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Summary

Trustworthy Artificial Intelligence (AI) is a cornerstone of the digital era, encompassing the need
for AI systems to be not only powerful but also transparent, resilient, and accountable. This thesis,
titled Architectural Components of Trustworthy Artificial Intelligence, aims to explore the essential
elements that underpin the development of AI systems that are inherently trustworthy. This work
unfolds the foundations, methodologies, and innovations crucial for fostering trust in AI systems.
The following summary provides an overview of the key contributions and insights of this thesis.

The introduction provides a backdrop to the research, elucidating the motivations and objec-
tives driving the study. It outlines the structure of the thesis, setting the stage for a systematic
exploration.

Starting our exploration, we delve into the fundamentals of Explainability-by-design. We intro-
duce innovative concepts, including a novel generalization of artificial neurons, that redefine the
foundations of model transparency. Furthermore, we investigate concept-based explainability, shed-
ding light on how these networks provide insight into the decision-making processes of AI models.

Turning our attention to the critical aspect of training trustworthy AI, we explore the devel-
opment of loss functions tailored to address the challenges posed by noisy labels and missing data,
particularly in recommender systems. We also show how integrating item relevance into the loss
functions makes the model more resilient and dependable in the face of adversities.

We then broaden our investigation introducing the concept of Trustworthy Auxiliary Frame-
works: it extends beyond model-centric trustworthiness by incorporating elements such as counter-
factual personalized recourse, active learning for misinformation detection, and retrieval augmen-
tation. These auxiliary components address crucial aspects like data governance, monitoring, and
interpretability, strengthening the AI system’s trustworthiness throughout its lifecycle.

The final part of this thesis summarizes key findings and contributions to the field of Trust-
worthy AI. It shows how we achieved the objectives outlined in the introduction, advancing the
understanding and practical implementation of architectural components that enhance trustworthi-
ness in AI systems across diverse domains. It also offers insights into future research directions,
emphasizing the need for ongoing innovation and development in this critical domain.

In conclusion, this thesis represents a significant step in the ongoing pursuit of Trustworthy AI.
It stands as a valuable resource for researchers and practitioners striving to create AI systems that
inspire trust and confidence. With the principles of trust, accountability, and transparency at its
core, this research contributes to the collective effort of ensuring that AI serves humanity with the
highest standards of ethics and responsibility.
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Chapter 1

Introduction

In recent years, artificial intelligence (AI) has witnessed remarkable advancements [102, 253, 318],
transforming various aspects of our lives, from recommendation systems powering e-commerce plat-
forms [133] to the deployment of AI in critical decision-making processes [203].

With AI demonstrating human-level performance in numerous tasks, including image recognition
[120], natural language processing [17, 163, 227], and autonomous decision-making [110, 307], it
has found its way into critical applications, where reliability and safety are paramount. However,
this rapid integration of AI has raised significant concerns about interpretability, robustness and
trustworthiness, as its deployment into critical applications necessitates not only high performance
but also transparency and reliability [241]. Trustworthiness and accountability in AI systems are no
longer optional but imperative [46]. The consequences of AI errors, biases, or misinterpretations can
have far-reaching implications, impacting individuals and society as a whole. In fact, it is important
to note that Trustworthy AI is not merely an aspiration but also a legal requirement in compliance
with regulations such as the General Data Protection Regulation (GDPR) [233] and the AI Act [298].
These legal frameworks underscore the urgency of addressing trustworthiness in AI and ensure that
AI development aligns with evolving legal standards and societal expectations [213, 276].

Therefore, it becomes essential to address the black-box nature of deep learning models, enhanc-
ing their explainability, and fortifying their robustness in the face of evolving challenges, making
them more reliable and resilient tools for a wide range of applications. Yet, with the increasing
complexity of AI models, understanding their inner workings and making informed decisions based
on their outputs become challenging [228, 242].

To address these challenges, the concept of eXplainable AI (XAI) [9] has emerged as a pivotal
research area. XAI aims to create AI systems that can provide clear and interpretable explanations
for their decisions and predictions. This transparency not only enhances user trust [28, 76, 261] but
also enables users to understand [255, 340] and potentially rectify erroneous outcomes [143].

Furthermore, achieving trustworthiness in AI extends beyond explainability. It encompasses
robustness against adversarial attacks [5, 16, 39, 130, 277, 332], fairness in decision-making [185],
and resilience in the face of uncertain or noisy data [112, 198, 214, 317].

Motivated by these challenges, this thesis delves into the architectural components of trustworthy
AI. We recognize that the path to trustworthy AI fundamentally lies in the design of AI systems.
By imbuing these systems with inherently trustworthy features and capabilities, we can mitigate
risks and promote their responsible deployment.
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Chapter 1. Introduction

In the following chapters, we will explore various facets of trustworthy AI, from explainable-
by-design neural networks to robust loss functions and advanced auxiliary frameworks. Through a
systematic investigation of these architectural components, this research aims to provide practical
insights and solutions for the development of AI systems that are not only high-performing but also
dependable.

AI Legal Framework

The European Union (EU) has responded to the rapid advancement of artificial intelligence (AI)
with a set of regulations aimed at ensuring the ethical development of AI, and strengthening data
protection. These initiatives include the central Artificial Intelligence Act (AI Act) [298], the Artifi-
cial Intelligence Liability Directive (AILD) [299] and the current General Data Protection Regulation
(GDPR) [233].

Central to the AI Act is a concerted effort to prevent harm through a risk-based approach. This
classification system stratifies AI systems according to the level of risk they pose to the security and
fundamental rights of individuals. Recognising the surge in the development and use of generative
AI, the European Commission has introduced strict transparency obligations, including explicit
disclosure when content is generated by AI, prevention of the generation of illegal content, and
disclosure of copyrighted material in the datasets used. However, while the AI Act mandates cer-
tain aspects of transparency, it lacks specificity in certain areas. In particular, it requires providers
to supply users with instructions for AI systems and inform human decision-makers in order to
facilitate informed decisions and mitigate the potential bias introduced by automation.

While the AI Act will reduce the risks to security and fundamental rights, it will not completely
eliminate the risk of potential direct or indirect damage caused by AI systems. The AILD, in turn,
outlines rules for compensation of damage caused intentionally or negligently by AI systems within
the EU market.

The distinction between the AI Act and the AILD underlines their different functions. The AI
Act primarily emphasises safety measures to prevent AI-induced harm, while the AILD provides
avenues for seeking compensation following AI-related damage. When comparing the scopes of the
AI Act and GDPR, a noticeable difference emerges. The AI Act applies to providers, users, and other
entities that operate AI systems within the EU market. In contrast, the GDPR, which regulates the
processing of personal data within or relating to EU data subjects. As a result, while an AI system
may fall within the scope of the AI Act, it may not meet the specific criteria delineated by the GDPR.

Once approved, both the AI Act and the AILD are set to become the world’s first regulations
specifically focused on AI. The AI Act is expected to come into force in late 2023 or 2024, accom-
panied by a two-year grace period to allow organisations to comply. Conversely, the exact timeline
for the adoption of the AILD remains uncertain, but member states will be required to incorporate
it into their legal frameworks within two years of its adoption.

Research Objectives

The research objectives that guide this thesis are formulated to address the fundamental challenges
in enhancing the trustworthiness and explainability of artificial intelligence systems.

Federico Siciliano 2



Chapter 1. Introduction

Objective 1: Develop Explainable AI Methods and Components

The primary objective of this research is to investigate and propose architectural components as
well as methodological approaches that enhance the explainability of AI systems. We aim to develop
novel techniques and models that make AI decisions interpretable, transparent, and accessible to
both technical and non-technical stakeholders.

Objective 2: Establish Trustworthiness Through Robust Loss Functions

Trustworthiness is a multifaceted concept, encompassing robustness, fairness, and resilience in AI
systems. Our second objective is to design and evaluate robust loss functions that mitigate vulner-
abilities to adversarial attacks and improve the fairness of AI decision-making.

Objective 3: Architect Trustworthy AI Auxiliary Frameworks

To build AI systems that are inherently trustworthy, we aim to design auxiliary architectural frame-
works that bolsters the reliability and accountability of AI systems. These auxiliary frameworks
will facilitate decision corrections, misinformation detection, and reinforcement learning augmenta-
tion with memory, contributing to the overall trustworthiness of AI systems and thereby instilling
confidence in the technology’s deployment across various applications and domains.

Objective 4: Contribute to Trustworthy AI Research

Beyond the immediate objectives of this research, we seek to contribute valuable insights and so-
lutions to the broader field of trustworthy AI. By conducting empirical studies, evaluations, and
experiments, we aim to provide practical guidelines and best practices for researchers and practi-
tioners working in AI, ensuring that the principles of trustworthiness are integrated into future AI
technologies.

These research objectives serve as the compass that guides our exploration of architectural
components for trustworthy AI. By pursuing these objectives, we aspire to contribute to the ad-
vancement of AI technologies that are not only powerful but also accountable, transparent, and
ethically grounded [174].

Thesis Outline

The organization of this thesis is meticulously designed to address the research objectives and
contribute to the understanding and development of architectural components for trustworthy AI.

Chapter 2: Explainable-by-Design Neural Networks

In this chapter, we introduce the concept of Explainable-by-Design and explore how it aligns with
the broader objective of trustworthy AI. This chapter introduces Newron, a novel generaliza-
tion of artificial neurons, and investigates how to enhance interpretability through concept-based
explanations.

Federico Siciliano 3
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Figure 1.1: Abstract Depiction of Architectural Components in Trustworthy Artificial Intelligence

Chapter 3: Robust Losses for AI Systems

Chapter 3 focuses on the development of robust loss functions for robust AI systems. It starts with
the design and evaluation of robust recommender loss functions. The chapter further explores the
integration of item relevance in training loss for sequential recommender systems, and addresses
challenges related to noisy labels in machine learning, leveraging inter-rater agreement to enhance
classification accuracy.

Chapter 4: Auxiliary Frameworks for Trustworthy AI Systems

Chapter 4 introduces the concept of Auxiliary Frameworks and their significance in building in-
herently trustworthy AI systems. We explore counterfactual personalized recourse for AI systems
and active learning mechanisms for misinformation detection. Additionally, we introduce Rein-
forced Retrieval Augmented Machine Learning (RRAML) as an architectural auxiliary framework
for trustworthiness.

Chapter 5: Conclusions

In the final chapter, we summarize the key findings and contributions of this research. We reflect
on the architectural components developed and their implications for trustworthy AI. Additionally,
we outline future research directions in the field of trustworthy AI, highlighting areas where further
exploration is warranted. The chapter concludes with closing remarks and a reaffirmation of the
ethical and responsible AI development principles advocated throughout this thesis.

Figure 1.1 illustrates an abstract representation of how various architectural components can be
integrated into a neural network model. Although these components may not be applied simulta-
neously in practice, the figure conveys the idea that these individually developed elements can be
flexibly combined to continually enhance the trustworthiness of a model. This concept underscores
the significance of composing these architectural components to progressively improve the model’s
trustworthiness.
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Chapter 1. Introduction

Research Focus

The central theme of this doctoral research revolves around three primary domains: Explainable-
by-design AI, Robust Losses, and Auxiliary Frameworks for Trustworthy AI. Throughout Federico
Siciliano’s doctoral journey, significant contributions have been made to these areas, resulting in
novel insights and approaches. This section provides an overview of Federico Siciliano’s key research
endeavors and contributions, together with the publications that compose each chapter.

Explainable-by-design AI

A substantial portion of FS’ efforts has been dedicated to the concept of Explainable-by-Design AI.

F. Siciliano, M. S. Bucarelli, G. Tolomei, and F. Silvestri. Newron: a new generalization of
the artificial neuron to enhance the interpretability of neural networks. In 2022 International
Joint Conference on Neural Networks (IJCNN), pages 01–17. IEEE, 2022

In particular, he conceptualized and developed Newron [269], a generalized version of the
McCulloch-Pitts neuron. Newron enables the definition of new artificial neurons, and through the
universal approximation theorem, it was demonstrated that this new model does not compromise
its representation power. Additionally, the Inverted Artificial Neuron was introduced, offering a
straightforward translation into logical rules, paving the way for interpretable, white-box neural
networks.

F. Siciliano, L. C. Magister, M. S. Bucarelli, P. Barbiero, F. Silvestri, and P. Lio. Explaining
neural networks using a ruleset based on interpretable concepts. In Submitted to EPJ Data
Science, 2023

Expanding on the Newron framework, a collaboration with researchers from the University of
Cambridge resulted in the development of Newron+LEN [273]. This integrated approach combines
Newron with Logic Explained Networks (LEN), allowing the distillation of interpretable concepts
in the form of rules during training for classification. These concepts are harnessed by LEN to
produce global explanations in the form of First Order Logic rulesets, thereby linking concepts to
classes.

L. C. Magister, P. Barbiero, D. Kazhdan, F. Siciliano, G. Ciravegna, F. Silvestri, M. Jamnik,
and P. Liò. Concept distillation in graph neural networks. In World Conference on Explainable
Artificial Intelligence, pages 233–255. Springer, 2023

Continuing the work in Concept-based Explainability, FS collaborated with Cambridge re-
searchers on [183]. In this work, a Concept Distillation Module was introduced, a pioneering
differentiable concept-distillation approach for graph networks. This module can be seamlessly
integrated into any graph network to make it explainable by design, distilling graph concepts from
the latent space to solve the task.

L. Cuneo, F. Siciliano, M. Castello, S. Piazza, F. Silvestri, and A. Diaspro. Explainable-by-
design machine learning model for overlapping fluorophores separation based on fluorescence
lifetime. In Computational Intelligence Methods for Bioinformatics and Biostatistics: 18th
International Meeting, CIBB 2023, Padova, Italy, September 6–8, 2023, 2023

Federico Siciliano 5



Chapter 1. Introduction

In the design of an Explainable-by-Design neural network to separate contributions from different
fluorophores in fluorescence microscopy imaging [61], FS’ innovative method leverages a CNN-based
network to analyze both temporal information and 2D spatial features, marking a groundbreaking
development in this field.

Robust Losses for AI

In parallel to the primary focus, FS studied the development and applications of Robust Losses for
AI.

F. Siciliano, S. Lagziel, and G. Gamzu, Iftah Tolomei. Robust training of sequential rec-
ommender systems with missing input data. In Submitted to Information Processing and
Management, 2023

During his internship at Amazon, FS devised a robust loss function [272] to handle missing
elements in Sequential Recommender Systems.

F. Siciliano, A. Bacciu, N. Tonellotto, and F. Silvestri. Integrating item relevance in training
loss for sequential recommender systems. In Proceedings of the 17th ACM Conference on
Recommender Systems, RecSys ’23, page 1114–1119, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400702419. doi: 10.1145/3604915.3610643. URL https:

//doi.org/10.1145/3604915.3610643

Continuing and expanding this work, FS concieved the idea of integrating item Relevance into
recommender systems [271], both during training, making them more robust and performant, and
in evaluation, allowing a more refined assessment.

M. S. Bucarelli, L. Cassano, F. Siciliano, A. Mantrach, and F. Silvestri. Leveraging inter-rater
agreement for classification in the presence of noisy labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3439–3448, 2023

In [38], FS took a leading role in designing and implementing the experimental setup, developing
code for running and evaluating experiments, and significantly contributing to the paper’s writing.

Trustworthy AI Auxiliary Frameworks

In a secondary capacity, FS has also explored the concept of Trustworthy AI Auxiliary Frameworks.

F. Siciliano, C. Abrate, F. Bonchi, and F. Silvestri. Human-in-the-loop personalized coun-
terfactual recourse. In Submitted to International Conference on Artificial Intelligence and
Statistics (AISTATS) 2024, 2023

Within the realm of Explainability, FS formalized and introduced the concept of Personalized
Counterfactual Recourse [270], an innovative approach to Counterfactual Explainability that ac-
counts for user preferences.

Federico Siciliano 6
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Chapter 1. Introduction

G. Barnabò, F. Siciliano, C. Castillo, S. Leonardi, P. Nakov, G. Da San Martino, and F. Sil-
vestri. Deep active learning for misinformation detection using geometric deep learning. Online
Social Networks and Media, 33:100244, 2023

FS collaborated on the implementation and writing of [23], which introduces an active learning
method that empowers a network to select samples for annotation and training.

A. Bacciu, F. Cuconasu, F. Siciliano, F. Silvestri, N. Tonellotto, and G. Trappolini. Rraml:
Reinforced retrieval augmented machine learning. In AIxIA 2023–Advances in Artificial Intel-
ligence: XXIInd International Conference of the Italian Association for Artificial Intelligence,
AIxIA 2023, Rome, Italy, November 6 – 9, 2023, Discussion Track, 2023

Lastly, FS contributed to the conception of Reinforced Retrieval Augmented Machine Learning
(RRAML) [14], a visionary framework that integrates the reasoning capabilities of Large Language
Models (LLMs) with information retrieved from a user-provided database.

The writing of this thesis also benefited from work on the following publications:

F. Betello, F. Siciliano, P. Mishra, and F. Silvestri. Investigating the robustness of sequential
recommender systems against training data perturbations: an empirical study. 46th European
Conference on Information Retrieval (ECIR) 2024, 2024

G. Barnabò, F. Siciliano, C. Castillo, S. Leonardi, P. Nakov, G. Da San Martino, and F. Sil-
vestri. Fbmultilingmisinfo: Challenging large-scale multilingual benchmark for misinformation
detection. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2022

F. Siciliano, L. Maiano, L. Papa, F. Baccini, I. Amerini, and F. Silvestri. Adversarial data
poisoning for fake news detection: How to make a model misclassify a target news without
modifying it. In ECML-PKDD Deep Learning and Multimedia Forensics Workshop, 2023

G. Grani, M. Gentili, F. Siciliano, D. Albano, V. Zilioli, S. Morelli, E. Puxeddu, M. C. Zatelli,
I. Gagliardi, A. Piovesan, et al. A data-driven approach to refine predictions of differentiated
thyroid cancer outcomes: a prospective multicenter study. The Journal of Clinical Endocrinol-
ogy & Metabolism, page dgad075, 2023

F. Greco, A. Polli, F. Siciliano, et al. Leveraging deep learning models to assess the temporal
validity of emotional text mining procedures. In JADT 2022 Proceedings: 16th International
Conference on Statistical Analysis of Textual Data, volume 2, pages 475–481, 2022

F. Siciliano, G. Consolini, R. Tozzi, M. Gentili, F. Giannattasio, and P. De Michelis. Fore-
casting sym-h index: A comparison between long short-term memory and convolutional neural
networks. Space Weather, 19(2):e2020SW002589, 2021

In conclusion, Federico Siciliano’s doctoral journey has been characterized by a diverse array
of research contributions spanning Explainable-by-design Neural Networks, Robust Losses and AI
Auxiliary Frameworks, and more. These endeavors collectively exemplify a dedication to advancing
the frontiers of Explainable AI research and its practical applications.
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Chapter 2

Explainable-by-Design Neural Networks

Traditional black-box neural networks often hinder our ability to trust AI systems in critical ap-
plications. Explainable-by-design neural networks aim to rectify this limitation by embedding in-
terpretability into the very fabric of the model. By designing networks with transparency as a
core principle, we can achieve a more profound understanding of model behaviour, decision bound-
aries, and feature importance. This proactive approach to explainability fosters trust in AI systems
and paves the way for their adoption in domains where accountability and trustworthiness are
paramount.

At the heart of Explainable-by-design is the recognition that interpretability should not be an
afterthought but a guiding principle in the design and development of neural networks. It involves
the deliberate consideration of how the model will provide explanations for its decisions during
the architecture and training phases. Unlike post hoc explainability methods that attempt to
interpret a model’s predictions after training, Explainable-by-design takes a proactive approach.
It integrates interpretability from the outset, making it an integral part of the neural network’s
architecture, objectives, and evaluation metrics. Explainable-by-design neural networks encompass
several crucial concepts and techniques that set them apart from conventional models. These may
include architectural choices, regularization methods, and training strategies specifically tailored to
promote interpretability.

Throughout this chapter, we will explore these concepts in detail, offering a comprehensive
understanding of how they contribute to the creation of AI systems that are not only accurate but
also explainable by design.
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2.1 Newron: a New Generalization of the Arti-
ficial Neuron to Enhance the Interpretabil-
ity of Neural Networks

In this work, we formulate Newron: a generalization of the McCulloch-Pitts neuron structure.
This new framework aims to explore additional desirable properties of artificial neurons. We show
that some specializations of Newron allow the network to be interpretable without affecting their
expressiveness. We can understand the rules governing the task by just inspecting the models
produced by our Newron-based networks. Extensive experiments show that the quality of the
generated models is better than traditional interpretable models and in line or better than standard
neural networks.

2.1.1 Introduction

Neural Networks (NNs) have now become the de facto standard in most Artificial Intelligence (AI)
applications. The world of Machine Learning has moved towards Deep Learning, i.e., a class of NN
models that exploit the use of multiple layers in the network to obtain the highest performance.

Research in this field has focused on methods to increase the performance of NNs, in particular
on which activation functions [7] or optimization method [284] would be best. Higher performances
come at a price: [9] show that there is a trade-off between interpretability and accuracy of models.
Explainable Artificial Intelligence (XAI) is a rapidly growing research area producing methods to
interpret the output of AI models in order to improve their robustness and safety (see e.g. [97]
and [28]). Deep Neural Networks (DNNs) offer the highest performance at the price of the lowest
possible interpretability. It is an open challenge to attain such high performance without giving up
on model interpretability.

The simplest solution would be to use a less complex model that is natively interpretable, e.g.,
decision trees or linear models, but those models are usually less effective than NNs. We ask the
following question: can we design a novel neural network structure that makes the whole model
interpretable without sacrificing effectiveness?

NNs are black-box models: we can only observe their input and output values with no clear
understanding of how those two values are correlated according to the model’s parameters. Although
a single neuron in the NN performs a relatively simple linear combination of the inputs, there is
no clear and straightforward link between the parameters estimated during the training and the
functioning of the network, mainly because of the stacking of multiple layers and non-linearities.

In this work, we propose a generalization of the standard neuron used in neural networks that
can also represent new configurations of the artificial neuron. Thus, we discuss a specific example
that allows us to interpret the functioning of the network itself. Like the standard neuron, ours can
also be used to stack multiple layers in sequence, i.e. to generate DNNs.

9



2.1.1. Introduction

We focus our efforts on tabular data since we investigate how Newron works only in the case
of fully connected NNs. It is more straightforward to produce human-readable rules for this kind of
data. We also remark that our goal is not to improve the performance of NNs, but rather to create
interpretable versions of NNs that perform as well as other interpretable models (e.g., linear/logistic
regression, decision trees, etc.) and similarly to standard NNs, when trained on the same data.

Motivating Example

... ...

Figure 2.1: An example of a network for the MONK-2 dataset. xi are the inputs, y is the output. The red
and blue rectangles represent the plot of functions, with input range on the x-axis and output on the y-axis.
The green rectangles contain the aggregation function. The numbers in bold represent the thresholds for
the step functions.

Consider a simple dataset: MONK’s1. Each sample consists of 6 attributes, which take integer
values between 1 and 4 and a class label determined by a decision rule based on the 6 attributes.
For example, in MONK-2, the rule that defines the class for each sample is the following: “exactly
two” out of the six attributes are equal to 1.

It is impossible to intuitively recover rules from the parameter setting from a traditional, fully
connected NN.

We shall see in the following that our main idea is that of inverting the activation and aggrega-
tion. In Newron the nonlinearity directly operates on the input of the neuron. The nonlinearity
acts as a thresholding function to the input, making it directly interpretable as a (fuzzy) logical rule
by inspecting its parameters. Consider the following network, represented in Figure 2.1: 2 hidden
layers, the first with 1 neuron, the second with 2 neurons, and 1 output neuron. The xi’s are the
inputs of the model, y is the output.

We present the form of a typical architecture composed by Newron in Figure 2.1. We show
how we can interpret the parameters obtained from a trained network. The rectangles represent
the plot of a function that divides the input domain into two intervals, separated by the number
below the rectangle, taking values 1 and 0.

The functions that process the input give output 1 only if the input is less than 1.1, given
that inputs are integers and assume values only in {1, 2, 3, 4}, this means “if xi = 1”. The sum
of the output of all these functions, depicted in the green rectangle, then represents the degree of
soundness of those rules are.

The second layer has two neurons: the first outputs 1 if it receives an input greater than 1.9,
i.e. if at least 2 of the rules xi = 1 are valid, while the second outputs 1 if it receives an input less

1https://archive.ics.uci.edu/ml/datasets/MONK%27s+Problems

Federico Siciliano 10



2.1.2. Related Work

than 2.1, i.e. if 2 or less of the rules xi = 1 are valid. Notice that the two neurons are activated
simultaneously only if xi = 1 is true for exactly two attributes.

In the last layer, functions in the blue rectangles receive values in {0, 1} and do not operate any
transformation, keeping the activation rules unchanged. The sum of the outputs of these functions
is then passed to the function in the red rectangle. This function outputs 1 only if the input is
greater than 1.9. Since the sum is limited in 0, 1, 2, this happens only when it receives 2 as input,
which occurs only if the two central neurons are activated. As we have seen, this only applies if
exactly 2 of the rules xi = 1 are valid.

So we can conclude that the network gives output 1 just if “exactly two” of {x1 = 1, x2 = 1, x3 =

1, x4 = 1, x5 = 1, x6 = 1} are true.

Contributions

The main contributions of this work are the following:

• We propose Newron, a generalization of the McCulloch-Pitts neuron allowing the definition
of new artificial neurons. We show how special cases of Newron may pave the way towards
interpretable, white-box neural networks.

• We prove the universal approximation theorem for three specializations of Newron, demon-
strating that the new model does not lose any representation power in those cases.

• We experiment on several tabular datasets showing that Newron allows learning accurate
Deep Neural models, beating interpretable by design models such as Decision Trees and Lo-
gistic Regression.

2.1.2 Related Work

[240] introduced the single artificial neuron: the Perceptron. The Perceptron resembles the func-
tioning of the human/biological neuron, where the signal passing through the neuron depends on
the intensity of the received signal, the strength of the synapses, and the receiving neuron’s thresh-
old. In the same way, the Perceptron makes a linear combination of the inputs received and is
only activated if the result exceeds a certain threshold. Over the years, various improvements to
neural networks have been proposed: Recurrent Units, Convolutional Layers, and Graph Neural
Networks, but for Fully Connected NNs, research efforts have mainly focused on finding more ef-
ficient activation functions [7]. Two works that have focused on modifying the internal structure
of the neuron are those of [156], and [81]. In the former, a neuron is introduced that performs
both a sum and a product of the inputs in parallel, applies a possibly different activation function
for the two results, and then sums the two outcomes. Despite promising results, given the use
of fewer parameters, better performance, and reduced training time compared to standard MLPs
and RNNs, the proposed neuron, rather than being a generalization, is a kind of union between
two standard neurons, one of which uses the product, instead of sum, as aggregation function. In
the second paper, starting from the notion that the traditional neuron performs a first-order Taylor
approximation, the authors propose a neuron using a second-order Taylor approximation. Although
this improves the capacity of a single neuron, the authors do not demonstrate any gains in terms
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of training time or convergence. Indeed, this can be considered a particular case of the higher-
order neural units (HONUs) (see, e.g., [111]), i.e., a type of neurons that, by increasing the degree
of the polynomial computed within them, try to capture the higher-order correlation between the
input patterns. Recent works that focus on interpretation at neuron level ([63], [64], [122], [197])
often concentrate on extracting the most relevant neurons for a given task, but mostly deal with
Recurrent or Convolutional neural networks. Although not designing an alternative version of the
neuron, [331] proposes an alternative neural network structure, based on a Binning Layer, which
divides the single input features into several bins, and a Kronecker Product Layer, which takes into
account all the possible combinations between bins. The parameters estimated during training can
be interpreted to translate the network into a decision tree through a clever design of the equations
defining the network. Although interpretable, the main issue in this work is its scalability. The
Kronecker Product Layer has an exponential complexity that makes training time unfeasible when
the number of features grows.

2.1.3 The Newron Structure

A neuron, in the classical and more general case, is represented by the equation y = f (b+
∑n

i=1wixi).

... ...

Figure 2.2: Structure of the standard artificial neuron. wi and b are respectively weights and bias. f is
the activation function. xi’s are the inputs and y is the output.

b is called the bias, wi are the weights, and xis are the inputs. f represents the activation
function of the neuron. Usually, we use the sigmoid, hyperbolic tangent, or ReLU functions.

We first generalize the above equation, introducing Newron as follows:

y = f (Gn
i=1 (hi(xi))) (2.1)

Each input is first passed through a function hi, which we will call processing function, where
the dependence on i indicates different parameters for each input. G, instead, represents a generic
aggregation function.

Using Newron notation, the standard artificial neuron would consist of the following: hi(xi) =
wixi, G =

∑
, and f(z) = f∗(z + b).
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... ...

Figure 2.3: Structure of Newron, the generalized artificial neuron. The blue rectangles represent the
processing function sections, the green rectangles contain the aggregation function, and the red rectangles
represent the activation part. Same colors are also used in Figure 2.2

G does not have any parameters, while b parametrizes the activation function.

Inverted Artificial Neuron (IAN)

We present 3 novel structures characterized by an inversion of the aggregation and activation func-
tions. We name this architectural pattern: Inverted Artificial Neuron (IAN). In all the cases we
consider the sum as the aggregation function and do not use any activation function: G =

∑
, and

f(z) = z.

Heaviside IAN

The first case we consider uses a unit step function as activation. This function, also called the
Heaviside function, is expressed by the following equation:

H(x) =

1 x ≥ 0

0 x < 0
(2.2)

According to (2.1) we can define the processing function as follows:

hi(xi) = H(wi(xi − bi)) =

H(wi) xi ≥ bi
1−H(wi) xi < bi

(2.3)

where wi and bi are trainable parameters.

Sigmoid IAN

We cannot train the Heaviside function using gradient descent, and it represents a decision rule
that in some cases is too restrictive and not “fuzzy” enough to deal with constraints that are not
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clear-cut.
A natural evolution of the unit step function is therefore the sigmoid function σ(x) = 1

1+e−x .
This function ranges in the interval (0, 1), is constrained by a pair of horizontal asymptotes, is
monotonic and has exactly one inflection point.

The sigmoid function can be used as a processing function with the following parameters:
hi(xi) = σ(wi(xi − bi)).

Product of tanh IAN

Another option we consider as a processing function is the multiplication of hyperbolic tangent
(tanh). For simplicity, we will use the term “tanh-prod”.

The tanh function tanh(x) = e2x−1
e2x+1

is on its own very similar to the sigmoid. An interesting
architecture is that using M tanh simultaneously. Each tanh applies its own weights, on each
individual input.

While the sigmoid is monotonic with only one inflection point, roughly dividing the input space
into two sections, the multiplication of tanh, by being not monotonic, allows us to divide the input
space into several intervals. The multiplication would remain in (−1, 1), but can be easily rescaled
to (0, 1).

We can therefore write the processing function in the case of the tanh multiplication as follows:

hi(xi) =

(∏M
m=1 tanh(wim(xi − bim))

)
+ 1

2
(2.4)

Note how, in this case, the weights depend on both the input i and the m-th function. Such a
neuron will therefore have M times more parameters than the Heaviside and sigmoid cases.

Output layer

The output layer would produce values ranging in the interval (0, N) ({0, 1, ..., N} for the Heaviside
case), where N represents the number of neurons in the penultimate layer. This is because the
last neuron makes the sum of N processing functions restricted in the interval (0, 1) ({0, 1} for the
Heaviside case). To allow the last layer to have a wider output range and thus make our network
able to reproduce a wider range of functions, we modify the last layer processing function h∗i as
follows: h∗i (xi) = αihi(xi),

where αi are trainable parameters.
In the same way, as for a traditional neural network, it is important, in the output layer, to

choose an adequate activation function. We need, indeed, to match the range of the output of the
network and the range of the target variable. In particular, in the case of output in (0, 1), we use a
sigmoid centered in b∗: f∗(z) = σ(z − b∗)

In the case of a classification problem with more than 2 classes, a softmax function (s(zj) =
ezj∑
l e

zl
) is used to output probabilities.

Note(s)

The writing w(x−b) is theoretically identical to that w∗x+b∗, where simply w∗ = w and b∗ = −bw.
This notation allows us to interpret the weights directly. From b, we already know the inflection
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point of the sigmoid; while looking at w, we immediately understand its direction.

2.1.4 Interpretability

[9] presented a well-structured overview of concepts and definitions in the context of Explainable
Artificial Intelligence (XAI).

They make a distinction among the various terms that are mistakenly used as synonyms for
interpretability. According to them:

• Interpretability: is seen as a passive feature of the model and represents the ability of a
human to understand the underlying functioning of a decision model, focusing more on the
cause-effect relationship between input and output.

• Transparency: very similar to interpretability, as it represents the ability of a model to have
a certain degree of interpretability. There are three categories of transparency, representing
the domains in which a model is interpretable. Simulatable models can be emulated even by a
human. Decomposable models must be explainable in their individual parts. For algorithmi-
cally transparent models, the user can understand the entire process followed by an algorithm
to generate the model parameters and how the model produces an output from the input.

• Explainability: can be seen as an active feature of a model, encompassing all actions that
can detail the inner workings of a model. The explanation represents a kind of interface
between a human and the model and must at the same time represent well the functioning of
the model and be understandable by humans.

In this paper, we show decomposable models that, in some cases, are also algorithmically trans-
parent.

Heaviside

The interpretability of an architecture composed of Heaviside IANs has to be analyzed by discussing
its four main sections separately.

First layer - Processing function

A single processing function h(x) = H(w(x−b)) divides the space of each variable x in two half-lines
starting from b, one of which has a value of 1 and one of which has a value of 0, depending on the
sign of w.

Aggregation

Using sum as the aggregation function, the output takes values in {0, 1, ..., n}; where 0 corresponds
to a deactivation for each input, and n represents an activation for all inputs, and the intermediate
integer values {1, 2, ...k, ..., n− 1} represent activation for k of inputs.
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y =

n∑
i=1

h∗i =


n h∗i = 1 ∀i ∈ {1, ..., n}

k h∗i = 1 i ∈ S ⊆ {1, ..., n}, |S| = k

0 h∗i = 0 ∀i ∈ {1, ..., n}

(2.5)

where we simplified the notation using h∗i = hi (xi).

2+ Layer - Processing function

Let us define an M -of-N rule as true if at least M of the N rules of a given set are true.
The Heavisides of the layers after the first one receive values in {0, 1, ..., n}, where n represents

the number of inputs of the previous layer. In the case where 0 ≤ b ≤ n and w > 0, the Heaviside
will output 1 only if the input received is greater than or equal to b, therefore only if at least ⌈b⌉
of the rules Ri of the previous layer are true, which corresponds to a rule of the type ⌈b⌉ − of −
{R1, R2, ..., Rn}. In the opposite case, where 0 ≤ b ≤ n and w < 0, Heaviside will output 1 only if
the input received is less than or equal to b, so only if no more than ⌊b⌋ of the rules of the previous
layer are true. This too can be translated to an M -of-N rule, inverting all rules Rj and setting M
as ⌈n− bi⌉: ⌈n− bi⌉ − of − {¬R1,¬R2, ...,¬Rn}.

Last layer - Aggregation

In the last layer we have to account for the α factors used to weigh the contribution of each input:

y =
n∑

i=1

αihi(xi) =
n∑

i=1

αiH(wi(xi − bi)) (2.6)

We have an activation rule for each of the n Heavisides forcing us to calculate all the 2n possible
cases. The contribution of each input is exactly αi. So, the output corresponds to the sum of the
αi’s for each subset of inputs considered.

Sigmoid

In the case of sigmoid IAN, bi represents the inflection point of the function, while the sign of wi

tells us in which direction the sigmoid is oriented; if positive, it is monotonically increasing from 0

to 1, while if negative, it is monotonically decreasing from 1 to 0. The value of wi indicates how
fast it transitions from 0 to 1, and if it tends to infinity, the sigmoid tends to the unit step function.

Sigmoid Interpretation

The sigmoid can be interpreted as a fuzzy rule of the type xi > bi if wi > 0 or xi < bi if wi < 0,
where the absolute value of wi indicates how sharp the rule is. The case wi = 0 will always give
value 0.5, so that the input does not have any influence on the output.

If wi is very large, the sigmoid tends to the unit step function. If, on the other hand, wi takes
values for which the sigmoid in the domain of xi resembles a linear function, what we can say is
that there is a direct linear relationship (or inverse if wi < 0) with the input.
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The fuzzy rule can be approximated by its stricter version xi > bi, interpreting fall under the
methodology seen for Heaviside. However, this would result in an approximation of the operation
of the network.

It is more challenging to devise clear decision rules when we add more layers. Imagine, as an
example, a second layer with this processing function:

h(y) = σ(w∗(y − b∗)) (2.7)

where y is the aggregation performed in the previous layer of the outputs of its processing
functions, its value roughly indicates how many of the inputs are active. In the second layer,
consider as an example a value of w∗ > 0. To have an activation, this means that we might need k
inputs greater than or equal to b∗/k. Although this does not deterministically indicate how many
inputs we need to be true, we know how the output changes when one of the inputs changes.

The last case to consider takes into account the maximum and minimum values that the sigmoid
assumes in the domain of x. If they are close to each other, that happens when w is very small, the
function is close to a constant bearing no connection with the input.

Product of tanh

The multiplication of tanh has more expressive power, being able to represent both what is repre-
sented with the sigmoid, as well as intervals and quadratic relations.

tanh-prod Interpretation

In this case, it is not possible to devise as quickly as in the previous case decision rules. Indeed, it
is still possible to observe the trend of the function and draw some conclusions. When the product
of the two tanh resembles a sigmoid, we can follow the interpretation of the sigmoid case. In
other cases, areas with quadratic relations can occur, i.e., bells whose peak indicates a more robust
activation or deactivation for specific values.

Summary of Interpretation

The advantage of this method lies in the fact that it is possible to analyze each input separately in
each neuron, thus easily graph each processing function. Then, based on the shape taken by the
processing function, we can understand how the input affects the output of a neuron.

The Heaviside is the most interpretable of our models, allowing a direct generation of decision
rules.

Sigmoid and tanh-prod cases depend on the parameter w. When it is close to 0, the activation is
constant regardless of the input. When w is large enough, the processing function is approximately
a piecewise constant function taking only values 0 and 1.

In all the other cases, the processing function approximates a linear or bell-shaped function.
Even if we can not derive exact decision rules directly from the model, in these cases, we can infer
a linear or quadratic relation between input and output.

Each layer aggregates the interpretations of the previous layers. For example, the processing
function of a second layer neuron gives a precise activation when its input is greater than a certain
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threshold, i.e., the bias b of the processing function. The output of the neuron of the first layer
must exceed this threshold, and this happens if its processing functions give in output values whose
sum exceeds this threshold.

A separate case is the last layer, where the α parameters weigh each of the interpretations
generated up to the last layer.

We can interpret a traditional individual neuron as a linear regressor. However, when we add
more layers, they cannot be interpreted. Our structure, instead, remains interpretable even as the
number of layers increases.

IAN models Interpretable models Non-interpretable models
Dataset Heaviside sigmoid tanh-prod LR DT GBDT NN
adult 80.2 (±0.06) 82.6 (±0.05) 82.3 (±0.06) 76.2 (±0.07) 81.5 (±0.06) 87.5 (±0.05) 83.1 (±0.06)
australian 86.5 (±0.51) 87.0 (±0.5) 88.7 (±0.4) 88.7 (±0.4) 87.0 (±0.41) 90.2 (±0.47) 88.0 (±0.4)
b-c-w 98.9 (±0.16) 98.9 (±0.16) 98.9 (±0.16) 97.8 (±0.23) 97.7 (±0.23) 98.3 (±0.21) 98.9 (±0.17)
car 95.1 (±0.2) 95.9 (±0.21) 100.0 (±0.0) 51.4 (±0.45) 98.5 (±0.11) 100.0 (±0.0) 99.8 (±0.04)
cleveland 65.6 (±1.02) 60.1 (±1.1) 62.9 (±1.13) 60.8 (±1.13) 53.6 (±1.19) 61.5 (±1.01) 65.6 (±1.01)
crx 86.2 (±0.51) 85.4 (±0.58) 86.5 (±0.5) 84.6 (±0.45) 88.0 (±0.42) 82.9 (±0.58) 87.7 (±0.44)
diabetes 73.3 (±0.56) 72.7 (±0.68) 76.1 (±0.61) 75.6 (±0.6) 74.1 (±0.63) 75.1 (±0.64) 74.2 (±0.65)
german 78.2 (±0.53) 77.0 (±0.53) 75.5 (±0.52) 75.1 (±0.52) 68.3 (±0.57) 76.6 (±0.55) 76.7 (±0.54)
glass 77.0 (±1.17) 81.6 (±1.04) 85.6 (±1.02) 72.1 (±1.08) 72.7 (±1.19) 87.3 (±0.9) 82.5 (±0.91)
haberman 76.9 (±0.94) 76.1 (±0.92) 77.2 (±0.88) 73.0 (±1.05) 64.4 (±1.08) 72.5 (±1.09) 76.1 (±0.92)
heart 88.7 (±0.67) 86.3 (±0.85) 82.7 (±0.8) 82.4 (±0.95) 81.4 (±1.02) 81.7 (±0.98) 82.9 (±0.95)
hepatitis 84.7 (±1.26) 85.1 (±1.23) 82.5 (±1.16) 79.1 (±1.45) 79.1 (±1.33) 81.7 (±1.32) 82.4 (±1.13)
image 93.0 (±0.11) 94.0 (±0.1) 94.4 (±0.09) 90.4 (±0.12) 90.6 (±0.12) 95.8 (±0.08) 92.6 (±0.11)
ionosphere 94.4 (±0.48) 96.7 (±0.34) 96.5 (±0.37) 92.0 (±0.51) 94.5 (±0.45) 95.4 (±0.37) 96.7 (±0.34)
iris 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 97.3 (±0.52) 97.3 (±0.52) 100.0 (±0.0)
monks-1 94.4 (±0.21) 100.0 (±0.0) 100.0 (±0.0) 66.0 (±0.46) 90.6 (±0.27) 100.0 (±0.0) 100.0 (±0.0)
monks-2 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 54.5 (±0.45) 82.7 (±0.33) 94.2 (±0.21) 87.6 (±0.27)
monks-3 97.1 (±0.15) 97.1 (±0.15) 97.1 (±0.15) 81.2 (±0.31) 97.2 (±0.16) 96.2 (±0.16) 90.3 (±0.25)
sonar 93.3 (±0.74) 96.8 (±0.48) 95.2 (±0.53) 89.5 (±0.75) 83.4 (±0.98) 88.1 (±0.9) 89.4 (±0.87)
bisector 98.9 (±0.13) 99.3 (±0.09) 99.3 (±0.09) 100.0 (±0.0) 97.7 (±0.18) 98.3 (±0.16) 100.0 (±0.0)
xor 100.0 (±0.0) 100.0 (±0.0) 99.2 (±0.11) 53.2 (±0.65) 99.2 (±0.12) 100.0 (±0.0) 100.0 (±0.0)
parabola 98.8 (±0.15) 100.0 (±0.0) 99.6 (±0.07) 77.8 (±0.52) 97.6 (±0.18) 97.7 (±0.17) 100.0 (±0.0)
circle 96.8 (±0.22) 99.3 (±0.1) 99.6 (±0.07) 52.4 (±0.67) 98.8 (±0.13) 97.6 (±0.2) 99.2 (±0.11)

Table 2.1: Datasets accuracy (± 95th percentile standard error) results of the best performing model. In
bold we indicate the best performing model amongst the interpretable ones. If GBDT or NN exceeds this
accuracy, the corresponding result is underlined.

2.1.5 Universality

A fundamental property of neural networks is that of universal approximation. Under certain
conditions, multilayer feed-forward neural networks can approximate any function in a given function
space. In [62] it is proved that a neural network with a hidden layer and using a continuous sigmoidal
activation function is dense in C(In), i.e., the space of continuous functions in the unit hypercube
in Rn. [128] generalized to the larger class of all sigmoidal functions.

To make the statement of theorems clearer we recall that the structure of a two-layer network
with IAN neurons and a generic processing function h is

ψ(x) =

N∑
j=1

αjhj(

n∑
i=1

hij(xi)) (2.8)

where αj ∈ R ∀j ∈ {1, ..., N}.
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IAN models Interpretable models Non-interpretable models
Dataset Heaviside sigmoid tanh-prod LR DT GBDT NN
adult 80.2 82.6 82.3 76.2 81.5 87.5 83.1
australian 86.5 87.0 88.7 88.7 87.0 90.2 88.0
b-c-w 98.9 98.9 98.9 97.8 97.7 98.3 98.9
car 95.1 95.9 100.0 51.4 98.5 100.0 99.8
cleveland 65.6 60.1 62.9 60.8 53.6 61.5 65.6
crx 86.2 85.4 86.5 84.6 88.0 82.9 87.7
diabetes 73.3 72.7 76.1 75.6 74.1 75.1 74.2
german 78.2 77.0 75.5 75.1 68.3 76.6 76.7
glass 77.0 81.6 85.6 72.1 72.7 87.3 82.5
haberman 76.9 76.1 77.2 73.0 64.4 72.5 76.1
heart 88.7 86.3 82.7 82.4 81.4 81.7 82.9
hepatitis 84.7 85.1 82.5 79.1 79.1 81.7 82.4
image 93.0 94.0 94.4 90.4 90.6 95.8 92.6
ionosphere 94.4 96.7 96.5 92.0 94.5 95.4 96.7
iris 100.0 100.0 100.0 100.0 97.3 97.3 100.0
monks-1 94.4 100.0 100.0 66.0 90.6 100.0 100.0
monks-2 100.0 100.0 100.0 54.5 82.7 94.2 87.6
monks-3 97.1 97.1 97.1 81.2 97.2 96.2 90.3
sonar 93.3 96.8 95.2 89.5 83.4 88.1 89.4
bisector 98.9 99.3 99.3 100.0 97.7 98.3 100.0
xor 100.0 100.0 99.2 53.2 99.2 100.0 100.0
parabola 98.8 100.0 99.6 77.8 97.6 97.7 100.0
circle 96.8 99.3 99.6 52.4 98.8 97.6 99.2

Table 2.2: Datasets accuracy results of the best performing model. In bold we indicate the best performing
model amongst the interpretable ones. If GBDT or NN exceeds this accuracy, the corresponding result is
underlined.

When the processing function is the Heaviside function we proved that the network can approx-
imate any continuous function on unit hypercube, In, Lebesgue measurable functions on In and
functions in Lp(A,µ) for 1 ≤ p < ∞, with µ being a Radon measure and A ∈ B(Rn) a Borel set.
More precisely, the following theorems hold; we detail the proofs of the theorems in the appendix.

Theorem 5.1. When the processing function is the Heaviside function the finite sums of the form
(2.8) are dense in Lp(A,µ) for 1 ≤ p < ∞, for any A ∈ B(Rn) - B denote the Borel σ–algebra -
and µ Radon measure on (A,B(A)).

Theorem 5.2. When the processing function is the Heaviside function, the finite sums of the form
(2.8) are dense in the space of Lebesgue measurable functions on In w.r.t the convergence in measure.

Theorem 5.3. Given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the form (2.8) with
Heaviside as processing function such that

|ψ(x)− g(x)| < ϵ ∀x ∈ In.

When the processing function is the sigmoid function or tanh-prod, we proved that the finite
sums of the form (2.8) are dense in C(In).

Theorem 5.4. When the processing function is a continuous sigmoidal function the finite sums of
the form (2.8) are dense in C(In).
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Theorem 5.5. Let ψ(x) be the family of networks defined by the equation (2.8) when the processing
function is given by (2.4). This family of functions is dense in C(In).

2.1.6 Experiments

Datasets

We selected a collection of datasets from the UCI Machine Learning Repository. We only consider
classification models in our experiments. However, it is straightforward to apply Newron archi-
tectures to regression problems. The description of the datasets is available at the UCI Machine
Learning Repository website or the Kaggle website.

We also used 4 synthetic datasets of our creation, composed of 1000 samples with 2 variables
generated as random uniforms between −1 and 1 and an equation dividing the space into 2 classes.
The 4 equations used are bisector, xor, parabola, and circle.

We give more details about the datasets in the appendix.

Methods

We run a hyperparameter search to optimize the IAN neural network structure, i.e., depth and
number of neurons per layer, for each dataset. We started our search by trying a single neuron,
followed by a shallow network and then continued through various DNN configurations. We tested
IAN with all three different processing functions. In the tanh-prod case, we set M = 2.

Concerning the training of traditional neural networks, we tested the same structures used for
Newron, i.e., the same number of layers and neurons. Finally, we also ran a hyperparameter search
to find the best combinations in the case of Logistic Regression (LR), Decision Trees (DT), and
Gradient Boosting Decision Trees (GBDT). We include all the technical details on the methods in
the appendix.

Results

Table 2.1 presents on each row the datasets used while on the columns the various models. Each cell
contains the 95% confidence interval for the accuracy of the model that obtains the best performance.

Results obtained with the new IAN neurons are better than those obtained by DTs and LRs
(interpretable) models. Moreover, IAN’s results are on par, sometimes better than, results of
traditional NNs and GBDT classifiers. These last two methods, though, are not transparent.

Amongst the Heaviside, sigmoid, and tanh-prod cases, we can see that the first one obtains
the worst results. The reason may be that it is more challenging to train, despite being the most
interpretable among the three cases. tanh-prod instead performs slightly better than sigmoid, being
more flexible. Sigmoid, being more straightforward to interpret than tanh-prod, could be a good
choice at the expense of a slight decrease in accuracy that remains, however, similar to that of a
traditional neural network.
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Circle dataset example

In order to first validate our ideas, we show what we obtained by applying a single neuron using
multiplication of 2 tanh in the case of our custom dataset circle.

Figure 2.4: tanh-prod Neural Network trained on the circle dataset. The figure follows the color convention
used for Newron in Figure 2.3. x1 and x2 are the inputs of the network and y is the output. The processing
and activation functions are plotted with input on the x-axis and output on the y-axis. Coordinates of the
inflection points are indicated above the plots.

In Figure 2.4 we can see how the multiplication of tanh has converged to two bells centred in
0, while α1 and α2 have gone to 30. According to the IANinterpretation method, values below 30

correspond to an activation function output of 0, while it is 1 for values above 38. In the middle
range, the prediction is more uncertain. Combining this data with the previous prediction, we can
conclude that we need the sum of the two values output by the two processing functions to be
greater than 38 to have a prediction of class 1. Therefore, if one of the two inputs is 0 (output 30),
it is enough for the other to be between −0.65 and 0.65 (output greater than 8). Otherwise, we
may need an output of at least 19 from both outputs, corresponding to input values between −0.5

Federico Siciliano 21



2.1.7. Conclusions and Future Work

and 0.5, i.e., the area covered by the circle. We show more examples in the appendix.

Current limitations

The extraction of proper rules from the network can be harrowing; in the Heaviside case, they might
be too long in the sigmoid and tanh-prod cases because their simplicity depends on the final value
parameters. Nevertheless, methods of regularization during training or additional Rule Extraction
methods may help to simplify interpretability. We defer the study of regularization to future works.

Also, we have not compared Newron against state-of-the-art Deep Learning models for tabular
data, as our main goal was to show that our formulation was more suitable than traditional neurons
compared to “traditional” interpretable models. Comparisons with more advanced solutions for
tabular data will be the subject of future work.

2.1.7 Conclusions and Future Work

We have introduced the concept of a generalized neuron and proposed three different specializations,
along with the corresponding method to interpret the behavior of the network. Also, in cases where
from the network we cannot devise exact rules (e.g., in the sigmoid and tanh-prod cases), the
structure of the neuron and the parameters allow the visualization of its behavior. Indeed, for every
input, we apply the nonlinearity operation before the aggregation reducing it to a one-dimensional
space allowing the analysis of each input separately. Through universal approximation theorems, we
have proved that the new structure retains the same expressive power as a standard neural network.
In future studies we will investigate more in detail the expressiveness of IAN based models with
respect to the number of layers or neurons in arbitrarily deep but width-limited networks and
arbitrarily wide but depth-limited networks. Experiments conducted on both real and synthetic
datasets illustrate how our framework can outperform traditional interpretable models, Decision
Trees, and Logistic Regression, and achieve similar or superior performance to standard neural
networks. In the future, we will investigate the influence of hyper-parameters (network depth,
number of neurons, processing functions) and initialization on the model quality. Also, we will
refine the analysis of the tanh-prod case as the number of tanh increases. In addition, we will
investigate IAN with additional processing functions, such as ReLU and SeLU. Finally, we will
extend this method to other neural models, such as Recurrent, Convolutional and Graph Neural
Networks. Although we have not yet defined exactly how to extend to the other cases, the general
idea remains the same: avoid linear combinations, instead apply a function to each input and
then aggregate the results. Since CNNs are in fact a special case of Fully-connected NNs with
certain weights fixed and/or shared, our neuron would already be applicable to images, but the
interpretation for this case will require more investigation.
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2.2 Explaining Neural Networks Using a Rule-
set Based on Interpretable Concepts

We propose a new category of interpretable machine learning models for tabular data, called self-
explainable, which are able to distill interpretable concepts in the form of rules during training
for classification. The concepts are then used to produce global explanations as First Order Logic
rulesets, linking concepts to classes. The architecture we show in this paper integrates two recent
variants of traditional neural networks, namely Inverted Artificial Neuron and Logic Explained
Network. We also solve problems that afflicted both variants, such as discovery of concepts and
oversize rulesets. Our experiments show that self-explainable neural networks can directly produce
rules explaining their predictions (with an average fidelity of 89% across 18 datasets), performing
similar to classical interpretable classifiers in terms of classification accuracy (given the same opti-
mization time), with a better performance on half of the datasets tested. Our models also obtain
a performance similar to traditional multilayer feedforward artificial neural networks (2.0% more
accuracy on average).

2.2.1 Introduction

Artificial Neural Networks (ANNs) have become predominant in many domains thanks to their
remarkable performance [102, 253, 318], but they conceal the undesired pitfall of being black-box
models. Precisely for this reason, the last few years have seen the emergence of an increasing number
of works focused on explaining how Neural Networks (NNs) operate [9].

Within Explainable Artificial Intelligence (XAI) however, much work focuses on providing post-
hoc explainability methods applicable to traditional networks [9]. While achieving impressive re-
sults, these methods struggle against the black-box nature of neural networks [42, 91, 207].

In contrast, a network that was built to be explainable by design could greatly facilitate the
extraction of explanations. To this end, in this paper we propose a neural network that can extract
interpretable concepts from the features of a tabular dataset. Current approaches [149, 153, 334]
to concept-based interpretations assume the training dataset already contains associations between
concepts and samples. In other words, instead of having a data sample made up of pairs (x, y), the
dataset contains triples (x, c, y), where c is the concept vector associated with x. The network can
then be trained to predict them. This is different from what we have done in this work, because the
concepts are distilled from the dataset itself. Moreover, distilled concepts are interpretable and not
sample-based, because they take the form of feature-based rules. Using these concepts, the network
is able to (i) solve a classification task and (ii) provide explanations for its predictions.

To build this network, we combine two models: a specialization of NEWRON [269], specifically
the Inverted Artificial Neuron (IAN), and the Entroby-based version [21] of Logic Explained Net-
works (LENs) [55]. The IAN is a variant of the traditional artificial neuron which is able to extract
rules (in other words, concepts) from raw features. IAN is then followed by a Logic Explained
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Network, a model that can provide explanations in the form of concise concept-based rulesets. In
this paper we start by firstly addressing two limitations of IAN and LEN architectures: (i) we solve
the Inverted Artificial Neuron problem of producing overly large rulesets, which are difficult to
interpret; and (ii) we can generate interpretable concepts in the form of a feature-based rule. The
use of this type of neuron makes it possible to overcome LEN’s inability to produce concepts.

The major contributions we are making in this work can be summarized as follows:

• By combining IAN and LEN we are able to overcome their limitations when used on their
own: we allow extracting interpretable concepts used for generating concise rulesets.

• Because the network is optimizable end-to-end, concepts are distilled directly during network
training and do not require a ground truth or a specific loss.

• Our self-explaining neural network provides a good trade-off between accuracy and explain-
ability, being able to directly explain its predictions through First Order Logic.

• Conducted experiments show that this type of network can achieve a performance, in terms of
accuracy, similar to traditional black-box neural networks and classical interpretable classifiers
on tabular data.

2.2.2 Related Work

Rule-extraction from Neural Network Despite the great number of recent works in the field
of Explainable AI, a small amount of them focus on the extraction of rules from neural networks [9].
Some early work on understanding neural networks using rules dates back to the 1990s [91, 255, 256].
Rule extraction algorithms [6, 12, 65, 113, 137] are mainly divided into two groups: decompositional,
which analyze the activation of individual neurons to extract rules, and pedagogical, which define
rules that most closely replicate the output of the network given the input. A third type of rule
extraction, called eclectic, incorporates elements of both the other types decompositional and ped-
agogical.

Of decompositional approaches, we can mention NeuroLinear [257], GRG [204] and NeuroRule
[175] that work by clustering the hidden unit activation values. [296] algorithm operates by approx-
imating each neuron with a boolean function, while [295] build an algorithm that is able to extract
both “if-then” as well as “MofN” rules. [119, 259] tried to add discretized inputs to train the network
to increase both performance and facilitate rule extraction, while DeepRED [358] extracts rules for
each NN layer and then merge them.

Concerning pedagogical approaches, both Re-RX [258], REANN [140] and RxREN [11] focus on
pruning insignificant neurons, generating and then eliminating insignificant rules, while HYPINV
[245] tries to find hyper-planes that approximate the neural network decision boundary.

The eclectic approach of ERENN_MHL [43] performs a rule extraction from each layer, dif-
ferent for the first layer, and then combines and refines them to increase performance and reduce
complexity. In contrast, CGA [129] makes use of a clustering genetic algorithm to group hidden
unit activation values. While Inverted Artifical Neuron [269] falls into the decompositional type
of rule extraction, LEN [55] is a pedagogical type of rule extraction algorithm. Our complete rule
extraction method, can therefore be considered an eclectic type approach.
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Tabular data

Neural networks achieved outstanding results in many areas, showing that they are capable of
effectively process a variety of data types: tabular [33, 132], time series [169, 184], images [78, 109],
graphs [323, 353], etc. Nevertheless, for tabular data, it is still unclear whether neural networks
are indeed the best model. Models based on Gradient Boosting, such as Gradient Boosted Decision
Trees, still often emerge as better [33, 107].

Recent research papers try to outperform Gradient Boosting techniques [2, 8, 103] without
success, while others [85, 139] propose improvements to neural networks, stating that they had finally
managed to outperform models based on Boosting. Papers such as [267] instead disprove some of
these claims by expanding the results to more datasets and rigorously addressing hyperparameters
tuning, achieving once again superior results with Gradient Boosting.

While the issue of performance on tabular data is still debated, our work does not aim to beat
Boosting models in terms of performance, but rather to achieve performance similar to a standard
neural network with the added quality of being interpretable.

It should also be added that the restriction to tabular data is, in part, also forced by the fact
that a major component of the network, i.e. IAN, has for now been analyzed in depth only for this
type of data and not yet extended to others.

Concept-based Explainability A growing branch in the field of XAI is that of Concept-based
Explainability [98, 149, 334]. Concepts are a method of getting closer to the human type of reasoning.
Humans often aggregate information into high-level concepts that best describe the situation they
are in, and then use a set of rules to determine an action [55]. Concepts are indeed more intuitive
to understand as opposed to raw features.

Concept-based explainability methods are used for Recurrent Neural Networks [144] , Convolu-
tional Neural Networks [49, 153], and Graph Neural Networks [94, 182]. On tabular data, on the
other hand, the concept-based literature is sparse [148, 216].

To the best of our knowledge, in other Concept-based Explainability work, concepts are already
present in the dataset or defined in advance [153, 351]. In contrast, our network is able to distill
them jointly with its training.

Moreover, in other papers [98, 182] concepts are often interpreted by selecting a set of sam-
ples and analyzing the similarities among them. In our case, the extracted concepts are directly
interpretable since they are in fact logical rules applicable to any given samples.

2.2.3 Methodology

NEWRON & Inverted Artificial Neuron NEWRON [269] is a generalization of traditional
artificial neurons. Equation (2.9) shows NEWRON’s structure: input features xi’s are passed
through the processing function hi, are aggregated through function G (iteratively from i = 1 to
N). An activation function f is then applied to give the output y. The processing functions can
take the form of any complex operations with corresponding trainable parameters. The standard
neuron is obtained by choosing multiplication by weights as the processing function and the sum as
the aggregation function.
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Figure 2.5: Structure of the self-explainable neural network. xi represents the i-th input. The first
layer of the network consists of Inverted Artificial Neurons (IANs), where the blue squares contain the
processing functions, the green squares contain the aggregation function, and the red squares contain the
activation function. The output of the k-th IAN is the k-th concept. The concepts are passed to the Logic
Explained Network (LEN), consisting of an Entropy-based layer, an activation, then a series of layers, and
a concatenation. The output provided by LEN is both the prediction yl and the truth table Tl for each of
the L classes. The figure follows the color convention of both original papers [269] and [21].

y = f(GN
i=1(hi(xi))) (2.9)

The Inverted Artificial Neuron (IAN) [269] is a specialization of NEWRON in which first a non-
linear function is applied to each individual input (with appropriate parameters) then an aggregation
is performed by summation. We use the Heaviside function as activation function since we want
the extracted concepts to fall in the set {0, 1}. Also, we use the Heaviside function as processing
function because it is the only one of the three processing functions proposed in the original paper
that provides crisp rules; the others can provide fuzzy rules. The equation (2.10) shows the structure
of Heaviside-IAN with Heaviside activation function (that we denote with H):

y = H

(
w

(
N∑
i=1

H(wi(xi − bi))− b

))
(2.10)

where w, b, wi and bi are trainable parameters.
This type of neuron has the peculiarity of being able to be translated into a rule of the form

M -of-N , resulting from the inversion of the order of operations. This kind of rule is true if at
least M of the N rules it is composed of are true. In the IAN case, each of the N rules refers
to one of the N input features. The main limitation with this type of neuron arises when moving
to multi-layer networks. In the paper it is shown how a single neuron is interpretable and how it
is possible to propagate the rules through each layer to obtain a complete ruleset representing the
entire network. However this ruleset is likely to be very large as no method has been proposed to
regularize or aggregate the final ruleset.

Concept Representation Since the network is optimizable end-to-end, concepts are distilled in
conjunction with network training: they do not need ground truth in the dataset since they are
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learned directly from the data. Likewise, there is no need to have an additional loss for them.
In our case, the concepts are an aggregate of various features. In particular, they take the form

of an M -of-N rule which, as mentioned above, is valid if at least M of the N rules it is composed
of are true. Since the concepts are logical rules, they are easily human-interpretable. Moreover, the
rules depend solely on the weights of the Inverted Artificial Neuron. Since, once trained, the weights
of each Inverted Artificial Neuron are fixed, so are the rules that represent them and, consequently,
so are the concepts they symbolize. For this very reason, the extracted concepts are interpretable
and not explainable through individual samples, and they remain valid for whatever sample is given
as input to the network, since the concept of the neuron is always the same and may only be active
for one sample and not for another.

To give an example for tabular data, a concept, that is, the actual rule that IAN follows to give
its output, might be represented by 2-of-{X1 > 3, X2 < 10, X3 ≥ −0.4}. Since this writing means
“at least 2 of the rules X1 > 3, X2 < 10, X3 ≥ −0.4 are valid”, it can be unrolled and translated
into the complete rule (X1 > 3 ∧ X2 < 10) ∨ (X1 > 3 ∧ X3 ≥ −0.4) ∨ (X2 < 10 ∧ X3 ≥ −0.4).
However, writing it as M -of-N is more convenient and can cover both the case of complete logical
conjunction and disjunction, respectively when M = N and M = 1.

The maximum number of concepts that can be found is given by the number K of IANs, i.e. the
neurons in the first layer of the network. There is, however, the possibility that a concept is active
or inactive for all samples and thus that neuron may be pruned later from the network, since it
does not make sense to use it for ruleset generation. In addition, concepts that are discarded during
ruleset construction can similarly be considered to be less important, but not completely irrelevant
in the regular network’s prediction. The concept space is C = {0, 1}K , where K is the number of
concepts we are considering. For each sample the i-th entry of the vector c ∈ C, ci, takes value 1 if
the i-th concept is active/valid for that particular sample and 0 otherwise.

Logic Explained Network Logic Explained Networks (LEN) [55] are neural models that can
generate simple concept-based logical explanations for network predictions. In particular, in this
work we make use of the entropy-based version of LEN (E-LEN) [21] that makes use of an entropy-
based criterion whose purpose is to identify the most relevant concepts. This layer encourages
the neural model to choose a limited subset of input concepts, which thus leads to the creation of
concise explanations of its predictions. Starting from the trained network and training instances,
E-LEN is able to generate, for each class m, a truth table Tm representing the functioning of the
network. This can be summarized, through various logical rule aggregation techniques, into sets of
explanations in the form of a ruleset. The approach tries to make the created rule sets as faithful
as possible to the network’s predictions, while maintaining low complexity.

Heaviside-IAN + LEN The combination of the two IAN and LEN models is able to create
a network suitable for making predictions for tabular data and explaining them. An illustrative
diagram is shown in Figure 2.5.

A first layer composed of K Heaviside IANs is able to aggregate the N input features into
interpretable concepts. It should be noted that the benefit of IANs is precisely that the concepts
are interpretable, not explainable in terms of single samples. In fact, other methods [98, 182] explain
concepts as aspects (mostly visual) that synthesise the set of samples for which those concept are
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valid. Once our network is trained, a rule can be automatically extracted from the neuron’s weight.
This also favors the possibility to intervene on the concepts [153], perhaps to refine some splits on
certain features or prune some concepts that are considered faulty.

After the input has been transformed into concepts, a LEN module predicts, for each class m,
the class membership ym as well as a truth table Tm. After training, the module can be used to
provide an explanation at the level of each individual class based on the concepts extracted from
the IAN. The truth tables {T1, ..., TM} are simplified using logical techniques to get concise FOL
expressions for each class. These explanations can then be evaluated in terms of accuracy on the
test dataset and fidelity. Fidelity measures how well the ruleset’s predictions represent the networks’
predictions.

It should also be noted that the two frameworks are optimized end-to-end simultaneously, thus
not requiring a separate step to identify the concepts.

2.2.4 Experiments

Dataset GB NN IAN-LEN (ours) IAN-LEN Rules (ours) Rules fidelity

adult 87.29±0.03 85.03±0.12 84.50±0.59 82.51±0.78 77.91±4.41
australian 92.03±0.00 86.52±0.58 86.81±1.16 83.48±1.25 91.45±3.76
breast-cancer-wisconsin 98.43±0.29 98.57±0.00 98.43±0.29 98.14±0.57 99.43±0.29
cleveland 57.38±0.00 59.02±3.28 54.43±2.41 55.74±1.80 56.72±6.85
diabetes 78.57±0.00 72.21±0.95 73.90±1.85 71.30±1.04 84.94±5.58
eye 94.64±0.23 53.97±0.00 56.38±0.87 57.18±1.62 71.72±18.49
german 81.00±0.00 76.10±0.58 75.60±1.46 74.20±0.40 93.30±9.25
haberman 78.06±1.29 75.81±0.00 74.52±1.21 74.19±1.44 94.19±6.66
heart 87.04±0.00 81.85±1.39 82.22±1.89 81.48±2.03 91.85±3.43
hepatitis 87.10±0.00 83.87±0.00 80.65±3.53 82.58±1.58 95.48±6.32
ionosphere 95.21±0.69 92.96±2.52 94.65±1.05 90.14±0.89 100.00±0.00
iris 100.00±0.00 96.67±0.00 98.67±1.63 99.33±1.33 98.00±2.67
monks-1 100.00±0.00 77.60±13.05 82.40±4.08 82.40±7.42 84.00±10.43
monks-2 95.88±1.44 88.24±7.44 100.00±0.00 100.00±0.00 98.82±1.44
monks-3 100.00±0.00 91.20±4.66 96.00±0.00 96.00±0.00 100.00±0.00
poker 66.09±0.00 49.84±0.00 54.31±0.70 51.34±1.24 80.71±8.70
sonar 89.52±1.17 83.33±4.52 82.86±3.16 80.95±3.98 90.00±3.50
thyroid 99.87±0.00 96.87±0.52 94.83±0.19 95.02±0.72 98.25±2.14

Average 88.23±0.56 80.54±4.00 81.73±1.86 80.89±2.28 89.27±6.85

Table 2.3: Accuracy results on test set of all datasets for non-interpretable classifiers, i.e. Gradient Boosting
(GB), Neural Network (NN) and for our model (IAN-LEN). The accuracy of the rules extracted from IAN-
LEN (IAN-LEN Rules) and the fidelity (Rules fidelity) of these to the original network’s prediction are also
shown. Gradient Boosting result is put in italics if it is the best model for that dataset according to the
average. In bold, the best model (except GB) according to the mean is highlighted.

Datasets For our experiments, we selected 18 tabular datasets for classification task from the
UCI Machine Learning Repository [75].

We divided each dataset into train, validation, and test set. For datasets that are already
provided separated into sets, we have kept the same separations, dividing the validation where
missing, selected uniformly at random as 20% of the train. For the other cases, 20% of the samples
were selected uniformly at random as the test set, and an additional 20% was separated to form
the validation set.
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Models For each of the datasets, we trained our model and 4 other classifiers. Two of these,
Logistic Regression (LR) and Decision Tree (DT), are interpretable by design, and are therefore
competitors to our model in the domain of explainability. The other two, traditional multilayer
Neural Network (NN) and Gradient Boosted (GB) Decision Trees, are instead selected for their
high performance.

For each classifier, we performed five training repetitions with different initialization seeds. For
neural networks, this translates into a different initialization of the network’s initial weights and
therefore presumably obtaining a different local minimum during gradient descent. For Decision
Trees and Gradient Boosted Decision Trees the seed controls the random permutations of the
features at each split. For Logistic Regression, on the other hand, it does not make sense to
perform several repetitions.

Optimization For each classifier, we performed a random search to optimize its hyper-parameters.
For a fairer comparison between the various models, the random search for each was performed at
equal execution time (30 minutes per dataset). We note that this may put our model in disadvantage,
since all the other traditional classifiers must probably have a greatly optimized code.

For further information on the experimental setup, please refer to the appendix.

2.2.5 Results

The results obtained show that our network performs equally, if not slightly better (> 1% increase)
in accuracy than a traditional neural network. Still considering accuracy, we do much better than
Logistic Regression (> 6% increase), while similarly to Decision Tree (< 1% difference). However,
various factors such as optimization time, the number of combinations tested and the efficiency
of the code itself are to be taken into account. Finally, we can claim to have obtained results
in line with Rule Extraction methods in the literature. The comparison is a bit unfair (to our
disadvantage) since some of the results for the other RE methods are missing information, such as
number of hyperparameters combinations tested and sometimes even standard deviation.

Datasets where IAN-LEN ruleset performs better than standard interpretable models
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Figure 2.6: Accuracy mean and standard deviation for rules generated by our method (IAN-LEN) and by
other rule extraction algorithms on datasets where we are able to outperform both Decision Tree and Logistic
Regression. The maximum accuracy obtained by Decision Tree and Logistic Regression is also shows as a
horiziontal line.
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Dataset IAN-LEN Rules (ours) DT LR

adult 82.51±0.78 81.31±0.00 77.86±0.00
australian* 83.48±1.25 88.41±0.00 89.13±0.00
breast-cancer-wisconsin 98.14±0.57 97.14±0.00 97.86±0.00
cleveland 55.74±1.80 49.18±0.00 52.46±0.00
diabetes* 71.30±1.04 77.27±0.00 73.38±0.00
eye 57.18±1.62 83.02±0.09 56.86±0.03
german 74.20±0.40 72.50±0.84 70.50±0.00
haberman 74.19±1.44 72.58±3.38 74.19±0.00
heart* 81.48±2.03 87.04±0.00 85.19±0.00
hepatitis 82.58±1.58 80.65±5.77 74.19±0.00
ionosphere* 90.14±0.89 92.96±0.00 92.96±0.00
iris 99.33±1.33 96.67±0.00 100.00±0.00
monks-1 82.40±7.42 80.00±0.00 60.00±0.00
monks-2 100.00±0.00 91.76±2.20 55.88±0.00
monks-3 96.00±0.00 96.00±0.00 92.00±0.00
poker 51.34±1.24 47.50±0.70 13.43±5.03
sonar 80.95±3.98 76.67±1.78 88.10±0.00
thyroid 95.02±0.72 99.87±0.00 91.89±2.23

Average 80.89±2.28 81.7±1.73 74.77±1.3

Table 2.4: Accuracy results on test set of all datasets for interpretable classifiers, i.e. Decision Tree (DT)
and Logistic Regression (LR), and for rules extracted from IAN-LEN (IAN-LEN Rules). In bold, the
best model according to the average is highlighted. The asterisks mark the only datasets where our model
performs worse than both LR and DT.

Comparison with non-interpretable models For each dataset, the classifier with the highest
accuracy value in terms of mean minus standard deviation of accuracy was selected for each model
type. This method to some extent ensures that more robust models are selected, compared to
looking only at the mean.

Table 2.3 shows the accuracy obtained by Gradient Boosting, Neural Network, IAN-LEN and
rules extracted from it for all the tested datasets. As expected, Gradient Boosting turns out to
be the best model on almost all but two datasets. For this reason, to improve visualization, we
decided to put it in italics instead of bold. In bold, we can instead see the comparison between a
standard neural network and our model. We can see that the results obtained by the two models
are comparable, with ours outperforming the other on 10 of the 18 datasets considered. In the last
column we show the rules extracted from the respective IAN-LEN networks. We can see that in
some cases the ruleset manages to perform even better than the network from which it is drawn,
but the difference is not significant.

As for fidelity, on average the extracted rulesets are faithful to the network from which they
are extracted by almost 90%. We should note, however, that the two datasets (cleveland and eye)
where we perform worst (along with NN) suffer from very low fidelity. This certainly hampers the
overall average. In fact, only on 5 dataset out of 18 dataset the fidelity is lower than 90%.

Comparison with interpretable models Table 2.4 shows the accuracy obtained by Decision
Tree, Logistic Regression and the rules extracted from our IAN-LEN network for all the tested
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datasets. The best result according to the accuracy mean is highlighted in bold. We can see that
on 10 datasets over 18 the accuracy of our ruleset is equal or better than the accuracy obtained by
both Decision Tree and Logistic Regression. Instead, only on 4 datasets we are outperformed by
both LR and DT.

However, our network has greater potential than DT and LR. In fact, the experiments presented
were carried out at equal execution time, for the fairest possible comparison. This means that for
some datasets, our model manages to test only 5 combinations of hyper-parameters, while Decision
Trees are capable of testing 100 and LR 1000. This possibly means that with more optimization
time, our method can achieve even higher performance. Although it can be speculated that DT
and LR could also benefit from more optimization time, we believe that given the high amount
of combinations of hyper-parameters tested for them, it is unrealistically to increase greatly the
performance of these two. While not featured in the present study, this analysis will certainly be
pursued in the future. Another point to be made is that ours is a differentiable neural structure,
which can also be combined with other differentiable models in a multi-model setting. Since IAN-
LEN is a method for building architectures, we can imagine it being applicable to other types of
networks as well, such as Convolutional or Transformers. Thereby, having been explored here for
the first time, we believe it may have greater room for improvement and more versatile applicability
than models such as DT and LR that have already been explored in detail.

Comparison with rule-extraction methods We can also analyze our performance in compar-
ison with other rule extraction methods to see if they can beat interpretable models on datasets on
which we cannot.

You might notice how the results for Figure 2.6 vary slightly from those shown in the tables
2.4 and 2.3. The reason for this is that for the figures we selected our rules that perform best on
average, without considering standard deviation. We decided to do this since it is the same strategy
adopted by the other papers on Rule Extraction with which we compare ourselves. We applied the
same method to obtain the maximum performance of Logistic Regression and Decision Trees. We
selected only those Rule Extraction models that on at least one dataset prove to be better than all
others. In particular, we compare ourselves with ERENN_MHL [43], HYPINV [245], RxREN [11],
DIMLP-B [31], REANN [140]. In Figure 2.6 we first see the performance in terms of mean and
standard deviation of accuracy for five of the datasets where we are able to outperform interpretable
models; we show our performance and that of five other Rule Extraction algorithms. We clearly
outperform on two of five datasets (breast-cancer-wisconsin and hepatitis). On the german dataset,
we can say that only DIMLP-B is comparable, although it scores below our average accuracy. On
haberman we are virtually equal to DIMLP-B, but with little more standard deviation. The only
dataset in which we are outperformed is adult. We have only the comparison with RxREN, of which
we want to emphasize, however, that this value is provided without standard deviation, so it is
difficult to assess its real superiority.

Looking in more detail at the datasets where we are unable to outperform Decision Tree or
Logistic Regression, we can see that we are not the only ones having difficulty outperforming the
classical interpretable models. The dataset diabetes is the only one where we are clearly inferior of
one other method, HYPINV, which is also able to also outperform DT and LR. The same thing
is done by RxREN on the ionosphere dataset, remembering, however, how without its standard
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Dataset Ruleset Accuracy

Australian
Credit

Approval

7-of-{V1 < 50.362, V3 < 2.389, V4 < 13.097, V5 < 8.017,
85.51%V7 < 0.514, V9 < 53.475, V13 < 46658.008} ⇒ class 0

Default: class 1

Breast
Cancer

Wisconsin

4-of-{V0 ≥ 5.048, V1 ≥ 2.1, V2 ≥ 2.045, V3 ≥ 6.918, V4 ≥ 1.96,
98.57%V5 ≥ 3.197, V6 ≥ 2.96, V7 ≥ 8.583, V8 ≥ 3.026} ⇒ class 1

Default: class 0

Iris

2-of-{V0 ≥ 4.361, V2 ≥ 4.997, V3 ≥ 1.791} ∨

100.00%
2-of-{V0 ≥ 6.14, V1 ≤ 3.073, V2 ≥ 4.952, V3 ≥ 1.68} ⇒ class 2
2-of-{V0 ≥ 5.68, V1 ≤ 2.999, V2 ≥ 3.055, V3 ≥ 0.857} ⇒ class 1
Default: class 0

Table 2.5: Rulesets generated by IAN-LEN on some of the tested datasets and the corresponding accuracy
on each test set. M -of-{N rules} indicates an active rule if at least M of the N rules are active. Vi denotes
feature i for the corresponding dataset, with V0 being the first feature.

deviation this result is hardly reliable. On this and 2 other datasets (australian and heart) we are
comparable to the other models, while on eye we are superior to ERENN_MHL. On the remaining
3 datasets (iris, sonar and thyroid), we can consider ourselves almost superior as the other results
rank below or similar to our average.

We can summarize that even where we lose the comparison to classical interpretable models,
the same happens to the state of the art for Rule Extraction. Moreover, we still come out similar or
better than the state of the art for rule extraction by neural network. In addition, it is important
to emphasize that for the other RE methods, we have neither the execution times nor the type of
machine they ran on, which makes it impossible for us to make a completely fair comparison with
them.

Rulesets examples From the five replications that generated the results in Table 2.4, we ex-
tracted the fold that obtained the best result to show the extracted rulesets. Table 2.5 shows the
aforementioned rulesets extracted by our method for some of the tested datasets, along with their
performance obtained on the test set. As already specified, by the term M -of-N rules we mean an
active rule only if at least M of the N rules are active.

2.2.6 Conclusions

In this paper, we propose neural network models for classification that is able to generate expla-
nations for the network’s predictions in terms of simple first-order logic rulesets. These rulesets
involve concepts that are automatically distilled by our network. To the best of our knowledge, this
is a novelty in the field of Concept-based Explainability for tabular data. Moreover, the concepts
are interpretable being composed as M -of-N rules on the features of the dataset.

Our model is obtained by concatenating a layer of Inverted Artifical Neurons and a Logic
Explained Network. We prove that we have overcome the limitations of the previous two works. In
fact, we are able to generate interpretable concepts, overcoming LEN’s inability to produce concepts.
They can also produce easy-to-read rule sets, unlike IAN, which can produce excessively large rule
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sets that are therefore difficult to interpret.
We have shown, through experiments on tabular datasets, that our model achieves on average

slightly better results (in terms of accuracy) than neural network and results similar to Decision
Trees with equal optimization time for hyperparameter search. DT can rely on a larger hyperpa-
rameter optimization, taking advantage of a reduced execution time per combination, while our
network, for the same amount of time, is able to explore fewer combinations. This suggests that
there are still many opportunities for improvement for our neural structure. We showed that our
results are in line with those of other Rule Extraction methods and we proved experimentally that
our model is able to produce rules explaining its predictions with a fidelity of more than 89%.

A current limitation is being able to apply this type of network only to tabular data, due both
to the difficulty of generating concepts that can be easily interpreted for the other kinds of data and
to the restriction given by IAN. Future work may therefore focus on adapting IAN to the case of
time series, images, graphs or text, so that interpretable concepts can be generated for these other
types of data as well.
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2.3 Concept Distillation in Graph Neural Net-
works

The opaque reasoning of Graph Neural Networks induces a lack of human trust. Existing graph
network explainers attempt to address this issue by providing post-hoc explanations, however,
they fail to make the model itself more interpretable. To fill this gap, we introduce the Concept
Distillation Module, the first differentiable concept-distillation approach for graph networks. The
proposed approach is a layer that can be plugged into any graph network to make it explainable by
design, by first distilling graph concepts from the latent space and then using these to solve the task.
Our results demonstrate that this approach allows graph networks to: (i) attain model accuracy
comparable with their equivalent vanilla versions, (ii) distill meaningful concepts achieving 4.8%
higher concept completeness and 36.5% lower purity scores on average, (iii) provide high-quality
concept-based logic explanations for their prediction, and (iv) support effective interventions at test
time: these can increase human trust as well as improve model performance.

2.3.1 Introduction

Human trust in machine learning requires high task performance alongside interpretable decision
making [261]. For this reason, the opaqueness of Graph Neural Networks (GNNs, [249])—despite
their state-of-the-art performance [25, 66, 212, 281]—raises ethical [76, 174] and legal [80, 307]
concerns. As their practical deployment is now under question, interpreting GNN reasoning has
become a major concern in the field [241, 336].

Early explainability methods for GNNs produce local, low-level post-hoc explanations [179,
306, 336], which exhibit the same unreliability as analogous methods for convolutional networks [3,
97, 151]. In contrast, concept-based explainability overcomes the brittleness of low-level explana-
tions by providing robust global explanations in form of human-understandable concepts [150], i.e.,
interpretable high-level units of information [98, 154]. In relational learning, the Graph Concept Ex-
plainer (GCExplainer, [182]) pioneered concept-based explainability for GNNs by extracting global
subgraph-based concepts, such as a “house-shaped” structure, from the latent space of a trained
model. This way users can check whether the extracted concepts are meaningful [98], whether they
are coherent across samples [182], and whether they contain sufficient information to solve a target
task [334]. However, as any post-hoc approach, GCExplainer does not encourage the GNN to make
interpretable predictions using the extracted concepts [241]. At best, post-hoc techniques can cor-
rectly describe what models learn [241], but they cannot make the GNN itself more interpretable.
Therefore, the opaque reasoning of GNNs remains an open problem.

To fill this knowledge gap, we propose the Concept Distillation Module (CDM, Figure 2.7), the
first concept-based end-to-end differentiable approach which makes graph networks explainable
by design. It achieves this by first distilling a set of concepts present in the GNN’s latent space
and then using these to solve the task at hand. Our module can be introduced in any GNN
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architecture. We will refer to the resulting family of architectures as “Concept Graph Networks”, or
CGNs. We experimentally show that CGNs: (i) attain better or competitive task accuracy w.r.t.
their equivalent vanilla GNN, (ii) distill coherent human-understandable concepts from the latent
space and obtain high scores in all the key concept-based explainability metrics, i.e., purity and
completeness, (iii) can provide simple and accurate logic explanations based on discovered concepts,
(iv) allow effective interventions at concept level: these can increase human trust and significantly
improve model performance.

Task
Prediction

"middle node"
in house motif

Input Graph

Message
Passing

Concept
Distillation

(ours)

Interpretable
Task Predictor

Explainable-by-Design Graph Neural Network

END-TO-END DIFFERENTIABLE

Figure 2.7: The proposed Concept Distillation Module makes graph networks explainable-by-design by
discovering a set of concepts and using these to solve the task with an interpretable classifier.

2.3.2 Background and Related Work

Graph Neural Networks

Graph Neural Networks (GNNs, [249]) are differentiable models designed to process relational data
in the form of graphs. A graph can be defined as a tuple G = (V,E) which comprises nodes V =

{1, . . . , n}, the entities of a domain, and edges E ⊆ {1, . . . , n} × {1, . . . , n}, the relations between
pairs of nodes. Nodes (or edges) can be endowed with features xi ∈ Rd, representing d characteristics
of each entity (or relation), and with l ground truth task labels yi ∈ Y ⊆ {0, 1}l. A typical GNN
g learns a set of node embeddings hi with a scheme known as message passing [101]. Specifically,
message passing aggregates for each node i ∈ V local information shared by its neighboring nodes
Ni = {k : (k, i) ∈ E}:

hi =
∑
k∈Ni

g(mik,xi) mik = ϕ(xi,xk) (2.11)

where mik is the aggregate of the feature vectors xi and xk of nodes i and k, respectively, computed
using a permutation invariant function ϕ. A readout function f : H → Y then processes the node
embeddings to predict node labels ŷ. GNNs are trained via stochastic gradient descent minimizing
the cross entropy loss between ŷi and ground-truth yi.

Graph Concept Explainer

The Graph Concept Explainer (GCExplainer, [182]) is the first concept-based approach for interpret-
ing GNNs. Following methods successfully applied in vision [98], GCExplainer is an unsupervised
approach for post-hoc discovery of global concepts. It achieves this by applying k-Means clus-
tering [88] on the node embeddings hi of a trained GNN. [182] argue that each of the k clusters
possibly represents a learnt concept according to human perception, as already suggested by [343]
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and [334]. Using this clustering, GCExplainer then assigns a concept label ĉi ∈ Ĉ ⊆ {0, 1}k to each
sample. Finally, it represents each concept using the five samples closest to each cluster centroid,
where each sample is visualized as a subgraph with the corresponding node and its p-hop neighbors.
This visualization technique is aligned with the reasoning of GNNs, as it takes into account how
the information flows via message passing. For example, after three layers of message passing, each
node can receive at most information from its 3-hop neighbors.

Trust through Concepts and Interventions

Predicting tasks as a function of learnt concepts makes the decision process of deep learning mod-
els more interpretable [154, 261]. In fact, learning intermediate concepts allows models to provide
concept-based explanations for their predictions [97] which can take the form of simple logic state-
ments [55]. In addition, [154] show how learning intermediate concepts allows human experts to
rectify mispredicted concepts through test-time interventions, improving model performance and
engendering human trust [261].

Related Work

State of the Art Graph Explainers

GNNExplainer [336] represents the first seminal work on GNN explainability. It maximizes the
mutual information between GNN predictions and the distribution of possible subgraphs for expla-
nations. By focusing on individual predictions, the method is limited to explaining one instance at
a time corresponding to a localized view of the data distribution. To get a full picture, [336] suggest
to perform subgraph matching on a substantial number of instances. However, this is not scalable
as subgraph matching is NP-Hard [336]. In an attempt to alleviate this issue, the Parameterised
Graph Explainer (PGExplainer, [179]) and the Probabilistic Graphical Model Explainer (PGM-
Explainer, [306]) parametrize the process of generating explanations using deep neural networks to
provide multi-instance explanations. However, all these methods remain fundamentally limited in
their locality as they cannot explain a class of samples in its entirety. In contrast, GCExplainer
[182] fills the gap of global explainability for GNNs using concept-based explanations. Similarly,
the concurrent work of [13] propose a global and differentiable explainer for GNNs, however, it is
post-hoc as it is applied to a trained GNN. While these existing techniques begin to address the
lack of insight into the computations of GNNs, they are all post-hoc methods whose goal is to
explain a trained GNN, not to make it more interpretable. The proposed method instead aims at
filling this knowledge gap by making GNNs explainable by design. The Prototype Graph Neural
Network (ProtGNN, [349]) learns prototypical graph patterns that can be used for classification.
While ProtGNN has a similar aim of producing an interpretable model as opposed to post-hoc
explanations, it is not concept-based. In contrast our method is concept-based and increases the
interpretability of the model.

Concept-based Explainability

From a broader perspective, our work borrows ideas from supervised and unsupervised concept-
based methods. These methods have been explored in various ways for other neural networks, such as
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convolutional neural networks [5, 49, 98, 145, 154] and recurrent architectures [144]. From supervised
concept-based methods, our approach inherits the ability to perform effective human interventions
at concept level extending Concept Bottleneck Models [154] to graphs. As for unsupervised methods,
our approach mainly draws from the Automatic Concept Extraction algorithm (ACE, [97]). The
algorithm extracts visual concepts by performing k-Means clustering [88] on image segments in
the activation space of a convolutional network. The ACE approach is based on the observation
that the learned activation space is similar to human perceptual judgement [343]. This was the
main motivation behind GCExplainer, as well as our approach. However, in contrast to ACE
and GCExplainer, we embed the clustering step within the network architecture, making GNNs
explainable by design. While our work proposes clustering within the GNN, similar to [146], we
focus on the interpretability aspect achieved via this clustering.

2.3.3 Concept Distillation in Graph Neural Networks

We propose the Concept Distillation Module (CDM), a differentiable approach which makes GNNs
explainable by design. In fact, CDM empowers GNNs through a more interpretable decision making
process. It achieves this by first distilling a set of concepts present in the latent space and then
using these to solve a classification task. Note that these concepts are inherent to the GNN, and
CDM only filters them from the latent space. Thus, they do not improve classification accuracy but
make classification more interpretable. Our approach can be integrated in any GNN architecture.
We will refer to the resulting family of architectures as Concept Graph Networks (CGNs). As
in GCExplainer, humans can visualize CGN concepts to check whether they are meaningful and
coherent. Yet, in contrast to GCExplainer, CGNs allow effective interventions at concept level,
allowing human experts to improve model performance. CDM integrates a differentiable concept
distillation layer to extract node-level and graph-level concepts with an interpretable task predictor
providing logic-based explanations.

b

a

b

a

e1 e2 e3

{a, b} = Zv
{e1, e2, e3} = WFGNN

Formal Concept: 
({a, b}, {e1, e2})

e1 e2 e3

Figure 2.8: Formal Concepts in Graph Neural Networks.
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Formal Concepts in Graph Neural Networks

Our work relies on concepts being inherently present in the latent space of GNNs, which can be
shown using formal concept analysis based on the theory of complete lattices [93]. We provide a
short formal definition of concepts, but refer the reader to [93] for a complete overview. Let us first
define a formal context K as K := (Z,W, I), where I is the relation between the objects Z and the
attributes W . We denote the relation I of an object z with an attribute w as zIw. For a subset
of objects A ⊆ Z, we can define the set of associated attributes A′ := {w ∈ W |zIw ∀ z ∈ A}. In
the same manner, we can define a subset of attributes B ⊆ W via a subset of objects B′ := {z ∈
Z|zIw ∀ w ∈ B}. This allows to represent a formal concept of the context K as a pair (A,B),
where A′ = B and B′ = A, as the relation I allows us to map from objects to attributes and vice
versa. This also achieves a hierarchical ordering, where an ordered set of all concepts in a context
is B(Z,W, I), the concept lattice of the context.

In the setting of GNNs, we can apply the theory of concept lattices in the following way. Let
the nodes of a graph or set of graphs be our set of objects Zv. Let the feature vectors found when
aggregating across a node’s neighborhood be our set of attributes Wf . This set of attributes is
dependent on the number of GNN layers, which leads to more distant neighbors being taken into
account. Let the relation Ie associate our objects Zv with the feature attributes Wf . Given this
definition, it becomes evident that concepts are inherently present in the latent space of GNNs. Let
us illustrate this with an example, visualized in Figure 2.8. Assume a GNN with a single layer,
which means that Wf will be the feature vectors found when aggregating a node’s feature vector
with those of all of its neighbors. Each node, representative of an object in Zv (a and b in Figure
2.8), is associated with a feature vector, representative of an attribute in Wf (e1, e2 and e3 in Figure
2.8). Then nodes with similar features and neighborhoods will map to the same set of attributes
and can be formally represented as a concept (({a, b}, {e1, e2}) in Figure 2.8). Moreover, this
implies that nodes forming a concept will be clustered in the activation space, which we exploit in
the concept distillation step of CDM.

Concept Distillation

The first CDM step consists of extracting node-level clusters corresponding to concepts from the
GNN’s latent space. This is based on the observation that the arrangement of the activation
space shows similarities to human perceptual judgement [343], as shown by GCExplainer [182] for
GNNs, and the application of concept lattice theory [93]. However, in contrast to GCExplainer,
in CDM this step is differentiable and integrated in the network architecture, allowing gradients
to optimize clusters in GNN embeddings. Specifically, we implement this differentiable clustering
using a normalized softmax activation on the node-level embeddings hi, associating each node with
one cluster/concept. This operation returns for each node a fuzzy encoding qi ∈ [0, 1]s:

q̃i =
exp(hi)∑s

u=1 exp(hiu)
, qi =

q̃i

maxi q̃i + ϵ
(2.12)

where s is the size of the encoding vector. CDM then clusters nodes considering the similarity
of their fuzzy encodings qi. Specifically, CDM groups the samples together depending on their
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Booleanized encoding ri ∈ {0, 1}s:

riu =

1 if qiu ≥ τ

0 otherwise
(2.13)

where τ ∈ [0, 1] is conventionally set to 0.5. In particular, two samples a and b belong to the same
cluster if and only if their encodings ra and rb match. For example, consider the two node embed-
dings ha = [−1.2, 2.3] and hb = [2.2, 1.8]. For these inputs, the normalized softmax would return the
fuzzy encodings qa = [0.029, 0.971] and qb = [0.599, 0.401], respectively. As their Booleanizations
ra = [0, 1] and rb = [1, 0] do not match, we can then conclude that the two nodes belong to different
clusters. Notice how our concept encoding is theoretically justified via concept lattices and is highly
efficient, as it allows to learn up to 2s different concepts on GNN embeddings hi of size s. This way
the GNN can dynamically find the optimal number of concepts/clusters, thus relieving users from
this burden. In fact, users just need to choose an upper bound to the number of concepts s rather
than an exact value, as when using k-Means like in GCExplainer. In order to account for graph
classification, the concept encodings for a graph are pooled before being passed to the interpretable
model predicting the task, as explained in the next paragraph.

Interpretable Predictions

The second CDM step consists of using the distilled concepts to make interpretable predictions
for downstream tasks. In particular, the presence of concepts enables pairing GNNs with exist-
ing concept-based methods which are explainable by design, such as Logic Explained Networks
(LENs, [55]). LENs are neural models providing simple concept-based logic explanations for their
predictions. Specifically, LENs can provide class-level explanations which makes our approach the
first at providing unique global explanations for GNNs. Given the formal definition of concepts, they
naturally lend themselves as propositions for the logic explanations produced by LENs. CDM uses a
LEN as the readout function f for the classification, applying it on top of concept representations qi.
For graph classification tasks, the input data is composed of a set of t graphs Gj ∈ {(V j , Ej)}tj=1,
where each graph is associated with a task label yj ∈ Y . In this setting, GNN-based models predict
a single label for each graph Gj by pooling its node-level encodings qj

i to aggregate over multiple
concepts:

ŷi = LENnode(qi), ŷj = LENgraph

(
1

nj

nj∑
i=1

qj
i

)
(2.14)

where nj is the number of nodes associated with graph j. In our implementation, we use the entropy-
based layer to implement LENs [20]) as it can provide high classification accuracy with high-quality
logic explanations. This entropy-based layer implements a sparse attention layer designed to work
on top of concept activations. The attention mechanism allows the model to focus on a small
subset of concepts to solve each task. It also introduces a parsimony principle in the architecture
corresponding to an intuitive human cognitive bias [190]. This parsimony principle allows the
extraction of simple logic explanations from the network, thus making these models explainable by
design.
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Concept-based and logic-based Explanations

The proposed method provides two types of explanations: concept-based and logic-based explana-
tions. Global concept-based explanations can be extracted in a similar manner as in GCExplainer:
a concept for a node or graph is extracted by finding the cluster with which a node’s embedding
is associated, and visualising the samples closest to the cluster centroid. The logic-based formula
provided per class broadens the explanation scope, as it indicates which neurons of the concept
encoding qi are activated and representative of a class. This provides a more comprehensive expla-
nation since a class can be associated with multiple concepts.

Concept Interventions

As in Concept Bottleneck Models [154], our approach supports human interaction at concept level.
In fact, in contrast to existing post-hoc methods, an explainable-by-design approach creates an
explicit concept layer which can positively react to test-time human interventions. For instance,
consider a misclassified node with concept encoding qa = [0.21, 0.93]. Assume that the vast majority
of nodes with the binary encoding rgrid_node = [0, 1] are nodes of a grid-like structure, which allows
a human to label this cluster as “grid nodes”. Now, a human expert can inspect the neighborhood
of the misclassified node and realize that this node belongs to a circle-like structure and not to a
grid structure. As the binary encoding for the concept “circle nodes” is rcircle_node = [1, 1], the user
can easily apply an intervention to correct the misclassified concept by changing its encoding to
qa := [1, 1]. Such an update allows the interpretable readout function to act on information related
to the corrected concept, thus improving the original model prediction.

2.3.4 Experiments

In our experiments we focus on the following research questions:

• Task Accuracy and Completeness — What is the impact of our approach on the gener-
alization error of a GNN? Is the identified concept set complete w.r.t. the task?

• Concept Interpretability — Are the unsupervised concepts identified by our model mean-
ingful? Do they match ground truths or human expectations?

• Explanation Performance — Are concepts pure and coherent? Are the logic explanations
provided accurate and simple enough to be interpretable?

With these questions in mind, we hypothesize that our approach can: (i) obtain similar task ac-
curacy w.r.t. a standard GNN; (ii) extract the ground truth graph concepts aligned with human
expectations, and (iii) identify pure concepts as well as simple and accurate logic explanations.

Metrics

In our evaluation, we measure model performance and interpretability based on five metrics. We
measure model performance via classification accuracy to compare the generalization error of CGNs
w.r.t. their equivalent vanilla GNNs. To evaluate model interpretability, we compute concept
completeness [334], which assesses whether the concepts discovered are sufficient to describe the

Federico Siciliano 40



2.3.4. Experiments

downstream task. Following [334], we use a decision tree [35] to predict the task labels given the
concept encoding associated with each input instance. We also examine concept coherence via
concept purity [182]. Following [182], we measure concept purity by considering the graph edit
distance of samples’ neighborhoods within each cluster/concept. Having checked concept quality,
we evaluate logic explanations in terms of their accuracy and complexity. We calculate the accuracy
of logic explanations using the learnt logic formulas for classifying test samples based on their
concept encoding as done by [55]. This mirrors the computation of concept completeness, however,
instead of a decision tree, we use the learnt logic formulas for classification. Lastly, we evaluate
the complexity of logic explanations by measuring the number of terms in logic rules [55]. We
compute all metrics on test sets across five random weight initializations and report their means
and 95% confidence intervals using the t-distribution. We do not measure classical explainability
metrics, such as sensitivity and sparsity [354], as they apply to explainers of models rather than
explainable-by-design networks themselves.

Datasets

We perform the experiments on the same set of datasets as the Graph Neural Network Explainer
(GNNExplainer, [336]), as subsequent research establishes them as benchmarks [179, 182, 306].

Node Classification

We use five synthetic node classification datasets put forward by [336], which have a ground truth
motif encoded. A ground truth motif is a subgraph, which a successful explainability technique
should recognize. The first dataset is BA-Shapes, which consists of a single graph where the base
structure is a Barabási-Albert (BA) graph [18] of width 300, which has 80 house motifs and 70

random edges attached to it. The dataset has 4 classes, with the goal of discriminating between a
node being part of the base graph or the top, middle or bottom of a house structure. The second
dataset is BA-Community, generated by the union of two BA-Shapes graphs. Here, the task is
to classify a node into 8 classes, which represent graph membership and the structural role of the
node as in BA-Shapes. The third dataset is BA-Grid, which is a BA graph of width 300 with 80
3-by-3 grids attached to it. The goal is to classify whether a node is part of the base graph of
a grid structure. The fourth dataset is Tree-Cycles, formed by a binary tree of depth 8 with 60
cycle structures of 6 nodes attached to it. The task is to classify between a node belonging to
the tree or cycle structure. Lastly, the fifth dataset is Tree-grid, which consists of a binary tree of
depth 8, which has 80 3-by-3 grid structures attached. The classification task is the same, asking
to discriminate between a node being part of the tree or grid structure.

Graph Classification

We also include two real-world datasets to evaluate model performance on less structured data
and on graph classification tasks. The first dataset is Mutagenicity [195], which is a collection of
graphs representing mutagenic and non-mutagenic molecules. The task is to identify a molecule
as mutagenic or non-mutagenic. The second dataset is Reddit-Binary [195], which is a collection
of graphs representing Reddit discussion threads where nodes represent users and edges represent
interactions. A challenge in evaluating these datasets is that there are no ground truth motifs.
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However, [336] suggests the ring structure and nitrogen dioxide compound in Mutagenicity, and the
star-like structure in Reddit-Binary as desirable motifs to be recovered. Figure 2.6 provides further
statistics on the datasets, such as the graph size and number of classes.

Table 2.6: An overview of key markers of the datasets.

Dataset Classification
Problem

Number of
Graphs Graph Size Number of

Features
Number of

Classes
BA-Shapes Node 1 700 1 4
BA-Community Node 1 1400 1 8
BA-Grid Node 1 1020 1 2
Tree-Cycles Node 1 871 1 2
Tree-Grid Node 1 1231 1 2
Mutagenicity Graph 4337 30.32 (on average) 14 2
Reddit-Binary Graph 2000 429.63 (on average) 1 2

Baselines and Setup

To address our research questions, we compare our approach against an equivalent convolutional
vanilla GNN explained by GCExplainer. Specifically, we perform a quantitative evaluation by com-
paring the averages and confidence intervals obtained for each metric. We perform a qualitative
evaluation by comparing the concepts extracted and whether they recover the desired motifs. No-
tice that we do not focus on other post-hoc explainability methods, such as GNNExplainer [336],
PGExplainer [179] or PGM-Explainer [306], as to the best of our knowledge GCExplainer is the
only explainability method providing global concept-based explanations for GNNs. We do later
provide a brief comparison of the proposed method with GNNExplainer and ProtGNN [349] for
completeness.

For each of the datasets, we use 80% of the data for training and 20% for testing. The examples
in each split vary across seeds due to the different random intitialization. We select the models’
hyperparameters, such as the number of hidden units and learning rate, using a grid search. To
ensure fairness in our results, we use the same architecture capacity and hyperparameters for our
model as well as for its vanilla counterpart. We initialize the hyperparameters of GCExplainer to
the values determined experimentally by [182].

2.3.5 Results

Concept Graph Networks are as accurate as vanilla GNNs (Table 2.7)

Our results show that CDM allows GNNs to achieve better or comparable task accuracy w.r.t.
equivalent GNN architectures. Specifically, our approach outperforms vanilla GNNs on the Tree-
Cycle dataset, having a higher test accuracy (plus∼ 8% on average) and less variance across different
parameter initializations. We hypothesize that this effect is due to more stable and pure concepts
being learnt thanks to CDM, as we will see later when discussing the concept purity scores. We do
not observe any significant negative effect of using CDM on the generalization error of GNNs.
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Table 2.7: Model accuracy for the Concept-based Graph Network (CGN) and an equivalent vanilla GNN.
Model Accuracy (%)

CGN Vanilla GNN
BA-Shapes 98.11 (97.04, 99.18) 98.02 (96.40, 99.65)
BA-Community 85.67 (81.38, 89.95) 87.50 (85.56, 89.45)
BA-Grid 99.51 (98.75, 100.00) 99.71 (99.38, 100.00)
Tree-Cycle 94.97 (92.50, 97.44) 86.26 (58.58, 100.00)
Tree-Grid 95.17 (93.59, 96.75) 94.54 (93.61, 95.46)
Mutagenicity 82.40 (81.31, 83.48) 82.35 (81.64, 83.06)
Reddit-Binary 90.55 (87.95, 93.15) 91.20 (88.82, 93.58)

The Concept Distillation Module discovers complete concepts (Table 2.8)

Our experiments show that overall CDM discovers a more complete set of concepts w.r.t. the concept
set extracted by GCExplainer on equivalent GNN architectures. This is particularly emphasized
in the Tree-Grid, BA-Shapes and BA-Community datasets, where CDM significantly outperforms
GCExplainer by up to ∼ 13%. For the other datasets, the proposed approach matches the concept
completeness scores of GCExplainer. The completeness scores on the BA-Grid and Mutagenicity
datasets are only slightly lower, however, within the margins of the confidence interval. In absolute
terms, CDM discovers highly complete sets of concepts with completeness scores close to the model
accuracy for the synthetic datasets.

Table 2.8: Concept completeness and purity for the Concept-based Graph Network (CGN) and an equiv-
alent vanilla GNN.

Concept Completeness (%) Concept Purity
CGN Vanilla GNN CGN Vanilla GNN

BA-Shapes 98.11 (96.85, 99.36) 93.69 (86.21, 100.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
BA-Community 83.10 (78.90, 87.29) 75.74 (72.85, 78.64) 1.70 (0.43, 3.83) 1.60 (0.49, 2.71)
BA-Grid 99.61 (98.80, 100.00) 99.71 (99.38, 100.00) 0.20 (0.00, 0.76) 2.40 (0.00, 6.48)
Tree-Cycle 91.98 (83.71, 100.00) 91.16 (84.47, 97.86) 0.00 (0.00, 0.00) 0.60 (0.00, 2.27)
Tree-Grid 91.37 (84.58, 98.16) 78.48 (76.17, 80.79) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
Mutagenicity 63.40 (58.84, 67.96) 63.95 (60.14, 67.77) 1.00 (0.00, 3.78) 0.60 (0.00, 2.27)
Reddit-Binary 75.91 (61.16, 90.66) 73.10 (58.44, 87.75) 0.40 (0.00, 1.51) 0.00 (0.00, 0.00)

Ablation Study on the Size of the Concept Embedding Size

In order to verify the effectiveness and robustness of our approach, we perform an ablation study
on the concept embedding size s. More specifically, we control the upper bound of the size of the
concept lattice while observing the concept completeness score for different values of s. We conduct
this ablation study on the BA-Shapes dataset using the values 2, 6, 10, 12 and 14 for s. Table
2.9 summarises the results obtained. We observe that the completeness score is stable for different
values of s ∼ 10.

The Concept Distillation Module identifies meaningful concepts (Table 2.10)

CDM discovers high-quality concepts, which are meaningful to humans. Similar to GCExplainer,
our results demonstrate that CDM can discover concepts corresponding to the ground truth motifs
embedded in the toy datasets. For example, our approach recovers the “house motif” in BA-Shapes.
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Table 2.9: The concept completeness score for a CDM trained on the BA-Shapes dataset for different
concept embedding sizes.

Concept Embedding Size s Concept Completeness (%)
2 70.35 (44.26, 96.44)
6 94.09 (89.83, 98.35)
10 98.11 (96.85, 99.36)
12 97.57 (96.48, 98.60)
14 97.58 (95.48, 99.67)

Table 2.10: The Concept Distillation Module detects meaningful concepts matching the expected ground
truth. Blue nodes are the instances being explained, while orange nodes represent their p-hop neighbors.
Similar motifs are identified by GCExplainer.

BA-Shapes BA-Grid Tree-Grid Tree-Cycle BA-Community Mutagenicity Reddit-Binary

Ground Truth N
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Table 2.11: The Concept Distillation Module detects concepts more fine-grained than the simple ground
truth motif encoded, as well as rare motifs. Blue nodes are the instances being explained, while orange nodes
represent their p-hop neighbors. Notably, GCExplainer gives no indication of rare concepts.

Ground Truth Fine-Grained Concepts Rare Concepts
TOP

MIDDLE

BOTTOM

ATTACHING ARM

Moreover, CDM proposes plausible concepts for the real-world datasets where ground truth motifs
are lacking. In this case, the extracted concepts match the desirable motifs suggested by [336],
corresponding to ring structures and the nitrogen dioxide compound in Mutagenicity, and a star-
like structure in Reddit-Binary. As we use the same visualization technique as GCExplainer the
merit of our contribution lies in the discovery of a more descriptive set of concepts, which includes
rare and fine-grained concepts.

The Concept Distillation Module identifies rare and fine-grained concepts (Ta-
ble 2.11)

CDM discovers more fine-grained concepts than just the “house motif” suggested by GNNExplainer,
as it can differentiate whether a middle or bottom node is on the far or near side of the edge
attaching to the BA graph. This matches the quality of concepts extracted by GCExplainer. In
contrast to GCExplainer, CDM also identifies rare concepts. Rare motifs are present in toy datasets
through the insertion of random edges. As the proposed approach can find the optimal number of
clusters/concepts dynamically, clusters of a very small size possibly represent rare motifs. To check
the presence of rare concepts, we visualize the p-hop neighbors of nodes found in small clusters.
For example, CDM identifies a rare concept represented as a “house” structure attached to the BA
graph via the top node of the house in the BA-Shapes dataset. This represents a rare concept as it
is generated by the insertion of a random edge. We confirm this observations on other toy datasets,
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such as BA-Community and Tree-Cycle, where motifs with random edges are clearly identified. We
have not identified rare concepts in BA-Grid or Tree-Grid, which may be attributed to the random
edges being distributed within the base graph, which has a less definite structure. Due to the
lack of expert knowledge, we cannot confirm whether the rare motifs found in Mutagenicity and
Reddit-Binary align with human expectations.

The Concept Distillation Module identifies pure concepts (Table 2.8)

CDM discovers high-quality concepts, which are coherent across samples, as measured by concept
purity. Our approach discovers concepts with nearly optimal purity scores on toy datasets, with a
graph edit distance close to zero. For these datasets, CDM provides either better or comparable
purity scores when compared to GCExplainer. CDM provides slightly worse purity scores in both
the Mutagenicity and Reddit-Binary datasets. However, also in this case the absolute purity of
CDM is almost optimal.

The Concept Distillation Module provides accurate logic explanations (Table
2.12, Table 2.13)

LEN allows CDM to provide simple and accurate logic explanations for task predictions. The
accuracy of the logic explanations extracted reaches at least 90% for the BA-Shapes, BA-Grid
and Tree-Cycle datasets, indicating that CDM derives a precise description of the model decision
process. Relating the accuracy of explanations back to the model accuracy, we observe that the
explanation accuracy is bounded by task performance, as already noticed by [55]. This explains
the slightly lower logic explanation accuracy on the real-world datasets, which can be ascribed to
the absence of definite ground-truth concepts and to the task being more complex. Besides being
accurate, logic explanations are very short, with a complexity below 4 terms. In conjunction with
the explanation accuracy, this means that CDM finds a small set of predicates which accurately
describes the most relevant concepts for each class.

Table 2.12: Accuracy and complexity of logic explanations found using the Concept Distillation Module.
Accuracy is computed using logic formulas to classify samples based on their concept encoding. Complexity
measures the minterms in logic formulas.

Logic Explanation
Accuracy (%)

Logic Explanation
Complexity

BA-Shapes 96.56 (92.17, 100.95) 3.10 (2.75, 3.45)
BA-Community 81.43 (78.20, 84.66) 3.85 (3.09, 4.61)
BA-Grid 99.61 (98.86, 100.36) 1.30 (0.74, 1.86)
Tree-Cycle 90.49 (78.43, 102.55) 1.90 (1.22, 2.58)
Tree-Grid 89.66 (82.71, 96.62) 2.20 (1.07, 3.33)
Mutagenicity 59.94 (44.99, 74.90) 2.60 (0.88, 4.32)
Reddit-Binary 71.84 (54.10, 89.59) 1.60 (1.08, 2.12)

The Concept Distillation Module supports human interventions (Figure 2.9)

Supporting human interventions is one of the main benefits of more interpretable architectures that
learn tasks as a function of concepts. In contrast to vanilla GNNs, CDM enables interventions at
concept-level, which allows human experts to correct mispredicted concepts. Similarly to Concept
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Table 2.13: An example of a concept-based logic explanations discovered by the Concept Distillation
Module per dataset. Blue nodes are the instances being explained, while orange nodes represent their p-
hop neighbors. For Mutagenicity the color of each node represents a different chemical element. The logic
formulae describe how the presence of concepts can be used to infer task labels. For example, the first logic
rule states that the task label “middle nodes in house motifs” (y = 2) can be inferred from the concepts:
“middle node with attaching edge on the near side” or “middle node with attaching edge on the far side”.
Dataset Concept-based Logic Explanation Ground Turth Concepts

BA-Shapes y = 2← OR Node in house motif

BA-Grid y = 1← Node in grid motif

Tree-Grid y = 1← OR Node in grid motif

Tree-Cycle y = 1← OR OR Node in circle motif

BA-Community y = 3← OR OR Node in house motif

Reddit-Binary y = “Q/A” ← OR Star motifs

Mutagenicity y = “mutagenic” ← C

C C
C

C

C

C

C

C

N

H

H

H
O

O

N

OO Ring motifs or NO2

Bottleneck Models [154], our results show that correcting concept assignments significantly improves
the model test accuracy to over 98% for the synthetic datasets, achieving 100% test accuracy on
BA-Grid and BA-Shapes. We also observe an increase in task accuracy in BA-Community, however,
the increase is much more gradual. Most notably, in both real-world datasets CDMs allow GNNs
to improve their task accuracy by up to ∼ +10% with less than 10 interventions.

Ablation Study on Tau

In order to verify our choice of tau (τ = 0.5), we run an ablation study. We adapt the value for
tau in 0.1 intervals and calculate results for the BA-Shapes and BA-Community datasets in line
with our previous evaluation. We collect the completeness score and number of clusters found,
as these metrics are most indicative of the effect on the explanation scope provided. Table 2.14
summarises the results. The optimal value for tau varies across the three datasets. Going by the
completeness score, the optimal values are 0.6 and 0.8 for BA-Shapes, BA-Community, respectively.
However, based on the number of clusters found, which can indicate a more rare set of concepts
being found, the optimal values for tau would be 0.1 and 0.9 respectively. It can be argued that
concept completeness is a better indicator, as it directly correlates the concept to the prediction of
the output label, nevertheless, it easily glosses over rare concepts. This trade-off must be considered,
wherefore, it can be argued that choosing tau at 0.5 is a robust and conventional parameter setting,
as differences in results are minute. Nevertheless, for optimal results tau should be finetuned, as it
is dependent on the dataset.

Qualitative Comparison to GNNExplainer and GCExplainer

We perform a qualitative comparison of the explanations produced using CDM, GCExplainer [182]
and GNNExplainer [336]. We limit ourselves to a qualitative comparison against GCExplainer here,
as we have already performed a quantitative comparison above. We compare the explanations pro-
duced by CDM against those of GNNExplainer, as GNNExplainer is the most prominent explainer
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Figure 2.9: The Concept Distillation Module supports interventions at concept-level, allowing human
experts to correct mispredicted concepts, increasing human trust in the model [261]. This interaction signif-
icantly improves task performance, achieving almost 100% accuracy on synthetic datasets.

for GNN, forming seminal work. However, we do not perform a quantitative evaluation against
GNNExplainer, as the explanations are not concept-based and thus are evaluated in a different
manner. For this reason, we refrain from also evaluating against other comparable explainers, such
as PGExplainer [179] and PGM-Explainer [306]. We select GNNExplainer over these explainers
as it is the seminal work in the field. GCExplainer and GNNExplainer are applied on the vanilla
GNN. We focus on an evaluation of the BA-Shapes and BA-Community datasets, as the ground
truth motifs to be extracted are known for these datasets.

BA-Shapes (Figure 2.10)

Figure 2.10 shows the explanations provides by CDM, GCExplainer and GNNExplainer for a node,
which is part of the middle of a house. Both CDM and GCExplainer successfully identify the
house structure, which is the motif that should be recovered. CDM performs slightly better than
GCExplainer, as it does not include a concept with a random edge. In contrast, the explanation
provided by GNNExplainer does not visualise the house structure in full. Only the middle nodes
of the house are visualised (purple), as well as a large part of the BA graph (turquoise). It can
be argued that the explanations provided by CDM and GCExplainer are more intuitive, however,
GNNExplainer highlights important edges.

We struggle to reproduce the quality of explanations presented by [336] for GNNExplainer. We
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Table 2.14: The concept completeness score and number of clusters discovered when varying the value of τ .
Tau BA-Shapes BA-Community

Completeness (%) Number of
Clusters Completeness (%) Number of

Clusters
0.1 48.04 (42.64, 53.44) 24.80 (20.38, 29.22) 59.18 (53.99, 64.37) 50.00 (31.33, 68.67)
0.2 55.07 (49.64, 60.50) 22.60 (20.03, 25.17) 59.54 (52.37, 66.72) 60.00 (32.00, 89.00)
0.3 58.39 (51.61, 65.17) 21.80 (19.76, 23.84) 62.24 (51.86, 72.62) 68.20 (35.17, 101.23)
0.4 58.83 (53.55, 64.12) 20.80 (18.25, 23.34) 62.58 (52.21, 72.95) 81.60 (34.31, 128.89)
0.5 59.59 (55.01, 64.17) 21.40 (19.98, 22.82) 62.17 (49.49, 74.86) 86.80 (36.54, 137.06)
0.6 60.40 (56.82, 63.97) 20.60 (17.13, 24.07) 62.64 (49.54, 75.73) 85.20 (35.51, 134.89)
0.7 59.18 (50.00, 68.36) 21.40 (15.41, 27.39) 63.56 (49.03, 78.09) 88.00 (37.55, 138.45)
0.8 58.89 (47.68, 70.09) 20.00 (13.98, 26.02) 63.89 (49.25, 78.53) 80.40 (29.86, 130.94)
0.9 54.83 (44.62, 65.04) 21.00 (15.18, 26.82) 58.42 (43.88, 72.97) 97.20 (33.88, 160.52)
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Figure 2.10: Concept-based explanations produced using the Concept Distillation Module and GCEx-
plainer, as well as the explanation produced by GNNExplainer for a node in the BA-Shapes dataset. In
the explanations, the blue nodes are the nodes clustered together, while the orange nodes are the p-hop
neighborhood. GNNExplainer has its own coloring, where the purple nodes are node part of the middle of
the house and the turquoise nodes are part of the BA base graph.

first adapted the threshold to observe an effect on the explanations, however, this only impacted the
visualisation of the important edges. We fix the threshold at 0.8 after this. We then examined the
implementation of GNNExplainer used. To ensure that the quality of explanations is not the fault
of the PyTorch Geometric [84] implementation of GNNExplainer, we also used the implementation
provided by the Deep Graph Library [308]. After obtaining similar results, we exhaustively visualize
the explanations for class 1. We present a selection in Figure 2.11. In summary, we fail to produce
the house motif using GNNExplainer, as the explanations provided mostly emphasize the importance
of the BA base graph.

BA-Community (Figure 2.12)

Lastly, we compare the explanations for a node in the BA-Community dataset (Figure 2.12). Similar
to our previous observations, both CDM and GCExplainer successfully identify the house structure.
More importantly, they both identify the existence of random edges to explain the node. In contrast,
the explanation provided by GNNExplainer is more elusive, highlighting mostly the BA base struc-
ture. In conclusion, it can be stated that the concept representations for CDM and GCExplainer are
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Figure 2.11: A selection of explanations produced using GNNExplainer for nodes of class 1. The purple
nodes are nodes part of the middle of the house, while the turquoise ones are part of the BA base graph.

almost identical, which can be attributed to the same visualisation technique being used. However,
we refer the reader back to the quantitative evaluation in the results section, which highlights the
strengths of CDM over GCExplainer.

Quantitative Comparison to ProtGNN

While ProtGNN citezhang2022protgnn is not concept-based, it has a similar aim of producing
an interpretable model as opposed to post-hoc explanation. We compare CDM to ProtGNN via
classification accuracy on a synthetic node-classification dataset and real-world graph classification
dataset, as [349] do not explain how the quality of their explanations should be evaluated. We
perform the evaluation on ProtGNN+, which uses a novel conditional subgraph sampling module for
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Figure 2.12: Concept-based explanations produced using the Concept Distillation Module and GCEx-
plainer, as well as the explanation produced by GNNExplainer for a node in the BA-Community dataset.
In the explanations, the blue nodes are the nodes clustered together, while the orange nodes are the p-hop
neighborhood. GNNExplainer has its own coloring, where the purple node is the ’top’ node in the house,
the blue nodes are the ’middle’ of the house and the turquoise nodes are part of the BA base graph.

improved efficiency and interpretability. CDM outperforms ProtGNN+ on the BA-Shapes dataset,
achieving an accuracy of 98.11% (97.04%, 99.18%) in comparison to 96.94% (95.38%, 98.51%). In
contrast, CDM and ProtGNN+ achieve similar accuracy on the Mutagenicity dataset with 82.4%
(81.3%, 83.5%) and 81.7% (75.4%, 88.1%), respectively. We note that we only compute the results
for Mutagenicity for 2 seeds, as training ProtGNN took significantly longer than training CDM,
requiring 12 hours for 500 epochs on the same hardware.

There are significant architectural differences between CDM and ProtGNN. Firstly, ProtGNN
requires to define the number of class prototypes, while CDM only requires to define an upper
bound via the concept embedding size s. Moreover, CDM allows to extract fine-grained subgraphs
and the ability for human intervention. Moreover, ProtGNN does not provide formal explanations,
which can be evaluated quantitatively. Lastly, we found that ProtGNN runs significantly slower
than CDM, though some issues my be alleviated via optimising the implementation.

2.3.6 Discussion

Concept Graph Networks are accurate and self-explaining

In summary, our results demonstrate that CDM makes GNNs explainable by design without im-
pairing their task performance. Our approach extracts high-quality concept-based and logic expla-
nations. Our experiments show that the extracted concepts are pure, meaningful and interpretable,
while task-specific logic explanations are simple and accurate. We also demonstrate that CDM
supports human interventions at concept level, which is one of the main advantages of explainable-
by-design architectures.
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Strengths and Limitations

The main limitation of our work is the association of only one concept per sample. However, this
also applies to GCExplainer, as well as to state-of-the-art unsupervised explainability methods
for convolutional networks, such as ACE [98]. The second main limitation pertains the p-hop
neighborhood visualization technique inherited from GCExplainer. Visualizing a concept by simply
exploring the p-hop neighborhood may include nodes which are not relevant for identifying a concept.
More specifically, the concept visualization technique could be improved by performing largest
common subgraph matching across the samples representing a concept. However, such an approach
would be extremely expensive in terms of computations even for small graphs and it would not scale
for large concepts. In terms of novelties, the proposed approach is the first of its kind in terms of
making GNNs explainable by design. Secondly, the approach allows to find the optimal number of
concepts dynamically. While the size of the embedding space must still be defined, this size is just
an upper bound, alleviating the user from the burden of tuning this hyperparameter as in other
explainability methods, such as GCExplainer or ACE. This dynamic adaptation often produces a
high number of clusters/concepts. While a higher number of concepts may appear redundant and be
more complex to reason about, the extracted concepts accurately describe the dataset, as indicated
by the high concept completeness scores and rare concepts found. Moreover, logic-based formulas
allow to filter through the concepts relevant for each class. We note, however, that as stronger
interpretable models are deployed, there are risks of societal harm which we must be vigilant to
avoid.

2.3.7 Conclusions

In this work, we address the lack of human trust in GNNs caused by their opaque reasoning. To this
aim, we propose the Concept Distillation Module which makes GNNs explainable by design. We
demonstrate that the proposed method allows to discover and extract high-quality concept-based
explanations. The proposed approach makes GNNs explainable by design without a reduction in
performance, while also allowing for human intervention. Human intervention allows to alleviate
dataset biases, further increasing trust in the model. The increased understanding of the model’s
working through the proposed approach fosters an increase in trust and may open up the possibility
to use GNNs in more high-stake scenarios.
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2.4 Explainable-by-design Machine Learning
Model for Overlapping Fluorophores Sepa-
ration Based on Fluorescence Lifetime

In fluorescence microscopy imaging, the ability to discriminate between different fluorophores based
on their temporal fingerprint is highly desirable. In this theoretical study we propose a deep
learning method to separate the signal contribution of two spectral overlapping fluorophores in
a time-resolved fluorescence microscopy image. Our method exploits a CNN-based network that
analyzes both the temporal information and the 2D spatial features. Since the purpose of the
network is to separate contributions from different fluorophores, the neural network is divided into
two sections, each separating one of the two different fluorescence time decay components. We
focus on improving the explainability of the process, making our approach highly interpretable to
facilitate a better understanding of the underlying mechanisms.

2.4.1 Introduction

To understand the intricate connections between sub-cellular components and macro-molecular
complexes that make up a cell, it is crucial to simultaneously label and visualize different species
of bio-molecules [71]. The most widely employed approach to achieve this goal involves utilizing
spectrally separable fluorophores, to unmix the signals with a filter on the emission band of each
fluorophore. However, a significant spectral overlap between the fluorophores poses a challenge,
which can be mitigated by carefully selecting fluorophores that do not exhibit such interference.
Nevertheless, the choice of non-spectrally overlapping fluorophores limits the number and type of
sub-cellular components that can be labelled simultaneously. Hence, the ability to discriminate be-
tween fluorophores based on their temporal characteristics, independent of their emission spectra,
as the fluorescent lifetime, assumes paramount importance. Numerous methods have been proposed
to distinguish fluorophores based on their temporal or spectral fingerprints. Examples include the
phasor approach [72] and SPLIT (Separation of Photons by LIfetime Tuning) [159]. However, these
methods rely on the first term(s) of the Taylor temporal series calculated pixel by pixel. Conse-
quently, they are unable to capture valuable information embedded in the non-linear components
and information sharing across pixels. Furthermore, these methods are user-dependent and sensitive
to the signal-to-noise ratio, making them susceptible to failure in cases involving significant spec-
tral overlap or when the prior information provided is incorrect or incomplete. To overcome these
limitations, we propose leveraging an explainable-by-design [46] deep neural network (as [269]),
which learns the temporal decay model in a data-driven manner, addressing the shortcomings of
the previous linear-based methods. Existing neural network-based methods for separating fluo-
rophores with spectral overlap [60] lack information on temporal characteristics, raising uncertainty
about the alignment of the separation with the physical model of image formation. In contrast, our
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method, based on the theoretical model, provides comprehensive output, including lifetime values
and unmixed images, facilitating insights into underlying biological processes.

2.4.2 Data and Methods

Data

The data consist of image sequences with dimensions W×H×T , representing the temporal decay of
fluorescence in biological samples labelled with multiple fluorophores. In this case study, we assume
that the fluorophores are spectrally overlapping.

Theoretical model

The theoretical image formation model states that the image sequence Image, of dimensions
W ×H × T , can be separated into two components Image1 and Image2 using the formula:

Image(x, y, t) = Image1(x, y, t) + Image2(x, y, t)

x ∈ {1, . . . ,W} , y ∈ {1, . . . ,H} , t ∈ {1, . . . , T}
(2.15)

Each Imagei can be further divided into two parts: once a spatial distribution A is determined, a
temporal decay component v⃗i(t) is incorporated, according to the physical law of fluorescence decay
over time [232]. Lastly, a Poisson noise P is added to the temporal decay.

Imagei(x, y, t) = Ai(x, y)× P (v⃗i(t)) i ∈ {1, 2} (2.16)

The temporal decay of both images is obtained through a convolution between the temporal decay
function e−

t
τ and the Instrument Response Function (IRF).

v⃗i(t) = f(t | τi) = e
− t

τi ∗ IRF (t) i ∈ {1, 2} (2.17)

IRF (t) =
1

2πσt
e

(
− t2

2σ2
t

)
(2.18)

where the standard deviation σt =
FWHM
2
√
2 ln 2

with FWHM being dependent on the measurement in-
strument. In a real-world scenario, Poisson noise often affects the data due to the measurement
instrument. However, in constructing the neural network, we do not take this into account because
the Poisson distribution is characterised by the mean, so the network will learn to estimate this
parameter even in the presence of noise. Furthermore, we want the prediction to be determinis-
tic: this is important for many practical applications, as it allows to make reliable and consistent
estimations. Optical microscopy images are diffraction limited with a resolution limit that can be
estimated through the so-called Abbe’s law. An additional blurring effect can occur due to fac-
tors such as focus and lens imperfections. For these reasons, the transfer function of an optical
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microscope can be modelled with a Gaussian Point Spread Function (PSF).

Ai(x, y) = Phantomi ∗ PSF (x, y) i ∈ {1, 2} (2.19)

PSF (x, y) =
1

2πσxσy
e

(
− x2

2σ2
x
− y2

2σ2
y

)
i ∈ {1, 2} (2.20)

The parameters are set according to the Abbe law ([1]) for diffraction limit: the standard devia-
tions σx = σy = FWHM

2
√
2 ln 2

with the Full Width at Half Maximum FWHM = λexc
2NA . The wavelength

excitation λexc and the numerical aperture NA are dependent on the experiment.

Synthetic data generation

The theoretical model discussed above is therefore used to generate synthetic images to train the
proposed model. In fact, when an adequate number of image sequences are unavailable, data can be
generated from the theoretical model (section 2.4.2). Synthetic images (Phantom1 and Phantom2)
of tubulin and nuclei, which resemble biological applications, can be created by varying shape pa-
rameters such as the number and size of filaments, the number and size of molecules within the
nucleus, the dimensions of the nucleus, and the intensities. Subsequently, two values of τ1 and τ2

can be set. At this point, all the necessary quantities can be generated to obtain the final image.
Synthetic data generation has a significant time advantage over manual acquisition.

Figure 2.13: Example of a datum. The first image represents a single time instant of the image sequence.
This is followed by the two separate components with their respective temporal decay rates.

Model

Figure 2.14 illustrates the neural network architecture. The network consists of a CNN that takes
an image sequence Image of dimensions W × H × T as input. This CNN combines spatial and
temporal information to capture the essence of the image sequence. The output of the CNN is then
fed into four separate CNNs: two of them (CNNτ1 and CNNA1) model the first component, while
the other two (CNNτ2 and CNNA2) model the second. These five CNNs form the trainable part
of the model. The outputs of this section, τ1, A1, τ2, and A2, represent the interpretable part of the
network. They not only reveal the values of τ1 and τ2 used to separate the two signals, but also show
the images A1 and A2, which represent the specific sections of the image sequence that contribute

Federico Siciliano 54



2.4.3. Discussion

Figure 2.14: Design of the proposed model. Each vector’s dimensions are shown in the bottom right-hand
corner in grey. In orange and red are shown the parts estimating the spatial and temporal features,
respectively. In blue and green are represented the sections that model component 1 and component 2,
respectively. The network is divided into three sections. A trainable one, consisting of 5 CNNs, one to
perform feature extraction and 4 for prediction. The second section provides an explanation of the network’s
output. A final deterministic one reconstructs the input image.

to each component. To train the network, it is necessary to reconstruct the original image from
these four outputs. This can be easily achieved by first transforming each τi into a vector v⃗i of
dimension T using the function fτi . Using an outer product, it is then possible to reconstruct two
separate image sequences, ̂Image1 and ̂Image2, which can be summed to form the complete image
sequence Îmage. This final part of the network is deterministic, so it does not require any weight
to be updated. The whole network is then trained to make Îmage match Image. This can be done
by employing a Mean Squared Error Loss. Each Image comes from the synthetic image training
dataset, but in the presence of real data, those can also be used. So far, CNNs are not specified since
the proposed model is valid beyond the specific CNN used. In our experiments, we specifically used
DeepLabV3 model with a MobileNetV3-Large backbone [47] for both CNN , CNNA1 and CNNA2 ,
while for CNNtau1 and CNNtau2 the SqueezeNet model architecture [134] has been applied.

2.4.3 Discussion

The advantages of the new network structure can be summarized as follows:

• Thanks to the properties of CNNs, the network simultaneously takes into account both the
temporal and spatial components of the input data. This allows the network to capture
changes in the fluorescence signal over time and take advantage of the spatial information to
predict the temporal decay. This is especially important because classical methods typically
ignore the spatial component since they consider a single pixel.

• There is no need to know any τi or Ai values in advance. Therefore, only the initial image
sequences are required, and the network learns how to separate the signals on its own. How-
ever, if these parameters are known, one could consider adding an additional loss on these
parameters to improve the model’s performance.
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(a) Example A (b) Example B

Figure 2.15: Two examples from the test set to show the network’s functioning. In the first line, we can
find the original image at two different instants of time. In the second line, the image reconstructed by the
neural network is shown at the same time instants. The third row presents the two components separated
by the network, with their respective estimated τi.

• If only one of the two parameters, τ or A, were available, the network could be trained to
reconstruct it. However, a network trained in this way would not have any constraints on
reconstructing the original image sequence. So, it could violate the photon flux conservation,
predicting something physically incorrect because the calculations are not forced to add up
correctly. This is not the case with our model because, having a deterministic section, it is
forced to respect physical constraints.

• Our network provides not only the image as in [60] but also the value of the temporal decay
τ . This feature has significant implications in biomedical applications, where expert biologists
can use this information to gain insights into the underlying biological processes.

• Unlike other neural network approaches [60], the functioning of the network is easily inter-
pretable. Specifically, information about the fluorescent lifetime value τ and image A are
provided separately. From these outputs, an expert can evaluate the performance and gain
insight into the inner workings of the network. For example, an expert can use the net-
work outputs to identify tubulin and nuclei and investigate potential biological mechanisms
underlying the sub-cellular components.
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2.4.4 Results

Figure 2.15 shows an example of how the network works. We can see how the network is able to
almost faithfully reconstruct the image given as input. The network has some difficulty in correctly
estimating the decay of the nuclei. In fact, we can see how part of it is still visible at a time instant
where, in the original image, it is no longer present. We can also note how the model manages to
distinguish accurately between the two components, failing slightly when the two cross each other.
Although the results are not perfect, we believe they are a great first step for the application of
explainable-by-design neural networks in molecular biology.

2.4.5 Conclusion

In this work, we proposed a novel deep learning approach for the reconstruction of multi-channel flu-
orescence image sequences in the presence of spectral overlap between fluorophores. In this study,
we introduce a novel deep learning approach for separate fluorescence images when fluorophores
exhibit spectral overlap. While the primary application scenario of our method is for spectrally
overlapping fluorophores, where spectral filtering based on emission wavelength fails to separate, it
is versatile enough to be employed even when this assumption does not hold. Notably, our model
can also be trained on real data without the need to know the ground truth decomposition. We
decided to use synthetic data because of their twofold advantage: they are faster to acquire and
they allow network evaluation by comparing decomposition. Our model is designed to enhance
the reliability of the network. Specifically, it leverages a physical model of fluorescence decay over
time, enabling the separation of the fluorescence signal into spatial and temporal components. This
makes the network structure more justified, as it reflects a physical law. Moreover, one of the main
advantages of our approach is its ability to estimate the lifetime τ . The estimation of these param-
eters holds particular significance in biological studies as it contributes insights into the dynamic
nature of biological processes, facilitating a deeper understanding of the underlying mechanisms. In
conclusion, our proposed method holds the potential to revolutionize the processing and analysis of
fluorescence lifetime microscopy data, enabling more accurate and efficient exploration of complex
biological systems. Future work will involve evaluating the performance of the proposed neural
architecture on both synthetic and real-world datasets, validating its effectiveness in achieving the
envisioned outcomes. Additionally, a comparative study against state-of-the-art methods will be
conducted to establish the superiority of our approach.
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Chapter 3

Robust Losses for AI Systems

In the ever-evolving landscape of AI applications, robustness is a cornerstone of Trustworthy Artifi-
cial Intelligence. AI systems often operate in environments characterized by dynamic data distribu-
tions, adversarial perturbations, and the presence of noisy labels. These challenges can undermine
the performance and reliability of conventional models trained with standard loss functions designed
for ideal scenarios. As such, there is an urgent need to bolster AI systems against these adversities.
Robust losses, specially tailored for such scenarios, emerge as a compelling solution.

Noisy or mislabeled data is a common occurrence, whether due to human error in labeling
or inherent ambiguity in the data. Robust losses provide a mechanism for models to learn and
generalize effectively even in the presence of noisy labels. By penalizing inconsistencies between
predictions and noisy labels, these loss functions enable the AI system to maintain its accuracy.

Adversarial attacks pose a significant threat to AI systems, as malicious actors can manipulate
input data to deceive models. Robust losses can act as a barrier against such attacks by penaliz-
ing model responses to adversarial inputs. This proactive defense mechanism strengthens the AI
system’s resistance to adversarial perturbations, making it more reliable in real-world, high-stakes
applications.

Dynamic environments often introduce outliers or shifts in data distributions that can mislead AI
models. Robust losses are engineered to encourage models to identify and adapt to such changes,
promoting resilience and maintaining performance even in the face of unforeseen shifts in data
patterns.

This chapter explores the multifaceted nature of robust losses, emphasizing their pivotal role in
addressing noisy labels, adversarial attacks, and data shifts. By incorporating these concepts, AI
systems can fortify their resistance to challenges and uncertainties, ultimately fostering trustwor-
thiness in their predictions and decisions.
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3.1 Robust Training of Sequential Recommender
Systems with Missing Input Data

In the realm of sequential recommender systems, understanding users’ preferences based on their
past actions is paramount. Yet, the susceptibility of these models to input perturbations has lim-
ited their practicality. Addressing this, we present an innovative approach to mitigate the impact
of missing input items, a challenge that has been overlooked. Our method involves a novel training
process that anticipates data loss and employs an optimization loss to predict multiple future items.
Extensive evaluations on diverse datasets and recommender models underscore its effectiveness.
Notably, our approach enhances NDCG@10 by up to 18% with one missing item and an impressive
230% with five missing items, underscoring its substantial impact on system resilience and perfor-
mance. This work sheds light on the intricate dynamics of sequential recommendation and offers a
potent solution to real-world data limitations.

3.1.1 Introduction

Sequential recommendation models have raised interest in recent years for their promising increasing
performance in various domains such as e-commerce, health and education [36, 225]. However,
machine learning models are sensitive to input perturbations [112], and particularly, sequential
recommendation models were shown to be vulnerable to even a single change in the training data
[205, 206]. The robustness of recommender systems to data perturbations is a desired property
and is essential in various domains. Suppose a user regularly uses an e-commerce platform to buy
clothes. The platform collects data on the user’s past purchases and browsing behavior to make
personalized recommendations for future purchases. However, the user decides to take a break from
the platform for a few weeks and shops for clothes elsewhere. During this break, the e-commerce
platform is unable to collect data on the user’s behavior, resulting in missing data. When the user
returns to the platform, the recommender system must take into account the missing data and still
provide personalized recommendations based on the user’s past purchases. Missing data can even
be dangerous in some domains, such as healthcare [292], where patients might have been treated at
different clinics, and this might result in incorrect diagnoses or treatments. Specifically, in sequential
recommendation systems, the recommendation is based on the sequence of user actions, so the most
recent actions might have an even stronger effect on the generated recommendations. Considering
this, we explore the impact of missing data in the last items of the sequence and how to mitigate it
by training the models differently. To the best of our knowledge, this is the first work verifying that
existing sequential recommender systems suffer from this effect and applying a method to make
sequential recommender models more robust to this type of data perturbation. We can summarise
our contributions as follows:

• Our investigation shows that several sequential recommendation models heavily rely on the
last items in the sequence.
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• We apply a modified training method to make the models more robust to such missing data
perturbations.

• Our model outperforms (as measured by Hit Rate and Normalized Discounted Cumulative
Gain) classical models in cases of missing data while maintaining or improving performance
in the next item prediction task.

3.1.2 Related Work

Sequential Recommendation

Sequential recommendation is a subfield of recommendation systems [239] that focuses on recom-
mending items to users based on their recent interactions. The goal of sequential recommendation
is to predict the next item a user will likely interact with, given their previous interactions. One of
the earliest sequential recommendation methods is the Markov Chain model [89, 237, 260], which
models users’ interactions as a Markov process and uses the transition probabilities between items
to make recommendations. Recently, there has been a growing interest in using deep learning tech-
niques for sequential recommendation. These methods include using deep neural networks, such as
Recurrent Neural Networks (RNN) [123], Long Short-Term Memory (LSTM) [329], Gated Recur-
rent Units (GRUs) [54, 124] and attention mechanisms [141, 165, 283], to model users’ interactions
and make recommendations, allowing the model to focus on the most relevant parts of the user’s
interaction history when making recommendations. Additionally, there has been an increased focus
on Explainable AI in sequential recommenders [203, 346], some of which are based on counterfac-
tuals [50, 51, 95, 285, 291], which are aimed at making the recommendations more tailored to the
user [311, 314, 345] and providing more transparency into the decision-making process of the model.
Overall, the field of sequential recommendation is rapidly evolving, with a wide range of methods
and techniques being proposed and evaluated.

Robustness of recommender systems

One of the main challenges in the field of recommendation systems is ensuring the robustness of
the models to data perturbations [39, 69, 208]. Data perturbations refer to small changes in the
input data, such as missing values or noisy observations, that can significantly impact the model’s
performance. Many common recommendation methods are sensitive to such perturbations [205, 206]
and can lead to poor performance or even complete failure. Recently, there has been an increased
focus on developing robust sequential recommenders that can handle data perturbations. One
approach is to use regularization techniques, such as dropout [92, 166], to reduce the impact of noise
in the input data. Another approach is to use ensemble methods, such as bagging [303] and boosting,
to combine the predictions of multiple models. Another area of research on robustness is the use
of generative models, such as Variational Autoencoders (VAEs) [168] or Generative Adversarial
Networks (GANs) [321], to learn the underlying distribution of the data and generate new samples,
which can be used to augment the training data [170] and improve the robustness of the models.
Additionally, there has been work on imputation techniques [135, 324], to infer the missing data
to improve recommender systems, and on training instability [287]. Finally, other works focus
on methods for evaluating the robustness of the model without using ranking evaluation metrics
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but rather by assessing the stability of the generated rankings in the presence of missing items in
the data [205, 206]. Overall, robustness is a critical issue in sequential recommendation. There
are many ongoing efforts to develop methods that can handle data perturbations and improve the
performance of the models in practice.

3.1.3 Setting

The setting in question consists of NU users and NI items. Each user ui has interacted with at least
one item Ij at a given time ti,j . The goal of a recommender system is to predict the compatibility
between a given user and the items with which it has not yet interacted, knowing the items the
user has interacted with. In the Sequential Recommendation case, the problem takes the form of
predicting the next item in a sequence: given a sequence of i items {I1, I2, ..., Ii} with which a user
u has interacted, the goal is to predict the i+ 1-th item (Ii+1). A sequential neural network takes
as input a sequence of at most L elements and performs, for each time step, the prediction of NI

values. These represent the estimated compatibility between user u, to which the sequence of items
belong, and all1 items I.

Classic Training Method

The goal of the network, at each timestep i, is to predict the next item in the sequence Ii+1. During
network training, if the number of possible items NI is too large, it becomes intractable to calculate
predictions for all of them, therefore, only a chosen few are calculated. In particular, computing
the one corresponding to the next item, called positive item, and at least one corresponding to an
item that is irrelevant, called negative item, chosen randomly at each epoch. An attempt is then
made to increase the former value at the expense of the latter. Notably, the negative items are
indeed chosen randomly, but excluding items already in the input sequence. To achieve this, the
loss used for the models we have considered is the Binary Cross-Entropy; this is typically used in a
classification scenario.

The definition of loss, positive items, and negative items are defined leads to a specific ranking
that the network should achieve at time step i of a sequence of L elements. The ranking can be
described to be as follows: first the positive item Ii+1, followed by, in indifferent order, all the other
items in the sequence Ij such that j ∈ {1, ..., i, i + 2, ..., L, L + 1}, and finally, again in indifferent
order, all the remaining items Ij such that j /∈ {1, 2, ..., L+1}. This particular ranking would result
in zero loss.

We can simplify, as shown in Figure 3.1a, the functioning of the network by imagining that for
the sequence [I1], the model should output item I2, for the sequence [I1, I2] it should output item
I3, and so on.

3.1.4 Problem Statement

A sequential recommender system receives as input a sequence S = {I1, I2, ..., Ii} and tries to
predict the next item in the sequence, item Ii+1. How would the network behave if the last item

1“all" is used for the sake of simplicity. In reality, prediction is often not done for all items (e.g., during training,
for evaluation, or only for items not in the input sequence). More details are in the corresponding sections.
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...

Model

Model

Model

(a) Simplified visualization of a Sequential Recom-
mender System functioning. Each Ii represents the
item at time step i. Each line represents a different
inference.

Model

Model

Model...

(b) Simplified visualization of a Sequential Recom-
mender System functioning in the case of Npos = 3
positives items. Each Ii represents the item at time
step i. Each line represents a different inference.

Figure 3.1: Simplified visualizations in the two different scenarios

Ii is missing? If the last item is removed from the sequence [I1, I2], we would be left only with the
sequence [I1]. Since the network is trained to predict only item I2, it will have no preference on
predicting I3. Furthermore, considering an out-of-sequence division of the dataset (more info on
data division in Section 3.1.5), removing two items from the sequence results in replicating a training
sequence. Thus, the effect of removal may be even more detrimental if the model is overfitting on
the training set. Lack of user-item interactions in real-world scenarios pose a challenge for sequential
recommenders. For example, a streaming service offering a movie trilogy may not have data on a
user’s interaction with the second movie if it was watched on a different platform. This could result
in the recommender suggesting the second movie as the top recommendation without considering
the third. This issue also applies to non-sequential items like sequels to movies or books. We start
by demonstrating that existing sequential recommender models suffer from this effect, and then we
devise a method to make them robust to this type of data perturbation.

3.1.5 Methodology

More Positive Items

We assume that, in a real scenario, an ideal model should yield, at a given time step i, a ranking
containing, in order, all future items in the sequence, and only upon finishing these, all other
(negative) items. Therefore, the solution we have applied is to choose Npos positive items, such
that the network learns to simultaneously predict Npos future instances. Please note that we are
not trying to predict the whole sequence of future interactions but only the relevance of the items
at time step i. In this case, the loss would become as in 3.1.

ℓBCE,mp(x⃗ | p⃗os, n⃗eg) = −
∑
j∈p⃗os

log (xj)−
∑
j∈n⃗eg

log (1− xj) (3.1)

where x⃗ represents the output of the network, p⃗os = {p1, ..., pNpos} the identifier of the Npos
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positive items, and n⃗eg = {n1, ..., nNneg)} those of the selected Nneg negative items. The loss takes
the same form as that presented in [286]. Although the authors mention the loss function, its
potential for improving the model’s robustness in the face of missing data has not been explored.
Our work fills this gap by showing how this loss function can be effectively used to increase the
robustness of the model and improve its performance in the presence of missing data. Replicating
the simplified illustration in Figure 3.1a, we can visualize the idea of predicting multiple positive
items as in Figure 3.1b.

Margin Loss

Considering more positive items poses a clear limitation, as it becomes more challenging for the
next item to rank high in the network’s ranking. This is because the Binary Cross-Entropy loss
does not distinguish between positive items; a perfect model would rank all P positive items in the
first P positions, regardless of their order. This might limit the model performance, as the item
may end-up in the P -th position, thus reducing common metrics that take into account the order
of results, such as NDCG. To solve this problem, we decide to use the Margin Loss. Given pairs of
inputs x1 and x2, and a preferred ordering of them y, such that y = 1 if we assume that the first
input should be ranked higher than the second input, vice-versa for y = −1, the margin loss ℓ takes
values according to ℓMRG(x1, x2, y | margin) = max(0, y(x2−x1)+margin). This tells us that if the
network outputs for the two inputs respect the expected ordering and are at least margin apart, the
loss is equal to 0; otherwise, it is proportional to the distance between them. Input pairs are formed
between all pairs of positive items. The expected order is the order in which the user interacted with
them: an item at a time step i must come first in ranking than one at a time step i+k. The Margin
Loss formula is ℓMRG,pos(x⃗ | p⃗os,margin) =

∑Npos

c=1

∑Npos

k=c+1max(0, xpk − xpc +margin), where x⃗
represents the output of the network, p⃗os = {p1, ..., pNpos)} the identifier of the Npos positive items
and margin the margin value. The equation holds only if the order of the identifiers of the positive
elements follows the expected order.

Mixed Loss

The margin loss applied on the positive items is not enough to train the neural network as we desire.
It is always necessary to discourage the model from predicting negative items. We, therefore, decide
to use it in conjunction with the traditional Cross-Entropy loss. This naturally brings up the
need to add some hyperparameters to weigh the importance of the two losses. We also separate
the components of the Binary Cross-Entropy loss pertaining to positive items and negative items.
This Mixed Loss formula is ℓMIX(x⃗ | p⃗os, n⃗eg,margin) = lBCE,pos + λ1lBCE,neg + λ2ℓMRG,pos(x⃗ |
p⃗os,margin).

Experiments

Datasets

We select three datasets that are widely used in this field [53, 209]: MovieLens-1M [117], MovieLens-
100K [117] and Amazon Beauty [200]. The first two are movie ratings taken from the MovieLens
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Table 3.1: Dataset statistics after preprocessing

Dataset Users Items
Actions
/User
Average

Actions
/User
Median

Actions

MovieLens
1M 6040 3706 165 96 1M

MovieLens
100k 943 1682 106 65 100K

Amazon
Beauty 2417 2821 5 5 12K

website2 and differ on the period they were collected and the size of the set. The third dataset3

contains reviews and metadata from Amazon, spanning May 1996 - Oct 2018. The three datasets
have 165, 106 and 5 interactions per user, respectively.

The statistics for all the considered datasets are shown in Table 3.1.

Models

We select three sequential recommendation models. The first, GRU4REC [124], is an RNN based
on Gated Recurrent Unit. SASRec [141], on the other hand, is a sequential self-attention based
model that uses an attention mechanism to make predictions based on a relatively small number
of actions. TiSASRec (Time Interval aware Self-attention based sequential recommendation) [165]
is instead a modification of this that adds to the input the time intervals between elements in the
sequence.

Preprocessing

Consistent with other work, we use implicit ratings, so we do not consider the score but simply the
existence of an interaction of a given user with a given product. Given a user u, the products he
interacted with are ordered in a sequence Su based on the timestamp. An out-of-sequence split (i.e.
the last two items in each sequence are kept aside to be the target output of validation and test,
respectively, while the rest of the sequence is used for training) is performed to partition the data
into training, validation and test sets, in line with what has been done by other works in the same
domain.

Evaluation

In line with what has been done in other works involving Neural Recommenders [141], in order to
avoid to avoid heavy computation, the evaluation is carried out in the following way: the prediction
made by the network is taken for the positive item (the next item in the sequence) and 100 items
chosen randomly, not in the input sequence. The predictions (for 100 negative items + the positive
item) are then sorted according to the values obtained; this represents the final ranking.

2https://movielens.org
3https://nijianmo.github.io/amazon/index.html
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We want to emphasize that while we use multiple positive items during training, this is not done
during the evaluation phase. The reason for this decision is that changing the evaluation method
could naturally result in our proposed losses appearing better, thus rendering the comparison invalid.
By adhering to the traditional evaluation setting, we align ourselves with the evaluation methods
used in other works in this field. However, we acknowledge that this places our proposed method
at a disadvantage compared to the baseline method for obvious reasons. We are training the model
to predict multiple items to increase its robustness, but only one of these items will be used during
evaluation. On the other hand, the baseline model focuses solely on a single positive item, the
same one used for evaluation, which inherently gives it an advantage. In Section 3.1.6, we will
demonstrate how our model still manages to achieve superior results. In addition to the standard
metrics, to evaluate the sensitivity of the models in cases of input data perturbations, we utilized the
recently introduced metric Rank List Sensitivity (RLS)[206], enabling to compare rankings produced
with and without perturbations. RLS is defined as RLS = 1

N

∑N
i sim (RA,i, RB,i). where N is the

number of samples, sim is a similarity function, RA,i and RB,i are two rankings produced for sample
i. In our specific case, A represents the ranking when sample i is unaltered, while B represents the
case when the input sequence is perturbed, i.e. items are removed. The similarity (sim) of two
rankings Ra and Rb can be calculated using the Jaccard similarity [136], but it does not consider
order. On the other hand, Rank-biased Overlap (RBO) is more valuable for a recommendation
system as it considers top-ranked items as more significant using specific weighting (see Equation
3.2).

JAC(RA, RB) =
|RA ∩RB|
|RA ∪RB|

RBO(Ra, Rb) = (1− p)
k∑

i=1

pi−1 |RA[1 : i] ∩RB[1 : i]|
i

(3.2)

Hyperparameter Optimization

The hyper-parameters to be optimised are the number of positive items to be used, the number of
negative items to be used and the Mixed Loss parameters. The number of positive items Npos and
negative items Nneg varies in the set {1, 3, 10}, and the Mixed Loss parameters λ1 and λ2 in the set
{1, 10−1, ..., 10−5}.

Implementation

All code is written in Python 3. In particular, with Pytorch and Pytorch Lightning.

3.1.6 Results

In this section, we present experimental results showing the strong reliance of sequential recom-
mender models on the last items in the sequence as well as the performance of the proposed training
method to mitigate this effect.
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Figure 3.2: The effect of removing the last items in a sequence with three training methods

Last Items Importance

Figure 3.2a visualizes the effect of removing an item at different positions in the sequence on the
model outputs, using the SASRec model and the MovieLens-1M dataset, has on the ranking of the
top item. We identify this item with the term previous top-ranked item: that item which, prior
to the input data perturbation, was at the top of the ranking. In the case of the base model,
removing the last item can push the previously top-ranked item by over 25 positions on average.
While SASRec is trained using dropout, this does not seem to be sufficient to make it robust to
missing data. In contrast, when the model is trained with more positive items, the removal of the
last item results in a significantly lower drop in the ranking of the previous top item: 5 positions or
less. We also observe that the difference between the different models becomes less pronounced as
we move towards the earlier items in the sequence. These results demonstrate that incorporating
more positive items in the training process and using our proposed Mixed Loss can help to mitigate
the impact of missing data and improve the robustness of Sequential Recommender Systems.

Performance of Different Training Methods in Cases of Missing Last Items

NDCG@10 score is used to gauge the impact of the modified training method on the performance
of the models. Figure 3.3 provides a visualization of the results. The results are also expressed
integrally in Tables 3.2, 3.3 and 3.4.

A Clear Advantage in Handling Missing Data

One striking observation is that the models trained with more positive items and the Mixed Loss
consistently outperform the base model when it comes to dealing with missing data. Although the
base model performs slightly better in the absence of missing data, the new models are able to
sustain their performance even as the number of missing items increases. This is especially evident
in the case of the Amazon Beauty dataset, where the new training method is able to maintain
acceptable performance as the missing data becomes more prominent.

As mentioned in Section 3.1.5, the slight predominance of the base model in the absence of
missing data is expected because the evaluation setting naturally favors the base model: both the
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Figure 3.3: NDCG@10 with different number of missing items for each model-dataset pair

Table 3.2: Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS
with Jaccard or RBO) for GRU4Rec model and the considered datasets, varying the number of items removed
from the end of the sequence. To assist visualization leading zeroes are removed.

Dataset Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .4227 .4706 .4795 .6618 .7098 .7134 — — — — — —
1 .3898 .4368 .4498 .6356 .6843 .6873 .0489 .0867 .0794 .0313 .0550 .0489
2 .3635 .4101 .4180 .6162 .6579 .6606 .0442 .0752 .0676 .0293 .0475 .0403
3 .3482 .3983 .4044 .5881 .6452 .6475 .0392 .0672 .0604 .0252 .0415 .0358
4 .3257 .3748 .3737 .5642 .6214 .6167 .0376 .0628 .0552 .0241 .0398 .0334
5 .3099 .3608 .3611 .5440 .6081 .6038 .0347 .0568 .0502 .0219 .0346 .0298

ML-100k

0 .3621 .4004 .3976 .6182 .6607 .6713 — — — — — —
1 .3182 .3730 .3772 .5705 .6288 .6490 .1216 .2284 .2292 .0809 .1689 .1680
2 .3253 .3459 .3558 .5779 .6161 .6193 .1181 .2123 .2214 .0756 .1547 .1606
3 .3145 .3381 .3364 .5493 .5875 .5938 .1102 .2047 .2060 .0712 .1524 .1517
4 .2843 .3323 .3352 .5154 .5907 .5843 .1084 .1947 .1959 .0689 .1433 .1435
5 .2833 .3252 .3410 .5080 .5663 .5832 .0967 .1826 .1801 .0624 .1304 .1312

Amazon
Beauty

0 .4683 .4656 .4687 .5114 .5077 .5060 — — — — — —
1 .4539 .4517 .4623 .5072 .4969 .5056 .7110 .6633 .6780 .4987 .4858 .4676
2 .4471 .4499 .4531 .5027 .4990 .5064 .6472 .5829 .6100 .4793 .4550 .4386
3 .3500 .3955 .3938 .4059 .4688 .4737 .4059 .4026 .3827 .2947 .3185 .2915
4 .1325 .2774 .2626 .1849 .3620 .3562 .2413 .3298 .2390 .1400 .2017 .1783
5 .1191 .2662 .1966 .1676 .3442 .2892 .1583 .2092 .1164 .0773 .1122 .0930

loss function and the evaluation technique consider only a single item. We emphasize the significance
that our model, trained in a manner that deviates slightly from the traditional evaluation setting,
is able to retain minimal performance loss in the same setting while gaining robustness to missing
data.
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Table 3.3: Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS
with Jaccard or RBO) for SASRec model and the considered datasets, varying the number of items removed
from the end of the sequence. To assist visualization leading zeroes are removed.

Dataset Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .5969 .5772 .5874 .8222 .8142 .8207 — — — — — —
1 .5572 .5490 .5570 .7925 .7925 .7962 .4116 .6157 .5584 .2754 .4370 .3964
2 .5292 .5274 .5326 .7768 .7748 .7783 .3625 .5348 .4849 .2441 .3875 .3460
3 .5090 .5028 .5108 .7647 .7594 .7634 .3276 .4731 .4287 .2218 .3443 .3080
4 .4838 .4906 .4931 .7452 .7425 .7520 .2933 .4215 .3741 .1997 .3072 .2693
5 .4691 .4752 .4795 .7316 .7344 .7411 .2676 .3778 .3368 .1823 .2779 .2422

ML-100k

0 .4559 .4456 .4527 .7349 .7349 .7455 — — — — — —
1 .4200 .4219 .4357 .7243 .6988 .7232 .2734 .6457 .5411 .1668 .4636 .3732
2 .4196 .4113 .4282 .6999 .6978 .7179 .2565 .6217 .5179 .1599 .4458 .3615
3 .3792 .4032 .4008 .6607 .6861 .6935 .2441 .5916 .4920 .1508 .4268 .3448
4 .3878 .3855 .4036 .6755 .6734 .6925 .2350 .5565 .4707 .1450 .4083 .3333
5 .3632 .3764 .3896 .6511 .6670 .6797 .2226 .5261 .4369 .1409 .3869 .3106

Amazon
Beauty

0 .4682 .4597 .4643 .5038 .5075 .5067 — — — — — —
1 .4499 .4496 .4502 .4959 .5032 .5037 .5730 .6087 .6164 .4076 .4332 .4238
2 .4474 .4500 .4461 .5034 .5053 .5077 .5123 .5314 .5375 .3827 .4152 .3954
3 .3850 .4273 .4257 .4510 .5108 .5086 .3967 .4531 .4442 .3043 .3585 .3335
4 .2317 .3582 .3640 .3055 .4759 .4879 .2987 .3934 .3800 .2193 .2909 .2818
5 .2193 .3549 .3593 .2931 .4763 .4878 .2579 .3718 .3602 .1806 .2522 .2563

Table 3.4: Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS
with Jaccard or RBO) for TiSASRec model and the considered datasets, varying the number of items removed
from the end of the sequence. To assist visualization leading zeroes are removed.

Dataset Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .5494 .5348 .5402 .7823 .7760 .7773 — — — — — —
1 .5159 .5086 .5148 .7523 .7522 .7550 .3622 .5714 .5605 .2373 .4069 .3946
2 .4906 .4920 .4997 .7387 .7386 .7444 .3070 .4968 .4769 .2000 .3592 .3396
3 .4667 .4743 .4808 .7166 .7242 .7311 .2685 .4401 .4202 .1747 .3215 .3028
4 .4522 .4584 .4662 .7043 .7144 .7194 .2348 .3891 .3669 .1536 .2880 .2649
5 .4338 .4436 .4517 .6889 .7070 .7126 .2072 .3488 .3270 .1347 .2590 .2369

ML-100k

0 .4154 .3984 .4044 .6935 .6702 .6670 — — — — — —
1 .3665 .3922 .3972 .6394 .6426 .6490 .2704 .5377 .5238 .1638 .3869 .3708
2 .3632 .3792 .3761 .6108 .6225 .6246 .2406 .4855 .4735 .1424 .3547 .3394
3 .3477 .3637 .3642 .6182 .6172 .6182 .2194 .4546 .4418 .1292 .3360 .3186
4 .3413 .3568 .3535 .5938 .6161 .6151 .2020 .4227 .4113 .1194 .3145 .2959
5 .3321 .3481 .3529 .5822 .6034 .6076 .1965 .4004 .3858 .1163 .3021 .2819

Amazon
Beauty

0 .4670 .4700 .4693 .4994 .5106 .5077 — — — — — —
1 .4467 .4564 .4600 .4911 .5077 .5056 .5819 .6580 .6559 .3931 .4641 .4575
2 .4426 .4553 .4542 .4944 .5101 .5101 .5402 .6353 .6403 .3765 .4598 .4563
3 .3667 .4297 .4286 .4241 .5097 .5130 .4135 .5438 .5512 .3096 .3784 .3676
4 .1606 .3453 .3469 .2122 .4886 .4878 .2567 .4031 .3969 .2155 .2892 .2655
5 .1483 .3409 .3345 .1953 .4882 .4866 .1926 .3183 .3013 .1831 .2338 .2015

Length of sequences

It is worth noting that the average sequence length of the three datasets is vastly different (see
Section 3.1.5). The results in Figure 3.3 indicate that the impact of missing data is much less
severe for datasets with longer sequences, such as ML-1M. The model trained with the classic
training method is even able to compensate for this deficiency, particularly in the case of SASRec.
However, as the average sequence length decreases, such as in the ML-100k dataset, the robustness
to missing data seems to decline rapidly, and the difference between the models becomes more
pronounced when the number of missing items increases. This trend is especially evident in the
Amazon Beauty dataset, where the difference between the models is particularly noticeable when
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the number of missing items is higher than 2, probably because the average length of the sequences
for this dataset is 5.

Rank List Stability
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Figure 3.4: Study on the Number of Positives

The robustness of the models in the face of item removal at the end of the input sequence is
illustrated through the Rank List Stability with Rank-biased Overlap metric in Figure 3.2b. It is
evident that the new models exhibit higher stability, with Cross-Entropy with more positive items
proving to be even more robust than the Mixed Loss model. We observed a similar trend for all
datasets and models, so only one plot is presented; further results can be found in the additional
repository. While the multiple positive model (MP) provides in most cases higher performance
in the Rank List Stability metrics compared to the model with multiple positive and the mixed
loss (MP+ML), it is worth noting that MP+ML provides higher performance on the HR@10 and
NDCG@10. This can be explained by the fact that MP is not optimized using the ranks of the
positive items as done by the mixed loss (MP+ML model). However, for precisely the same reason,
MP benefits from higher stability.

More specifically, both models are trained to predict, at time t and for a given input sequence,
Npos positive items, specifically [pt, pt+1, ..., pt+Npos ]. However, the MP model is trained with a loss
function that does not consider the order of the positive items: the same sequence in reverse order
would yield the same loss value. As discussed in Section 3.1.5, in the classic evaluation setting, only
pt is used during evaluation. If the loss function treats pt equally important as the other positive
items [pt+1, ..., pt+Npos ], it is more likely to be ranked lower, thus reducing metrics such as NDCG
and Recall. On the other hand, the model using the Mixed Loss, which aims to prioritize the
position of pt at the top of the ranking, has an advantage in achieving higher metrics in this regard.

Study on the Number of Positives

To understand the impact of the number of positive items used for training, experiments were
performed using different numbers of positive items for just one model, SasRec, and one dataset,
MovieLens-1M, due to the computational time required. As seen in Figure 3.4a, as the number of
positive items increases, the change in ranking for previous top-ranked items decreases significantly.
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However, Figure 3.4b shows that the performance in the absence of missing data degrades as the
number of positive items increases. This trend begins to change as the number of missing items
increases, and the gap between the new models and the base model narrows, with the latter’s
performance deteriorating more.

3.1.7 Implications of the Research Findings

The findings of this study hold both theoretical and practical implications that contribute to the
advancement of sequential recommender systems and their application in real-world scenarios. By
addressing the specific challenges posed by missing input data, our research offers a novel perspective
on enhancing the robustness and reliability of these systems.

Theoretical Implications

1. Uncovering Last-Item Dependence: Our research uncovers the strong reliance of sequen-
tial recommender systems on the last items in the input sequence. This revelation contributes
to a deeper understanding of the dynamics within these systems, emphasizing the need for
strategies that can mitigate the performance degradation caused by missing items.

2. New Training Paradigm: The introduction of a training approach that anticipates data
loss and simulates prediction of multiple future items presents a paradigm shift in the method-
ology for handling missing input data. This approach establishes a theoretical foundation for
designing more resilient recommender systems.

Practical Implications

1. Real-World Data Challenges: In real-world scenarios, complete user action sequences are
often not available due to various constraints. Our research highlights the practical significance
of addressing this data scarcity and provides a concrete solution to mitigate the negative effects
of missing items, improving the usability of recommender systems.

2. Enhanced System Resilience: The proposed training method significantly improves the
performance of sequential recommender systems when faced with missing items. This directly
translates into a more reliable and user-centric experience, thus benefiting various domains,
such as e-commerce, content recommendation, and personalized services.

3. Impact on User Satisfaction: The performance enhancement demonstrated by our ap-
proach can lead to improved user satisfaction by providing more accurate and relevant rec-
ommendations, even when there are gaps in the available data. This practical outcome can
foster greater user engagement and loyalty.

4. General Applicability: The effectiveness of our method across various datasets and recom-
mender models underscores its general applicability. This widens its potential adoption and
impact, making it a valuable tool for researchers and practitioners alike.
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3.1.8 Discussion and Conclusions

Our findings show that the last items in a sequence have a significant impact on the predictions of
sequential recommenders, and their removal results in unstable rankings. However, by incorporating
multiple future items in the training process, model robustness can be improved. Our results demon-
strate that the proposed training methods improve rankings stability (RLS metric) and performance
(HR and NDCG) on various popular sequential recommender models (SasRec[141], TiSasRec[165],
and GRU4Rec[124]) and datasets. In contrast, the performance without missing data is not no-
ticeably affected but even improves for specific models/datasets. Using more positive items with
Cross-Entropy loss improves robustness of sequential recommenders to removal of elements at the
end of the input sequence. However, increasing the number of future items excessively can lead to
stability increase at the cost of decreased performance. Mixed Loss, combining Cross-Entropy with
Margin Loss, can prioritize the next item over other positives. Our method opens up opportunities
for further research in the field. Future work may focus on the development of a loss function that
balances performance and robustness as the number of positive items increases, as well as modifying
the method for models that use bi-directional connections (e.g., [283]). Moreover, out proposal is
easily extendable to other approaches, as it is solely tied to a different training method and not to
a specific architecture. To summarize, our work represents a step forward in improving the robust-
ness of sequential recommender models. We demonstrate the strong influence of the last items in
a sequence and the effectiveness of our method in mitigating the impact of missing data. Overall,
we expect that our findings and proposed methods will be a valuable tool in the field of sequential
recommender systems.
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3.2 Integrating Item Relevance in Training Loss
for Sequential Recommender Systems

Sequential Recommender Systems (SRSs) are a popular type of recommender system that leverages
user history to predict the next item of interest. However, the presence of noise in user interactions,
stemming from account sharing, inconsistent preferences, or accidental clicks, can significantly im-
pact the robustness and performance of SRSs, particularly when the entire item set to be predicted
is noisy. This situation is more prevalent when only one item is used to train and evaluate the SRSs.
To tackle this challenge, we propose a novel approach that addresses the issue of noise in SRSs.
First, we propose a sequential multi-relevant future items training objective, leveraging a loss func-
tion aware of item relevance, thereby enhancing their robustness against noise in the training data.
Additionally, to mitigate the impact of noise at evaluation time, we propose multi-relevant future
items evaluation (MRFI-evaluation), aiming to improve overall performance. Our relevance-aware
models obtain an improvement of 1.58% of NDCG@10 and 0.96% in terms of HR@10 in the tradi-
tional evaluation protocol, the one which utilizes one relevant future item. In the MRFI-evaluation
protocol, using multiple future items, the improvement is 2.82% of NDCG@10 and 0.64% of HR@10
w.r.t the best baseline model.

3.2.1 Introduction

Recommender systems have become an integral part of our daily lives [344], as they assist us in
making decisions by suggesting items we might like based on our preferences and behaviors [239]. In
recent years, Sequential Recommender Systems (SRSs) have emerged as a promising solution to im-
prove the accuracy and relevance of recommendations by incorporating the temporal aspect of user-
item interactions. These systems aim to predict the next item a user is likely to interact with based
on their past interactions, taking into account the sequence of actions and their temporal order [225].

Traditional evaluation metrics, such as Hit Rate (HR) and Normalized Discounted Cumulative
Gain (NDCG), fail to capture the complexity of sequential data when evaluated by measuring how
well they predict a single future item [141, 165, 283]. The reason is that the hypothesis of a single
"relevant" item might not reflect the users’ true intentions or preferences, particularly when consid-
ering noisy sequences in real-world scenarios, as argued by [27, 310]. For example, users accidentally
clicking on items, or performing multiple actions quickly, greatly affects the evaluation results, as
shown by [112, 206]. Hence, we propose a novel and groundbreaking approach to eval and training
of SRSs: we depart from the single-relevant item approach typically considered in the current liter-
ature by leveraging multiple future items to account for noise in the sequences. Assuming that only
the next item in the database is relevant, disregarding the potential relevance of other future items,
is not only unrealistic but also overlooks valuable information contained in the entire dataset. We
show that by considering multiple relevant future items during evaluation, the impact of noisy items
is reduced, and models that anticipate users’ future preferences beyond immediate predictions are
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incentivized.
Our contributions are two-fold: (i) we propose a sequential multi-relevant future items training

objective, defined by a loss function that takes into account the item relevance; (ii) we present a
novel evaluation setting called Multi-Relevant Future Items Evaluation (MRFI-evaluation), which
aims to mitigate the impact of noise during the evaluation of RecSys models. These contributions
collectively address the challenges of noise in both the training and evaluation stages of RecSys, to
improve their overall performance and robustness against noise.

Our experiments show that the proposed method provides a more accurate and robust solution
for evaluating and training SRSs. We conducted experiments on four datasets typically used in
this research domain, using SASRec [141] and TiSASRec [165], two widely cited SRSs. Our exper-
iments show that a model trained with the proposed loss yields state-of-the-art results, in terms of
NDCG@10 and Recall@10 scores, in both MRFI and traditional evaluation protocols.

3.2.2 Related Work

Sequential Recommender Systems

Sequential Recommender Systems (SRSs) are a class of recommender systems that personalizes
recommendations to users based on their historical interactions with items in a sequence [309], cap-
turing its temporal dynamics. SRSs have received considerable attention in the research community
in recent years [344] and have been applied in various domains [344], including movies [104, 117, 220],
music [251, 252], and e-commerce [133, 250]. Various techniques have been developed to model the
temporal dependencies in the sequences, including Markov Chain models, Recurrent Neural Net-
works (RNNs), and Attention mechanisms. Markov Chain models are a type of probabilistic model
that assumes the future state of a sequence only depends on the current state; for this reason,
they struggle to capture complex dependencies in long-term sequences [89, 90]. RNNs are a type of
neural network architecture that can capture the long-term dependencies in sequential data. They
have shown great potential in modeling sequential data, and they have been used to develop var-
ious SRSs, such as session-based recommenders [123–125, 164, 170], context-aware recommenders
[4, 157, 329], and graph neural networks [45, 82, 223]. Attention mechanisms have recently gained
attention in SRSs due to their ability to dynamically weigh the importance of different parts of the
sequence [141]. By doing so, attention mechanisms can better capture the important features in the
sequence and improve the prediction accuracy [312, 352].

Evaluating Sequential Recommender Systems

Evaluating Sequential Recommender Systems (SRSs) has been a topic of great interest in recent
years. Both [282] and [350] examined common data splitting methods for SRSs and discussed why
commonly used evaluation methods are ill-defined, suggesting appropriate offline evaluation for
SRSs. In particular, they showed that existing evaluation protocols do not consider the temporal
dynamics of user behavior, which can affect the accuracy of the recommendations. In [138], it is
shown that the current evaluation protocols for SRSs can lead to data leakage, where the model
learns information from the test data that is not available during training. They address the prob-
lem by proposing an evaluation methodology that considers the global timeline of data samples
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in the evaluation of SRSs. A metric called Rank List Sensivity (RLS) is introduced in [206] to
evaluate the discrepancy between two rankings, so to evaluate models’ sensitivity with respect to
training data. Finally, [19] presented an evaluation methodology specifically designed to evaluate
the precision of algorithms for the Search Shortcut Problem. This metric considers item relevance,
which allows an effective evaluation.

3.2.3 Methodology

Current Evaluation Protocol

In line with previous research employing SRSs [141, 165, 283], the current evaluation method in-
volves shuffling one positive item (the next item in the sequence) with 100 random negative items
not part of the input sequence. These items are then ranked based on their relevance scores de-
termined by the model. The resulting rank is typically evaluated with metrics such as Normalized
Discounted Cumulative Gain (NDCG) and Hit Rate (HR), using various cut-offs, typically 10.

Problems with the current evaluation protocol

The current evaluation protocol assumes only one item is relevant to a user, which may not be
true in real-world scenarios with multiple relevant interactions. Users’ history can be noisy due to
account sharing, inconsistent preferences, or accidental clicks, as discussed in [310]. For instance,
in e-commerce, many clicks don’t lead to purchases, and some receive negative reviews. Evaluating
a model on one noisy item negatively impacts its performance, and this aspect is disregarded in
the current evaluation protocol. Furthermore, assuming that all other future items, except the next
one, are irrelevant is both strong and unrealistic, disregarding valuable available data.

Multi-Relevant Future Items: a new evaluation protocol

To address the aforementioned problem, we propose a new evaluation protocol for SRSs called
Multi-Relevant Future Items (MRFI). In MRFI, we make the Assumption 1, that a good ranking
should not only contain the single future next item in the sequence, but the whole sequence of future
items in the correct order. In this way, when the test set presents noisy items, the effect is mitigated
as more items are considered during evaluation. Thus, models that disregard ranking noisy items
are less penalized. Moreover, this protocol rewards models that anticipate user preferences beyond
immediate predictions.

Assumption 1. Given a user u and its ordered interactions’ sequence [I1, I2, ..., Ii], the ideal ranking
of length K is the sequence of future items [Ii+1, Ii+2, ..., Ii+K ] arranged user’s interaction temporal
order.

To evaluate the performance of SRSs under Assumption 1, we use traditional evaluation met-
rics for sequential recommendation models such as NDCG and HR. To have multiple future items
per evaluation, we split the user’s history differently. Given a sequence [I1, I2, ..., IL], in the tra-
ditional evaluation protocol, only item IL is reserved for testing. In our proposed evaluation
protocol, the sequence [I1, I2, ..., IL−K ] is allocated for training the model, while the sequence
[IL−K+1, IL−K+2, ..., IL] is used for testing purposes.
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... Model

... Model

... Model

... Model
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Traditional setting

Fixed Item Relevance

Linear Item Relevance

Power Item Relevance

Exponential Item Relevance

Figure 3.5: A visualization of how the various loss scaling strategy weigh the item relevance.

Item Relevance

The MRFI evaluation protocol requires higher ranking capabilities than the traditional evaluation
protocol. The original evaluation protocol evaluates the ability to rank a single item and treat all
other items as irrelevant to the user. Conversely, in the new MRFI evaluation protocol, it is impor-
tant to define item relevance to give importance to multiple future items and scale their importance
according to their position in the sequence.

Definition 3.2.3.1. Given a ranking [I1, I2, ..., IK ] of length K, we define the item relevance func-
tion r : N→ [0, 1]

To compare item relevance on sequences of different lengths K, we define that the item relevance
r sums to one.

Definition 3.2.3.2. Given a ranking [I1, I2, ..., IK ] of length K, item relevance r must satisfy∑K
i=1 r(i) = 1

Item relevance should assign lower importance to interactions further in the future. We establish
that the relevance of an item at time t cannot be lower than the relevance at time t+ 1.

Definition 3.2.3.3. Given a ranking [I1, I2, ..., IK ] of length K, r must satisfy r(i+1) ≤ r(i) ∀i ∈
{1, 2, ...,K}

Our approach to item relevance is inspired by [19] who proposed a similarity function, which takes
into account the item relevance, to evaluate query recommendation using collaborative filtering.
They suggested four different functions for item relevance: r(i) = 1, r(i) = K − i, r(i) = (K − i)2,
and r(i) = eK−i with i ∈ {1, 2, ...,K}. We refer to these functions respectively as Fixed, Linear,
Power, and Exponential. The first assigns equal relevance to all items, while the others assign
higher relevance to the next items in the sequence at the expense of the more distant ones. We
show a visualization of these functions in Figure 3.5. The functions can be easily normalized to
comply with the Definition 3.2.3.2. It should be noted that our evaluation protocol generalizes the
traditional one because we can revert to it by setting maximum importance to the next item and
zero importance for all other future items.

Relevance-based Loss

To explicitly integrate the item relevance in the training of the SRSs, we propose a Relevance-based
loss, a modification of the Binary Cross-Entropy, that leverages multiple future positive items at
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training time. [286] propose a similar formulation that assigns equal relevance to all future items
(equivalent to our Fixed formulation). However, by assigning equal importance to all items, the
model ignores the natural order of interactions, making this strategy unsuitable for some tasks. To
address this limitation, we propose a Sequential Multi Future Item Training regime that considers
the sequential nature of the items integrating their relevance, which translates to a Relevance-based
loss:

ℓ(x⃗ | pos, neg, r) = −
pos∑
i=1

log
(
(x⃗pos)i

)
r(pos− i+ 1)−

neg∑
i=1

log
(
1− (x⃗neg)i

)
(3.3)

where pos and neg represent the number of positive and negative items, respectively. x⃗ is the
score given by the model to each item, while x⃗pos and x⃗neg represent respectively the subset of
x⃗ containing only the positive and negative items and r is the item relevance function defined in
Section 3.2.3. In Equation 3.3, we weigh the loss of each item i by its relevance score r(i). Doing
so encourages the model to focus more on the relevant items while learning.

An advantage of this loss lies in its decoupling from the evaluation method used. Even though
we introduce an evaluation protocol that incorporates multiple future items, it doesn’t necessarily
have to be used only with a loss that considers multiple future items. Similarly, the loss can be used
not only for this specific type of evaluation. This means that the loss can be easily incorporated into
any model that uses a loss function, and the model can be tested using the traditional evaluation
protocol, potentially leading to improved results, as demonstrated in our findings.

3.2.4 Experimental Setup

We assess our techniques using four datasets derived from real-world use cases: MovieLens[118]
1M and 100k, and Foursquare [328] Tokyo (TKY) and New York City (NYC). We select the Self-
Attentive Sequential Recommendation (SASRec) [141] and the Time Interval Aware Self-Attention
for Sequential Recommendation TiSASRec [165] models for our experiment, as both have con-
sistently demonstrated exceptional performance across multiple benchmarks and garnered signifi-
cant recognition in the literature. For fairness, we retain the original hyper-parameters tuned on
the baseline model. This decision should not be perceived as a drawback but rather as an un-
tapped potential inherent to our proposed methodology: the traditional loss model has already
been fine-tuned for optimum performance, while our loss model has yet to be exploited to its fullest
potential. The code is available in our Github Repository (https://github.com/andreabac3/
Integrating-Item-Relevance-in-Training-Loss-for-Sequential-Recommender-Systems).

3.2.5 Results

In this Section, we present the results by answering the following three research questions:

• RQ1: Can we mitigate the impact of noise by introducing an alternative to the single-item
evaluation protocol?

• RQ2: Can item relevance improve an SRS’s performance when incorporated into the training
mechanism?
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• RQ3: What is the impact of the number of future items on evaluation metrics and model
training performance?

During our experiments, we vary (i) the number of evaluation positives; (ii) the number of train-
ing positives; (iii) the item relevance function. From here on, we will denote by our the models
trained with our proposed training loss. We refer to the original model trained on a single future
relevant item as Baseline, while with baseline, we indicate both Baseline and Fixed models. To val-
idate the effectiveness of our method compared to Baseline and Fixed, we employed the one-sided
Wilcoxon signed-rank test [320] with Bonferroni correction [32] and a significance level of 0.05. The
Wilcoxon test was chosen as a non-parametric alternative to the paired t-test due to the non-normal
distribution of the data.

ML-1M ML-100k Foursquare NYC Foursquare TKY

Model NDCG HR NDCG HR NDCG HR NDCG HR

S
A

S
R

ec

Traditional
Evaluation
Protocol

Baseline [141] (a) 0.5989 0.8273 0.4514 0.7359 0.6706 0.7673 0.7274 0.8029
Fixed [286] (b) 0.5983 0.8265 0.4520 0.7423 0.6911 0.7655 0.7358 0.8042

Linear 0.6112ab 0.8326b 0.4680ab 0.7434 0.6843a 0.7608 0.7422ab 0.8190ab

Power 0.6061ab 0.8296 0.4614b 0.7359 0.6869a 0.7608 0.7385a 0.8090
Exponential 0.5918 0.8205 0.4493 0.7253 0.6894a 0.7701 0.7369a 0.8068

MRFI
Evaluation
Protocol

Baseline [141](a) 0.3482 0.6249 0.2047 0.5259 0.3117 0.6772 0.3757 0.7382
Fixed [286](b) 0.3530 0.6357 0.2091 0.5462 0.3167 0.6972 0.3834 0.7552

Linear 0.3577ab 0.6416ab 0.2177ab 0.5434a 0.3245ab 0.6942a 0.3728 0.7504a

Power 0.3575ab 0.6353a 0.2237ab 0.5506a 0.3175a 0.6865a 0.3796 0.7524a

Exponential 0.3410 0.6312a 0.2051 0.5299 0.3197a 0.6953a 0.3846a 0.7558a

T
iS

A
S
R

ec

Traditional
Evaluation
Protocol

Baseline [141] (a) 0.5681 0.8012 0.4247 0.7190 0.6190 0.6999 0.6643 0.7475
Fixed [286] (b) 0.5597 0.8030 0.4223 0.7031 0.6319 0.7018 0.6719 0.7414

Linear 0.5743ab 0.8048 0.4293 0.7137 0.6301a 0.6934 0.6758ab 0.7423
Power 0.5655b 0.7990 0.4319b 0.7147 0.6323a 0.7073 0.6675 0.7340
Exponential 0.5609 0.7978 0.4272 0.7211b 0.6282a 0.6944 0.6724a 0.7375

MRFI
Evaluation
Protocol

Baseline [141] (a) 0.3181 0.6017 0.1935 0.5153 0.2535 0.6189 0.3154 0.6952
Fixed [286] (b) 0.3253 0.6140 0.1974 0.5226 0.2555 0.6235 0.3114 0.6891

Linear 0.3321ab 0.6194ab 0.1948 0.5259a 0.2523 0.6229 0.3202ab 0.6986ab

Power 0.3206 0.6111a 0.2007a 0.5221a 0.2581 0.6264a 0.3188a 0.6984ab

Exponential 0.3125 0.6062a 0.1936 0.5212 0.2603a 0.6259a 0.3176 0.6992ab

Table 3.5: Table shows the values of the NDCG@10 and HR@10 metrics that the ten models obtain on the
four datasets in the traditional evaluation protocol and new evaluation protocol. Bold shows the best result
for each column, underlined the second best. Superscripts a and b indicate that the result is statistically
significantly better than Baseline or Fixed, respectively.

RQ1.

As explained in Section 3.2.3, taking into account fewer relevant items in evaluating the results
might not suffice to pick the best model. Consider, for example, a simple scenario where the user u
will interact with the items I1, I2, and I3 in the future. Model A outputs the ranking [I50, I1, I100],
while model B outputs [I2, I1, I3]. Using only I1 as a relevant item makes both models appear to
perform similarly. Conversely, considering all three future items, model B is significantly superior
to model A. Having provided a theoretical rationale for why the new evaluation setting is superior
to the traditional one, which extends beyond our results, we can state that any model, trained in
any way, can be tested using this evaluation protocol. This could reveal that models that per-
form poorly in the traditional evaluation protocol, instead perform well in the new one, possibly
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(a) Traditional evaluation protocol (b) MRFI evaluation protocol

Figure 3.6: NDCG@10 at varying training epochs for all 5 models on the MovieLens 1M dataset

subverting current rankings of models and approaches.
Table 3.5 compares various models in both the traditional and MRFI evaluation protocol, in-

cluding the two baselines and the models trained with our proposed item relevance-based loss.
Our models exhibit superior performance in the traditional evaluation protocol, although some dif-
ferences are less prominent. Conversely, the MRFI evaluation protocol reveals more pronounced
disparities in performance, enabling a better identification of a superior model. Hence, the MRFI
evaluation protocol is more robust to the noise introduced in 3.2.3 and can better identify per-
formance differences between models and reward the model with the best ranking performance as
evaluated by means of NDCG and HR.

RQ2.

As seen from Table 3.5, in the traditional and MRFI evaluation protocol, models that integrate the
item relevance are better (statistically significantly) or on-par (not statistically significant) than the
baselines for at least one of the metrics, regardless of the tested architecture. Figure 3.6 shows the
performance using NDCG@10 of SASRec model for the MovieLens-1M dataset for both the tradi-
tional and MRFI evaluation protocol. We have decided to present this combination because it seems
to be the prevailing choice in the literature. We can see that the Baseline, which does not consider
multiple future items during training, has a consistently slower convergence rate in both evaluation
protocols than the item relevance-aware models. Instead, Linear item relevance obtains the fastest
convergence. This shows that the item relevance loss allows the training of better models that
yield higher performances in both evaluation protocols. To summarize, our relevance-aware models
obtain an improvement of 1.58% of NDCG@10 and 0.96% in the traditional evaluation protocol,
while in the new evaluation protocol, the improvement is 2.82% of NDCG@10 and 0.64% of HR.

RQ3.

To assess this question, we conduct an ablation study in which we vary the number of training
and evaluation positive items. In Figure 3.7, we report the results of all models using 2, 3, 4, 5,
and 10 training positive items. In the traditional evaluation protocol with Fixed (Figure 3.7a),
increasing the number of training positive items seems to impact the performances negatively: the
more the training positive items, the worse the performance. In the traditional evaluation protocol,

Federico Siciliano 78



3.2.6. Conclusions

(a) Traditional evaluation protocol - Fixed
Item Relevance

(b) MRFI - Linear Item Relevance

Figure 3.7: NDCG@10 at varying training epochs for the new item-relevance models and training positives
on Movielens-1M

the behavior is generally expected, as we only evaluate the model with one positive item; the other
positive items used for training can only confound the model. Instead, we see something different
in the new evaluation protocol (Figure 3.7b), where we evaluate models with ten positive items.
Linear shows interesting results: performance increases with the number of training positives. This
suggests that our models still have room for further improvement. Although not shown here, a
similar but less pronounced result is seen using the Traditional evaluation protocol.

3.2.6 Conclusions

In this work, we challenged the assumption made in Sequential Recommendation Systems (SRSs)
of considering only the immediate next item in a sequence for prediction. We have relaxed the
evaluation protocol to better assess a model’s performance and designed an item relevance loss to
optimize the model to predict multiple future items. Our experiments demonstrated the importance
of more positive items in both training and evaluation of SRSs. Results show that when trained
in the multiple relevant item regime, our systems outperform the state-of-the-art models 1.2% in
NDCG@10 and 0.88% in HR@10 in the original evaluation protocol. In the new evaluation proto-
col, the improvement is 1.63% of NDCG@10 and 1.5% of HR. Among the item relevance variants
we experimented with, the Linear approach outperforms the others and demonstrates its potential
usefulness in practical applications.
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3.3 Leveraging Inter-rater Agreement for Clas-
sification in the Presence of Noisy Labels

In practical settings, classification datasets are obtained through a labelling process that is usually
done by humans. Labels can be noisy as they are obtained by aggregating the different individual
labels assigned to the same sample by multiple and possibly disagreeing, annotators. The inter-rater
agreement on these datasets can be measured while the underlying noise distribution to which the
labels are subject is assumed to be unknown. In this work, we: (i) show how to leverage the inter-
annotator statistics to estimate the noise distribution to which labels are subject; (ii) introduce
methods that use the estimate of the noise distribution to learn from the noisy dataset; and (iii)
establish generalization bounds in the empirical risk minimization framework that depend on the
estimated quantities. We conclude the paper by providing experiments that illustrate our findings.

3.3.1 Introduction

Supervised learning has seen enormous progress in the last decades, both theoretical and practical.
Empirical risk minimization is used as a learning framework [300], which relies on the assumption
that the model is trained with iid (independent and identically distributed) sampled data from the
joint distribution between features and labels. As a consequence of generalization bounds, when
this assumption is satisfied, any desired performance can be achieved as long as enough training
data is available. However, in many real-world applications, due to flaws during the data collection
and labeling process, the assumption that the training data is sampled from the true feature-label
joint distribution does not hold. Training data is often annotated by human raters who have some
non-zero probability of making mistakes. It has been reported in [279] that the ratio of corrupted
labels in some real-world datasets is between 8.0% and, 38.5% . As a consequence of the presence
of incorrect labels in the training dataset, the aforementioned assumption is violated and hence
performance guarantees based on generalization bounds no longer hold.

This gap between theory and practice raises the question of whether it is possible to learn from
datasets with noisy labels while still having performance guarantees. This question has received a
lot of attention lately and has already been answered positively in some cases [198, 214]. Indeed
multiple works have introduced learning algorithms that can cope with datasets with incorrect labels
while guaranteeing desirable performance through provable generalization bounds. However, these
solutions do not solve the entirety of the problem due to the fact that they rely on precise knowledge
of the error rate to which the labels are subject, which is often unknown in practice. Several works
[214, 325, 333] attempt to address this issue by introducing techniques to estimate such an error
rate. Some of these methods have the drawback of relying on assumptions that do not always hold
in practice, such as the existence of anchor samples [214]. Ideally, it would be desirable to design
learning algorithms that are both robust to noisy labels, and for which performance guarantees can
be provided.
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An approach, often used in industry to reduce the impact of errors made by human raters,
is to label the same dataset multiple times by different annotators. Then the individual labels
are combined to reduce the probability of erroneous labels in the dataset, two popular approaches
are majority vote or soft labeling. In these cases inter-annotator agreement (IAA) scores (like
Cohen’s kappa [56] and Fleiss’ kappa [86]) provide measurable metrics that are directly related to
the probability of error present in the labels.

Since the IAA holds a direct relationship with the error rate associated with the human raters,
one could potentially estimate the error rate and leverage this estimate to modify the learning
algorithms with the objective of making them robust to the resulting noise in the labels. This is
the main direction we explore in this work.

Motivation and Contributions: This work is motivated by two main points: (i) to the best
of our knowledge there are no published results that indicate how to leverage the IAA statistics to
estimate the label noise distribution; and (ii) the generalization bounds of existing noise tolerant
training methods often rely on unknown quantities (like the true noise distribution) instead of on
quantities that can be measured (like the IAA statistics).

Our contributions are the following: (i) we provide a methodology to estimate the label noise
distribution based on the IAA statistics; (ii) we show how to leverage this estimate to learn from the
noisy dataset; and (iii) we provide generalization bounds for our methods that depend on known
quantities.

3.3.2 Related works

Our work is related to literature on three main topics: (i) robust loss function design, (ii) label
aggregating and (iii) noise rate estimation.

Robust loss functions In classification tasks, the goal is to obtain the lowest probability of
classification error. The 0− 1 loss counts how many errors a classifier makes on a given dataset and
is often used in the evaluation of the classifier. However, it is rarely used in optimization procedures
because it is non-differentiable and non-continuous. To overcome this, many learning strategies use
some convex surrogates of the 0−1 loss function (e.g. hinge loss, squared error loss, cross-entropy).

It was proved ([100], [99]) that symmetric loss functions, that are functions for which the sum
of the risks over all categories is equivalent to a constant for each arbitrary example, are robust
to label noise. Examples of symmetric loss functions include the 0 − 1 loss, the Ramp Loss and
(softmax) Mean Absolute Error (MAE). In [348] authors show that even if MAE is noise tolerant
and cathegorical cross entropy (CCE) is not, MAE can perform poorly when used to train DNN in
challenging domains. They also propose a loss function that can be seen as a generalization of MAE
and CCE. Several other loss functions that do not strictly satisfy the symmetry condition have also
been proposed to be robust against label noise when training deep neural networks [83, 188, 313].

[198] presents two methods to modify the surrogate loss in the presence of class-conditional
random label noise. The first method introduces a new loss that is an unbiased estimator for a
given surrogate loss, and the second method introduces a label-dependent loss. The paper provides
generalization bounds for both methods, which depend on the noise rate of the dataset and the
complexity of the hypothesis space.
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Labels aggregation When constructing datasets for supervised learning, data is often not la-
belled by a single annotator, rather multiple imperfect annotators are asked to assign labels to
documents. Typically, separate labels are aggregated into one before learning models are applied
[67, 231]. In our work, we propose to exploit a measure of the agreement between annotators to
explicitly calculate the noise of the dataset. Recently some works revisited the choice of aggregating
labels. In [224] authors explore how to train LETOR models with relevance judgments distribu-
tions instead of single-valued relevance labels. They interpret the output of a LETOR model as
a probability value or distribution and define different KL divergence-based loss functions to train
a model. The loss they proposed can be used to train any ranking model that relies on gradient-
based learning (in particular they focused on transformer-based neural LETOR models and on the
decision tree-based GBM model). However, the authors do not directly estimate the noise rates in
the annotations or study how learning from these noisy labels affects the generalization error of the
models trained with the methods they introduce. In [317] the authors analyze the performance of
both label aggregation and non-aggregation approaches in the context of empirical risk minimiza-
tion for a number of popular loss functions, including those designed specifically for the noisy label
learning problem. They conclude that label separation is preferable to label aggregation when noise
rates are high or the number of labellers/annotations is insufficient. [219] and [297] exploit the
availability of multiple human annotations to construct soft labels and concludes that this increases
performance in terms of generalization to out-of-training-distribution test datasets and robustness
to adversarial attacks. [57] focus on efficiently eliciting soft labels from individual annotators.

Noise rate estimation A number of approaches have been proposed for estimating the noise
transition matrix (i.e. the probabilities that correct labels are changed for incorrect ones) [187, 214,
357]. Usually, these methods use a small number of anchor points (that are samples that belong to
a specific class with probability one) [121]. In particular, [214] proposed a noise estimation method
based on anchor points, with the intent to provide an ‘end-to-end’ noise-estimation-and-learning
method. Due to the lack of anchor points in real data, some works focused on a way to detect anchor
points in noisy data, [325, 333]. In [333] the authors propose to introduce an intermediate class to
avoid directly estimating the noisy class posterior. [342] also propose an iterative noise estimation
heuristic that aims to partly correct the error and pointed out that the methods introduced by
[214] and [333] have an error in computing anchor points, and provide conditions on the noise
under which the methods work or fail. [325] provides a solution that can infer the transition matrix
without anchor points. Indeed they use the instances with the highest class posterior probabilities
for noisy data as anchor points. Our work differs from the mentioned work that uses anchor points
because we do not need to assume the existence of anchor points or to have a validation set to
learn the noise rate and we only use noisy data to train our model, moreover we neither aim to
detect anchor points in the noisy data. Also, most of these works do not study the generalization
properties of the proposed models, while we also address this problem and find bound that depend
on the estimated noise transition matrix.

Another approach is based on the clusterability condition, that is an example belongs to the
same true class of its nearest-neighbors representations. [356] presented a method that relies on
statistics of high-order consensuses among the 2 nearest-neighbors noisy labels.
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3.3.3 Problem formulation

Notation

In this paper we follow the following notation. Matrices and sets are denoted by upper-case and
calligraphic letters, respectively. The space of d-dimensional feature vectors is denoted by X ⊂ Rd.

We denote by C the number of classes and by ej the j-th standard canonical vector in RC , namely
the vector that has 1 in the j-th position and zero in all the other positions. Y = {e1, . . . , eC} ⊂
{0, 1}C is the label set. Feature vectors and labels are denoted by x and y, respectively. D is the
joint distribution of the feature vectors and labels, i.e. (x, y) ∼ D. The sampled dataset of size n is
denoted by D̂ = {(xi, yi)}ni=1. f(x) denotes the output of the classifier f for feature vector x and is
a C dimensional vector. All vectors are column vectors.

We denote by ℓ(t, y) a generic loss function for the classification task that takes as input C
dimensional vectors t and y. In practice t will contain the prediction of the model, and y will be
the ground-truth label as a one-hot encoded vector. Namely ℓ : [0, 1]C × Y → R.

Background

We consider the classification problem within the supervised learning framework, where the ultimate
goal is to minimize the ℓ -risk Rℓ,D(f) = E(x,y)∼D[ℓ(f(x), y)], for some loss function ℓ. We denote
by D the joint distribution of feature vectors x and labels y. In practice, since the distribution is
unknown instead of minimizing Rℓ,D(f) we minimize an empirical risk over some sampled dataset
D̂:

R̂
ℓ,D̂(f)=

1

n

n∑
i=1

ℓ(f(xi), yi)=E
(x,y)∼D̂[ℓ(f(x), y)]. (3.4)

In this work, we assume that the true labels yi are unknown and consider two scenarios, both
of which rely on H annotators.

Scenario I

In this scenario we have access to the H labels provided by the annotators for each sample, where
yi,a refers to the label provided by the a-th annotator for the i-th sample. For a given feature vector
xi the distribution of labels provided by annotator a is given by its noise transition matrix Ta, which
is defined as follows:

(Ta)i,j := P(ya = j|y = i) (3.5)

Assumption 2. We assume that all annotators have the same noise transition matrix (i.e. Ta = T

for all a), that T is symmetric and that its diagonal elements are larger than 0.5 (i.e. P(ya = i|y =

i) > 0.5,∀i ∈ {1, . . . C}).

Note that by definition T is right stochastic and hence also doubly stochastic. It is also strictly
diagonally dominant and therefore non-singular.

Proposition 5.0.1. T is positive definite.
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Proof. Since T is symmetric it follows that all eigenvalues are real. Combining the fact that it is
strictly diagonally dominant with Gershgorin’s theorem we conclude that all eigenvalues lie in the
range (0, 1] and hence T is positive definite.

Assumption 3. We assume that the annotators are conditionally independent on the true label y:

P(ya, yb|y) = P(ya|y)P(yb|y). (3.6)

We now define the IAA matrix Mab between annotators a and b as follows:

(Mab)i,j := P(ya = i, yb = j) (3.7)

Proposition 5.0.2. Leveraging Assumption 3 the agreement matrix Ma,b can be written as follows:

Ma,b = Ta
TDTb (3.8)

D : = diag{ν} (3.9)

ν : = [P(y = 1), · · · ,P(y = C)]T . (3.10)

Due to Proposition 5.0.1 and the fact that D is positive definite, it follows that all matrices Ma,b

are invertible.

Assumption 4. We assume that the class probabilities (and hence D) are known.

Due to Assumption 2, all annotators share the same noise transition matrix T . Therefore Mab

is independent of a and b, and from now on, we remove this dependency in the notation(i.e. we get
M = T TDT ). Furthermore, since T is invertible and D is diagonal and positive definite, it follows
that M is also positive definite.

Note that since we have access to all the labels provided by the H annotators for all the samples,
we can obtain an estimate of M which we denote M̂ .

Assumption 5. We assume that M̂ is a consistent estimator.

For the case of two annotators, one possible consistent estimator M̂a,b that exploits its symmetry
condition is given by:

(M̂a,b)i,j =
n∑

k=1

1(ya,k=i, yb,k=j) + 1(ya,k=j, yb,k=i)

2n
(3.11)

If the annotators have the same transition matrix, M will be the same for all pairs of annotators.
So we can estimate M , in the case of H ≥ 2 by averaging the estimators M̂ab obtain by 3.11 for all
possible pairs of annotators. The estimator in this case can be written as

(M̂)i,j =
1

H(H−1)

H∑
a=1

H∑
b=1
b ̸=a

n∑
h=1

1(ya,h=i, yb,h=j)

n
. (3.12)
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Scenario II

In the second scenario, for each i-th sample we are given a unique label ỹi that is produced by
aggregating the H individual labels according to some known aggregating policy (like majority
vote). In this case, since we do not have access to the individual annotations we assume that M̂ is
provided.

The probability that label yi is corrupted to some other label ỹi is given by the aggregated noise
transition matrix Γ ∈ [0, 1]C×C , where Γij := P(ỹ = j|y = i) is the probability of the true label i
being flipped into a corrupted label j and C is the number of classes. Note that by definition Γ is a
right stochastic matrix that is determined by T , the amount of annotators H and the aggregating
policy. We will study both the case where Γ = T , and the case in which there exists a generic
Lipschitz function ϕ so that Γ−1 = ϕ(T ).

There are different policy choices to construct the dataset that lead to Γ = T . If we decide to
use only one annotator, for instance a, to build the final dataset, namely for each sample ỹi = yia
we have Γ = Ta. Or if annotators are homogeneous, i.e. they have the same noise transition matrix
T , and to build the final dataset we decide to randomly select the label of one of the annotators we
have that Γ = T .

Even restricting ourselves to the case of homogeneous annotators, depending on the rule with
which we build the dataset we can have a more complex relationship between the matrix T and Γ.

We also obtain generalization bounds in the case were an estimate of the agreement matrix M
is not available and we only have access to a scalar representation of the inter-annotator agreement,
in particular we consider the case where the Cohen’s κ is given.

Objective

The objective in both scenarios is to: i) use M̂ to estimate the noise transition matrices (T and Γ);
ii) leverage these estimates to be able to learn from the noisy dataset in a more robust manner; and
iii) obtain generalization bounds for the resulting learning methods.

3.3.4 Main results

We divide the main contributions in three sections. In the first section we show how to estimate
the noise matrices T Next we indicate how to leverage these estimates to learn for the datasets with
noisy labels. Finally we obtain bounds,depending on the Rademacher complexity of the class of
functions, on the generalization gap for a bounded and Lipschitz loss function

Estimation of the noise transition matrices

We start stating the following Lemma that allows us to write the unknown matrix T (and its
inverse), as a function of D and M .
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Lemma 5.1. If D
1
2 commutes with T we have that:

T = UΛ
1
2UT (3.13)

T−1 = UΛ− 1
2UT (3.14)

D− 1
2MD− 1

2 = UΛUT (3.15)

where UΛUT is the eigenvalue decomposition of D− 1
2MD− 1

2 (i.e. U is some orthogonal matrix and
Λ is a diagonal positive definite matrix).

A detailed discussion of when the commutativity assumption is satisfied is included in 3.0.2.
The proof of the previous Lemma can be find in 3.0.3.

Note that we could use Lemma 5.1 to estimate T as follows:

T̂ = Û Λ̂
1
2
M Û

T (3.16)

where Û Λ̂M Û
T is the eigenvalue decomposition of D− 1

2 M̂D− 1
2 . However such estimate can result

in matrices that are not doubly stochastic, or diagonally dominant due to estimation errors. A more
accurate estimate of T could be obtained as T̂ = π(Û Λ̂

1
2
M Û

T ) where π is a projection operator to
the set of doubly stochastic, positive definite matrices with diagonal elements greater than 0.5 and
non-negative entries (which is a convex set). We can obtain such projection by solving the following
optimization problem:

T̂ = π(Û Λ̂
1
2
M Û

T ) = argmin
B
||B − Û Λ̂

1
2
M Û

T ||22 (3.17)

s.t.

B = BT∑
j

Bi,j = 1 ∀i

Bi,j ≥ 0 ∀i, j

Bi,i ≥ 0.5 ∀i

Note that this optimization problem is convex because the constraints are linear and for sym-
metric matrices it holds that ||T̂ − Û Λ̂

1
2
M Û

T ||22 = λmax(T̂ − Û Λ̂
1
2
M Û

T ), which is a convex function of
T̂ .

To summarize, T can be estimated as follows. First, obtain an estimate of M . Then
obtain the eigenvalue decomposition of D− 1

2 M̂D− 1
2 = Û Λ̂ÛT (note that this decomposition always

exists because D− 1
2 M̂D− 1

2 is symmetric). Finally obtain the estimate as: T̂ := π(Û Λ̂
1
2 ÛT ).

Note that once the estimate of T̂ is obtained, Γ̂ can be obtained since we assumed the label
aggregating policy to be known.

Lemma 5.2. Let Ma,b be the agreement matrix for annotators a and b defined in Eq. (3.7) and
M̂a,b be the estimated agreement matrix defined in Eq. (3.11) and let ||.||p be the matrix norm
induced by the p vector norm. For every p ∈ [1,∞] and for every δ > 0, with probability at least
1− δ

||Ma,b − M̂a,b||p ≤
√
C2

2n
ln

2C2

δ
. (3.18)
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where Pn denotes the probability according to which the n training samples are distributed, i.e. we
are assuming that the samples are independently drawn according the probability P.

Proof. The proof can be found in Appendix 3.0.3.

From Lemma 5.2 it follows that if M̂ is estimated as in 3.12, since M̂ is an average of M̂ab it
also holds that for every p ∈ [1,∞] and for every δ > 0, with probability at least 1− δ

||M − M̂ ||p ≤
√
C2

2n
ln

2C2

δ
. (3.19)

Theorem 5.3. Let T be the noise transition matrix defined as in 3.5 and T̂ its estimate (defined
as in 3.17).

With probability at least 1− δ:

||T − T̂ ||2 ≤
C(
√
C + 1)λmax(D)

λmin(T̂ )

√
1

2n
ln

2C2

δ
(3.20a)

||T−1 − T̂−1||2 ≤
9C(
√
C + 1)λmax(D)

λmin(T̂ )2

√
1

2n
ln

2C2

δ
(3.20b)

for n > C2(
√
C+1)2(ln(2C2)2

2λmin(T̂ )2
.

Proof. The proof can be found in 3.0.3.

From the previous theorem we can notice that the error in estimation of T decays as 1√
n

as a
function of n.

Learning from noisy labels

In this section, we show how to leverage the estimates of the error rates to train the models.

Posterior distribution of true labels as soft-labels

It is noteworthy that if we have access to the labels provided by all annotators, the posterior
probabilities of the true labels can be calculated leveraging T and Bayes’ Theorem as follows:

P(yi = c|y1,i, . . . , yH,i)︸ ︷︷ ︸
:=pc,i

∝ νc
H∏

h=1

P(yh,i|yi = c)︸ ︷︷ ︸
=Tc,yh,i

(3.21)

we recall that νc = P(yi = c) and that the conditional probabilities on the r.h.s. are given by T .
In our case, we can use our noisy transition estimates to estimate the posterior probabilities of the
true labels, and afterwards, we can use these posteriors to train the classifier.

Lemma 5.4. For infinite annotators, the posterior distribution over every sample calculated using
the true T converges to the Dirac delta distribution centred on the true label almost surely (i.e.
limH→∞ pc,i

a.s.
= 1(yi = c)).
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Proof. See Appendix 3.0.3.

We can use the posterior distributions as soft-labels defining the following loss for the i-th sample:

ℓ(f(xi), y1,i, . . . , yH,i) = ℓ(f(xi), p̄i) (3.22)

where p̄i = [p1,i, · · · , pC,i]
T . Or we can use the posterior distributions to weight the loss function at

the i-th sample evaluated at each of the possible labels:

ℓ(f(xi), y1,i, . . . , yH,i) =
C∑
c=1

pc,iℓ(f(xi), ec) (3.23)

where ec is the vector in RC with 1 in the c-th position. Notice that for categorical cross-entropy loss,
the two functions defined above correspond, but in general, they define two different loss functions.

Note that these soft labels are different from the ones obtained by averaging the annotator’s
labels as is done in [317]. The method using the posteriors exploits the T matrix and thus more
information than the simple mean of the values of the losses among annotators. We, therefore,
expect this to yield better results than the aggregation using the mean proposed in [317]. These
considerations are supported by the empirical results we obtained on synthetic datasets (see 3.3.6).

Robust loss functions

Another way to leverage the estimate of T is to use robust loss functions, like the forward and
backward loss functions presented in [198, 214]. Let ℓ(t, y) be a generic loss function for the classi-
fication task, with a little abuse of notation we define ℓ(t) = [ℓ(t, e1), . . . , ℓ(t, eC)]

T . The backward
and forward loss functions are defined in 3.24a and 3.24b, respectively.

lb(t, y) = (Γ̂−1ℓ(t))y (3.24a)

lf (t, y) = (ℓ(Γ̂T t))y (3.24b)

To explain the notation in 3.24a we are first doing the dot product between the matrix Γ−1 and
the vector ℓ(t) and then the dot product of the resulting vector with y. These losses leverage
aggregated labels and therefore different aggregating techniques can be used, like majority vote.
Another possible aggregating technique that leverages the posterior probabilities is to assume that
the true label is the one that corresponds to the class that has the highest posterior probability.

Generalizations gap bounds

In this section, we derive generalization gap bounds for the backward loss that depends on the noise
transition matrix estimated in 3.17. Since we are only addressing the problem for the backward
loss, from now on we will denotethe backward loss by l.

Remark 1. If ℓ(t, y) is Lipschitz with constant L, the loss function l(t, y) is Lipschitz with Lipschitz
constant ||Γ−1||2L.

We will prove the following theorem in the case of Γ = T . We emphasize that all the results
apply also when Γ−1 = ϕ(T−1) and that the function that associate Γ−1 and T−1 ,ϕ is Lipschitz
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with respect to the norm p, i.e. there exists a Lipschitz constant Lϕ,p s.t. ||ϕ(T−1) − ϕ(T̂−1)||p ≤
Lϕ,p||T−1 − T̂−1||p. The only difference is that in the bound we will have a factor Lϕ,p.

It has been proved, first in [198] (Lemma 1) for the binary classification task and then in general
for the multi-class case in [214] (Theorem 1) that l(t, y) is an unbiased estimator for ℓ, i.e.

Eỹ|y[l(t, ỹ)] = ℓ(t, y).

Lemma 5.5. Let ℓ be a bounded loss function, so that the image of ℓ is in [0, µ], and s.t. ℓ is
Lipschitz in the first argument with Lipschitz constant L. Let R̂l(f) be the empirical risk for the
loss l and let Rl,D be the risk for a loss l under the distribution D, with l unbiased estimator for
the loss ℓ. We denote by l̂ the backward loss obtained using T̂ .

sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤

[
Lλmin(T̂

2) +
µλmin(D)

λmin(T̂ )2

√
1

n
ln
(4C
δ

)]
Rn(F)g(C).

with g(C) = 6C2(
√
C + 1)

Theorem 5.6. Let l be an unbiased estimator for ℓ defined as in 3.24a, Denoting f̂ = argmin
f

(R̂l̂(f)).

It holds that

Rℓ,D(f̂)−min
f∈F

Rℓ,D(f) ≤

[
2Lλmin(T̂

2) +
µλmin(D)

λmin(T̂ )2

√
1

n
ln
(4C
δ

)]
Rn(F)g(C)

with g(C) = 6C2(
√
C + 1)

The proofs of Lemma 5.5 and 5.6 can be find in 3.0.3. We observe that in all the previous
theorems, the bounds found are always decreasing as one over the square root of the number of
samples. The above theorem gives us a performance bound for the classifier found minimizing the
backward loss l, i.e. the unbiased estimator of the loss ℓ on the noisy dataset. The bounds found
depend on, the Rademacher complexity of the function space and the Lipschitz constant of the loss
function.The importance of these bounds lies in the fact that they allow us to obtain performance
bounds for a model trained with noisy data that depends on values that we can estimate from
the noisy dataset.In particular, there is no dependence on the true noise transition matrix of the
annotators, as in other work [198] which is instead a quantity that cannot be known a priori having
access only to the training data. More in detail the bound depends on the estimate noise transition
matrix, the number of classes in the dataset, the Rademacher complexity and the Lipschitz constant,
which we can take as known a priori and on the distribution of ground truth, which in many cases
it makes sense to assume uniform.

3.3.5 Cohen’s κ

We can also consider the case where an estimate of the IAA matrix M is not available and we only
have access to a scalar representation of the inter-annotator agreement like Cohen’s κ. In this case,
we can only estimate one parameter and hence the matrix T has to be parameterized by a single
parameter that can be estimated.
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One particular example is the case where the noise is uniform among classes. Under these
hypotheses, T is a matrix with all values 1− p on the diagonal and p

C−1 off the diagonal.

Lemma 5.1 (Relationship between p and κ). In the case of classification with uniform noise for
two homogeneous annotators with noise rate p, i.e if a is one annotator, P(ya = i|y = j) = p if
i ̸= j. If the distribution of the ground-truth labels is uniform, it holds that:

p = (1− C−1)(1−
√
κ) (3.25)

with κ the Cohen’s kappa coefficient of the two annotators (see 3.0.1).

Proof. The proof can be found in 3.0.3.

If T is assumed to be of the form described above (with all diagonal elements equal to 1 − p
and all off-diagonal entries equal), it has one eigenvalue equal to 1 and all the rest are equal to
1 − pC(C − 1)−1 (this follows from the fact that in this case T can be written as a weighted
summation of the identity and a rank-one matrix). Hence using 3.25 we get that λmin(T ) =

√
κ.

The bounds from Theorem 5.6 holds replacing λmin(T ) with
√
κ. This allows us to obtain a bound

for the generalization gap of a classifier trained with backward loss even in the case where a single
statistic on the agreement between annotators is provided.

3.3.6 Experimental results

We performed experiments to validate the effectiveness of the method we propose for estimating T̂
by studying the error in the estimation as a function of the number of samples. We also performed
experiments to show how the estimated T can be leveraged to train classifiers in the presence of
noise labels. In particular, we performed experiments for a classification task on a synthetic dataset
and on the CIFAR10-N dataset, comparing the performance of a classifier trained using labels
obtained by some baseline aggregation method with the performance of a classifier trained using
the distribution of posteriors obtained from the estimation of T (3.21) as soft-labels.

Estimation of T With these experiments, we aim to validate the theoretical results of 3.3.4. We
generate various matrices T that is symmetric, stochastic and diagonally dominant, the exact details
about the generation of T can be found in 3.0.4. For each annotator, we produce their prediction
according to the matrix T . We run experiments for the number of annotators H = 10, 7, 3, 2. We
report here the results for H = 10, and 4 classes, all the other plots are in 3.0.4. In C.2 (as well
as the plots in the Appendix) we can be observed that the error in the estimation decreases as 1√

n

with n number of samples, which is in agreement with the bound provided in 5.3. We also observed
that, as expected, the estimation becomes more accurate as the number of annotators increases.

Classification task with synthetic data We consider a classification task with a synthetic
dataset. The features are generated uniformly in [0, 1]2. The assignment of labels (y) is done by
following the label distribution established for each experiment, separating the space with lines par-
allel to the bisector of the first and third quadrants. More information on how the class distributions
are generated can be found in Appendix 3.0.4.
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Figure 3.8: Error in the estimation of T for 4 classes and 10 annotators. The plots are obtained by
averaging different admissible matrices T (see 3.0.2) and averaged over matrices that have the same minimum
eigenvalues rounded to the first decimal.

For each dataset, annotations are generated according to the noise transition matrix T . Various
combinations of T are tested that respect the assumptions of symmetry, stochasticity and diagonally
dominance, as well as being commutative with D (more details can be found in Appendix 3.0.2).
The number of annotators is variable in the set {3, 5}. See Appendix 3.0.4 for implementation
details.

Losses We use categorical cross entropy as loss function. We use both hard labels and soft labels
to train the models.

To train the models with hard labels an aggregation method is needed to obtain one final label
from the annotators. We consider random and majority votes. In random aggregation, the final
label is randomly picked from the labels of the annotators. In the majority vote the final label is the
one with the most amount of votes (the mode), if the mode is not unique, we randomly choose one
of the most voted classes. As soft labels, we consider the relative frequency among annotators and
the posterior distribution according to 3.21. In the case of frequency for each sample we average
the one-hot encoded annotations. Notice that random, majority vote and frequency soft labels do
not leverage the estimate of T while the posterior does. In 3.9 we report the results for 4 classes
with distribution (0.4, 0.1, 0.4, 0.1) and 3 annotators.

We use accuracy with respect to a clean dataset as a performance metric. Our results show
that using the posteriors distribution , as soft labels, allows for better performance than using the
average of the labels assigned by annotators and then using majority vote or random aggregation.

Our method is shown to be more robust to the noise and is also the one with less variance in the
results. This confirms our hypotheses that by leveraging the matrix T̂ better classification accuracy
can be achieved.

Experiments on CIFAR10-N The CIFAR10-N dataset4 contains CIFAR-10 train images with
noisy labels annotated by humans using Amazon Mechanical Turk. Each image is labelled by three

4http://www.noisylabels.com
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Figure 3.9: Comparison between the performance of Cross Entropy Loss using majority vote, random
aggregation method or the posteriors (posterior) and relative frequency (average) as soft labels.On the y-
axis the accuracy on a clean dataset and on the x-axis the values of the minimum on the diagonal of T .
Small values of the minimum diagonal value mean a noisy dataset, while the minimum is 1 in the noise-free
case. The results are obtained for 3 annotators and 4 classes, by averaging on different admissible matrices
T (see 3.0.2) that have the same minimum diagonal values rounded to the first decimal. The error bands
show the maximum and minimum performance for each method.

independent annotators. Table 3.6 shows the accuracy achieved using the different aggregation
methods. For this experiment, we used Resnet34 [147] with and without pre-training. In both
cases, our approach of aggregation achieves the best performance. Note that in this dataset there
are no guarantees that the assumptions we made on T are satisfied, however, the method is still
applicable with positive results.

Aggregation Method Pretrained Not-Pretrained

random 0.718± 0.035 0.579± 0.023

majority vote 0.740± 0.017 0.590± 0.006

average 0.762± 0.012 0.637± 0.016

posteriors (ours) 0.794± 0.005 0.652± 0.014

Table 3.6: Test Accuracy on CIFAR10-N with Resnet34

3.3.7 Concluding remarks

We have addressed the problem of learning from noisy labels in the case where the dataset is labelled
by annotators that occasionally make mistakes. We have introduced a methodology to estimate the
noise transition matrix T of the annotators given the IAA. We further showed different techniques
to leverage this estimate to learn from the noisy dataset in a robust manner. We have shown
theoretically that the methods we introduce are sound. We supported our methodology with some
experiments that confirm our estimation of the noise transition matrix is valid and that this can be
leveraged in the learning process to obtain better performance.
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Limitations The main limitation of our current approach to estimating T is that it only considers
the case where T is symmetric and D assumed to be known and commutes with T . Extending the
results to the case where T might not be symmetric and different among annotators is one possible
future research direction.
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Chapter 4

Auxiliary Frameworks for Trustworthy
AI Systems

While model-centric approaches are essential in developing Trustworthy AI, a comprehensive trust-
worthiness framework transcends the scope of these approaches. The Auxiliary Framework takes a
holistic view of the AI ecosystem, with a particular focus on key areas.

In cases where the primary AI model lacks inherent explainability or is challenging to interpret,
auxiliary explainability frameworks step in. These frameworks enable the generation of counterfac-
tual explanations, offering insights into what might have happened differently if certain inputs had
been changed. Even when the main model’s decision-making process remains complex, counterfac-
tual explanations provide a valuable window into understanding its behavior.

AI systems equipped with retrieval augmentation have the ability to select and fetch relevant
information from a data repository, using this knowledge to inform their predictions. This feature
not only enhances performance but also facilitates the interpretability of decisions. By knowing the
source of the information utilized in a prediction, stakeholders can trust the model more readily, as
the reasoning behind the output becomes more transparent.

In situations where abundant unlabeled data is available, active learning enables the model to
choose which data points to label, and subsequently, learn from. This strategic selection of data not
only accelerates the learning process but also allows the model to focus on data points that are most
informative and challenging. The model actively seeks out knowledge, enhancing its competence
and transparency.

In summary, this chapter underscores that achieving trustworthiness in AI requires more than
just model-centric approaches. By integrating counterfactual explanations, retrieval-augmented
capabilities, and active learning strategies, auxiliary frameworks broaden the horizons of AI trust-
worthiness.
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4.1 Human-in-the-loop Personalized Counter-
factual Recourse

We introduce a new framework for generating counterfactual recourse in machine learning that
embraces a “human-in-the-loop" approach by incorporating user preferences. Traditional counter-
factual tools neglect individual user preferences when adjusting features. To address this, we tackle
recourse generation as a multi-objective optimization problem, integrating conventional constraints
with user preferences. Our framework, termed HIP-CORE, is specifically crafted to estimate these
preferences during the counterfactual generation phase. We also introduce the “Personal Validity"
as a measure of the effectiveness of recourse for individual users. Through extensive theoretical and
empirical analysis, we validate the benefits of our proposal. Overall, this work enhances counter-
factual reasoning and paves the way for more personalized algorithmic recourse.

4.1.1 Introduction

Algorithmic decision-making systems have become ubiquitous, influencing myriad aspects of our
lives, from personalized content recommendations to high stakes decisions in finance, healthcare,
and justice. While these algorithms offer efficiency and scalability, their opaqueness often leads
to concerns regarding fairness, accountability, and transparency. As a response to these concerns,
eXplainable Artificial Intelligence (XAI) aims to clarify the complex workings of machine learn-
ing models, making their decisions transparent, understandable, and interpretable for end-users,
including human-in-the-loop processes [322].

Human-in-the-loop refers to a collaborative approach that integrates human judgment, feed-
back, and decision-making into automated processes, acknowledging that there are instances where
human intervention and expertise are crucial for ensuring quality, fairness, and ethical considera-
tions of AI systems. Incorporating human-in-the-loop processes can enhance the accountability and
the transparency of AI systems, making them more reliable and aligned with human values and
preferences.

As a result of the emergence of international regulation (i.e., GDPR), increasing attention has
been devoted to the right to recourse [304]: i.e., in the event that an individual receives an un-
favorable decision from a model, he/she is also entitled to receive an actionable explanation that
can make him/her proactively adapt his/her features to get a positive outcome from the model
in the future. Central to this XAI endeavor is the idea of counterfactual explanations, a form of
example-based explainability that provides insights by presenting alternative scenarios in which a
given decision would change [307]. When applied for algorithmic recourse [142], rather than merely
explaining why a decision was made, counterfactuals empower users with actionable insights by
suggesting how they might alter inputs to achieve a desired outcome [143, 215].

Considering a real case in which a user applies for a loan and a credit-scoring model gives
as output “denied", but the user is presented with a counterfactual recourse. The counterfactual
recourse must allow the user to change the output to “accepted" (i.e. validity), while not being too
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Figure 4.1: Dummy example of personalized counterfactual recourse: given the original instance x,
classified in the negative class −, a counterfactual recourse algorithm produces x′, that asks the user to
increase the income. The heat-map on the 2D plane represents the user preference over the counterfactual
feature space. Our HIP-CORE framework, which takes the user preference into account, produces x′′, that
is an optimal solution considering the trade-off between counterfactual validity and user-preference.

different from the user’s initial status, e.g. suggesting to change only few features, sparsity, and
asking to change the features values minimally, proximity. Since the solution may not be unique
depending on the definition of the problem and method used for the solution, to avoid eclipsing
some potential explanations and relevant alternatives to the user (personalization) [316], multiple
counterfactuals can be presented to the user (diversity) [196].

In this context, an individual has always been considered as a rational agent, so the objective
assumptions of proximity, sparsity, and other constraints related to the underlying model or generic
assumptions (a.k.a. user-agnostic), do not consider the irrationality and the subjectivity of human
judgment of an algorithm output. Therefore, in this paper we consider the problem of creating
counterfactual recourse that are tailored to the subjective and irrational preferences of the user: a
personalized counterfactual recourse that includes the user in the generation process to estimate
and integrate personal preferences in the solution.

Example. In Figure 4.1, we show a dummy example of the advantage of generating a personalized
counterfactual recourse. The plane represents a 2D projection of the feature space hyper-plane for
two features: Working hours and Income. The user x is classified in the plane as negative − by the
simplified line classifier (dashed line). The counterfactual CF data point x′ is the optimal solution
of a user-agnostic counterfactual recourse problem, where the x′ counterfactual recourse solution
recommends that the user increases the Income feature to get a positive + output. Given the
feasibility of interacting with the user, we consider the user preference a central factor, represented
on the plane as a heat map: the user prefers darker areas. A counterfactual recourse method based
on user preferences would output x′′, that is the optimal solution considering both generating a valid
counterfactual (i.e. positive output) and maximizing user preferences on feature change (increasing
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Working hours instead of Income), thus leading to a solution more easily achievable for the user.

The goal of this paper is to propose such a system, which we dub HIP-CORE (Human-In-the-Loop
Preference COunterfactual REcourse).
Summary of contribution The contributions of this work are summarized as follows:

1. We formalize the problem of Personalized Counterfactual Recourse (Section 4.1.3), as a multi-
objective optimization problem aggregating optimization functions for both user-agnostic met-
rics (i.e., validity, sparsity, proximity) and user-level metrics (i.e., preference).

2. We present our algorithmic framework, HIP-CORE to generate preference-driven counterfactual
while estimating the preferences of the user (Section 4.1.5).

3. Key to the development of HIP-CORE is a mathematical framework to represent and estimate
user preferences over the complex space of counterfactual feature change (Section 4.1.5).

4. We introduce a new metric called Personal Validity, a natural extension of Validity to incor-
porate users’ preferences in the evaluation.

5. We assess our framework empirically on widely used benchmarks, comparing with a user-
agnostic baseline, confirming the importance of including user preferences in the counterfactual
recourse generation process (Section 4.1.6).

4.1.2 Related Work

Counterfactual Recourse. Defining and searching for the target counterfactual, it is not trivial in
the complex feature space of the instances and the black-box classifier [10]. Traditional assumptions
to search a good counterfactual instance include the classification into the opposite class (termed
as Validity) and its similarity to the original instance [307]. The latter constraint is frequently
expressed in terms of sparsity, trying to minimize the number of features changed, and proximity,
which tries to minimize the magnitude of feature change. Other definitions of counterfactual instance
are related to the underlying features model, such as a Structural Causal Model [143], the solution
has to be coherent with respect to the causal constraints between features. If the distribution of
the feature space is known (not data-agnostic), more feasible counterfactuals can be created with
the a priori knowledge, such as through data manifold closeness [302].
Actionable Counterfactual Recourse. Actionability of counterfactual recourse [229] refers to
taking into account only those feature changes that an agent can feasibly implement. The personal-
ization of counterfactual recourse is closely related to the local actionability for a user, that in other
works is pursued with an ex-ante [229] or post-hoc [196] filter on the generated counterfactuals. We
integrate user preferences directly into counterfactual recourse generation, addressing the issue of
actionability through explicit human judgment.
Diverse Counterfactual Recourse. Another strategy is to create a set of counterfactuals that are
different one another, therefore, a set of acceptable solutions is proposed that maximize a diversity
function [161, 196], to allow the user to choose the most appropriate one.
Personalized Counterfactual Recourse. Few recent attempts have tried to incorporate user
preferences in the generation process of counterfactual recourse. The cost of adoption of the coun-
terfactual change is the pivotal point to discriminate among user-centered approach, where the
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preference is incorporated in the cost function, and user-agnostic method, where the cost func-
tion do not take into account the user preferences. Some approaches request users to specify their
preferences over a set of solutions [196, 327], or attempt to quantify the cost of potential changes
in advance [230, 315]. Such methodologies do not incorporate the user within the counterfactual
generation loop, consequently neglecting the exploration of the counterfactual preference space.
Human-in-the-loop Algorithmic Recourse. Research on the human-in-the-loop approach,
combining preference elicitation to create solutions that align with user preferences, is notably lim-
ited. In contrast from previous work, we offer a broader approach that doesn’t rely on Structural
Causal Models [68] or impose constraints on preference modeling [335]. Our method also encom-
passes the estimation of user preferences within the counterfactual recourse generation process.

None of the existing approaches include, in a unique multi-objective problem, different properties
as we propose in this paper: namely, the user-centered (i.e., preference), the general (i.e., validity),
and the data-specific (i.e. proximity, sparsity).

4.1.3 Problem Statement

A user u ∈ U is described as a point xu ∈ X in a feature space X ⊆ Rn, with n ∈ N+. Users are
subjected to evaluation by a black-box classifier1 f : X → [0, 1]. The algorithmic recourse problem
is defined when a user u gets a negative outcome f(xu) < τ and needs to receive a recourse. The
counterfactual formulation of the recourse problem provides the recourse as a new counterfactual
configuration of the user point x′u ∈ X that allows the user to get a positive outcome f(xu) ≥ τ ,
with τ ∈ [0, 1] (generally τ = 0.5). Differentiating x according to the user is important because
two users u, v ∈ U represented by identical vectors xu = xv, might have different preferences (see
following sections). Nevertheless, in the absence of ambiguity, the subscript will be omitted.

Several requirements are typically incorporated into the standard counterfactual recourse prob-
lem: the counterfactual x′ must be close to the original point x (Proximity), x′ must change the
minimum number of features of x (Sparsity), when producing multiple counterfactuals for the same
x, they must be diverse in nature (Diversity). Besides these standard requirements, we introduce
user preference as a key property to generate user-centered counterfactual recourse.

Definition 4.1.3.1. The preference of a user u ∈ U for a counterfactual x′u ∈ X is a probability
Πu(x

′
u) = P (x′u|xu, u) that the user accepts the counterfactual instance x′u ∈ X as a recourse, with

Πu : X → [0, 1].

We are not defining an absolute preference of a user within the space X , but rather how willing
the user is to alter their current state and in what manner.

We are now ready to formalize our problem.

Problem 1 (Personalized Counterfactual Recourse Problem). Given a user u ∈ U , with xu ∈ X ,
that received a negative outcome f(xu) < τ , from a black-box classifier f : X → [0, 1], find a set of

1Our formulation is also applicable when f is a multi-class classifier by employing the one-vs-all technique. In
the opposite classification fashion, 1− f(xu) can simply be used as the classifier
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k ∈ N+ counterfactual data point C = {x(1), . . . , x(k)} such that

max
x(i)

Υ(x(i), xu) proximity
∀i∈{1,...,k}

min
x(i)

Γ(x(i), xu) sparsity
∀i∈{1,...,k}

max
x(i),x(j)

∆(x(i), x(j)) diversity
∀i,j∈{1,...,k},i ̸=j

max
x(i)

Πu(x
(i), xu) preference

∀i∈{1,...,k}

s.t. f(x(i)) ≥ τ validity
∀i∈{1,...,k}

(4.1)

where Υ,Γ,∆,Πu : X 2 → [0, 1].

Since in the recourse setting, the user’s preference is initially unknown, Problem 1 cannot be
solved as is. Instead, the user’s preference needs to be estimated by querying user preferences
(Section 4.1.5).

Counterfactual Metrics - Despite the generality of Problem 1 which could ideally adopt
different definitions, in this paper we adopt definitions which are widely used in the counterfactual
literature:

• Proximity can be defined as the Euclidean norm between a counterfactual x′ and the original
value x:

Υ(x′, x) =
1

||x′ − x||2 + 1

This is inverted to map it to 0, 1 and to align with maximization.

• Sparsity, representing the number of modified features, can be expressed using the zero norm:

Γ(x′, x) = ||x′ − x||0

Since this norm is non-differentiable, it is preferable to use the absolute-value norm ||· ||1 = |· |.

• Diversity, as in [196] we use a distance between the generated counterfactual, that is the
cosine distance ∀x(i), x(j) ∈ C, i ̸= j:

∆(x(i), x(j)) = 1− x(i) · x(j)

||x(i)||2||x(j)||2

4.1.4 Conclusions

In this study, we aim to introduce an additional metric that replaces the traditional concept of
validity, which, as a reminder, is defined as f(x(i)) ≥ τ . With the introduction of user preferences,
it becomes imperative to redefine the notion of a valid counterfactual. After all, if the user does
not accept the counterfactual, can it truly be considered valid? Building upon this premise, we
introduce the following measure.

Definition 4.1.4.1 (Personal Validity). Given a user u ∈ U , with xu ∈ X and the user preference
probability Πu(x

′
u) = P (x′u|xu, u), the Personal Validity for a counterfactual recourse x′u ∈ X on
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the classifier f : X × X → [0, 1] is defined as:

PV (x′u) = Πu(x
′
u) · f(x′u)

This novel metric preserves the properties of both Validity and Preference. The non-binary
nature of the recourse probability captures the nuances between full acceptance and rejection of
a counterfactual, thus providing a more detailed measure of validity compared to the traditional
binary definition.

4.1.5 Framework

In this section, we present our iterative algorithm (Section 4.1.5), dubbed HIP-CORE (Human-In-
the-Loop COunterfactual REcourse), designed to estimate user preference Πu (Section 4.1.5) while
generating candidate counterfactuals C (Section 4.1.5). Our approach is agnostic to both model and
data, making it applicable for generating personalized counterfactual recourse with any black-box
model.

Personalized Counterfactual Generation

Given the complexity of solving a multi-objective problem such as Problem 1, that in some setting
has been show to be NP-hard [143], we transform Problem 1 into a single-objective problem, by
considering a linear combination of the metrics, with the signs appropriately inverted for those
metrics that are to be minimized (i.e., sparsity). Additionally, the constraint of the class flipping
(i.e. score) is directly incorporated, removing the dependence on τ . Consequently, we provide the
following single-objective problem.

Problem 2 (Relaxed Personalized Counterfactual Recourse Problem). Given the same setting as
in Problem 1, the problem can be relaxed as follows:

max
C

1

k

k∑
i=1

[λΥΥ(x(i), x) + λΓ(1− Γ(x(i), x))+

+ λΠΠ(x
(i), x) + λff(x

(i))+

+ λ∆
1

k − i− 1

k∑
j=i+1

∆(x(i), x(j))]

(4.2)

where Υ,Γ,∆,Π : X 2 → [0, 1], λΥ, λΓ, λ∆, λΠ, λf ∈ [0, 1], such that λΥ + λΓ + λ∆ + λΠ + λf = 1

A counterfactual can be generated by solving the presented maximization problem. To effectively
address this, several optimization algorithms can be employed.

The coefficients λ in Equation 4.2 allow for adjusting the importance assigned to individual met-
rics. They generate a challenging trade-off, between the user-agnostic counterfactual properties (i.e.
score, proximity, sparsity, diversity) and the preference that is user-centered. In the experimental
evaluation, we discuss the implication of the trade-off.

Federico Siciliano 100



4.1.5. Framework

Counterfactual Preference Modeling

In this section, we introduce a set of assumptions to facilitate the modeling of preference, along
with the resulting theorems.

Assumption 6. The preference Πu of a user u ∈ U remains stable in the explanation process.

Introducing a temporal component to the problem is not a straightforward task because it would
require considering users u who change both their instances xu and their preferences Πu over time
[87]. Consequently, the same counterfactuals generated may no longer be valid at different times.
For this reason, in the current work, we will not account for the temporal component.

Assumption 7. For all users u ∈ U , there exists a counterfactual explanations x′ ∈ X , such that
the user’s preference Πu (x

′) is equal to 1.

Enforcing the preference to have a value of 1 allows us to evaluate preference as if it were
a normalized metric, thus facilitating a better assessment of the quality of a counterfactual and
determining if the preference optimum (1) has been reached.

Assumption 8. The preference Πu(x
′) is maximal when x′ = x.

This assumption is based on the idea that users tend to maintain their current state, making
the maximum preference corresponding to minimal state change. However, since they aim to flip
their classification, they are willing to yield, take actions that move them away from their current
state, thereby reducing their initial preference. While real-world scenarios may deviate from this
pattern, we attribute such deviations to unaccounted factors in our current modeling, such as the
passage of time; we defer addressing these factors to future work.

Theorem 5.1. Let πu : X → [0, 1] a probability distribution. Then, Πu(x
′) = πu(x′)

maxx′ πu(x′) represents
a model for a preference of a user u ∈ U .

Proof. In order for Πu(x
′) to be a preference, we need to check that it respects the above two

assumptions. To check Assumption 4.1.3.1 it suffices to observe that πu(x′) ∈ [0,maxx′∈X πu(x
′)]

therefore Πu(x
′) ∈ [0, 1]. To check Assumption 7 note that Πu(x

∗) = 1 for the counterfactual x∗

such that πu(x∗) = maxx′ πu(x
′), implying that Πu(x∗) = 1.

The above theorem allows us to perform sampling of counterfactuals, with the probability di-
rectly proportional to the user’s preference value.

Assumption 9. The preference Πu of a user u ∈ U is feature-independent and, in particular, we
assume that Πu(x

′) = P (x′|x, u) = 1
n

∑n
i=1 P (x

′
i|xi, u), where xi is the value of feature i.

We assume independence among individual features to describe the joint preference Πu as a
product of single-feature preferences. However, we opt for summation instead of multiplication to
address the issue of a preference value of 0, i.e., P (x′i|xi, u) = 0. This will avoid Πu(x

′) = 0, making
preference estimation impossible.

Given the independence of preference Πu from features, we can introduce two extreme scenarios,
represented by features for which the user has no desire or ability to change (e.g., place of birth) or
holds no specific preference.
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Figure 4.2: Iteration t of HIP-CORE.

Theorem 5.2. If a user u has no intention to or can’t change a feature i, their preference Πu(x
′
i) can

be modeled using a degenerate probability distribution πu over xi, such that: Πu(x
′
i) =

1 if x′i = xi

0 otherwise

Proof. If a user u is unwilling to change a feature i, it is natural to assume that Πu(x
′
i) = 0

for all x′i ̸= xi. Referring back to Definition 4.1.3.1, we can rewrite Πu(x
′
i) =

πu(x′
i)

maxx′
i
πu(x′

i)
. This

leads to πu(x
′
i) = 0 for all x′i ̸= xi. Since πu is a probability distribution and must satisfy the

constraint
∑

x′
i∈X

πu(x
′
i) = 1, it follows that πu(xi) = 1, and thus Πu(xi) = 1. This also agrees with

Assumption 8, as Πu(x
′
i) indeed attains its maximum value at Πu(xi).

Theorem 5.3. If a user u has no preference for changing feature i, their preference Πu(x
′
i) can be

modeled using a uniform probability distribution πu: Πu(x
′
i) = 1 ∀x′i ∈ Xi.

Proof. If πu is a continuous distribution, πu(x′i) = 1
|Xi| ∀x

′
i ∈ Xi (we are not considering the

case when Xi is an infinite set). Since that same value is also the maximum of πu, we would get
Πu(x

′
i) = 1.

Expanding to non-extreme cases, where preference is essentially estimated by definition, as there
are no unknown parameters to estimate, we can assume that preference Πu is, in fact, dependent on
an unknown set of parameters θ⃗. For instance, in the following section, we can define preferences
for continuous features.

Theorem 5.4. If a feature i is continuous, the preference Πu(x
′
i) can be modeled using a normal

distribution πu with mean θ1 = xi and variance θ2, such that: Πu(x
′
i) = e

− 1
2

(
x′i−xi

θ2

)2

Proof. Referring back to Definition 4.1.3.1, we can write Πu(x
′
i) =

πu(x′
i)

maxx′
i
πu(x′

i)
. If πu follows a

normal distribution, it has a mean θ1 = xi according to Assumption 8. Thus, it can be expressed

as πu(x′i) = 1
θ2

√
2π
e
− 1

2

(
x′i−xi

θ2

)2

. Since the maximum is reached at x′i = xi, i.e., maxx′
i
πu(x

′
i) =

πu(xi) =
1

θ2
√
2π

, we obtain Πu(x
′
i) = e

− 1
2

(
x′i−xi

θ2

)2

.
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Theorem 5.4 proves that it’s not critical to estimate the position of preference, as it is always
centered around the current value xi. What matters, instead, is the variance θ2, which directly
models the user’s willingness to deviate from the current value xi.

Theorem 5.5. If a continuous feature i can only increase2, the preference Πu(x
′
i) can be modeled

using an exponential distribution with rate θ, such that: Πu(x
′
i) =

e−θ(x′
i−xi) if x′i ≥ xi

0 otherwise

Proof. If πu follows an exponential distribution, we can write: πu(x′i) =

θe−θ(x′
i−xi) if x′i ≥ xi

0 otherwise
Noting that the maximum value πu(x′i) = πu(xi) = θ does not violate Assumption 8, we can

write Πu(x
′
i) =

πu(x′
i)

θ , following from Definition 4.1.3.1.

Theorem 5.6. If a feature i is categorical with K categories, the preference Πu(x
′
i) can be modeled

using a categorical distribution πu with parameters θ1, . . . , θK , such that: Πu(x
′
i) = θk

θxi
∀k ∈

{1, . . . ,K}.

Proof. Given that πu(x′i) = θi∀k ∈ {1, . . . ,K}, based on Assumption 8 we derive that maxx′
i
πu(x

′
i) =

θxi . Consequently, we obtain Πu(x
′
i) =

πu(x′
i)

θxi
, which attains value of 1 if x′i = xi, satisfying As-

sumption 7.

Preference Estimation

In the recourse setting, there is no access to Πu, and we cannot invoke it at will. Furthermore, there
could be a maximum number of feasible interaction to ask the user’s preferences. Therefore, it is
fundamental to be able to estimate Πu.

The preference can be estimated by solving the following system of equations:

Definition 4.1.5.1. Given a user u ∈ X , a set of preference values pu and a set of counterfactuals
C, preference can be estimated by solving the following system of equations in θ⃗:

Π̂u(x
(i)|θ⃗) = p(i)u ∀i ∈ {1, . . . , |C|} (4.3)

Solving this problem depends on both the quantity of generated counterfactuals |C| for which
true preferences pu are available and the number of parameters θ⃗ that comprise Πu. These param-
eters are contingent on how the preference is defined, as exemplified in Theorems 5.2, 5.3, 5.4, 5.5
and 5.6. Although we defined Πu as feature-independent, it does not simplify the problem because
each P (x′i|xi, u) can be represented by a nonlinear function. In our experiments, we solved this
problem by minimizing the mean squared difference between Πu(x

(i)|θ⃗) and p(i)u for all i ∈ 1, . . . , |C|
using the Powell Method [222] at each iteration t. We initialized the parameters at each iteration
using the estimates from the previous iteration θt−1.

HIP-CORE Framework

Figure 4.2 provides a graphical schematization of the functioning of HIP-CORE, while its pseudocode
is provided in Algorithm 1. At an high-level, at each iteration t, HIP-CORE refines the estimate of user

2The extension to non-increasing features is trivial.
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preference Π̂t
u with the human-in-the-loop true preference ptu, while generating more personalized

counterfactual recourse Ct.

Algorithm 1 HIP-CORE

Require: a user identifier u ∈ U , a user feature point x ∈ X ; a classifier f ; a number of counter-
factual generated at each iteration k ∈ N+; a maximum number of iterations T ∈ N+.

Ensure: A personalized counterfactual recourse {x′} and an estimation of user preference Π̂u

1: Π̂0
u ← g : X → 1 s.t. g(x) = 1

X | if x ∈ X else 0 Initialize the estimate of user preferences;
2: C0 ← {} Initialize counterfactuals’ set
3: t← 1;
4: while (t ≤ T ) do
5: Ct ← get_c(x, Π̂t−1

u , k, {Cη}∀η<t) Generate counterfactuals;
6: ptu ← {Πu(x

′)}∀x′∈Ct Ask user preference;
7: Π̂t

u ← update_pref(Π̂t−1
u , {pηu}∀η≤t, {Cη}∀η≤t}) Update preference estimation;

8: t← t+ 1

9: C ← get_c(x, Π̂T
u , 1) Generate final counterfactual;

10: return C, Π̂T
u

Initialization - The initialization of Π̂ is defined as uniform over the entire set X . However,
if some data are available, it could be initialized as uniform over all data points in the dataset or
only for those where the counterfactual is valid.

Iteration t - At each iteration t, the algorithm receives as input the original instance x ∈ X ,
the set of counterfactuals generated in the previous iterations {Cη}∀η<t, and the estimated user
preference Π̂t−1.

At each iteration t HIP-CORE performs the following steps:
A A set of k ∈ N+ personalized counterfactual recourse Ct are produced with get_c (check

Section 4.1.5).
B Ct is provided to the user for a human-in-the-loop interaction and he expresses the preferences

over the counterfactuals. At this stage, the true preferences ptu = {Πu(x
′)}∀x′∈Ct of the user are

stored.
C The algorithm updates the estimate of the user preference Π̂t

u given the new true preferences
ptu with update_pref (check section 4.1.5).

D The stopping rule is a straightforward maximum number of iterations T . Alternatively, it
may depend on other factors, such as whether the generated counterfactuals match those from the
previous iteration.

E Once the stopping criteria are met, the final personalized counterfactual C = {x′} is gener-
ated.

Limitations

Assumption 9 of feature-independence is often an oversimplification. If there are dependencies
between features, modeling the joint distribution becomes more complex. For instance, the joint
probability Πu(x) would not simply be the product of each P (x′i). Instead, you’d need to model
the conditional probabilities such as P (x′i|x′j) ∀i, j.

To model these dependencies, one might consider Bayesian Networks, where nodes represent
features and directed edges indicate conditional dependencies, or multivariate distributions, such as
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multivariate Gaussian for multiple continuous features.
Expressing a joint distribution with dependencies explicitly can be quite complex, especially for

high-dimensional feature sets. Often, it requires specific modeling choices based on the nature and
relationships of the features in question.

Nevertheless, HIP-CORE is more general and applies beyond the assumptions we have made in
Sec. 4.1.5.

Table 4.1: Comparison of HIP-CORE and baseline model performance. The direction of arrows indicates
what is considered the best performance: ↑/↓ denotes that higher/lower values are better. Best-performing
values in each category are highlighted in bold.

Dataset Model Validity(↑) Preference(↑) Sparsity(↓) Proximity(↑) Personal Validity(↑)

Adult Income HIP-CORE 0.904 0.386 ± 0.107 0.695 ± 0.136 0.945 ± 0.064 0.317 ± 0.150
Baseline 0.943 0.346 ± 0.108 0.757 ± 0.135 0.975 ± 0.036 0.302 ± 0.099

GiveMeSomeCredit HIP-CORE 0.585 0.053 ± 0.006 0.759 ± 0.143 0.970 ± 0.152 0.030 ± 0.027
Baseline 0.002 0.0 ± 0.001 1.000 ± 0.007 0.970 ± 0.152 0.0 ± 0.0

HELOC HIP-CORE 0.515 0.070 ± 0.043 0.880 ± 0.086 0.702 ± 0.254 0.037 ± 0.050
Baseline 0.342 0.031 ± 0.047 0.925 ± 0.117 0.761 ± 0.261 0.005 ± 0.008

Experimental setting

4.1.6 Experiments

To evaluate HIP-CORE, we define an experimental setting as follows. Each user u ∈ U is described
by a user feature data xu ∈ D and the true user-preference distribution Πu is simulated as described
in Section 4.1.5; more details can be found in the Supplementary Materials. To get the feature data
D, we used existing real-word datasets: Adult [26], GiveMeSomeCredit [58] and HELOC [126]. We
used a black-box classifier f based on xgboost [48] and trained on an appropriate subset of the
complete data.

To solve the personalized counterfactual recourse step of HIP-CORE, as defined in Problem 2, as
well as the preference estimation step, as defined in Problem 4.1.5.1, we have chosen to employ the
Powell’s method [222]. Furthermore, we have run a randomized search for the λ parametrization in
Equation 4.2, to explore the trade-off between the different properties.

The experiment are performed for the tested dataset with two distinct setting: one user-agnostic
(the baseline), i.e. λΠ = 0, and one including the preference, i.e. λΠ > 0, to highlight the importance
of using preference in generating personalized recourse. The results are shown for the combination
of λ parameters that achieves the maximum Personalized Validity.

Results

In Table 4.1, we report the main results of our experiments for the tested dataset for HIP-CORE

with preference and a user-agnostic version. All metrics are improved by the HIP-CORE across all
datasets, with the exception of the proximity, and validity on one dataset.

Sparsity value is decreased, meaning that on average less features are modified by HIP-CORE: we
generated more concise counterfactual recourse using features that the user prefers. Proximity is
slightly decreased compared to the baseline. However, given that proximity is a data-driven measure
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that do not consider the subjective and potentially irrational user preference, we encourage the
community to increase the relevance of the user preference with respect to the proximity.

Finally, the preference is substantially enhanced by HIP-CORE compared with the baseline. This
underscores the importance of including the preference in counterfactual recourse generation process.

Discussion and Ethical Implications

In the new preference-based framework, traditional metrics like Sparsity and Proximity have under-
gone a significant transformation. Previously, they served as automatic methods to gauge a rational
user’s preference. However, when applied in this new setting, they risk providing solutions that may
not align with the user’s actual preferences. So, with the introduction of a more realistic modeling
of user preference and Personal Validity, these metrics become outdated.

When considering the ethical implications of our work, several key aspects deserve attention.

• Privacy and Data Handling: Users have the option to keep their preferences confidential, but
expressing preferences accurately is important for optimal recourse. Failing to provide pref-
erences can affect preference estimation and recourse quality. The algorithm should prioritize
data security, not retaining user data beyond creating recourse, to ensure user privacy.

• The presence of bias or unfairness in the treatment of features within the model hinges on its
design. To enhance fairness, a null preference for specific features can be integrated, addressing
potential bias or unfairness in the approach.

The broader issue of ethics in counterfactuals is multifaceted. However, we maintain that it falls
beyond the scope of our current work. Our primary focus is on the development of a methodology
rather than the creation of an operational product. The assurance of ethical practices ultimately
hinges on the specifics of implementation.

In this study, we introduced HIP-CORE (Human-In-the-Loop Preference COunterfactual RE-
course) to incorporate user preference in the generation of counterfactual recourse through a human-
in-the-loop process. We have formalized the modeling of preference, positioning it as a fundamental
property in the creation of personalized counterfactuals. Acknowledging that user preference is not
known a priori, we have mathematically formalized the estimation of user preferences, establishing
a foundation for new opportunities in this area.

In future works, we plan to further investigate the mathematical implication of the modeling
and the estimation of the user preference in the counterfactual recourse setting. For instance, we
want to provide a more comprehensive analysis of the preference estimate, considering more specific
types of features, and exploring scenarios where the problem might have solutions, and of which type
(unique or multiple solutions might exists). Furthermore, we intend to challenge the assumption
of feature independence, delving into potential feature interactions. We will also explore modeling
preference and, consequently, counterfactual recourse while considering the element of time.

In conclusion, we earnestly believe that this study underscores the paramount importance of
considering users and their preferences when generating recourse. We hope this could serve as an
encouragement for the counterfactual recourse community to adopt our proposed modeling approach
and incorporate user preferences into the counterfactual recourse framework.
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4.2 Deep Active Learning for Misinformation
Detection Using Geometric Deep Learning

Human fact-checkers currently represent a key component of any semi-automatic misinformation
detection pipeline. While current state-of-the-art systems are mostly based on geometric deep-
learning models, these architectures still need human-labeled data to be trained and updated - due
to shifting topic distributions and adversarial attacks. Most research on automatic misinformation
detection, however, neither considers time budget constraints on the number of pieces of news that
can be manually fact-checked, nor tries to reduce the burden of fact-checking on - mostly pro bono
- annotators and journalists. The first contribution of this work is a thorough analysis of active
learning (AL) strategies applied to Graph Neural Networks (GNN) for misinformation detection.
Then, based on this analysis, we propose Deep Error Sampling (DES) - a new deep active learning
architecture that, when coupled with uncertainty sampling, performs equally or better than the
most common AL strategies and the only existing active learning procedure specifically targeting
fake news detection. Overall, our experimental results on two benchmark datasets show that all
AL strategies outperform random sampling, allowing – on average – to achieve a 2% increase in
AUC for the same percentage of third-party fact-checked news and to save up to 25% of labeling
effort for a desired level of classification performance. As for DES, while it does not always clearly
outperform other strategies, it still reduces variance in the performance between rounds, resulting
in a more reliable method. To the best of our knowledge, we are the first to comprehensively study
active learning in the context of misinformation detection and to show its potential to reduce the
burden of third-party fact-checking without compromising classification performance.

4.2.1 Introduction

Since the 2016 United States presidential elections, both the general public and the scientific com-
munity have become increasingly aware of the threat posed to democracies by the spread of online
misinformation. Research on misinformation detection has then experienced significant momentum,
with many websites and independent journalists starting to fact-check online news, and releasing
new datasets on which automatic detection systems can be trained. Almost at the same time,
research on graph neural networks (GNNs) started reaching remarkable results in node and graph
classification [30, 115, 152, 194, 301]. GNNs are made up of several layers of interconnected nodes,
where each node represents a vertex in the graph and each edge represents a connection between
two vertices. The nodes in the GNN are able to communicate with one another through these
edges, allowing the GNN to process and analyze the graph as a whole, rather than just individual
nodes. This makes GNNs well-suited for tasks that require understanding the relationships and
dependencies between different elements in the graph.

GNNs have enabled scientists to better model news diffusion patterns in social networks, thus
moving away from simple text-based fake news detection pipelines. In a nutshell, state-of-the-art
GNN-based misinformation detection methods try to classify graphs that represent URL cascades in
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4.2.1. Introduction

social networks. Despite the promising improvement in the performance of GNN-based architectures
for fake news detection, in order to train these models, researchers still need high-quality third-
party fact-checked news articles that are difficult and expensive to obtain. This problem is further
amplified in large social networks and on the web, where the volume of news produced and spread
daily makes extensive annotation virtually impossible. Indeed, manual data annotation consists
of manually labeling and adding metadata to data, typically for the purpose of training machine
learning models, and is a general pain point for most deep learning research due to its high costs -
both in terms of human labour and time. In our case, while such scarcity of fake news data makes
the problem of efficient annotation particularly urgent, research on misinformation detection under
labeling constraints is still very scarce. In previous work, the need to reduce the human effort
required to manually label news as fake or authentic has been largely ignored.

Active learning [158, 193] is a machine learning approach in which a model is able to interactively
query the user (or some other information source) to obtain the desired output, rather than being
solely trained on a fixed dataset.In active learning, the model initially starts with a small amount
of labeled data and makes predictions on the rest of the data. The model then selects a subset of
the data for which it is least confident in its predictions, and asks the user to label this data. The
labeled data is then used to update the model, and the process is repeated until the model reaches a
satisfactory level of performance. In this work, we then present the first in-depth analysis of active
learning (AL) strategies for fake news detection. We also propose Deep Error Sampling (DES) -
a new deep-learning method that, when used in conjunction with uncertainty sampling, performs
better, on average, than the most common AL strategies, including the only proposed active learning
principle specifically targeting fake news detection. All tested active learning strategies were applied
to three state-of-the-art GNN-based misinformation classifiers. As for the datasets, we performed
experiments on PolitiFact [264] and FbMultiLingMisinfo [22], two high-quality and human-labeled
collections of real and fake news. While the former is smaller and only contains news written
in English, the latter is more recent, larger, and composed of URLs pointing to news in several
languages. Overall, compared to random sampling, the best AL strategies allow to achieve a 2%
increase in AUC for the same percentage of third-party fact-checked news and to save up to 25% of
labeling effort for a desired level of classification performance.

To sum up, our original contributions are the following:

• Ann in-depth analysis of active learning (AL) strategies in the contest of automatic misinfor-
mation detection;

• We showed that, in the context of misinformation detection, active learning represents a viable
and convenient strategy to increase the AUC classification metric by up to 5% and to reduce
the cost of news labeling up to 25% for a given level of desired performance;

• Deep Error Sampling (DES), a new deep active learning architecture that, when coupled with
uncertainty sampling, performs equally or better than the most common AL strategies and
the only proposed active learning procedure specifically targeting fake news detection;

• In particularly, while other active learning strategies allow to reach results similar to DES,
overall Deep Error Sampling shows lower variance bwtween rounds and can be considered a
more rubust method.
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To the best of our knowledge, no previous deep active learning method has leveraged prediction
errors as the main discriminative signal. As shown in the experimental section, its characteris-
tics seem to match well with both uncertainty and diversity sampling, paving the way for new
combinations of more robust active learning strategies.

4.2.2 Related Work

In this section, we first review the current state-of-the-art misinformation detection models that
leverage geometric deep learning, we then go through the most common active learning strategies,
with a focus on deep active learning, and finally, we briefly present recent finding on fake news
benchmark datasets to justify our experimental choices.

Misinformation Detection Methods

Misinformation detection is not only challenging, but also necessary. As shown in a seminal work
by Vosoughi et al. [305], in social networks fake news spreads faster and more extensively than high-
quality information. Over the past five years, GNN-based methods have established themselves
as the state-of-the-art approach in the fight against fake news. Unlike their predecessors, which
were mostly content-based, these methods leverage the diffusion patterns of news in social networks
as the main signal. These patterns are not merely features representing the spreading patterns
of the news that are appended to content-based features to train traditional machine learning
classifiers. Instead, the task is now formulated as a node [44, 177, 199, 238, 275, 337] or a graph
classification task [116, 194, 278], using methods such as Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) [173]. State-of-the-art methods use either node or graph
embeddings obtained by training a geometric deep learning architecture on an appropriate graph.
The most commonly used architectures include Graph Convolution Networks (GCN) [74, 177, 194],
Bi-Directional Graph Convolution Networks (BiGCN) [30], Graph Attention Networks [74, 131,
236, 238], and GraphSAGE [74, 116]. Depending on the approach, these representations can be
further combined with text-based features and/or with non-GNN-based embeddings that capture
other aspects of fake news [177].

Convenient APIs offered by Twitter, which can be used for research purposes, have turned this
platform into the de facto standard for testing and validating misinformation detection methods
[177, 194, 278]. Typically, in graph-based representations used for misinformation detection, nodes
correspond to either news articles [44, 199, 238, 263, 275, 341] or to users [44, 116, 177, 194,
199, 263, 275, 337, 338]. In other cases, content creators [44, 199, 238, 263, 338, 341] or article
authors or sources are included as additional nodes [44, 199], and less often, nodes represent topics
[238, 341] or comments [337]. Regarding edges, news articles can be directly connected to their
authors [44, 199, 238, 263, 341], topic(s) [238, 341], or to users who post/share them [199]. Users,
in turn, can be linked through their social graph, e.g., based on following or friendship relationships
[44, 194, 199], re-posting activity [275], replies [278], or (posted) content similarity [275]. Moreover,
users can be connected to their posts [263, 337], to an article through a stance score [44, 199], or
to nodes representing their posted comments [337], which in turn are usually connected to their
corresponding post [337]. As for news-posting URL hostnames/domains, an edge can be added
every time two hostnames/domains link to each other [44, 199].
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Finally, going more in depth into some of the most remarkable contributions, it is worth high-
lighting the following successful choices. Ren et al. [238] propose a novel hierarchical attention
mechanism to perform node representation learning in heterogeneous information networks that
effectively tackles fake news detection. They also use an active learning framework to enhance
learning performance, especially when facing the paucity of labeled data. Yu et al. [337] aggregate
multi-type information in a hierarchical manner and the information can reason over heterogeneous
graph for the facticity of the news. Shu et al. [263] propose a tri-relationship embedding framework
TriFN, which models publisher-news relations and user-news interactions simultaneously for fake
news classification. The system is made up of 5 components, all based on some form of matrix de-
composition and factorization. Finally, for each URL, Monti et al. [194] searched for all the related
cascades and enriched their Twitter-based characterization (users and tweet data) by drawing edges
among users according to Twitter’s social network.

Active Learning

Broadly speaking, AL refers to the iterative selection and labeling of samples to train a supervised
classification model with the goal of reducing the number of labeled data points required to reach
a desired performance. As extensively reviewed in Monarch [193] and Kumar and Gupta [158], the
earliest and still most common AL strategies are variations of uncertainty sampling and diversity
sampling. Uncertainty sampling prioritizes the items that the current model is most uncertain
about, at the risk of selecting multiple similar, redundant samples. Diversity sampling counteracts
this problem by exploiting the fact that data points are usually clustered in feature space, and
prioritizes centroids and out-layers. In practice, a combination of uncertainty and diversity sampling
generally outperforms random sampling, and can be adapted to work in an online setting [178]
and/or with highly unbalanced classes [59, 155].

When complex deep learning architectures are deployed, however, standard AL strategies could
under-perform due to the known problem of overconfidence of deep learning models. Indeed, the
soft-max function is often used in the output layer of a neural network to convert the network’s
output into a probability distribution. It does this by exponentiating the output of each unit in
the output layer, normalizing the resulting values, and then mapping the exponentiated outputs to
a probability distribution. It follows that, when the network has learned to make very confident
predictions (i.e., the output of a unit is much larger than the output of the other units), the soft-
max function will map these outputs to a very high probability. This can happen, for instance,
when training data is very unbalanced or when the model is used on out-of-domain samples. For
this reason, new AL strategies are specifically designed to work in the deep learning context [235].
This branch of research is sometimes referred to as deep active learning. Recently, some works
have also specifically targeted active learning in graphs and graph neural networks. Madhawa and
Murata [181] have studied the application of active learning on attributed graphs. They show that
algorithms designed for other data types do not perform well on graphs. In Liu et al. [171], after
showing that state-of-the-art AL algorithms do not properly work on attributed graphs, a new
latent space clustering-based active learning method for node classification (LSCALE) is proposed.
Finally, in Madhawa and Murata [181], a novel framework to address the challenge of active learning
in large-scale imbalanced graph data (node classification) is presented.

As for active learning in misinformation detection, the scientific literature still lags behind -
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with very few contributions.Ren et al. [238] use an active learning framework to enhance learning
performance of their novel hierarchical attention mechanism. Bhattacharjee et al. [29], on the other
end, propose a human-machine collaborative learning system to evaluate the veracity of a news
content, with a limited amount of annotated data samples. In this work, we directly compare our
Deep Error Sampling (DES) strategy against the active learning component of Ren et al. [238] -
named here Deep Unseen Sampling (DUS). As for [29], we decided not to include this method in
our analysis for two reasons: 1. the active learning component of the pipeline is very similar to Ren
et al. [238], and 2. the whole workflow was optimized for a lexical-based fake news detector.

Fake News Datasets

The robustness of misinformation detection research depends on the quality of the data used to
conduct experiments, but we find that fake news benchmark datasets are often small and contain
biases that affect the results (few thousand not-randomly-sampled fact-checked URLs). A relatively
large dataset coming from the fact-checking website gossipcop.com, and a smaller one sampled from
politifact.com - both released as part of FakeNewsNet [264] - constitute two of the most commonly
used benchmark datasets [265, 266]. While GossipCop still represents the largest fake news detection
benchmark dataset, its real discriminative power has been recently put into question [22]. Indeed,
GossipCop has proven to be exceptionally easy to classify and thus of limited utility to assess the
discriminatory power of misinformation detection methods. For this reason, we decided not to
include it in our experiments. Other common sources of annotated URLs or posts include BuzzFeed
[355], Twitter [330] and Weibo [160, 173].

These datasets for benchmarking fake news detection have reliable labels, but tend to include
news in a single language, and to be created following unknown selection criteria – see, e.g., a recent
in-depth review of these datasets [77]. Moreover, they are usually quite easy to classify. Larger
datasets, such as NELA, can be created by sampling news from notoriously reliable and unreliable
sources using distant supervision [108, 202]. However, they are also noisy and biased since news
articles are labeled as true or false according to their source, and are not individually fact-checked.
Recently, a new multilingual benchmark dataset for misinformation detection was published [22].
This dataset comes from the recently published Facebook Privacy-Protected Full URLs Data Set
[189], which comprises all 36 million URLs publicly shared on Facebook at least 100 times between
January 2017 and July 2019, and includes fact-checking labels for 7334 of these URLs.

4.2.3 Problem Statement

We consider a collection U of unlabeled news items (news articles/URLs) that we want to categorize
as real news or fake with the highest possible accuracy. Since human labeling is both expensive and
time-consuming, we assume that we are allowed to annotate only b news pieces. In other words,
only the subset B ⊂ U , with |B| = b, will be sent to annotators. The quantity b represents a budget
of possible annotations. We can also define b as a fraction of the size of U . Furthermore, we assume
that each annotation has a unit cost. Using this labeled news, we train an automatic misinformation
detection system, which we will leverage, in turn, to annotate the remaining unlabeled news U \B.
The budget b cannot be too low because it would not allow training a good classifier, but it cannot
be too large because, in most practical cases, it would be unfeasible to send each news item for
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Figure 4.3: Pipeline for "shallow" Active Learning strategies. First the GNN model is trained on the
training set of labeled URLs (xtrainL , ytrainL ), using the validation set of labeled URLs (xvalL , yvalL ) to stop the
training. The model is then used to predict the label (ŷU ) for the unlabeled set of URLs (xU ). This set is
finally passed to the Active Learning Strategy to select the set of samples to be removed from it and added
to the training set. While in a real case scenario there would not be any test set, since in our experiments we
have the labels for all URLs, at every iteration we use xtestL , ytestL to measure the quality of the AL strategies
- in a sort of ex-post analysis.
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Figure 4.4: Pipeline for Deep Active Learning strategies. First the GNN model is trained on the training
set of labeled URLs (xtrainL , ytrainL ), using the validation set of labeled URLs (xvalL , yvalL ) to stop the training.
The labeled test set (xtestL , ytestL ) is then used to evaluate the model’s performance (omitted for graphical
reasons). From the trained model, embeddings are extracted for the training htrainL and test htestL set. These
embeddings are used, together with a label zL to train the Deep AL model. For our new AL technique called
Deep Error Sampling, zL = 1 for misclassified samples, while zL = 0 for correctly classified samples. At
last, this model predicts the labels ẑU for the unlabeled set of URLs (xU ), which are used to select the set
of samples to be removed from it and added to the training set.

human review. Given the budget b, the question is: how can we efficiently and effectively select
the B items to be fact-checked by professional journalists? This is precisely the question that
active learning (AL) tries to answer in order to maximize the performance of the final model. The
first step of any AL procedure is creating and annotating a validation set to guide the subsequent
optimization steps. Following the literature [193], a fraction ptest of the initial dataset is selected
uniformly at random to be used as the test set, and another percentage pval of the remaining data
is selected uniformly at random to form the validation set. Of course, the validation set must be
human-labeled as well, and the pval(1−ptest)U samples will be subtracted from our labeling budget
B. The AL strategy we use consists of a series of M iterations. At every iteration, new samples are
identified, labeled, and added to the training set. Specifically, at each iteration, first we select k new
URLs to annotate and add to the training set. Then, we train the classifier on all the URLs labeled
so far. The validation set is used to assess the model performance and perform early stopping if
its accuracy exceeds a pre-defined threshold. Iterations are executed until the annotation budget
is exhausted. Most AL strategies require a somewhat reliable model to choose which samples to
annotate - such a model is used by AL to find instances that bring more discriminative power to
the current model. Since at the very beginning of the AL procedure, the training set is empty, and
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thus a classification model cannot be reliably obtained, for the first Mrnd iterations, we randomly
select the k URLs instead of relying on the chosen AL technique.

4.2.4 Active Learning Strategies

In this section, we first present standard and well-established AL strategies that only use the input
and output of a classifier to select the next batch of samples to annotate. Then we introduce
two deep-learning-based AL methods where the AL strategy itself is a deep neural network. As
explained in more detail just below, Deep Unseen Sampling (DUS) is based on a recently proposed
active learning procedure for misinformation detection (Ren et al. [238]), while Deep Error Sampling
(DES) represents a new active learning strategy that we personally designed to overcome some
limitations of current neural approaches to active learning.

Classical Active Learning Strategies

These Active Learning methods use the input and output of the classifier - or even the classifier
itself - to decide which URLs to select. The overall structure of these types of methods is shown in
figure 4.3.

Random sampling

Random sampling is the most intuitive baseline for the task at hand and represents the de-facto
standard in the training of deep learning architectures. At each step, k samples are selected at
random from the pool of unlabeled samples. Given that samples are independently picked, this
method logically corresponds to selecting and labeling all the B URLs at once.

Uncertainty sampling

In uncertainty sampling, we use the most recently trained model to infer the labels of unlabeled
samples. We assume that the last layer of a neural network-based classifier outputs soft-max scores
for every class, and we use them to measure how confident the model is about its predictions.
According to this principle, we will sample the k for which the model is most uncertain about and
we will fact-check them in order to subsequently add them to the next-iteration training dataset.
A known disadvantage of this methodology - when applied to deep learning models - is that usually
deep learning architectures are overconfident of their predictions [235]. That is, they tend to predict
soft-max scores very close to 0% or 100%.

Diversity sampling

Diversity sampling aims at avoiding the selection of very similar samples. The idea is that the model
will not receive much help if it is trained with samples that are similar among each other. It is
indeed much possible that - for a cluster of very similar samples - the model only needs a few of them
to classify the whole cluster correctly. It is then important that the k samples represent different
concepts, so that the model can generalise as much as possible. In practice, diversity sampling first
clusters samples according to an algorithm like K-Means and then selects only a few examples from
each cluster - for instance the centroid, a certain number of outliers and a certain number of random
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samples, such that the total is always equal to k. In our work, we used diversity sampling as an
additional step for filtering the samples selected with the other AL strategies. After identifying 3k

samples with one of active learning method, we applied K-Means on the sample features to form k

clusters and then we selected the most uncertain URL according to the AL strategy metric. Each
sample was represented through its activation scores of the second to last layer of the classification
model.

Deep Active Learning Strategies

Deep active learning refers to AL strategies that are specifically designed to work well with deep
learning models. In this context, we will use deep active learning to group those pipelines where
the AL strategy is itself a deep neural network. The Pipeline for this type of methods is shown in
the figure 4.4. In order to train a deep neural network able to identify worth-annotating URLs, we
first need to define a suitable training set and a learning objective. Our idea is to use the second-
to-last layer activation scores hL of the fake news classifier for both the training and validation sets
as input to this Deep Neural Network. Concerning labels zL, we experimented with two different
DeepAL models. Deep Unseen Sampling (DUS) mimics what was done in the only paper on active
learning for misinformation detection (Ren et al. [238]). While the original contribution embeds
active learning as an additional feature of a more complex adversarial model for learning node classes
on heterogeneous graphs - we decided to test the core idea behind their AL procedure, that is to use
internal activation scores of the misinformation classifier to predict whether a sample was already
labeled and part of the training set. Deep Error Sampling (DES), instead, is our proposed DeepAL
strategy, where we try to predict whether a sample will be correctly classified, thus getting around
the problem of soft-max overconfidence. For both methods, the network used is a fully-connected
deep neural network. The specific parameters can be found in our anonymized Github repository3.
Let’s see the two techniques in more details.

Deep Unseen Sampling

Ren et al. [238] start from the assumption that it is good for the classifier to receive new samples
other than those it has already seen. They therefore set the labels for the already labeled samples
as 0, because the model has already seen them during training, and as 1 for the samples belonging
to the validation set, because the model has not in fact seen them during its training. Since the
training set of the classifier grows in time, at every iteration the number of samples taken from the
validation set is equal to the current size of the training set of the misinformation classifier. Finally,
each of the samples used to train the DeepAL architecture are represented through the second-to-
last activation scores of the current misinformation detection model, i.e. that trained with the URLs
labeled so far. At this point, using these labels as output and the embedding samples as input,
we trained a feed-forward neural network to predict whether a URL has been already seen by the
fake news classifier or not. In the end, the unlabeled data is given as input to the trained DeepAL
architecture and the k samples with the higher prediction, i.e. those which the model predicts are
more likely to be unseen by the classifier, are added to the training set.

3https://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CC
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Our method: Deep Error Sampling

This is the new method we propose in this paper. Always assuming that we want to train a Deep
model that can select the best samples to send to fact-checking, and always constructing the network
input from the samples’ embeddings, we have chosen the labels differently this time. Our conjecture
here is that we might try to predict in advance whether the classifier will mis-classify new samples.
We pass the samples that we already have labelled, either training or validation, to the classifier and
label 0 those that are classified correctly, and label 1 those that are classified incorrectly. On this
set, we train our neural network, and then get the prediction on the unlabelled data. The k samples
that the network thinks are most likely to have label 1, will be the ones where our fact-checking
classifier is most likely to get it wrong, and it is our belief that they will be most useful for further
training.

Mixed Strategies

As in many other areas, often the best result is obtained by aggregating different methodologies.
Also here, as the various AL techniques are capable of capturing different information about the
samples, it may be useful to combine their outputs. Specifically, we used a simple rank aggregation
technique to merge the top-k samples received as output from 2 AL techniques.

4.2.5 Fake News Detection Classifiers

We experimented with three state-of-the-art GNN-based approaches for misinformation detection
that work on news diffusion graphs.

• GCN [152] A simple GCN that uses an efficient layer-wise propagation rule based on a first-
order approximation of spectral convolutions on graphs. It can learn hidden layer representa-
tions that encode both local graph structure and features of nodes.

• GAT [301] The use of multi-head graph attention makes this model computationally highly
efficient, thus allowing it to deal with neighbourhoods of various sizes without depending on
knowing the entire graph structure upfront.

• GraphSAGE [115] This model exploits inductive node embedding by making use of node
features in order to generalise to unseen nodes.

Implementation-wise, we re-implemented in PyTorch Lightning the code, written in PyTorch,
distributed by Dou et al. [74]4. Concerning the hyper-parameters, we used the values from the
original papers as they performed well on both our datasets, as shown in Barnabò et al. [22]. The
whole code of our project can be found on a GitHub repository5.

4.2.6 Datasets

We tested our pipeline on FbMultiLingMisinfo and Politifact, two publicly-available misinforma-
tion detection benchmarks. FbMultiLingMisinfo is a recently published multilingual collection of

4http://github.com/safe-graph/GNN-FakeNews
5https://github.com/GiorgioBarnabo/Active-Learning-for-Misinformation-Detection
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4.2.7. Experiments & Results

Dataset FbMultiLingMisinfo Politifact
Fake News 4,034 157
True News 3,300 157
Total News 7,334 314

Twitter Posts 3,219,383 22,340
Twitter Users 1,240,592 14,873

Table 4.2: Statistics about FbMultiLingMisinfo and PolitiFact

fact-checked news, extracted from the Facebook Privacy-Protected Full URLs Data Set [189], and
including diffusion cascades on Twitter for each news article [22].

This dataset includes any URL publicly shared on Facebook at least 100 times between January
2017 and July 2019.

It is particularly relevant because, to the best of our knowledge, 1. it is the only multilingual
dataset for misinformation detection; 2. it is the second-largest benchmark dataset for misinforma-
tion detection fact-checked at the level of individual news articles (URLs); 3. all included URLs are
highly impactful (shared at least 100 times on Facebook); 4. it was shown to be more complex than
PolitiFact and GossipCop, the two most used benchmark datasets for misinformation detection [22].

We also experimented with PolitiFact, a widely used benchmark for fake news detection collected
from a fact-checking website that focuses on political reporting [264]. Statistics about both datasets
are shown in table 4.2.

The difference in the characteristics of the two datasets (one smaller and in only in English, the
other multilingual) makes it possible to obtain information on the performance of the AL strategies
proposed by us in two different scenarios.

Modeling the Diffusion Cascades of URLs Shared on Twitter

The models we experimented with take as input a graph representing each URL diffusion cascades.
As in Dou et al. [74], given the sequence of tweets and retweets mentioning a URL, we built a graph
as follows: a central node represents the news and there is an additional node for each tweet. All
direct tweets are connected to the central node, while re-tweets are connected to the tweet they
are re-tweeting. Finally, similarly to Dou et al. [74], we obtained the node features by encoding
the user description with the paraphrase-multilingual-mpnet-base-v2 model from the Hugging Face
multilingual sentence embedding model trained as in Reimers and Gurevych [234].

For the central node representing the URL, we used the news title embedding. Our choice of
a multilingual model is due to the multilingual nature of the FbMultiLingMisinfo dataset. For the
PolitiFact datasett, we used the diffusion graphs shared in [74], but we replaced the given node
features with the multilingual sentence embeddings.

4.2.7 Experiments & Results

Experimental setting

We tested all the different AL strategies on GraphSAGE, GAT and GCN - three different state-
of-the-art GNN-based misinformation classifiers [22]. We also tested all possible mixed strategies
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Results on the FbMultiLingMisinfo Dataset
AL strategy Iterations

metric: AUC 20
(3%)

40
(5,5%)

60
(8%)

80
(11%)

100
(13%)

GAT
Random 0.71±0.9 0.76±0.10 0.82±0.7 0.84±0.04 0.85±0.05

Uncertainty 0.73±0.06 0.78±0.08 0.82±0.05 0.85±0.06 0.87±0.06
Uncertainty + Diversity 0.74±0.03 0.80±0.04 0.84±0.06 0.85±0.04 0.87±0.03

DUS 0.72±0.11 0.77±0.09 0.81±0.10 0.84±0.08 0.85±0.09
DUS + Diversity 0.71±0.09 0.76±0.09 0.80±0.08 0.84±0.09 0.85±0.07

DES* 0.73±0.05 0.78±0.06 0.82±0.06 0.85±0.03 0.87±0.02
DES* + Diversity 0.73±0.04 0.80±0.05 0.83±0.04 0.85±0.06 0.86±0.04

DES* + Uncertainty 0.74±0.02 0.80±0.02 0.84±0.03 0.86±0.04 0.87±0.02
GraphSAGE

Random 0.74±0.08 0.82±0.07 0.85±0.10 0.86±0.09 0.87±0.07
Uncertainty 0.75±0.11 0.84±0.07 0.86±0.08 0.88±0.08 0.89±0.09

Uncertainty + Diversity 0.78±0.07 0.83±0.07 0.87±0.07 0.88±0.05 0.89±0.06
DUS 0.75±0.08 0.81±0.09 0.84±0.09 0.86±0.07 0.86±0.06

DUS + Diversity 0.76±0.08 0.81±0.05 0.85±0.05 0.87±0.04 0.87±0.07
DES* 0.77±0.05 0.84±0.07 0.86±0.04 0.88±0.03 0.89±0.04

DES* + Diversity 0.76±0.05 0.84±0.05 0.87±0.04 0.88±0.05 0.89±0.07
DES* + Uncertainty 0.77±0.06 0.84±0.05 0.87±0.03 0.88±0.04 0.89±0.03

GCN
Random 0.74±0.08 0.79±0.06 0.82±0.09 0.83±0.10 0.85±0.06

Uncertainty 0.76±0.07 0.80±0.10 0.83±0.08 0.84±0.09 0.85±0.07
Uncertainty + Diversity 0.75±0.09 0.81±0.11 0.83±0.09 0.84±0.08 0.86±0.09

DUS 0.77±0.06 0.81±0.05 0.82±0.07 0.84±0.08 0.85±0.07
DUS + Diversity 0.76±0.07 0.80±0.06 0.82±0.05 0.84±0.07 0.85±0.06

DES* 0.77±0.07 0.81±0.06 0.82±0.05 0.85±0.06 0.87±0.04
DES* + Diversity 0.77±0.04 0.81±0.05 0.84±0.03 0.86±0.02 0.87±0.02

DES* + Uncertainty 0.75±0.05 0.80±0.04 0.83±0.04 0.85±0.03 0.87±0.01

Table 4.3: Results on FbMultiLingMisinfo. For each AL strategy, we show the AUC at key iterations.
Under the number of iterations - in round brackets - we placed the percentage of the dataset that has been
selected and used as training. In addition to that, we must also factor in the 10% validation set that is part
of the final fact-checking budget used. With an asterisk we have marked our novel method. DUS = Deep
Unseen Sampling, DES = Deep Error Sampling. Results are averaged over 5 runs and reported with their
standard deviations.

by combining two sampling strategies as explained in section 4.2.4. The sampling strategies we
show in the following results are only those that performed best. The experiment setting was as
follows. For both Politifact and FbMultiLingMisinfo we set aside a random 10% of the URLs to
use as validation sets. Validation sets are needed to perform early stopping and regularize the
training throughout the active learning cycle. Since we assume the validation sets to be labeled
as well, they must be subtracted to the total fact-checking budget. For FbMultiLingMisinfo, we
set the number of AL iterations to 100, and select 10 URLs per iteration. For Politifact, given its
reduced size, we opted for 20 iterations and 5 URLs per iteration. Regardless of the AL method, for
FbMultiLingMisinfo the first Mrnd = 5 iterations always use random sampling, while for Politifact
Mrnd = 2. All experiments were repeated 5 times and results were averaged. In addition, we applied
a 3-step moving average on all the sequences of results to make the trends clearer.
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Results on the Politifact Dataset
AL strategy Iterations

metric: AUC 8
(12%)

11
(17%)

14
(22%)

17
(27%)

20
(31%)

GAT
Random 0.83±0.12 0.85±0.07 0.89±0.09 0.88±0.08 0.89±0.07

Uncertainty 0.86±0.09 0.86±0.07 0.88±0.09 0.91±0.07 0.91±0.08
Uncertainty + Diversity 0.87±0.08 0.84±0.10 0.90±0.09 0.91±0.07 0.91±0.08

DUS 0.79±0.11 0.86±0.08 0.88±0.010 0.89±0.09 0.90±0.09
DUS + Diversity 0.76±0.10 0.86±0.09 0.88±0.11 0.91±0.08 0.91±0.07

DES* 0.83±0.06 0.89±0.05 0.90±0.07 0.91±0.03 0.92±0.04
DES* + Diversity 0.86±0.09 0.86±0.06 0.90±0.08 0.91±0.5 0.91±0.07

DES* + Uncertainty 0.84±0.05 0.86±0.04 0.88±0.07 0.90±0.05 0.91±0.03
GraphSAGE

Random 0.85±0.8 0.85±0.10 0.90±0.09 0.90±0.09 0.90±0.11
Uncertainty 0.84±0.08 0.89±0.11 0.89±0.10 0.90±0.11 0.91±0.09

Uncertainty + Diversity 0.82±0.09 0.88±0.08 0.90±0.07 0.91±0.10 0.92±0.08
DUS 0.80±0.11 0.86±0.09 0.88±0.07 0.90±0.09 0.90±0.08

DUS + Diversity 0.78±0.7 0.87±0.10 0.88±0.09 0.91±0.08 0.91±0.08
DES* 0.88±0.4 0.89±0.05 0.89±0.06 0.91±0.07 0.91±0.06

DES* + Diversity 0.85±0.08 0.89±0.05 0.90±0.04 0.92±0.04 0.91±0.07
DES* + Uncertainty 0.87±0.06 0.89±0.03 0.90±0.05 0.91±0.04 0.92±0.04

GCN
Random 0.87±0.09 0.90±0.09 0.91±0.10 0.89±0.08 0.89±0.09

Uncertainty 0.90±0.08 0.86±0.10 0.91±0.7 0.93±0.09 0.93±0.08
Uncertainty + Diversity 0.85±0.09 0.87±0.07 0.91±0.9 0.92±0.07 0.92±0.08

DUS 0.87±0.10 0.90±0.07 0.91±0.11 0.93±0.09 0.93±0.08
DUS + Diversity 0.86±0.07 0.90±0.07 0.90±0.08 0.93±0.09 0.93±0.10

DES* 0.87±0.10 0.87±0.09 0.92±0.07 0.93±0.07 0.93±0.07
DES* + Diversity 0.88±0.08 0.87±0.05 0.89±0.06 0.93±0.05 0.94±0.06

DES* + Uncertainty 0.88±0.06 0.89±0.05 0.91±0.05 0.93±0.04 0.92±0.04

Table 4.4: Results on PolitiFact. For each AL strategy, we show the AUC at key iterations. Under the
number of iterations - in round brackets - we placed the percentage of the dataset that has been selected
and used as training. In addition to that, we must also factor in the 10% validation set that is part of the
final fact-checking budget used. With an asterisk we have marked our novel method. DUS = Deep Unseen
Sampling, DES = Deep Error Sampling. Results are averaged over 5 runs and reported with their standard
deviations.

Key findings

First and foremost, our analysis shows that active learning is a more efficient method for training
GNN-based misinformation detection models. Indeed, as shown in tables 4.5 and 4.6 - results from
experiments on both FbMultiLingMisinfo and PolitiFact indicate that all tested active learning
strategies, except for Deep Unseen Sampling, outperform random sampling, allowing to reach a cer-
tain level of classification performance (AUC) with much less labeled data. For FbMultiLingMisinfo
specifically, Deep Error Sampling+Uncertainty Sampling yields the best results on GAT and Graph-
SAGE, while for GCN Deep Error Sampling+Diversity Sampling works better. In all three cases,
for lower value of AUC, Uncertainty Sampling and Deep Error Sampling seem to outperform other
methods. This is due to the fact that the active learning process is at the very beginning and the
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FbMultiLingMisinfo.
Numbers of iterations required
to reach a desired level of AUC

AL strategy Expected average AUC
metric: #iterations

(lower is better) 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89

GAT
Random 33 37 46 51 57 69 100 - -

Uncertainty 20 27 36 44 54 66 80 100 -
Uncertainty + Diversity 17 25 34 38 44 57 78 96 -

DUS 24 35 40 53 59 76 94 - -
DUS + Diversity 30 37 44 57 65 77 97 - -

DES* 19 26 35 43 47 67 79 95 -
DES* + Diversity 18 26 32 37 44 58 79 - -

DES* + Uncertainty 18 22 30 36 43 54 72 90 -
GraphSAGE

Random 18 19 33 35 37 51 60 97 -
Uncertainty 17 20 30 33 37 39 53 69 93

Uncertainty + Diversity 9 14 18 35 38 40 52 59 90
DUS 16 20 36 38 40 57 68 - -

DUS + Diversity 14 18 35 38 39 54 59 80 -
DES* 13 15 20 29 34 37 50 64 92

DES* + Diversity 15 17 23 26 33 37 46 57 90
DES* + Uncertainty 11 15 18 24 32 36 44 54 88

GCN
Random 18 32 37 40 56 77 96 - -

Uncertainty 15 18 23 36 49 59 97 - -
Uncertainty + Diversity 16 20 26 32 38 58 92 - -

DUS 11 15 20 33 40 83 93 - -
DUS + Diversity 14 16 24 35 50 71 93 - -

DES* 13 16 18 34 37 62 80 96 -
DES* + Diversity 13 15 19 30 35 53 72 88 -

DES* + Uncertainty 14 20 27 37 47 59 79 91 -

Table 4.5: Results on FbMultiLingMisinfo. For each AL strategy, we show how many iterations are needed
to reach a desired level of expected/average AUC.

Deep Error Sampling architecture needs more data to be trained. Overall, the decrease in number
of iterations required to reach a desired level of AUC is significant, with up to 50% less annotated
URLs. As for PolitiFact, results reported in table 4.4 suggest similar trends, but it is harder to draw
definitive conclusions given the small size of this benchmark dataset and the larger overlap among
different active learning procedures. For both benchmark datasets, however, experiments highlight
how active learning strategies could make the process of training GNN-based misinformation de-
tection methods not only faster, but also lighter for annotators. Findings on FbMultiLingMisinfo
are further confirmed when looking at figures 4.5, 4.6 and 4.7 - which show F1 Macro trends as
the number of annotation rounds increases. For instance, the dotted line on figure 4.5 shows that
Uncertainty Sampling + Diversity Sampling, Deep Error Sampling + Diversity Sampling, and Deep
Error Sampling + Uncertainty Sampling reach an F1 Macro of 0.72 in just over 40 iterations, while
the same result takes almost 100 iterations with Random Sampling or Deep Unseen Sampling +
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PolitiFact.
Numbers of iterations required
to reach a desired level of AUC

AL strategy Expected average AUC
metric: #iterations

(lower is better) 0.83 0.86 0.88 0.90 0.92 0.94

GAT
Random 8 13 17 - - -

Uncertainty 6 8 11 16 - -
Uncertainty + Diversity 4 7 10 11 - -

DUS 9 10 11 20 - -
DUS + Diversity 10 12 14 16 - -

DES* 8 9 10 11 20 -
DES* + Diversity 6 8 9 11 - -

DES* + Uncertainty 5 9 11 17 - -
GraphSAGE

Random 6 7 10 11 - -
Uncertainty 7 8 10 17 - -

Uncertainty + Diversity 8 9 10 13 20 -
DUS 9 10 12 17 - -

DUS + Diversity 9 11 13 16 - -
DES* 5 7 8 16 - -

DES* + Diversity 7 9 10 13 17 -
DES* + Uncertainty 4 7 9 11 20 -

GCN
Random 5 7 10 13 - -

Uncertainty 3 7 9 12 15 -
Uncertainty + Diversity 5 8 11 14 17 -

DUS 4 5 9 13 15 -
DUS + Diversity 6 8 10 11 14 -

DES* 5 7 9 13 14 -
DES* + Diversity 4 6 8 10 13 18

DES* + Uncertainty 4 5 8 12 14 -

Table 4.6: Results on PolitiFact. For each AL strategy, we show how many iterations are needed to reach
a desired level of expected/average AUC.

Diversity Sampling. On average, when we use GAT to detect fake news in FbMultiLingMisinfo,
choosing Uncertainty Sampling + Diversity Sampling, Deep Error Sampling + Diversity Sampling,
or Deep Error Sampling + Uncertainty Sampling reduces the number of iterations needed to reach a
desired level of F1 Macro by 25 to 40. A similar pattern can be seen in figures 4.7 and 4.6, although
the average gap is narrower for GCN.

If we now change the point of observation and look at the performance of different methods given
the number of iterations, differences might seem less remarkable. Tables 4.3 and 4.4 still show that
all tested AL strategies except Deep Unseen Sampling outperform random sampling - sometimes to
a significant extent. On average, however, the AUC is only 2% higher with little difference among
Uncertainty Sampling + Diversity Sampling, Deep Error Sampling + Diversity Sampling, and Deep
Error Sampling + Uncertainty Sampling. While 2% might seem low, it is worth mentioning that
AUC is a demanding metric, and that - in a large news ecosystem like the web or a social network
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Figure 4.5: F1 Macro at each iteration for 5 AL strategies using GAT on FbMultiLingMisinfo. Deep
Unseen + Diversity, Deep Error + Uncertainty and Uncertainty + Diversity all perform similarly and better
than both Random and Deep Unseen + Diversity.
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Figure 4.6: F1 Macro at each iteration for 5 AL strategies using GCN on FbMultiLingMisinfo. Deep Error
+ Diversity and Deep Error + Uncertainty outperform all the other methods.

- even small increases might lead to substantial improvements in the information quality inside the
system. Let’s now review the results more in depth, and for the two datasets separately.

On FbMultiLingMisinfo, for GAT, Uncertainty + Diversity and Deep Error Sampling + Uncer-
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Figure 4.7: F1 Macro at each iteration for 5 AL strategies using GraphSAGE on FbMultiLingMisinfo.
Deep Unseen + Diversity, Deep Error + Uncertainty and Uncertainty + Diversity all perform similarly and
better than both Random and Deep Unseen + Diversity.

tainty performed equally good or better than any other sampling strategy, while for GraphSAGE
also Deep Error Sampling + Diversity reached top performance. In general, regardless of the GNN
used, random and Deep Unseen Sampling were always the two methods delivering the worst results
- as well exemplified in figures 4.5,4.6 and 4.7. Finally, when using GCN, Deep Error Sampling +
Diversity showed the best performance overall for AUC; its performance in terms of F1 Macro are
more clearly highlighted in figure 4.6 - with Deep Error Sampling + Uncertainty and Uncertainty
+ Diversity as second and third best performing methods respectively. On Politifact, results are
more nuanced. Especially when using GCN as the base fake news classifier, no AL method clearly
outperforms all the others. When using graphSAGE, Deep Error Sampling and Deep Error Sam-
pling + Uncertainty start emerging as the top performing methods - in the first and second half
of the process respectively. Finally it is worth noting that, when using GAT and starting from the
11th iteration, the Deep Error Sampling always reaches the best performance in terms of AUC. The
most likely reason why no active learning strategy seems to prevail is that Politifact is too small
and homogeneous to really make AL necessary. Overall, while in many cases other active learning
strategies perform as well as our proposed Deep Error Sampling, for both FbMultiLingMisinfo and
PolitiFact DES produces more stable outcomes - as measure by the lower variance in the results.
In addition, when Deep Error Sampling is coupled with either Diversity or Uncertainty Sampling -
result variance between rounds seems to further decrease. Our method thus adds to those already
available with its own uniqueness and opens the way for new combinations of more robust active
learning strategies.

To conclude, the most remarkable result of our enquiry on active learning for misinformation
detection is what we show in figures 4.5, 4.6 and 4.7. The three best AL strategy require only between
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45 and 65 iterations to reach the same F1 Macro that random sampling reaches at iteration 100.
More generally, given a certain F1 Macro score on FbMultiLingMisinfo, the three plots also indicate
the number of iterations needed to reach that level of performance with the three best and the two
worst AL strategies for GAT, GCN and GraphSAGE respectively. In the worst cases, random and
Deep Unseen Sampling require up to 50% more iterations than Deep Error Sampling + Uncertainty,
Deep Error Sampling + Diversity and Uncertainty + Diversity to reach the same F1 Macro score -
and the gap seems to increase as the performance of the model increases. These promising results
pave the way for a great reduction in time and money spent for annotating online news - thus
making the training of GNN-based fake news detectors more affordable.

4.2.8 Conclusion & Future Work

In this work we presented an an in-depth analysis of active learning strategies in the contest of
automatic misinformation detection, we proposed a new deep active learning architecture that, when
coupled with uncertainty sampling, performs equally or better than the most common AL strategies
and the only proposed active learning procedure specifically targeting fake news detection. A key
finding is that, in the context GNN-based models for misinformation detection, compared to random
sampling AL allows – on average – to achieve a 2% increase in AUC for the same percentage of third-
party fact-checked news and to save up to 25% of labeling effort for a desired level of classification
performance. While this direction seems promising, more ablation studies are needed to find the
optimal number of URLs that should be labeled at every AL iteration. Experiments on much larger
datasets would also help gauging the feasibility of our proposed method in a real world scenario.
More in general, while hard to do, it would also make sense to jointly optimize the hyper-parameters
of both the misinformation classifier and of the Deep AL architecture. Finally, the Deep AL model
itself could be made much more complex, possibly leading to much greater improvements.

4.2.9 Ethical Considerations

We acknowledge that automatic misinformation detection poses well-documented risks, including
the marginalization of minority discourse through disparate false positive rates. At the same time, it
also contributes to fighting misinformation campaigns that usually target marginalized groups, such
as immigrants. The ethical considerations in this case affect all automated misinformation finding
tools, and are not specific to our work, which uses well-established practices. The main subject
of the work is in fact our Active Learning algorithm, the main purpose of which is to improve the
performance of Misinformation Detection models. It is the use of the latter that can lead to ethical
concerns and not our algorithm.
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4.3 RRAML: Reinforced Retrieval Augmented
Machine Learning

The emergence of large language models (LLMs) has revolutionized machine learning and related
fields, showcasing remarkable abilities in comprehending, generating, and manipulating human lan-
guage. However, their conventional usage through API-based text prompt submissions imposes
certain limitations in terms of context constraints and external source availability. LLMs suffer
from the problem of hallucinating text, and in the last year, several approaches have been devised
to overcome this issue: adding an external Knowledge Base or an external memory consisting of
embeddings stored and retrieved by vector databases. In all the current approaches, though, the
main issues are: (i) they need to access an embedding model and then adapt it to the task they
have to solve; (ii) in case they have to optimize the embedding model, they need to have access to
the parameters of the LLM, which in many cases are “black boxes”. To address these challenges, we
propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML).
RRAML integrates the reasoning capabilities of LLMs with supporting information retrieved by
a purpose-built retriever from a vast user-provided database. By leveraging recent advancements
in reinforcement learning, our method effectively addresses several critical challenges. Firstly, it
circumvents the need for accessing LLM gradients. Secondly, our method alleviates the burden of
retraining LLMs for specific tasks, as it is often impractical or impossible due to restricted access to
the model and the computational intensity involved. Additionally, we seamlessly link the retriever’s
task with the reasoner, mitigating hallucinations and reducing irrelevant and potentially damaging
retrieved documents. We believe that the research agenda outlined in this paper has the potential
to profoundly impact the field of AI, democratizing access to and utilization of LLMs for a wide
range of entities.

4.3.1 Introduction

The advent of Large Language Models (LLMs) has brought about a paradigm shift in machine
learning and its related disciplines. LLMs [15, 37, 210, 248, 290] have exhibited unprecedented
capabilities in understanding, generating, and manipulating the human language. Famously, Chat-
GPT [210] has entered the public space by reaching one million users in a matter of days. The way
these models are used is through API that only allows submitting a textual prompt and getting back
from the server the generated text. However, this causes an immediate limitation: all information
must be passed through this context, and we know transformer-based models do not scale nicely.
Even if they did, API costs are charged on the basis of their usage. Therefore, using long contexts
would be expensive. Even if one had the resources to run their own LLM, the costs of training
and of the hardware infrastructure, and the environmental impact should be considered. There is
an impendent need, though, to accommodate the enormous power of those models to specific user
needs by making sure that they could use the reasoning capabilities of LLMs, through in-context
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learning [37] on their data.
A solution is to adopt a retrieval-augmented approach [163, 326]. In this setting, a retriever is used
to filter out relevant information to be passed as context to the reasoner. This generates a new
problem, however, namely that the retriever and the reasoner are not aligned [288, 289, 294]. In
particular, the retriever might not be trained on the task of interest to the user. Moreover, the
retriever might actually provide “dangerous” pieces of information to the reasoner, as proved in
[247], leading to poor results and, more importantly, to hallucinations.

Ideally, one would have to fine-tune these models to account for these issues. Within this
setting, fine-tuning the model for a given task is technically impossible. We asked ourselves: “Is it
still possible to use the API that gatekeeps those powerful LLMs on our data without the need for
fine-tuning? ” We show that this question has a positive answer and in this paper, we propose a novel
framework, Reinforced Retrieval Augmented Machine Learning (RRAML), in which we combine the
reasoning capabilities of large foundational models enhanced by the provision of supporting relevant
information provided by a retriever that searches them in a large database. In this setting, an
efficient retriever model is tasked to search for relevant information in an arbitrarily large database
of data provided by users. Once this set of relevant data has been retrieved, it is forwarded to the
reasoner (a large foundational model such as ChatGPT, for instance) through its API to “reason" on
the input and produce an adequate result. In particular, we plan to overcome current limitations,
namely that the retriever’s task is detached from that of the reasoner, reducing in such a way the
tendency of LLM to hallucinate and diminishing the number of damaging documents (as defined
in [41, 246, 294]) returned by the retriever. The approach we devise in this research work exploits
recent advances in reinforcement learning. Recently, in fact, reinforcement learning techniques like
PPO [254] have been used to improve large foundational models with human feedback where the
loss is non-differentiable. We propose to link the training phase of the retriever to the final task
outcome by the use of a purposefully crafted reward model that depends either on human feedback
or on the specific characteristics of the task data. The RL technique also offers the advantage of
not requiring fine-tuning an LLM as a reasoner, which can be considered a black box in this setting,
and exchanged freely.

Finally, we argue that the research agenda we lay out in this paper has the potential to hugely
impact the field of AI and democratize the access and use of these large foundational models to a
large set of entities.

4.3.2 Methodology

The system takes as input a task description, a query, and a database and gives as output the
response generated by a reasoner. The overall system architecture, shown in Figure 4.8, consists of
three main components: a Generative Language Model, a Retriever, and a Reasoner (typically an
LLM).

More in detail, the Generative Language Model takes the task description and query as input
and generates a prompt. The Retriever takes the query and the database as input and outputs a
support set, which is then concatenated with the query and passed to the Reasoner.
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Figure 4.8: High-level design of the RRAML framework. On the left side, there are the three inputs: Task
Description, user’s query, and a database that represents the external knowledge used to augment/update
the reasoner. Then, we present the overall architecture flow with the Retriever, Generative Language Model,
and Reasoner. Finally, how the reward is computed and propagated in the Generative Language Model and
Retriever.

Data

The data is a critical component of the framework: the task description guides the generation of
an appropriate prompt, the query represents the user request, and the database provides the data
needed by the reasoner to perform the task.

Task Description The task description is a string that defines the nature of the task, possibly
with expected results, that the user wants to perform. For example, if the user wants to generate a
summarization of multiple news articles, a possible task description could be “News Summarization".
If the user wants to perform question answering on a vast document collection, the task description
could be “Question Answering".

Query The query represents the user’s need. The Retriever will operate on the database w.r.t
to the user’s query, and the resulting data is input for the task. For example, if the user wants to
summarize a collection of news articles, the query could be the topic the user is interested in. If the
user wants to answer a specific query, this becomes the actual question.

Database The database is a collection of public or private data (or documents) that can be queried
to provide relevant information to satisfy the user’s information needs. The database represents the
knowledge needed by the Reasoner to perform the task. The data stored in the database will depend
on the specific task and may include text, images, audio, and other data types (as in [294]). For
example, if the user wants to summarize multiple news articles, the database could be an indexed
collection of articles. If the user wants to perform Question Answering, the database may consist of
facts related to a particular topic (as in [288, 289]).
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Models

Generative Language Model The Generative Language Model component of the framework
is responsible for generating textual instructions based on the input Task Description and Query
that maximize the rewards w.r.t Reasoner. Specifically, it receives a string representing the task
to be performed (Task Description) and a query (Query) that represents the user’s request. The
Generative Language Model then generates a textual prompt that is relevant to the query and the
task by performing automatic prompt engineering.

Retriever The Retriever component of the framework is responsible for retrieving relevant data
from the Database based on the user’s query. We refer to the Retriever outputs as support set (as
in [288, 289]). A support set is a subset of the data from the Database that either directly answers
the given query or contributes to the final answer.

Prompt Aggregator This component is responsible for processing the input required by the
Reasoner. In its simplest form, it just needs to concatenate the prompt generated by the Generative
Language Model with the Support Set provided by the Retriever. However, in a more complex
version, it may need to rework the prompt based on the number of support sets received to ensure
that the LLM can provide a coherent response. For example, if the Retriever provides two support
sets, the Prompt Aggregator may need to split the prompt into two parts and concatenate each
part with one of the support sets.

Reasoner The Reasoner is responsible for generating the answer to the user’s query based on the
final prompt generated by the Prompt Aggregator. The Reasoner can be a pre-trained model like
GPT or a custom-trained model specific to the task at hand. The output of the LLM is a textual
response, which can be further parsed to comply with the intended output.

Reinforcement Learning

The Reinforcement Learning (RL) part of the framework is responsible for fine-tuning the Generative
Language Model (GLM) and Retriever based on the computed reward. The RL is a crucial part of
RRAML, it will be used to constantly improve the GLM and Retriever. As mentioned earlier, the
retriever will get a penalty if some of his recommendations will leads the Reasoner to a hallucinate,
for example by adding damaging documents. The RL allows use to integrate and augment the
signals in the training of these models, going beyond the data present in their training set, ensuring
that they are aligned with the environment (i.e., the reasoner and the final task).

Reward The reward function can be defined based on the similarity between the generated output
and the expected output and it can be estimated by training a Reward Model [254].

RL algorithm The specific RL method which can be used is Deep Q-Networks (DQN) [191],
which is a model-free RL algorithm that learns to maximize the cumulative reward over time. DQN
combines Q-Learning, which is a RL algorithm that learns the optimal action-value function, with a
Deep Neural Network to approximate the action-value function. In the proposed framework, DQN
is used to train the Generative Language Model and the Retriever to maximize the reward obtained

Federico Siciliano 127



4.3.3. Use Case Example

from user feedback. The update process is performed by backpropagating the reward signal through
the neural networks using Stochastic Gradient Descent (SGD). The weights of the neural networks
are updated in the direction that maximizes the expected reward, using the Q-Learning update
rule. The update is performed iteratively until convergence, which is achieved when the expected
reward stops improving.

Human-in-the-loop Human preferences can be incorporated into our ML system by allowing
users to provide feedback on the system’s output. This feedback will be used to compute the
reward for the RL algorithm and will help improve the performance of the overall system over time.
We acknowledge that some tasks may not have a clear expected output or may require additional
context that is not available in the input data. In these cases, we will leverage human-in-the-loop
approaches to provide additional context and guidance to the system. For example, crowd-sourcing
platforms or internal subject matter experts can be used to provide feedback on the system’s output
and help train the model on more complex tasks.

4.3.3 Use Case Example

RRAML promises to be effective in many applications. Consider a situation where a company
possesses a private database, which consists of factual information expressed in natural language,
and they need to apply reasoning to this data. The volume of their data may exceed the context
capacity of the LLM, and fine-tuning is not an option, for pricing/environmental impact or because
the LLM is served by other company APIs. To tackle this challenge, RRAML uses its retriever to
get only the relevant facts within the context, enabling the LLM to reason over them.

For instance, suppose a company has an employee list, projects that employees are currently
or were previously assigned to, and performance evaluation grids with text-based feedback from
superiors. The company might want to assign employees to a new project on a specific topic.
To do so, it is necessary to input the information contained in these data to the LLM. However,
due to capacity constraints, the entire data cannot fit within the context. Therefore, the retriever
has to return a subset of this information, perhaps excluding data on projects from the distant
past, employees who are already overburdened with multiple projects, or employees who have never
worked on a project related to the same topic.

4.3.4 Related Work

Recent years have seen the emergence of large language models. Starting from the first Generative
Pre/Training Model, better known as GPT [226], these kinds of large language models have rapidly
improved. Even further, deep learning models have now reached multimodal capabilities beyond
just images, with methods proficient on audio [24, 34, 70], video [167, 180], and 3D [52, 114, 293].
GPT-4 [211] is the most recent iteration, but in the meanwhile, many have rushed to propose their
own version. Google has recently released BARD6, while Meta has proposed their own take on LLM
with LLaMA [290]. The research community has also capitalized its effort by releasing several open

6https://bard.google.com/
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source LLM of different sizes, like Bloom [248], Dolly7, and RWKV [217]. However, all these models
fail to scale to a larger context size, either by excessive computational costs or by “losing it in the
middle", as shown in [172].
To address this context-length limitation, some have tried to incorporate external knowledge into
LLMs [73, 96, 218]. In particular, in “Retrieval-enhanced machine learning" [339], authors have
envisioned a framework in which retrieval systems can enhance the performance of a machine learn-
ing model. More recently, there have been attempts of jointly training retrieval models with LLMs
[163, 347], notably, the line of research on neural databases, in which the authors tried to replace
a traditional database with a neural framework removing the need for a schema [288, 289, 294].
However, all these works assume full access to the reasoner module, which is not the case for most
users in practice.
To overcome this limitation, many have tried to craft systems that are able to deliver an optimized
prompt that is input to the LLM. For instance, the research conducted by [176] demonstrated a
substantial influence of the sequence in which prompts are presented on the ultimate performance
of the task. Meanwhile, a study by Nie et al. [201] highlighted that the performance is susceptible
to the arrangement of the examples in the prompt, prompt templates, and the in-context instances
in the prompt. Lester et al. [162] suggested a method to enhance task performance by adding
adjustable tokens during fine-tuning. LLM-AUGMENTER iteratively revises [218] to improve the
model response.
All the works introduced above do not improve on the retriever, which is assumed fixed. In our
work, we propose to finetune the retriever in conjunction with the reasoner to improve on results.
Since the feedback is non-differentiable we resort to reinforcement learning. In particular, recent
formulation such as Proximal Policy Optimization (PPO) [79] make use of a differentiable neural
reward module to include and account for generally non-differentiable feedback, like in the case of
reinforcement learning with human feedback (RLHF).

4.3.5 Conclusions

In conclusion, RRAML provides a promising framework for building intelligent interfaces to interact
with large language models like GPT. By combining a generative language model with a retriever,
this approach can effectively improve the performance of language models and help them understand
user intents better.

However, this approach also comes with several challenges and uncertainties, such as the need
for a large amount of training data, the potential for bias in the data and models, and the difficulty
of balancing the trade-offs between generative and retrieval-based approaches.

Despite these challenges, RRAML holds great promise for creating more intelligent, natural,
and effective interfaces for interacting with language models. We hope that this paper has provided
a useful overview of this approach and its potential applications, and we look forward to further
research and development in this exciting area.

7https://github.com/databrickslabs/dolly
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Chapter 5

Conclusions

Summary of Key Findings and Contributions

Throughout this research, the pursuit of trustworthy AI has led to significant findings and contri-
butions. We have successfully addressed each of our research objectives:

Objective 1: Develop Explainable AI Methods and Components

We have conceptualized and developed architectural components that make AI systems more ex-
plainable by design. The introduction of innovative techniques and models, such as Newron and
Newron+LEN, has enabled AI decisions to become interpretable and transparent. Furthermore,
our exploration into concept-based explainability has opened new avenues for understanding AI
operations, enhancing transparency, and expanding the range of interpretable concepts within AI
systems.

Objective 2: Establish Trustworthiness Through Robust Loss Functions

Our research has resulted in the design and evaluation of robust loss functions. These functions
serve as the bedrock for enhancing the trustworthiness of AI systems. By effectively mitigating
vulnerabilities stemming from noisy labels and missing data, we bolster the reliability and fairness
of AI decision-making.

Objective 3: Architect Trustworthy AI Auxiliary Frameworks

We have successfully designed auxiliary architectural frameworks that facilitate a spectrum of critical
functions. They enable algorithmic recourse, empower the detection of misinformation, and enrich
information retrieval through the integration of a neural database. This collective enhancement
serves as a cornerstone, elevating the overall trustworthiness of AI systems, ensuring confidence in
their deployment across diverse applications and domains.

Objective 4: Contribute to Trustworthy AI Research

Our research extends beyond the immediate objectives, offering valuable insights and solutions to
the broader field of trustworthy AI. By conducting comprehensive empirical studies, evaluations, and
experiments, we have not only enriched the understanding of trustworthy AI but have also provided
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a valuable repository of practical guidelines and best practices. These contributions ensure that
the principles of trustworthiness are seamlessly integrated into future AI technologies, fostering
responsible AI development.

Future Research Directions in Trustworthy AI

Looking ahead, there are promising avenues for future research in the realm of trustworthy AI. The
following are key areas where further exploration is warranted:

Advancing Interpretability and Transparency

One of the paramount objectives in Trustworthy AI is to continually enhance the methods and
techniques for making AI systems even more interpretable and transparent to users. This includes
the development of novel explainability tools and strategies that not only shed light on model
decisions but also ensure the comprehensibility of the explanations to a broader audience. Future
research should strive to bridge the gap between complex AI models and end-users, making AI’s
decision-making processes more accessible and comprehensible.

Resilience to Adversarial Threats and Biases

The landscape of AI is filled with adversarial attacks that challenge the trustworthiness of AI
systems. Future research must focus on developing AI systems that can proactively defend against
emerging adversarial threats. This encompasses the creation and implementation of mechanisms
able to detect and mitigate adversarial attacks, ensuring that decision-making remains unaltered.

Deepening Fairness in AI

Fairness in AI is a subject of profound importance. Research in this area should be extended to
ensure equitable decision-making and unbiased outcomes across a wide spectrum of applications.
This includes developing fairness-aware machine learning techniques, investigating the root causes
of bias, and formulating methods to rectify these biases. The future of AI must be one where AI
systems are unwaveringly fair, impartial, and free from discriminatory behavior.

Trustworthiness Across Diverse Domains

The principles of trustworthiness need to be extended beyond the domains explored in this research.
Future research should address the unique challenges and requirements of diverse domains such as
healthcare, finance, and education. Each domain brings its own set of ethical, legal, and practical
considerations, and research should account for these specifics to ensure that Trustworthy AI can
be universally applied.

Closing Remarks

As we conclude our exploration of the architectural components of Trustworthy AI, it is essential to
reflect on its significance and its broader implications for the field of artificial intelligence. Through-
out this thesis, we have introduced innovative architectural elements and methodologies, providing
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valuable insights into the development of AI systems prioritizing trustworthiness, explainability,
and accountability. Collectively, our research has significantly advanced the understanding and
practical implementation of these architectural components, thereby fortifying the trustworthiness
of AI systems across a spectrum of domains. These contributions are valuable in promoting ethical
AI practices, improving user trust, and addressing the multidimensional challenges posed by AI
technologies.

However, it’s crucial to acknowledge that these contributions represent just a step towards
Trustworthy AI. The rapid pace of AI technological evolution, the continuously evolving ethical
landscape, and the dynamic nature of societal values necessitate an ongoing commitment to research,
development, and ethical reflection, ensuring that trustworthiness and societal values remain at the
forefront of AI innovation.

In conclusion, we underscore the imperative of interdisciplinary collaboration, entailing the
active involvement of ethicists, policymakers, social scientists, and affected communities in shaping
the future of AI. As AI researchers and practitioners, it is our responsibility to prioritize ethical AI
practices, transparency, fairness, and accountability in all aspects of AI development.
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Appendix A

Newron- Supplementary Materials

1.0.1 Universality Theorems

This is the appendix to the Universality section in the main article. In this section, we shall prove
the mathematical results concerning the universal approximation properties of our IAN model. In
particular, we restrict ourselves to some specific cases. We consider the cases where the processing
function is the Heaviside function, a continuous sigmoidal function ,or the rescaled product of
hyperbolic tangents.

Heaviside IAN

Theorem 5.1. The finite sums of the form

ψ(x) =
N∑
j=1

αjH(wj

n∑
i=1

H(wij(xi − bij))− bj) (A.1)

with N ∈ N and wij , wj , αj , bij , bj ∈ R are dense in Lp(A,µ) for 1 ≤ p <∞, for any A ∈ B(Rn) (B
denote the Borel σ–algebra) and µ a Radon measure on (A,B(A)).

In other words given, g ∈ Lp(A,µ) and ϵ > 0 there is a sum ψ(x) of the above form for which

||ψ − g||pp =
∫
Rn

|ψ(x)− g(x)|pdµ(x) < ϵ.

To prove that a neural network defined as in equation (A.1) is a universal approximator in Lp,

for 1 ≤ p < ∞ we exploit that step functions are dense in Lp and that our network can generate
step functions.

Proposition 1.0.1.1. Let R be the set of the rectangles in Rn of the form

R =

n∏
k=1

[ak, bk) ak, bk ∈ R, ak < bk

We denote by F the vector space on R generated by 1R, R ∈ R i.e.

F =
{ m∑

i=1

αi1Ri

∣∣∣m ∈ N, αi ∈ R, Ri ∈ R
}

(A.2)

160
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If A ∈ B(Rn), then the set

F|A =
{ m∑

i=1

αi1Ri∩A

∣∣∣m ∈ N, αi ∈ R, Ri ∈ R
}

(A.3)

F|A is dense in Lp(A,µ) for 1 ≤ p <∞, with µ a Radon measure on (A,B(A)).

Proof. See chapter 3, Lp Spaces , in [40].

Lemma 5.2. Given ρ(x) ∈ F , with F defined as in equation (A.2), there exists a finite sum ψ(x)

of the form (A.1) such that ρ(x) = ψ(x) ∀x ∈ Rn.

Proof. To prove that a neural network described as in equation (A.1) can generate step functions
we proceed in two steps. First, we show how we can obtain the indicator functions of orthants
from the first layer of the network. Then we show how, starting from these, we can obtain the step
functions.

An orthant is the analogue in n-dimensional Euclidean space of a quadrant in R2 or an octant
in R3. We denote by translated orthant an orthant with origin in a point different from the origin of
the Euclidean space O. Let A be a point in the n-dimensional Euclidean space, and let us consider
the intersection of n mutually orthogonal half-spaces intersecting in A. By independent selections
of half-space signs with respect to A (i.e. to the right or left of A) 2n orthants are formed.

Now we shall see how to obtain translated orthant with origin in in a point A of coordinates
(a1, a2, ..., an) from the first layer of the network i.e.

∑n
i=1H(wi(xi − bi)).

For this purpose we can take wi = 1 ∀i ∈ {1, ..., n}.
The output of

∑n
i=1H(xi−bi) ∈ {0, ..., n} and depends on how many of the n Heaviside functions

are activated. We obtain the translated orthant with origin in A by choosing bi = ai ∀i ∈ {1, ..., n}.
In fact,

H(xi − ai) =

0 if xi < ai

1 if xi ≥ ai.

The i-th Heaviside is active in the half-space xi ≥ ai delimited by the hyperplane xi = ai that
is orthogonal to the i-th axis. Therefore, the Euclidian space Rn is divided in 2n regions according
to which value the function

∑n
i=1H(xi − ai) takes in each region. See Figure A.1 for an example

in R2.
There is only one region in which the output of the sum is n, which corresponds to the orthant

in which the condition xi ≥ ai ∀i = 1, ..., n holds. We denote it as positive othant (the red colored
orthant in the example shown in Figure A.1).

Going back to equation (A.1), let us now consider the Heaviside function applied after the sum.
As before, we can choose wj = 1. If we take bj > n− 1, the value of the output is 0 for each of the
2n orthants except for the positive orthant. This way, we get the indicator function of the positive
orthant.

The indicator function of a rectangle in R can be obtained as a linear combination of the
indicator function of the positive orthants centered in the vertices of the rectangle. See Figure A.2
for an example of the procedure in R2.
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x

y

O

A

2

1

1

0

2

1

21

Figure A.1: Partition of R2, according to output of the function H(x1 − a1) +H(x2 − a2). A is a point of
coordinates (a1, a2).

In general, the procedure involves considering a linear combination of indicator functions of
positive orthants centered in the vertices of the rectangle in such a way that opposite values are
assigned to the orthants corresponding to adjacent vertices.

For example, suppose we want to obtain the indicator function of the right-closed left-open
square [0, 1)2 in R2 (see the illustration in Figure A.2). Denoting by 1(xP ,yP )⌞ the indicator function
of the positive orthant centered in the point of coordinates (xP , yP ), we can write:

1[0,1)2 = 1(0,0)⌞ − 1(1,0)⌞ − 1(0,1)⌞ + 1(1,1)⌞.

x

y

(0, 0) (1, 0)

(0, 1) (1, 1)

1 1− 1

1− 1 1− 1− 1 + 1

Figure A.2: How to obtain the indicator function on the square [0, 1)2 from the linear combination of four
indicator functions of positive orthants centered in the vertices of [0, 1)2. 1[0,1)2 = 1(0,0)⌞−1(1,0)⌞−1(0,1)⌞+
1(1,1)⌞. The numbers in the orthants shows the sum of the indicator functions that are active in that orthant.
For instance if x = (x1, x2) belongs to the blue part of the plane, i.e. it is true that 0 < x1 < 1 and x2 > 1,
we have that 1(0,0)⌞(x)− 1(1,0)⌞(x)− 1(0,1)⌞(x) + 1(1,1)⌞(x) = 1− 0− 1 + 0 = 1− 1.

Now suppose we want the linear combination of the indicator functions of K rectangles with
coefficents α1, ...αK . With suitably chosen coefficients the indicator function of a rectangle can be
written as

2n∑
l=1

(−1)lH(wjl

n∑
i=1

H(wij(xi − bij))− bjl)
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that replacing H(wjl
∑n

i=1H(wij(xi − bij))− bjl) by Hl, to abbreviate the notation becomes

2n∑
l=1

(−1)lHl.

The linear combination of the indicator functions of K rectangles with coefficents α1, ...αK can
be derived as

K∑
k=1

αk

2n∑
l=1

(−1)lHlk. (A.4)

The summation (A.4) can be written as a single sum, defining a sequence βj = (−1)jαm with m =

⌈ j
2n ⌉ for j = 1, ..., 2nK. Thus (A.4) becomes

N=2nK∑
j=1

βjHj

that is an equation of form (A.1). We have therefore shown that for every step function ρ in F
there are N ∈ N and αj , wij , bij , bj , wj ∈ R such that the sum in equation (A.1) is equal to ρ.

Proof of Theorem 5.1. The theorem follows immediately from Lemma 5.2 and Proposition 1.0.1.1.

Remark 2. In Lemma 5.2 we proved that a network defined as in equation (A.1) can represent
functions belonging to set F defined as in equation (A.2). Note that if the input is a set A we can
obtain functions belonging to set F|A. For instance, suppose x ∈ [0, 1]n, we can obtain indicator
functions of other kinds of sets. If we choose wij = 1 and bij < 0 ∀i, j and if we choose the weights of
the second layer so that they don’t operate any transformation, we can obtain the indicator function
of [0, 1]n. By a suitable choice of parameters, (A.1) may also become the indicator functions of any
hyperplane xi = 0 or xi = 1 for i ∈ {1, .., n}. Furthermore we can obtain any rectangle of dimension
n− 1 that belongs to an hyperplane of the form xi = 1 or xi = 0.

We have proven in Lemma 5.2 that a network formulated as in equation (A.1) can represent
step functions. By this property and by Proposition 1.0.1.2 we shall show that it can approximate
Lebesgue measurable functions on any finite space, for example the unit n-dimensional cube [0, 1]n.

We denote by In the closed n-dimensional cube [0, 1]n. We denote by Mn the set of measurable
functions with respect to Lebesgue measure m, on In, with the metric dm defined as follows. Let
be f, g ∈Mn,

dm(f, g) = inf{ϵ > 0 : m{x : |f(x)− g(x)| > ϵ} < ϵ}

We remark that dm-convergence is equivalent to convergence in measure (see Lemma 2.1 in
[128]).

Theorem 5.3. The finite sums of the form (A.1) with N ∈ N and wij , wj , αj , bij , bj ∈ R are
dm-dense in Mn. Mn is the set of Lebesgue measurable functions on In .

This means that, given g measurable with respect to the Lebesgue measure m on In, and given
an ϵ > 0, there is a sum ψ of the form (A.1) such that dm(ψ, g) < ϵ.

Federico Siciliano 163



1.0.1. Universality Theorems

Proposition 1.0.1.2. Suppose f is measurable on Rn. Then there exists a sequence of step
functions {ρk}∞k=1 that converges pointwise to f(x) for almost every x.

Proof. See Theorem 4.3 p. 32 in [280].

Proof of Theorem 5.3. Given any measurable function, by Proposition 1.0.1.2 there exists a se-
quence of step functions that converge to it pointwise. By Lemma 5.2 we have that equation (A.1)
can generate step functions. Now m(In) = 1 and for a finite measure space pointwise convergence
implies convergence in measure, this concludes the prof.

Remark 3. Notice that for Theorem 5.3 we don’t need the fact that In, is a closed set. The proof only
requires that the domain is a bounded set (so that its Lebesgue measure is finite). The compactness
of In will be necessary for the next theorem.

We notice furthermore that if the function we want to approximate is in Lp we can obtain
the convergence in measure from Theorem 5.1. Indeed from Chebyshev’s inequality it follows that
convergence in Lp implies convergence in measure.

Theorem 5.4. Given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the form (A.1) such that

|ψ(x)− g(x)| < ϵ ∀x ∈ In.

Proof. Let g be a continuous function from In to R, by the compactness of In follows that g is also
uniformly continuous (see Theorem 4.19 p. 91 in [243]). In other words, for any ϵ > 0, there exists
δ > 0 such that for every x, x′ ∈ [0, 1]n such that ||x − x′||∞ < δ it is true that |g(x) − g(x′)| < ϵ.
To prove the statement of Theorem 5.4, let ϵ > 0 be given, and let δ > 0 be chosen according to
the definition of uniform continuity.

As we have already seen in Lemma 5.2 the neural network described in (A.1) can generate step
functions with support on right-open left-closed n-dimensional rectangles and on (n−1)-dimensional
rectangles that belongs to an hyperplane of equation xi = 0 or xi = 1 for some i ∈ {1, ..., n} as seen
in Remark 2. There exists a partition of [0, 1]n, (R1, ..., RN ), consisting of right-open left-closed
n-dimensional rectangles and of (n − 1)-dimensional rectangles that belongs to an hyperplane of
equation xi = 0 or xi = 1 for some i ∈ {1, ..., n}, such that all side lengths are no greater than
δ. An example of a set of rectangles with this property is the set of right-open left-closed cubes of
side length 1

m̃ , m̃ > ⌈1δ ⌉ with the (n− 1)-dimensional rectangles with the same side length which we
need to cover all the boundary of [0, 1]n not covered by the right-open left-closed rectangles.

Suppose that for all j ∈ {1, ..., N} we choose xj ∈ Rj , and we set αj = g(xj). If x ∈ [0, 1]n

there is j so that x ∈ Rj , hence x satisfies ||x− xj ||∞ ≤ δ, and consequentially |g(x)− g(xj)| ≤ ϵ.

Therefore the step function h =
∑N

j=1 αj1Rj satisfies

sup
x∈In
|h(x)− g(x)| =

= sup
j∈{1,...,N}

sup
x∈Rj

|h(x)− g(x)| =

= sup
j∈{1,...,N}

sup
x∈Rj

|αj − g(x)| ≤ ϵ
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Sigmoid IAN

Definition 1.0.1.3. A function σ : R→ [0, 1] is called sigmoidal if

lim
x→−∞

σ(x) = 0, lim
x→+∞

σ(x) = 1

Theorem 5.5. Let σ be a continuous sigmoidal function. Then the finite sums of the form:

ψ(x) =
N∑
j=1

αjσ(wj(
n∑

i=1

σ(wij(xi − bij))− bj)) (A.5)

with wij , αj , bij , bj , wj ∈ R and N ∈ N are dense in C(In).

In other words, given a g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the form (A.5) such
that

|ψ(x)− g(x)| < ϵ ∀x ∈ In.

Proof. Since σ is a continuous function, it follows that the set U of functions of the form (A.5) with
αj , wij , bij , wj , bj ∈ R and N ∈ N is a linear subspace of C(In). We claim that the closure of U is
all of C(In).

Assume that U is not dense in C(In), let S be the closure of U , S ̸= C(In). By the Hahn-Banach
theorem (see p. 104 of [244] ) there is a bounded linear functional on C(In), call it L, with the
property that L ̸= 0 but L(S) = L(U) = 0.

By the Riesz Representation Theorem (see p. 40 of [244]), the bounded linear functional L, is
of the form

L(f) =

∫
In

f(x)dµ

for some signed regular Borel measures µ such that µ(K) < ∞ for every compact set K ⊂ In

(i.e. µ is a Radon measure). Hence, ∫
In

h(x)dµ = 0,∀h ∈ U. (A.6)

We shall prove that (A.6) implies µ = 0, which contradicts the hypothesis L ̸= 0.
Using the definition of U , equation (A.6) can also be written as

N∑
j=1

αj

∫
In

σ(wj(
n∑

i=1

σ(wij(xi − bij))− bj))dµ = 0,

for any choice of αj , wij , wj , bij , bj ∈ R and N ∈ N.
Note that for any w, x, b ∈ R we have that the continuous functions

σλ(w(x− b)) = σ(λw(x− b) + ϕ)

converge pointwise to the unit step function as λ goes to infinity, i.e.

lim
λ→∞

σλ(w(x− b)) = γ(w(x− b))
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with

γ(y) =


1 if y > 0

σ(ϕ) if y = 0

0 if y < 0

By hypothesis is true that for all λ1, λ2 in R∫
In

σλ2(wj(
n∑

i=1

σλ1(wij(xi − bij))− bj))dµ = 0.

It follows that for all λ2:

lim
λ1→∞

∫
In

σλ2(wj(

n∑
i=1

σλ1(wij(xi − bij))− bj))dµ = 0.

Now applying the Dominated Convergence Theorem (see Theorem 11.32 p 321 of [243]) and the
fact that σ is continuous:

∫
In

lim
λ1→∞

σλ2(wj(
n∑

i=1

σλ1(wij(xi − bij))− bj))dµ =

∫
In

σλ2(wj(
n∑

i=1

γ(wij(xi − bij))− bj))dµ.

Again, by Dominated Convergence Theorem we have:

lim
λ2→∞

∫
In

σλ2(wj(

n∑
i=1

γ(wij(xi − bij))− bj))dµ =

∫
In

γ(wj(

n∑
i=1

γ(wij(xi − bij))− bj)))dµ.

Hence we have obtained that ∀αj , wij , bij , wj , bj ∈ R and ∀N ∈ N

∫
In

N∑
j=1

αjγ(wj(
n∑

i=1

γ(wij(xi − bij))− bj))dµ = 0.

The function γ is very similar to the Heaviside function H, the only difference is that H(0) = 1

while γ(0) = σ(ϕ). Let Ri denote an open rectangle, ∂aRi its left boundary (i.e. the boundary of
a left-closed right-open rectangle) and ∂bRi its right boundary (i.e. the boundary of a right-closed
left-open rectangle). Repeating the construction seen in Lemma 5.2 to obtain rectangles, with the
difference that here γ takes value σ(ϕ) on the boundaries, we get that

σ(ϕ)µ(∂aRi) + (1− σ(ϕ))µ(∂bRi) + µ(Ri) = 0

for every open rectangle Ri. Taking ϕ→∞, implies

µ(∂aRi) + µ(Ri) = 0 ∀ open rectangle Ri.
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Every open subset A of In, can be written as a countable union of disjoint partly open cubes
(see Theorem 1.11 p.8 of [319]). Thus, from the fact that the measure is σ-additive we have that
for every open subset A of In, µ(A) = 0. Furthermore µ(In) = 0. To obtain In from

N∑
j=1

αjγ(wj(
n∑

i=1

γ(wij(xi − bij))− bj))

it is sufficient to choose the parameters so that wij(xi − bij) > 0 ∀xi ∈ [0, 1] and so that wj , bj

maintains the condition on the input.
Hence, µ(AC) = µ(In)− µ(A) = 0. It follows that for all compact set K of In, µ(K) = 0.
From the regularity of the measure, it follows that µ is the null measure.

tanh-prod IAN

Theorem 5.6. The finite sums of the form

ψ(x) =
N∑
j=1

αj

2

Mj∏
l=1

tanh(wjl(zj(x)− bjl)) + 1


zj(x) =

n∑
i=1

1

2

[
mi∏
k=1

tanh(wijk(xi − bijk)) + 1

] (A.7)

with wjl, wijk, αj , bjl, bijk ∈ R and Mj , N,mi ∈ N, are dense in C(In).
In other words given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) defined as above such that

|ψ(x)− g(x)| < ϵ ∀x ∈ In.

Since tanh is a continuous function, it follows that the family of functions defined by equation
(A.7) is a linear subspace of C(In). To prove that it is dense in C(In) we will use the same argument
we used for the continuous sigmoidal functions.

This is, called U the set of functions of the form (A.7), we assume that U is not dense in C(In).
Thus, by the Hahn-Banach theorem there exists a not null bounded linear functional on C(In) with
the property that it is zero on the closure of U . By the Riesz Representation Theorem, the bounded
linear functional can be represented by a Radon measures. Then using the definition of U we will
see that this measure must be the zero measure, hence the functional associated with it is null
contradicting the hypothesis.

We define

hλ(x) =
1

2

[
m∏
k=1

tanh(λ(wk(x− bk)) + ϕ) + 1

]
. (A.8)

To proceed with the proof as in the case of the proof for continuous sigmoidal functions, we need
only to understand to what converges the function

ψλ2,λ1(x) =
N∑
j=1

αj

2
hjλ2

(
n∑

i=1

hiλ1(x)

)
(A.9)
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when λ1 and λ2 tend to infinity, and hiλ indicates the processing function related to input i.
Once we have shown that for some choice of the parameters they converge pointwise to step

function we can use the same argument we used in the proof of Theorem 5.5.
The first step is therefore to study the limit of equation (A.9). Let us focus of the multiplication

of tanh in the first layer, given by equation (A.8).
The pointwise limit of hλ(x) for λ→∞ depends on the sign of the limit of the product of tanh,

that in turn depends on the sign of wk(x− bk) for k ∈ {1, ...,m}.

Remark 4. We remark that for x ∈ [0, 1], from the limit of equation (A.8) we can obtain the
indicator functions of set of the form x > b or x < b for any b ∈ R. We just have to choose
the parameters in such a way that only one of the tanh in the multiplication is relevant. Let us
define Z = {k ∈ {1, ...,m} : wk(x − bk) > 0 ∀x ∈ [0, 1]}. If |Z| = m − 1, i.e. there is only one
i ∈ {1, ...,m} so that its weight are significant it holds that

lim
λ→∞

hλ(x) = υ(x) =


1 if wi(x− bi) > 0

σ(2ϕ) if wi(x− bi) = 0

0 if wi(x− bi) < 0

taking into account that σ(2ϕ) = 1
2 (tanh(ϕ) + 1).

Proof of Theorem 5.6. Considering Remark 4, the proof of Theorem 5.6 is analogous to that of
Theorem 5.5.

1.0.2 Experimental settings

All code was written in Python Programing Language. In particular, the following libraries were
used for the algorithms: tensorflow for neural networks, scikit-learn for Logistic Regression, Decision
Trees and Gradient Boosting Decision Trees.

A small exploration was made to determine the best structure of the neural network for each
dataset. We used a breadth-first search algorithm defined as follows. We started with a network
with just one neuron, we trained it and evaluated its performance. At each step, we can double
the number of neurons in each layer except the output one or increase the depth of the network by
adding a layer with one neuron. For each new configuration, we build a new structure based on it,
initialize it and train it. If the difference between the accuracy achieved by the new structure and
that of the previous step is lower than 1%, then a patience parameter is reduced by 1. The patience
parameter is initialized as 5 and is passed down from a parent node to its spawned children, so that
each node has its own instance of it. When patience reach 0, that configuration will not spawn new
ones.

Before the neural network initialization, a random seed was set in order to reproduce the same
results. As for the initialization of IAN, the weights w are initialised using the glorot uniform. For
the biases b of the first layer a uniform between the minimum and the maximum of each feature
was used, while for the following layers a uniform between the minimum and the maximum possible
output from the neurons of the previous layer was used.
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For the network training, Adam with a learning rate equal to 0.1 was used as optimization
algorithm. The loss used is the binary or categorical crossentropy, depending on the number of
classes in the dataset. In the calculation of the loss, the weight of each class is also taken into
account, which is inversely proportional to the number of samples of that class in the training set.
The maximum number of epochs for training has been fixed at 10000. To stop the training, an
early stopping method was used based on the loss calculated on the train. The patience of early
stopping is 250 epochs, with the variation that in these epochs the loss must decrease by at least
0.01. Not using a validation dataset may have led to overfitting of some structures, so in future
work we may evaluate the performance when using early stopping based on a validation loss. The
batch size was fixed at 128 and the training was performed on CPU or GPU depending on which
was faster considering the amount of data. The Heaviside was trained as if its derivative was the
same as the sigmoid.

For Decision Trees (DT) and Gradient Boosting Decision Trees (GBDT), an optimisation of
the hyperparameters was carried out, in particular for min_samples_split (between 2 and 40) and
min_samples_leaf (between 1 and 20). For GBDT, 1000 estimators were used, while for DT the
class_weight parameter was set. For the rest of the parameters, we kept the default values of the
python sklearn library.

1.0.3 Datasets

19 out of 23 datasets are publicly available, either on the UCI Machine Learning Repository website
or on the Kaggle website. Here we present a full list of the datasets used, correlated with their
shortened and full-length name, and the corresponding webpage where the description and data can
be found.

Short name Full-length name Webpage
adult Adult <UCI_MLR_URL>/adult
australian Statlog (Australian Credit Approval) <UCI_MLR_URL>/statlog+(australian+credit+approval)
b-c-w Breast Cancer Wisconsin <UCI_MLR_URL>/Breast+Cancer+Wisconsin+(Diagnostic)
car Car Evaluation <UCI_MLR_URL>/car+evaluation
cleveland Heart Disease <UCI_MLR_URL>/heart+disease
crx Credit Approval <UCI_MLR_URL>/credit+approval
diabetes Diabetes https://www.kaggle.com/uciml/pima-indians-diabetes-database
german Statlog (German Credit Data) <UCI_MLR_URL>/statlog+(german+credit+data)
glass Glass Identification <UCI_MLR_URL>/glass+identification
haberman Haberman’s Survival <UCI_MLR_URL>/haberman%27s+survival
heart Statlog (Heart) <UCI_MLR_URL>/statlog+(heart)
hepatitis Hepatitis <UCI_MLR_URL>/hepatitis
image Statlog (Image Segmentation) <UCI_MLR_URL>/Statlog+(Image+Segmentation)
ionosphere Ionosphere <UCI_MLR_URL>/ionosphere
iris Iris <UCI_MLR_URL>/iris
monks-1 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
monks-2 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
monks-3 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
sonar Connectionist Bench <UCI_MLR_URL>/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

Table A.1: Publicly available datasets, with the short name used in in our work, their full-length
name and the webpage where data and description can be found. The UCI_MLR_URL is the follow-
ing: https://archive.ics.uci.edu/ml/datasets/

The 4 synthetic datasets of our own creation are composed of 1000 samples with 2 variables
generated as random uniforms between −1 and 1 and an equation dividing the space into 2 classes.
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The 4 equations used are:

• bisector: x1 > x2

• xor: x1 > 0 ∧ x2 > 0

• parabola: x2 < 2x21 − 1
2

• circle x21 + x22 <
1
2

These datasets are also represented in Figure A.3.

(a) Bisector (b) XOR

(c) Parabola (d) Circle

Figure A.3: The synthetically generated datasets we used to assess the soundness of our methodology.

1.0.4 Examples

Heart dataset - Heaviside IAN

The Statlog Heart dataset is composed of 270 samples and 13 variables of medical relevance. The
dependent variable is whether or not the patient suffers from heart disease. In Figure A.4 you
can find the network based on Heaviside IAN trained on the heart dataset. Only the inputs with
a relevant contribution to the output are shown. From now on, we will indicate with Rk,j,i the
rule related to the processing function corresponding to the i-th input, of the j-th neuron, of
the k-th layer. From the first neuron of the first layer we can easily retrieve the following rules:
R1,1,1 = x1 ≤ 54.29, R1,1,3 = x3 ≤ 3.44, R1,1,4 = x4 ≤ 123.99, R1,1,5 = x5 ≥ 369, 01, R1,1,9 = x9 ≤
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Figure A.4: The Heaviside IAN Network trained on the heart dataset. The Figure follows the color
convention used for Newron.

0.48, R1,1,10 = x10 ≤ 1.22, R1,1,11 = x11 ≤ 1.44, R1,1,12 = x12 ≤ 0.52, R1,1,13 = x13 ≤ 6.26. The
second neuron of the first layer is not shown for lack of space, but its obtained rules are R1,2,2 = x2 ≥
0.79, R1,2,3 = x3 ≥ 3.59, R1,2,4 = x4 ≥ 99.95, R1,2,5 = x5 ≥ 253.97, R1,2,8 = x8 ≤ 97.48, R1,2,9 =

x9 ≤ 0.04, R1,2,10 = x10 ≥ 2.56, R1,2,11 = x11 ≥ 1.53, R1,2,12 = x12 ≥ 0.52, R1,2,13 = x13 ≥ 5.47.
Moreover, input x7 gives always 1, so this must be taken into consideration in the next layer.

Moving on to the second layer, we can see in the first neuron that the second input is irrelevant,
since the Heaviside is constant. The first processing function activates if it receives an input that
is greater or equal to 2.99. Given that the input can only be an integer, we need at least 3 of
the rules obtained for the first neuron of the first layer to be true: R2,1,1 = 3 − of − {R1,1,i}.
Following the same line of reasoning, in the second neuron of the second layer we see that we get
R2,2,1 = 5 − of − {¬R1,1,i} and R2,2,2 = 5 − of − {R1,2,i} (5 and not 6 because of x7 processing
function).

In the last layer, the first processing function has an activation of around 2.5 if it receives
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an input that’s less than 1.17. This can happen only if R2,1,1 does not activate, so we can say:
R3,1,1 = ¬R2,1,1 = 7 − of − {¬R1,1,i}. The second processing function gives a value of around
−2.5 only if it gets an input less than 0.99, so only if the second neuron of the second layer does
not activate. This means that R2,2,1 and R2,2,2 must be both false at the same time, so we get
R3,1,2 = ¬R2,2,1∧¬R2,2,2 = 5−of−{R1,1,i}∧6−of−{¬R1,2,i}. Now there are 4 cases for the sum,
i.e. the combinations of the 2 activations: {0+0, 2.5+0, 0−2.5, 2.5−2.5} = {−2.5, 0, 2.5}. Given that
both have around the same value for the α parameter, the set is reduced to two cases. Looking at the
processing function, we can see that is increasing with respect to the input, so since α1 is positive,
we can say that rule R3,1,1 is correlated to class 1, while rule R3,1,2, having a negative α2, has an
opposite correlation. Looking at its values, we can see that for both 0 and 2.5 inputs, the activation
function gives an output greater than 0.5. If we consider this as a threshold, we can say that only for
an input of −2.5 we get class 0 as prediction. This happens only if R3,1,2 is true and R3,1,1 is false.
Summarizing we get R0 = R3,1,2∧¬R3,1,1 = 5−of−{R1,1,i}∧6−of−{¬R1,2,i}∧3−of−{R1,1,i} =
5− of − {R1,1,i} ∧ 6− of − {¬R1,2,i}, so that we can say “if R0 then predicted class is 0, otherwise
is 1”.

Although we are not competent to analyse the above results from a medical perspective, it is
interesting to note for example that the variables x1 and x4, representing age and resting blood
pressure respectively, are positively correlated with the presence of a heart problem.

Xor - sigmoid IAN

Figure A.5: The sigmoid IAN Network trained on the xor dataset. The Figure follows the color convention
used for Newron.

Our custom xor dataset divides the 2D plane in quadrants, with the opposites having the same
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label.
The network based on sigmoid IAN trained on xor dataset is represented in Figure A.5. As we

can see, all the processing functions of the first layer converged to nearly the same shape: a steep
inverted sigmoid centered in 0. Therefore, we can say the rules obtained are R1,1,1 = R1,2,1 = x1 ≤ 0

and R1,1,2 = R1,2,2 = x2 ≤ 0. In the last layer, the first processing function has a value of about
−15 for inputs in [0, 1], then it starts growing slowly to reach almost 0 for an input of 2. This tells
us that it doesn’t have an activation if both rules of the first neuron are true, so if x1 ≤ 0∧ x2 ≤ 0.
On the other hand, the second processing function has no activation if its input greater than 1,
that happens for example if we have a clear activation from at least one of the inputs in the second
neuron of the first layer. So looking at it the opposite way, we need both those rules to be false
(x1 > 0 ∧ x2 > 0) to have an activation of 12.5. The activation function is increasing with respect
to the input, and to get a clear class 1 prediction, we need the input to be at least −5. Considering
if the processing functions could give only {−15, 0} and {12.5, 0} values, just in the case we got
−15 from the first one and 0 from the second one ot would give us a clear class 0 prediction. This
happens only if ¬(x1 ≤ 0∧x2 ≤ 0) = x1 > 0∨x2 > 0 and ¬(x1 > 0∧x2 > 0) = x1 ≤ 0∨x2 ≤ 0, that
can be summarised (x1 > 0 ∨ x2 > 0) ∧ (x1 ≤ 0 ∨ x2 ≤ 0) = (x1 > 0 ∧ x2 ≤ 0) ∧ (x1 ≤ 0 ∨ x2 > 0).
Since this rule describes the opposite to xor, for class 1 we get the exclusive or logical operation.

Iris dataset - tanh-prod IAN

A dataset widely used as a benchmark in the field of machine learning is the Iris dataset. This
contains 150 samples, divided into 3 classes (setosa, versicolor and virginica) each representing a
type of plant, while the 4 attributes represent in order sepal length and width and petal length and
width.

In Figure A.6 you can see the final composition of the network generated with the tanh-prod2
IAN neuron.

Considering the first neuron of the first layer, we see that it generates the following fuzzy rules:
R1,1,2 = x2 > 3.08 (sepal width), R1,1,3 = x3 < 5.14 (petal length) and R1,1,4 = x4 < 1.74 (petal
width). For the first attribute (sepal length) it does not generate a clear rule, but forms a bell shape,
reaching a maximum of 0.5. This tells us that x1 is less relevant than the other attributes, since,
unlike the other processing functions, it does not reach 1. The second neuron has an inverse linear
activation for the first attribute, starting at 0.7 and reaching almost 0. The second attribute also
has a peculiar activation, with an inverse bell around 2.8 and a minimum value of 0.4. The third
and fourth attributes have clearer activations, such as R1,2,3 = x3 < 2.51 and R1,2,4 = x4 < 1.45.

The fact that petal length and width are the ones with the clearest activations and with those
specific thresholds are in line with what has previously been identified on the Iris dataset by other
algorithms.

We denote by yk,j the output of the j-th neuron of the k-th layer. Moving on to the second
layer, the first neuron generates the rules “if y1,1 < 1.83” and “if y1,2 < 2.66”, while the second one
generates “if y2,1 > 2.08” and “if y2,2 > 2.22”. Combined with what we know about the previous
layer, we can deduce the following: y1,1 is less than 1.83 only if the sum of the input activation
functions is less than 1.83, which only happens if no more than one of the last three rules is activated
(0 + 1 + 0 < 1.83), while the first one, even taking its maximum value, is discriminative only when
the input of one of the other rules is close to the decision threshold (0.5 + 1 + 0 + 0 < 1.83, while
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6.72 7.04

Figure A.6: The tanh-prod IAN Network trained on the iris dataset. The Figure follows the color conven-
tion used for Newron.

0.5+1+0.5+0 > 1.83). For y1,2 < 2.66, there are more cases. We can divide the second processing
function of the second neuron of the first layer in two intervals: one for which x2 < 3.2 and the
other when x2 ≥ 3.2. In the first interval, the processing function gives a value that is less than
0.66, greater in the second one. With this, we can say that y1,2 < 2.66 even if R1,2,3 and R1,2,4

activates, if x2 < 3.2 and x1 is near its maximum.
In the second neuron of the second layer, the first processing function is nearly the exact opposite

to that of the other neuron; we need at least two of R1,1,2, R1,1,3 or R1,1,4 to be true, while R1,1,1

still doesn’t have much effect. The second processing function gives us y1,2 > 2.22. Considering
that the minimum for the processing function related to x2 is 0.4, we may need both rules R1,2,3

and R1,2,4 to be true to exceed the threshold, or just one of them active and x1 to take on a low
value and x2 to be a high value.

For the last layer, remember that in this case since there are more than 2 classes, a softmax
function is used to calculate the output probability, hence the arrows in the figure that join the
layers of the last layer.

For the first output neuron, in order to obtain a clear activation, we need the first input to be
less than 0.46 and the second greater than 1.42. This is because the αi are 3 and −8, and the
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output activation function starts to have an activation for values greater than −2. This means that
the first neuron of the second layer should hardly activate at all, while the other should activate
almost completely. Considering the thresholds for y1,1 and y1,2, we need the first to be greater than
2.08 and the other to be greater than 2.66. So R3,1,1 = 2− of − {x2 > 3.08, x3 < 5.14, x4 < 1.74}.
For R3,1,2 is more tricky to get a clear decision rule, but we can say that we may need both R1,2,3

and R1,2,4 to be true and x2 ≥ 3.2. If x2 < 3.2, we need x1 to not be near its maximum value. If
just one of those two rules is true, we need x2 < 3.2 and x1 near 4, or x2 > 3.2 but with a (nearly)
direct correlation with x1, such that the more x1 increases, the same does x2.

In the second output neuron, the second processing function is negligible, while the first one
forms a bell shape between 1 and 2. This means that it basically captures when y2,1 has a value
of approximately 1.5, so when the decision is not clear. This is what gives this neuron maximum
activation.

In the third and last output layer, since the first processing function has a negative α parameter
and the activation function is increasing with respect to the input, we want it to output 0, and
this requires maximum activation for the first neuron of the second layer. Regarding the second
processing function, we want it to output 8, so we need nearly no activation from the second neuron
of the second layer. So we need the first neuron of the first layer to output a value lower than 1.83

and the second neuron to output a value lower than 2.22. This means that no more than one rule
R1,1,i needs to be active and at most two rules of R1,2,i need to be true.

We can conclude by saying that both neurons of the first layer are positively correlated with
class 1, while they are negatively correlated with class 3. This means that low values of x3 and x4,
or high values of x2 increase the probability of a sample to belong to class 1, while x1 has almost
no effect. For class 2, what we can say is that it correlates with a non-maximum activation of both
neurons of the first layer, meaning that it captures those cases in which the prediction of one of the
other classes is uncertain.
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Appendix B

Explaining Neural Networks Using a
Ruleset Based on Interpretable Concepts

2.0.1 Experimental Setup

Implementation

All code is written in Python 3 Programming Language. In particular, the following libraries are
used for the algorithms: pytorch for neural networks, scikit-learn for Logistic Regression, Decision
Trees and Gradient Boosted Decision Trees.

All the experiments have been run on a machine with this configuration: AMD EPYC 7373
Processor, 64GB RAM and NVIDIA GeForce RTX A4000 GPU.

Hyperparameters

Randomized search was used to determine the best set of hyperparameters for each classifier. In-
stead of using a predefined number of combinations, we used a fixed execution time, to make the
comparison between classifiers more fair. For each dataset, for each classifier, the hyperparameters’
search ran for 30 minutes. A list of all possible hyper parameter values for each algorithm follows:

IAN-LEN:

• number of concepts: 8, 16, 32, 64

• number of neurons: 8, 16, 32, 64

• number of layers: 1, 2

• IAN learning rate: 1.0e-2, 1.0e-3

• LEN learning rate: 1.0e-2, 1.0e-3

Neural Network:

• number of neurons: 1, 2, 4, 8, 16, 32, 64, 128

• number of layers: 1, 2, 3, 4, 5
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• learning rate: 1.0e-2, 1.0e-3, 1.0e-4

• activation function: Tanh, LeakyReLU

Logistic Regression:

• penalty: l1, l2, elasticnet, none

• C: 1.0e+2, 5.0e+1, 1.0e+1, 5.0e+0, 1.0e+0, 5.0e-1, 1.0e-1, 5.0e-2, 1.0e-2

• solver: saga

• class_weight: balanced

• l1_ratio: 0.5

Decision Tree:

• criterion: gini, entropy

• splitter: best, random

• max_depth: 3, 5, 10, 20, 50, 100

• min_samples_split: 2, 0.01, 0.05, 0.1

• min_samples_leaf: 1, 0.01, 0.05, 0.1

• max_features: 1.0, 0.5, sqrt, log2

• class_weight: balanced

Gradient Boosted Decision Trees:

• learning_rate: 5.0e-1, 1.0e-1, 5.0e-2, 1.0e-2, 1.0e-3

• n_estimators: 10, 50, 100

• subsample: 0.5, 0.75, 1.0

• min_samples_split: 2, 0.01, 0.05, 0.1

• min_samples_leaf: 1, 0.01, 0.05, 0.1

• max_depth: 3, 5, 10, 20, 50, 100

• max_features: 1.0, 0.5, sqrt, log2

For Logistic Regression, Decision Trees and Gradient Boosted Decision Trees, it was used the
name of the parameters and values as described by the Python scikit-learn library.

For both IAN-LEN and Neural Network, the number of maximum epochs was set to 2000.
Early stopping with a patience of 100 epochs was used, monitoring the validation loss. At training
end, the best model according to validation loss was selected. Data was divided in batches of 256
samples. The optimizer used for training is Adam. After selecting the number of layers, the number
of neurons is selected randomly individually per each layer. The loss used for neural networks is
the categorical cross entropy with no regularisation term.
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Short name Full-length name Webpage

adult Adult <UCI_URL>adult
australian Statlog (Australian Credit Approval) <UCI_URL>statlog+(australian+credit+approval)
b-c-w Breast Cancer Wisconsin <UCI_URL>Breast+Cancer+Wisconsin+(Diagnostic)
cleveland Heart Disease <UCI_URL>heart+disease
diabetes Diabetes https://www.kaggle.com/uciml/pima-indians-diabetes-database
eye EEG Eye State Data Set <UCI_URL>EEG+Eye+State
german Statlog (German Credit Data) <UCI_URL>statlog+(german+credit+data)
haberman Haberman’s Survival <UCI_URL>haberman%27s+survival
heart Statlog (Heart) <UCI_URL>statlog+(heart)
hepatitis Hepatitis <UCI_URL>hepatitis
ionosphere Ionosphere <UCI_URL>ionosphere
iris Iris <UCI_URL>iris
monks-1 MONK’s Problems <UCI_URL>MONK%27s+Problems
monks-2 MONK’s Problems <UCI_URL>MONK%27s+Problems
monks-3 MONK’s Problems <UCI_URL>MONK%27s+Problems
poker Poker Hand Data Set <UCI_URL>Poker%2BHand
sonar Connectionist Bench <UCI_URL>Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
thyroid Thyroid Disease Data Set <UCI_URL>thyroid+disease

Table B.1: Publicly available datasets, with the short name used in in our work, their full-length name
and the webpage where the data and the description can be found. The UCI_URL is the following:
https://archive.ics.uci.edu/ml/datasets/

Randomization

Before the initialization of the neural network weights, a random seed was set to reproduce the same
results. The 21094 random seed was used for splitting the dataset and for random initialization
of the neural network weights. For each fold of the 5-fold cross-validation, the random seed was
increased by 1.

2.0.2 Datasets

All 18 datasets are publicly available, 17 on the UCI Machine Learning Repository website and one
on the Kaggle website. In table B.1 we present a full list of the datasets used, correlated with their
shortened and full-length name, and the corresponding webpage where the description and the data
can be found.
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Appendix C

Noisy Labels - Supplementary Materials

Supplementary Materials

3.0.1 Inter annotator agreement. Symmetric noise and symmetric
ground truth distribution

Cohen’s κ coefficient measures the agreement between two raters who each classify n items into C
mutually exclusive categories.

We define the agreement among raters a and b as po: po =
∑C

c=1 P(ya = c ∩ yb = c) Cohen and
others [56] suggest comparing the actual agreement (po) with the “chance agreement” that could be
obtained if the labels assigned by the two annotators were independent (we will denote this quantity
by pe).

pe =
C∑
c=1

P(ya = c)P(yb = c) (C.1)

Cohen’s κ coefficient is defined as the difference between the true agreement and the “chance agree-
ment” normalized by the maximum value this difference can reach

κ :=
po − pe
1− pe

, (C.2)

If the raters are in complete agreement then κ = 1. If there is no agreement among the raters other
than what would be expected by chance (i.e. po = pe) κ = 0. It can also take negative values. A
negative κ indicates an agreement worse than that expected by chance. This can be interpreted as
no agreement at all between annotators. In our work, we assume that the two raters are a corrupted
version of an observable “clean” (ground truth) label. In this setting, the label assigned by annotator
a to an item and the respective uncorrupted label are not independent random variables. We found
that in this setting the κ coefficient can take only non-negative values.

3.0.2 On the hypothesis of commutativity in Lemma 5.1

In Lemma 5.1 we found how to compute T given M and D. To find this relationship we require
that D

1
2 commutes with T . This hypothesis is satisfied when D and T have a particular structure,
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3.0.2. On the hypothesis of commutativity in Lemma 5.1

namely √
di√
dj
tij = tij ∀i and j.

That is satisfied or if di = dj or if tij = 0, namely every class so that the probability of going from
class i to class j (and vice-versa) is not zero is equiprobable.

So T has to be block diagonal, or better reducible by a permutation of the classes to a block
diagonal matrix and D has to have all equal elements on indices relatives to the same block in T .
For instance

T =



T1 0 0 0 0

0 T2 0 0 0

0 0 T3 0 0

0 0 0
. . . 0

0 0 0 0 Tj


and D =



D1 0 0 0 0

0 D2 0 0 0

0 0 D3 0 0

0 0 0
. . . 0

0 0 0 0 Dj


with

Di =


di 0 0

0
. . . 0

0 0 di


T need not be block diagonal but must be reconducted to a block diagonal matrix by permuting

the classes, for instance in the following case, we can obtain a matrix block diagonal by permuting
classes 2 and 4

T =


t11 0 0 t14

0 t22 t23 0

0 t23 t33 0

t14 0 0 t44

 and D =


d1 0 0 0

0 d2 0 0

0 0 d2 0

0 0 0 d1


Notice that T can be rewritten as follows permuting classes 2 and 4

T =


t11 t14 0 0

t14 t44 0 0

0 0 t33 t23

0 0 t23 t22


From the technical point of view, we have noticed that solving this equation is extremely com-

plicated without making such assumptions. Another assumption we could have used, also required
by [221] to solve the same problem, is requiring that the matrix D

1
2T has diagonal Jordan decom-

position. However, this assumption is more complicated to translate at the level of the structure of
the matrices T and D.

From a practical point of view, making such an assumption means that there are classes that
annotators can confuse with one another while they never swap between them, other classes. For
example, if the problem is to classify images and the classes are “cat”, “lynx”, “bats”, “bird”, “cougar”;
we can think that the annotators have a non-zero probability of confusing with each other the feline
classes “lynx”, “cat”, “cougar”, while they have zero probability of assigning a picture of a lynx the
label “bird”. Commutativity is guaranteed in the case of a uniform distribution over the classes.
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3.0.3. Proofs

There are many applications where we expect the distribution over the classes to be uniform and
not to have any class with a higher probability. In general, we can fall back to an approximation of
this case by reducing the samples.

3.0.3 Proofs

Proof of Lemma 5.1

Proof. From Equation 3.8 we get:

M = TDT = D
1
2TTD

1
2 → D− 1

2MD− 1
2 = T 2 (C.3)

Note that T and D
1
2MD

1
2 are positive definite (because D and M are positive definite) and hence

they have eigenvalue decompositions of the following form:

T = UTΛTU
T
T (C.4)

D− 1
2MD− 1

2 = UMΛMU
T
M (C.5)

where Ux are orthogonal matrices and Λx are diagonal positive definite matrices. It then follows
that:

T 2 (a)
= UTΛ

2
TU

T
T = UMΛMU

T
M (C.6)

where in (a) we used the fact that UT is orthogonal. Since UMΛMU
T
M is an eigenvalue decomposition

of T 2 we conclude that:

T = UMΛ
1
2
MU

T
M , T−1 = UMΛ

− 1
2

M UT
M (C.7)

Proof of Lemma 5.2: bounds error on the estimation of M

Proposition 5.0.1. Let Ma,b be the agreement matrix for annotators a and b defined in Equa-
tion 3.7 and M̂a,b be the estimated agreement matrix defined in eq. Equation 3.11. For every ϵ > 0

it holds that
Pn(|(Ma,b)ij)− (M̂a,b)ij | < ϵ) ≥ 1− 2e−2ϵ2n.

And

Pn
(
∀i, j ∈ {1, C}2 |(Ma,b)ij)− (M̂a,b)ij | < ϵ

)
≥ 1− 2C2e−2ϵ2n.

where Pn denotes the probability according to which the n training samples are distributed, i.e. we
are assuming that the samples are independently drawn according to the probability P.

To simplify the notation we will omit the dependency from the annotators in the matrices:
M =Ma,b and M̂ = M̂a,b Mij = P(ya = i, yb = j) and M̂ij =

1
n

∑n
h=1 1((ya)h = i, (yb)h = j).
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Proof. To prove the claim we only need to apply Hoeffding’s inequality to the random variables
Xij

h = 1yah=i,=ybh=j . Indeed it holds that 0 ≤ Xij ≤ 1 and M̂ij =
1
n

∑n
h=1X

ij
h , while E[Xij

h ] =Mij .
Notice that the random variables Xij

1 . . . Xij
n are independent since we assume samples to be

independent with respect to each other and so it follows that (xh, yah , yb,h), (xk, yak , ybk) are inde-
pendent.rf

P(|E[Xij
h ]− 1

n

n∑
h=1

Xij
h | > ϵ) ≤ 2e−2ϵ2n. (C.8)

From the previous equation, using union bounds we can obtain that

P
(
∀(i, j) ∈ {1, C}2 |E[Xij

h ]− 1

n

n∑
h=1

Xij
h | < ϵ

)
≥ 1− 2C2e−2ϵ2n. (C.9)

Namely
P
(
∀(i, j) ∈ {1, C}2 |Mij − M̂ij | < ϵ

)
≥ 1− 2C2e−2ϵ2n. (C.10)

Lemma 5.1. Let A be a matrix in RCxC so that it exists ϵ > 0 for all i, j |Aij | ≤ ϵ. For every
p ∈ [1,∞], if ||.||p denotes the matrix norm induced by the p-vector norm,

||A||p ≤ Cϵ.

Proof.
||A||p := sup

x:||x||p=1
||Ax||p

Let x be a vector of p-norm 1. (Ax)i =
∑C

j=1Aijxj

||Ax||p =
( C∑

i=1

∣∣∣ C∑
j=1

Aijxj

∣∣∣p) 1
p ≤

( C∑
i=1

( C∑
j=1

|Aijxj |
)p) 1

p ≤ ϵ
( C∑

i=1

( C∑
j=1

|xj |
)p) 1

p

Now, denoting by 1 the vector with all ones, using Hölder inequality we can obtain :

C∑
j=1

|xj | = ||1x||1 ≤ ||x||p||1|| p
p−1

= ||x||pC
p−1
p

So

||Ax||p ≤ ϵ
( C∑

i=1

||x||pCp−1
) 1

p
= ϵC||x||p = ϵC

Proof Lemma 5.2. For the previous Lemma it holds that if all the elements of the matrix are less
or equal than ϵ, the p norm is bounded by ϵC

So we can derive that

P(||Ma,b − M̂a,b||p > ϵ) ≥ P
(
∀(i, j) ∈ {1, C}2 |Mij − M̂ij | <

ϵ

C

)
≥ 1− 2C2e−2 ϵ2

C2 n. (C.11)
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Proof of Theorem 5.3: bound error on the estimation of T

We start by introducing the following helpful remark and Lemmas.

Remark 5. We defined T̂ = argmin
B
||B − Û Λ̂

1
2
M Û

T ||22, with B that satisfies all the constraints in

Equation 3.18. We know that the matrix T we want to approximate satisfies all the constraints in
Equation 3.18, so by definition

||T̂ − Û Λ̂
1
2
M Û

T ||22 ≤ ||T − Û Λ̂
1
2
M Û

T ||22,

from which it follows that
||T − T̂ ||22 ≤ 2||T − Û Λ̂

1
2
M Û

T ||22

so any bound we will found for ||T − Û Λ̂
1
2
M Û

T ||22 holds also for T̂ estimated as in Equation 3.17 with
a coefficent 2.

Lemma 5.2. Let A be a square, symmetric, positive definite matrix, in RC×C and let
√
A the

unique positive definite symmetric, matrix so that
√
A
√
A = A (On the existence of this matrix,

see Theorem 7.2.6 at p. 439 in [127]). The bounded operator F√ : S → S defined as follow
F√ : A =

√
A, where we denote by S the space of symmetric positive definite matrix, is differentiable

and it hold the following upper bound for the induced 2 norm of the derivative

||D[
√
A]||2 ≤

1

2
√
λmin(A)

||vec(A)||2. (C.12)

Proof. Let us consider the vector space of square matrices MC(R) with the 2 norm and let D[
√
A]

denote the operator that is the derivative of F√ in this space and D[A] the derivative of A. From
the fact that

√
A
√
A = A it follows that

D[
√
A]
√
A+
√
AD[
√
A] = D[A]. (C.13)

Equation C.13 is a special case of Sylvester equation, and using that
√
A is symmetric can be

rewritten as
(IC ⊗

√
A+
√
A⊗ IC)vec(D[

√
A]) = vec(D[A]). (C.14)

It follow that

vec(D[
√
A]) = (IC ⊗

√
A+
√
A⊗ IC)−1vec(D[A]) = (IC ⊗

√
A+
√
A⊗ IC)−1vec(A).

Notice that the eigenvalues of the square root of a symmetric, positive def matrix are the square
root of the eigenvalues of the original matrices. Indeed if A can be decomposed as A = UΛUT , with
U orthogonal matrix, it holds that

√
A = U

√
ΛUT . Now the eigenvalues of

√
A⊗ IC + IC ⊗

√
A are

√
λi +

√
λj with 1 ≤ i, j ≤ C, with λi eigenvalue of A. The minimum eigenvalue of a symmetric

positive def matrix B is the maximum eigenvalue of the inverse, indeed if B = V DV T , with V

orthogonal, B−1 = V D−1V T . So the minimum eigenvalue of
√
A ⊗ IC + IC ⊗

√
A, that is the
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maximum eigenvalue of (
√
A⊗ IC + IC ⊗

√
A)−1 is 2λmin(

√
A). It follows that

||(IC ⊗
√
A+
√
A⊗ IC)−1||2 =

√
λmax((IC ⊗

√
A+
√
A⊗ IC)−2)

=

√
λmin((IC ⊗

√
A+
√
A⊗ IC)2)

= λmin((IC ⊗
√
A+
√
A⊗ IC))

=
1

2
√
λmin(A)

.

So ||vec(D[
√
A])||2 ≤ 1

2
√

λmin(A)
||vec(A)||2. ||vec(A)||22 =

∑C2

k=1 a
2
k for every vecto x of norm 1 (this

implies xi < 1)

||Ax||22 =
C∑

k=1

C∑
i=1

a2kix
2
i ≤

C∑
k=1

C∑
i=1

a2ki = ||vec(A)||22.

It follows that the induce 2 norm of the derivative ||D[
√
A]||2 ≤ 1

2
√

λmin(A)
||vec(A)||2

Let T and T̂ be defined as in Equation C.7 and Equation 3.16.
The following Lemma holds for two general double stochastic matrices.

Lemma 5.3. Let T and T̂ be two symmetric, stochastic matrices, it holds that :

||T − T̂ ||2 ≤
√
C||T 2 − T̂ 2||

λmin(T 2)− ||T 2 − T̂ 2||2
and ||T − T̂ ||2 ≤

√
C||T 2 − T̂ 2||

λmin(T̂ 2)− ||T 2 − T̂ 2||2
(C.15)

Proof. From the previous Lemma and the mean absolute value

||
√
A−
√
B||2 ≤ ||A−B||2 sup

0≤θ≤1
||D[

√
θA+ (1− θ)B]||2

For Weyl’s inequality λmin(θT
2 + (1 − θ)T̂ 2) ≤ λmin(θT

2) + λmin((1 − θ)T̂ 2) = θλmin(T
2) + (1 −

θ)λmin(T̂
2).

sup
0≤θ≤1

||D
√
θT 2 + (1− θ)T̂ 2||2 ≤

1

2
sup

0≤θ≤1

||vec(θT 2) + (1− θ)T̂ 2)||2
θλmin(T 2) + (1− θ)λmin(T̂ 2)

≤ 1

2
sup

0≤θ≤1

θ||vec(T 2)||2 + (1− θ)||vec(T̂ 2)||2
θλmin(T 2) + (1− θ)λmin(T̂ 2)

≤ 1

2
sup

0≤θ≤1

||vec(T 2)||2 + ||vec(T̂ 2)||2
θλmin(T 2) + (1− θ)λmin(T̂ 2)

≤ sup
0≤θ≤1

√
C

θλmin(T 2) + (1− θ)λmin(T̂ 2)

In the last inequality we used that T and T̂ and doubly stochastic so
∑C

i=1 T
2
ij ≤ (

∑C
i=1 Tij)

2 = 1.

So ||vec||2 =
(∑C

i=1

∑C
j=1 T

2
ij

) 1
2 ≤
√
C. Moreover deriving 1

θλmin(T 2)+(1−θ)λmin(T̂ 2)
with respect to θ

we find that

sup
0≤θ≤1

1

θλmin(T 2) + (1− θ)λmin(T̂ 2)
=


1

λmin(T 2)
if λmin(T

2) < λmin(T̂
2)

1

λmin(T̂ 2)
if λmin(T

2) > λmin(T̂
2)
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sup
0≤θ≤1

1

θλmin(T 2) + (1− θ)λmin(T̂ 2)
=

1

min(λmin(T̂ 2), λmin(T 2))
.

Now,

min(a, b) =

a = b− |b− a| if a < b

b if b ≤ a
(C.16)

We notice that for symmetric matrices ||A||2 =
√
λmax(A)2 =

√
(λmax(A))2 = |λmax(A)|. So

we can Since T 2 − T̂ 2 is symmetric: ||T 2 − T̂ 2||2 = |λmax(T 2 − T̂ 2)|.
It follows that

min(λmin(T̂
2), λmin(T

2)) ≥ λmin(T
2)− |λmin(T

2)− λmin(T̂
2)| (C.17)

≥ λmin(T
2)− |λmin(T

2)− λmin(T̂
2)| (C.18)

≥ λmin(T
2)− |λmin(T

2 − T̂ 2)| (C.19)

≥ λmin(T
2)− |λmax(T

2 − T̂ 2)| (C.20)

= λmin(T
2)− ||T 2 − T̂ 2||2. (C.21)

In the previous equations we use that |λmin(T
2)− λmin(T̂

2)| ≤ |λmax(T
2 − T̂ 2)|. We now prove

that it is true. Suppose without loss of generality that λmin(T
2) > λmin(T̂

2). If it is the case
λmin(T

2)− λmin(T̂
2) = λmin(T

2) + λmax(−T̂ 2) ≤ λmax(T
2 − T̂ 2) ≤ |λmax(T

2 − T̂ 2)|, where we used
Weyl’s inequality.

If the λmin(T
2) > λmin(T̂

2) following the same path we obtain λmin(T̂
2)−λmin(T

2)| ≤ |λmax(T̂
2−

T )|.
it follow that λmin(T

2)− λmin(T̂
2) < ||T 2 − T̂ 2||2

Proof Theorem Theorem 5.3. From Lemma 5.3 we know that

||T − T̂ ||2 ≤
√
C||T 2 − T̂ 2||

λmin(T 2)− ||T 2 − T̂ 2||2
(C.22)

Now, in general
√
Cx

b− x
< ϵ iif x < b

ϵ√
C + ϵ

.

It follows that

P(||T − T̂ ||2 < ϵ) = P
(
||T 2 − T̂ 2||2 < λmin(T

2)
ϵ√
C + ϵ

)
or

P
(
||T − T̂ ||2 < ϵ

)
= P

(
||T 2 − T̂ 2||2 < λmin(T̂

2)
ϵ√
C + ϵ

)
≥ P

(
||T 2 − T̂ 2||2 <

λmin(T̂
2)√

C + 1
ϵ
)
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Since we can assume ϵ ≤ 1 (if n > C2(
√
C+1)2(ln(2C2)2

2λmin(T̂ )2
. Notice that we are interested in conver-

gence properties of T̂ , so we are interested in founding these bounds for small ϵ.
Now T 2 − T̂ 2 = D1/2(M − M̂)D1/2 .
So ||T 2−T̂ 2||2 ≤ ||M−M̂ ||2||D1/2||22 = ||M−M̂ ||2||D||2 = ||M−M̂ ||2λmax(D). As a consequence

:

P(||T − T̂ ||2 < ϵ) ≥ P

(
||M − M̂ ||2λmax(D) <

λmin(T̂
2)√

C + 1
ϵ

)

= P

(
||M − M̂ ||2 <

λmin(T̂
2)

(
√
C + 1)λmax(D)

ϵ

)

≥ 1− 2C2e
− ϵ2

C2(
√
C+1)2

λmin(T̂2)
2

λmax(D)2
n

For the inverse:
T−1 − T̂−1 = T−1(T̂ − T )T̂−1 (C.23)

So,

||T−1 − T̂−1||2 ≤ ||T−1||2||T̂ − T ||2||T̂−1||2 =
1

λmin(T )λmin(T̂ )
||T̂ − T ||2

Following what we did for the κ in

1

λmin(T )λmin(T̂ )
≤ 1

min(λmin(T 2), λmin(T̂ 2))
≤ 1

λmin(T̂ 2)− |λmin(T 2)− λmin(T̂ 2)|

Than for Equation C.17

1

λmin(T )λmin(T̂ )
≤ 1

λmin(T̂ 2)− ||T 2 − T̂ 2||2

So

||T−1 − T̂−1||2 ≤
||T − T̂ ||2

λmin(T̂ 2)− ||T 2 − T̂ 2||2
≤ ||T − T̂ ||2
λmin(T̂ 2)− 2||T − T̂ ||2

Where we used that

||T 2 − T̂ 2||2 ≤ ||T (T − T̂ ) + (T − T̂ )T̂ ||2 ≤ 2||T − T̂ ||2

because T and T̂ doubly stochastic.
So

P
(
||T−1 − T̂−1||2 ≤ ϵ

)
≥ P

(
||T − T̂ ||2 ≤ ϵ

λmin(T̂ )

1 + 2ϵ

)
(C.24)

≥ P
(
||T − T̂ ||2 ≤

ϵ

3
λmin(T̂ )

)
(C.25)

≥ 1− 2C2e
− ϵ2

9C2(
√
C+1)2

λmin(T̂2)
4

λmax(D)2
n

(C.26)
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Proof of Theorem 5.6: generalization gap bounds

Proposition 5.3.1. Let ℓ(t, y) be any bounded loss function and let l(t, y) be the backward loss
function defined in Eq. (3.24a).

We define l̂(t, y) as the loss obtained using Γ̂−1 := T̂−1. If µ is the constant that bounded the
loss ℓ , i.e. sup(t,y)∈[0,1]C×Y ℓ(t, y) ≤ µ. For every ϵ

P(|l(t, y)− l̂(t, y)| ≥ ϵ) ≤ 2C2e
−2 ϵ2

C2µ2Lϕ,p
n

(C.27)

Proof of Proposition 5.3.1. Using Cauchy–Schwarz inequality and the fact that ℓ is bounded by µ
and that we obtain:

|l(t, y)− l̂(t, y)| = |(T−1 · ℓ(t)− T̂−1 · ℓ(t))y|

= |[(T−1 − T̂−1)ℓ(t)] · ey|

≤ ||(T−1 − T̂−1)ℓ(t)||2||ey||2
≤ ||T−1 − T̂−1||2||ℓ(t)||2
≤ µ||T−1 − T̂−1||2

So

P
(
|l(t, y)− l̂(t, y)| ≤ ϵ

)
≥ 1− 2C2e

− ϵ2

µ29C2(
√
C+1)2

λmin(T̂2)
4

λmax(D)2
n

Proof Lemma 5.5 . For every f we have

|R̂l̂(f)−Rl,D(f)| ≤ |R̂l̂(f)− R̂l(f)|+ |R̂l(f)−Rl,D(f)|.

So using union bounds and by the classic results on Rademacher complexity bounds [192], and
by the Lipschitz composition property of Rademacher averages, Theorem 7 in [186] it follows that

Pn
(
sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) +

ϵ

2

)
≥ (C.28)

Pn
(
sup
f∈F
|R̂l̂(f)− R̂l(f)|+ sup

f∈F
|R̂l(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) +

ϵ

2

)
≥ (C.29)

1− Pn
(
sup
f∈F
|R̂l̂(f)− R̂l(f)| >

ϵ

4

)
− Pn

(
sup
f∈F
|R̂l(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) +

ϵ

4

)
(C.30)

≥ 1− Pn
(
sup
f∈F
|R̂l̂(f)− R̂l(f)| >

ϵ

4

)
− 2e

−n
2

(
ϵ
4µ

)2
(C.31)
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Now,

Pn
(
sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T̂−1||2Rn(F) + ϵ

)
=

Pn
(
sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T̂−1||2Rn(F) + ϵ

)
Pn
(
sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) + (||T̂−1||2 − ||T−1||2)Rn(F) + ϵ

)
≥

1− Pn
(
{sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) +

ϵ

2
} and {(||T̂−1||2 − ||T−1||2)Rn(F) ≤

ϵ

2
}
)
≥

1− Pn
(
sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ L||T−1||2Rn(F) +

ϵ

2

)
− Pn

(
(||T̂−1||2 − ||T−1||2)Rn(F) ≤

ϵ

2

)
≥

1− 2e
−n

2

(
ϵ
4µ

)2
− Pn

(
(||T̂−1 − T−1||2) ≤

ϵ

2Rn(F)

)
− Pn

(
sup
f∈F
|R̂l̂(f)− R̂l(f)| >

ϵ

4

)
≥

1− 2e
−n

2

(
ϵ
4µ

)2
− 2C2e

− ϵ2

4Rn(F)29C2(
√
C+1)2

λmin(T̂2)
4

λmax(D)2
n − 2C2e

− ϵ2

4µ29C2(
√
C+1)2

λmin(T̂2)
4

λmax(D)2
n

≥ 1− 2e
−n

2

(
ϵ
4µ

)2
− 4C2e

− 1
max(Rn(F),µ)2

ϵ2

36C2(
√
C+1)2

λmin(T̂2)
4

λmax(D)2
n

≥ 1− 4e
−
[
min
(

1
8
,2 ln(C) 1

9Rn(F)2C2
λmin(T̂2)

4

(
√
C+1)

2
λmax(D)2

)]
ϵ2

4µ2
n

≥ 1− 4Ce
−
(

1
9Rn(F)2C2

λmin(T̂2)
4

(
√
C+1)

2
λmax(D)2

)
ϵ2

2µ2
n

So with probability at least 1− δ

sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤ 2Lλmin(T̂

2)Rn(F) +
6µRn(F)λmin(D)C2(

√
C + 1)

λmin(T̂ )2

√
1

n
ln

(
4C

δ

)
.

Or

sup
f∈F
|R̂l̂(f)−Rl,D(f)| ≤

[
2Lλmin(T̂

2) +
µλmin(D)

λmin(T̂ )2

√
1

n
ln

(
4C

δ

)]
Rn(F)g(C). (C.32)

with g(C) = 6C2(
√
C + 1)

Theorem 5.6 . By the unbiasedness of l we have that Rℓ,D(f̂) = Rl,D(f̂). Moreover since f̂ =

argmin
f

(R̂l̂(f)) we have R̂l̂(f̂) ≤ R̂l̂(g) ∀g ∈ F .

Federico Siciliano 188



3.0.3. Proofs

Let f∗ be so that minf∈F Rℓ,D(f) = Rℓ,D(f
∗). It follows that

Rℓ,D(f̂)−min
f∈F

Rℓ,D(f) = Rl,D(f̂)−min
f∈F

Rl,D(f)

= Rl,D(f̂)− R̂l,D(f̂) + R̂l,D(f̂)−Rℓ,D(f
∗)

≥ Rl,D(f̂)− R̂l̂,D(f̂)− (Rℓ,D(f
∗)− R̂l̂,D(f

∗))

≥ 2max
f∈F
|Rℓ,D(f)− R̂l̂,D(f)|

Lemma 5.4. Let us consider a vector x = (x1, . . . , xn) s.t.
∑n

i=1 xi = 1 and xi > 0 for all i, and a
vector a = (a1, . . . , an) s.t ai > 0 for i = 1, . . . , n. Let ψa(x) =

∏n
j=1 x

aj
j , it holds that

argmax
(xi,...,xn):

∑
i xi=1

ψa(x) = (a1, . . . , an)

Proof. Let us consider ϕa(x) = logψa(x) =
∑n

i=1 ai log(xi). Recalling that xn = 1− sumn−1
i=1 xi

∇ϕ(x) =



a1
x1
− an

1−
∑n−1

i=1 xi

a2
x1
− an

1−
∑n−1

i=1 xi

...
a1

xn−1
− an

1−
∑n−1

i=1 xi


∇ϕ(x) ≥ 0 ⇐⇒ ai(1−

n−1∑
i=1

xi)− anxi ≥ 0 fori = 1, . . . , n− 1

Namely, the maximum is reached for x that solves the following linear system has to be solved:
a1 + an a1 . . . a1

a2 a2 + an . . . a2
...

. . .

an−1 . . . an−1 + an



x1

x2
...

xn−1

 =


a1

a2
...

an−1


We have that

A :=


a1 + an a1 . . . a1

a2 a2 + an . . . a2
...

. . .

an−1 . . . an−1 + an

 =


1

1
...
1

 ·
[
a1, a2, . . . , an−1

]
+ anIn−1

A can be written as the sum of a rank-1 matrix and an times the identity. It holds that is∑n−1
i=1 ai + an ̸= 0 then A is invertible so rank(A) = n− 1 [262]. The non-homogeneous system also

has one unique solution. We know that xi = ai is a solution, so it’s the unique solution.
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Proof of Lemma 5.4

Lemma 5.5. For infinite annotators the posterior distribution over every sample calculated using
the true T converges to the dirac delta distribution centered on the true label almost surely (i.e.
limH→∞ pc,i

a.s.
= I(yi = c)).

Proof.

pc,i =
µc
∏H

h=1 Tc,yh,i∑C
j=1 µj

∏H
h=1 Tj,yh,i

(C.33)

H∏
h=1

Tc,yh,i =
C∏

j=1

T
Ni,j

c,j (C.34)

where Ni,j is the amount of annotators that labeled sample i as class j. Note that as a consequence
of the strong law of large numbers for the conditional random variables that are independent with
the same conditional distribution we have that the following equation is true almost surely:

lim
H→∞

Ni,j

H
= lim

H→∞

∑H
a=1 1{ya,i=j}

H
= E[1{ya,i=j}|y = j] = Tyi,j (C.35)

Combining we get:

lim
H→∞

pc,i = lim
H→∞

µc
∏C

j=1 T
Ni,j

c,j∑C
k=1 µk

∏C
j=1 T

Ni,j

k,j

(C.36)

= lim
H→∞

µc

(∏C
j=1 T

Tyi,j

c,j

)H
∑C

k=1 µk

(∏C
j=1 T

Tyi,j

k,j

)H (C.37)

= lim
H→∞

1

1 +
∑C

k=1
k ̸=c

µk
µc

(∏C
j=1

(
Tk,j

Tc,j

)Tyi,j
)H

(C.38)

(a)
= 1(yi = c) (C.39)

where in (a) we used the fact that due to the assumption that T is strictly dominant, then the term∏C
j=1 T

Tyi,j

k,j is maximized when k = yi and this term is strictly larger than all the other ones, see

Lemma 5.4. Indeed, if there exists k s.t.
∏C

j=1

(
Tk,j

Tc,j

)Tyi,j

> 1 than limH→infty pc,i = 0 because the
denominator goes to ∞.

So the only case for not having is that
∏C

j=1

(
Tk,j

Tc,j

)Tyi,j ≤ 1 for all k. Suppose we know that the

maximum of the function
∏C

j=1(xi)
ai is reached for xi = ai ∀i = 1, . . . , C than we’re done.

Indeed, we have that
∏C

j=1

(
Tk,j

Tc,j

)Tyi,j

> 1 , if and only if
∏C

j=1 (Tk,j)
Tyi,j >

∏C
j=1 (Tc,j)

Tyi,j since
we’re considering all k, for k = 1, . . . , C, k ̸= c. If yi ̸= c it means that yi is one of the values k can
assume and since that one is the max, it means that for sure it will be greater than

∏C
j=1 (Tc,j)

Tyi,j .
Otherwise, if yi = c it means that

∏C
j=1 (Tc,j)

Tyi,j >
∏C

j=1 (Tk,j)
Tyi,j so all elements are less than

1 and the limit goes to 1.
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Proof of Proposition 5.1: relationship between ρ and κ.

Proof.

po = P(ya = yB) =
C∑

k,h=1

P(yA = k, yB = k|y = h)P(y = h)

=
C∑

k,h=1

P(yA = k|y = h)P(yB = k|y = h)νh =
C∑

k,h=1

T 2
h,kνh

=

C∑
h=1

(1− p)2ch +
C∑

h=1

( p

C − 1

)2
(C − 1)ch = (1− p)2 + p2

C − 1

Now

P(yB = k) =
C∑

h=1

P(yB = k|y = h)P(y = h) =
C∑

h=1

Thkνh = (Tν)k

In the previous equation, we used that T is symmetric.

pe =
C∑

k=1

P(yA = k)P(yB = k) =
C∑

k=1

P(yA = k)P(yB = k) = cTT 2c

= 2
p

C − 1
− Cp2

(C − 1)2
+
(
1− Cp

C − 1

)2
νT ν

(C.40)

If the distribution of the true label y is symmetric the probability vector ν = ( 1
C , . . . ,

1
C ) So

νT ν = 1
C and so

κ =
C2p2 − 2C(C − 1)p+ (C − 1)2

(C − 1)2
(C.41)

From which it follows that
p = (1− C−1)(1−

√
κ) (C.42)

3.0.4 Experiments

Estimation of T

From Figure C.1, we can notice that the error in the estimation decreases as 1√
n

the n number of
samples increases. The results with respect to the minimum eigenvectors and with respect to the
maximum diagonal value are consistent with each other and very similar.

The results were obtained from a synthetic, generated dataset in which we generate the classes
predicted by the annotators according to various T matrices, choosing as all possible (admissible)
combinations that have [0, 0.2, 0.4] out of the diagonal and [0.6, 0.8, 1.0] on the diagonal. We can
notice in Figure C.1that the estimation becomes more precise as the number of annotators increases.

For experiments with 2, 3 and 7 annotators, we generate T as all possible symmetric, stochastic
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(a) 2 classes 2 annotators (b) 3 classes 2 annotators

(c) 4 classes 2 annotators (d) 4 classes 7 annotators

Figure C.1: Error in the Estimation of T . The error is ||T − T̂ ||2. We aggregated the matrices with the
same minimum eigenvalue rounded at the first decimal.

and diagonally dominant matrices with [0.1, 0.2, 0.3, 0.4, 0.5] out of the diagonal and [0.6, 0.8, 1.0] on
the diagonal. Classes are uniformly distributed. For experiments with 10 annotators, we generate
the matrices T as all possible (admissible) combinations that have [0, 0.2, 0.4] out of the diagonal
and [0.6, 0.8, 1.0] on the diagonal. In this case, we both include uniform distribution of the true
labels among the 4 classes and all the distributions so that the four classes can be partitioned
into two groups of indices so that classes in the same group have the same probability. Namely,
if the distributions on the classes are given by = [d1, d2, d3, d4], admissible distributions are the
ones for which there are two subsets if indices I and J so that I ∪ J = {0, 1, 2, 3, 4} and for all
i, k ∈ I : di = dk. The probability of the classes takes value in [0.1, 0.2, 0.3, 0.4]. This means that,
for instance, we will find the distribution [0.3, 0.3, 0.3, 0.1] or the distribution [0.4, 0.1, 0.1.0.4] but
not [0.3, 0.2, 0.1, 0.4].

Results for 2, 3 and 7 annotators were obtained by averaging over 3 runs. Results for 10 anno-
tators were obtained by averaging over 10 runs. The error that appears on axis y in the plots is
the difference in norm 2 of the true matrix T and the estimated matrix T̂ , obtained as explained in
Section 3.3.4.

We recall that if the minimum eigenvalue is 1, the matrix T is the identity, and thus, the
annotators always predict the exact class. The smaller the minimum eigenvalue, the noisier the
dataset will be.

With Figure C.2 we wanted to see if datasets with a higher noise level have higher approximation
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(a) 4 classes 7 annotators (b) 4 classes 10 annotators

Figure C.2: The plots show the trend of the error estimation as the minimum eigenvalue increases

errors than less noisy datasets. The plots show a minor trend: the estimation error also decreases
as the noise decreases. The trend is not particularly noticeable perhaps due to a large number of
annotators.

We recall that if the minimum eigenvalue is 1 or the maximum value of the diagonals is 1, the
matrix T is the identity, and thus, the annotators always predict the exact class. The smaller the
minimum eigenvalue or the maximum value on the diagonal, the noisier the dataset will be.

Synthetic datasets

The synthetic dataset consists of two-dimensional features (x = (x1, x2)). To create the dataset, we
generate points uniformly at random in [0, 1]2. Each point is then assigned a label (y) based on the
predetermined label distribution for each experiment. We divide the space into sections using lines
parallel to the bisector of the first and third quadrants (specifically, x2 = x1). See Figure C.3 for an
example. Our dataset comprises 10000 samples. In Figure C.4 we see, for different amounts of noise,
the results of the different aggregation methods when using a neural network without hidden layer
(i.e. a Logistic Regression) trained with Cross Entropy Loss. When noise is absent, we check that,
as expected, the results are all identical. In the presence of noise (0.6 and 0.8), we notice in general
that the random aggregation is the worst. The others are equivalent, except for the posterior (ours)
which obtains slightly higher results. Average, on the other hand, obtains a slightly lower value
with minimum diagonal value of T equal to 0.8. However, attention must be drawn to the fact that
the y-scale of the graph is very narrow and that in the case of 4 classes with a dataset constructed
as in Figure C.3, a linear classifier is not able to reach perfect accuracy.

Figure C.3: Synthetic data for 4 classes with distribution (0.4,0.1,0.4,0.1)
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Figure C.4: 5 annotators, 4 classes, no hidden layer.

Figure C.5

Referring to Figure 3.9 and the other figures of this section. The minimum value on the diagonal
of the matrix T denotes the annotators’ probability of assigning the correct label for the class in
which the noise is maximum. As expected, random aggregation is the lowest performing method,
and for all noise rates soft label methods perform better than methods using hard labels.

Figure C.4 shows the accuracy for the case of 4 classes and a NN with no hidden layer and 5
annotators. We can notice that even when the number of hidden neurons is insufficient to obtain
perfect accuracy. Hence, the classifier is not the best possible; our approach for a high-noise dataset
performs better.

The posteriors distribution is computed using the estimated T .

Implementation details

Logistic Regression is used for synthetic data with 2 classes, and a neural network with a hyperbolic
tangent activation function with one hidden layer is used for the dataset with more classes. The
data are separated into train, validation and test set using a split 64%, 16%, 20%, The models are
trained with the following configuration: batch size 256, learning rate 10−3, maximum number of
epochs 1000, early stopping of training based on validation loss with patience of 100 epochs. Once
the training is finished, the model with the lowest validation loss is retrieved.

For the experiments with CIFARN-10, the model, Resnet 34, is trained with the following
configuration: batch size 128, learning rate 10−3, with momentum (0.9) and learning rate decay
(0.0005) the maximum number of epochs 1000, we also used early stopping of training based on
validation loss with patience of 100 epochs. We didn’t use data augmentation. For the pre-trained
model, we used the model provided by torch-vision, https://pytorch.org/vision/main/models/
generated/torchvision.models.resnet34.html#resnet34.

All code is written in Python 3 Programming Language. The cvxpy package optimises T̂ , and
the PyTorch library is used for the models. All the experiments have been run on a machine with this
configuration: AMD EPYC 7373 Processor, 64GB RAM and NVIDIA GeForce RTX A4000 GPU.
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Appendix D

Personalized Recourse - Supplementary
Materials

Here, we outline how we modeled and simulated the preferences for the variables in the datasets.

• Gaussian Preferences: θ2 ∈ (0, 10]

• Exponential Preferences: θ ∈ (0, 10]

• Categorical Preferences: θi ∈ (0, 1) ∀i ∈ {1, . . . ,K} s.t.
∑K

i=1 θi = 1, where K is the
number of categories the feature has

Adult Income

• age: exponential

• workclass: categorical

• education: categorical

• marital_status: categorical

• occupation: categorical

• race: degenerate

• gender: degenerate

• hours_per_week: gaussian

• income: target

GiveMeSomeCredit

• RevolvingUtilizationOfUnsecuredLines: gaussian

• age: exponential

• NumberOfTime30-59DaysPastDueNotWorse: exponential
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• DebtRatio: gaussian

• MonthlyIncome: gaussian

• NumberOfOpenCreditLinesAndLoans: gaussian

• NumberOfTimes90DaysLate: exponential

• NumberRealEstateLoansOrLines: gaussian

• NumberOfTime60-89DaysPastDueNotWorse: exponential

• NumberOfDependents: exponential

• SeriousDlqin2yrs: target

HELOC

• ExternalRiskEstimate: gaussian

• MSinceOldestTradeOpen: gaussian

• MSinceMostRecentTradeOpen: gaussian

• AverageMInFile: gaussian

• NumSatisfactoryTrades: exponential

• NumTrades60Ever2DerogPubRec: gaussian

• NumTrades90Ever2DerogPubRec: gaussian

• PercentTradesNeverDelq: gaussian

• MSinceMostRecentDelq: gaussian

• MaxDelq2PublicRecLast12M: gaussian

• MaxDelqEver: exponential

• NumTotalTrades: exponential

• NumTradesOpeninLast12M: gaussian

• PercentInstallTrades: gaussian

• MSinceMostRecentInqexcl7days: gaussian

• NumInqLast6M: gaussian

• NumInqLast6Mexcl7days: gaussian

• NetFractionRevolvingBurden: gaussian

• NetFractionInstallBurden: gaussian

Federico Siciliano 196



Chapter D. Personalized Recourse - Supplementary Materials

• NumRevolvingTradesWBalance: gaussian

• NumInstallTradesWBalance: gaussian

• NumBank2NatlTradesWHighUtilization: gaussian

• PercentTradesWBalance: gaussian

• RiskPerformance: target
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