
Robotics and Autonomous Systems 172 (2024) 104582

A
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Dynamics-aware navigation among moving obstacles with application to
ground and flying robots
Spyridon G. Tarantos a, Tommaso Belvedere b, Giuseppe Oriolo b,∗

a Center of AI & Robotics (CAIR) and Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
b Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma, Via Ariosto 25, 00185 Rome, Italy

A R T I C L E I N F O

Keywords:
Robot navigation
Mobile robots
Collision avoidance
NMPC

A B S T R A C T

We present a novel method for navigation of mobile robots in challenging dynamic environments. The method,
which is based on Nonlinear Model Predictive Control (NMPC), hinges upon a specially devised constraint for
dynamics-aware collision avoidance. In particular, the constraint builds on the notion of avoidable collision
state, taking into account the robot actuation capabilities in addition to the robot–obstacle relative distance
and velocity. The proposed approach is applied to both ground and flying robots and tested in a variety
of static and dynamic environments. Comparative simulations with an NMPC using a purely distance-based
collision avoidance constraint confirm the superiority of the dynamics-aware version, especially for high-speed
navigation among moving obstacles. Moreover, the results indicate that the method can work with relatively
short prediction horizons and is therefore amenable to real-time implementation.
1. Introduction

The ability of a robot to navigate safely in a dynamic environment
is crucial in both service and field applications and makes real-time
motion planning necessary. In the literature, there are various motion
planning methods appropriate for robot navigation, among them the
Artificial Potential Fields (APFs) [1], methods like the velocity obsta-
cles [2] or the dynamic window approach [3], as well as online versions
of sampling-based motion planners [4].

Recently, NMPC has become a rather attractive approach for mobile
robot navigation in environments populated by static and/or moving
obstacles. Solving an Optimal Control Problem (OCP) at each control
cycle and by using the robot dynamic model as prediction model
along with appropriate state and input constraints, NMPC can generate
kinodynamically feasible motions that adapt to the changes of the
environments, while since the OCP is defined over a time horizon, the
resulting motion have also a notion of look-ahead. Finally, the constant
increase of the available computational capabilities, the development
of tailored algorithms like the Real-Time Iteration [5] (RTI) and of
appropriate software for embedded optimization [6], enable real-time
performance for NMPC.

In order to ensure that the generated motion will be collision-
free, one has to include in the NMPC appropriate collision avoidance
constraints. Typically, such a constraint aims to ensure that the volume
of the robot  and the obstacle  do not overlap, i.e.,

 ∩  = ∅. (1)

∗ Corresponding author.
E-mail addresses: spyridon.tarantos@nyu.edu (S.G. Tarantos), belvedere@diag.uniroma1.it (T. Belvedere), oriolo@diag.uniroma1.it (G. Oriolo).

However, in principle, condition (1) is not appropriate for numerical
optimization [7] and one has to resort to appropriate reformulations
and/or approximations.

If the considered environment is structured, one can leverage its
particular features and simply bind the robot state within appropriate
limits creating a collision-free corridor [8,9]. However, this is not
always possible, and explicit collision avoidance constraints have to
be included. In [7] the authors propose a smooth nonlinear version
of condition (1), appropriate for numerical optimization, while in [10]
the proposed constraint considers obstacles described by general non-
convex sets. In [11,12] signed distance fields are used in order to
generate collision-free trajectories, while in [13–16] condition (1) is
approximated by enveloping the volumes of the robot and the obstacles
with bounding geometries.

It should be noted that the aforementioned collision avoidance con-
straints are based on purely distance information neglecting completely
the dynamic state of the robot. When employed in an NMPC, the
effectiveness of a distance-based collision avoidance constraint strongly
depends on the length of the prediction horizon, in relation to the robot
actuation capabilities. Intuitively, the longer the prediction horizon,
the earlier an imminent collision can be detected and averted without
significant actuation effort, that in some cases can become prohibitive.
Nevertheless, the length of the prediction horizon is limited by the
real-time performance. In practice, the maximum achievable prediction
vailable online 17 November 2023
921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.robot.2023.104582
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:spyridon.tarantos@nyu.edu
mailto:belvedere@diag.uniroma1.it
mailto:oriolo@diag.uniroma1.it
https://doi.org/10.1016/j.robot.2023.104582
https://doi.org/10.1016/j.robot.2023.104582
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104582&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.

d
p
N
s
a
w
i

l
w
m
g
c
e
l
t
d
v
m

p
t
r
a
r
r
n
t
t

c
c
d
o

f
c

m
a
d
o
S
t
m
t
m

2

l
c
t
P

𝒒

b
𝑨
a

𝑩

w
a
t
a
g
L
s

𝒙

w

𝒎

3

t

v
o
k

e
a

a
o

3

r
s

t
p

horizon on typical robot processing platforms can become relatively
short, especially in cases of high-speed navigation which requires not
only the use of the robot full dynamics but also high control frequency.
In such cases, the use of a purely distance-based constraint puts the
robot safety in jeopardy, since an imminent collision may be detected
at a time when the robot does not have the necessary actuation power
to prevent it.

In principle, one can attribute look-ahead capabilities to the colli-
sion avoidance constraint by considering both the whole robot state
with respect to the obstacles and the robot actuation capabilities. This
idea has been already exploited in some classical motion planning
methods (e.g., [2,3,17,18]). The importance of considering the whole
robot state in order to guarantee safety has been also stressed in [19]
where the concept of Inevitable Collision States (ICS) was first intro-
uced. In [20], the idea of ICS is exploited by an anytime motion
lanning approach based on Rapidly-exploring Random Trees [21].
evertheless, these methods require a search in the input and state

pace, which is not consistent with the nature of the NMPC. A collision
voidance constraint based on the robot–obstacle relative state and the
orst-case stopping time of the robot has been applied to an MPC

n [22].
Inspired by the concept of ICS, we define the notion of Avoidable Col-

ision State (ACS), i.e., a state from which the robot can avoid collision
ith a certain obstacle. Building on this, we propose an NMPC-based
ethod for robot navigation, which drives the robot to an assigned

oal. To enforce kinodynamic feasibility of the resulting motion, we
onsider as prediction model the full dynamic model of the robot,
quipped with state and input constraints that reflect its hardware
imitations. Collision avoidance is guaranteed by including a constraint
hat requires the robot to be in an ACS at all times. The resulting
ynamics-aware navigation approach is improved by the integration of
elocity fields that prevent the method from getting trapped in local
inima by guiding the robot around obstacles.

Although the proposed navigation method can in principle be ap-
lied to any robotic platform, in this work we showcase its performance
hrough the application to a wheeled robot and a flying robot. Wheeled
obots are the most common mobile robotic platforms; moreover, they
re typically subject to nonholonomic constraints, which essentially
eflect on their dynamic models being underactuated. Therefore, they
epresent an important benchmark for high-speed navigation tech-
iques in general, and for our dynamics-aware method in particular. On
he other hand, validation on flying robots is also challenging in view of
heir complex dynamics, intrinsic 3D nature and agile maneuvrability.

In the simulations, the performance of the proposed method will be
ompared with a version of the NMPC in which the collision avoidance
onstraint is purely distance-based, confirming the superiority of the
ynamics-aware formulation for high-speed navigation among moving
bstacles.

The proposed navigation method is the evolution of our approach
irst introduced in [23]. In particular, we add here the following
ontributions:

• Integration of velocity fields in order to improve the performance
of the method in the vicinity of the obstacles.

• New extensive simulations in environments populated by many
obstacles moving in formation.

• Application and validation of the proposed method on a flying
robot.

The paper is organized as follows. The navigation problem is for-
ulated in Section 2. In Section 3 we outline the proposed NMPC

pproach, while in Section 4 we formally define the concept of ACS and
erive the associated collision avoidance constraint. In Section 5 we
ffer some guidelines for the implementation of the proposed method.
imulation results for a differential-drive robot are presented in Sec-
ion 6, while in Section 7 we illustrate the application of the proposed
ethod to flying robots. In Section 8 we integrate velocity fields to

he proposed method in order to improve the quality of the resulting
2

aneuvers. Finally, some concluding remarks are offered in Section 9. e
. Problem formulation

Consider a robotic system whose generalized coordinates are col-
ected in a configuration vector 𝒒 taking values in an 𝑛-dimensional
onfiguration space . For the sake of generality, we assume that
he robot is subject to 𝑘 ≥ 0 nonholonomic constraints, expressed in
faffian form as 𝑨𝑇 (𝒒)𝒒̇ = 𝟎, with 𝑨𝑇 (𝒒) ∈ R𝑘×𝑛.

The robot kinematics can be expressed as

̇ = 𝑮(𝒒)𝝂, (2)

eing 𝑮(𝒒) ∈ R𝑛×𝑚 a matrix whose columns span the null space of
𝑇 (𝒒), with 𝑚 = 𝑛 − 𝑘, and 𝝂 ∈ R𝑚 the robot pseudovelocities. In the
bsence of nonholonomic constraints, 𝝂 and 𝒒̇ coincide, i.e., 𝑮(𝒒) = 𝑰𝑛.

The robot dynamics can be expressed in Lagrange form as

(𝒒)𝒒̈ + 𝒏(𝒒, 𝒒̇) = 𝑺(𝒒)𝒖 +𝑨(𝒒)𝝀, (3)

here 𝑩(𝒒) ∈ R𝑛×𝑛 is the inertia matrix, 𝒏(𝒒, 𝒒̇) ∈ R𝑛 are the velocity
nd gravitational terms, 𝒖 ∈ R𝑛𝑢 are the generalized forces exerted by
he 𝑛𝑢 robot actuators, 𝑺(𝒒) ∈ R𝑛×𝑛𝑢 is the matrix mapping 𝒖 to gener-
lized forces performing work on 𝒒, and 𝑨(𝒒)𝝀 are the reaction forces
enerated by the nonholonomic constraints, with 𝝀 ∈ R𝑘 the associated
agrange multipliers. Manipulating (2) and (3) we can obtain the robot
tate-space reduced model as [24]

̇ = 𝒇 (𝒙, 𝒖) =
(

𝑮(𝒒)𝝂
𝑴−1(𝒒)(𝑬(𝒒)𝒖 −𝒎(𝒒, 𝝂))

)

, (4)

ith the state defined as 𝒙 = (𝒒 , 𝝂) and

𝑴(𝒒) = 𝑮𝑇 (𝒒)𝑩(𝒒)𝑮(𝒒)

(𝒒, 𝝂) = 𝑮𝑇 (𝒒)𝑩(𝒒)𝑮̇(𝒒)𝝂 +𝑮𝑇 (𝒒)𝒏(𝒒, 𝒒̇)

𝑬(𝒒) = 𝑮𝑇 (𝒒)𝑺(𝒒).

The robot operates in a workspace  with dimensions 𝑛𝑤 (𝑛𝑤 = 2 or
), populated by fixed and/or moving obstacles. We denote by (𝒒) ⊂

the volume occupied by the robot at configuration 𝒒 and by (𝑡) ⊂
he volume occupied by the obstacles at time 𝑡.

A navigation task is assigned to the robot in terms of a set of
ariables 𝒚 ∈  , which describe the position of a representative point1

n the robot and are related to the configuration via the forward
inematic map 𝒚 = 𝒌(𝒒).

The navigation problem considered in this paper consists in gen-
rating in real-time a motion that starts from any initial configuration
nd:

(1) drives the robot representative point to an assigned desired
position 𝒚𝑑 ;

(2) is kinodynamically feasible, in the sense that it is consistent
with model (4) and satisfies the existing constraints on both 𝒙
(e.g., joint and velocity limits) and 𝒖 (e.g., torque bounds);

(3) is collision-free, i.e., (𝒒(𝑡)) ∩ (𝑡) = ∅, for all 𝑡.

For the solution of this problem, we will assume that the robot is
t all times aware of its own state 𝒙, while position and velocity of the
bstacles are measured by appropriate on-board sensors.

. The proposed NMPC approach

In order to generate the desired motion, we rely on the use of a
eal-time NMPC algorithm. At each control cycle, NMPC solves a con-
trained OCP defined along a finite time horizon 𝐻 . Typically, for its

1 The task can be defined differently. For example, one may include in 𝒚
he orientation of certain bodies of the robot, or even set directly 𝒚 = 𝒒. The
roposed method can be applied without any modification, provided that the
rror vector is computed accordingly.

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
numerical solution, the OCP has to be transcribed into a discrete-time,
finite-dimensional Nonlinear Program (NLP).

Let us denote by 𝛿 the sampling interval used for the discretization
and by 𝑁 = 𝐻∕𝛿 the number of control intervals resulting within the
prediction horizon. For the NLP to be solved at the generic time instant
𝑡𝑘, let us denote by 𝒙𝑘|𝑖 and 𝒖𝑘|𝑖 the predicted robot state and control
inputs vector at the discrete time instant 𝑡𝑘+𝑖, computed at 𝑡𝑘. Let us
also denote by 𝒚𝑘|𝑖 and 𝒚̇𝑘|𝑖 the predicted position and velocity of the
representative point of the robot at time 𝑡𝑘+𝑖. We define the predicted
task error at 𝑡𝑘+𝑖 as 𝒆𝑘|𝑖 = 𝒚𝑑 − 𝒚𝑘|𝑖. Considering that our objective is to
drive the task error to zero, possibly using a minimum control effort,
the running and terminal costs can be expressed2, respectively, as

𝑉𝑘|𝑖(𝒙𝑘|𝑖, 𝒖𝑘|𝑖) = 𝒆𝑇𝑘|𝑖𝑸𝒆𝑘|𝑖 + 𝒚̇𝑇𝑘|𝑖𝑷 𝒚̇𝑘|𝑖 + 𝒖𝑇𝑘|𝑖𝑹𝒖𝑘|𝑖 (5)

𝑉𝑘|𝑁 (𝒙𝑘|𝑁) = 𝒆𝑇𝑘|𝑁𝑸𝑁𝒆𝑘|𝑁 + 𝒚̇𝑇𝑘|𝑁𝑷𝑁 𝒚̇𝑘|𝑁 . (6)

Here, 𝑸, 𝑷 and 𝑹 are weighting matrices of appropriate dimensions
for the task error, the velocity of the representative point and the
control effort throughout the prediction horizon, while 𝑸𝑁 and 𝑷𝑁 are
weighting matrices for the first two quantities at the final time instant.

The NLP to be solved at time instant 𝑡𝑘 is

min
𝑿𝑘 ,𝑼𝑘

𝑁−1
∑

𝑖=0
𝑉𝑘|𝑖(𝒙𝑘|𝑖, 𝒖𝑘|𝑖) + 𝑉𝑘|𝑁 (𝒙𝑘|𝑁)

subject to:
𝒙𝑘|0 − 𝒙𝑘 = 𝟎
𝒙𝑘|𝑖+1 − 𝑭 (𝒙𝑘|𝑖, 𝒖𝑘|𝑖) = 𝟎, 𝑖 = 0,… , 𝑁 − 1

𝒙min ≤ 𝒙𝑘|𝑖 ≤ 𝒙max, 𝑖 = 0,… , 𝑁

𝒖min ≤ 𝒖𝑘|𝑖 ≤ 𝒖max, 𝑖 = 0,… , 𝑁 − 1

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑡 𝑡𝑘,… , 𝑡𝑘+𝑁 ,

with 𝑿𝑘 = {𝒙𝑘|0,… ,𝒙𝑘|𝑁}, 𝑼𝑘 = {𝒖𝑘|0,… , 𝒖𝑘|𝑁−1}, 𝒙𝑘 the state of
the robot at time 𝑡𝑘 and 𝑭 (⋅, ⋅) the discrete-time model of the robot
obtained via numerical integration of (4) under the assumption of
piecewise-constant control inputs. The vectors 𝒙min,𝒙max and 𝒖min, 𝒖max
are respectively the lower/upper bounds on the state variables and on
the control inputs. As for the collision avoidance constraint, which is
the main contribution of this work, it is discussed in full detail in the
next section.

The solution of the NLP consists of the optimal state and input
sequences 𝑿∗

𝑘 and 𝑼∗
𝑘 , from which the first control action 𝒖∗𝑘|0 (i.e., the

one associated to the interval [𝑡𝑘, 𝑡𝑘+𝛿]) is extracted and applied to the
robot.

4. Collision avoidance

The proposed collision avoidance constraint hinges upon the notion
of Avoidable Collision State (ACS), i.e., a robot state from which it
is possible to avoid collisions. In this section, we will give a formal
definition of what an ACS is, and then derive the corresponding colli-
sion avoidance constraint that will be included in our NLP. Although
all computations are presented in a 2-dimensional workspace, the ex-
tension to the 3-dimensional case (e.g., for application to UAVs) is
straightforward. In fact, the method will be later applied to both ground
and flying robots.

2 This cost function represents a minimal implementation for our navigation
task, but specific terms relevant to the robotic platform of choice might be
added, e.g., a penalty on the orientation for flying robots or on joint velocities
for mobile manipulators.
3

Fig. 1. Obstacle 𝑗 is considered dangerous for the robot at a certain time if the
relative velocity 𝒓̇𝑗 of the robot with respect to the obstacle lies inside the collision
cone.

4.1. Preliminaries

First, we are going to use bounding spheres for both the robot and
the obstacles in order to approximate their occupancy volumes.3 In
particular, we take the smallest sphere that contains the robot volume
, and denote its radius by 𝜌 and its center by 𝑅. The position vector
of 𝑅 in the world frame is denoted by 𝒓 and is related to the robot
configuration via a forward kinematic map 𝒓 = 𝝈(𝒒). For its velocity
we have: 𝒓̇ = 𝑱 (𝒒)𝝂 where 𝑱 (𝒒) = 𝜕𝝈(𝒒)∕𝜕𝒒𝑮(𝒒). Similarly, we use a
sphere of radius 𝜌𝑗 to envelop the generic obstacle 𝑗 ⊂ , denoting its
center by 𝑂𝑗 , the corresponding position vector by 𝒐𝑗 and its velocity by
𝒐̇𝑗 . The state of the generic obstacle is denoted by 𝝃𝑗 = (𝒐𝑗 , 𝒐̇𝑗). Finally,
let 𝒏𝑗 = (𝒐𝑗 − 𝒓)∕‖𝒐𝑗 − 𝒓‖ be the unit vector pointing from 𝑅 to 𝑂𝑗 , and
𝒓𝑗 = 𝒓 − 𝒐𝑗 be the relative position of 𝑅 with respect to 𝑂𝑗 , so that the
corresponding relative velocity is 𝒓̇𝑗 . Refer to Fig. 1 for illustration.

The notion of ACS is obstacle-specific, in the sense that it charac-
terizes the possibility for the robot to avoid a certain obstacle. In view
of this, we first need to identify the obstacles for which there is an
actual danger of collision given the current state of the robot. For the
definition of the ACS we will assume that the obstacles move along a
given direction with constant speed. Note that although this assumption
represents only an approximation of the motion of the obstacle when
it is not moving with constant velocity, we emphasize how, within the
scope of a collision avoidance constraint, its accuracy increases as the
distance between the robot and the obstacle decreases.

In order to establish a criterion to evaluate whether an obstacle is
dangerous, we are going to use the concept of collision cone [2]. In
particular, by augmenting the obstacle sphere by the radius of the robot
sphere, denoting by 𝜌𝑎,𝑗 = 𝜌𝑗 + 𝜌 the total radius, the collision cone
is the cone defined by 𝑅 and the tangents from 𝑅 to the augmented
obstacle. The generic obstacle 𝑗 is dangerous at time 𝑡 if at the
same time instant 𝒓̇𝑗 lies inside the collision cone (see Fig. 1). Simple

3 Note that although a bounding sphere is a good approximation of the
occupancy volume of the robot and the obstacle and a reasonable choice
under a safety viewpoint in high-speed navigation, in cluttered environments
it might be necessary to consider multiple bounding spheres to approximate
the occupancy volume of a body. However, an increase in the number of
the bounding spheres would also increase the number of collision avoidance
constraints and thus the computational complexity of the NMPC.

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 2. The admissible half-plane for the relative position of robot 𝑅 with respect to
the obstacle 𝑂𝑗 at time 𝑡′, 𝑡′ ∈ [𝑡, 𝑡 + 𝛥𝑡].

geometrical arguments lead to the following condition for an obstacle
to be dangerous:

ℎ(𝒙, 𝝃𝑗) = 𝒏𝑇𝑗
𝒓̇𝑗

‖𝒓̇𝑗‖
−

√

‖𝒓𝑗‖2 − 𝜌2𝑎,𝑗
‖𝒓𝑗‖

≥ 0. (7)

4.2. Avoidable collision states

By definition, to avoid an obstacle which is non-dangerous at time
𝑡 the robot simply needs to keep its course. Therefore, we only need to
characterize the possibility of avoiding obstacles that are dangerous at
𝑡. In particular, we will say that the robot is in an Avoidable Collision
State (ACS) with respect to a dangerous obstacle if there exists at least
one trajectory that originates from the current state, is kinodynamically
feasible and avoids collision with the obstacle.

In principle, to conclude that a state is an ACS we should check
all feasible trajectories emanating from it, until we find at least one
that avoids collision. However, such a potentially exhaustive study is
incompatible with a real-time application. We shall therefore look at
one specific motion and ask ourselves if the robot can avoid collision
during that motion. If the answer is positive, then it can be concluded
that the current state is certainly an ACS.

Let us consider the robot at time 𝑡 with the position and velocity
of 𝑅 being 𝒓(𝑡) and 𝒓̇(𝑡) respectively. At the same time instant let us
also consider a dangerous obstacle 𝑗 being in state 𝝃𝑗 (𝑡) = (𝒐𝑗 (𝑡), 𝒐̇𝑗).
To avoid the imminent collision, it is sufficient to consider a collision-
free motion at the end of which the relative velocity of the robot with
respect to the obstacle projected on the original direction of collision
is zero, i.e.,

𝒏𝑇𝑗 (𝑡)𝒓̇𝑗 (𝑡 + 𝛥𝑡) = 0, (8)

where 𝒏𝑗 (𝑡) reflects the original direction of collision while 𝛥𝑡 is the
duration of the motion. So we consider the robot moving for a time
interval [𝑡, 𝑡+𝛥𝑡] in such a way that at each time instant 𝑡′ ∈ [𝑡, 𝑡+𝛥𝑡] its
relative velocity with respect to the obstacle projected on the original
direction of collision, 𝒏𝑇𝑗 (𝑡)𝒓̇𝑗 (𝑡

′), decreases with constant rate 𝛼 until
it eventually becomes zero. Note that the duration of the motion and
thus the rate 𝛼 need to be appropriate in order to maintain the motion
collision-free.
4

In order to determine the value of 𝛼, let us first consider a sufficient
condition for the motion to be collision-free:

𝒏𝑇𝑗 (𝑡)(𝒐𝑗 (𝑡
′) − 𝒓(𝑡′)) ≥ 𝜌𝑎,𝑗 ∀𝑡′ ∈ [𝑡, 𝑡 + 𝛥𝑡].

Denoting by 𝛾(𝑡) the robot–obstacle clearance and considering that at
time 𝑡 the relation 𝒏𝑇𝑗 (𝑡)(𝒐𝑗 (𝑡) − 𝒓(𝑡)) = 𝛾(𝑡) + 𝜌𝑎,𝑗 holds, after simple
substitution of 𝜌𝑎,𝑗 , the condition for collision-free motion becomes

𝒏𝑇𝑗 (𝑡)(𝒓𝑗 (𝑡
′) − 𝒓𝑗 (𝑡)) ≤ 𝛾(𝑡) ∀𝑡′ ∈ [𝑡, 𝑡 + 𝛥𝑡]. (9)

Note that inequality (9) defines an admissible half-plane for the relative
position of 𝑅 with respect to 𝑂𝑗 in which the robot has to remain for
all 𝑡′ ∈ [𝑡, 𝑡 + 𝛥𝑡] (see Fig. 2).

Throughout the considered motion, the position of 𝑅, projected on
the original direction of collision 𝒏𝑗 (𝑡) is described at time 𝑡′ ≥ 𝑡 as

𝒏𝑇𝑗 (𝑡)𝒓(𝑡
′) = 𝒏𝑇𝑗 (𝑡)𝒓(𝑡) + 𝒏𝑇𝑗 (𝑡)𝒓̇(𝑡)(𝑡

′ − 𝑡) + 1
2
𝛼(𝑡′ − 𝑡)2 (10)

and its projected velocity as

𝒏𝑇𝑗 (𝑡)𝒓̇(𝑡
′) = 𝒏𝑇𝑗 (𝑡)𝒓̇(𝑡) + 𝛼(𝑡

′ − 𝑡). (11)

As for the obstacle, the position of 𝑂𝑗 at 𝑡′ ≥ 𝑡 projected on the original
direction of collision is

𝒏𝑇𝑗 (𝑡)𝒐𝑗 (𝑡
′) = 𝒏𝑇𝑗 (𝑡)𝒐𝑗 (𝑡) + 𝒏𝑇𝑗 (𝑡)𝒐̇𝑗 (𝑡

′ − 𝑡). (12)

From (8), (9), (10), (11) and (12) and for 𝑡′ = 𝑡 + 𝛥𝑡 we get for the
duration of motion that

𝛥𝑡 ≤ 2𝛾(𝑡)
𝒏𝑇𝑗 (𝑡)(𝒓̇(𝑡) − 𝒐̇𝑗)

. (13)

For 𝑡′ = 𝑡+𝛥𝑡, by substituting (8) and (11) in (13) and considering also
that 𝛼 < 0 we get the condition for the required deceleration in the
direction of collision that need to be satisfied in order to maintain the
motion collision-free:

𝛼 ≤ −1
2

(

𝒏𝑇𝑗 (𝑡)(𝒐̇𝑗 − 𝒓̇(𝑡))
)2

𝛾(𝑡)
.

In order to ensure that the considered motion can be implemented
by the robot, we will investigate whether the required deceleration
projected on the robot actuation space lies within the actuation limits.
In particular, we want to ensure that the robot is able to enforce at least
the minimum required deceleration in the original direction of collision
that is

𝛼̄ = −1
2

(

𝒏𝑇𝑗 (𝑡)(𝒐̇𝑗 − 𝒓̇(𝑡))
)2

𝛾(𝑡)
.

Note that 𝛼̄ depends on both the robot and the 𝑗-th obstacle state.
Considering that the acceleration of 𝑅 is

𝒓̈ = 𝑱 (𝒒)𝝂̇ + 𝑱̇ (𝒒)𝝂 (14)

and that from (4) we can express 𝝂̇ as

𝝂̇ = 𝑴−1(𝒒)(𝑬(𝒒)𝒖 −𝒎(𝒒, 𝝂)), (15)

we can obtain the required control inputs for this deceleration by
substituting 𝒓̈ = 𝒏𝑗 (𝑡)𝛼̄ and (15) in (14). Using the Moore–Penrose
pseudoinverse, we get the minimum norm control inputs needed in
order to apply the deceleration 𝒓̈ = 𝒏𝑗 (𝑡)𝛼̄ to 𝑅, that is

𝒖𝛼̄(𝒙, 𝝃𝑗) =
(

𝑱 (𝒒)𝑴−1(𝒒)𝑬(𝒒)
)† 𝜷(𝒙, 𝝃𝑗), (16)

where

𝜷(𝒙, 𝝃𝑗) = 𝒏𝑗 (𝑡)𝛼̄ − 𝑱̇ (𝒒)𝝂 + 𝑱 (𝒒)𝑴−1(𝒒)𝒎(𝒒, 𝝂).

So the motion is kinodynamically feasible if the following condition is
satisfied:

𝒖 ≤ 𝒖 (𝒙, 𝝃) ≤ 𝒖 . (17)
min 𝛼̄ 𝑗 max

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.

4

a
c
p
i
c
a

N
a
o
e

s
a
H
o
𝛿
r
c

c
o
a
p
[

𝑙
T
W
t
t

o

This condition can be used as a constraint in order to guarantee that
the robot is always at an ACS.

Note that the ACS property for a state is strongly related to its being
safe according to [19], i.e., not being an Inevitable Collision State (ICS).
However, the two properties differ in two aspects:

• The number of obstacles considered by the property. An ICS
is defined with respect to all the obstacles (or at least all the
obstacles visible by the robot), a practice that obviously increases
the computational time, while the ACS property is defined with
respect to a specific (dangerous) obstacle;

• The way in which the property is established. To prove that a
state is not ICS, in principle one has to search the whole control
input set (or a finite subset [20]) to find a collision-free motion.
On the other hand, to characterize a state as ACS we only look
at the relative velocity of the robot with respect to the dangerous
obstacle, and specifically investigate whether it is possible to stop
motion along the robot–obstacle direction before collision.

.3. Use of the ACS condition in the NLP

Note that constraint (17) is suitable for enforcing collision avoid-
nce since every robot motion that leads to collision will violate the
onstraint before the collision occurs. So we will use (17) in the
roposed NLP applying it for each considered obstacle, for each time
nstant throughout the prediction horizon. In order to ensure that the
onstraint is inactive if non-dangerous obstacles are considered and to
void using if statements, we multiply 𝒖𝛼̄(𝒙, 𝝃𝑗) as given by (16) by the

sigmoid function 𝑔(ℎ(𝒙, 𝝃𝑗)) = 1∕(1 + 𝑒−𝜅ℎ(𝒙,𝝃𝑗)), with 𝜅 being a constant
value that tunes the steepness of the sigmoid function, getting

𝒖𝑏(𝒙, 𝝃𝑗) = 𝑔(ℎ(𝒙, 𝝃𝑗))
(

𝑱 (𝒒)𝑴−1(𝒒)𝑬(𝒒)
)† 𝜷(𝒙, 𝝃𝑗).

So the constraint that will be applied in the NLP is

𝒖min ≤ 𝒖𝑏(𝒙𝑘|𝑖, 𝝃𝑗,𝑘|𝑖) ≤ 𝒖max,
𝑖 = 0,… , 𝑁,

𝑗 = 1,… , 𝑛𝑜,
(18)

where 𝑛𝑜 is the number of obstacles considered by the NMPC and
𝝃𝑗,𝑘|𝑖 is the predicted state of the 𝑗-th obstacle at 𝑡𝑘+𝑖. Given the state
𝝃𝑗,𝑘 = (𝒐𝑗,𝑘, 𝒐̇𝑗,𝑘) of the 𝑗-th obstacle at time 𝑡𝑘, its predicted state at time
𝑡𝑘+𝑖 is obtained using the model 𝝃𝑗,𝑘|𝑖 = (𝒐𝑗,𝑘 + 𝑖𝛿𝒐̇𝑗,𝑘, 𝒐̇𝑗,𝑘). Clearly, any
inaccuracy in the considered prediction model introduces uncertainty.
However, the fast re-planning of the NMPC in combination with the rel-
atively short prediction horizon can account for an unexpected change
in the obstacle motion.

Finally, it should be noted that the proposed collision avoidance
constraint is inherently more conservative than its purely distance-
based counterparts as it considers in addition to the robot–obstacle
distance, their relative velocity and the robot actuation capabilities.
However, one can always add conservativeness in order to enhance the
robot and environment safety, by simply increasing the radius of the
bounding sphere of the obstacle.

5. Implementation guidelines

The implementation of the proposed method will significantly affect
its performance. In this section, we will focus on three main aspects,
namely the tuning of the weighting matrices, the initialization of the
NMPC solution, and the compensation of the delay introduced by the
solution of the NLP, and propose some simple guidelines.

1) Tuning the weighting matrices: The choice of the weighting ma-
trices depends on many factors, including the actuation capabilities of
the robot, its inertial properties, the number and velocity of the obsta-
cles, and the size of the prediction horizon. In our simulations, these
matrices were determined after a campaign of trials on representative
5

scenarios, following some simple guidelines: d
• 𝑸𝑁 should be (in norm) at least one order of magnitude larger
than 𝑸. With this choice the robot will be ultimately driven to
the goal, but still allowed to move temporarily away from it if
this is required for collision avoidance.

• 𝑷 and 𝑷𝑁 should be one order of magnitude smaller than 𝑸 and
𝑸𝑁 , respectively. This allows the robot to move at high speed
when it is far from the goal, while providing an appropriate
damping (and therefore avoiding oscillations) in the vicinity of
the goal.

• 𝑹 should be chosen in such a way that in (5) the first term
dominates over the last term. This makes it possible for the robot
to perform aggressive motions, e.g., in order to quickly approach
to goal or avoid obstacles.

2) Initialization of the NMPC solution: At each control instant 𝑡𝑘, the
LP solver used by the NMPC is initialized at the solution of time 𝑡𝑘−1
ppropriately shifted in time. This has the effect of reducing the number
f iterations that the solver has to perform to converge to a solution,
ffectively decreasing the computation time.
3) Delay compensation: In Section 3, we implicitly assumed an in-

tantaneous solution of the NLP at time 𝑡𝑘 in order to obtain the control
ction that will be applied to the system for the time interval [𝑡𝑘, 𝑡𝑘+𝛿].
owever, in practice, the computational time required for the solution
f the NLP can be significant, even comparable to the sampling time
. In order to deal with this delay that can potentially jeopardize the
obot and environment safety (especially at high speeds), we employ a
ompensation by prediction approach [25].

In particular, let us consider an upper bound𝐷 ≤ 𝛿 for the maximum
omputational time for the NLP.4 Instead of 𝑡𝑘, we trigger the solution
f the NLP at time 𝑡𝑘−𝐷 using an estimation of the state that the robot
nd the obstacles will have at 𝑡𝑘. For the estimation, we integrate the
rediction models of the robot and the obstacles for the time interval
𝑡𝑘 − 𝐷, 𝑡𝑘] using their state at 𝑡𝑘 − 𝐷 and the control 𝒖∗𝑘−1|0 that acts

on the robot. It is clear that the accuracy of this estimation depends on
the accuracy of the prediction models for the robot and the obstacles.
This is also true for the performance of the NMPC in general. In any
case, thanks to its fast re-planning on a control horizon, the NMPC has
an intrinsic anticipatory behavior that alleviates the effect of possible
inaccuracies.

There are alternative ways to deal with the delay, e.g., increasing
the integration timestep to achieve a higher control frequency [26],
employing high-frequency sensitivity-based approximations of the NLP
to be applied in between samples [27], or adopting an event-triggered
NMPC approach to reduce the total amount of computations, solving
the NLP only when the triggering condition is met [28].

6. Application to ground robots

To show the effectiveness of the proposed method, we will first test
it on a differential-drive robot. In this section, we will first present
the considered robot and then show the results of the conducted
simulations.

6.1. Differential-drive robot

The considered differential-drive robot is illustrated in Fig. 3. The
length and width of the vehicle are respectively 𝑙1 = 0.60 m and
2 = 0.30 m. The two driving wheels of the robot have radius 𝑟 = 0.10 m.
he robot is also equipped with a caster wheel for mechanical balance.
e assume that the projection of the centroid of each driving wheel on

he ground corresponds to the contact point between the ground and
he wheel. The length of the line segment connecting the centroids of

4 In practice one can obtain 𝐷 by considering a conservative upper bound
f the maximum computational times reported after a simulation campaign on
ifferent scenarios.

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 3. The considered differential-drive robot. With dashed line is illustrated the
bounding circle that is used for the collision avoidance constraint.

the two driving wheels is 𝑏 = 0.30 m. We denote by 𝐵 the midpoint of
this line segment. The robot center of mass is located at 𝐶 which lies
on the sagittal axis of the vehicle at a distance 𝑑 = 0.25 m from 𝐵 and
coincides with the geometric center of the robot. The vehicle mass and
its moment of inertia are respectively 𝑚𝑐 = 50 kg and 𝐼𝑐 = 1.14 kg m2,
making it a rather heavy vehicle. We consider the robot to be controlled
at the wheel torque level with torque bounds set to 2.5 Nm.

The vector of the robot generalized coordinates is

𝒒 = (𝑥𝑏, 𝑦𝑏, 𝜃𝑏) ∈ R3,

with 𝑥𝑏 and 𝑦𝑏 being the Cartesian coordinates of 𝐵 in the world frame
𝑤 and 𝜃𝑏 being the orientation of the vehicle and consequently of the
driving wheels,

The kinematic constraint of the considered robot emanates from its
contact with the ground through its wheels. The ground-wheel friction,
which for simplicity we assume to be adequate to prevent slippage,
prevents the driving wheels from moving along the direction of their
common axis, enforcing the following nonholonomic constraint

(

sin 𝜃𝑏 −cos 𝜃𝑏 0
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨𝑇 (𝒒)∈R1×3

⎛

⎜

⎜

⎝

𝑥̇𝑏
𝑦̇𝑏
𝜃̇𝑏

⎞

⎟

⎟

⎠

⏟⏟⏟
𝒒̇

= 0. (19)

Regarding the robot kinematics (2), we define the vector of pseudove-
locities as 𝝂 = (𝜐, 𝜔), with 𝜐 and 𝜔 being respectively the robot driving
and steering velocity,5 and

𝑮(𝒒) =
⎛

⎜

⎜

⎝

cos 𝜃𝑏 0
sin 𝜃𝑏 0
0 1

⎞

⎟

⎟

⎠

.

Regarding the robot dynamics (3), we consider the control input
vector 𝒖 = (𝜏𝑟, 𝜏𝑙) with 𝜏𝑟 and 𝜏𝑙 being the torques on the right
and left driving wheels respectively, and 𝑩(𝒒), 𝒏(𝒒, 𝒒̇) and 𝑺(𝒒) being
respectively

𝑩(𝒒) =
⎛

⎜

⎜

⎝

𝑚𝑐 0 −𝑚𝑐𝑑 sin 𝜃𝑏
0 𝑚𝑐 𝑚𝑐𝑑 cos 𝜃𝑏

−𝑚𝑐𝑑 sin 𝜃𝑏 𝑚𝑐𝑑 cos 𝜃𝑏 𝐼𝑐 + 𝑚𝑐𝑑2

⎞

⎟

⎟

⎠

5 As driving velocity we define the velocity of the robot along its longitudi-
nal axis, while as steering we define the angular velocity around the vertical
axis at 𝐵.
6

𝒏(𝒒, 𝒒̇) =
⎛

⎜

⎜

⎝

−𝑚𝑐𝑑 cos 𝜃𝑏𝜃̇2𝑏
−𝑚𝑐𝑑 sin 𝜃𝑏𝜃̇2𝑏

0

⎞

⎟

⎟

⎠

𝑺(𝒒) =
⎛

⎜

⎜

⎝

1∕𝑟 cos 𝜃𝑏 1∕𝑟 cos 𝜃𝑏
1∕𝑟 sin 𝜃𝑏 1∕𝑟 sin 𝜃𝑏
𝑏∕(2𝑟) −𝑏∕(2𝑟)

⎞

⎟

⎟

⎠

.

As concerns the navigation task, we consider as representative the
point 𝐶 of the robot and so

𝒚 =
(

𝑥𝑏 + 𝑑 cos 𝜃𝑏
𝑦𝑏 + 𝑑 sin 𝜃𝑏

)

.

Finally, regarding the collision avoidance constraint, the bounding
sphere that envelops the robot degrades to a bounding circle (see in
Fig. 3 the bounding circle illustrated with a dashed line). In our case,
the center 𝑅 of the smallest circle coincides with the geometric center
of the robot and consequently with the point 𝐶, and thus

𝒓 = 𝒚.

The radius of the bounding circle is 𝜌 = 0.34 m.

6.2. Simulations

In order to show the effectiveness of the proposed method, we
conducted a series of simulations in which the differential-drive robot
has to navigate various static and dynamic environments. The simu-
lations were implemented in MATLAB run on an Intel Core i9-9900K
CPU at 3.60GHz. For the NMPC, and in order to achieve real-time
performance, we used the RTI method [5], implemented within the
MATLAB interface of the ACADO Toolkit [29]. In the considered sim-
ulations we assume that the robot obtains information about the state
of the obstacles (relative position and velocity) via an onboard laser
rangefinder with an infinite field-of-view (FOV).

Along with the effectiveness of the proposed method, we would also
like to highlight the superiority of the dynamics-aware collision avoid-
ance constraint over its distance-based counterparts. For this purpose,
in the simulations, we will compare the proposed NMPC method, with
the dynamics-aware (DA) collision avoidance constraint, with a version
of it that considers a purely distance-based (DB) collision avoidance
constraint of the form
‖

‖

‖

𝒓𝑘|𝑖 − 𝒐𝑗,𝑘|𝑖
‖

‖

‖

≥ 𝜌𝑎,𝑗 , 𝑖 = 0,… , 𝑁, 𝑗 = 1,… , 𝑛𝑜,

where 𝒓𝑘|𝑖 and 𝒐𝑗,𝑘|𝑖 are respectively the position of 𝑅 and 𝑂𝑗 at 𝑡𝑘+𝑖.
For both methods, the obstacles considered for collision avoidance
are the 𝑛𝑜 = 5 closest to the robot within its sensor FOV. In the
simulations we consider the sampling interval for real-time control
to be 𝛿 = 31 ms in both cases. Regarding the prediction horizons,
we chose the larger value possible that does not violate the real-time
performance. Specifically, the prediction horizon for the DB method is
set to 𝐻 = 0.992 s while for the DA method is set to 𝐻 = 0.93 s.

The simulations are conducted 25 static and 25 dynamic environ-
ments. In each environment, the two methods are tested using three
different values for the maximum driving velocity 𝑣max while the steer-
ing velocity is set to 𝜔max = 20∕3 𝑣max rad/s. The performance of the
two methods is assessed according to the following criteria: (1) success
rate, (2) time 𝑡𝑔 needed for the robot to reach the goal, (3) control
effort 𝐽𝜏 = ∫ 𝑡𝑔0 ‖𝝉‖2𝑑𝑡, (4) length 𝑙𝑝 of the resulting path, (5) duration
of the longest iteration 𝛿max and (6) average iteration time 𝛿. Note that a
simulation is considered successful if the robot reaches the goal without
experiencing any collision and the maximum computational time does
not exceed the limit of 31 ms.

The accompanying video, available also at https://youtu.be/nRV4
UYqYbuA, contains video clips of selected simulations.

https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA
https://youtu.be/nRV4UYqYbuA

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Table 1
Averaged results over 25 environments for the proposed dynamics-aware (DA) method vs the distance-based (DB) method. Top: static environments, bottom:
dynamic environments.

Static environments
DB DA

𝑣max [m/s]; 𝑡𝑠 [s] 0.9; 0.93 1.1; 1.116 1.2; 1.209 0.9; 0.93 1.1; 1.116 1.2; 1.209
success rate (%) 96 96 88 96 96 92
𝑡𝑔 [s] 27.16 24.29 25.07 26.63 24.76 23.98
𝐽𝜏 [104 N2m2s] 1164.63 1495.56 1763.30 1046.58 1397.92 1601.14
𝑙𝑝 [m] 19.56 20.12 20.85 19.51 19.96 20.48
𝛿max [ms] 25.21 25.15 25.46 26.84 27.55 27.11
𝛿 [ms] 15.31 14.26 13.67 16.40 15.96 15.50

Dynamic environments
DB DA

𝑣max [m/s]; 𝑡𝑠 [s] 0.9; 0.93 1.1; 1.116 1.2; 1.209 0.9; 0.93 1.1; 1.116 1.2; 1.209
𝑣𝑜 [m/s] 0.45 0.55 0.6 0.45 0.55 0.6
success rate (%) 72 64 40 80 84 80
𝑡𝑔 [s] 29.65 25.52 24.38 30.61 29.78 27.19
𝐽𝜏 [104 N2m2s] 1766.29 2001.42 2009.93 1625.94 2171.06 2510.07
𝑙𝑝 [m] 20.37 20.69 20.77 20.62 21.83 21.31
𝛿max [ms] 26.16 25.65 26.14 28.18 28.56 28.85
𝛿 [ms] 15.47 14.63 14.19 16.87 16.64 16.40
Fig. 4. Motions generated by the two methods in one of the static environments, with
𝑣max = 1.2 m∕s. The DB method cannot avoid collision with an obstacle, whereas DA
goes safely through the narrow passage and successfully reaches the goal. See also
simulation 2 in the accompanying video.

6.2.1. Static environments
In the first simulation campaign, the robot has to navigate into

25 environments occupied by 10 randomly placed static obstacles (see
Fig. 4). In all the simulations the starting configuration of the robot is
𝒒𝑠 = (2, 2, 𝜋∕3) while the goal position is 𝒚𝑔 = (16, 15). Table 1 (top)
reports, for increasing values of the maximum driving velocity 𝑣max,
the simulation results of the two methods averaged over the 25 envi-
ronments.

From the results, it is evident that the two methods have similar per-
formance for lower 𝑣max, reporting the same success rate. In simulation
1 of the accompanying video, we offer an illustrative example of the
robot motion for 𝑣max = 0.9 m∕s. However, by increasing the maximum
driving velocity to 𝑣max = 1.2 m∕s, one can notice the success rate of
the DB method dropping to 88%, while at the same time, DA is hardly
affected by this increase. An indication for the cause of this behavior
7

can be the stopping time6 𝑡𝑠 reported on Table 1, that in the case of
𝑣max = 1.2 m∕s is significantly larger than the prediction horizon. This
suggests that a robot navigating under the DB method with the given
maximum driving velocity would require either a longer prediction
horizon or greater braking capabilities in order to remain safe. On the
contrary, this is not necessary for the DA method that works effectively,
even with a shorter prediction horizon than the DB method. Fig. 4
illustrates a representative example of the different behavior of the two
methods for 𝑣max = 1.2 m∕s (see also simulation 2 in the accompanying
video). In particular, it shows the DB method running into a collision
during its attempt to pass through a narrow passage formed by two
adjacent obstacles. On the other hand, the DA method reacts almost 1 s
earlier to the presence of the obstacle, thanks to the dynamics-aware
collision avoidance constraint that can detect a violation earlier than
the distance-based constraint (see in Fig. 5 how the control inputs of
the two methods start to differ at 𝑡 ≈ 2 s). This early reaction enables
DA to go through the narrow passage and reach the goal safely.

From the rest of the performance criteria of Table 1, one can deduce
that the trajectories resulting from the DA method are on average
slightly shorter and less energy-consuming than those of its distance-
based counterpart. Nevertheless, the simplicity of the distance-based
collision avoidance constraint leads to a reduced duration of the longest
iteration for the DB method compared to those reported for the DA
method.

6.2.2. Dynamic environments
In the second simulation campaign, the robot is called to navigate

in 25 environments. Each environment is occupied by 10 static and 10
moving obstacles. The considered moving obstacles travel at a constant
speed 𝑣𝑜 = 𝑣max∕2 along straight paths. After traveling a distance of
2.45 m, each obstacle changes its direction of motion by 60◦ towards
the robot. Again, as starting configuration of the robot we set 𝒒𝑠 =
(2, 2, 𝜋∕3) and as goal position 𝒚𝑔 = (16, 15).

The results for increasing values of the maximum driving velocity
are reported in Table 1 (bottom). From those, it is clear that the pres-
ence of the moving obstacles affects the performance of both methods.
Nevertheless, the success rate of the DA method is maintained over
80%, showing its superior performance over the DB method, whose
success rate goes as low as 40%.

Similar to the static, in the dynamic environment the DB method
has its higher success rate for the lowest 𝑣max, which is, however,

6 By the term stopping time 𝑡𝑠 we denote the minimum time required for a
robot traveling on a straight line with maximum driving velocity 𝑣max in order
to stop.

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 5. The driving and steering velocity profiles and the control inputs generated by
the two methods in the static environment, with 𝑣max = 1.2 m∕s.

lower than the success rate reported for the DA method. An illustrative
example of the robot moving in one of the dynamic environments with
𝑣max = 0.9 m∕s is given in simulation 3 of the accompanying video.

It is clear that in the dynamic environment, the maneuvers needed
to be performed by the robot in order to avoid an imminent collision
with a moving obstacle are more demanding, as in a worst-case scenario
the robot may not only have to stop but also accelerate in the opposite
direction in order to avoid it. A maneuver like this might require more
than the actuation capabilities available if the danger of an imminent
collision is not detected on time. This explains why the performance
of the DB method decreases with the increase of 𝑣max, plummeting to
40% for 𝑣max = 1.2 m∕s as well as why it has such a low performance
even in the case of the lowest maximum velocity. On the other hand,
the DA method guaranteeing that the robot is at all times in an ACS,
enables the robot to veer off collision paths earlier.

The snapshots of Fig. 6 illustrate a representative example of the
behavior of the two methods for 𝑣max = 1.2 m∕s in one of the considered
dynamic environments (the full motion of the robot is offered in
simulation 4 of the accompanying video). In Fig. 7 we also offer the
velocity profiles and the control inputs generated throughout the robot
motion.

Once again, the DB is unable to safely navigate the robot to the
goal, as it leads to collision with one of the moving obstacles. On
the contrary, the DA method is able to avert imminent collisions with
the obstacles of the environment by reacting earlier to their presence,
reaching the goal safely. Note in particular how in Fig. 7 the control
inputs of DA started to differ from those of the DB method in the
presence of the moving obstacle and how this late reaction of the
DB method to the same obstacle led to torque saturation, which was,
however, not enough to prevent the imminent collision. One can also
appreciate the elaborate avoidance maneuver performed by the DA
method in front of another moving obstacle combining a reverse motion
and a quick reorientation.

Apart from the aforementioned simulation campaigns and in an
attempt to further assess the effectiveness of the proposed method, we
tested the performance of the two methods in a series of challenging
dynamic environments. The first one is a more cluttered version of the
8

already considered dynamic environments consisting of 10 static and
15 moving obstacles that travel at a speed of 0.4 m∕s, with direction
changes of 60◦ towards the robot every 2.45 m. In the considered
simulation, the robot maximum driving velocity is set to 𝑣max = 1.2 m∕s.
The results that are only shown in simulation 5 of the accompanying
video, show that the proposed method is effective also in this more
challenging dynamic environment, with its distance-based counterpart
failing once again to navigate safely.

The two methods were also tested in environments in which the
obstacles move in formation. The first one consists of 36 obstacles,
arranged in 6 groups. In each group, the obstacles form a straight line,
while the gap between each other is slightly larger than the diameter
of the bounding circle of the considered mobile robot. The obstacles
move at speed 𝑣𝑜 = 0.65 m∕s, with the obstacles of the same group
having the same direction of motion. This direction changes by 60◦

toward the robot every 3.8 s. In the simulation, the robot starts from
initial configuration 𝒒𝑠 = (2, 2, 𝜋∕3) and is called to reach the goal
position 𝒚𝑔 = (16, 15) while the maximum permitted driving velocity
is set to 𝑣max = 1.3 m∕s. Snapshots of the motion resulting by the two
methods are offered in Fig. 8, while Fig. 9 shows the velocity profiles
and the control inputs generated throughout the robot motion (for a
video with the full robot motion see simulation 6 in the accompanying
video). In Fig. 8 we can see that the DB method was not able to navigate
safely in this dynamic environment, colliding at its first encounter with
a moving obstacle. On the other hand, the DA method was able to
avoid the collision with the same obstacle by reacting earlier to its
presence (see in Fig. 9 the associated control inputs). Although this
behavior of the proposed method was already evident from the previous
simulations, here one can appreciate how the DA method behaves
when the robot is called to pass through a moving narrow passage
(created by the obstacles moving in formation). In particular, at time
𝑡 = 13.671 s, and in view of the narrow passage, the robot tends to
align its heading direction with the direction of motion of the group of
obstacles attempting to mirror their motion. This maneuver permitted
the robot to place itself between the two obstacles (see snapshot at time
𝑡 = 15.19 s), and by properly arranging its steering and driving velocity,
to navigate through the narrow passage. In the same way, the robot
passes through the next narrow passage formed by the following group
of obstacles, reaching, in the end, the goal safely. It should be noted
that throughout the robot motion the maximum computational time
was 28.3 ms.

The second environment of this type consists of 32 moving obstacles
arranged in such a way that they form 4 circles. Again the clearance
between two obstacles of the same formation is large enough to permit
the bounding circle of the robot to pass through it. The obstacles are
again moving at a speed 𝑣𝑜 = 0.65 m∕s with the common direction
of motion of each group changing every 3.8 s by 60◦ toward the
robot. In Fig. 10 we offer snapshots of the motion resulting from the
two methods in the considered environment, while the full motion
along with the velocity profiles and the control inputs are offered in
simulation 7 of the accompanying video. Once again, the DB method is
unable to navigate safely in the dynamic environment and collides at
the very beginning of the robot motion with one of the obstacles. On
the contrary, the DA method started immediately a collision avoidance
maneuver that permitted the robot to pass through the narrow passage
formed between two moving obstacles. Note that in order to do so the
robot had to mirror the motion of the two obstacles. The robot follows
the same strategy in order to exit from the circular formation. In this
way, the proposed dynamics-aware method was able to avoid all the
imminent collisions and navigate safely in this challenging dynamic
environment.

7. Application to flying robots

The proposed method has been also tested on a flying robot in
order to showcase its applicability to fast highly maneuverable systems

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 6. Snapshots of the motion generated by the two methods in one of the dynamic environments, with 𝑣max = 1.2 m∕s. As in the static environment, the DB method cannot
avoid collision with an obstacle, whereas the DA method safely navigates to the goal. See also simulation 4 in the accompanying video.
while maintaining real-time performance. As we already mentioned,
the collision avoidance constraint and the related discussion can be
easily extended to the 3-dimensional case, so we will directly examine
how the proposed method performs in a dynamic environment.

7.1. Quadrotor

The vehicle we consider is the quadrotor UAV illustrated in Fig. 11,
whose equations of motion correspond to that of a single rigid body
(SRB) under the action of the forces/torques generated by the rotors.
We assume that the robot center of mass 𝐶 is located at the geometric
center of the vehicle 𝐵. The vehicle mass and its body-fixed moment of
inertia are respectively 𝑚𝑐 = 0.033 kg and 𝑰𝑐 = diag{𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧}, with
𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 1.395 ⋅ 10−5 kg m2 and 𝐼𝑧𝑧 = 2.173 ⋅ 10−5 kg m2.

The position and orientation of the quadrotor are described respec-
tively by the Cartesian coordinates of the center of mass (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) ∈
R3 and by the RPY Euler angles (𝜙, 𝜃, 𝜓) ∈ R3 expressing the orien-
tation of the body-fixed frame 𝑏 with respect to the inertial world
frame 𝑤. The robot configuration is then described by the generalized
coordinates

𝒒 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , 𝜙, 𝜃, 𝜓) ∈ R6.

We find convenient to express the translational dynamics in the
world frame 𝑤, and the rotational dynamics in the body frame 𝑏.
With this choice, the velocity vector is defined as

𝝂 = (𝒗𝑐 ,𝝎𝑏) ∈ R6,

with 𝒗𝑐 = (𝑥̇𝑐 , 𝑦̇𝑐 , 𝑧̇𝑐) being the linear velocity and 𝝎𝑏 = (𝜔𝑏𝑥, 𝜔𝑏𝑦, 𝜔𝑏𝑧)
the angular velocity in  .
9

𝑏

Regarding the vector of control inputs, we consider 𝒖 = (𝑇 , 𝜏𝜙,
𝜏𝜃 , 𝜏𝜓) ∈ R4, composed of the total thrust 𝑇 and of the three torques in
the body frame 𝑏, obtained from the cumulative effect of the aerody-
namic forces and torques generated by the rotors. In our simulations,
we will assume the thrust 𝑇 to be bounded to [0, 0.8] N, the torques 𝜏𝜙
and 𝜏𝜃 to [−2.5 ⋅ 10−3, 2.5 ⋅ 10−3] Nm and 𝜏𝜓 to [−2 ⋅ 10−3, 2 ⋅ 10−3] Nm.

We can express the quadrotor dynamics in the form (4), with

𝑮(𝒒) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑰3×3 𝟎3×1 𝟎3×1 𝟎3×1
𝟎1×3 1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
𝟎1×3 0 cos𝜙 − sin𝜙
𝟎1×3 0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

⎞

⎟

⎟

⎟

⎟

⎠

𝑴(𝒒) = diag{𝑚𝑐 , 𝑚𝑐 , 𝑚𝑐 , 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧}

𝒎(𝒒, 𝝂) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

−𝑚𝑐𝑔
(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝜔𝑏𝑦𝜔𝑏𝑧
(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝜔𝑏𝑥𝜔𝑏𝑧
(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝜔𝑏𝑥𝜔𝑏𝑦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑬(𝒒) =

⎛

⎜

⎜

⎜

⎜

⎝

− sin𝜓 sin𝜙 − cos𝜓 sin 𝜃 cos𝜙 𝟎1×3
sin𝜙 cos𝜓 − sin𝜓 sin 𝜃 cos𝜙 𝟎1×3

−cos 𝜃 cos𝜙 𝟎1×3
𝟎3×1 𝑰3×3

⎞

⎟

⎟

⎟

⎟

⎠

.

For the collision avoidance constraint, we consider a bounding
sphere with radius 𝜌 = 0.1 m and centered at a reference point 𝑅
displaced by a small distance 𝑑𝑟 above the center of the quadrotor:

𝒓 =
⎛

⎜

⎜

𝑥𝑟
𝑦𝑟
⎞

⎟

⎟

=
⎛

⎜

⎜

𝑥𝑐
𝑦𝑐
⎞

⎟

⎟

+𝑹(𝜙, 𝜃, 𝜓)
⎛

⎜

⎜

0
0

⎞

⎟

⎟

,

⎝𝑧𝑟⎠ ⎝𝑧𝑐⎠ ⎝−𝑑𝑟⎠

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 7. The driving and steering velocity profiles and the control inputs generated by
the two methods in the dynamic environment, with 𝑣max = 1.2 m∕s. The dashed vertical
lines indicate the time instants of the snapshots.

with 𝑹(𝜙, 𝜃, 𝜓) being the rotation matrix obtained from the Euler
angles. Concerning the navigation task, we express the error vector with
respect to the same point 𝑅, so the position vector is defined as 𝒚 = 𝒓.

7.2. Simulations

The proposed method has been also tested in a 3D dynamic en-
vironment where a quadrotor has to navigate to a predefined goal
while avoiding moving obstacles. Specifically, we have considered the
Crazyflie 2.1 quadrotor model as described in Section 7.1.

The simulations have been performed in MATLAB, with the NMPC
being transcribed using CasADi [30] in a multiple shooting formulation,
while the resulting NLP is solved using the Ipopt solver [31]. Given
the available time budget fixed by the sampling time 𝛿 = 20 ms,
we have set the solver to perform 6 iterations for each control step,
warm-starting it with an initialization based on the solution obtained
at the previous cycle, in a similar fashion to the RTI method. The time
horizon 𝐻 for the optimization is set to 0.5 s. With these settings, the
optimization is able to run in real-time, with a maximum computation
time 𝛿max = 17 ms for each control cycle.

The proposed scenario consists of four obstacles with a radius of
0.2 m, three of which are moving with a constant speed ‖𝒗𝑜‖ ∈
[0.7, 1.6] m∕s, while the robot typically moves with a higher velocity, re-
sulting in a motion much faster than those in the previous simulations.
The robot starts at 𝒒𝑠 = (0, 0, 0, 0, 0, 0) in hovering state and has to reach
a goal 𝒚𝑔 = (5, 1, 1) m. In Fig. 12 we report snapshots of the resulting
motion, that show the quadrotor that avoids a series of obstacles that
progressively obstruct its path toward the goal. The results show that
the vehicle is able to perform fast maneuvers around the obstacles.
The robot slows down only marginally while performing the most
demanding obstacle avoidance maneuvers (i.e., while avoiding the first
two obstacles at 𝑡 ≈ 1 s and 𝑡 ≈ 2 s) maintaining a linear velocity
‖𝑣𝑐‖ above 1.1 m∕s and 1.5 m∕s. Moreover, a velocity of over 2 m∕s
is maintained while navigating around the fourth and last obstacle (see
the velocity profile in Fig. 13). The dynamic nature of the motion
10

is also shown in Fig. 14, where we can observe how after avoiding
the first obstacle (second snapshot) the robot performs a quick pitch
to accelerate forward. Finally, in Fig. 15 we report the profile of the
control inputs, where it is shown how the proposed method utilizes all
of the available thrust range and saturates the roll and pitch torques 𝜏𝜙
and 𝜏𝜃 during the first instants of motion.

An animation of the generated motion can be found in simula-
tion 8 of the accompanying video, along with additional simulation
results (simulation 9) for a second scenario that considers five moving
obstacles, which we omit here for compactness.

8. Integration of velocity fields

In this section, we work out and validate an extension of the basic
dynamics-aware navigation method based on the integration of velocity
fields.

8.1. Velocity fields

The above result show that the proposed robot navigation method
can be effectively used in both static and dynamic environments, even
in rather challenging conditions. However, in the course of our simu-
lation campaign, there were cases in which the robot almost stopped
in front of a fixed obstacle before circumventing it. Similarly, in the
vicinity of moving obstacles, we noticed the robot backtracking before
it starts circumventing them. A reason for this behavior can be the
antagonistic nature of the terms in the cost function associated with
the task error and the control effort. Although this behavior does not
directly affect the effectiveness of the proposed method, one would
clearly like to avoid it as the time needed for the robot to reach its goal
increases. Obviously, appropriate tuning could improve this behavior,
however, this is an environment-dependent process.

One could argue that APFs, very popular in robotics, provide a
direct action aimed at steering the robot away from nearby obstacles;
whereas optimization-based navigation methods, as those proposed
on NMPC, only see the obstacles through constraints violation. This
suggests the idea of integrating APFs into NMPCs schemes to combine
the efficient short-range collision avoidance of the former with the
superior lookahead capability of the latter.

Here, we are going to accordingly modify the proposed method
taking inspiration from the concept of vortex fields [32]. The vortex
fields were initially introduced as a local minima-free extension to APFs
substituting the repulsive field assigned to the obstacles with flows
that rotate around them. By following these flows the robot is able to
circumvent the obstacles without getting trapped in local minima.

Based on this idea, from the obstacles that are considered for
collision within the NMPC, we are going to pick the one that is more
likely to violate the collision avoidance constraint (18). To this obstacle,
we will assign a velocity field that rotates around it. In this way, the
robot can circumvent the obstacle by simply aligning its velocity with
the field. To enable this robot action, we will consider the velocity
of the field as a reference velocity for a representative point of the
robot, in our case point 𝐶, and we will include an additional term
in the cost functions (5) and (6) that penalize deviations from this
reference. This term will continue influencing the solution of the NMPC
until the considered obstacle stops being dangerous or a solution that
circumvents the obstacle has been found.

Specifically, consider the robot being at state 𝒙𝑘 at time instant 𝑡𝑘
and the NLP to be solved at the same time instant. Collect the 𝑛𝑜 obsta-
cles that are considered by the NLP in the set ̄𝑘 = {1(𝑡𝑘),… ,𝑛𝑜 (𝑡𝑘)}.
Denote by 𝑣 ∈ ̄𝑘 the obstacle to which we assign the velocity field.
Since we aim to assign the velocity field to the obstacle in ̄𝑘 that
is more likely to violate the collision avoidance constraint (18), 𝑣 is
defined according to

𝑣 = arg max
 (𝑡)∈̄

‖

‖

‖

‖

𝒖𝑏(𝒙𝑘, 𝝃𝑗,𝑘) −
𝒖max+𝒖min

2
𝒖 − 𝒖

‖

‖

‖

‖

,

𝑗 𝑘 𝑘 ‖

‖

max min ‖

‖∞

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 8. Snapshots of the motion generated by the two methods in an environment occupied by obstacle moving in linear formation, with 𝑣max = 1.3 m∕s. See also simulation 6 in
the accompanying video.
Fig. 9. The velocity profiles and the control inputs generated by the two methods in
the environment occupied by obstacle moving in linear formation, with 𝑣max = 1.3 m∕s.
11
with 𝝃𝑗,𝑘 being the state of the 𝑗-th obstacle at the considered time
instant and the division between the vectors being the element-wise
one. By 𝑂𝑣 we denote the center of the bounding circle of 𝑣 and by
𝒐𝑣 the associated position vector.

The velocity field will be formed around the bounding circle of
obstacle 𝑣. If 𝒑 = (𝑥, 𝑦) is the position vector of a point 𝑃 in the
workspace, we define the velocity field around the obstacle as

𝜻𝑣(𝒑,𝒐𝑣) = ±𝜇
(

𝜕‖𝒑−𝒐𝑣‖
𝜕𝑦 − 𝜕‖𝒑−𝒐𝑣‖

𝜕𝑥

)𝑇
,

where 𝜇 is a user-defined parameter. The sign indicates the rotation
of the field, with the ’+’ corresponding to a counterclockwise (CCW)
rotation and the ’-’ to a clockwise (CW) one. Since we aim to align the
velocity of the robot representative point 𝐶 with the velocity of the
field, we will penalize its deviation by adding in the running (5) and
terminal cost (6) of the NLP, respectively, the terms

(𝒚̇𝑘|𝑖 − 𝜻𝑣(𝒚𝑘|𝑖,𝒐𝑣,𝑘|𝑖))𝑇𝑺(𝒚̇𝑘|𝑖 − 𝜻𝑣(𝒚𝑘|𝑖,𝒐𝑣,𝑘|𝑖))

(𝒚̇𝑘|𝑁 − 𝜻𝑣(𝒚𝑘|𝑁 ,𝒐𝑣,𝑘|𝑁))𝑇𝑺𝑁 (𝒚̇𝑘|𝑁 − 𝜻𝑣(𝒚𝑘|𝑁 ,𝒐𝑣,𝑘|𝑁)),

where 𝑺 and 𝑺𝑁 the associated weighting matrices and 𝒐𝑣,𝑘|𝑖 the
position of 𝑂𝑣 at the predicted time 𝑡𝑘+𝑖. Note that 𝑺 and 𝑺𝑁 are
chosen to be at least one order of magnitude smaller than 𝑸 and 𝑸𝑁
respectively. With this choice, we aim to prevent the terms associated
with the velocity fields from dominating the cost function and thus the
solution.

There are two points to be discussed regarding the integration of
the velocity field:

• the selection of its direction of rotation;
• the relaxation of its influence to the solution.

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 10. Snapshots of the motion generated by the two methods in an environment occupied by obstacle moving in circular formation, with 𝑣max = 1.3 m∕s. See also simulation
7 in the accompanying video.
Fig. 11. The considered quadrotor UAV. With dashed line is illustrated the bounding
sphere that is used for the collision avoidance constraint.

Direction of rotation: We remind that in this work we use as an
initial guess for the NLP to be solved at time 𝑡𝑘 the solution of the
NLP that was solved at the previous control cycle at time 𝑡𝑘−1. If
this initial guess corresponds to a motion that tends to go around the
obstacle from a specific direction, it is reasonable to say that at the
current control cycle, we would like to continue following the same
direction. So for the direction of the velocity field at 𝑡 , we take into
12

𝑘

account the motion resulting from the solution of the NLP at 𝑡𝑘−1, and
specifically the predicted path of the representative point 𝐶. If 𝑿∗

𝑘−1
is the optimal state sequences obtained from the solution of the NLP
at time 𝑡𝑘−1, by applying the forward kinematic map 𝒚 = 𝒌(𝒙) to its
elements we can express the predicted path of 𝐶 at time 𝑡𝑘−1 as the
sequence 𝒀 ∗

𝑘−1 = {𝒚∗𝑘−1|0, 𝒚
∗
𝑘−1|1,… , 𝒚∗𝑘−1|𝑁}. Considering now that given

an accurate prediction model of the robot, the vector 𝒚∗𝑘−1|1 corresponds
to the position vector of 𝐶 at 𝑡𝑘, we can use the vector 𝒚∗𝑘−1|𝑁 −𝒚∗𝑘−1|1 as
an indication of the intended direction of the robot motion with respect
to the obstacle (see Fig. 16 for illustration). So the CCW direction
for the velocity field, and thus the ’+’ sign, will be considered if the
following condition is satisfied

(𝒚∗𝑘−1|𝑁 − 𝒚∗𝑘−1|1) × 𝒏𝑣 ≥ 𝟎, (20)

where 𝒏𝑣 is the unit vector pointing from 𝐶 to 𝑂𝑣 at 𝑡𝑘 and is defined
as

𝒏𝑣 =
𝒐𝑣,𝑘 − 𝒚∗𝑘−1|1

‖𝒐𝑣,𝑘 − 𝒚∗𝑘−1|1‖
.

In a different case, the CW direction, and thus the ’-’ sign, will be
considered.

Relaxation of field influence: We want the velocity field to influence
the solution only if (𝑖) the obstacle is in the vicinity of violating the
collision avoidance constraint and (𝑖𝑖) a solution that circumvents the
obstacle has not already been found. If 𝝃𝑣,𝑘 is the state at 𝑡𝑘 of the
obstacle to which the velocity field is assigned, then the field will
actually influence the solution if the following conditions hold
‖

‖

‖

‖

𝒖𝑏(𝒙𝑘, 𝝃𝑣,𝑘) −
𝒖max+𝒖min

2
𝒖 − 𝒖

‖

‖

‖

‖

≥ 𝜏, (21)

‖

‖

max min ‖

‖∞

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 12. Snapshots of the motion generated by the proposed method. The vehicle successfully navigates around the obstacles to reach the goal. Note that the top and bottom
images are rendered with two different camera views to provide a clearer perspective. See also the accompanying video.
Fig. 13. The linear velocity profile generated by the proposed method. The robot
maintains a high speed even while avoiding the obstacles.

Fig. 14. The Euler angles profiles describing the attitude of the quadrotor during the
simulation.

‖𝒐𝑣,𝑘|𝑁−1 − 𝒚∗𝑘−1|1‖ − 𝜼𝑇 (𝒚𝑘−1|𝑁 − 𝒚∗𝑘−1|1) ≥ 0, (22)

with

𝜼 =
𝒐𝑣,𝑘|𝑁−1 − 𝒚∗𝑘−1|1

‖𝒐𝑣,𝑘|𝑁−1 − 𝒚∗𝑘−1|1‖

and 𝜏 is a user-defined value.
13
Fig. 15. The thrust (top) and torque (bottom) inputs generated by the proposed
method. Note the saturation of the thrust (both lower and upper bounds) occurring
multiple times during the simulation and of two of the torque components during the
first instants of motion.

Condition (21) ensures that the field influences the solution only
when the obstacle is dangerous enough to violate the collision avoid-
ance constraint, while it also sets a threshold under which the field is
not necessary to be activated. Note that the smaller the value of 𝜏 the
earlier the robot will start circumventing the obstacle.

Regarding condition (22), it ensures that if the initial guess to the
NLP, obtained from the solution at 𝑡𝑘−1, corresponds to a motion that
is able to circumvent the predicted obstacle at the end of the predic-
tion horizon, then the velocity field will not influence the solution at
the current control cycle. More precisely, we consider a trajectory to

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 16. The rotation of the velocity field at 𝑡𝑘 will be CCW, if the predicted path of
the representative point 𝐶 at time 𝑡𝑘−1 tends to go around the obstacle from its right,
as illustrated in the figure. Alternatively, the rotation will be CW.

Fig. 17. The gray area represents the half-plane in which 𝐶 needs to lie inside at the
predicted time instant 𝑡𝑘+𝑁−1 in order for the field to be active at 𝑡𝑘. Note that if 𝐶
lies outside the half-plane at 𝑡𝑘+𝑁−1 then we consider that the computed motion at 𝑡𝑘−1
circumvents the obstacle (gray line) and thus the field will be deactivated.

circumvent the obstacle if it is such that the minimal arc between the
projection of point 𝐶 at time 𝑡𝑘 and at time 𝑡𝑘+𝑁−1 on the bounding
circle of the obstacle spans an angle greater than 90◦. So, considering
the predicted position of the center 𝑂𝑣 of the obstacle at time 𝑡𝑘+𝑁−1,
condition (22) defines a half-plane in which if the point 𝐶 lies in at
time 𝑡𝑘+𝑁−1, the minimal arc on the bounding circle of the obstacle is
lower than 90◦ and thus the predicted motion does not circumvent the
obstacle (see Fig. 17 for illustration). Violation of condition (22) would
mean that a path that circumvents the obstacle has already been found.
14
Note that if any of the conditions (21) and (22) is violated, then we
prevent the field from influencing the solution by setting 𝑺 = 𝑺𝑁 =
𝟎2×2, until the conditions are both satisfied again.

8.2. Simulations

To show the advantages of this modified version of the proposed
method (DA-V), we will compare it with the original method (DA) in
one of the dynamic environments in which we observed its particular
behavior. Note that for this simulation we consider the differential-
drive robot of Section 6.1, however, the modification is general and
can be applied to flying robots as well. For the considered scenario,
the robot maximum driving velocity is set to 𝑣max = 0.9 m∕s, while the
moving obstacles travel at constant speed 𝑣𝑜 = 0.45 m∕s with direction
changes of 60◦ toward the robot. For both methods, the prediction
horizon is set at 𝐻 = 0.93 s. For the DA-V we set 𝜇 = 3 and 𝜏 = 0.25.
In Fig. 18 we show snapshots of the resulting robot motion under the
two methods (see also simulation 10 in the accompanying video). The
first snapshot illustrates the situation in which the DA method almost
stops in front of a static obstacle before it starts the maneuver to
circumvent it (see also the associated velocity profile in Fig. 19). On
the other hand, DA-V under the influence of the velocity field initiates
the maneuver to circumvent the obstacle earlier and so it does not have
to decelerate significantly. The field stops influencing the solution when
a circumventing motion is found as it is evident after 𝑡 = 9.331 s when
the robot has already stopped rotating around the obstacle. Again in
the presence of the moving obstacle, the influence of the velocity field
is also evident with DA-V rotating CW around it. On the other hand,
we can see that under the DA method, the robot backtracks in front of
the same obstacle and performs a fast reorientation in order to avoid
it. This leads the robot to follow a longer path than the one followed
by the DA-V and to reach the goal 5 s later.

Finally, note that the benefits of the proposed modification come
without an increase in the computational cost, as the maximum re-
ported computational time was around 27 ms for both methods.

9. Conclusion

The navigation of robots in dynamic environments can be chal-
lenging, especially when they travel at a high speed. In this article,
we presented a novel real-time NMPC approach suitable for this kind
of scenarios. In an attempt to avoid using collision avoidance con-
straints based on purely distance information, we defined the notion
of ACS (avoidable collision state) and, based on this, formulated a
hard constraint on the robot state guaranteeing that it can execute a
collision avoidance trajectory in the presence of a dangerous obstacle.
The proposed method applied to a differential-drive robot was tested
extensively in both static and dynamic environments, while its per-
formance was compared with the one of an NMPC that considers a
purely distance-based collision avoidance constraint. The results indi-
cate the effectiveness of the proposed method and its superiority over
its distance-based counterpart, especially when the robot navigates at
high speed in cluttered dynamic environments.

To further assess its performance, the method was applied to a
flying robot moving in dynamic environments. The simulation results
revealed the effectiveness of the proposed method, showing also that it
is suitable for agile robotic platforms.

Finally, the modification of the proposed method with the integra-
tion of the velocity field improved its performance in the vicinity of the
obstacles without adding any significant computational cost.

Future work will aim at the experimental validation of the proposed
method in human-crowded environments, as well as its application to
multi-body robots (e.g., mobile manipulators).

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
Fig. 18. Snapshots of the motion generated by the proposed method DA and the modified version with the velocity field integration DA-V in one of the dynamic environments,
with 𝑣max = 0.9 m∕s.
Fig. 19. The velocity profiles generated by DA and DA-V in one of the dynamic
environments, with 𝑣max = 0.9 m∕s.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.
15
Acknowledgements

This work was performed while Spyridon G. Tarantos was a Ph.D.
student at the Department of Computer, Control and Management
Engineering, Sapienza University of Rome.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104582.

References

[1] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in:
1985 IEEE Int. Conf. on Robotics and Automation, Vol. 2, 1985, pp. 500–505.

[2] P. Fiorini, Z. Shiller, Motion planning in dynamic environments using velocity
obstacles, Int. J. Robotics Res. 17 (7) (1998) 760–772.

[3] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision
avoidance, IEEE Robot. Autom. Mag. 4 (1) (1997) 23–33.

[4] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, J.P. How, Real-time motion
planning with applications to autonomous urban driving, IEEE Trans. Control
Syst. Technol. 17 (5) (2009) 1105–1118.

[5] M. Diehl, H. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, F. Allgöwer, Real-time
optimization and nonlinear model predictive control of processes governed by
differential-algebraic equations, J. Process Control 12 (4) (2002) 577–585.

[6] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, M. Diehl, acados – A modular open-source
framework for fast embedded optimal control, Math. Program. Comput. (2021).

[7] X. Zhang, A. Liniger, F. Borrelli, Optimization-based collision avoidance, IEEE
Trans. Control Syst. Technol. 29 (3) (2021) 972–983.

[8] J.V. Frasch, A. Gray, M. Zanon, H.J. Ferreau, S. Sager, F. Borrelli, M. Diehl,
An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of
ground vehicles, in: 2013 European Control Conference, 2013, pp. 4136–4141.

https://doi.org/10.1016/j.robot.2023.104582
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb1
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb2
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb3
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb3
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb3
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb4
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb4
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb4
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb4
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb4
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb5
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb5
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb5
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb5
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb5
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb6
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb6
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb6
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb6
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb6
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb7
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb8
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb8

Robotics and Autonomous Systems 172 (2024) 104582S.G. Tarantos et al.
[9] A. Liniger, A. Domahidi, M. Morari, Optimization-based autonomous racing of
1:43 scale RC cars, Optim. Control Appl. Methods 36 (5) (2015) 628–647.

[10] A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers, P. Patrinos,
Embedded nonlinear model predictive control for obstacle avoidance using
PANOC, in: 2018 European Control Conference, 2018, pp. 1523–1528.

[11] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K.
Goldberg, P. Abbeel, Motion planning with sequential convex optimization and
convex collision checking, Int. J. Robotics Res. 33 (9) (2014) 1251–1270.

[12] R. Bonalli, A. Cauligi, A. Bylard, M. Pavone, GuSTO: Guaranteed sequential
trajectory optimization via sequential convex programming, in: 2019 Int. Conf.
on Robotics and Automation, 2019, pp. 6741–6747.

[13] H. Febbo, J. Liu, P. Jayakumar, J.L. Stein, T. Ersal, Moving obstacle avoidance
for large, high-speed autonomous ground vehicles, in: 2017 American Control
Conference, 2017, pp. 5568–5573.

[14] C. Jewison, R.S. Erwin, A. Saenz-Otero, Model predictive control with ellip-
soid obstacle constraints for spacecraft rendezvous, IFAC-PapersOnLine 48 (9)
(2015) 257–262, 1st IFAC Workshop on Advanced Control and Navigation for
Autonomous Aerospace Vehicles ACNAAV’15.

[15] H. Febbo, P. Jayakumar, J.L. Stein, T. Ersal, Real-Time Trajectory Planning
for Automated Vehicle Safety and Performance in Dynamic Environments, J.
Autonomous Veh. Syst. 1 (4) (2021) 041001.

[16] B. Brito, B. Floor, L. Ferranti, J. Alonso-Mora, Model predictive contouring
control for collision avoidance in unstructured dynamic environments, IEEE
Robot. Autom. Lett. 4 (4) (2019) 4459–4466.

[17] O. Gal, Z. Shiller, E. Rimon, Efficient and safe on-line motion planning in
dynamic environments, in: 2009 IEEE Int. Conf. on Robotics and Automation,
2009, pp. 88–93.

[18] B. Damas, J. Santos-Victor, Avoiding moving obstacles: the forbidden velocity
map, in: 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp.
4393–4398.

[19] T. Fraichard, H. Asama, Inevitable collision states. a step towards safer robots? in:
2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol. 1, 2003, pp.
388–393.

[20] S. Petti, T. Fraichard, Safe motion planning in dynamic environments, in: 2005
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005, pp. 2210–2215.

[21] S.M. LaValle, J.J. Kuffner, Jr., Randomized kinodynamic planning, Int. J.
Robotics Res. 20 (5) (2001) 378–400.

[22] G. Buizza Avanzini, A.M. Zanchettin, P. Rocco, Constrained model predictive
control for mobile robotic manipulators, Robotica 36 (1) (2018) 19–38.

[23] S.G. Tarantos, G. Oriolo, A dynamics-aware NMPC method for robot navigation
among moving obstacles, in: Int. Conf. on Intelligent Autonomous Systems, 2022,
pp. 129–143.

[24] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and
Control, Springer, London, 2009.

[25] J. Rawlings, D. Mayne, M. Diehl, Model Predictive Control: Theory, Computation,
and Design, Nob Hill Publishing, 2017.

[26] S. Sun, A. Romero, P. Foehn, E. Kaufmann, D. Scaramuzza, A comparative study
of nonlinear mpc and differential-flatness-based control for quadrotor agile flight,
IEEE Trans. Robot. 38 (6) (2022) 3357–3373.

[27] L. Biegler, X. Yang, G. Fischer, Advances in sensitivity-based nonlinear model
predictive control and dynamic real-time optimization, J. Process Control 30
(2015) 104–116.
16
[28] A. Eqtami, D.V. Dimarogonas, K.J. Kyriakopoulos, Novel event-triggered strate-
gies for model predictive controllers, in: 2011 50th IEEE Conference on Decision
and Control and European Control Conference, IEEE, 2011, pp. 3392–3397.

[29] B. Houska, H.J. Ferreau, M. Diehl, An auto-generated real-time iteration algo-
rithm for nonlinear MPC in the microsecond range, Automatica 47 (10) (2011)
2279–2285.

[30] J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings, M. Diehl, CasADi – A software
framework for nonlinear optimization and optimal control, Math. Program.
Comput. 11 (1) (2019) 1–36.

[31] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Program. 106 (1)
(2006) 25–57.

[32] C. De Medio, G. Oriolo, Robot obstacle avoidance using vortex fields, in: S.
Stifter, J. Lenarčič (Eds.), Advances in Robot Kinematics, Springer Vienna,
Vienna, 1991, pp. 227–235.

Spyridon G. Tarantos received his Diploma in Mechanical
Engineering in 2017 from National Technical University of
Athens, Greece, and his Ph.D. in Automatic Control in 2023
from Sapienza University of Rome, Italy. He is currently
Post-Doctoral Associate at New York University Abu Dhabi.
His research interests lie in the area of robotics and control
with an emphasis on optimization-based motion generation.

Tommaso Belvedere received the bachelor’s degree in
Electronics Engineering and the master’s degree in Control
Engineering, respectively in 2018 and 2020, from Sapienza
University of Rome, Italy, where he is currently work-
ing toward the Ph.D. degree in Control Engineering. His
research interests focus on optimization-based control of
mobile robotic systems.

Giuseppe Oriolo (S’89-M’92-SM’02-F’16) received his Ph.D.
degree in Control Engineering in 1992 from Sapienza Uni-
versity of Rome, Italy. He is currently with the Department
of Computer, Control and Management Engineering (DIAG)
of the same university, where he is a Full Professor of
automatic control and robotics and the director of the DIAG
Robotics Lab. His research interests are in the general area
of planning and control of robotic systems. Prof. Oriolo has
been Associate Editor of the IEEE Transactions on Robotics
and Automation from 2001 to 2005 and Editor of the IEEE
Transactions on Robotics from 2009 to 2013. He is a Fellow
of the IEEE.

http://refhub.elsevier.com/S0921-8890(23)00221-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb9
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb10
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb11
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb12
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb13
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb14
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb15
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb16
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb17
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb18
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb19
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb20
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb21
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb22
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb23
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb24
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb25
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb26
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb27
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb28
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb29
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb30
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb31
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb32
http://refhub.elsevier.com/S0921-8890(23)00221-X/sb32

	Dynamics-aware navigation among moving obstacles with application to ground and flying robots
	Introduction
	Problem Formulation
	The Proposed NMPC Approach
	Collision Avoidance
	Preliminaries
	Avoidable Collision States
	Use of the ACS Condition in the NLP

	Implementation Guidelines
	Application to Ground Robots
	Differential-drive robot
	Simulations
	Static Environments
	Dynamic Environments

	Application to Flying Robots
	Quadrotor
	Simulations

	Integration of Velocity Fields
	Velocity Fields
	Simulations

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

