential sources it is possible to estimate the number of cases attributable to
each source. The sources subtype frequencies are usually weighted with other factors representing
the level of human exposure to sources or pathogen-dependent factors modelling virulence or
survival capabilities of the pathogenic organism. In the area of STEC, which are the pathogens
for which there was less experience of SA assessment available in the scientific community, the
DISCOVER approach aimed to explore the feasibility of SA assessment using the classical SA
approach developed for Salmonella. Additional information on the project are available at https:
//onehealthejp.eu/jrp-discover/.

1.1 Exploring classical source attribution approach for STEC
We refer to a specific Bayesian frequency-matching model developed by Hald and colleagues for

the source attribution of Salmonella [5]. This model, as well as other modified similar models, have
been widely applied to a number of pathogens, especially Salmonella [14] and Campylobacter [11].
The application of such models to other type of pathogens has not been extensively explored,
among these Shiga Toxin-producing Escherichia Coli (STEC) [10], for a series of reasons. Beside
the poor availability of surveillance and monitoring data on STEC, a main reason was that for
many years there was not a common consensus on the scientific paradigm for the definition of
pathogenicity of STEC, given the extremely genomic plasticity of these pathogens and the species
E.coli, in general.

Recently, a Joint FAO/WHO initiative [2] as well as an European Food Safety Authority scien-
tific opinion [12] solved the issue and agreed on a pathogenicity assessment scheme based on the
presence of a series of virulence genes (stx1, stx2, eae/aggR). This approach allowed to make ob-
solete all paradigms based on E. coli O- and H- antigen characterization, which had been used to
predict the pathogenicity of STEC for many decades. Anyway, E.coli O-group characterization
continue to be used as a valid subtype epidemiological marker, also for STEC.

1.2 Shiga Toxin-Producing Escherichia Coli. Background
and epidemiology

STEC are a specific pathogroup of E. coli species, capable of producing Shigatoxin (Stx) which
is encoded by stx genes. Infections with Shiga-Toxin-producing Escherichia Coli (STEC) cause
severe clinical manifestations in humans, with premature mortality and sequelae associated with
chronic disability [16]. Young children (<5 years) more frequent develop hemorrhagic diarrhea and
Hemolytic Uremic Syndrome (HUS) [3, 17], which is the most severe complication and is caused
by the systemic effect and organ damage caused by the Shigatoxin, which is released by the STEC
in the intestine and enter the blood stream. HUS occurs as a systemic complication of intestinal
STEC infection. It is characterized by microangiopathic hemolytic anemia, thrombocytopenia and
kidney damage. In pediatrics it is one of the leading cause of acute renal failure [3]. The disease
initially manifests itself with a nonspecific clinical picture characterized by gastroenteric prodromal
symptoms, with haemorrhagic colitis which is the most specific prodromal symptom of STEC
infections. In about 15% of cases it evolves into HUS. The evolution and severity of manifestations
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Figure 1.1. Dependent happening structure for STEC [6]

related to STEC infection are mainly determined by host-related factors in particular age, and by
the virulence characteristics of the STEC. Acute lethality in HUS cases is between 3% and 5% [7].

The HUS is responsible for the highest burden of illness of STEC infections (see for instan-
ce [8]). In terms of the care burden, it should be remembered that almost all patients affected by
HUS require dialysis and blood transfusions in the acute phase, which can only be performed in
specialized centers. Long-term renal and extrarenal sequelae are frequent, particularly neurologi-
cal (proteinuria, hypertension, chronic kidney disease requiring renal transplantation, permanent
neurological damage, epilepsy) [7,16]. There is no specific etiological therapy for STEC infections.
Antibiotic therapy is contraindicated as it promotes the release of Shigatoxin increasing the risk of
developing HUS [7]. It is therefore very important to recognize HUS early to reduce the risk of per-
manent sequelae [1]. The epidemiological cycle of STEC infections is complex and characterized by
multiple ways of transmission to humans (see Figure 1.1). Infection occurs through the ingestion of
contaminated undercooked food (mainly minced meat, dairy products from raw milk, vegetables)
and water. The infection can spread also through the person-person oral-fecal route, especially in
the household and in community settings such as school, by direct contact with infected animals
or contaminated environmental matrices (eg bathing water). Secondary person-to-person tran-
smission is particularly important in community settings such as nursery schools, kindergartens,
etc. [15]. The epidemic potential of STEC infections is high. Epidemic outbreaks have a strong
media impact due to the clinical severity of the disease, the characteristics of patients affected by
severe forms (usually children) and the fact that food transmission of the infection is perceived as
poorly acceptable. Among the most recent outbreaks, the 2011 E. coli O104: H4 epidemic caused
3,842 cases of infection, 855 cases of HUS and 53 deaths over two months. In Italy, the 2013 E.
coli O26 epidemic caused 20 cases of HUS [4].
In France, this year a large outbreak involving 51 sick children with two deaths was caused by
consumption of contaminated frozen Buitoni Pizza produced by Nestlé.

Beside reasons explained above, the applicability of classical SA assessment to STEC has
been poorly explored given its specific features. Among them, the high genomic variability of
STEC makes difficult to identify the biomarker that better indicates virulence and pathogenicity
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of the strains. Secondly, the wide range of non-humans reservoir of the organisms introduce a
further challenge for such analysis. In particular, at European level, a source attribution study on
STEC has never been performed before. This study aim is therefore to adapt existing SA models
to the specific features of STEC, using a big dataset collected specifically for the OneHealth EJP
DiSCoVeR project involving several European countries. This will allow us to stratified the analysis
for several factors highlighting differences and similarities essential to gain new knowledge on the
burden of the different sources to human STEC infections.
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Capitolo 2

STEC database description

In our project we have access to a database of 15,588 STEC isolates coming from 11 European
Member States countries collected between 1997 and 2021 (available at https://zenodo.org/
record/5828412#.YlsG8dNByUk) collected from partners of the DiSCoVeR project of One Health
European Joint Program.

The STEC isolates were obtained from human samples (14,196), animals (both livestock and
wildlife) (1,139), food sample (224) or environment (29) samples. The isolates were classified into
three hierarchical sublevels reported in Table 2.1. The level 3 subspecies are listed in Table 2.2.
For each observation in the database we have

year,

country,

the three sub-levels,

virulence profile,

age-class and disease (for human cases only).

Distributions of the isolates per country and year are reported in Figure 2.1.

As explained by the level 2, human cases can be sporadic, outbreak- or travel-related. We
considered as “sporadic” all the human cases not linked to an outbreak and “domestically acqui-

Figure 2.1. Isolates distribution per country and year
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STEC database description

Level 1 Level 2 Level 3

Human

Sporadic

Not Applicable
Travel-related
Outbreak related
Unknown

Animal

Livestock

Animal Species (Table 2.2)
Zoo
Pets
Other

Food
Cheese/dairy/milk

Animal Species (Table 2.2)
Meat
Fruit/vegetables Vegetable Species (Table 2.2)

Environment
Water

Water types (Table 2.2)
Other

Tabella 2.1: STEC database dimensions

red” (or simply “domestic”) all the cases non travel-related, including the outbreak-related ones.
Outbreak-related cases are very difficult to confirm, the number of underreported outbreak-related
cases could be therefore very high. The number of sporadic isolates is the highest (40%) followed
by travel-related cases. More than 35% of the human isolates though were classified as “Unknown”.

Non-human source isolates belong to animal, food or environmental matrices. Most belonged
to animal sources (80%), followed by food isolates. The environmental sources isolates are less
than 2%. Distribution of non-human isolates per each country with details on level 2 and level
3 are displayed on Figure 2.3. In Figure 2.2 distribution of the same levels combination over the
different O-groups are reported.

Beside the availability of O-group characterization, information on virulence genes regard, stx
and eae. For the purpose of our analysis, we used as subtyping marker for STEC a combination
of O-group (serogroup) and two virulence genes: stx1, stx2 and eae. In the single bacterial cell
stx genes can be variably combined as stx1, stx2, stx1/stx2. eae gene, which encode for the
intestinal adhesion factor intimin, can be present in STEC (eae+) or absent (eae-), although
STEC responsible of severe illness in humans are usually eae+. STEC as any other E.coli may be
classified according to the O-antigen of the lypopolisaccharide into 171 different O-groups. The
most frequent STEC O-group reported in humans is STEC O157 that has been found in 22% of
the isolates, followed by O26 (9%). The other O-groups have been detected in less than 5% of
the isolates. More than 33% of isolates are classified as “Unknown”. Disitrbutions of O-groups
isolates by country are shown in Figure 2.4 meaning that characterization of STEC has not been
completed.

The majority of isolates were stx2+ and eae positive, which is the virulence combination
associated to more severe cases in human (see Figure 2.6), followed by stx1+ and eae positive (see
Figure 2.5). For almost all the unknown stx isolates also the presence of eae gene was unknown,
except for two eae positive isolates.
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Figure 2.2. O-group distribution in non-human sources

Figure 2.3. Non-human isolates distirbution over country
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Figure 2.4. Distribution of O-groups isolates per country
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STEC database description

Animal Species

Birds
Cattle
Cats
Deer
Dogs
Goat/sheep
Horses/donkeys
Pigs
Poultry
Wild boar
Other animal
Unknown animal

Vegetables Species
Green leafy vegetables
Sprout
Other vegetables

Water types

Groundwater
Sewage wastewater
Surface freshwater
Other

Tabella 2.2: Subspecies of Level 3 in Table 2.1

Figure 2.5. Heatmap that shows the count of isolates with specific eae and stx combi-
nation.
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Figure 2.6. Alluvial diagram of stx/eae combination versus clinical outcomes.
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Capitolo 3

Source attribution model for
STEC

The approach we chose for our SA assessment in the DISCOVER was developed on a Bayesian
frequency-matching model based on microbial subtyping. In this approach we used a Bayesian
model to compare the distribution of STEC subtypes in STEC isolates from human cases with
isolates from non-human source samples. We used a framework developed by Hald et al. in 2004
originally appllied for the attribution of Salmonella [5,9,14] and successfully applied also for other
pathogen [10, 11]. The model is built to estimate the expected number of human sporadic STEC
infections occurred in a specific country and year, that are attributable to the different non-human
reservoirs or pathways sources of the pathogen. To estimate posterior distribution we used Markov
Chain Monte Carlo simulation, in particular the Gibbs sampler. The simulations were run with R
software version 4.1.2 and WinBUGS 14 through R2WinBUGS package.

3.1 Model description
We modified the original Hald model [5] to include isolates with information on four different

dimensions, that are: year t, country c, STEC subtype i and non-human source j. As described in
Chapter 2, we have isolates from several year and countries. Unfortunately, as already mentioned,
some observations in the database had missing information. Therefore, similarily as done in [5], we
modelled uncertainty on that observations using Beta-Binomial or Dirichlet-Multinomial models
to estimate the additional isolates for each dimension’s combination (see Table 3.1). All the detail
of the uncertainty modelization are reported in Appendix D.

We assumed that the expected number of cases λtc
i observed in year t and country c of subtype

i that are attributable to source j depend on three different factors:

• the prevalence ptc
ij of subtype i in source j in year t in country c;

• a bacteria-dependent factor qi expressing differences in STEC subtypes, as ability to infect
humans or survival capability

• a source dependent factor atc
j modelling differences between source in acting as vehicle for

human transmission
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Source attribution model for STEC Model description

parameter description value

t time in years –
c country –
i STEC subtype, combination of O-group-stx-eae –
j food-animal source –
otc

i number of observed cases with subtype i in year t and country
c

data

aotc
ij non-human isolates of source j with subtype i collected in year

t and country c
data

ptc
ij prevalence of type i in source j in year t and country c ∼ Dir(aotc

ij + 1)
λtc

i expected number of sporadid domestic cases infected with sub-
type i in year t and in country c

∑
j λ

tc
ij

λtc
ij expected number of sporadic domestic cases per subtype i and

source j observed in year t and country c
ptc

ij · atc
j · qi

atc
j source-dependent factor for source j in year t in country c ∼ exp(µ)
qi subtype-dependent factor for type i ∼ unif(α, β)
trtc

i number of observed cases with subtype i in year t and country
c known to be travel-related

data

estrtc
i estimated additional number of travel-realted cases of type i

observed in year t and country c
Appendix D

Tabella 3.1: Description and definition of the parameters used to estimate the number of
cases reported per each year and country per STEC subtype

Therefore, λtc
i is defined

λtc
i =

∑
j

λtc
ij

where λtc
ij are the expected number of human cases of subtype i from source j in year t and country

c.
We are, similarly as done by Pires and collegues in [14], letting a depends on year and on

country to account for possible variability in consumption, preparation or handling of the sources.
All the parameters are shown in Table 3.1.
To get the expected number of cases Λtc

i reported in a certain year t in country c per subtype i, as
done by Hald [5], we added to λtc

i =
∑

j λ
tc
ij the total travel-related cases trtc

i +estrtc
i and the total

outbreak-realted cases, meaning the cases originally travel- or outbreak-related plus the additional
cases estimated.

The model is defined as follow:

otc
i ∼ Poisson(Λtc

i ) (3.1)

where Λtc
i is defined

Λtc
i = λtc

i + tytotc
i + tobtc

i .

We used uninformative uniform prior for qi. To improve idenfiability of the model, follo-
wing [11], for atc

ij we used an exponential prior.
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Appendice D

Data uncertainty modelling

In the following section we describe how we modelled the uncertainty about human source da-
ta. For non-human isolates we proceeded in the exact same way but in this cases only for subtype
information that were the only missing.

For human isolates we defined the subtype i as the combination of three different subdimensions
that are

• the O-group k

• the stx type h

• the eae presence or absence l

We called otc
is = otc

khls the observed human cases for which all the information were available,
where s is an additional dimension indicating travel information (domestic or travel-related). We
indicated with tc

i = otc
khl the number of observed human cases both domestic and travel-related.

To indicate the observations with missing information on some dimensions, we use capital letters
and write U ∗ O, where asterisk stands for the missing dimensions, as described in Table D.1.
Additionally, in Figure D.1 is schematically represented the summary of the variable names based
on the known dimension, where t and c dimensions were omitted.

variable name description

USOtc
khl observed cases with unknown travel information but known O-group, stx, eae

UKOtc
hls observed cases with unknown O-group but known stx, eae, travel information

ULOtc
khs observed cases with unknown eae but known O-group, stx, travel informatione

ULSOtc
kh observed cases with unknown eae and travel information, but known O-group and stx

UKSOtc
hl observed cases with unknown O-group and travel information, but known stx and eae

UKLOtc
hs observed cases with unknown O-group and eae but known stx and travel information

UKLSOtc
h observed cases with unknown O-group, eae and travel information but known stx

UKHSOtc
l observed cases with unknown O-group, stx and travel information but known eae

Tabella D.1: Variable names for the missing dimensions observations for human isolates

To attribute missing information on the isolates we used a Bayesian framework, depending on
the number of missing dimensions of the isolate and on the number of level of the specific dimenion.

The additional cases attributed to each of the group described in Table D.1 are named the
same way of the missing information group with an “A” in place of the “U”. For instance, ASOHtc

khls∗
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Figure D.1. Variable names for the missing dimensions observations for human isolates
(tc superscipt was ignored for simplicity).

are the additional cases initially without travel information information (USOHtc
khl ) with attribu-

ted travel information s∗ (domestic or travel-related). To estimate the additional cases for each
dimensions we used the distribution observed in the other isolates, where that dimension is not
missing. Whence, we are assuming that the distribution of the missing dimension is the same for
the isolates where we known all the dimensions and where some of the dimensions are missing.
For instance to estimate the additional number of cases with a certain O-group, we assumed that
the distribution of O-groups in the isolate with missing O-group information is the same as in the
isolated where O-group is indicated.

We used, similarly as in [5], we used Beta and Dirichlet distribution as conjugate prior for
Binomial or Multinomial distribution, depending on the number of levels of the dimension. For
instance, we used Beta-Binomial model for isolates with missing information on eae presence since
eae is a bivariate variable while we used Dirichlet-Multinomial model for multivariate dimensions
like O-group or stx. For isolates with more than one missing dimensions we used a combination of
these models, as described in Tables D.3 and D.4. We indicated the with an superscript the sum
over one specific dimension, for instance otc;k

hls :=
∑

k o
tc
khls.

Therefore we obtained the total number of cases per subtype as reported in Table 3.1. Recal-
ling that i = (k, h, l), we got the total number of domestic cases spdotc

i + espdotc
i , where spdotc

i are
the observed domestic cases and espdotc

i are the estimated additional domestic cases. In the same
way we got the total travel-related cases trtc

i + estrtc
i , where trtc

i are the observed travel-realted
cases and estrtc

i are the estimated additional travel-related cases.
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parameter description definition

pukotc
k∗hls

probability that a case with unknown O-group and stx h,
eae l and travel information s belongs to O-group k∗ Dirichlet(otc

k∗hls + 1)

AKOtc
k∗hls

estimated additional number of cases with stx h,
eae l and travel information s that had O-group k∗ UKOtc

hls · pukotc
k∗hls

puhotc
kh∗ls

probability that a case with unknown stx and eae l,
O-group k and travel information s has stx h∗ Dirichlet(otc

kh∗ls + 1)

AHOtc
kh∗ls

estimated additional number of cases with eae l,
O-group k and travel information s that had stx h∗ UHOtc

kls · puhotc
kh∗ls

pulotc
khl∗s

probability that a case with unknown eae
and O-group k, stx h and travel information s has eae l∗ Dirichlet(otc

khl∗s + 1)

ALOtc
khl∗s

estimated additional number of cases with
O-group k, stx h and travel information s that had eae l∗ ULOtc

khs · pulotc
khl∗s

pusotc
khls∗

probability that a case with unknown travel information
and O-group k, stx h and eae l has travel information s∗ Dirichlet(otc

khls∗ + 1)

ASOtc
khls∗

estimated additional number of cases with
O-group k, stx h and eae l that had travel information s∗ USOtc

khl · pusotc
khls∗

Tabella D.2: Parameters used to model the missing information on cases with one dimen-
sion missing

parameter description definition

utc
k∗hs

proportion of cases with unknown O-group
and eae and known stx h and travel information s

to allocate to O-group k∗

Gamma(o
tc;l
k∗hs

;1)∑
k

Gamma(o
tc;l
khs

;1)

AUKLOtc
k∗hl∗s

estimated additional cases with stx h and
travel information s that had O-group k∗ and eae l∗ Bin(uHtc

k∗hs · UKLOtc
hs; pulotc

k∗hl∗s)

utc
khl∗

proportion of cases with unknown travel information
and eae and known stx h and O-group k

to allocate to eae l∗

Gamma(o
tc;s
khl∗ ;1)∑

l
Gamma(o

tc;s
khl

;1)

AULSOtc
khl∗s∗

estimated additional cases with stx h and
O-group k that had travel information s∗ and eae l∗ (utc

khl∗ · ULSOtc
kh) · pusotc

khl∗s∗

utc
k∗hl

proportion of cases with unknown travel information
and O-group and known stx h and eae l

to allocate to O-group k∗

Gamma(o
tc;s
k∗hl

;1)∑
k

Gamma(o
tc;s
khl

;1)

AUKSOtc
k∗hls∗

estimated additional cases with stx h and
eae l that had travel information s∗ and O-group k∗ (utc

k∗hl · UKSOtc
hl) · pusotc

k∗hls∗ )

Tabella D.3: Parameters used to model the missing information on cases with two dimen-
sion missing
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parameter description definition

utc
k∗h∗l

proportion of cases with unknown O-group,
travel information and stx and known eae l

to allocate to the combination
O-group k∗ and stx h∗

Gamma(o
tc;s
k∗h∗l

;1)∑
k,h

Gamma(o
tc;s
khl

;1)

AKHSOH
k∗h∗l∗s

estimated additional cases with
eae l that had stx h∗,
travel information and s∗ O-group k∗

(utc
k∗h∗l · UKHSOtc

h ; pusotc
k∗h∗ls∗ )

utc
k∗hl∗

proportion of cases with
unknown travel information,
O-group and eae and known stx h

to allocate to the combination
O-group k∗ and eae l∗

Gamma(o
Htc;s
k∗hl∗ ;1)∑

k,l
Gamma(o

tc;s
khl

;1)

AKLSOtc
k∗hl∗s∗

estimated additional cases with
stx h that had travel
information s∗, O-group k∗ and eae l∗

(utc
k∗hl∗ · UKLSOtc

kh) · pusotc
k∗hl∗s∗

Tabella D.4: Parameters used to model the missing information on cases with three di-
mensions missing

83



References

[1] G. Ardissino, F. Tel, I. Possenti, S. Testa, D. Consonni, F. Paglialonga, S. Salardi, N. Borsa-
Ghiringhelli, P. Salice, S. Tedeschi, et al. Early volume expansion and outcomes of hemolytic
uremic syndrome. Pediatrics, 137(1), 2016.

[2] V. authors. Joint fao/who expert meeting on microbiological risk assessment (jemra) on shiga
toxin-producing escherichia coli (stec) associated with meat and dairy products. Technical
report, FAO/WHO, 2020.

[3] F. Fakhouri, J. Zuber, V. Frémeaux-Bacchi, and C. Loirat. Haemolytic uraemic syndrome.
The Lancet, 390(10095):681–696, 2017.

[4] C. Germinario, A. Caprioli, M. Giordano, M. Chironna, M. S. Gallone, S. Tafuri, F. Minelli,
A. Maugliani, V. Michelacci, L. Santangelo, et al. Community-wide outbreak of haemoly-
tic uraemic syndrome associated with shiga toxin 2-producing escherichia coli o26: H11 in
southern italy, summer 2013. Eurosurveillance, 21(38):30343, 2016.

[5] T. Hald, D. Vose, H. C. Wegener, and T. Koupeev. A bayesian approach to quantify the
contribution of animal-food sources to human salmonellosis. Risk Analysis: an International
Journal, 24(1):255–269, 2004.

[6] S.-b. Hwang, R. Chelliah, J. E. Kang, M. Rubab, E. Banan-Mwine Daliri, F. Elahi, and
D.-H. Oh. Role of recent therapeutic applications and the infection strategies of shiga toxin-
producing escherichia coli. Frontiers in cellular and infection microbiology, 11:450, 2021.

[7] D. Karpman, S. Loos, R. Tati, and I. Arvidsson. Haemolytic uraemic syndrome. Journal of
internal medicine, 281(2):123–148, 2017.

[8] S. E. Majowicz, E. Scallan, A. Jones-Bitton, J. M. Sargeant, J. Stapleton, F. J. Angulo, D. H.
Yeung, and M. D. Kirk. Global incidence of human shiga toxin–producing escherichia coli
infections and deaths: a systematic review and knowledge synthesis. Foodborne pathogens and
disease, 11(6):447–455, 2014.

[9] L. Mughini-Gras, F. Barrucci, J. Smid, C. Graziani, I. Luzzi, A. Ricci, L. Barco, R. Rosmini,
A. Havelaar, W. Van Pelt, et al. Attribution of human salmonella infections to animal and food
sources in italy (2002–2010): adaptations of the dutch and modified hald source attribution
models. Epidemiology & Infection, 142(5):1070–1082, 2014.

[10] L. Mughini-Gras, W. Van Pelt, M. Van der Voort, M. Heck, I. Friesema, and E. Franz.
Attribution of human infections with shiga toxin-producing escherichia coli (stec) to livestock
sources and identification of source-specific risk factors, the netherlands (2010–2014). Zoonoses
and Public Health, 65(1):e8–e22, 2018.

84



References

[11] P. Mullner, G. Jones, A. Noble, S. E. Spencer, S. Hathaway, and N. P. French. Source
attribution of food-borne zoonoses in new zealand: A modified hald model. Risk Analysis:
An International Journal, 29(7):970–984, 2009.

[12] E. B. Panel, K. Koutsoumanis, A. Allende, A. Alvarez-Ordóñez, S. Bover-Cid, M. Chemaly,
R. Davies, A. De Cesare, L. Herman, F. Hilbert, et al. Pathogenicity assessment of shiga
toxin-producing escherichia coli (stec) and the public health risk posed by contamination of
food with stec. EFSA Journal, 18(1):e05967, 2020.

[13] S. M. Pires, E. G. Evers, W. Van Pelt, T. Ayers, E. Scallan, F. J. Angulo, A. Havelaar, and
T. Hald. Attributing the human disease burden of foodborne infections to specific sources.
Foodborne pathogens and disease, 6(4):417–424, 2009.

[14] S. M. Pires and T. Hald. Assessing the differences in public health impact of salmonella
subtypes using a bayesian microbial subtyping approach for source attribution. Foodborne
Pathogens and Disease, 7(2):143–151, 2010.

[15] G. Scavia, A. Gianviti, V. Labriola, P. Chiani, A. Maugliani, V. Michelacci, F. Minelli, R. Toz-
zoli, A. Caprioli, and S. Morabito. A case of haemolytic uraemic syndrome (hus) revea-
led an outbreak of shiga toxin-2-producing escherichia coli o26: H11 infection in a nursery,
with long-lasting shedders and person-to-person transmission, italy 2015. Journal of Medical
Microbiology, 67(6):775–782, 2018.

[16] J. M. Spinale, R. L. Ruebner, L. Copelovitch, and B. S. Kaplan. Long-term outcomes of shiga
toxin hemolytic uremic syndrome. Pediatric nephrology, 28(11):2097–2105, 2013.

[17] P. I. Tarr, C. A. Gordon, and W. L. Chandler. Shiga-toxin-producing escherichia coli and
haemolytic uraemic syndrome. The lancet, 365(9464):1073–1086, 2005.

85



Conclusions

Mathematical models represent an essential tool in applied science to face complex and multi-
faceted issues such as the control of zoonotic foodborne pathogens and the related challenges for
public health, veterinary medicine, food and environmental safety. The aim of this work was to
address needs of public health sector taking advantage of quantitative methodologies in a com-
prehensive One Health framework, meaning with a specific attention to the strong correlation
between animals, human and environmental health. Aside from this, our findings underline that
non-health related factors and actors may play key role in influencing the food safety and the
risk of consumer exposure to foodborne pathogens, suggesting the need to enlarge the One-Health
vision well beyond the multisectoral collaboration across sanitary sectors. Conclusions from the
pre-harvest model for HEV indicated that pig production model as well as farm management have
a direct impact on the risk of population exposure to HEV. These non-sanitary factors together
with the consumers traditional eating habits and behaviors may represent a valid explanation for
the significant higher HEV sero-prevalence observed by Spada and colleagues in human population
in both central regions of Italy and Sardinia. These findings highlight the importance of engaging
actors such as farmers and consumers in the strategies for HEV control.

Overall, our study produced two main achievements. From one side, we were able to obtain
scientific evidence based on quantitative risk assessment which could directly inform control policy
and support decision makers facing emerging problems and needs of public health sectors in an
innovative fashion. An important added value of this approach is that uncertainty around results
is clearly estimated, which a crucial element to be taken into account in decision making-process.
On the other side, the use of quantitative methods allow to analyse the existing gaps in knowledge
and data, which is extremely important in addressing research and monitoring and surveillance
policies. The identification of these gaps was an important part of our work. Documenting clearly
the challenges and the source of uncertainty affecting results gave us the chance to highlight the
gaps affecting the knowledge for HEV, in particular pathogenic aspects in pigs, and the lack of
robust data on STEC in non-human sources. In conclusion, we strongly believe that the empower-
ment of mathematical models for public health and for real life problems in general are one of the
most effective way to maximize a sustainable use of existing data and information, avoiding the
constant need to produce novel and original data. This applied quantitative study engaged deeply
inter-disciplinary and multidisciplinary expertise, knowledge and professional skills, implicating a
continuous effort to transfer knowledge from one area to the others. An important challenge was
represented by the need to overcome language and conceptual barriers across discipline and to
implement a cooperative common environment allowing mutual understanding to find the better
way to achieve the study aims.
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