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by Friman and Maxwell in 1979, effectively based on a chiral Lagrangian framework with
pion and rho meson exchange, supplemented by Landau parameters to describe short-range
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and removing unnecessary simplifications, notably the triangular approximation — where
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MURCA, and quantify their importance. The impact of rho meson exchange, previously
argued to cancel with interference effects, is actually quite relevant. Altogether, the cooling
rates are reduced by as much as a factor 2. We provide comprehensive analytical formulas
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the emission of new particles — such as axions — is typically computed within the same
framework we adopt here.
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1 Introduction

Neutron stars (NS) are fascinating objects. It was 1932 when — just one month before the dis-
covery of the neutron — Landau conjectured the existence of cold dense stars in a conversation
with Bohr and Rosenfeld. These “scary stars” (“unheimliche Sterne”) would have small radii
and enormous densities, as also suggested independently in 1934 by Baade and Zwicky. A few
years later, in 1939, Oppenheimer and Volkoff described the first model of neutron stars, made
of a free neutron gas, but it was only in 1967 that pulsars were observed and shortly after Gold
proposed the now accepted view that they are fast rotating neutron stars. Typical neutron
star masses vary in the range MNS ∼ 1 − 2M⊙ with a radius of the order of R ∼ 10 km,
therefore with very large densities, beyond nuclear, ρ0 ∼ 2.5 × 1014 g/cm3 or n0 ∼ 0.15 fm−3.

These extreme stars form when the degenerate iron core of a massive star at the end of its
life evolution becomes unstable and collapses, leading to a type II supernova explosion. The
first stages of the life of the newborn are decisively determined by neutrino emission, which
dominates the cooling of the neutron star. At the beginning, the inner temperature is very high,
around T ∼ 1010−1011 K = 1−10 MeV, but it quickly drops to T ∼ 109 K ∼ 100 keV after 1-10
years. After ∼ 104 − 105 years, the temperature drops to T ∼ 2 × 108 K, and surface photon
emission finally takes over in the cooling process. Clearly, neutrino cooling processes in nuclear
environments are of paramount importance for the study of these fascinating stars. The first
detailed computations of neutrino emission rates in neutron stars trace back to 50 years ago [1–
3]. Usually, the direct decay of a neutron n → p+e− +νe is inhibited by the strong degeneracy,
so the most important processes to consider are neutrino-antineutrino bremsstrahlung

n+ n → n+ n+ νℓ + ν̄ℓ, (1.1)
n+ p → n+ p+ νℓ + ν̄ℓ, (1.2)
p+ p → p+ p+ νℓ + ν̄ℓ, (1.3)
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where ℓ = e, µ, τ indicates the neutrino flavor, and modified URCA (MURCA) processes,
where a charged lepton is also emitted, both in the neutron branch

n+ n → n+ p+ ℓ+ ν̄ℓ, n+ p+ ℓ → n+ n+ νℓ , (1.4)

and the proton branch

p+ n → p+ p+ ℓ+ ν̄ℓ, p+ p+ ℓ → p+ n+ νℓ. (1.5)

The standard reference for the emission rates associated with these processes is the seminal pa-
per written by Friman and Maxwell in 1979 [4] (hereafter FM), in which the authors provided
a detailed description of all the computations within the one-pion exchange (OPE) framework,
but quantifying also the effect of short-distance interactions beyond OPE. The topic has been
reconsidered later on, for example by Yakovlev and Levenfish [5] with a focus on reduction fac-
tors due to possible proton superfluidity, and by Maxwell himself with a focus on the potential
presence of hyperons [6]. Even without superfluidity, the use of in-vacuum interactions has
been questioned, as the medium polarization might significantly renormalize the properties and
interactions of nucleons [7–14]. Nevertheless, standard reviews [15] and fast public numerical
codes like NSCool, still use the results from the original work FM, which represents hitherto the
most complete and detailed reference for the topic. The ramifications of these results go well
beyond pure astrophysics, as NS cooling is a sensitive probe of emission of particles beyond the
Standard Model (BSM) [16], where it is usually treated using NSCool, in turn relying on FM.

Given the potential impact of neutrino cooling in NS across multiple fields, especially in
recent times, we believe a detailed understanding of its rate is needed. Here we reconsider the
historical work of FM, and we show that several corrections arising from the purely particle
side of the calculation can alter the cooling rates by more than a factor 2. We do not aim for
a state-of-the-art description of the nuclear physics (in particular, we do not tackle in-medium
effects, which are known to be relevant in NS interiors [7–14, 17]), but stick to the framework
adopted in FM. Our results correct for multiple small inconsistencies in the original treatment,
at the same time relieving some of the approximations of the original paper; specifically:

• we model the long-range interaction as an OPE+ρ-meson exchange. The latter was
argued in FM to compensate with the exchange contribution, at least for the nn

bremsstrahlung, but we do not seem to recover this result. The impact of the ρ-meson
exchange recently entered also the particle physics community, where it was argued
to significantly affect the emission rate of axions [18], although here it was incorrectly
accounted for in the non-tensor channels contributing to np bremsstrahlung. We take
the occasion to rectify the impact of this contribution;

• for the first time, we go beyond the triangular approximation that the Fermi momentum
of protons and electrons are negligible; one can already see that this is usually smaller
than the neutron Fermi momentum only by about a factor 3 or less, so it is worth
considering more carefully what is the impact of this approximation.

When all is put together, neutrino emission rates, compared to the results in FM, differ by
a factor 2 or more in some cases. Even though our results may not be the final answer, since
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we still stick with the nuclear framework of FM, it is a direct update of the most commonly
used approaches to describe NS cooling, especially in the context of bounds on BSM physics.
Thus, we believe that our results could be an updated go-to recipe in this context.

This work is organized as follows. We first introduce our framework, describing the
adopted nucleon-nucleon potential. Then, we pass to compute the emission rates for both
bremsstrahlung and MURCA. For each of them we provide contact with previous literature
and we highlight the impact of different effects on the final answer. We finally provide a
compact expression also for the neutrino absorption rate and then conclude.

2 Nuclear physics framework

The emission of weakly interacting particles from dense nuclear matter is notoriously chal-
lenging to describe. The intrinsic many-body nature of the system does not allow, in
principle, to discuss properties of individual nucleons. However, one can usually adopt the
Landau paradigm to describe such a system of strongly interacting fermions by means of
non-interacting quasi-particles, representing collective degrees of freedom of the system which
behave nearly as individual particles. We will adopt this viewpoint in what follows.

The main challenge in using Landau’s theory of Fermi liquids is that the properties of
individual quasi-particles — mass, coupling to neutrinos — become phenomenological, to
be determined from comparison with experiment. Here, in order to stick to a well-defined
framework, we will make a set of simplifying assumptions, mostly driven by the comparison
with the often-used work by Friman and Maxwell FM. In particular, we will describe the
nuclear matter in terms of non-interacting, non-relativistic nucleons. The dispersion relation
of quasi-particles close to their Fermi surface is determined by their Landau effective masses.
For the results shown in the text, we will always use bare values for the masses to provide
a comparison with the results of FM which does not include potential differences from this
additional source of uncertainty. All emissivities scale with a fixed power of the nucleon mass,
so introducing a definite prescription for the effective masses can always be done in a simple
way. In asymmetric nuclear matter, the proton effective mass may be lower than the neutron
one, an effect we do not consider in this work, aiming at a precision of the order of 10%. This
choice is especially helpful in comparing our results with the classic FM ones.

The rate of neutron star cooling is now determined by emission of neutrinos from nucleons.
On-shell emission processes from an individual nucleon could only happen by direct neutron
decay n → p + e− + νe and inverse beta decay p + e− → n + νe, but both processes are
strongly suppressed by the degeneracy of dense nuclear matter. Hence, neutrino emission
happens mostly from off-shell nucleons interacting with each other. This implies the need
for a detailed discussion of the quasi-particle interaction in the Fermi liquid of nucleons.
Unfortunately, this is a topic clouded in unavoidable complexity and uncertainties.

The forward scattering amplitude in various interaction channels might be related, using
Landau’s theory of a Fermi liquid, to specific thermodynamical coefficients (e.g. compressibility,
spin susceptibility, . . . ) which can in principle be measured in heavy nuclei, although one
should stress that such measurements always refer to symmetric nuclear matter, whereas
neutron stars are obviously neutron-dominated. Here we follow FM, which used the Fermi
liquid parameters extrapolated from refs. [19, 20]. For low momentum exchange, such that
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kr0 ≪ 1, where k is the typical momentum transfer and r0 is the typical nucleon radius, the
amplitude is isotropic, and the Landau parameters are directly representative of the scattering
amplitude. We stress that these parameters directly map to the scattering amplitude, not
the scattering potential; hence, they allow us to circumvent the need for a perturbative
treatment of the interaction potential.

The Landau parameters are by definition unable to capture the effects of the tensor
interaction driven primarily by pion exchange, which vanish for vanishing momentum transfer.
However, tensor interactions are the dominant contribution for most neutrino-emission
processes, and in fact are the only contribution for nn bremsstrahlung. Here, we assume
that the long-range tensor interaction can be described as in vacuum by the pion exchange,
with a reduction at shorter scales which we model as an exchange of a ρ meson. In this
sense, we follow again FM, except that we extract the coupling of the ρ meson from the
Bonn potential [21]. It must also be noted that assuming the in-vacuum interaction is not
quite adequate, since the medium polarization could significantly renormalize the tensor
interaction [7–13]; in ref. [7], for example, the resulting nn bremsstrahlung emission was
shown to be renormalized by up to a factor 2.1 Our choice of sticking to the simpler framework
of FM allows us to perform a one-to-one comparison with their results to show that significant
differences arise already at this level, while a detailed treatment of the medium polarization
would certainly be warranted in future works.

Hence, our final framework to describe nucleon-nucleon interaction includes short-range
interactions inferred from the Landau parameters, and longer range contributions from
OPE+ρ-meson exchange. We find that the former have negligible impact on neutrino-
neutrino emission, a feature already identified in FM. On the other hand, as we will see, ρ
exchange does significantly affect the emission. Overall, the effective non-relativistic potential
that we use for nucleon-nucleon interaction is

V (k) = f + f ′τ1 · τ2 + gσ1 · σ2 + g′
kτ1 · τ2 σ1 · σ2 + h′

k(σ1 · k̂)(σ2 · k̂)τ1 · τ2, (2.1)

where f, f ′, g are the constant Landau parameters for the relevant channel and k ≡ kk̂ is
the exchanged momentum in the scattering. The spin-spin interaction g′

k receives both a
constant contribution from the associated Landau parameter and a momentum-dependent
contribution arising from the exchange of the ρ

g′
k ≡ g′ − Cρ

f2
π

m2
π

k2

k2 +m2
ρ

. (2.2)

For the meson parameter here we follow the table at pag. 37 for the Bonn model [21] and
take mρ = 769 MeV for the mass of the ρ meson, and Cρ = 1.4 for its coupling strength, while
fπ ≃ 1 and should not be confused with the pion decay constant. Notice that scattering
data have been also used to compute the emission of neutrinos and exotic particles in Core
Collapse Supernovae [22–24].

For the Landau parameters instead we adopt the following parametrisation [19, 20, 25]
{f, f ′, g,G} = π2

2 mN pF(n){F0, F
′
0, G0, G

′
0}, where F ′

0 = 0.7, G0 = G′
0 = 1.1 and where pF is the

1However, in eq. 3 of ref. [7] a symmetry factor of 2, rather than 4, is reported for nn bremsstrahlung.
Presumably a clear estimate of the impact of these medium corrections requires some dedicated analysis, also
in view of the corrections we point out in this paper, which we do not attempt here.
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neutron Fermi momentum. As already noted by FM, and as we confirm in our results, the
Landau parameter F0 drops in all the relevant rates. Finally, the last operator in eq. (2.1) reads

h′
k ≡ − f2

π

m2
π

(
k2

k2 +m2
π

− Cρ
k2

k2 +m2
ρ

)
, (2.3)

where we stress the sign difference between the pion and ρ contributions. As a matter
of fact, ref. [26] included ρ-meson exchange only in the tensor coupling h′

k, but this was
justified by the choice of only determining nn bremsstrahlung, where tensor interaction is
the only contribution.

This was subsequently followed by ref. [18] which adopted the simple rule
k2

k2 +m2
π

→ k2

k2 +m2
π

− Cρ
k2

k2 +m2
ρ

, (2.4)

which however is wrong if applied to the spin-spin channel. Hence, the corresponding
results for np scattering in ref. [18] — which usually is the dominant contribution to axion
emission in supernovae — do not consistently incorporate the ρ-meson exchange reduction.
Since here we consider not only np bremsstrahlung but also MURCA, we account for the
consistent prescription.

We find it useful — especially for the particle physicist reader — to stress that the
contributions due to OPE+ρ exchange can be derived from the following Lagrangian

L = −igπN̄γ5τ
aNπa − i gρN̄γµτ

aNρa,µ − i
fρ

4mN
N̄σµντ

aN
(
∂µρa,ν − ∂νρa,µ

)
, (2.5)

where τa are the usual Pauli matrices, N =
(
χp

χn

)
, with χp,n being the spinor fields associated

with the proton and the neutron, while πa =
(

π++ π−
√

2 , i (π+− π−)√
2 , π0

)
are the pion fields.

Taking the non relativistic limit one can derive the following relations between the coupling
constant in this Lagrangian and the parameters for the potential in eq. (2.1)

gπ = 2mNfπ

mπ
, Cρ = (gρ + fρ)2m2

π

4m2
N

= g2
ρ

(1 + r)2m2
π

4m2
N

, (2.6)

where we introduced the tensor to vector ratio of the ρ-meson, r ≡ fρ/gρ. Following ref. [21]
we fix r = 6.1 and gρ =

√
4π × 0.41 ≃ 2.3. The inclusion of the ρ meson primarily serves the

purpose of reducing the OPE potential which otherwise at large momentum transfer would
saturate to a constant value and largely overpredict the interaction energy.

Finally, for completeness, we also report the piece of the non-relativistic Lagrangian
describing the electroweak interactions; for the charged-current interactions this is

L = G√
2

(
χ†

p(δµ
0 − gAσ

iδµ
i )χnℓ̄γµ(1 − γ5)νℓ + h.c.

)
, (2.7)

where gA ≃ 1.27 is the axial vector constant, G = GF cos θC with GF being the weak Fermi
coupling constant and θC the Cabibbo angle, χn,p are two-components Pauli spinors while ℓ
and νℓ are standard Dirac spinors. For the neutral-current interactions with neutrinos, we use

L = GF

2
√

2

(
χ†

p(cvδ
µ
0 − gAσ

iδµ
i )χp − χ†

n(δµ
0 − gAσ

iδµ
i )χn

)
νℓγµ(1 − γ5)νℓ + h.c., (2.8)

with cv = 1 − 4 sin2 θW and θW is Weinberg’s angle.
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In concluding this section, we wish to emphasize that the numerical results presented
herein utilize the Lagrangian couplings in their bare form, akin to the treatment of nucleon
masses. It is essential to note, however, that these couplings are expected to get in-medium
modifications. For example, axial coupling gA is expected to experience quenching at finite
densities [27]. Our results can be rescaled accordingly.

3 Neutrino emissivity

With the nucleon interaction potential at hand, we can proceed to compute the neutrino
emissivity for both bremsstrahlung and MURCA. The general form for single-flavor neutrino
emissivity (we will later account for the proper flavor multiplicities) reads

Qν = S
∫

d3pν,1
(2π)32ω1

∫ 4∏
i=1

d3pi

(2π)3

∫
d3pℓ

(2π)32ωl
ων(2π)4δ(P1+P2−P3−P4−Pℓ−Qν)F

∑
spins

|M|2,

(3.1)
where S is a symmetry factor for identical particles, equal to 1/4 for neutron-neutron and
proton-proton bremsstrahlung, 1/2 for MURCA and 1 for neutron-proton bremsstrahlung.
In eq. (3.1), capital letters P = (E,p) denote the 4-momentum of the corresponding particle.
In particular, pi and Ei are the nucleon momenta and energies respectively, ωℓ is the energy
of the second lepton emitted (either charged leptons for MURCA or neutral leptons for
bremsstrahlung ), and we also defined the phase space factor F , which reads F = f1f2(1 −
f3)(1 − f4) for bremsstrahlung and F = f1f2(1 − f3)(1 − f4)(1 − fℓ) for MURCA, where
fi are the fermion distribution functions with the appropriate chemical potentials. Finally,
ων is the total energy emitted into neutrinos (therefore ων = ω1 + ωℓ for bremsstrahlung
and ων = ω1 for MURCA). In all that follows, we assume that neutrinos freely escape and
we can neglect their distribution functions in the Boltzmann equation, an extremely good
approximation already a few seconds after the formation of a neutron star. Moreover, we will
work under the assumption of strong degeneracy for all nucleons, as well as for muons and
electrons, so that scattering processes only involve fermions close to the Fermi surface with
momentum pF,i and width ∼ T/pF,i ≪ 1. For the nucleons, we do not include the usual factor
2mN in the denominator appearing in a relativistic treatment, which would cancel out with a
corresponding factor in the normalization of the relativistic spinors in the matrix element.
Thus, we simply consider the nucleon wavefunctions normalized according to the condition
NN = 1, more appropriate for non-relativistic calculations. Finally, we do not include a
factor 2 for the spin of the particles in the integration over the phase space, which means that
in our squared amplitude calculations we always have to sum, not average, over the spins.

3.1 Bremsstrahlung emission

There are two types of processes to consider in this case: one with two identical nucleons
(either protons or neutrons) in the initial and final states, and one with a neutron and a
proton scattering off each other. We treat the two cases separately as both the amplitudes
squared and the phase spaces differ.

– 6 –
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3.1.1 Neutron-neutron (proton-proton) bremsstrahlung

The squared amplitude for identical nucleons bremsstrahlung is

|M|2 = 64g2
AG

2
F

ω1ω2
(ω1 + ω2)2

[
h′2

l + h′2
k + h′

kh
′
l

(
1 − 3 (k̂ · l̂)2

)]
.

Here we have already averaged over the directions of the outgoing leptons; since their momenta
are much smaller than the nucleon momenta, they are emitted essentially isotropically with
uncorrelated directions. Only the tensor interaction contributes to the squared matrix
element, as one can easily understand by noting that neutrino emission couples to the total
spin of the nucleon pair, and all the other interactions conserve the total spin. In a more
compact form we can write

|M|2 = 64g2
AG

2
F

ω1ω2
(ω1 + ω2)2 |m|2, (3.2)

where we introduced the reduced squared amplitude |m|2, defined as

|m|2 =
(
fπ

mπ

)4 ([ l2

(l2 +m2
π) − Cρ

l2

(l2 +m2
ρ)

]2
+
[

k2

(k2 +m2
π) − Cρ

k2

(k2 +m2
ρ)

]2
(3.3)

+
[

l2

(l2 +m2
π) − Cρ

l2

(k2 +m2
ρ)

][
k2

(k2 +m2
π) − Cρ

k2

(k2 +m2
ρ)

])
,

where k ≡ p1 − p3, l ≡ p2 − p3, with pi being the spatial momenta of the involved nucleons.
In writing the squared amplitude, we used the fact that k̂ · l̂ vanishes for nucleons exactly
on the Fermi surface, and thus is suppressed for very small T/µN .

The integrals over the Fermi distributions are easily evaluated in the limit T → 0,
using the result that∫ +∞

−∞

4∏
i=1

dxi
δ(x1 + x2 − x3 − x4 − ξ)

(ex1 + 1)(ex2 + 1)(e−x3 + 1)(e−x4 + 1) = 1
1 − e−ξ

2π2ξ

3

(
1 + ξ2

4π2

)
; (3.4)

it proves convenient to reinstate the integral over the nucleon momenta forcing them to be
on the Fermi surface. Thus, we can rewrite the emissivity as

Qν = G2
Fg

2
Am

4
N

96π12

∫
ω2

1dω1ω
2
2dω2

T 2(ω2
ν + 4π2T 2)

1 − e−ων/T

4∏
i=1

d3piδ(p2
i −p2

F,i)δ(3)(p1+p2−p3−p4)|m|2,

(3.5)
where we already included the symmetry factor S = 1/4. The integrals over the nucleons
phase space are strongly constrained by the delta functions. Since the matrix element |m|2

depends only on |k| = |p3 − p1| and |l| = |p4 − p1|, it is most convenient to reparameterize
the phase space integration in terms of these differences. After performing all of the integrals
except those on k = |k| and l = |l|, we are left with

QNN
ν = g2

AG
2
Fm

4
N

48π10

∫ ∞

0
dω1dω2ω

2
1ω

2
2

4π2T 2 +(ω1 +ω2)2

e(ω1+ω2)/T −1︸ ︷︷ ︸
I

×
∫ 2pF

0
dk

∫ √
4p2

F−k2

0
dl

|m|2√
4p2

F −k2 − l2︸ ︷︷ ︸
J

≡ g2
AG

2
Fm

4
N

48π10 IJ, (3.6)

– 7 –
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where J ≡ 2J1 + J2 and

J1 = f4
π

m4
π

πpF
[
ϕ(α) + ϕ(β)C2

ρ − 2CρΦ(α, β)
]
,

J2 = f4
π

m4
π

πpF
[
Ψ(α, α) − 2CρΨ(α, β) + C2

ρΨ(β, β)
]
.

(3.7)

Here pF is the Fermi momentum of either neutrons or protons, α = mπ/2pF, β =
mρ/2pF, and

ϕ(α) = 1 + α2

2(1 + α2) − 3
2α arctan

( 1
α

)
, (3.8)

Φ(α, β) = 1 −
α3 arctan

(
1
α

)
− β3 arctan

(
1
β

)
α2 − β2 , (3.9)

Ψ(α, β) = 1 − α arctan
( 1
α

)
− β arctan

( 1
β

)
+ αβ√

1 + α2 + β2 arctan
(√

1 + α2 + β2

αβ

)
.

The energy integral I in eq. (3.6) reads instead

I =
∫ ∞

0
dω1dω2ω

2
1ω

2
2

4π2T 2 + ω2

eω/T − 1
=

= 1
32

∫ ∞

0
dω

∫ ω

−ω
dδ

(ω + δ)2(ω − δ)2

eω/T − 1
(ω2 + 4π2T 2) = 164π8T 8

4725 , (3.10)

and therefore

QNN
ν = 41G2

Fm
4
N T

8

56700π2 J. (3.11)

Eq. (3.11) includes all diagrams and the exchange of the ρ meson. In figure 1, we show
our complete result (red curve) and directly compare it with the final numerical results eq. 65a
in FM, which is the standard expression used also in public numerical code NSCool. This
latter — in its public version — has the following rate for nucleon-nucleon bremsstrahlung
in units of erg/cm3/s

qbremnn = nν · 7.4d19 · mstn(i)4 · (kfn(i)/1.68d0) · alphann · betann ∗ (t/1.d9)8, (3.12)

where t is the temperature, normalised here to 109 K, nν is the number of neutrinos flavors,
alphann = 0.59, betann = 0.56 are kept constant in the code at their nuclear density values
(although they should be a function of density), kfn(i) is the nucleon Fermi momentum
in units of fm−1,and mstn(i) represent the nucleon mass in units of the bare one. This
expression coincides in fact with eq. 65a of FM. In the comparison plot we fix the number
of emitted neutrino flavors to 3, so eq. (3.11) has been multiplied by 3; correspondingly, we
show the result of eq. 52 of FM multiplied by 3, or equivalently their eq. 65a multiplied
by 3/2 since there they accounted for two-flavor emission. For both expressions we fix the
neutron mass to be its in-vacuum value; in order to implement any in-medium prescription
for the effective mass, m̃N = f(pF)mN, it will be sufficient to scale our results by f(pF)4.
We also multiply eq. (3.11) by the factor betann = 0.56. This is an extra suppression factor
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Figure 1. Comparison between the neutron-neutron bremsstrahlung obtained in this work (red
curve), and the emissivity computed by FM (blue curve) and used in public codes such as NSCool.
Our result for nuclear densities (marked by the vertical gray dashed line) and above is considerably
smaller. For all curves we have fixed the temperature to T = 109 K, Nν = 3, the neutron mass to be
the bare one and we also included the extra suppression factor betann = 0.56 introduced in ref. [4].

introduced by FM in their OPE potential to capture “short-range correlations induced by
the hard core of the NN interaction” (see their eq. 17 and table I). FM stated that the
result in their eq. 52 was a good representation of the final neutrino emissivity because of
a compensation between two missing effects: the “exchange diagrams” contribution and
the ρ-exchange suppression. However, we do not observe this compensation and our result
for nuclear densities, i.e kf ∼ 1.7 fm−1 ∼ 335 MeV (indicated by a gray dashed vertical
line in figure 1), and above is considerably smaller. Given the simplicity of the master
formula (3.11), it can be easily implemented when doing numerical comparison within the
framework of OPE+ρ-meson exchange.

3.1.2 Neutron-proton bremsstrahlung

The structure of the calculation for neutron-proton bremsstrahlung is very similar to the
previous one. After setting the symmetry factor S of eq. (3.1) to one, instead of 1/4, one
needs to change the squared amplitude, which now reads

|M|2 = 64G2
F g

2
A

ω1ω2
ω2

[
h′2

k + 2h′2
l + 4(h′

k − h′
l)(g′

k − g′
l + f ′ − g) + 6(g′

k − g′
l + f ′ − g)2

− 2h′
lh

′
k(1 − (k̂ · l̂)2)

]
≡ 64G2

F g
2
A

ω1ω2
(ω1 + ω2)2 |m|2,

(3.13)

where now we notice the presence of all Landau parameters (except for f , which does not
contribute). The Feynman diagrams for this process are depicted in figure 2; diagrams from
a) to d) constitute the t-channel, where the exchange momentum is k, while diagrams from e)

– 9 –



J
C
A
P
1
1
(
2
0
2
4
)
0
1
5

(1) n

(2) p

(3) n

(4) p

π0
k, ρ

0
k

ν̄2

ν1

(a)

(1) n

(2) p

(3) n

(4) p

π0
k, ρ

0
k

ν1

ν̄2

(b)

(1) n

(2) p

(3) n

(4) p

π0
k, ρ

0
k

ν1ν̄2
(c)

(1) n

(2) p

(3) n

(4) p

π0
k, ρ

0
k

ν1
ν̄2

(d)

(1) n

(2) p (3) n

(4) p

π+
l , ρ
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l , ρ

+
l
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(h)

Figure 2. Feynman diagram for neutron-proton bremsstrahlung. Diagrams a-d constitute the
t-channel, while e-h represent the u-channel.

to h) are the u-channel, where the exchange momentum is l. We notice that our expression
for the amplitude, even neglecting Landau terms, differs from that of FM for a factor of
2 missing in the third interference term.

Due to our assumed form for the interaction potential, the matrix element |m|2 depends
only on the modules of the momentum exchange k in the t-channel and l in the u-channel.
Assuming pp ≪ pn, the latter l = p4 − p1 is dominated by the momentum of the neutron
−p1 on the Fermi surface, and p4 is only a small correction. Since the matrix element
itself |m|2 is a slowly-varying function of l = |l|, we will expand J to the first non-vanishing
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Figure 3. Comparison between the neutron-proton bremsstrahlung emissivity in this work (red
curves) and in eq. (65b) of FM (blue curve) as a function of the neutron Fermi momentum. For all
the curves we fixed Nν = 3, T = 109 K, pp = 85

(
pn

340 MeV

)2
MeV,we introduced the extra suppression

factor betanp = 0.66 and we kept the nucleon masses fixed to their value in vacuum.

order in ϵ = pp/pn as

Jnp = π

2

∫ 2pp

0
dk

[
|m|2(k,pn)+pn∂l|m|2(k,pn)ϵ

2

4

(
1− 3k2

4p2
p

)
+p2

n∂
2
l |m|2(k,pn)ϵ

2

4

(
1− k2

4p2
p

)]
(3.14)

We have checked that for typical values inside the core of the neutron star, keeping only
the first term of the expansion leads to few %. Putting all factors together we find

Qnp
ν =

41 g2
AG

2
Fm

2
nm

2
p T

8

14175π2 Jnp; (3.15)

keeping only the leading term in eq. (3.14) the final integration can be done analytically

Jnp = πpp

[
f4

π

m4
π

(
2η2(mπ) + 4C2

ρη
2(mρ) + ϕ(αp) + 3C2

ρϕ(βp) + 2CρΦ(αp, βp)

− 2 (η(mπ) + Cρη(mρ)) (ψ(αp) + Cρψ(βp)) − 4C2
ρη(mρ)ψ(βp)

)
+ 6(g − f ′)2

+4 f
2
π

m2
π

(g − f ′) (ψ(αp) + 2Cρψ(βp) − η(mπ) − 2Cρη(mρ))
]

(3.16)

≡ πppJ (αp, βp),

where αp = mπ/(2pp), βp = mρ/(2pp), and η(m) = p2
n/(m2 +p2

n). The functions ϕ(α), Φ(α, β)
are defined in (3.8) and (3.9), respectively, while ψ(α) is given by

ψ(α) = 1 − α arctan
( 1
α

)
. (3.17)
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Again, this result must be multiplied by the number of neutrino flavors, Nν = 3, to obtain
the total luminosity. If we put Cρ and the Landau parameters to zero in our expression, and
neglect the interference term −2 η(mπ)ψ(αp), we recover eq. 53a+53b of FM without Landau
parameters. Our expression with the Landau parameters is different than that reported
in FM, due to cancellations with the interference term, neglected in FM. In particular,
we notice that the parameter g′ disappears completely. However, we have checked that
this discrepancy is not the leading one in the final numerical difference between our results
and the previous literature.

In figure 3 we compare our complete emission rate (red curves) with the emission rates
implemented in NSCool (blue curve)

qbremnn = nν · 1.5d20 · mstn(i)2mstp(i)2 · (kfp(i)/1.68d0) · alphanp · betanp · (t/1.d9)8,

(3.18)
where alphanp = 1.06, betanp = 0.66 are kept constant in the code, kfp(i) is the proton
Fermi momentum in units of fm−1,and mstp(i) represents the proton mass in units of the
bare one. This expression coincides with eq. 65b of FM and includes the contribution of
the Landau parameters. The latter are seen to slightly decrease the emissivity, due to the
negative contribution of the interference term. However, the values of these parameters, and
therefore their impact on the emissivity, should not be taken as precise, given that they
are only estimated for the case of nuclear-symmetric matter. Our analytical expressions
allow to easily retrieve the emissivity for arbitrary values of the Landau parameters, directly
assessing the impact of this uncertainty. In all curves we fixed also Nν = 3 for the number of
neutrinos flavors, T = 109 K, the nucleon masses to their in vacuum values, and the proton
momentum to be pp = 85

(
pn

340 MeV

)2
MeV, following FM.

The numerical discrepancy originates partially from the interference term −2η(mπ)ψ(αp),
not included in FM on the grounds that its enhancement to the emission would be approxi-
mately compensated by the ρ-meson exchange. However, we notice that the result in eq. 70
of FM is already the full result, while the authors seem to multiply it by an extra factor
of 2 because of “group II diagrams”. It is unclear what these diagrams are, but it may be
that this erroneous extra factor of 2 led to the claimed compensation with the ρ-meson effect.
Consequently, for nuclear densities and above, the emission rate used in present numerical
codes and most of the literature seems to be overestimated by a factor ∼ 2.

As a final remark, we note that the impact of the ρ meson alone is less pronounced
in this case compared to nucleon-nucleon bremsstrahlung. This is due to the presence of
spin-spin interactions (eq. (2.2)), which partially counteract the reduction in the tensor
channel (eq. (2.3)).

3.2 MURCA

We now pass to consider MURCA processes. Here we compute the rates of both the
neutron branch

n+ n → n+ p+ ℓ+ ν̄ℓ, n+ p+ ℓ → n+ n+ νℓ (3.19)

and the proton branch

p+ n → p+ p+ ℓ+ ν̄ℓ, p+ p+ ℓ → p+ n+ νℓ, (3.20)

– 12 –

http://www.astroscu.unam.mx/neutrones/NSCool/


J
C
A
P
1
1
(
2
0
2
4
)
0
1
5

(1) n

(2) n

n (3)

p (4)

π0
k, ρ

0
k

ℓ
ν̄ℓ

(A)

(1) n

(2) n

n (3)

p (4)

π0
k, ρ

0
k

ℓ
ν̄ℓ

(B)

(1) n

(2) n

n (3)

p (4)

π+
k′ , ρ

+
k′

ℓ ν̄ℓ

(C)

(1) n

(2) n

p (4)

n (3)

π0
l , ρ

0
l

ℓ

ν̄ℓ

(A)

(1) n

(2) n

p (4)

n (3)

π0
l , ρ

0
l

ν̄ℓ

ℓ

(B)

(1) n

(2) n

p (4)

n (3)

π+
l′ , ρ

+
l′

ℓ
ν̄ℓ

(C)

Figure 4. Feynman diagram for the MURCA processes in the neutron branch. Diagrams a-c
constitute the t-channel, while d-f represent the u-channel.

where ℓ = e, µ. The rate for direct and inverse process of neutrino emission are identical; this
follows from the approximation that the neutrino energy is much smaller than the nucleon
and electron energies, so that the hadronic matrix elements are independent of the neutrino
energy, and from detailed balance. Thus, we introduce a factor of 2 to account for both
processes (we always consider the combined emission rate of neutrinos and antineutrinos; the
two are of course identical by the same argument). We perform the computation for a generic
lepton generation; the total emissivity in this case is then obtained by summing over the
contributions of electrons and muons alone, since tau leptons are to0 heavy to be produced.
This factor, however, is not a simple factor 2, since muons are not fully relativistic.
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In this case we also find it useful to first compute the neutrino emission rate and then
the final emissivity. The two are easily related as

QMURCA
ν = 2

∫
d3pν

(2π)3ωνΓMURCA
ν ; (3.21)

where we remind the factor 2 for the direct and inverse processes. This is particularly
convenient because with the neutrino emission rate at hand, one can also easily obtain the
neutrino absorption rate, another important quantity in the physics of neutron stars.

3.2.1 Neutron branch

We start studying the neutron branch, which is supposed to be the most relevant one for
typical equations of state [15]. To make contact with basically all previous literature, we first
perform the computation in the triangular approximation, i.e neglecting protons and leptons
momenta pn ≫ pp, pℓ in the Dirac-δ for the conservation of momentum. We then proceed to
perform the computation dropping this approximation, and quantifying the discrepancy.

Triangular approximation. The squared amplitude for the neutron branch MURCA
process n(p1) + n(p2) → n(p3) + p(p4) + ℓ(pℓ) + ν̄(pν), in the triangular approximation is

|M|2 = 64G2g2
A

ωνωℓ

(ων + ωℓ)2

12(f ′ − g)2 + 21
4

(
fπ

mπ

)4 p4
n

(p2
n +m2

π)2

(
1 − Cρ

p2
n +m2

π

p2
n +m2

ρ

)2


≡ 64G2g2
A

ων

µℓ
|m|2 .

(3.22)

where µℓ is the Fermi energy and where we have assumed that pn ≫ pp, pe, so that k ≈ −p2,
l ≈ −p1, and k · l = −p2

n/2. Notice that even for mildly relativistic or non-relativistic
muons, the leptonic trace still leads to the characteristic ωνωℓ product in the numerator,
since any term proportional to the momentum of the particle averages to zero due to isotropy
of the emitted neutrino. In the last step we also used the fact that electrons and muons are
degenerate in the NS core, with ωℓ ∼ µℓ ≫ ων ≈ T . We highlight that when computing
the complete amplitude squared, all the Landau parameters but f ′ and g drop out in the
triangular approximation. This was not appreciated in FM, where in the computation of
the “exchange terms” Landau parameters were not included.

We now compute the emission rate

ΓM,T
ων

= 1
2

1
2ων

∫
d3p1
(2π)3

∫
d3p2
(2π)3

∫
d3p3
(2π)3

∫
d3p4
(2π)3

∫
d3pℓ

(2π)3(2ωℓ)
64G2g2

A

ων

µℓ
|m|2×

× (2π)4δ(E1 + E2 − E3 − E4 − ωℓ − ων)δ(3)(p1 + p2 − p3 − p4 − pℓ − pν)×
× f1f2(1 − f3)(1 − f4)(1 − fℓ),

(3.23)

where the superscript “M,T” stands for “MURCA, Triangular”, and the initial factor 1/2
is the symmetry factor for identical particles in the initial state. Using the fact that |m|2
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is constant and the degeneracy of the nucleons, then

ΓM,T
ων

= G2g2
A

8m3
nmpp

3
npp|m|2

(2π)11
pℓ

µℓ

∫
dΩl

4∏
i=1

dΩiδ
(3)(p1 + p2 − p3 − p4 − pℓ − pν)×

×
∫

dωe

4∏
i=1

dEiδ(E1 + E2 − E3 − E4 − ωℓ − ων)f1f2(1 − f3)(1 − f4)(1 − fℓ)

≡ G2g2
A

8m3
nmpp

3
npp|m|2

(2π)11
pℓ

µℓ
AE ,

(3.24)

where pℓ if the Fermi momentum of the emitted lepton (either an electron or a muon). The
integral over the energies can be easily performed in the complex plane and gives

E = 1
24

(ω2
ν + 9π2T 2)(ω2

ν + π2T 2)
eων/T + 1

, (3.25)

while the angular integral (under the triangular approximation) reads

A = 128π4

p3
n

. (3.26)

Putting everything together we get

ΓM,T
ων

= 8G2g2
Appm

3
nmp|m|2

3(2π)7
(ω2

ν + 9π2T 2)(ω2
ν + π2T 2)

eων/T + 1

= 8G2g2
Am

3
nmppp

3(2π)7
(ω2

ν + 9π2T 2)(ω2
ν + π2T 2)

eων/T + 1
pℓ

µℓ

×

12(f ′ − g)2 + 21
4

(
fπ

mπ

)4 p4
n

(p2
n +m2

π)2

(
1 − Cρ

p2
n +m2

π

p2
n +m2

ρ

)2


(3.27)

Finally, the total energy loss rate is

QM,T
ν = 2

(
1 + pF µ

µµ

)
× 11513

120960π
G2g2

Af
4
π

m4
π

m3
nmpppT

8×

× 1
2 × 21

16 ×
[

32
7

(
mπ

fπ

)4
(f ′ − g)2 + 2 (η(mπ) − Cρη(mρ))2

]

≡ 2
(

1 + pF µ

µµ

)
× 11513

120960π
G2g2

Af
4
π

m4
π

m3
nmpppT

8αMURCA,

(3.28)

where the factor of 2 in front of everything takes into account the inverse reaction, n +
p + l → n + n + νℓ, where we assumed the electrons to be fully relativistic (and therefore
pe ≃ µe), and where

αMURCA = 1
2 × 21

16 ×
[

32
7

(
mπ

fπ

)4
(f ′ − g)2 + 2 (η(mπ) − Cρη(mρ))2

]
. (3.29)

Compared to eq. 56 of FM, in addition to the factor 21/16 coming from the addition of
the u-channel and interference terms, we get a different structure of the Landau parameters
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Figure 5. MURCA emissivity in a realistic NS profile with APR EOS using our eq. (3.28) (red
curves) with (solid) and without (dashed) ρ-meson exchange, and the expression employed in NSCool
(blue curve). In both cases the temperature was fixed to T = 109 K, the nucleon masses to their
bare values, the Landau parameters to the values quoted in FM and we fixed the short-range physics
suppression factor to betan = 0.68d0.

and a factor of 1/2 in the OPE plus ρ-exchange terms. We have been able to reproduce the
amplitude squared in eq. 39 of FM, including Landau parameters, which is the sum of t-channel
and u-channel amplitudes squared (the two are the same). However, we have not been able to
trace back the factor of 2 discrepancy in their final emission rate, nor the meaning of the so
called “exchange diagrams” in this case, which would correspond to our u-channel diagrams.
The inconsistency extends to their eq. 75, where the ratio between emissivity with and
without “exchange terms” should be ∼ 0.65, not ∼ 1.3, based on their own rates. Nevertheless,
it seems that all the subsequent literature [5, 15, 28] has adopted this erroneous factor of two
in the emission rate. Then, the inclusion of the ρ-meson further suppresses the emissivity,
which has been therefore overestimated by more than a factor of 2 at nuclear densities.

The MURCA process is typically the most important for NS cooling. Given its particular
relevance, in this case to make the comparison between our findings and previous results, we
use a realistic NS profile provided in NSCool for a NS of 1 M⊙ with the Akmal-Pandharipande-
Ravenhall (APR) equation of state (EOS) [29] . In figure 5 we show the comparison for this
NS radial profile between our result for the triangular approximation (red curve), eq. (3.28),
and the one reported in NSCool (blue curve) again in units of erg/cm3/s

Murcan = 8.55d21 ·mstn(i)3 ·mstp(i) ·(kfe(i)+kfm(i))/1.68d0 ·alphan ·betan ·(t/1.d9)8,

with alphan = 1.76d0 − 0.63d0 · (1.68d0/kfn(i))2 and betan = 0.68d0. This equation co-
incides with eq. 65b of FM, with the addition of the muon contribution. Apart from the
differences mentioned above, we notice two further issues with this expression: the presence
of the Fermi momentum of the electron, pe, rather than the one of the proton; the muon
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contribution is overestimated because it doesn’t take into account that, contrary to electrons,
muons are not relativistic or mildly relativistic. These two problems were already noticed
recently in ref. [28]. However, we stress that these corrections alone tend to make the output
of NSCool deviate further from our exact computation.

Figure 5 makes manifest that the results presented in the literature overestimate the
MURCA emission rate by more than a factor of 2. The biggest impact comes from the ρ-meson
exchange, whose contribution is not compensated by other factors when everything is computed
self-consistently. We verified that instead the impact of the Landau parameters is modest.

General expression. We now want to check the impact of the triangular approximation;
as a simple reason for doubting its full applicability, we note that if the proton and electron
momenta are aligned their sum would be essentially identical to the neutron Fermi momentum.

Two things need to be changed: the squared amplitude and then the corresponding
angular integration, while the rest stays the same. The squared amplitude |M|2 can be written
as usual in terms of a reduced one |M|2 = 64G2 ων

ωl
|m|2. In turn, the reduced amplitude

squared can be written as |m|2 = |mu|2 + |mt|2 + 2ℜ(m∗
umt), where the first two terms are

the u and t channels amplitude squared, while the third one is their interference. With the
usual momentum assignments n(p1) + n(p2) → n(p3) + p(p4) + ℓ(pℓ) + ν̄(pν), the t-channel
amplitude squared is written as follows

|mt|2 = g2
A

[
6(f ′2 + g2) − 2

(
3f ′g′

k + 3(f ′ + 2g)g′
k̃

+ f ′h′
k + (f ′ + 2g)h′

k̃

)
+

+ (3g′2
k + 9g′2

k̃
+ 2g′

kh
′
k + h′2

k + 6g′
k̃
h′

k̃
+ 3h′2

k̃
)
]

+ 3(g′
k − g′

k̃
)2 + 2(g′

k − g′
k̃
)(h′

k − h′
k̃
)

+ (h′
k − h′

k̃
)2 + 2h′

kh
′
k̃

(
1 − (k̂ · ˆ̃k)2

)
(3.30)

where k = p1 − p3 and k̃ = p2 − p4. The u-channel piece, |mu|2, is the same but with
k → l = p2 − p3 and k̃ → l̃ = p1 − p4. The interference term reads instead

2ℜ(m∗
umt) = g2

A

[
−24f ′g+2

(
2f ′

(
3(g′

k̃
+g′

l̃
)+h′

k̃
+h′

l̃

)
+3g(g′

k +g′
k̃

+g′
l +g′

l̃
)

+ g(h′
k +h′

k̃
+h′

l +h′
l̃
)
)

−
(
g′

l(h′
k +h′

k̃
)+g′

l̃
(h′

k +5h′
k̃
)+h′

kh
′
l −h′

k̃
h′

l −h′
kh

′
l̃
+3h′

k̃
h′

l̃
+

+ g′
k(3g′

l +3g′
l̃
+h′

l +h′
l̃
)+g′

k̃
(3g′

l +15g′
l̃
+h′

l +5h′
l̃
)
)

+ (3.31)

+ h′
kh

′
l

(
1−(k̂ · l̂)2

)
−2h′

k̃
h′

l

(
1−(ˆ̃k · l̂)2

)
−2h′

kh
′
l̃

(
1−(k̂ ·ˆ̃l)2

)
+2h′

k̃
h′

l̃

(
1−(ˆ̃k ·ˆ̃l)

)2]
+

+
[
(g′

l −g′
l̃
)(h′

k −h′
k̃
)+(g′

k −g′
k̃
)(h′

l −h′
l̃
)−(h′

k −h′
k̃
)(h′

l −h′
l̃
)+3(g′

l −g′
l̃
)(g′

k −g′
k̃
)+

+ 2h′
kh

′
l

(
1−(k̂ · l̂)2

)
−2h′

k̃
h′

l

(
1−(ˆ̃k · l̂)2

)
−2h′

kh
′
l̃

(
1−(k̂ ·ˆ̃l)2

)
+2h′

k̃
h′

l̃

(
1−(ˆ̃k ·ˆ̃l)2

)]

where xij , with i, j = k, k̃, l, l̃ is the cosine of the angle between the corresponding vectors.
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The emission rate is then

ΓMURCA,n
ων

= 8G2
Fp

3
nppplm

3
nmp

(2π)11µℓ
E
∫

dΩℓ

4∏
i=1

dΩiδ
(3)(p1 + p2 − p3 − p4 − pℓ − pν)|m|2

= 256G2
Fp

3
nppplm

3
nmp E

(2π)11µℓ

1
p3

npppℓ

∫
d3pℓ

∫ 4∏
i=1

d3piδ(p2
i − p2

F,i)δ3(p1 + p2 − p3 − p4 − pℓ)|m|2

= 256G2
Fm

3
nmpE

(2π)11µℓ

∫ 4∏
i=1

d3piδ(p2
i − p2

F,i)|m|2,

where in the last step we used the spatial δ of Dirac to integrate the electron momentum.
At this point, in order to perform the angular integrations more easily, we find it useful

to perform the following change of basis (with unit determinant) p1,p2,p3,p4 → p2, l, l̃,p4.
With this transformation, the rate reads

ΓMURCA,n
ων

= 256G2m3
nmpE

(2π)11µℓ

∫
d3p2δ(p2

2 − p2
n)︸ ︷︷ ︸

pn
2

∫
dΩ2

∫
d3p4δ(p2

4 − p2
p)︸ ︷︷ ︸

pp
2

∫
dΩ4

∫
d3ld3 l̃δ(|l − p2|2 − p2

n)×

× δ(|̃l + p4|2 − p2
n)δ(p2

ℓ − |l + l̃|2)|m|2 =

= 16G2m3
nmpE

(2π)9µℓ

∫
Σ
dldl̃

∫ 2π

0
dϕ

∫ 2π

0
dβ|m|2,

where the region Σ is defined by

Σ : |l̃ − pn| < pp, 0 < l < 2pn, l + l̃ > pℓ, |l − l̃| < pℓ (3.32)

where it is understood that all the scalar products fixed by the delta functions must be
consistently replaced in the reduced squared amplitude. The angles ϕ and β are the azimuthal
angles compared to the plane containing l and l̃ of p2 and p4, respectively. They are defined
through the relations

sinϕ = p2 · (l × l̃)
pnll̃

√
1 − x2

2l

√
1 − x2

ll̃

, sin β = p4 · (l × l̃)
ppll̃

√
1 − x2

4l̃

√
1 − x2

ll̃

, (3.33)

where x2l = p2 · l/(pnl) and x4l̃ = p4 · l̃/(pp l̃) are fixed by the kinematic constraints in (3.2.1).
The remaining four integrals must be done numerically after having written the reduced

amplitude squared in this new convenient basis. Finally, the emissivity is given by

QMURCA,n
ν = 11513

483840
G2m3

nmp

(2π)3µℓ

∫
Σ
dldl̃

∫ 2π

0
dϕ

∫ 2π

0
dβ|m|2. (3.34)

We show our final results for eq. (3.34) in figure 6 with (solid red) and without (dashed)
ρ-meson exchange. Compared to our triangular approximation (shaded red curve), the full
numerical results differ by a factor ∼ 20 − 30% at most. Somewhat surprisingly – given
that in the considered NS model pp + pe ∼ pn – the triangular approximation provides quite
precise results. In all cases the temperature was fixed to T = 109 K, the nucleon masses
to their bare values, the Landau parameters to the values quoted in FM and we fixed the
short-range physics suppression factor to betan = 0.68d0.
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Figure 6. Exact MURCA emissivity for our eq. (3.34) with (solid red curves) and without (dashed)
ρ-meson exchange, compared again with the expression employed in NSCool (blue curve) and our
triangular approximation (shaded red curve). We see that the impact of the triangular approximation
is around ∼ 20−30%. In all cases the temperature was fixed to T = 109 K, the nucleon masses to their
bare values, the Landau parameters to the values quoted in FM and we fixed the short-range physics
suppression factor to betan = 0.68d0. The left panel shows the emissivity as a function of the radius
of one solar mass NS with APR EOS. In the right hand panel we show the same quantities but as a
function of the neutron momentum in the NS determined from the same profile used in the left panel.
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Figure 7. Exact MURCA emissivity for the proton branch in eq. (3.37) (yellow curves), compared
with the neutron branch result in eq. (3.34) (red curve) and with the proton branch expression
employed in NSCool (blue curve). We see that the proton branch is always subdominant but not
by a large amount, although it will generally be more suppressed once effective masses are properly
taken into account (because the effective proton mass in NS is usually smaller than the effective
neutron mass). Again in all cases the temperature was fixed to T = 109 K, the nucleon masses to
their bare values, the Landau parameters to the values quoted in FM and we fixed the short-range
physics suppression factor to betan = 0.68d0. As in figure 6 the left panel shows the emissivity as a
function of the radius of one solar mass NS with APR EOS, while the right hand panel shows the
same quantities but as a function of the neutron momentum in the NS determined from the same
profile used in the left panel.
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3.2.2 Proton branch

The results described in the previous sections are for the MURCA neutron branch. Now
we provide the results also for the proton branch and check its relevance. Assuming the
following momentum assignments p(p1) + n(p2) → p(p3) + p(p4) + ℓ(pℓ) + ν̄(pν) and based
on crossing-symmetry arguments, it is easy to realize that the squared amplitude for the
proton branch can be obtained by replacing k → −k, k̃ → −k̃, and l ↔ l̃. Thus we can
immediately write the neutrino emission rate as

ΓMURCA,p
ων

=
16G2mnm

3
pE

(2π)9µℓ
θ(pl + 3pp − pn)

∫
Σ
dldl̃

∫ 2π

0
dϕ

∫ 2π

0
dβ|m|2, (3.35)

where the angles ϕ and β are defined as before while the region Σ now is given by

Σ : |l − pn| < pp, 0 < l̃ < 2pp, l + l̃ > pℓ, |l − l̃| < pℓ, (3.36)

and finally

QMURCA,p
ν = 11513

483840
G2m3

pmn

(2π)3µℓ
θ(pl + 3pp − pn)

∫
Σ
dldl̃

∫ 2π

0
dϕ

∫ 2π

0
dβ|m|2. (3.37)

We show the result for the proton branch (yellow curves), compared with the neutron
branches (red curves) in figure 7, where we also show the proton branch implemented in
NSCool (blue curve)

qmurcap = 8.55d21 · mstn(i) · mstp(i)3 · (kfe(i)/1.68d0) · (kfe(i)+ (3.38)
+3.d0 ∗ kfp(i) − kfn(i))2/(8.d0 · kfe(i) · kfp(i)) · alphap · betap · (t/1.d9)8,

where alphap, betap are the same as for the neutron branch. The proton branch is always
subdominant but not by a large amount, although this may change when effective masses
are properly taken into account, because the effective proton mass in NS is usually smaller
than the effective neutron mass.

For completeness, in figure 7 we also show the results in an approximation analogous
(dotted red) to the triangular one for the neutron branch. In the proton branch case this
approximation amounts to take k and l to be the maximum exchanged momenta [15]

QMT,p
ν = 2 ×

 ∑
ℓ=e,µ

(pℓ + 3pp − pn)2

µℓ

× 11513
645120πG

2g2
Am

3
nmpT

8×

×

2(f ′ − g)2 +
(
fπ

mπ

)4 (pn − pp)4

((pn − pp)2 +m2
π)2

(
1 − Cρ

(pn − pp)2 +m2
π

(pn − pp)2 +m2
ρ

)2
 .

(3.39)

This result – which we label “Proton Branch Approx.” in our figure — agrees very precisely
with the output of NSCool, and it is also very similar to the exact computation.

4 Neutrino absorption rate

As MURCA and its inverse is the dominant process of neutrino emission, their time-reversed
versions

n+ n+ νℓ → n+ p+ ℓ, n+ p+ ℓ+ νℓ → n+ n (4.1)
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are among the primary absorption mechanisms in neutron star matter (the primary one for
old neutron stars). The absorption rates can be directly related to the emission ones from
the principle of detailed balance; once the emission rate Γem

ν (ων) for a neutrino with energy
ων is known, the absorption rate Γabs

ν (ων) can be found as

Γabs
ν (ων) = Γem

ν (ων)eων/T . (4.2)

Notice that there is a somewhat conventional choice in the definition of absorption rate;
in a given environment, the evolution of the neutrino distribution is driven by the full
collisional term (

∂fν

∂t

)
coll

= Γem
ν (ων)(1 − fν) − Γabs

ν (ων)fν , (4.3)

which can be rewritten as (
∂fν

∂t

)
coll

= Γem
ν (ων) − Γ̃abs

ν (ων)fν , (4.4)

where we defined an enhanced absorption rate

Γ̃abs
ν (ων) = Γem

ν (ων) + Γabs
ν (ων) = Γem

ν (ων)(1 + eων/T ) (4.5)

which also accounts for the suppression in the inverse emission process caused by the Pauli
exclusion principle. This is simply called the absorption rate in FM; here for clarity we will
adopt the more conventional definition Γabs

ν (ων).
Thus, in the triangular approximation the absorption rate (for the neutron branch, which

is the dominant one) is easily found to be

Γabs
ων

= 2G2g2
Am

3
nmppp

(2π)7
(ω2

ν + 9π2T 2)(ω2
ν + π2T 2)

e−ων/T + 1
pℓ

µℓ

×

16(f ′ − g)2 +
(
fπ

mπ

)4 7p4
n

(p2
n +m2

π)2

(
1 − Cρ

p2
n +m2

π

p2
n +m2

ρ

)2
 , (4.6)

which also corresponds to the emission rate with the substitution ων → −ων . In figure 8 we
show the neutrino mean free path (MFP) for ω = T = 100 keV (red curves) and ω = T = 1 MeV
(blue curves) with (solid) or without (dashed) the contribution from ρ exchange. We also
fixed pp = 85

(
pn

340 MeV

)2
MeV, T = 109 K, bare nucleon masses and standard values for the

Landau parameters. The MFP exceeds by several orders of magnitude the typical radius
of a NS for both cases, with or without the inclusion of a ρ meson. We also checked that
the impact of Landau parameters in these conditions is very modest.

5 Conclusions

The cooling of NSs via neutrino emission plays a fundamental role in their evolution, especially
in its early stage. A clear understanding of its quantitative impact is therefore necessary to
compare with the evolution of surface temperature and luminosity of isolated NSs. Obviously
this process is directly affected by multiple uncertainties from nuclear physics, especially
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Figure 8. Electron neutrino MFP, λν = 1/Γabs
ν , as a function of the neutron Fermi momentum for

ω = T = 100 keV (red curves) and ω = T = 1 MeV (blue curves) with (solid) or without (dashed) the
contribution from ρ exchange. For this plot we also fixed pp = 85

(
pn

340 MeV

)2
MeV, T = 109 K, bare

nucleon masses and standard values for the Landau parameters.

in regards to how the nucleon-nucleon interaction is modeled, both in vacuum and in the
dense nuclear medium. However, the large nuclear physics uncertainties should not obscure
the importance of the particle physics framework and approximations used to obtain the
cooling rates. If anything, the existence of already large uncertainties in the nuclear physics
sector should push us further into clarifying completely the particle physics aspects — i.e.,
phase-space and matrix element evaluation — of this process.

In this work, we have moved from this push into a complete reevaluation of the cooling
rates from nn bremsstrahlung, np bremsstrahlung, and MURCA processes. For all three
processes, we have found a wide range of differences compared to the seminal treatment
in FM. Generally, these differences seem to come mainly from the counting of different groups
of diagrams, and the neglect of interference diagrams for certain processes. We have also
folded in the suppression of the nucleon interaction potential at large momentum exchange,
modeled as a rho-meson exchange, which was in principle present in FM but argued to cancel
with the interference diagrams. We do not find evidence for this cancellation, especially in
the cooling rate as a function of density; rather, neglecting the rho-meson exchange provides
an additional cause for overestimation of the cooling rates. Further, we have gone beyond the
conventional triangular approximation, in which the Fermi momenta of protons and electrons
are neglected compared to the ones of neutrons; while by itself this seems to be a 20-30%
effect, piled up with the remaining differences it conspires to create significant discrepancies
with the results from previous literature. We refer to our main text for a detailed discussion
of each of the differences in treatment, and their impact, for each of the processes. Here we
rather focus on the implications for the phenomenological studies of neutron star cooling.

We find that the cooling rates for MURCA, the dominant process, can be even a
factor 2 lower when integrated over the entire star, and even more for the space-dependent

– 22 –



J
C
A
P
1
1
(
2
0
2
4
)
0
1
5

10 1 100

time [Myr]

1032

1033
L

 [e
rg

/s
]

NS Cooling (APR EOS)
NS Cool Original
Updated (this work)
J1605

Figure 9. Cooling curve for a NS of mass MNS = M⊙ with APR EOS with (solid) and without
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emission rate per unit volume. For the bremsstrahlung processes, which are subdominant,
similar discrepancies are found. These differences are evaluated using the same short-range
interactions as FM, modeled with Landau parameters which are however highly uncertain.
Our analytical treatment is particularly suitable to evaluate the impact of these uncertainties,
and flexible enough to be adapted to specific choices of the Landau parameters. These
discrepancies come entirely from particle physics aspects; to maintain a consistent and fair
comparison, we have stuck to the same framework as FM for the modeling of the nucleon-
nucleon interaction potential. A more refined treatment of this point would certainly be of
interest, but we notice that NS cooling is anyway at present generally described following FM.

The impact of these corrections on the full evolution of NSs due to their cooling needs
to be assessed. To illustrate the significance of these order-one factors, we present in figure 9
the time evolution of the luminosity for a NS of one solar mass, with APR EOS and without
superfluidity, computed using NSCool. The dashed curve represents the result using the incor-
rect MURCA rate, while the solid curve shows the result with our corrected rate. We compare
these theoretical curves with the properties of the isolated neutron star RX J1605.3 [30, 31].
Notably, with the old rates, the APR EOS almost fails to match the observations within their
error bars. However, using the correct MURCA emissivity leads to an excellent fit. We stress
again that we did not attempt to tackle in-medium corrections, which may well be even more
important than the various discrepancies we outlined in this work. Nevertheless, some of the
matter effects such as the effective nucleon masses or the quenching of the axial couplings,
are typically implemented as an overall rescaling of the FM framework we adopted.

Intriguingly, the numerical corrections we have derived can have an important impact
beyond purely astrophysical questions. A precision treatment of NS cooling, compared with
the time evolution of isolated NSs, is also the basis of powerful constraints on novel particle
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emission, and especially for the QCD axion [16, 32–37]. In addition, the axion emission is
evaluated in the same framework as the neutrino one, and therefore must also be reassessed.
Thus, axion constraints would be directly affected by the results of this work. We will proceed
with a reassessment of the bounds on the QCD axion in a forthcoming work [38].
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A Explicit MURCA computation

Given the confusion in the literature and the various order one factors we corrected, we find
it useful to report here an explicit computation. In particular, we proceed in computing
everything in a non-relativistic framework; however, for the pion and ρ-meson exchange we
also checked our results using a relativistic framework, computing the amplitude squared
with FeynCalc 9.3.1 [39–41] and then performing a non-relativistic expansion of the final
results. In this appendix we limit ourselves to MURCA, which is in any case the most
relevant process for NS cooling.

We start by considering a single Landau parameter as a simple jumping off point.
Therefore, we take the following effective non-relativistic potential for nucleon-nucleon
interaction

Vg(k) = gσ1 · σ2,

and we start computing the amplitude for the t-channel from the diagrams a) to c) in figure 4.
For the diagram a) the amplitude reads

Ma = iGg√
2
ℓµ

ω
χ†

3σ
jχ1χ

†
4τ

−(δµ0 − gAδµiσi)σjχ2, (A.1)

where in isospin space we have χ†
4 =

(
0 1
)
, χ2 =

(
1
0

)
and τ− =

(
0 0
1 0

)
. So in this case the

isospin structure gives just a trivial factor χ†
4τ

−χ2 = 1, so that the amplitude is simply

Ma = iGg√
2
ℓµ

ω
χ†

3σ
jχ1χ

†
4(δµ0 − gAδµiσi)σjχ2. (A.2)

Analogously for the diagram b) we have

Mb = iGg√
2

(
− ℓµ

ω

)
χ†

3σ
jχ1χ

†
4σ

j(δµ0 − gAδµiσi)χ2, (A.3)
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where the minus sign of difference comes from the nucleon propagator (emission from an
initial rather than final leg). The diagram c) gives null contribution, because χ†

3τ
−χ1 = 0,

being nucleons 3 and 1 both neutrons.
Therefore the total amplitude for the t-channel reads

Mt = Ma + Mb = iGg gA√
2

ℓi

ω
χ†

3σ
jχ1χ

†
4

(
σjσi − σiσj

)
χ2 =

√
2Gg gAl

i

ω
ϵijkχ†

3σ
jχ1χ

†
4σ

kχ2,

(A.4)
where in the last step we used the relation σjσi − σiσj = −2i ϵijk σk and where we notice
that the vector part has canceled out. In the non-relativistic theory is then very easy to
compute the amplitude squared summed over spins, which in this particular case reads∑

spins
|Mt|2 = 16G2g2g2

A

ω2 ω1ω2ϵ
ijkϵij

′k′ Tr(σjσj′)Tr(σkσk′)︸ ︷︷ ︸
4 δjj′ δkk′

= 384G
2g2g2

A

ω2 ω1ω2, (A.5)

where we used ∑spins l
ilj = 8ω1ω2δ

ij for the leptonic current and in the last step we also
used the relation of the Levi-Civita tensor ϵijkϵijk = 6.

We observe that the contribution from the u-channel, corresponding to the diagrams d) to
f) in figure 4, mirrors that of the t-channel, while the interference between the two channels
cancels out when summing over spins, as terms with an odd number of Pauli matrices always
vanish. Consequently, the final result for the amplitude squared of these Landau parameters
is simply twice the value given in eq. (A.5)

∑
spins

|M|2 = 768G
2g2g2

A

ω2 ω1ω2, (A.6)

in agreement with eq. 39 of FM.
We now pass to consider the OPE term in the nucleon-nucleon potential

V (k)OPE = h′
π,k(σ1 · k̂)(σ2 · k̂)τ1 · τ2,

where
h′

π,k ≡ − f2
π

m2
π

k2

k2 +m2
π

. (A.7)

In this case the amplitudes for the t-channel diagrams a) and b) with neutral pion ex-
change read

Ma = iGℓµ√
2ω

χ†
3h

′
π,k(σ · k̂)τaχ1χ

†
4τ

−
[
δµ0 − gAδµiσ

i
]
τa(σ · k̂)χ2, (A.8)

Mb = iG√
2

(
−ℓµ

ω

)
χ†

3h
′
π,k(σ · k̂)τaχ1χ

†
4τ

a(σ · k̂)τ− [δµ0 − gAδµiσi]χ2. (A.9)

One can verify that the isospin structure forces a = 3 and that χ†
4τ

−τ3χ2 = 1, while
χ†

4τ
3τ−χ2 = −1. Therefore we have

Ma + Mb =
√

2 iGlµ
ω

h′
π,kχ

†
3(σ · k̂)χ1χ

†
4

[
δµ0(σ · k̂) − 1

2gAδµi

{
σi, σj

}
k̂j
]
χ2 (A.10)

=
√

2 iGlµ
ω

h′
π,kχ

†
3(σ · k̂)χ1χ

†
4

[
δµ0(σ · k̂) − gAδµjk̂j

]
χ2.
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For the diagram c) we have instead

Mc = iG√
2

(
−ℓµ

ω

)
h′

π,kχ
†
4τ

a(σ · k̂)χ2χ
†
3τ

a(σ · k̂)τ− [δµ0 − δµiσi]χ1, (A.11)

and one can check that in this case the isospin structure is such that τ1 and τ2 contribute
both in the same way. Therefore we are left with

Mc = −
√

2 iGlµ
ω

h′
π,kχ

†
4(σ · k̂)χ2χ

†
3(σ · k̂) [δµ0 − δµiσi]χ1. (A.12)

Summing everything we notice that the vector part cancels and the final amplitude is

MOPE
t =

√
2 iG gAl

i

ω

(
fπ

mπ

)2 k2

k2 +m2
π

[
k̂iχ

†
3(σ · k̂)χ1χ

†
4χ2 − χ†

4(σ · k̂)χ2χ
†
3(σ · k̂)σiχ1

]
=(A.13)

=
√

2iG gAl
i

ω

(
fπ

mπ

)2 k2

k2 +m2
π

[
k̂iχ

†
3(σ · k̂)χ1χ

†
4χ2 − χ†

4(σ · k̂)χ2χ
†
3χ1k̂i

+ iϵijkχ†
4(σ · k̂)χ2χ

†
3σkχ1k̂j

]
, (A.14)

where in the second line we used the relation σjσi = δji − iϵijkσk. This amplitude coincides
with eq. 32 of FM. Squaring and summing over spins we get
∑
spins

|MOPE
t |2 = 16G2g2

A ω1ω2
ω2

(
fπ

mπ

)4( k2

k2 +m2
π

)2 [
4 Tr(σiσi′) k̂ik̂i′+ (A.15)

+ ϵijkϵij
′k′Tr(σaσa′)Tr(σjσj′)k̂ak̂a′ k̂jk̂j′

]
= 256G2g2

A ω1ω2
ω2

(
fπ

mπ

)4( k2

k2 +m2
π

)2
, (A.16)

which is half of the result in eq. 39 of FM. The u-channel is the same with l instead of k
∑
spins

|MOPE
u |2 = 256G2g2

A ω1ω2
ω2

(
fπ

mπ

)4( l2

l2 +m2
π

)2
; (A.17)

in triangular approximation k ∼ l ∼ pn, so that the two contributions are the same. This
explains the factor of 2 in eq. 39 of FM, which therefore takes into account both t and u
channels, neglecting the interference between the two channels. The latter can be easily
computed as follows

2
∑
spins

MOPE
t MOPE,†

u =−32G2g2
Aω1ω2
ω2 h′

π,kh
′
π,l

(
k̂iχ

†
3(σ·k̂)χ1χ

†
4χ2−χ†

4(σ·k̂)χ2χ
†
3χ1k̂i+

+iϵijkχ†
4(σ·k̂)χ2χ

†
3σkχ1k̂j

)(̂
liχ†

3(σ ·̂l)χ2χ
†
4χ1−χ†

4(σ ·̂l)χ1χ
†
3χ2l̂i+iϵijkχ†

4(σ ·̂l)χ1χ
†
3σkχ2l̂j

)†

=−32G2g2
Aω1ω2
ω2 h′

π,kh
′
π,l

(
ϵijkϵij

′k′︸ ︷︷ ︸
δjj′ δkk′ −δjk′ δj′k

Tr
[
(σ·k̂)σk′σk(σ ·̂l)

]
k̂j l̂j′+

−2ik̂îlj′ϵij
′k′Tr

[
(σ·k̂)(σ ·̂l)σk′

]
+2ik̂îlj′ϵij

′k′Tr
[
(σ·k̂)σk′(σ ·̂l)

])

= 64G2g2
Aω1ω2
ω2

(
fπ

mπ

)4( k2

k2+m2
π

)(
l2

l2+m2
π

)[
−3+(k̂·̂l)2

]
,
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which coincides with the third term in eq. 71 of FM upon using the Lagrange’s identity
for their cross-product squared.
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