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Abstract: The turbulence of a realistic dilute solution of DNA macromolecules is investigated through
a hybrid Eulerian–Lagrangian approach that directly solves the incompressible Navier–Stokes equa-
tion alongside the evolution of 108 polymers, modelled as finitely extensible nonlinear elastic (FENE)
dumbbells. At a friction Reynolds number of 320 and a Weissenberg number of 2× 104, the drag
reduction is equal to 26%, which is similar to the one obtained at the lower Reynolds number of
180. The polymers induce an increase in the flow rate and the turbulent kinetic energy, whose axial
contribution is predominantly augmented. The stress balance is analysed to investigate the causes of
the drag reduction and eventually the effect of the friction Reynolds number on the probability distri-
bution of the polymer configuration. Near the wall, the majority of the polymers are fully stretched
and aligned along the streamwise direction, inducing an increase in the turbulence anisotropy.

Keywords: turbulence; polymer dynamics; viscoelastic flows

1. Introduction

The addition of small amounts of polymers to a Newtonian solvent can drastically
reduce the drag in turbulent wall-bounded flows. This phenomenon, which is called Toms’
effect, has been known since the 1940s [1,2], but a clear, physical understanding is still
missing [3].

Experiments by McComb and Rabie [4] showed that the polymers are effective in
drag reduction in the buffer and the lower logarithmic layer, while according to Virk [5],
the onset of drag reduction occurs when the characteristic time of the turbulent bursts
becomes comparable with the relaxation time of the macromolecules. Berman [6] noticed
that the onset is only dependent on the inner time scale u2

τ/ν (uτ is the friction velocity
and ν the kinematic viscosity of the solvent), while drag reduction is related to the lifetime
of large eddies after the onset. This suggests that the extension of the polymers plays a
role in the drag-reduction mechanism, even though it does not appear to be responsible for
triggering the phenomenon.

Virk [5] proposed a three-layer structure for a wall-bounded drag-reduced flow, con-
sisting of a viscous sublayer, an elastic sublayer, and a Newtonian (logarithmic) layer.
The elastic sublayer, which occupies the zones corresponding to the Newtonian buffer
and the lower log layer, increases its thickness with increasing drag reduction, and its
expansion is predicted to pervade the entire cross-section of the flow region at maximum
drag reduction. According to Virk’s model, the mean velocity profile in the Newtonian
log layer has the same slope (but higher intercept) as that of the Newtonian case, while
the slope is increased at maximum drag reduction.

Sureshkumar et al. [7], by using the FENE-P (finitely extensible nonlinear elastic with
Peterlin’s approximation) model [8,9] to account for polymer dynamics and effects, cap-
tured some of the main features of drag reduction in a turbulent channel flow, including the
onset at a critical Weissenberg number (ratio between the polymer relaxation time and an op-
portunely defined fluid time scale) and the root mean square velocity profiles. In particular,
the authors showed that the viscoelastic forces cause an increase in the velocity fluctuations
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along the flow direction, a reduction of the fluctuations in the cross-flow plane, and also a
decrease in the streamwise vorticity fluctuations. Since the quasi-streamwise vortices are
known to play an important role in the production of turbulence, the latter observation
seems to support a drag-reduction mechanism based on the weakening of the turbulence-
generating events through the action of the polymer chains. The existence of a critical
value of the Weissenberg number for the onset was confirmed by Dimitropoulos et al. [10],
who also showed that in the FENE-P model, drag reduction does not appear to depend
separately on the polymer concentration or the molecular extensibility, but that it is only
related to the extensional viscosity and to the Weissenberg number.

Other numerical simulations attempted to explain the phenomenon of drag reduc-
tion in terms of elastic energy transfer. De Angelis et al. [11] demonstrated a negative
correlation between the velocity fluctuations and the force that the polymers exert on the
fluid, suggesting that in most of the field, the polymers extract energy from the turbulent
fluctuations; the correlation between the streamwise velocity fluctuations and the reaction
force is instead shown to be positive very close to the wall, with energy that appears to be
given back to the fluctuating field.

All the previous numerical studies succeeded in demonstrating some features of
the drag-reduction phenomenon, and their results are in qualitative accordance with
experimental investigations. However, a quantitative agreement is still lacking; for instance,
FENE-P simulations require very high, unrealistic concentrations (or equivalently very high
polymer elasticity) in order to reproduce drag reduction. Sureshkumar et al. [7] associated
this feature with the fact that most of the experimental results are available at Reynolds
number values that are unaffordable in direct numerical simulations. Another limitation of
the constitutive models is that high Weissenberg simulations are not affordable because
the hyperbolic nature of those models makes the system numerically unstable. Further
investigations have shown that the FENE-P model has some deficiencies in describing
polymer dynamics. Zhou and Akhavan [12], in the one-way coupling regime (the flow is
not modified by the polymer back reaction), compared the FENE dumbbell and FENE-P
dumbbell models with a reference 10-bead FENE bead-spring chain. The FENE dumbbell,
with a proper choice of parameters, can match the results of a multi-bead chain, whilst the
FENE-P model incurs large errors when the non-linearity of the spring becomes significant.
In wall-bounded turbulence, despite a qualitative agreement with more complex models,
the FENE-P model is shown to be quantitatively inaccurate, overestimating the polymer
stresses in regions of high polymer stretching.

To overcome the above limitations, we employed a hybrid Eulerian–Lagrangian ap-
proach in which the polymers are modelled with FENE dumbbells, are individually tracked
according to their dynamics, and back-react on the fluid. The approach is exploited to
numerically investigate a drag-reducing polymer solution in a turbulent pipe flow at
a friction Reynolds number of Reτ = 320. The present method has been successfully
used in a previous work [13] at a lower Reynolds number, showing no limitations in the
Weissenberg number along with the capability to reproduce drag using realistic values of
polymer concentrations.

2. Method

The evolution of the flow field in the cylindrical geometry of a pipe is described by
the incompressible, dimensionless Navier–Stokes equations, with the no-slip condition at
the solid boundaries: 

∇ · u = 0
∂u
∂t

+∇ · (u⊗ u) = −∇p +
1

Re
∇2u + F

u(θ, 1, z, t) = 0

. (1)

In Equation (1), u(θ, r, z, t) is the fluid velocity, p(θ, r, z, t) is the hydrodynamic pres-
sure, and F(θ, r, z, t) is the field that accounts for the effect of the polymers on the fluid
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(back reaction). The dimensionless form is obtained by using the pipe radius `∗0 as the
reference length scale (dimensional quantities are denoted by an asterisk) and the bulk
velocity U∗b = Q∗b /(π`∗20 ) of the Newtonian case as reference velocity. Given the volumetric
flow rate Q∗b and the kinematic viscosity ν∗, the bulk Reynolds number is Re = U∗b `

∗
0/ν∗.

The mean flow rate is sustained by imposing a constant pressure gradient—corresponding
to Reτ = u∗τ`∗0/ν∗ = 320, where u∗τ =

√
τ∗w/ρ∗ is the friction velocity.

Every single polymer is modelled with two massless, spherical beads linked with
entropic springs of stiffness k. Each bead experiences the friction force D = γ(ǔ − v),
where γ is the friction coefficient, v is the velocity of the bead, and ǔ is the velocity of the
fluid deprived of the spurious self-interaction of each bead [14,15]. Under the hypothesis of
inertialess beads, the friction, elastic, and Brownian forces come into balance [16]. Thus, the
evolution of the jth polymer dumbbell, in terms of the polymer centre x(j)

c = (x(j)
1 + x(j)

2 )/2

and the link vector r(j) = x(j)
2 − x(j)

1 , is described by the following equations:
dx(j)

c
dt

=
ǔ(j)

1 + ǔ(j)
2

2
+

√
r2

eq

3Wi
ξ
(j)
1 + ξ

(j)
2

2

dr(j)

dt
= ǔ(j)

2 − ǔ(j)
1 −

f (j)r(j)

Wi
+

√
r2

eq

3Wi

(
ξ
(j)
2 − ξ

(j)
1

) . (2)

The equilibrium size of the chain in a quiet solvent, req, is set through the white noise

terms ξ
(j)
1/2. The Weissenberg number is defined as Wi = τ∗/(`∗0/U∗b ), where τ∗ = γ∗/(2k∗)

is the relaxation time of the polymer chain. The constraint on the dumbbell’s maximum
extensibility is accounted for by means of the following nonlinear FENE correction:

f (R) =
(

1− R2

L2

)−1

, (3)

given the polymer contour length L and the link length R = |r|.
The system of equations (2) are coupled with the flow field Equation (1), and the

expression of the polymer back-reaction term is as follows:

F = −
Np

∑
j=1

D(j)
1 δ(x− x(j)

1 ) + D(j)
2 δ(x− x(j)

2 ) = (4)

= k
Np

∑
j=1

f (j)r(j)[δ(x− x(j)
1 )− δ(x− x(j)

2 )] + γ

√
r2

eq

3Wi

Np

∑
j=1

ξ
(j)
1 δ(x− x(j)

1 ) + ξ
(j)
2 δ(x− x(j)

2 ) ,

with the summation spanning over the number of dumbbells Np. The expression of the back
reaction in terms of the elastic forces emphasises the role of the polymer extension, while the
contribution that involves the white noise ξ, which is proportional to req/

√
Wi, is negligible.

The polymers and the geometry considered in the present paper are the same as those
used in [13], where a more complete and exhaustive derivation of the model and of the
dimensionless parameters is presented. The simulation reproduces a DNA macromolecule
solution at a concentration of ≈ 1 wppm, a value which is comparable to the experimental
study of Choi et al. [17] for the same polymer molecule. In the present study, the friction
Reynolds number is Reτ = 320, which corresponds to a bulk Reynolds number of Reb '
5000 for the reference Newtonian case. The resulting Weissenberg number is Wi = 2× 104,
a significantly large value that compels a Lagrangian description of the polymer molecules.

The system of Equation (1) was thus numerically discretised on a staggered grid with
cylindrical coordinates (θ, r, z) using a second-order scheme in space and the semi-spectral
projection method in order to enforce the zero-divergence velocity constraint. The sys-
tem was directly solved (DNS), with no need for turbulence models. Periodic boundary
conditions were imposed in the axial direction. Temporal integration was performed by
means of a four-step, third-order, low-storage Runge–Kutta scheme. The domain of di-
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mensionless size (2π× 1× 6π) was discretised with [Nθ × Nr × Nz] = [1408× 239× 4224]
collocation points in the polymer-laden simulations. The used grid was structured with
local, orthogonal coordinate lines. The grid points were homogeneously distributed in the
azimuthal and the axial directions, assuring a maximum grid spacing equal to ∆+

z = 1.5 and
max (r+∆θ) = 1.5. In the radial direction, an inhomogeneous distribution was employed,
thus ensuring a higher resolution close to the wall ∆r+ ' 0.5, where the largest velocity
gradients were expected, and a coarser resolution at the pipe centre ∆r+ ' 1.5. The +
superscript represents the normalisation with the internal units, i.e., the viscous length
`τ = ν/uτ and the friction velocity uτ . The grid and domain convergence are reported in
Figure 1. The force feedback of polymers on the fluid flow was regularised by the Exact
Regularised Point Particle (ERPP) method for multiphase, wall-bounded flows [18,19]. A
hybrid MPI+GPUs approach was adopted to accelerate the numerical solutions of systems
(1) and (2). The 2DECOMP&FFT library [20] was used and the simulations were run on
the CINECA Marconi100 cluster. Concerning polymer-laden simulations, 64 GPUs were
used for each simulation for approximately 10,000 core hours to collect 200 statistically
steady-state and uncorrelated fields.

(a) (b)

Figure 1. Panel (a): Drag reduction error as a function of the grid spacing. Panel (b): Drag reduction
as a function of the domain length.

A visual example of the flow configuration is provided by Figure 2, which shows the
instantaneous contour of the velocity magnitude and the instantaneous configuration of
the polymer position and shape (black lines; for the sake of visibility, only polymers in half
geometry are represented).

(a) (b)

t = 500

Figure 2. Panel (a): Instantaneous snapshot of the velocity magnitude (contour plot) and the polymer
conformation (black lines). Panel (b): Detail of the grid close to the wall. For the sake of visibility,
the azimuthal grid points are represented with a skip equal to 7.
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3. Results and Discussion

The addition of the polymers to the Newtonian solvent resulted in an increase in the
flow rate. Figure 3a shows the mean axial velocity profile Uz = 〈uz〉 (angular parentheses
denote the ensemble average) as a function of the wall distance y+ = (1− r+). The inset
shows the same data in wall units U+

z in a semi-log plot. The mean velocity profile is
modified in the buffer layer and maintains a higher slope with respect to the unladen case,
also in the logarithmic layer. The Von Karman constant is modified from κ(0) ' 0.387 to
the value of κ(p) ' 0.267 in the polymer case. Overall, the polymers produced an increase
in the mean axial velocity, resulting in a flow rate increase of the order of 16%. The drag
reduction can be estimated by defining the DR parameter in terms of the friction coefficient
c(0)/(p)

f of the unladen (0) and laden (p) cases,

DR =
c(0)f − c(p)

f

c(0)f

= 1−

Q(0)
b

Q(p)
b

2

. (5)

According to the definition, the drag reduction is of the order of DR = 26%. A com-
parison with the result reported in [13] (DR = 27% at Reτ = 180) denotes that the amount
of drag reduction is almost unaffected by the increase in the Reynolds number.

Figure 3b shows that the addition of the polymers produced a depletion of the span-
wise 〈u′2θ 〉 and wall-normal 〈u′2r 〉 velocity fluctuations and an increase in the axial velocity
fluctuations 〈u′2z 〉. Overall, the effect on the turbulence intensity, the sum of the three terms,
increased along the pipe radius. Besides the changes in the magnitude, the peaks of all the
quantities reported in Figure 3b moved towards the pipe centre, which is in accordance with
the increase in the buffer layer size captured by the experiments in [5] and the numerical
simulations of viscoelastic flows in [7,11].

(a) (b)

Figure 3. Comparison between Newtonian flow and a polymer solution. (a) Mean velocity profiles,
(b) Root mean square velocity statistics. 〈u′2z 〉: Solid line. 〈u′2r 〉: Dashed line. 〈u′2θ 〉: Dot-dashed line.
Turbulence intensity k = 〈u′2θ + u

′2
r + u

′2
z 〉/2: Solid line with filled circles.

By integrating the mean axial momentum equation into the volume of the pipe, the
classical stress balance can be recast as follows:

τ+
T = τ+

µ + τ+
t + τ+

e =
∂U+

z
∂r+

+ 〈u′ru′z〉+ +
1

r+

∫ r+

0
η+〈Fz〉+dη+ =

Reτ − y+

Reτ
. (6)

The viscous stress τ+
µ , the Reynolds stress τ+

t , and the polymer extra stress τ+
e are

reported in Figure 4 together with their sum τ+
T and the sum of the polymer and Reynolds

stresses. The Reynolds stress of the Newtonian unladen case is also reported for reference
purposes (black dashed line). In the laden case, the polymers produced a decrease in the
Reynolds stress and an additional contribution τ+

e representing the polymer back reaction
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on the fluid. Despite this additional stress, the sum τ+
t + τ+

e is lower than the unladen
Reynolds stress in both the buffer layer and the log layer, while it peaks further from
the wall with respect to the Newtonian case. The modification of the stresses, i.e., of the
streamwise momentum flux towards the wall, gives reason for the alteration of the mean
velocity profile, which ultimately leads to drag reduction. We observed that, in contrast
to the theory proposed by Virk, the presence of the polymers was felt all across the pipe
section. Indeed, the mean velocity profile also had a different slope in the logarithmic layer,
see Figure 3b.

Figure 4. Radial profile of stresses. The Newtonian unladen Reynolds stress (black dashed line) is
reported for reference purposes.

The effects on the fluid described above are due to the polymer feedback on the carrier
phase. Since the feedback force is strongly dependent on the polymer extension, it is
useful to analyse the statistical properties of the polymer conformation by means of the
probability density functions (pdf) of the end-to-end vector, see Figure 5. Panels (a)–(d),
which correspond to different components of the end-to-end vector, show that the pdfs
peak at the maximum length, independently of the distance from the wall, testifying that
a large fraction of the polymer population (≈50%) is stretched to the limit. This effect is
shown to be crucial for drag reduction at large Weissenberg numbers [13]. These numerical
simulations also show that only the fully extended polymers contribute to the feedback
reaction. The probability distributions of the three components of the end-to-end vector
also highlight the preferential orientation of the polymer forcing. Note that only the right
side of the pdf is displayed because of symmetry.

In the viscous and buffer layers, the most probable configuration consists of fully
extended polymers aligned with the direction of the mean flow, whilst the polymer confor-
mation, and thus the polymer back reaction, becomes more isotropic while approaching
the pipe centre.



Fluids 2022, 7, 355 7 of 8

(a) (b)

(c) (d)

Figure 5. Probability density functions of the polymer end-to-end vector conditioned to different
distances from the wall. Panel (a): End-to-end length. Panel (b): Radial component. Panel (c):
Tangential component. Panel (d): Axial component.

4. Conclusions

The direct numerical simulation of a polymer-laden turbulent pipe flow at high Weis-
senberg and Reynolds numbers was used to investigate the drag reduction phenomenon.
An Eulerian–Lagrangian approach was employed by tracking every single polymer as
a massless dumbbell and then considering their back reaction on the carrier fluid. The
approach was able to overcome the limitations of the constitutive Eulerian–Eulerian-based
models such as the FENE-P and allowed for the simulation of realistic polymer macro-
molecules at concentrations comparable to actual experiments.

The polymers contributed to the increase in flow rate at a fixed pressure drop corre-
sponding to Reτ = 320. The drag reduction was of the order of 26%, which is similar to the
one obtained at Reτ = 180, showing a weak dependence on the Reynolds number.

Concerning the turbulent fluctuations, the turbulent kinetic energy increased, which
was accompanied by an increase in the anisotropy of the flow. Indeed, the polymers
increased the axial velocity component and decreased the others. The origin of the drag
reduction had to be searched in the modification of the stress balance. The Reynolds
stress was depleted by the polymer phase, and despite the appearance of an additional
contribution, the sum of the Reynolds and the polymer stresses did not overcome the
Newtonian Reynolds stress. The overall momentum flux towards the wall decreased with
respect to the pure solvent, which led to the modification of the mean axial velocity profile
and the increase in flow rate.

Finally, the analysis of the polymer conformation showed that the majority of the
polymers were fully stretched and mainly aligned along the mean flow direction in the
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buffer and viscous layers, whilst in the log and outer layers, the chain conformation was
almost isotropic.
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