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Over the past 50 years the Ogden model has been
widely used in material modelling owing to its
ability to match accurately the experimental data on
elastomers at large strain, as well as its mathematical
properties, such as polyconvexity. In this paper, these
characteristics are exploited to formulate a finite-strain
model that incorporates, through the phase-field
approach recently proposed by Wu (Wu 2017 J. Mech.
Phys. Solids 103, 72–99) for small strains, a cohesive
damage mechanism which leads to the progressive
degradation of the material stiffness and to failure
under tension. By properly tailoring the constitutive
parameters, the model is capable of encompassing a
wide range of effects, from brittle to pseudo-ductile
failure modes. A plane stress problem is formulated
to test the model against experiments on double-
network elastomers, which display a pseudo-ductile
damage behaviour at large strain, and on conventional
rubber compounds with brittle failure. The results
show that the proposed model is applicable to fracture
coalescence and propagation in a wide range of
materials.
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1. Introduction
Over the past 50 years the phenomenological hyperelastic model proposed by Ogden for
compressibile [1] and incompressibile [2] elastomers has been successfully adopted for a variety of
materials including rubber [3–6], nematic elastomers [7,8], foams [9,10], biological tissues [11–13]
and even carbon nanotubes [14]. The main feature of the Ogden model is that it postulates a form
of the strain energy density in terms of the principal stretches rather than the classical invariants
of strain, making the closed-form expression of the tangent moduli easily calculable [3] and the
model easily implementable in finite-element algorithms. In addition, the model has the property
of polyconvexity.

The strain energy density is written as the sum of three separate functions of the principal
stretches λ1, λ2 and λ3:

φ(λ1, λ2, λ3) =
3∑

a=1

φ̃(λa), with φ̃(λa) =
N∑

n=1

μn

αn
(λαn

a − 1), (1.1)

making it adherent to the so-called Valanis–Landel split [15]. Each term φ̃(λa) represents the
elastic energy of a nonlinear spring undergoing a stretch λa; the corresponding stiffness μnαn

can be tailored to describe all aspects of the rubber elastic response, from the initial softening
for moderate strains to the stress-hardening at large strains. For most quasi-static experiments on
rubber, the three terms in the series give an excellent correlation with stress–strain data [16].

The remarkable properties of the Ogden model are exploited in this paper to formulate
a theory for the cohesive failure of elastomeric materials at large strain. The hyperelastic
energy (1.1) is used in conjunction with a phase-field variable to describe the mechanisms
which lead to the softening behaviour and to the progressive degradation of the material
stiffness. The degradation function, weighing the elastic energy reduction due to damage, is
appropriately chosen to describe brittle and quasi-brittle failure modes. In defining the model,
we have followed the phase-field approach introduced in [18], where the fracture problem was
formulated as a free-discontinuity minimum problem. The variational formulation of fracture
was infact approximated in [19] by a regularized problem that operates on a functional defined
on continuous fields, with the fracture replaced by the so-called phase-field variable. Acting like
a damage variable, the phase-field assumes values between 0 and 1, with 0 for sound material
and 1 for fractured material, and its evolution describes the coalescence and propagation of
cracks [20–22]. As the phase-field increases, the stiffness of the material reduces, vanishing when
the damage variable reaches 1. A non-local term, proportional to the gradient of the phase-
field, is incorporated into the internal energy functional and plays the role of a localization
limiter by penalizing abrupt damage variations [23]. The gradient contribution automatically
introduces an internal length, which in the present formulation is a constitutive parameter
to be calibrated through experimental data [24], and it makes the model size-dependent. The
smoothness properties of such a phase-field approach allow for straightforward finite-element
implementation, and no remeshing or ad hoc numerical strategies need to be used, making the
solution of the numerical problem robust and independent of the mesh used in the finite-element
simulations.

Over the years, many contributions in the literature have dealt with phase-field formulations
for brittle materials, but a model incorporating brittle and cohesive failures at large strain is still
missing. A first approach to defining phase-field fracture within the framework of finite elasticity
was proposed in [25]. Subsequent works have dealt with rate-independent fracture [23] and
with the inclusion of viscous effects [26]. A multiplicative splitting of the stretch into tensile and
compressive parts was proposed in [27] to describe fracture mechanisms induced by tensile stress
states. Cavitation processes in elastomers, with voids coalescing and developing into fractures,
were reproduced in [28] by using a specific nonlinear polyconvex strain energy density. A phase-
field model for the description of cavitation was also proposed in [29] and improved in [30],
according to the experimental evidence of Poulain et al. [31,32]. A bottom-up multi-scale approach
was followed in [33]. It was assumed that the internal energy on the micro-scale is composed of
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an entropic contribution due to the polymer chains’ configurational entropy and an energetic
contribution due to bond deformation, such that the latter contribution drives crack nucleation,
initiation and propagation. Then, bridging the microscopic assumptions to the macro-scale, a
continuum model was obtained where fracture was approximated by a phase-field. A phase-
field model was also proposed in [34] based on the micro-mechanics of polydisperse elastomer
networks, that is, distributions of polymeric chains with different lengths.

Although elastomers are capable of sustaining large deformations, most of the time their
failure is brittle, and this peculiarity potentially reduces the range of applications. To overcome
this limitation, new elastomeric compounds are being developed that have increased ductility
and durability, usually achieved by tailoring the material microstructure to have a progressive
damage process which only gradually leads to fracture. These failure modes are usually observed
in highly filled elastomers, in which the mechanism of cohesive failure is activated at the filler–
matrix interface [35], or in multiple-network elastomers, where the presence of the additional filler
network leads to a strong localized softening, due to rupture of covalent bonds and coalescence
of defects [36,37].

A versatile phase-field model should be able to describe the different failure modes seen
in the experiments, from the brittle failure of conventional elastomers to the pseudo-ductile
failure of double-network elastomeric compounds, without using any information on the material
microstructure in the spirit of the Ogden’s phenomenological approach. With this intent, we
propose a novel phase-field model in which the elastic energy is defined through an Ogden-
like strain energy function and the energetic functionals of fracture are of the type introduced
in [17]. In this latter paper, brittle and quasi-brittle failures were captured within the context of
infinitesimal elasticity, with a model able to reproduce the softening laws frequently adopted
in the literature for quasi-brittle solids, e.g. linear, exponential or hyperbolic. Thus the popular
phase-field models for brittle fracture, e.g. those in [21,22], were recovered as particular examples.

Extension of the formulation in [17] would allow description of all the relevant failure modes
seen in elastomers by properly tailoring the relevant constitutive parameters of the fracture
energetic functionals. However, the mechanical interpretation of these coefficients has to be
carefully assessed in the context of finite elasticity, since their role differs from that observed
at small strains. For this reason, a fundamental task of the present work is to comprehend
the influence of the constitutive parameters on the damage evolution modes in order to gain
a clear picture of the predictive potential of the model. Analytical and numerical estimates
were obtained to correlate the shape of the damage energy and degradation functions with the
predicted damage modes. To focus on this, no further modelling ingredients, such as thermal
or viscous contributions, were included in the formulation, by assuming that crack propagation
is rate-independent. Indeed, viscous effects in fracture evolution are negligible for low rates of
tearing, as shown in [38]. Furthermore, we consider only fracture processes induced by tensile
stress states; yet crack opening under compressive loadings can be avoided by introducing the
same elastic energy splitting used in [39–41]. The optimal constitutive parameters of the model
were calibrated by studying the one-dimensional problem of a bar under traction, which allowed
us to solve the problem in semi-analytical form.

The structure of the paper is the following. Section 2 is devoted to the formulation of the three-
dimensional model in a consistent thermodynamic framework. It addresses the theoretical aspects
of the proposed phase-field theory. Section 3 focuses on the calibration of the model parameters
by solving the one-dimensional problem of a bar under traction. The numerical solutions of some
prototypical examples are presented and discussed in §4, including a thorough comparison of
the model prediction with the experimental data in [36] and in [56]. Concluding remarks are
given in §5.

2. Model formulation
In this section, we aim to formulate the nonlinear elastic model with damage in a three-
dimensional plane stress setting, before carrying out a sensitivity analysis in §3 by considering
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the response of a bar under traction. The approach taken to equilibrium is based on a unilateral
minimality principle under the condition of irreversibility of the damage field. The same approach
has been widely adopted in studying plasticity [25,42,43], plasticity with damage [44,45] and
cohesive damage [17,46].

Throughout the paper, we will assume that all fields are sufficiently smooth so that all the
calculations can be performed. For a precise definition of the functional spaces needed the reader
is referred to [47].

A note on the notation. In the following, lower-case bold letters will be used for points or vectors,
and capital bold letters for tensors. The inner product between two vectors or two tensors of the
same order will be indicated by a dot, e.g. a · b =∑

i aibi or A · B =∑
i,j AijBij. An overdot will

indicate the material time derivative, whereas a prime will denote the derivative with respect to
the independent variable, e.g. the position x or the variable d.

(a) State variables
We identify a body with a regionΩ0 of the three-dimensional Euclidean space E that it occupies at
some time instant t = 0, which we refer to as the reference configuration. The external boundary ∂Ω0
is divided into a subset ∂Ωu

0 in which displacement is applied and a complementary boundary
∂Ω t

0 in which surface forces are present. The deformation of the body is the bijective orientation-
preserving map p :Ω0 × [0, t] → E which assigns to each point x ∈Ω0 a point y = p(x, t) in the
deformed configuration; accordingly we set Ωt = p(Ω0, t) as the deformed configuration of the
body.

At each material point x, the state of the continuum is identified by the displacement field
u(x, t) and by an additional scalar field d(x, t) that represents the damage variable, such that d = 0
for the virgin material and d = 1 for the fully damaged one; in this formulation, d is a Lagrangian
parameter defined on the reference configuration Ω0. We further denote by U the space of
kinematically admissible displacement fields,

u(x, t) ∈ U := {u : u(x, t) = u∗ ∀x ∈ ∂Ωu
0 },

and denote by D the set of the admissible damage fields,

d(x, t) ∈ D := {d : d(x, t) ∈ [0, 1]}.
We denote the deformation gradient by F = I + ∇u, where ∇ = ∂/∂x is the gradient operator
defined with respect to the reference coordinates x and I is the unit tensor.

The variations ũ and d̃ will be used in the application of the minimality principle to derive the
governing equations of the problem. These have to satisfy homogeneous boundary conditions,
and as such belong to the following sets:

ũ(x, t) ∈ Ũ := {ũ(x, t) = 0 ∀x ∈ ∂Ωu
0 } (2.1)

and

d̃(x, t) ∈ D̃ := {d̃ : d̃(x, t) ≥ 0 for almost all x ∈Ω0}, (2.2)

the latter being the convex cone of positive damage rate. As will be apparent in the following
sections, in the present formulation the damage variable can only increase (no-healing).

For the sake of conciseness, the explicit dependence on the position x and time t will be omitted
from all variables except when needed.

(b) Energy functional
The behaviour of the continuum is characterized at each material point x and at each time instant
t by two state variables {u, d} in U × D and by a state function ϕ, which gives the energy density
at each material point; ϕ depends on the local strain F(x), the value of the damage variable d(x)
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and the local value of the damage gradient ∇d(x), with the functional form

ϕ(∇u, d, ∇d) =

elastic energy︷ ︸︸ ︷
ψ(I + ∇u, d) +

fracture energy︷ ︸︸ ︷
Gc

c b
η(d) + b

Gc

c
|∇d|2, (2.3)

which is composed of the following three terms:

— ψ(I + ∇u, d), the elastic energy at the damage state d;
— Gcη(d)/(cb), which can be interpreted as the fracture energy during a homogeneous damage

process with ∇d = 0;
— bGc|∇d|2/c, the nonlocal term which limits the possibility of damage localization without

any energetic cost (see for instance [22]); this term introduces an intrinsic length scale
which controls the size of the damage localization zone.

The second and third terms in equation (2.3) constitute the non-local fracture energy density, in
which the constitutive parameter Gc is the critical elastic energy release rate, b represents an internal
length that regularizes the sharp crack and c := 4

∫1
0

√
η(d) dd is a scaling parameter [40]. The

relationship between the state function ϕ and the free-energy density of such a material is
discussed in remark 2.2 of §2c.

We further assume that the elastic strain energy density ψ can be multiplicatively
decomposed as

ψ(I + ∇u, d) =ω(d)ψ0(I + ∇u), (2.4)

in which ψ0(I + ∇u) is the elastic energy density of the neat material and ω(d) is a monotonically
decreasing energetic degradation function describing the degradation of the stored energy with
evolving damage. The bulk strain energy density ψ0 is a continuous isotropic function such that
ψ0(·) is frame indifferent. Such a requirement implies that for any given deformation F, one
has ψ0(QTFQ) =ψ0(F) (isotropic response) and ψ0(QTF) =ψ0(F) (frame indifference) for every
rotation matrix Q.

The energetic degradation function ω(d) plays an important role in determining the properties
of the material, and, consistent with the experimental observation, we assume that

ω′(d)< 0 and ω(0) = 1, ω(1) = 0, ω′(1) = 0, (2.5)

where the latter constraint ensures that the energetic fracture converges to a finite value if the
damage converges to the fully broken state (see [23]).1 Motivated by the analysis presented in
[17], the following form of the degradation function ω is considered:

ω(d) := (1 − d)2

(1 − d)2 + a1d(1 + a2 d + a2a3d2)
, (2.6)

where a1, a2 and a3 are constitutive parameters, whose calibration allows the description of
different fracture modes, from brittle to pseudo-ductile, as shown in §3 with uniaxial numerical
tests. The chosen form of ω heavily affects the softening behaviour once the crack is initiated.

The dissipated energy density plays a significant role in the evolution of the damage as well.
We assume η(d) to have the quadratic expression

η(d) = 2d − d2, (2.7)

such that η(0) = 0 and η(1) = 1. With this assumption, the scaling parameter c becomes c =
4

∫1
0

√
2d − d2 dd = π . We point out that different choices can be made for the function η(d); the

interested reader is referred to [17] for a full account of the different possibilities.

1In the numerical examples carried out in §4, a small positive value of the degradation function is assumed when the material
is fully broken. This is a standard technique to guarantee that the numerical problem remains well-posed for a broken
specimen.
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With the definition (2.3) of the state variable ϕ, we are in a position to define the total energy
stored in the material during the deformation process. For each admissible pair (u, d) ∈ U × D ,
the total energy of the continuum is

I(u, d) =
∫
Ω0

ϕ(∇u, d, ∇d) −
∫
Ω0

b0 · u −
∫
∂Ω t

0

t0 · u, (2.8)

b0 and t0 being the forces per unit reference volume and area, respectively, the latter applied on
the part of the boundary ∂Ω t

0. These latter terms represent (negative) the work expended by the
external forces.

(i) Ogden-like strain energy

Considering the incompressibility of rubbery polymers, the elastic strain energy density that
appears in (2.4) can be decomposed into isochoric and volumetric parts,

ψ0(F) =ψ iso
0 (F) + U(J),

where F = J−1/3F and J = det(F). In this work, however, we only consider plane stress cases,
meaning that the unknown pressure field associated with the incompressibility constraint J = 1
can always be determined via substitution in the out-of-plane deformation [48].

In the spirit of Ogden’s phenomenological model, we formulate the strain energy density in
terms of the principal stretches λ1, λ2 and λ3 of F. In doing so, we set J = 1 and λ3 = (λ1λ2)−1 and
follow [2] in assuming the following form2 of ψ0:

ψ0 = φ(λ1, λ2) =
N∑

n=1

μn

αn
(λαn

1 + λ
αn
2 + (λ1λ2)−αn − 3), (2.9)

where φ is the elastic energy density expressed in terms of the two independent principal stretches
λ1 and λ2, from which we have omitted the dependence on F. We note that the formulation (2.9)
satisfies both frame invariance and isotropy.

In equation (2.9), N is a positive constant, usually N = 3 for most experiments on rubber, andμn

and αn are material constants such that μnαn > 0 and
∑N

n=1 μnαn = 2μ, μ being the shear modulus
of the material.

As a reference for the calculations in the next sections, we compute the Piola stress tensor, that
is, the dual quantity to ∇ũ in this energetic formulation (see equation (2.13)). With the definition
of Ogden’s energy (2.9) and the hypothesis that λ3 = (λ1λ2)−1, we obtain

S = ∂ψ

∂F
=ω

2∑
i=1

φ,i ni ⊗ Ni, ‖ni‖ = ‖Ni‖ = 1, (2.10)

where

φ,1 := ∂φ

∂λ1
=

N∑
n=1

μn(λαn−1
1 − (λ1λ2)−αn−1λ2)

and φ,2 := ∂φ

∂λ2
=

N∑
n=1

μn(λαn−1
2 − (λ1λ2)−αn−1λ1)

are the derivatives of the strain energy density φ(λ1, λ2) with respect to the principal stretches
obtained by using the relationships reported in [3]. The directions {n1, n2, e3} are the eigenvectors
of the left stretch tensor V (V2 = FFT), and {N1, N2, e3} are the eigenvectors of the right stretch
tensor U (U2 = FTF), whereas e3 is assumed to be the direction of plane stress perpendicular either
to {n1, n2} or to {N1, N2}.
2This assumption is equivalent to assuming that the elastomer deforms in a perfectly incompressible way even after damage
has occurred. This simplification can in fact be removed by coupling compressibility and damage growth, but we do not
address this in the present work.
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(c) Governing equations
The derivation of the governing equations of the problem, including the damage evolution, is
carried out following the classical variational approach to fracture mechanics (see for instance
[22] or [24]), which consists of:

1. the damage irreversibility condition, ḋ(x, t) ≥ 0 and d(x, 0) = 0;
2. a stability criterion, which is in fact a necessary condition for the unilateral minimality

condition on the functional (2.8);
3. the energy balance principle, which states that the total energy at time t is equal to the work

of the external forces up to time t.

A posteriori it is shown that under the imposed constitutive assumptions, the dissipation inequality,
that is, the second principle of thermodynamics, is also satisfied.

(i) Stability condition

Starting from an undamaged state at t = 0, we say that the process evolves through stable
equilibrium configurations if and only if at each time instant the system attains a local minimum
of the total energy (2.8). This leads us to introduce the following stability condition:

For each t> 0, {u, d} ∈ U × D is stable if and only if

∀{ũ, d̃} ∈ Ũ × D̃ , ∃h̄> 0 : ∀h ∈ [0, h̄], I(u, d) ≤ I(u + hũ, d + hd̃),
(2.11)

with the initial condition d(x, 0) = 0.
The variational inequality (2.11) is satisfied if the Gâteaux derivative of the functional I at {u, d}

is positive for each set of test functions, in particular with d̃ being in the convex cone defined by
D̃ . Formally we write

DI(u, d)[ũ, d̃] ≥ 0 ∀{ũ, d̃} ∈ Ũ × D̃ , (2.12)

with

DI(u, d)[ũ, d̃] =
∫
Ω0

(S · ∇ũ −Σ d̃ + q · ∇d̃) −
∫
Ω0

b0 · ũ +
∫
Ω t

0

t0 · ũ, (2.13)

where the dual quantities S, Σ and q are obtained from the energy density (2.3) as

S = ∂ψ

∂F
=ω

2∑
i=1

φ,i ni ⊗ Ni (Piola stress tensor), (2.14)

Σ = −∂ϕ
∂d

= −ω′φ − Gc

πb
η′ (energy release rate density) (2.15)

and q = ∂ϕ

∂∇d
= 2Gcb

π
∇d (damage flux vector), (2.16)

the Piola stress S being given by the constitutive equation (2.10) in terms of the principal stretches
λ1 and λ2.

Upon substitution of (2.14)–(2.16) into (2.13) and integration by parts, the variational inequality
(2.12) gives ∫

Ω0

(Div S + b0) · ũ +
∫
∂Ω t

0

(t0 − Sn) · ũ = 0 (2.17)

and

−
∫
Ω0

(Div q +Σ)d̃ +
∫
∂Ω0

(q · n) d̃ ≥ 0, (2.18)

where the latter is evaluated as an inequality since d̃ belongs to the convex cone D̃ .
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By the classical localization argument, we obtain from (2.17) the standard macroscopic balance
equation with boundary conditions,

Div S + b0 = 0 on Ω0,

Sn = t on ∂Ω t
0,

}
(2.19)

and from (2.18) the damage threshold condition

Div q +Σ ≤ 0 on Ω0,

q · n ≥ 0 on ∂Ω0,

}
(2.20)

with the corresponding flux condition on the boundary.
On using the definitions of the energy release rate (2.15) and the damage flux vector (2.16), we

can rewrite the damage threshold condition (2.20)1 as

f (∇u, d,d) := Gc

π

(
2bd − 1

b
η′(d)

)
− ω′(d)ψ0(I + ∇u) ≤ 0, (2.21)

where we have defined the so-called damage yield function f . In the interior region where damage
has yet to occur, one has ω′(0)ψ0(I + ∇u)>−(Gc/πb)η′(0) and, since ω′(d)< 0, the elastic energy
density ψ0 is bounded.

We remark once more that the damage threshold condition (2.21) is actually a necessary
condition for the state {u, d} to be stable. Indeed, if (2.21) is satisfied everywhere in the
domain as a strict inequality, then the derivative (2.12) is strictly positive and {u, d} is a
stable state; on the other hand, if there are points at which the damage yield function is
zero, then the stability of the state is given by the second derivative of the functional I.
This latter case will be discussed in §3 for the one-dimensional problem of a bar under
traction.

(ii) Energy balance

On assuming that the evolution is smooth in time, the energy balance principle requires that the
rate of change of the internal energy equal the work done by external forces at each time instant,
that is,

d
dt

∫
Ω0

ϕ(∇u, d, ∇d) =
∫
Ω0

b0 · u̇ +
∫
Ω t

0

t0 · u̇, (2.22)

which, upon using the macroscopic balance (2.19), gives
∫
Ω0

−(Div q +Σ) ḋ +
∫
∂Ω0

(q · n) ḋ = 0. (2.23)

Since each integrand is non-negative by the balance equation (2.20) and the damage irreversibility
condition requires that ḋ ≥ 0, the above energy balance equation is satisfied if its integrands
vanish. These requirements give the Kuhn–Tucker conditions for the threshold function (2.21):

f (∇u, d,d) = 0 if ḋ> 0

and f (∇u, d,d)< 0 if ḋ = 0,

}
(2.24)

supplemented by the Neumann-type boundary condition ∇d · n = 0 on ∂Ω0.

Remark 2.1 (Evolution problem). The evolution problem arising from the stability condition
and energy balance is usually solved numerically in an incremental form. The problem is
discretized in time, and at each time step the rates {u̇, ḋ} are computed through a staggered
minimization scheme obtained by alternating the minimization between u̇ and ḋ, keeping the
other variable constant. This numerical procedure is a standard approach to solving variational
problems like the present one (see for instance [49]).
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Remark 2.2 (Energy dissipation). The second principle of thermodynamics requires that for
each admissible state {u, d}, the external work be equal to or greater than the rate of change of the
free energy, i.e.

δ =
∫
Ω0

b0 · u̇ +
∫
Ω t

0

t0 · u̇ − d
dt

∫
Ω0

F ≥ 0, (2.25)

where F =F (∇u, d, ∇d) is the free-energy density. On using the energy balance equation (2.22)
and the definitions (2.3) and (2.14)–(2.16), the dissipation inequality (2.25) is satisfied if(

S − ∂F
∂F

)
· ∇u̇ −

(
Σ + ∂F

∂d

)
ḋ +

(
q − ∂F

∂∇d

)
· ∇ḋ ≥ 0. (2.26)

If we assume that S and q are energetic, i.e.

S = ∂F
∂F

and q = ∂F
∂∇d

, (2.27)

and that Σ is made of elastic and dissipative terms,

Σ =Σel +Σdiss with Σel = −∂F
∂d

and Σdiss = − Gc

πb
η′, (2.28)

then inequality (2.26) reduces to

Gc

πb
η′ḋ ≥ 0, (2.29)

which is satisfied since η′ = 2(1 − d) ≥ 0 from the definition in equation (2.7). By comparing (2.27)
and (2.28) with (2.14)–(2.16), we obtain the following expression for the free-energy density:

F (u, d, ∇d) =ψ(I + ∇u, d) + 1
π

Gcb|∇d|2. (2.30)

Here, by following the approach in [33], we have assumed that the damage non-local energy is
stored. However, its thermodynamic nature is still under debate. In [23,24,46] it is assumed to be
a dissipative term. This assumption is motivated by the fact that the sum of the second and third
terms in (2.3) tends to the fracture energy as the internal length b goes to zero.

Remark 2.3 (Internal length). The internal length b in equation (2.3) can be related to
the damage bandwidth �f at complete fracture, that is, the support of the damage function
when max{d} = 1, by solving the equilibrium problem of a fractured bar with a passing-
through transversal crack. In this case, strains vanish because the bar is broken into two
parts, and the strain energy density φ nullifies. Thus the balance equation (2.24)1 reduces to
2bd − (1/b)η′(d) = 0. On integrating it over a line orthogonal to the crack surface (see [22] or
[17] for details of the calculation), one obtains

b = �f

2
∫1

0 1/
√
η(d) dd

,

which, by assuming the quadratic expression of η(d) in (2.7), reduces to

b = �f

π
. (2.31)

(d) Recap of all modelling equations
By following the classical approach to variational fracture mechanics enunciated in principles 1–3
of §2c, we have arrived at equations governing the macroscopic balance,
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macroscopic balance: Div S + b0 = 0 on Ω0,

Sn = t0 on ∂Ω0,
(2.32)

together with Kuhn–Tucker conditions for the damage evolution problem,

damage irreversibility: ḋ(x, t) ≥ 0,

damage threshold: f (∇u, d,d) ≤ 0,

energy balance: f (∇u, d,d) ḋ = 0,

(2.33)

with initial condition d(x, 0) = 0. The Piola stress tensor S and the damage threshold function f are

S =ω

2∑
i=1

φ,i ni ⊗ Ni

and f = Gc

(
2
π2 �fd − 1

�f
η′
)

− ω′φ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.34)

where ni and Ni are eigenvectors of the left and right Cauchy–Green strain tensors and

φ =
N∑

n=1

μn

αn
(λαn

1 + λ
αn
2 + (λ1λ2)−αn − 3),

ω= (1 − d)2

(1 − d)2 + a1d(1 + a2d + a2a3d2)

and η= 2d − d2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.35)

The constitutive parameters included in the formulation are the elastic moduli μn , the exponents
αn of the strain energy density φ, the fracture energy release rate Gc, the internal length �f and the
polynomial coefficients a1, a2 and a3 of the degradation function ω. In §3e, strategies to calibrate
the constitutive parameters are discussed.

3. One-dimensional tension test
In order to fully exploit the capabilities of the proposed model, we now study the problem of a
bar under tension. Such a simplified example will allow us to solve the governing equations in
semi-analytical form and assess thoroughly the role of the different constitutive coefficients that
appear in the model.

(a) Problem definition
We consider a bar of length � and cross-section area A0. The reference configuration is described
through a triad of orthonormal vectors, {e1, e2, e3}, with e1 being the main axis of the bar and e3
the thickness direction, i.e.

Ω0 = {x : x = x1e1 + x2e2 + x3e3, x1 ∈ (0, �), (x2, x3) ∈A0}.
To solve the equilibrium problem, we make the following ansatz on the deformation gradient:

F(x1) = λ(x1)e1 ⊗ e1 + 1√
λ(x1)

(e2 ⊗ e2 + e3 ⊗ e3), (3.1)

such that the principal stretches are λ1 = λ(x1) and λ2 = λ3 = (λ(x1))−1/2, J = 1, and all fields
depend only on the longitudinal coordinate x1, which from now on we call x without risk of
confusion.
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The displacement of the bar axis is u(x), and the longitudinal stretch λ(x) can be computed
from the latter via

λ(x) = 1 + u′(x), (3.2)

with the boundary conditions
u(0) = 0 and u(�) = ε�, (3.3)

where ε≥ 0 is a control parameter that represents the dimensionless displacement applied at the
right end of the bar. In (3.2), we have indicated with a prime ′ the derivative with respect to the
variable x.

We assume the damage field to be constant within the bar cross-section, so that it depends only
on the abscissa x, i.e. d = d(x), and satisfies homogeneous boundary conditions at both ends, i.e.

d(0) = d(�) = 0, (3.4)

meaning that no crack can appear at the extremities. Indeed, cracks near the clamping are avoided
in the experiments by using dog-bone-shaped specimens.

In this one-dimensional setting, the energy density of the bar takes the form

ϕ(λ, d, d′) =ω(d)φ̂(λ) + Gc

(
1
�f
η(d) + �f

π2 d′2
)

, (3.5)

where we denote by φ̂(λ) = φ(λ, λ−1/2) the reduced strain energy density of the bulk solid defined
in equation (2.9) as a function of the only variable λ. For the sake or readability the hat will be
dropped in the following.

The stress field corresponding to the deformation gradient (3.1) can be computed from (2.10)
by substituting λ1 = λ and λ2 = λ−1/2 and noting that the right and left eigenvectors coincide,
i.e. n1 = N1 = e1 and n2 = N2 = e2. The only non-zero component of the Piola stress is the one
directed along the bar main axis, i.e. S = Se1 · e1, with

S =ωφ′, (3.6)

which, by applying the definition of Ogden’s strain energy density, gives

S =ω

N∑
n=1

μn

λ

(
λαn − λ−(αn/2)

)
.

The macroscopic balance equation (2.19) can be rewritten as

S′(x) = 0, (3.7)

meaning that the stress is constant along the bar. The reduced damage threshold condition (2.33)2
with the deformation (3.1) yields the following form of the one-dimensional threshold function:

f (λ, d, d′′) = Gc

(
2�f

π2 d′′ − 1
�f
η′(d)

)
− ω′(d)φ(λ) ≤ 0. (3.8)

(b) Incremental evolution
Following the analysis in [50], we now solve the incremental evolution problem for both
displacement and damage variables starting from a known solution {u, d} achieved at a certain
time instant t. In doing so, we assume a uniform discretization of the time axis, let τ be the time
step and expand both displacement and damage fields to first order in τ :

u(x, t + τ ) = u(x, t) + τ u̇(x, t) and d(x, t + τ ) = d(x, t) + τ ḋ(x, t), (3.9)

such that
u̇(0, t) = 0, u̇(�, t) = ε̇�, ḋ(0, t) = 0 and ḋ(�, t) = 0, (3.10)

where ε̇ is the rate of the applied displacement at the right end of the bar.
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At each time instant the solution of the incremental problem requires the evaluation of the
unknown rates {u̇, ḋ} obtained by imposing the stability condition (2.12) and the energy balance
condition (2.24) for the solution {u + τ u̇, d + τ ḋ}.

The total energy functional (2.8), with null volume forces, is expanded to second order as

I(u + τ u̇, d + τ ḋ)  I(u, d) + τ İ(u, d, u̇, ḋ) + 1
2
τ 2Ï(u, d, u̇, ḋ) = I(u, d) + τJ (u̇, ḋ), (3.11)

in which we have defined the following functional of the displacement and damage rates:

J (u̇, ḋ) =A0

∫ �
0

[
ωφ′u̇′ +

(
ω′φ + Gc

�f
η′
)

ḋ + 2
π2 Gc�f d′ḋ′

]
dx

+ 1
2
τA0

∫ �
0

[
ωφ′′u̇′2 +

(
ω′′φ + Gc

�f
η′′
)

ḋ2 + 2ω′φ′u̇′ḋ + 2
π2 Gc�f ḋ′2

]
dx. (3.12)

Stability and energy balance, expressed by relations (2.12) and (2.22) in the three-dimensional
formulation of §2, are rewritten in the form

DJ (u̇, ḋ)[ ˜̇u, ˜̇d] ≥ 0 for any { ˜̇u, ˜̇d} such that ˜̇u = ˜̇d = 0 at x = 0, l and ˜̇d ≥ 0

and
d

dτ
I(u + τ u̇, d + τ ḋ) = d

dτ
(τJ (u̇, ḋ)) = 0.

⎫⎪⎬⎪⎭ (3.13)

By performing calculations analogous to those in §2c to deduce the governing equations (2.19)
and (2.20) from the stability condition (2.12) and the evolution relations (2.24) from the energy
balance (2.22), we obtain the macroscopic evolution equation

S′ + τ Ṡ′ = d
dx

(ωφ′) + τ
d

dx
(ωφ′′u̇′ + ω′φ′ḋ) = 0, (3.14)

together with the set of Kuhn–Tucker conditions that govern the evolution of the damage field,

ḋ ≥ 0, f + τ ḟ ≤ 0 and (f + τ ḟ )ḋ = 0, (3.15)

with ḟ computed from (3.8) as

ḟ = −ω′φ′λ̇−
(

Gc

�f
η′′ + ω′′φ

)
ḋ + 2

π2 Gc�f ḋ′′. (3.16)

These conditions state that at each point, the damage can increase only if the yield function f + τ ḟ
is equal to zero.

(c) Damage onset
At the beginning of the loading process the damage is zero and the bar is stretched elastically. The
balance equation (3.7) shows that the stress and the corresponding deformation are homogeneous
along the bar. In this initial phase the damage yield condition (3.8) is not satisfied, i.e. f < 0.

The elastic stage terminates when damage appears, meaning that f = 0 somewhere along the
bar. The stretch λo corresponding to the damage onset is evaluated from (3.8) as

φ(λo) = −Gc

�f

η′(0)
ω′(0)

. (3.17)

At this time instant, say to, one can solve the incremental evolution problem of §3b by assuming
the following form of the series expansion (3.9):

u(x, to + τ ) = ε(to)x + τ u̇o(x) and d(x, to + τ ) = τ ḋo(x), (3.18)

since the stretch at the onset is homogeneous, λo = 1 + ε(to), and the damage is null, d(x, to) = 0; in
addition, u̇o and ḋo satisfy the boundary conditions (3.10). At the step to + τ , the stretch becomes
λ(x, to + τ ) = 1 + εo + τ λ̇o(x), so that λ̇o(x) = u̇′

o(x), which is a function of x due to the varying

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 F

eb
ru

ar
y 

20
25

 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210323

...............................................................

damage profile. A subscript ‘o’ is used to indicate, here and henceforth, that the corresponding
variable is evaluated at time to.

The incremental stress in the bar is approximated at first order in τ from the definition of the
one-dimensional Piola stress (3.6),

S =ω(τ ḋo)φ′(λo + τ λ̇o)  So + τ Ṡo, (3.19)

with

So = φ′
o and Ṡo =ωoφ

′
oḋo + φ′′

o λ̇o. (3.20)

Since the zeroth-order stress So is constant along the bar, the macroscopic balance (3.14) yields
(Ṡo)′ = 0, meaning that Ṡo is also homogeneous. The damage threshold condition f = 0 is satisfied
at both t = to and t = to + τ , so the incremental threshold (3.15) is zero at both zeroth and first
orders; the latter gives

2
π2 Gc�f ḋ′′

o (x) −
(
ω′′

oφo + Gc

�f
η′′

o

)
ḋo(x) = φ′

oλ̇o(x), (3.21)

which is, indeed, a second-order differential equation for the damage rates {λ̇o, ḋo}. The right-hand
side of (3.21) can be transformed by using the definition of Ṡo in (3.20); after some manipulations
we arrive at a differential equation in terms of the variable ḋo,

2
π2 Gc�f ḋo

′′
(x) − jḋo(x) = ω′

oφ
′
o

φ′′
o

Ṡo, with j =ω′′
oφo − ω′2

o φ
′2
o

φ′′
o

+ Gc

�f
η′′

o , (3.22)

where the right-hand side is now independent of x. If we introduce the internal lengths

�i = 2

√
2Gc �f

|j| and �s = ω′2
o φ

′2
o

φ′′
o |j| �i, (3.23)

equation (3.22) can be rewritten in the form

ḋo
′′
(x) − sign(j)

(
2π
�i

)2
ḋo(x) =

(
2π
�i

)2
√
�s

�i

Ṡo√
φ′′

o |j| , (3.24)

which is a second-order differential equation in the variable x of the unknown rate ḋo to be solved
with the boundary conditions ḋo(0) = 0 and ḋo(�) = 0. The analytical approach used to solve this
equation, as well as the expressions for the solutions, can be found in the appendix. According
to the sign of j and, in the case of j< 0, the ratios �/�i and �/�s, different solutions are found. A
schematic of the different regimes is given in figure 1. It is possible to distinguish full-size and
localized fracture initiations, depending on whether the support of ḋo is the entire bar or a sub-
region of length �i < �. Moreover, the evolution regime can be stress-hardening if Ṡo > 0, or stress-
softening if Ṡo < 0. As shown in figure 1, for j< 0, four different regions are found in the plane
(�/�i, �/�s), each characterized by a different damage evolution.

In the case of the localized solution (region c), the bar must be longer than �i to have damage
localization in a sub-region of length �i, and must be shorter than �s to avoid brittle failure. These
requirements express the size sensitivity of the model: as the size of the bar increases, the response
moves from pseudo-ductile to brittle. If we suppose damage localization at to, the slope ko of the
curve S = S(ε) is obtained from equation (A 4)2 as

ko = dS
dε

∣∣∣∣
to

= Ṡo

ε̇o
= ωoφ

′′
o

1 − �s/�
, (3.25)

which has a negative value and decreases as � increases; in particular ko → −∞ for �→ �s.
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Figure 1. Different damage evolution regimes obtained from equation (3.24) for j ≥ 0 (left) and j< 0 (right). (Online version
in colour.)

On integrating (A 1) over (0, �) and rearranging the terms, we obtain the displacement rate at
the end-section,

u̇o(�) = �ε̇o = v̇o + ẇo with v̇o = �
Ṡo

φ′′
o

and ẇo = −ω
′
oφ

′
o

φ′′
o

∫ �
0

ḋo dx, (3.26)

which is the sum of two contributions: v̇o is the displacement rate due to elastic stretching, and ẇo

is the displacement rate induced by the fracture opening. In the case of localized ḋo (case c, with
�i ≤ �≤ �s), the fracture opening rate is

ẇo = �s

1 − �s/�
ε̇o. (3.27)

Let w = w(t) be the displacement accounting for fracture opening in a fracture evolution process.
Using (A 4)2 and (3.27), we can evaluate the derivative of S with respect to w at fracture initiation
as

k̂o = dS
dw

∣∣∣∣
to

= Ṡo

ẇo
= −φ

′′
o
�s

. (3.28)

The coefficient k̂o represents the initial slope of the so-called cohesive curve S = S(w), which
describes the specific failure mode of the material. Since the cohesive law S = S(w) is an intrinsic
property of the material, k̂o does not depend on the length �, in contrast to (3.25).

(d) Cohesive fracture
In this section, we define a strategy to estimate the cohesive curve S = S(w) that characterizes the
fracture opening process. The function S(w) is usually assigned a priori in standard formulations of
cohesive fracture mechanics [51,52], whereas in the proposed variational approach it is obtained
from the particular form of the fracture energy.

We suppose that at a certain time instant of the evolution process, damage is localized in a sub-
region (0, 2x∗), with x∗ < �/2 the half-bandwidth length, and that it has attained the maximum
value d∗ at x = x∗. The proposed procedure allows us to determine the length x∗, the stress S,
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the functions d and λ, the fracture opening w, and the corresponding strain ε in terms of d∗ by
integrating the balance equations (3.7) and (3.8).

We suppose that at each material point, the stretch λ is the superposition of elastic λe and
fracture λf stretches,

λ= λfλe, (3.29)

where λe would be the homogeneous stretch obtained from S if d were zero; as such, it can be
evaluated from the constitutive equation of the undamaged material by

φ′(λe) = S. (3.30)

The fracture opening w, that is, the displacement at x = � produced by the damage occurrence, is

w =
∫λe�

0
(λf (xe) − 1) dxe =

∫ �
0

(λ− λe) dx = (1 + ε)�− λe�. (3.31)

Within the damage region (0, 2x∗), the damage threshold condition (3.8) is evaluated as an
equality and

ω′φ + Gc

(
1
�f
η′ − 2�f

π2 d′′
)

= 0. (3.32)

On multiplying all terms by d′ and integrating over (0, x) with x ≤ x∗, the previous equation gives

Gc

(
1
�f
η − 2�f

π2 d′2
)

+
∫ x

0

dω
dx̂
φ dx̂ = 0, (3.33)

where the latter term is rewritten upon integration by parts as
∫ x

0

dω
dx̂
φ dx̂ =ωφ − φ(λe) −

∫ x

0
ωφ′ dλ

dx̂
dx̂ =ωφ − φ(λe) − (λ− λe)S, (3.34)

since S =ωφ′ is constant along the bar. Equation (3.33) becomes

Gc

(
1
�f
η − 2�f

π2 d′2
)

+ ωφ − φ(λe) − (λ− λe)S = 0. (3.35)

At x = x∗, where the maximum damage is attained, d′(x∗) = 0 and the previous equation further
simplifies to

Gc

�f
η(d∗) + ω(d∗)φ(λ∗) − φ(λe) − (λ∗−λe)S∗ = 0, (3.36)

where quantities evaluated at x = x∗ are labelled by an asterisk. In (3.36), the stretches λ∗ and λe

are worked out by inversion of the constitutive equations

ω(d∗)φ′(λ∗) − S∗ = 0 and φ′(λe) − S∗ = 0. (3.37)

For any assigned value of d∗ ∈ [0, 1], the triplet {λ∗, λe, S∗} solves the set of equations (3.36) and
(3.37). Once S∗ is determined, the profiles of d and λ at points x ∈ [0, x∗] can be evaluated from
(3.35), here rewritten in the form

d′ = 1
�f

h(d, d∗) with h(d, d∗) := π

√
�f

Gc
[ω(d)φ(λ) − φ(λe) − f ∗(λ− λe)] + η, (3.38)

where λ is the solution of the equation

ω(d)φ′(λ) − S∗ = 0. (3.39)

Upon inversion of equation (3.38), one obtains the expression for x in terms of the damage profile
and the maximum damage d∗,

x(d, d∗) =
∫ d

0

�f

h(d̂, d∗)
dd̂, (3.40)
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and the stretch λ at x is the solution of (3.39). The half-bandwidth length is obtained from the
above relation by assigning d = d∗, giving

x∗=
∫ d∗

0

�f

h(d̂, d∗)
dd̂, (3.41)

and the fracture opening w is determined from (3.31) once λ, λe and x∗ are known. Upon inversion
of the equation, the assigned stretch can also be computed:

ε= λe + w
�

− 1. (3.42)

To conclude, the above procedure can be implemented numerically through the following
steps:

(i) Assign the value d∗ of the maximum damage.
(ii) Solve equations (3.36) and (3.37) to determine S∗, λ∗ and λe.

(iii) Discretize the damage range [0, d∗], and for any di of the discretized set determine the
position xi from (3.40). The discrete profile of d = d(x) is given by the pairs (xi, di).

(iv) Determine λi at point xi from (3.39). The discrete profile of λ= λ(x) is formed by points
(xi, λi). At points x> 2x∗ the stretch is equal to λe.

(v) Determine w from (3.31).

This algorithm allows the cohesive curve S = S(w) to be evaluated at discrete points, by iterating
the scheme for different d∗ ∈ [0, 1]. The damage evolution determined through this procedure is
based on the balance equations (3.7) and (3.8). We point out that the numerical simulations of §4
are in fact obtained by solving the full evolution problem of §3b by finite elements. Although the
approaches are different, the estimate of the cohesive curve obtained through steps (i)–(v) gave
results accurate enough to capture the qualitative behaviour of the model. As such, the proposed
numerical scheme represents an useful tool for exploring the variety of damage mechanisms. In
the next section, these results are used to assess the effects of the different constitutive parameters
on the damage evolution modes. Criteria for parameter calibration will be also discussed.

(e) Physical interpretation of the cohesive parameters
The constitutive coefficients a1, a2 and a3 that appear in the energy degradation function ω, as
defined in (2.6), are related to specific properties of cohesive fracture evolution, to give them
clear physical meanings and to allow their robust evaluation from the experimental data. In the
following calculations, the elastic coefficients μn and αn, the fracture energy release rate Gc and
the internal length �f are assumed to be known.

The coefficients a1 and a2 in (2.6) can be tailored from the model response at the damage onset.
At this time instant λf = 1, λe = λo and the stress So is known. Since do = 0, the functions ω and η
at to are

η(0) = 0, ω(0) = 1, η′(0) = 2, ω′(0) = −a1,

η′′(0) = −2 and ω′′(0) = 2a1(a1 − a2 − 2).

Therefore we have the following.

(1) a1 is determined by the limit elastic stretch λo through relation (3.17), which, once
inverted, gives

a1 = 2
Gc

φo�f
. (3.43)
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Figure 2. Piola stress S versus (elastic) stretchλ for the two strain energiesφA andφB.

(2) a2, which appears in ω′′(0), is made dependent on the slope k̂o of the cohesive curve (3.28)
at the damage onset, i.e.

k̂o = − φ′′2
o

2a2
1S2

o

√
|j|3

2Gc�f
, with j = 2a1(a1 − a2 − 2)φo − a2

1S2
o

φ′′
o

− 2Gc

�f
, (3.44)

where j is negative, as the formula is evaluated for the localized damage case (case c in
§3c). From (3.44), a2 has the expression

a2 = 1
2a1φo

⎡⎣(−2a2
1S2

o

φ′′2
o

√
2Gc�f k̂o

)2/3

+ 2a1(a1 − 2)φo − a2
1S2

o

φ′′
o

+ 2Gc

�f

⎤⎦ . (3.45)

(3) a3 multiplies the third-order term in the polynomial (2.6), so it mainly influences states
with large damage. In [17], in fact, a3 was related to the displacement jump w̃ at complete
fracture of the specimen through the formula

a3 = 1
a2

[
1
2

(
w̃So

2Gc

)2
− (1 + a2)

]
. (3.46)

Since this relation was derived within the context of linear elasticity, it cannot be
straightforwardly extended to the finite-strain case. Accordingly, it is just used to obtain
an estimate of the parameter a3. For damage occurring at small strains, formula (3.46)
provides the exact value to assign to a3 in order for the fracture jump to be w̃. In contrast,
for damage onset at large strains it gives only an approximate value. Further insights can
be gained by drawing the cohesive curve, as discussed in the following.

To better highlight the role of the different cohesive parameters, we now consider two different
forms of the Ogden elastic strain energy density with different elastic parameters: one with
N = 1 in the series (2.35)1 and with μ1 = 2.2 MPa and α1 = 2, which we call quadratic energy φA,
and the other with N = 2 , {μ1,μ2} = {4.8, 0.01} MPa and {α1,α2} = {1.2, 5.1}, say φB. As shown
in figure 2, such choices of the elastic coefficients represent two plausible elastic responses of a
rubbery material; the former has a linear Piola stress at large stretches, whereas the latter shows
the stress-hardening at large stretches typical of elastomers.

The cohesive curves S = S(w) corresponding to these elastic energies are shown in figure 3 for
�f = 5 mm and different values of the parameters Gc, k̂o and a3. For a given Gc, the values of k̂o and
w̃ are assigned by supposing that the cohesive law is linear with respect to the fracture opening,
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Figure 3. Cohesive curves for (a) different values of the parameter Gc for the energy densities φA (solid) and φB
(dashed); (b) different k̂o and fixed Gc = 60 MPa and a3 = −0.6851; (c,d) different a3 , fixed Gc = 60 MPa and (c) k̂o =
−0.2058 MPa mm−1 or (d) k̂o = −2.0580 MPa mm−1 .

S = −(S2
o/2Gc)w + So, an expression which is the simplest triangular cohesive curve. Accordingly,

k̂o = −S2
o/2Gc and w̃ = 2Gc/So. The coefficients a1, a2 and a3 are derived from (3.43), (3.45) and

(3.46). For small values of Gc, the cohesive curves recover the linear law when the energy density
φA is used, whereas they deviate from linearity as Gc is increased. When the two-term energy
density φB is considered, linearity is lost, as shown by the dashed curves in figure 3a. In this case,
the curves initially decrease with smaller slope, attaining larger values of stress. Then they exhibit
snap-back branches that are more pronounced for increasing values of Gc. The initial raising of
the curve and the presence of a snap-back tail, indicated with a star in the figure, depends on the
specific shape of φB, which has a convex branch where stiffness grows as the stretches increase
(see figure 2). This determines the fracture properties of the material. Indeed, the softening process
of fracture requires a larger stress for crack opening in the initial stage, and when the snap-back
branch is encountered, it stops due to the complete rupture of the specimen. As a consequence,
the recovery in the elastic stiffness for large stretches induces an increased stiffness in the initial
phase of crack opening and a brittle response in the final stage of the fracture evolution. One way
to reduce the snap-back tails in the cohesive curves is to increase the initial slope k̂o. This is shown
in figure 3b, where cohesive curves for different values of k̂o are plotted by keeping the fracture
toughness Gc = 60 MPa mm and a3 = −0.6851 constant.

Note that the parameter a3 also influences the softening process, as shown in figure 3c,d. By
scrutinizing the curves of figure 3c, one can see that a decrease in a3 < 0 has two distinct effects:
(i) the negative slope of the curve is increased in its initial part, and (ii) the displacement w at the
snap-back is increased, with the final stage of brittle failure being reduced. The curves in figure 3d
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are drawn for a fixed value of k̂o which is ten times larger than that of the curves in figure 3c. In
this case, the coefficient a3 influences the final part of the cohesive curves: large negative values
of a3 raise the curve tail, reducing the snap-back up to its complete disappearance. It turns out
that the final catastrophic fracture is replaced by a recovery of stiffness that allows the material to
further bear stresses.

As a result, the coefficients a1 and a2 can be assigned through formulae (3.43) and (3.45),
which relate them to the limit elastic stretch λo and to the initial slope of the cohesive curve k̂o,
respectively. The calibration of a3 is more troublesome. The estimate in equation (3.46) gives an
initial value for the parameter, yet a more appropriate value can be obtained only after having
numerically examined the cohesive curves, such as those in figure 3c,d. The qualitative behaviour
observed for increasing values of a3 is a stretching of the cohesive curve with consequent
reduction or even removal of the final brittle fracture.

We finally remark that the model proposed in [17] is indeed size-independent as shown in
[53]. However, in the proposed extension to finite elasticity, this independence is only partially
maintained: the fracture activation stress So and the initial slope k̂o of the cohesive curve still
do not depend on �f , but the shape of the softening cohesive curve S = S(w) does. As a result,
the convergence of the model to the cohesive fracture is lost, meaning that the model should
be interpreted as a damage model in which the internal length is a constitutive parameter
representing the length of the transition zone (process zone). Such a parameter may be directly
calibrated through ad hoc experiments such as the one reported in [54].

4. Numerical examples
The variational model (2.32) and (2.33) was implemented in the finite-element open-source
framework FEniCS [55].

The displacement and damage fields were projected over a piecewise-affine finite-element
space (Lagrange elements) by using the same mesh domain. As the energy functional I, defined
in (2.8) for the general formulation and in (3.11) for the simple tension incremental problem, is
separately convex in each variable, an alternating minimization algorithm in the variables u and d
was implemented. At a given time step, the solution of the iterative evolution of §3b was achieved
by iterating on the following subproblems until convergence.

(1) The minimization of I with respect to u at fixed d is an unconstrained optimization
problem solved as a nonlinear elastic problem with the prescribed boundary conditions
through the Newton–Raphson method.

(2) The minimization of I with respect to d at fixed u is a unilateral constrained optimization
problem, which was solved using TAO (Tool-kit for Advanced Optimization).

Further details of the numerical implementation can be found in [49]. Simulations on both one-
dimensional or two-dimensional geometries were carried out, although the results shown in the
paper refer to the latter.

Two numerical examples are discussed in the following. As a first benchmark problem, we
consider a rectangular test specimen subjected to tensile loadings. This example has a twofold
purpose: assessing the sensitivity of the model with respect to the different constitutive
parameters and demonstrating the ability of the proposed modelling framework to capture the
large-strain behaviour of double-network elastomers [36]. Afterwards, we use a double-edge
notched specimen in tension to validate the model prediction up to the specimen rupture against
the experiments on conventional elastomers reported in [56].

The rectangular specimen used to carry out the sensitivity analysis is shown in figure 4
together with boundary conditions and details of the mesh, which was made up of 12 000
Lagrange triangular elements. The height of the specimen was kept fixed at 4 mm, whereas three
different lengths were considered, �= 6, 13 and 20 mm. In all simulations two different sets of
elastic parameters were used to assess the effects of the particular form of the Ogden energy on
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Figure 4. Geometry of the rectangular specimen with details of the mesh composed of about 12 000 Lagrange triangular
elements. The height of the specimen was kept fixed in all numerical tests, whereas different lengths �= 6, 13 and 20 mm
were considered. (Online version in colour.)

Table 1. Constitutive parameters used in the numerical examples.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φA: μ1 = 2.2 MPa α1 = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φB: {μ1,μ2} = {4.8, 0.01}MPa {α1,α2} = {1.2, 5.1}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fracture
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�f = 5 mm, Gc = 60 MPa mm, λo = 2.4, k̂o = −0.21 MPa mm−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φA: a3 = −0.57, φB: a3 = −0.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the fracture properties of the material, corresponding to the energies φA and φB in figure 2; the
other constitutive parameters are the ones in table 1 except where stated. We point out that the
coefficients a1, a2 and a3 were obtained from Gc, k̂o and w̃ by using the formulae (3.43), (3.45) and
(3.46).

The Piola stress S in terms of the overall strain ε as well as the damage profiles along the mean
axis of the bar are plotted in figures 5 and 6 for the two energy densities φA and φB and different
values of the energy release rate Gc.

By increasing values of Gc, the maximum strain attained at rupture grows with a larger
region in which a pseudo-ductile response is achieved. With the energy φA, the response with
Gc = 20 MPa mm (green curve in figure 5) shows a sudden drop in the stress caused by an abrupt
damage growth at the end of the elastic stage, which almost immediately reaches values close to
1 as shown by the green damage profiles in the figure. The resulting overall behaviour is brittle.
For larger values of Gc, the drop in the stress is smoothed out with cohesive-like softening curves;
in terms of damage this behaviour is produced by the phase-field variable progressively growing
and enlarging.

For the elastic coefficients in the energy φB, brittle and cohesive responses are obtained for
Gc = 20 and 40 MPa mm, respectively. For Gc = 60 MPa mm, the specimen exhibits a pseudo-
ductile behaviour in which two response stages are clearly observed: a softening branch with
a low slope, followed by a sudden drop in the stress. As the damage profiles show, in the first
stage of moderate softening, the damage grows slowly while expanding through the bar. At the
end of this phase, the damage has covered the entire domain and has reached its maximum value
of 0.3. Thereafter the damage immediately increases, producing rupture of the specimen with the
resulting stress rapidly decreasing to zero.

Since the gradient term in the fracture energy makes the model size-dependent, the effect of
specimen length is analysed in figure 7 for �= 6, 13 and 20 mm. The results indicate that when �
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Figure 5. Influence of the energy release rate Gc in the case of the elastic energyφA: the Piola stress S versus the overall strain
ε for Gc = 20, 40 and 60 MPa mm. The insets show the damage profiles d evaluated on themean axis of the bar at the different
stretch levels indicated by dots on each curve. (Online version in colour.)
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stretch levels indicated by dots on each curve. (Online version in colour.)
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is comparable to the internal length �f = 5 mm the response is cohesive, whereas sufficiently long
bars display brittle or quasi-brittle failure for both energies φA (figure 7a) and φB (figure 7b).

In figure 8, the dependence of the material response on the slope of the cohesive curve k̂o is
also investigated. This constitutive parameter is directly related through equation (3.45) to a2. As
the results show, k̂o controls the stress decrease at the damage onset and regulates the softening
branch with moderate slope, which is associated with a process of damage propagation over the
whole domain. Large values of k̂o may induce snap-back of the cohesive curve, with a subsequent
discontinuous drop in the stress. Simulations start with values of k̂o in table 1 (blue curve in the
figure), with cohesive-like behaviour for both energies φA (figure 8a) and φB (figure 8b).

Finally, the influence of coefficient a3 is analysed in figure 9. The green curve corresponds to
the value of a3 = −0.68 in figure 8b (with k̂o = −2 MPa mm−1), whereas the other two curves are
obtained by increasing a3 by a factor of 2 and 4, respectively, such that a3 ∈ {−0.68, −1.36, −2.72}.
As pointed out in §3e, increasing values of a3 lead to a recovery of the material stiffness, with
a consequent transition from a softening (green curve) to a hardening response (orange and
blue curves). In all cases, a significant stress drop is seen at the end of the elastic phase, which
corresponds to the sudden occurrence of localized damage in the central part of the specimen,
with the phase-field variable reaching 0.2. Thereafter different damage evolution regimes are seen:
for the green curve (a3 = −0.68) the damage increases sharply in the central part of the specimen
until it reaches the value of 1, meaning that the specimen is completely broken; in contrast,
the orange and blue curves show a rather limited increase in the damage intensity, d< 0.4, yet
the support of the phase-field variable enlarges, up to the point where the damage occupies the
entire bar. This type of evolution resembles a sort of ‘plastic-wave’ that propagates inside the bar
(damage wave in this case) and has indeed been observed in double-network elastomers.

As a general remark on the model behaviour, in all simulations it was observed that the rate of
damage growth is proportional to the slope of the softening branch. Furthermore, a broadening of
the damage localization zone is observed when the softening branch is convex, whereas a concave
softening branch produces damage localization in narrow regions.

Having shown the main features of the proposed model, we are now in a position to compare
the model prediction with the experimental data on double-network elastomers. The experiments
used to calibrate the model are the ones reported in [36], where a cross-linked elastomer was
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Figure 8. Influence of the cohesive parameters k̂o: Piola stress versus strain curves for different values of the cohesive curve
slope, k̂o = −0.2,−0.5 and−2 MPa mm−1, and elastic energies (a)φA and (b)φB. (Online version in colour.)
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Figure 9. Influence of the fracture parameter a3: Piola stress versus strain curves for a3 = −0.68,−1.36 and−2.72 with the
elastic parameters inφB. The insets show the damage profile at the different strain levels indicated by dots on the stress–strain
curve. (Online version in colour.)

first swollen in monomer and subsequently polymerized to create the so-called double network.
This novel class of elastomers displays unique mechanical features due to the combined use of a
stretchy matrix with a stiff filler network, which makes the compound fail in a controlled, pseudo-
ductile way at large strain.
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Figure 10. Piola stress S versus overall strain ε for a double-network elastomer: open circles represent experimental data from
[36], continuous curves correspond to the model prediction, and dashed curves show the response of the purely elastic model.
The fitting is achieved with the model parameters in table 2. The insets show the damage profile along the specimen middle
axis at the strain levels (a), (b) and (c) indicated in the plot. (Online version in colour.)

Table 2. Constitutive parameters used for the fitting of the experimental data in figure 10.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{μ1,μ2} = {4.6, 0.012}MPa {α1,α2} = {1.2, 5.5}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fracture
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�f = 5 mm, Gc = 100 MPa mm, λo = 2.4, k̂o = −0.37 MPa mm, a3 = −4.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These characteristics are readily seen from the data in figure 10 where the Piola stress, S, is
plotted against the normalized displacement at the bar’s end, ε. The initial part of the curve
resembles the typical response of an elastomeric material with pronounced nonlinear elastic
behaviour. The elastic phase terminates at about ε= 1.4 where a sharp decrease in the stress
appears. Microscopically this drop corresponds to the emergence of a very localized damage
region. By continuing loading, the applied force remains constant and the stress–strain plot shows
a plateau for a wide range of stretches. The formation of a neck and its propagation along the
specimen is observed in this region. When necking has expanded all over the sample, at about
ε= 4.2, the damage starts to increase uniformly, yet the overall stiffness of the sample grows. This
behaviour reflects a competition between the stress-softening induced by the damage and the
stiffening caused by the intact polymer chains being almost completely stretched. Such a peculiar
behaviour for an elastomer was reported for the first time in [36].

Remarkably, the proposed model is able to capture the main features seen in the experimental
data, as the fitting in figure 10 shows. The stress–strain plot displays three different curves along
with the experimental points represented by open orange circles: the continuous orange curve
is the output of the model and has all the main characteristics of the experimental response,
including the initial nonlinear elastic regime, the stress peak with the subsequent stress plateau
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e = 1.4

e = 2

e = 2.5

e = 3.5

e = 4

Figure 11. Deformed configuration of the rectangular specimen used for fitting the data in figure 10. The plateau in the stress–
strain curves corresponds to the propagation of a necking region along the bar. The colourmap represents the damage intensity,
red being higher damage. Propagation of a damagewave in the central part of the specimenwas observed in the experimental
data in [36] (see fig. S5 therein). (Online version in colour.)

and the stiffness increase at large strain. The green and orange dashed curves are the elastic
stresses of each of the two terms in the Ogden model (3.6) with the parameters {μ1,α1,μ2,α2}
in table 2; at each material point, the elastic stress is the superposition of the responses of two
nonlinear springs, one with {μ1,α1} = {4.6 MPa, 1.2}, which controls the response at low strains
(dashed orange curve), and the other with {μ2,α2} = {0.012 MPa, 5.5}, which is activated at high
strain and is responsible for the strain-hardening seen in the experiments (dashed green curve).
In this sense, the model resembles the microscopic model proposed in [57], where a two-phase
material model was considered. The insets in figure 10 show the damage field obtained from the
numerical simulations at different levels of strain. At the position designated a in figure 10, the
sudden appearance of a localized damage produces the drop in stress seen in the experiments,
which corresponds to the occurrence of a necked region in the central part of the specimen, as
shown in figure 11 (see also fig. S5 in [36]). The corresponding strain level ε= 1.4 is used to
calibrate the value of the parameter λo. At increasing levels of strain, the necking enlarges with a
constant maximum value up to the stretch at which it fills the whole specimen (region b in the
figure). Thereafter (in region c) the damage value starts increasing, and at ε= 4.55 it was d = 0.33.
The hardening behaviour is achieved in the model by taking the absolute value of a3 to be large
enough (a3 = −4.73 in this case).

In order to highlight the capability of the model to describe the unloading process as well,
unloading curves at different strain levels are shown in figure 10. The unloading branches
follow paths with lower tangent stiffnesses due to the occurrence of damage, as also seen in the
experimental data in [36]; as expected, no residual strains are observed at the complete unloading
of the specimen. During the subsequent loading path, the curve perfectly follows the branch with
lower stiffness up to the stress level at which damage starts increasing again. At high strain levels,
this additional reduction of stress is compensated for by the elastic energy, which produces the
stiffness increase seen at ε > 300%, corresponding to the experimental situation of the elastomer
network being completely unfolded.

The final numerical benchmark of the model corresponds to the deformation of a double-notch
tension specimen that is normally used to estimate the critical fracture energy (see for instance
[26,40]). The dimensions of the specimen, boundary conditions and mesh for this configuration
are displayed in figure 12a and correspond to the experiments carried out in [56], with different
lengths of the notch as shown in the insets (the same data were used as a benchmark problem in
[23,33]). The constitutive parameters used in the simulation are those in table 3 with the elastic
energy φA and fracture parameters a1 = 1.03, a2 = 32.13 and a3 = −0.81. These parameters are
in agreement with those reported in [23] to fit the same experimental data. Figure 12b shows
the stress–strain curves, displaying the typical brittle response expected from elastomers in this
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Figure 12. Geometry, mesh and boundary conditions of the double-notch tension specimen (left). Comparison of force–
displacement curves with the constitutive parameters in table 3 and different notch semi-lengths {12, 26, 20, 24, 28}mm from
Hocine et al. [56]. (Online version in colour.)

Table 3. Constitutive parameters used for the fitting of the experimental data in figure 12.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elastic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ1 = 0.23 MPa α1 = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fracture
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�f = 3.14 mm, Gc = 3.15 MPa mm, λo = 4.4, k̂o = −9.53 MPa mm, a3 = −0.81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

type of test. The numerical results show a very narrow cohesive region in which the damage
rapidly propagates between the notches up to the point at which it occupies the entire width and
immediately jumps to 1, leading to catastrophic failure of the specimen.

The corresponding deformed configurations are shown in figure 13 at different levels of the
overall strain. At ū = 63.005 mm the specimen is completely broken and, in fact, the material in
the central part of the specimen is completely removed from the figure, having reached a value of
d close to 1, with the lateral parts being almost unloaded.

5. Conclusion
We have presented a phenomenological phase-field model for the cohesive failure of elastomers
at large strain. The elastic response of the model is described using an Ogden-like strain
energy density, which has the advantage of accurately matching the quasi-static response of
many materials up to significant strains. Fracture was incorporated by complementing the
Ogden formulation with a phase-field variable, whose evolution was derived in a consistent
thermodynamic framework by invoking the three principles of damage irreversibility, stability
conditions and energy balance.
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ū = 63.005 mm

ū = 63.004 mm

ū = 63.001 mm

ū = 57 mm

ū = 48 mm

d

0 0.2 0.4 0.6 0.8 1.0

Figure 13. Deformed configuration of the double-notch tension specimen used for the numerical experiment in figure 12 with
notch semi-length 12 mm. The colourmap represents the intensity of the damagefield; at the final step, regionswhere d ≥ 0.99
were removed from the plot. (Online version in colour.)

The fracture energy was defined according to a recent proposal in [17] in terms of five
constitutive parameters: the energy release rate Gc, the internal length �f , which represents the
size of the fracture process zone, and three coefficients a1, a2 and a3 that define the energetic
degradation function responsible for the stiffness decrease induced by damage. Analytical and
numerical results were used to establish the connection between the shapes of the damage
energy, degradation function and damage evolution modes. In particular, a1 is related to the
stretch at the damage onset in a one-dimensional test, a2 depends on the slope of the cohesive
curve, which is normally considered a material property, and, finally, a3 influences the damage
evolution at late stages. By properly tuning these constitutive parameters, the model is capable of
matching a variety of fracture modes including brittle and pseudo-ductile failures, whereas most
existing phase-field models at large strain (see e.g. [26]) can only describe brittle fracture. The
application to double-network elastomers and conventional rubber compounds is discussed in
the paper with reference to the experiments in [36,56]. The model was able to accurately capture
the main features of the fracture process, such as the necking propagation and hardening stage
at large strains for double-network elastomers, and brittle failure modes for conventional rubber
compounds.
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Compared with other approaches in the literature (such as [58]), the model does not use any
information on the material microstructure, so it is suitable for a large class of materials including
biological tissues.

The derivations were carried out by enforcing the plane stress condition and perfect
incompressibility of the matrix. However, experimental evidence shows that fracture may occur
due to the coalescence of voids and subsequent propagation of the defects, which may lead
to a reduction of the apparent bulk modulus. Therefore, extensions of the model include the
possibility of degrading with the phase-field variable both volumetric and isochoric parts of
the energy. In addition, since viscous effects may become significant during the propagation of
fractures, the incorporation of viscoelastic effects would be of paramount importance to correctly
describe the dynamic evolution of fracture in elastomeric compounds.
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Appendix A. Damage evolution regimes
An equation similar to (3.24) was already studied in [50] for a small-strain model (see eqn (31)
therein). The solution strategy exploited there can be equally applied to the large-strain analysis
carried out in this paper. In particular, the following steps allow us to calculate the unknown
rates {u̇o, ḋo}: (i) first ḋo is determined in terms of Ṡo by solving (3.24); (ii) then Ṡo is determined by
evaluating the mean value, i.e. 〈·〉 = (1/�)

∫�
0 · dx, of both the sides of equation (3.20)2, giving

Ṡo =ω′
oφ

′
o〈ḋo〉 + φ′′

o ε̇o, (A 1)

where we have made use of the fact that Ṡo is constant along the bar and 〈λ̇o〉 = ε̇o by the boundary
condition (3.10); (iii) finally, u is determined by integration of (3.20)2 expressed in terms of λ̇o = u̇′

o.
Different solutions are found depending on the sign of j and on the ratio between the length � and
the internal lengths �i and �s, and their analytical expressions are presented in the following.

(a) For j ≥ 0, the solution obtained by applying the procedure (i)–(iii) is

ḋo(x) = − ω′
oφ

′
o

j(1 + 〈g〉�s/�i)
ε̇og(x) and Ṡo = φ′′

1 + 〈g〉�s/�i
ε̇o, (A 2)

with

g(x) = 1 − cosh(π (�− 2x)/�i)
cosh(π�/�i)

and 〈g〉 = 1 − �i

π�
tanh

(
π�

�i

)
. (A 3)

Damage evolution is full-size in a regime of stress-hardening.
(b) For j< 0 and �i ≥ �, the solution is

ḋo(x) = − ω′φ′

j(1 − 〈g〉�s/�i)
ε̇og(x) and Ṡo = ωφ′′

o
1 − 〈g〉�s/�i

ε̇o, (A 4)

with

g(x) = 1 − cos(π (�− 2x)/�i)
cos(π�/�i)

and 〈g〉 = 1 − �i

π�
tan

(
π�

�i

)
. (A 5)

The solution ḋo is full-size and two evolution regimes are obtained:
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(1) (b.1)if �i > 2�, the regime is stress-hardening, since 〈g〉< 0;
(2) (b.2)if � < �i ≤ 2�, the regime is stress-softening, as 〈g〉> 0. In this case, the condition

〈g〉 ≥ �i

�s
(A 6)

must be satisfied to have ḋo ≥ 0 everywhere.

(c) For j< 0 and �i < �, the solution has the expression (A 4), with

g(x) =
{

1 − cos
(

2πx
�i

)
if 0< x< �i,

0 if x ≥ �i,
and 〈g〉 = �i

�
, (A 7)

and so is localized in a portion of length �i (localized solution), and the evolution regime is
stress-softening. Even in this case, the inequality

�≤ �s (A 8)

has to be fulfilled to have ḋo ≥ 0.

It can be proved that inequalities (A 6) and (A 8) are necessary conditions for stability of the
evolution problem (see [50]); indeed, they guarantee non-negativity of the second variation of the
functional (3.12). If the stability conditions are not satisfied, the bar fails catastrophically at the
time instant to, experiencing brittle fracture.

References
1. Ogden RW. 1972 Large deformation isotropic elasticity: on the correlation of theory

and experiment for compressible rubberlike solids. Proc. R. Soc. A 328, 567–583.
(doi:10.1098/rspa.1972.0096)

2. Ogden RW. 1972 Large deformation isotropic elasticity—on the correlation of theory
and experiment for incompressible rubberlike solids. Proc. R. Soc. A 326, 565–584.
(doi:10.1098/rspa.1972.0026)

3. Simo JC, Taylor RL. 1991 Quasi-incompressible finite elasticity in principal stretches.
Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310.
(doi:10.1016/0045-7825(91)90100-K)

4. Yeoh OH. 1997 On the Ogden strain-energy function. Rubber Chem. Technol. 70, 175–182.
(doi:10.5254/1.3538422)

5. Saccomandi G, Ogden RW (eds.) 2004 Mechanics and thermomechanics of rubberlike solids, vol.
452 of CISM Courses and Lectures. Vienna, Austria: Springer.

6. Destrade M, Saccomandi G, Sgura I. 2017 Methodical fitting for mathematical models of
rubber-like materials. Proc. R. Soc. A 473, 20160811. (doi:10.1098/rspa.2016.0811)

7. Agostiniani V, DeSimone A. 2012 Ogden-type energies for nematic elastomers. Int. J. Non-
Linear Mech. 47, 402–412. (doi:10.1016/j.ijnonlinmec.2011.10.001)

8. Goriely A, Mihai LA. 2021 Liquid crystal elastomers wrinkling. Nonlinearity 34, 5599–5629.
(doi:10.1088/1361-6544/ac09c1)

9. Mills NJ, Fitzgerald C, Gilchrist A, Verdejo R. 2003 Polymer foams for personal
protection: cushions, shoes and helmets. Compos. Sci. Technol. 63, 2389–2400.
(doi:10.1016/S0266-3538(03)00272-0)

10. Ciambella J, Bezazi A, Saccomandi G, Scarpa F. 2015 Nonlinear elasticity of auxetic open cell
foams modeled as continuum solids. J. Appl. Phys. 117, 184902. (doi:10.1063/1.4921101)

11. Moran R, Smith JH, García JJ. 2014 Fitted hyperelastic parameters for human brain
tissue from reported tension, compression, and shear tests. J. Biomech. 47, 3762–3766.
(doi:10.1016/j.jbiomech.2014.09.030)

12. Macmanus DB, Pierrat B, Murphy JG, Gilchrist MD. 2016 Mechanical characterization
of the P56 mouse brain under large-deformation dynamic indentation. Sci. Rep. 6, 1–9.
(doi:10.1038/srep21569)

13. Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A. 2017 A family of hyperelastic models
for human brain tissue. J. Mech. Phys. Solids 106, 60–79. (doi:10.1016/j.jmps.2017.05.015)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 F

eb
ru

ar
y 

20
25

 

https://doi.org/10.1098/rspa.1972.0096
https://doi.org/10.1098/rspa.1972.0026
http://dx.doi.org/10.1016/0045-7825(91)90100-K
http://dx.doi.org/10.5254/1.3538422
https://doi.org/10.1098/rspa.2016.0811
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.10.001
http://dx.doi.org/10.1088/1361-6544/ac09c1
http://dx.doi.org/10.1016/S0266-3538(03)00272-0
http://dx.doi.org/10.1063/1.4921101
https://doi.org/10.1016/j.jbiomech.2014.09.030
http://dx.doi.org/10.1038/srep21569
http://dx.doi.org/10.1016/j.jmps.2017.05.015


30

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210323

...............................................................

14. Saavedra Flores EI, Adhikari S, Friswell MI, Scarpa F. 2011 Hyperelastic finite element
model for single wall carbon nanotubes in tension. Comput. Mater. Sci. 50, 1083–1087.
(doi:10.1016/j.commatsci.2010.11.005)

15. Valanis KC. 2022 The Valanis-Landel strain energy function elasticity of
incompressible and compressible rubber-like materials. Int. J. Solids Struct. 238, 111271.
(doi:10.1016/j.ijsolstr.2021.111271)

16. Ogden RW, Saccomandi G, Sgura I. 2004 Fitting hyperelastic models to experimental data.
Comput. Mech. 34, 484–502. (doi:10.1007/s00466-004-0593-y)

17. Wu JY. 2017 A unified phase-field theory for the mechanics of damage and quasi-brittle
failure. J. Mech. Phys. Solids 103, 72–99. (doi:10.1016/j.jmps.2017.03.015)

18. Francfort GA, Marigo JJ. 1998 Revisiting brittle fracture as an energy minimization problem.
J. Mech. Phys. Solids 46, 1319–1342. (doi:10.1016/S0022-5096(98)00034-9)

19. Bourdin B, Francfort GA, Marigo JJ. 2000 Numerical experiments in revisited brittle fracture.
J. Mech. Phys. Solids 48, 797–826. (doi:10.1016/S0022-5096(99)00028-9)

20. Bourdin B, Francfort GA, Marigo JJ. 2008 The variational approach to fracture. J. Elast. 91,
5–148. (doi:10.1007/s10659-007-9107-3)

21. Miehe C, Hofacker M, Welschinger F. 2010 A phase field model for rate-independent crack
propagation: robust algorithmic implementation based on operator splits. Comput. Methods
Appl. Mech. Eng. 199, 2765–2778. (doi:10.1016/j.cma.2010.04.011)

22. Pham K, Amor H, Marigo JJ, Maurini C. 2011 Gradient damage models and their use to
approximate brittle fracture. Int. J. Damage Mech. 20, 618–652. (doi:10.1177/1056789510386852)

23. Miehe C, Schänzel LM. 2014 Phase field modeling of fracture in rubbery polymers.
Part I: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113.
(doi:10.1016/j.jmps.2013.06.007)

24. Marigo JJ, Maurini C, Pham K. 2016 An overview of the modelling of fracture by gradient
damage models. Meccanica 51, 3107–3128. (doi:10.1007/s11012-016-0538-4)

25. Del Piero G, Lancioni G, March R. 2007 A variational model for fracture mechanics: numerical
experiments. J. Mech. Phys. Solids 55, 2513–2537. (doi:10.1016/j.jmps.2007.04.011)

26. Loew PJ, Peters B, Beex LA. 2019 Rate-dependent phase-field damage modeling of
rubber and its experimental parameter identification. J. Mech. Phys. Solids 127, 266–294.
(doi:10.1016/j.jmps.2019.03.022)

27. Hesch C, Weinberg K. 2014 Thermodynamically consistent algorithms for a finite-
deformation phase-field approach to fracture. Int. J. Numer. Methods Eng. 99, 906–924.
(doi:10.1002/nme.4709)

28. Henao D, Mora-Corral C, Xu X. 2016 A numerical study of void coalescence
and fracture in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 303, 163–184.
(doi:10.1016/j.cma.2016.01.012)

29. Kumar A, Francfort GA, Lopez-Pamies O. 2018 Fracture and healing of elastomers: a
phase-transition theory and numerical implementation. J. Mech. Phys. Solids 112, 523–551.
(doi:10.1016/j.jmps.2018.01.003)

30. Kumar A, Lopez-Pamies O. 2020 The phase-field approach to self-healable fracture
of elastomers: a model accounting for fracture nucleation at large, with application
to a class of conspicuous experiments. Theor. Appl. Fract. Mech. 107, 102550.
(doi:10.1016/j.tafmec.2020.102550)

31. Poulain X, Lefèvre V, Lopez-Pamies O, Ravi-Chandar K. 2017 Damage in elastomers:
nucleation and growth of cavities, micro-cracks, and macro-cracks. Int. J. Fract. 205, 1–21.
(doi:10.1007/s10704-016-0176-9)

32. Poulain X, Lopez-Pamies O, Ravi-Chandar K. 2018 Damage in elastomers: healing
of internally nucleated cavities and micro-cracks. Soft Matter 14, 4633–4640.
(doi:10.1039/C8SM00238J)

33. Talamini B, Mao Y, Anand L. 2018 Progressive damage and rupture in polymers. J. Mech. Phys.
Solids 111, 434–457. (doi:10.1016/j.jmps.2017.11.013)

34. Li B, Bouklas N. 2020 A variational phase-field model for brittle fracture in polydisperse
elastomer networks. Int. J. Solids Struct. 182–183, 193–204. (doi:10.1016/j.ijsolstr.2019.
08.012)

35. Toulemonde PA, Diani J, Gilormini P, Desgardin N. 2016 On the account of a cohesive
interface for modeling the behavior until break of highly filled elastomers. Mech. Mater. 93,
124–133. (doi:10.1016/j.mechmat.2015.09.014)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 F

eb
ru

ar
y 

20
25

 

http://dx.doi.org/10.1016/j.commatsci.2010.11.005
http://dx.doi.org/10.1016/j.ijsolstr.2021.111271
http://dx.doi.org/10.1007/s00466-004-0593-y
http://dx.doi.org/10.1016/j.jmps.2017.03.015
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1007/s10659-007-9107-3
http://dx.doi.org/10.1016/j.cma.2010.04.011
http://dx.doi.org/10.1177/1056789510386852
http://dx.doi.org/10.1016/j.jmps.2013.06.007
http://dx.doi.org/10.1007/s11012-016-0538-4
http://dx.doi.org/10.1016/j.jmps.2007.04.011
http://dx.doi.org/10.1016/j.jmps.2019.03.022
http://dx.doi.org/10.1002/nme.4709
http://dx.doi.org/10.1016/j.cma.2016.01.012
http://dx.doi.org/10.1016/j.jmps.2018.01.003
http://dx.doi.org/10.1016/j.tafmec.2020.102550
http://dx.doi.org/10.1007/s10704-016-0176-9
http://dx.doi.org/10.1039/C8SM00238J
http://dx.doi.org/10.1016/j.jmps.2017.11.013
http://dx.doi.org/10.1016/j.ijsolstr.2019.08.012
http://dx.doi.org/10.1016/j.mechmat.2015.09.014


31

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210323

...............................................................

36. Millereau P, Ducrot E, Clough JM, Wiseman ME, Brown HR, Sijbesma RP, Creton C. 2018
Mechanics of elastomeric molecular composites. Proc. Natl Acad. Sci. USA 115, 9110–9115.
(doi:10.1073/pnas.1807750115)

37. Zhao Z, Lei H, Chen HS, Zhang Q, Wang P, Lei M. 2021 A multiscale tensile
failure model for double network elastomer composites. Mech. Mater. 163, 104074.
(doi:10.1016/j.mechmat.2021.104074)

38. Mueller H, Knauss W. 1971 Fracture energy and some mechanical properties of a
polyurethane elastomer. Trans. Soc. Rheol. 15, 217–233. (doi:10.1122/1.549209)

39. Amor H, Marigo JJ, Maurini C. 2009 Regularized formulation of the variational brittle
fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229.
(doi:10.1016/j.jmps.2009.04.011)

40. Miehe C, Welschinger F, Hofacker M. 2010 Thermodynamically consistent phase-field models
of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods
Eng. 83, 1273–1311. (doi:10.1002/nme.2861)

41. Freddi F, Royer-Carfagni G. 2010 Regularized variational theories of fracture: a unified
approach. J. Mech. Phys. Solids 58, 1154–1174. (doi:10.1016/j.jmps.2010.02.010)

42. Marigo JJ. 1989 Constitutive relations in plasticity, damage and fracture mechanics based on
a work property. Nucl. Eng. Des. 114, 249–272. (doi:10.1016/0029-5493(89)90105-2)

43. Lancioni G. 2015 Modeling the response of tensile steel bars by means of incremental energy
minimization. J. Elast. 121, 25–54. (doi:10.1007/s10659-015-9515-8)

44. Alessi R, Marigo J-J, Vidoli S. 2015 Gradient damage models coupled with
plasticity: variational formulation and main properties. Mech. Mater. 80, 351–367.
(doi:10.1016/j.mechmat.2013.12.005)

45. Lancioni G, Alessi R. 2020 Modeling micro-cracking and failure in short fiber-reinforced
composites. J. Mech. Phys. Solids 137, 103854. (doi:10.1016/j.jmps.2019.103854)

46. Wu JY. 2018 Robust numerical implementation of non-standard phase-field damage
models for failure in solids. Comput. Methods Appl. Mech. Eng. 340, 767–797.
(doi:10.1016/j.cma.2018.06.007)
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