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A B S T R A C T   

The considerable amount of energy utilized by buildings has led to various environmental challenges that 
adversely impact human existence. Predicting buildings’ energy usage is commonly acknowledged as encour-
aging energy efficiency and enabling well-informed decision-making, ultimately leading to decreased energy 
consumption. Implementing eco-friendly architectural designs is paramount in mitigating energy consumption, 
particularly in recently constructed structures. This study utilizes clustering analysis on the original dataset to 
capture complex consumption patterns over various periods. The analysis yields two distinct subsets that 
represent low and high consumption patterns and an additional subset that exclusively encompasses weekends, 
attributed to the specific behavior of occupants. Ensemble models have become increasingly popular due to 
advancements in machine learning techniques. This research utilizes three discrete algorithms, namely Artificial 
Neural Network (ANN), K-nearest neighbors (KNN), and Decision Trees (DT). In addition, the application em-
ploys three more machine learning algorithms bagging and boosting: Random Forest (RF), Extreme Gradient 
Boosting (XGB), and Gradient Boosting Trees (GBT). To augment the accuracy of predictions, a stacking ensemble 
methodology is employed, wherein the forecasts generated by many algorithms are combined. Given the ob-
tained outcomes, a thorough examination is undertaken, encompassing the techniques of stacking, bagging, and 
boosting, to conduct a comprehensive comparative study. It is pertinent to highlight that the stacking technique 
consistently exhibits superior performance relative to alternative ensemble methodologies across a spectrum of 
heterogeneous datasets. Furthermore, using a genetic algorithm enables the optimization of the combination of 
base learners, resulting in a notable enhancement in prediction accuracy. After implementing this optimization 
technique, GA-Stacking demonstrated remarkable performance in Mean Absolute Percentage Error (MAPE) 
scores. The improvement observed was substantial, surpassing 90 percent for all datasets. In addition, in subset- 
1, subset-2, and subset-3, the achieved R2 scores were 0.983, 0.985, and 0.999, respectively. This represents a 
substantial advancement in forecasting the energy consumption of residential buildings. Such progress un-
derscores the potential advantages of integrating this framework into the practices of building designers, thereby 
fostering informed decision-making, design management, and optimization prior to construction.   

1. Introduction 

The residential sector occupies a substantial portion of global energy 
consumption, accounting for 40% of the total energy utilized (Kang 
et al., 2022). As the depletion of fossil fuel reserves escalates and con-
cerns regarding environmental degradation amplify (Hamidinasab et al., 
2023), it becomes imperative to employ accurate energy forecasting 

methods and practical management approaches to reduce consumption, 
improve overall efficiency, and promote the adoption of renewable en-
ergy resources (Ciupageanu et al., 2020). Accurate energy consumption 
forecasting is paramount, as it enables thorough evaluation of diverse 
building design alternatives, the optimal configuration of energy sys-
tems, and successful integration of renewable energies into supply and 
demand management frameworks (Zhang et al., 2020). Furthermore, 
the emergence of the COVID-19 pandemic has highlighted the 
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importance of forecasting household energy consumption due to the 
significant increase in residential energy usage resulting from the 
widespread implementation of remote work practices (Zapata-Webborn 
et al., 2023). Accurate prediction of future outcomes is paramount in 
enhancing energy efficiency and maximizing architectural design and 
construction performance. Utilizing this technology empowers in-
dividuals in positions of authority to make well-informed decisions, 
thereby improving the overall performance of the building. Predictive 
models used to evaluate energy demands, optimize resource allocation, 
and pinpoint opportunities for improvement (Kumar et al., 2022). In 
addition, they facilitate anticipating periods of maximum demand and 
evaluating the feasibility and effectiveness of energy-conserving tech-
nologies. The accuracy of these prognostications is crucial for enhancing 
financial planning and assessing the effectiveness of energy conservation 
initiatives. Detailed forecasts ultimately aid the construction industry in 
environmentally friendly and cost-efficient buildings (Li et al., 2021b). 
In the determination of energy consumption in buildings, three main 
approaches employed: physical models (white box models), data-driven 
models (black box models), and gray box models that combine elements 
of both (Chen et al., 2022). White box models are highly effective during 
the design phase as they necessitate reliable data about a structure’s 
physical attributes and environmental features. They offer high preci-
sion but may need more computationally efficient and require expert 
knowledge (Bourdeau et al., 2019). On the other hand, gray box models 
provide higher accuracy by using simplified physical models, but their 
performance limited due to the quality of available data (Li et al., 
2021a). In contrast, black box models, solely reliant on mathematical 
models and measurements, offer simplicity, rapid development, and the 
ability to handle complex variable interactions. They particularly 
favored for forecasting building energy usage as they can identify pat-
terns and correlations through training on extensive datasets (Bourdeau 
et al., 2019). The illustrated benefits and drawbacks of these approaches 
are outlined in Fig. 1 

Data-driven methods utilize machine learning (ML) algorithms such 
as Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), 
Artificial Neural Network (ANN), Extreme Gradient Boosting (XGB), and 
Gradient Boosting Machines (GBMs) to extract valuable insights from 
historical energy data. These algorithms enable researchers to identify 
patterns and characteristics within the data, leading to significant ad-
vancements in energy consumption forecasting. Ensemble techniques 
have gained substantial traction in energy consumption prediction 
owing to their ability to improve reliability and alleviate the constraints 
of individual models. Ensemble methods, such as bagging, boosting, and 
stacking, harness the strengths of multiple models to improve overall 
performance. Bagging techniques create an ensemble by training inde-
pendent models on different subsets of the data and aggregating their 

predictions. This approach reduces overfitting and improves general-
ization. Boosting techniques, such as GBMs, iteratively train weak 
models by emphasizing previously mispredicted data points, effectively 
focusing on challenging samples and enhancing accuracy (Ganaie et al., 
2022). Stacking methods entail the aggregation of diverse base models 
through a meta-model capable of weighting and integrating individual 
model predictions, thereby yielding a more refined ensemble (Yao et al., 
2022). Incorporating ensemble techniques in data-driven forecasting 
facilitates the proficient handling of limitations inherent in fundamental 
models, thereby leading to enhanced accuracy in energy consumption 
prognostications. 

2. Literature review 

The present study aims to achieve two key objectives. The primary 
objective involves employing clustering analysis to identify distinct 
consumption patterns within the initial dataset, offering a novel 

Nomenclature 

Artificial Neural Network ANN 
Balance Point Temperature BPT 
Coefficient of Determination R2 

Decision Trees DT 
Deep Forest DF 
Deep Neural Networks DNN 
Deep Recurrent Neural Networks DRNN 
Ensemble Learning EL 
Extreme Gradient Boosting XGB 
Gaussian Process Regression GPR 
Genetic Algorithm GA 
Genetic Programming GP 
Gradient Boosting Machines GBMs 
Gradient Boosting Trees GBT 

Heating, Ventilation, and Air Conditioning HVAC 
K-nearest neighbors KNN 
Least-Squared Boosted LSB 
Linear Regression LR 
Machine learning ML 
Mean Absolute Percentage Error MAPE 
Mean Squared Error MSE 
Multi-linear Regression MLR 
Multiple Regression MR 
Particle Swarm Optimization PSO 
Random Forest RF 
Recursive Feature Elimination RFE 
Seasonal-Trend decomposition using LOESS STL 
Solar Radiation SR 
Support Vector Regression SVR 
Wind Speed WS  

Fig. 1. Exploring forecasting approaches for energy consumption: Unveiling 
the advantages and disadvantages. 
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approach to pattern recognition that is independent of pre-existing 
knowledge. Concurrently, the research employs the Seasonal-Trend 
decomposition using LOESS (STL) method to extract three distinct 
temporal aspects or time series features. Incorporating temporal features 
into the examination of sequential datasets has resulted in significant 
advantages, resulting in a notable improvement in the overall efficacy of 
the prediction model. Furthermore, the research introduces a stacking 
method that combines three individual algorithms: DT, KNN, and ANN. 
The primary aim of this approach is to enhance the precision of energy 
consumption predictions. It is essential to emphasize that the research 
utilizes three additional ensemble methods, specifically bagging (RF) 
and boosting (XGB & GBT), as foundational models to further enhance 
forecast accuracy. 

2.1. Decision tree (DT) 

DT are a widely used as a fundamental ML method to regression 
tasks. Although initially linked to the prediction of continuous values, 
their versatility and performance in regression make them adaptable 
instruments in data analysis. DT is a hierarchical framework that 
effectively divides the feature space into distinct segments, progressing 
from the root to the leaf nodes. The partitioning process in regression 
tasks is guided by attribute values, tailored specifically for this purpose. 
The primary aim of this approach is to predict and simulate continuous 
outcomes, rather than categorizing individual samples. Regression DT 
retain their well-known benefits, including the capacity to analyze the 
model and make efficient predictions. DT are an essential asset in 
regression within ML due to their ability to produce straightforward 
division rules through recursive tree construction. This characteristic 
makes DT self-explanatory and enhances their usefulness. (Olu-Ajayi 
et al., 2022) explored various ML methods, including DT and other 
relevant techniques, to predict energy consumption patterns in resi-
dential buildings. (Zhou et al., 2021) utilized DT as a predictive model 
for short-term building occupancy, resulting in a notable enhancement 
in feature selection. The Deep Forest (DF) framework incorporated DT in 
conjunction with ACF, PACF, and MOTP, demonstrating superior per-
formance compared to conventional models. This highlights the crucial 
importance of DT in improving the accuracy of predictions to optimize 
building occupancy. The study conducted by (Mienye et al., 2019) 
focused on applying DT algorithms, specifically ID3 and C4.5, in tack-
ling prediction difficulties in various industries. The critical emphasis 
lies in evaluating the predictive capabilities of different decision tree 
algorithms. Additionally, it evaluates endeavors aimed at improving 
their efficacy. The primary objective of this investigation is to offer ac-
ademics valuable insights regarding the effectiveness of DTs and their 
potential impact on predictive modeling in many fields. 

2.2. K-nearestneighors (KNN) 

The KNN algorithm is a flexible ML technique commonly employed 
for regression. The method utilizes proximity-based inference by 
selecting the K nearest data points in the feature space, typically quan-
tified using Euclidean distance. KNN algorithm demonstrates excep-
tional performance in forecasting continuous outcomes. It is highly 
regarded for its transparency and interpretability within ML, specifically 
in the context of regression analysis. (Jiao et al., 2023) mainly focused 
on utilizing standard algorithms like KNN to enhance the accuracy of 
energy consumption predictions for Household energy management and 
demand-response systems. (Valgaev et al., 2017) considers the KNN’ 
approach for short-term load forecasting in building uses. It automati-
cally adjusts its parameters and accurately predicts future load based on 
past measurements from the building. The primary aim of (Yang et al., 
2023) was to improve the accuracy of energy consumption forecasts, 
focusing specifically on utilizing the KNN model. The text introduces the 
notion of the Balance Point Temperature (BPT) label. It emphasizes the 
noteworthy performance of KNN, particularly in scenarios when there is 

a limited amount of data available. The statement as mentioned above 
highlights the strong efficacy of the KNN model in enhancing energy 
management systems in an academic setting. (Hong et al., 2022) utilized 
the KNN algorithm to forecast hourly energy consumption in a hetero-
geneous building community. The findings reveal that the predictions 
are accurate throughout the summer and fall seasons, while exhibiting a 
modest tendency to overestimate during the spring and winter periods. 

2.3. Artificial Neural Network (ANN) 

As evidenced by (Nabavi-Pelesaraei et al., 2023), ANNs have 
emerged as powerful tools in various prediction tasks across different 
fields, including energy consumption and environmental impact 
assessment. (Al-Mufti et al., 2023) have successfully utilized ANNs to 
forecast building energy consumption, as demonstrated in a study where 
a digital twin incorporating smart sensors at the University of Sharjah 
accurately predicted energy consumption 15 min ahead, yielding results 
comparable to experimental data. (Nainwal and Sharma, 2022) 
demonstrated that ANN methods outperform traditional multi-linear 
regression (MLR) techniques in accurately predicting monthly energy 
consumption, as evidenced by comparative studies conducted by various 
authors. (Ahmad et al., 2017) conducted a comparative analysis to 
assess the efficacy of two distinct algorithms, namely the feed-forward 
back-propagation ANN and the RF algorithm, in predicting the hourly 
HVAC energy consumption of a hotel situated in Madrid, Spain. (Amber 
et al., 2018) evaluated and conducted the efficacy of five intelligent 
system methods for forecasting the electricity usage of an administrative 
office in London, United Kingdom. The study assessed various meth-
odologies, namely ANNs, Multiple Regression (MR), Genetic Program-
ming (GP), and Deep Neural Networks (DNN). The researchers 
constructed the prediction models using a dataset spanning four years, 
which consisted of five features: Solar Radiation (SR), temperature, 
Wind Speed (WS), humidity, and weekday index. The findings revealed 
that the ANN outperformed the other techniques, demonstrating supe-
rior predictive capabilities for electricity consumption forecasting. 

2.4. Ensemble models 

Ensemble methods are commonly used in ML as a strategic approach 
that combines multiple predictive models to enhance prediction accu-
racy. The core methodology entails integrating the results of the 
different models to attain enhanced forecast precision. Ensemble ap-
proaches demonstrate efficacy in addressing intricate data interactions 
and possess the capacity to enhance model performance across a wide 
range of applications substantially. 

2.4.1. Bootstrap Aggregating 
In the domain of ensemble methods, the primary strategy employed 

is Bagging. The Bagging framework includes various algorithms, with RF 
being particularly notable for its utilization of multiple DT. Further-
more, (Wang et al., 2018) applied the RF algorithm for accurate hourly 
building energy forecasting. A comparative analysis of RF models with 
varying parameter configurations against alternative algorithms has 
been conducted in this study. The results demonstrated the robustness of 
RF models about the number of features. (Hadri et al., 2019) utilized an 
IOT and Big Data platform to collect real-time electricity and load 
consumption data. The focus was on developing predictive models using 
the RF algorithm and evaluating their accuracy in load forecasting. (P. 
et al., 2023) used RF to forecast upcoming electric power consumption 
and renewable energy generation, and their effectiveness in accurately 
predicting these factors has been demonstrated. 

2.4.2. Boosting 
Subsequently, the objective of boosting approaches in ML is to iter-

atively enhance the accuracy of a model by giving higher weights to 
examples that are mispredicted in each iteration, ultimately leading to 
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the development of a final model that is both robust and precise. GBMs 
are a prominent illustration of boosting algorithms, and (Morteza et al., 
2023) assessed the accuracy of energy usage forecasting. The Deep 
Recurrent Neural Networks (DRNN) model was selected as the final 
model for comparison with the GB technique. The study aimed to assess 
and contrast the efficacy of the two models in forecasting energy con-
sumption patterns (Touzani et al., 2018).Utilized the powerful GBM 
algorithm to enhance energy consumption forecasts in a sample of 410 
commercial buildings. The research conducted by the authors demon-
strated superior performance compared to conventional approaches, 
highlighting the significant contribution of GBM in improving the pre-
cision of energy forecasting. 

2.4.3. Stacking 
Stacking is an ensemble technique employed in ML wherein the 

outputs of many models are combined. This approach frequently results 
in improved predictive accuracy, as it involves training a higher-level 
model to make final predictions by utilizing the outputs generated by 
a diverse set of base models. (Cao et al., 2023) combined eleven ML 
algorithms, including KNN, XGB, DT, RF, etc., for a stacked ensemble 
model and Applied Particle Swarm Optimization (PSO) to improve the 
performance of the model base on finding the optimal combination of 
based models and a meta-model within the Stacking framework. 
(Pachauri and Ahn, 2023) Introduced a novel ensemble predictive 
model, denoted as WGPRLSB, designed to provide precise estimations of 
energy consumption in both Heating and Cooling Load scenarios. The 
proposed combination of Least-Squared Boosted (LSB) and Gaussian 
Process Regression (GPR) through a weighted linear aggregation model. 
Marine predator optimization determines the design parameters’ 
optimal values. Additionally, several traditional predictive models, such 
as support vector regression (SVR), Linear Regression (LR), DT, and 
generalized additive model, are developed for comparative analysis. 
(Qavidelfardi et al., 2022) considered meteorological conditions of Iran 
to predict residential electricity consumption. To achieve this, an 
Ensemble Learning (EL) framework is proposed. The framework in-
corporates fifty parameters: environmental, context and building, 
occupant, time-related, and additional inputs. This study aims to 
develop a practical approach that combines the strengths of multiple 
models within the EL framework t to forecast residential energy usage 
accurately (Lu et al., 2023) and several ML techniques, such as SVR, 
KNN, and ensemble inference models. These models were built to 
forecast cooling and heating load. The result indicates that the ensemble 
approach, which set SVR and KNN as a base model and set SVR as meta 
learner, demonstrated the highest accuracy for prediction purposes. 

An extensive examination of the literature reveals a wide array of 
algorithms suitable for the specific task at hand in this research. Each 
algorithm presents its own set of advantages and disadvantages, 
contingent upon the characteristics inherent in various datasets. 
Consequently, careful consideration must be given when selecting 
among these algorithms to suit the unique requirements of different 
datasets. 

However, the central focus of this study revolves around the imple-
mentation of stacking, an effective ensemble learning technique. 
Stacking allows for the integration of diverse algorithms into a unified 
framework, leveraging the strengths of each while mitigating their in-
dividual weaknesses. Notably, stacking eliminates the necessity for prior 
knowledge regarding which algorithm is best suited to a given dataset. 
Instead, through an automated process, stacking dynamically identifies 
the most appropriate algorithms from a predefined pool for each dataset 
encountered. By embracing stacking as the cornerstone of our method-
ology, this study endeavors to harness the collective capabilities of 
diverse algorithms without the constraints imposed by algorithmic se-
lection biases, this approach not only enhances the resilience and 
adaptability of prediction. 

This research paper presents a novel conceptual framework for 
managing energy in residential settings, specifically aiming to improve 

the precision of energy consumption predictions. The material in ques-
tion differentiates itself from preexisting materials through a variety of 
notable means, placing particular emphasis on the subsequent 
advantages.  

1. The dataset is partitioned into two subsets, one designated for 
weekdays and the other for weekends. The k-means technique is 
subsequently employed to cluster the patterns within the subset of 
weekdays, identifying two unique demand trends that correspond to 
periods of high and low demand.  

2. The study utilized a novel hybrid feature selection, integrating 
Recursive Feature Elimination (RFE) with RF. The present method-
ology employed a systematic strategy to identify the most significant 
attributes through iterative evaluation of feature importance.  

3. The primary objective of this work is to perform a comprehensive 
comparison analysis to assess the efficacy of different ensemble 
methodologies. This study aims to determine the optimal ensemble 
technique for the topic matter through a thorough investigation.  

4. The present study introduces a Genetic Algorithm (GA) as a means of 
optimization to construct a hybrid model that enhances the perfor-
mance of the ensemble model. This enhancement is achieved by 
optimizing the combination of base estimators. 

3. Methodology 

3.1. Research outline 

The present investigation employs a dataset obtained from auto-
mated sensors installed in one house that captured data at 10-min in-
tervals (Candanedo et al., 2017). The dataset consists of meteorological 
characteristics and historical energy usage records, as shown in Table 1. 
Initially, after the data cleansing process, the need for scaling arises due 
to the non-uniform distribution of the dataset. Subsequently, the K-mean 
clustering algorithm was utilized to cluster and extract essential demand 

Table 1 
Description of target and features in the dataset.  

Features Description Units Min Max 

Data 
Entries 

Total Number of Data Points 19,735 

TEC Total Energy Consumption Wh 10 1100 
T1 The temperature in the kitchen area c 16.78 26.26 
R1 Humidity in the kitchen area % 27.02 63.35 
T2 The temperature in the living room 

area 
c 16.10 29.85 

R2 Humidity in the living room area % 20.46 56.02 
T3 The temperature in the laundry room 

area 
c 17.19 29.23 

R3 Humidity in the laundry room area % 28.76 50.16 
T4 The temperature in the office room c 15.10 26.19 
R4 Humidity in office room % 27.66 51.09 
T5 Temperature in bathroom c 15.33 25.795 
R5 Humidity in bathroom % 27.66 96.32 
T6 The temperature outside the building 

(north side) 
c − 6.06 28.28 

R6 Humidity outside the building (north 
side) 

% 1.00 99 

T7 The temperature in the ironing room c 15.39 26 
R7 Humidity in the ironing room % 23.19 51.39 
T8 The temperature in teenager room 2 c 16.30 27.23 
R8 Humidity in teenager room 2 % 29.60 58.78 
T9 The temperature in the parents’ room c 14.89 24.5 
R9 Humidity in parents’ room % 29.16 53.32 
T_out Temperature outside c − 5.00 26.1 
R_out Humidity outside % 24.00 100 
P Pressure mm 

Hg 
729.29 772.29 

Ws Windspeed m/s 0.00 14 
Vb Visibility Km 1.00 66 
T_dp Dewpoint c − 6.59 15.5  
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time frames from the original dataset to predict diverse demand periods. 
Afterward, due to the features and complexity of the problem, this 
investigation employs a feature selection technique in the continuous 
domain to eliminate non-contributing features from the models’ per-
formance, thus simplifying the problem. The succeeding procedure en-
tails the utilization of feature extraction methodologies, notably, the 
STL, as well as the extraction of lag features from the dataset. Various 
strategies are utilized to identify and analyze unique patterns within the 
dataset, improving the precision of predictions. Later on, the pre-
processed data will be partitioned into three distinct subsets, specifically 
the training, testing, and validation sets. Two of the initials will be 
employed to evaluate the effectiveness of individual algorithms and 
ensemble models. The third data set will be utilized for hyperparameter 
optimization to determine meters for each model. The objective of the 
optimization procedure is to augment the exactness, reliability, and 
resilience of the models. The achievement of optimal combinations of 
base estimators in stacked models will be facilitated through a GA. The 
proposed methodology prioritizes the utilization of base algorithms that 

exhibit exceptional efficacy on the given dataset during the training of 
the meta-learner. As a result, the precision of the meta-learner is ex-
pected to be enhanced. The framework employed in this study will be 
illustrated in Fig. 2. 

3.2. Data description 

The present investigation employed a dataset about the energy 
consumption of a passive house in Stambruges, Belgium, roughly 24 km 
from the City of Mons (Candanedo et al., 2017). The residential struc-
ture’s finalization occurred in December 2015, and the energy con-
sumption monitoring was executed through M-BUS energy meters, 
which collected data at 10-min intervals. Measuring individual electrical 
loads involved various components, such as the heat recovery ventila-
tion unit and the energy usage of appliances, lighting, and electric 
baseboard heaters. The dataset covers a temporal duration of 137 days, 
equivalent to 4.5 months. The primary emphasis of this analysis pertains 
to the recorded data of total energy consumption (Wh) at 10-min 

Fig. 2. Proposed framework for ML process design.  
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intervals. The 10-min reporting interval was chosen to ensure efficient 
capture of any rapid fluctuations in the target variable (energy 
consumption). 

3.3. Data preprocessing 

To improve the accuracy and reliability of the models utilized in this 
study, preprocessing techniques were applied to the dataset. Scaling 
techniques were also employed to maintain consistency among the input 
features (Nabavi-Pelesaraei et al., 2021). Notably, the scaling process 
was not applied to the target variable, the predicted variable in ML. 
Applying a scaler to the target variable would result in a modification of 
its intrinsic statistical significance. After implementing various scaling 
techniques, such as min-max and standard scaler (Ahsan et al., 2021), a 
comprehensive analysis was conducted to determine the optimal 
approach for the given dataset. It was concluded that standard scaling 
produced the most favorable outcomes. 

Subsequently, box plots were used to detect any possible outliers in 
the input and output features (Krzywinski and Altman, 2014). Despite 
the potential benefits of excluding or managing outliers in the target 
variable to improve model accuracy, a decision has been made to 
maintain their presence in the dataset due to a convincing explanation. 
As mentioned earlier, the outliers represent the highest degree of energy 
utilization, a pivotal factor that influences the overall energy expendi-
ture of the residents. Including these outliers in the dataset promises to 
enable the development of a model that exhibits improved reliability 
and accuracy and effectively captures the household’s consumption 
behaviors. The elevated values of the target variable during peak de-
mand periods have been recognized as a notable factor. To rectify this 
concern, a clustering algorithm will be employed to extract a new 
dataset, facilitating the modeling of distinct consumption behaviors 
individually. 

3.4. Data splitting 

Data splitting is a crucial aspect of ML as it plays a pivotal role in 
assessing the generalization capabilities of a model (Nguyen et al., 
2021). The dataset is partitioned into distinct subsets, namely the largest 
subset known as the training set, which is utilized for pattern learning, 

and another subset used for model validation and hyperparameter 
tuning. Utilizing a distinct testing set allows for the evaluation of the 
model’s capacity to accurately forecast novel data in an autonomous 
manner, separate from the training and validation processes. In this 
study, 20% of the data is allocated for hyperparameter tuning, while the 
remaining portion is separated into a 70% training set and a 30% test set. 
The selection of data splitting ratios and methodologies is of utmost 
importance, considering the dataset’s specific properties and the 
modeling process’s aims. In contrast to non-timeseries data, timeseries 
data should preserve its inherent sequence when splitting (Macas et al., 
2016). This feature guarantees that the model can capture and effec-
tively utilize temporal dependencies, trends, and distinctive patterns. 
This methodology follows the data’s fundamental structure, hence 
improving the effectiveness and resilience of ML models when applied to 
timeseries datasets (Jin et al., 2021). 

3.5. Clustering analyzes 

Using the k-means clustering method to divide datasets that exhibit 
non-normally distributed target variables shown in Fig. 3 is an essential 
analytical technique in a wide range of scientific and business fields 
(Nepal and Sahashi, 2019). In situations where the distribution of the 
target variable deviates from a typical Gaussian distribution, the con-
ventional practice of categorizing data into ‘high’ and ‘low’ groups may 
not be suitable (Metzler, 2020). 

K-means clustering is an unsupervised learning technique that is 
driven by data. It is widely recognized as a helpful tool for identifying 
intrinsic groupings within a dataset without relying on strong assump-
tions about the distribution of the underlying data. The K-means algo-
rithm seeks to optimize the within-cluster sum of squares by repeatedly 
assigning data points to clusters indicated by their centroids (Cui et al., 
2023). This process effectively groups observations that are comparable 
to each other. The selection of the ideal number of clusters, denoted as K, 
equal to two in this work, is a crucial stage in the analysis. 

As depicted in Fig. 3, the initial dataset has been divided into two 
distinct subsets, namely peak and low demand. Additionally, a third 
subset representing weekends was extracted from the original dataset, 
representing occupant behavior and its impact on the target variable. 
Henceforth, the three models mentioned above shall be referred to as 

Fig. 3. Clustering analysis results for peak and low energy consumption patterns in buildings.  
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subset-1, denoting the high demand set; subset-2, representing the low 
demand data set; and subset-3, signifying the weekend data set. 

3.6. Feature engineering 

3.6.1. Leveraging lag features 
Incorporating lag characteristics, which capture past ‘energy’ values, 

enhances our analysis by introducing a temporal aspect. These charac-
teristics enable the examination of temporal patterns, seasonal varia-
tions, and autocorrelations in the data. As shown in Fig. 4, the 
correlation between the lag feature and the target variable underscores 
these relationships. Within the domain of time series analysis, the 
temporal context holds significant importance in ensuring precise fore-
casting and uncovering latent patterns in energy usage that are peculiar 
to our research. 

3.6.2. STL decomposition 
Extracting significant characteristics from data is crucial in selecting 

important features to develop reliable models to predict the target var-
iable. Time series features are noteworthy features that possess consid-
erable value in the present context, wherein a robust association exists 
between temporal features and target variable patterns (Zhang et al., 
2023). This is due to their ability to capture patterns that are temporally 
linked. Incorporating temporal features into prognostic models facili-
tates the identification of fluctuations in target variables over different 
time frames, such as hourly, daily, or monthly intervals (Sun et al., 
2020). Within the domain of time series analysis, the Seasonal-Trend 
decomposition utilizing the LOESS (STL) method is widely utilized as 
a fundamental approach for unraveling complex patterns within tem-
poral data (Phu, 2021). STL is a method that separates the data into 
three distinct components, which are demonstrated in Fig. 6. These 
components include the Seasonal Component, which represents recur-
rent patterns within the data; the Trend Component, which exposes 
long-term underlying trends; and the Residual Component, which cap-
tures any unexplained noise or abnormalities in the data. Valuable 
qualities are derived from these components (de Rautlin de la Roy et al., 
2023). Seasonal characteristics comprise both the amplitude and phase 
of seasonal patterns, providing valuable insights into the intensity and 
timing of these patterns. Trend aspects encompass data about to the 
inclination and consistency of the fundamental trend. Residual features 
offer an evaluation of the fluctuation of data and the presence of mea-
surement inaccuracies. This study involves the analysis of seasonal 

patterns, detecting anomalies, and identifying periodicity within 
different time intervals (1 h, 5 h, and 4 h) in three different models 
(subset-1, subset-2, and subset-3). 

Additionally, the trend component, as represented by STL composi-
tions, is used to showcase the outcomes of this decomposition, as 
depicted in Fig. 5. The STL decomposition technique and its associated 
feature extraction methods are significant in understanding temporal 
data structures. They enable various tasks such as forecasting, anomaly 
detection, and trend analysis in various academic and practical fields. 

3.6.3. Hybrid feature selection: RFE and Random Forest 
The process of feature selection using the RFE-RF hybrid method 

involves a carefully planned sequence that combines the systematic 
approach of RFE with the advanced modeling capabilities of RF (Jeon 
and Oh, 2020). The process of RFE is initiated by systematically 
removing attributes of lesser significance using an iterative pruning 
mechanism. This mechanism is based on the importance scores of these 
attributes, which are typically determined from the performance of a 
selected ML model (Yin et al., 2023). Concurrently, the RFE technique 
produces a prioritized list of features, offering a valuable understanding 
of their importance. After reducing the dimensionality of the dataset, 
RFE proceeds to transfer the remaining feature subset to RF, an 
ensemble of DTs renowned for its capability to capture complex data 
relationships (Niquini et al., 2023). The feature ranking process in RF 
involves refining criteria such as Gini impurity or information gain. This 
refinement takes into account the relevance of individual features as 
well as their complex relationships. Utilizing a collaborative technique 
guarantees that the ultimate feature subset consists of qualities that 
exhibit both individual importance and relevance within intricate data 
contexts. 

The versatility and adaptability of RFE-RF enable its application to a 
wide range of ML tasks, hence serving as a helpful tool for improving the 
performance and interpretability of models in numerous domains. In 
brief, the RFE-RF hybrid approach facilitates a systematic and cooper-
ative procedure for selecting features, leading to a compact yet effective 
subset of features that enhances the performance of ML tasks (Olu-Ajayi 
et al., 2023). 

The selected feature in Fig. 7 indicates that many relative humidity 
features have been identified through the feature selection process. One 
possible explanation for this phenomenon could be that the significance 
of humidity features rests in their influence on Heating, Ventilation, and 
Air Conditioning (HVAC) systems. Elevated humidity levels necessitate 
increased exertion from HVAC systems, resulting in heightened energy 
usage. The correlation mentioned above highlights the significance of 
humidity in predicting energy use. Furthermore, it is worth noting that 
the seasonal humidity patterns frequently coincide with regional climate 
fluctuations. In numerous geographical areas, the level of humidity ex-
periences an increase throughout the summer season. Energy usage 
exhibits seasonal patterns, reaching its highest levels during extreme 
weather. The synchronization observed in seasonal trends establishes a 
robust correlation between humidity levels and energy use. 

3.7. Model selection 

Within the field of ML, a range of approaches are utilized to develop 
predictive models. Ensemble models have gained significant popularity 
as a commonly utilized technique that has the potential to improve ac-
curacy and robustness in predicting tasks. Ensemble approaches 
accomplish this objective by amalgamating the predictions generated by 
many base models, capitalizing on the heterogeneity of these models to 
collectively produce forecasts that are more resilient and precise. 

3.7.1. Stacking 
The core focus of our methodology is on the concept of stacking, 

which is employed to enhance the accuracy of target variable pro-
jections (Wang et al., 2023). This is accomplished by amalgamating 

Fig. 4. A comparative analysis of the correlation between target variable and 
lag features. 
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results from a heterogeneous ensemble of foundational models, XGB, 
GBT, RF, DT, KNN, and ANN. Every individual base model utilizes 
unique algorithms and methodologies that have been trained indepen-
dently using historical data on energy consumption. The stacking 

process comprises of two primary steps, as depicted in Fig. 8. Initially, 
the base models are trained autonomously using a comprehensive 
dataset, producing individual estimates for energy use. Following this, a 
meta-learner, namely a default ANN in our scenario, integrates these 
forecasts, hence enhancing the accuracy of the energy consumption 
forecast. Considerable focus is placed on the optimization of the stacking 
ensemble through the careful adjustment of parameters and the selec-
tion of relevant features (Huang et al., 2023). 

The stacking technique presents numerous benefits, such as its 
ability to effectively capture intricate data relationships, improve the 
accuracy of predictions, and enable a comprehensive evaluation of 
model performance. Nevertheless, this approach is not devoid of con-
straints. One issue that arise in this context is the heightened level of 
complexity, which need careful consideration when selecting appro-
priate models (Pachauri and Ahn, 2023). To overcome the issue 
mentioned above, we utilize a GA optimization technique to determine 
the optimal combination of base models that can yield improved pre-
diction accuracy. 

3.7.2. Bootstrap aggregation 
Bagging, often referred to as Bootstrap Aggregating, is a widely 

recognized ensemble approach renowned for improving models’ resil-
ience and raising their predictive accuracy. This is accomplished by 
mitigating variance through the process of resampling. The RF algo-
rithm is at the forefront of bagging algorithms. The bagging technique is 
founded of bootstrapping, wherein several subsets, referred to as bags, 
are generated from the initial training data, as illustrated in Fig. 9. Every 
subset is created by randomly selecting data points with replacements to 
replicate the original distribution (Bühlmann and Yu, 2002). These 
bootstrapped subsets are then used to train a base model, often of the 
same method type. The result is a collection of models that have been 
trained individually (Mosavi et al., 2021). 

Bagging is an ensemble technique that is widely recognized for its 
notable advantages. These advantages include the introduction of di-
versity through the creation of bootstrapped subsets of the training data. 
Each base model can capture distinct patterns and relationships (Jiang 
et al., 2011). Additionally, bagging reduces variance by combining 
predictions from multiple models, making a more resilient model less 
prone to overfitting (Wu et al., 2018). The RF algorithm demonstrates an 
exemplary illustration of the bagging technique, which enhances this 
notion by employing DT, commonly denoted as “tree learners,” as 
fundamental models. The procedure entails the utilization of boot-
strapping to create multiple subsets, constructing a decision tree for each 
subset, combining predictions through majority voting for classification 
tasks or averaging for regression tasks to derive the ultimate prediction, 

Fig. 5. Time series decomposition (STL): Trend composition.  

Fig. 6. The Sequential Process of hybrid-feature selection method.  
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and incorporating feature randomization to augment diversity and 
alleviate overfitting (Feng et al., 2023). The RF algorithm provides 
several advantages, such as creating robust models, mitigating the risk 
of overfitting, and exhibiting versatility when applied to different types 
of data (Liu et al., 2021). Consequently, it is well-suited for performing 
classification and regression tasks in a wide range of domains. 

3.7.3. Boosting 
Boosting is a significant technique in the field of EL that plays a 

crucial role in improving model performance by employing a sequential 
training process (Mohammed and Kora, 2023). In contrast to parallel 
methodologies such as Bagging, the Boosting technique follows a 

sequential process in which a sequence of base models is constructed 
which is demonstrated in Fig. 11. (Wen et al., 2023). Each subsequent 
model in the sequence is designed to specifically target and rectify the 
faults made by its preceding models. The process of iterative refining 
leads to the creation of an ensemble that demonstrates exceptional 
proficiency in handling difficult circumstances and enhancing forecast 
accuracy (Nie et al., 2021). 

The concept of boosting, as illustrated in Fig. 10, is based on 
attributing higher significance to instances that have been mispredicted, 
enabling succeeding models to prioritize these difficult cases. The 
mathematical representation of this concept is as follows: The initial 
training of base models, often consisting of shallow DT, aims to reduce 
regression errors on the dataset (Singh et al., 2023). Mispredicted in-
stances are assigned higher weights, which increases their influence in 
following iterations. Successive base models are taught in a sequential 
manner, wherein the emphasis is placed on the mispredicted instances, 
and the errors made by previous models inform the learning process. The 
final ensemble prediction is generated by aggregating predictions from 
all base models, commonly by weighted majority voting or other suit-
able methodologies (Touzani et al., 2018). XGBoost, a notable example 
of the Boosting methodology, has garnered recognition due to its 
remarkable capability to improve the performance of models. XGB 
demonstrates exceptional performance in gradient-based optimization 
(Alshboul et al., 2022). It employs many strategies to effectively mini-
mize loss functions and repeatedly enhance the model’s accuracy. 

3.8. Evaluation metric 

This study employs various standard metrics, namely Mean Absolute 
Percentage Error (MAPE), mean square error (MSE), and coefficient of 
determination (R2), to assess the precision and efficacy of the proposed 
models comprehensively (Figueiredo Filho et al., 2011; Chai and Drax-
ler, 2014; Kim and Kim, 2016). The utilization of these metrics has been 
widely implemented in the assessment of predictive models. The error 
evaluation indices have been widely utilized to estimate forecasting 
models. The following three metrics are defined as follows: 

R2 =1 −

∑N

i=1
(Ai − Pi)

2

∑N

i=1
(Ai − A)2

(1)  

MSE=
1
N

∑N

i=1
(Pi − Ai)

2 (2)  

MAPE=
1
N

∑N

i=1

⃒
⃒
⃒
⃒
Ai − Pi

Ai

⃒
⃒
⃒
⃒× 100% (3) 

Evaluation metrics assess the adequacy of a regression model’s fit by 
contrasting the predicted values (P) with the dependent variable’s 
observed values (A). The parameter A denotes the actual values that are 
being predicted, whereas P denotes the values approximated by the 
regression model. The formula considers the dataset’s complete set of 
observations (N). Furthermore, the mathematical average (A) is 
computed by adding all the observed values and dividing the sum by the 
total number of observations. 

3.9. Hyperparameter optimization 

The process of optimizing hyperparameters is a crucial phase in the 
advancement of ML models. Hyperparameters refer to the parameters of 
a model that are not amenable to direct learning from the data and 
require specification before the training phase. Hyperparameters are 
exemplified by various factors such as the learning rate, regularization 
strength, and the number of estimators (Amir-Ahmadi et al., 2020). 
Determining the optimal values of hyperparameters depends on the 

Fig. 7. Feature selection using RFE-RF: Importance ranking of 
selected features. 
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dataset and problem at hand, and discovering these parameters can have 
an enormous effect on the model’s performance. The grid search tech-
nique is a widely used approach for optimizing hyperparameters, which 
involves specifying a grid of hyperparameter values to explore (Belete 
and Huchaiah, 2022). The model undergoes training and evaluation on 
the validation set for every hyperparameter combination within the 
grid. The evaluation metric determines the optimal set of hyper-
parameters, such as mean square error (Belete and Huchaiah, 2022). The 
present study employed grid search as a means of optimizing hyper-
parameters and the results of this is demonstrated in Table 2. 

The hyperparameters of the models were explored through a pre- 
defined grid of values derived from the visualization of the effect of 
each hyperparameter on the metric evaluation. This approach was 
employed to determine the optimal range of each parameter for each 
algorithm. The model’s performance was assessed; the optimal hyper-
parameters were chosen based on the mean squared error (MSE) crite-
rion (Morteza et al., 2023). Grid search is a straightforward yet effective 
method for optimizing hyperparameters, which may significantly 
improve a model’s performance. Nevertheless, the computational cost 
can be significant, particularly in cases where the hyperparameter space 
is extensive. Hence, it is crucial to meticulously choose the hyper-
parameters to explore and restrict the grid’s magnitude to prevent 
overfitting and minimize computational expenses. Although the careful 
adjustment of base model hyperparameters continues to be a crucial task 
in stacking models, the comprehensive optimization of meta-learner 

hyperparameters may not always result in proportional enhancements 
(Palaniswamy and Venkatesan, 2021). After ensuring sufficient 
fine-tuning of underlying models, adopting default or simplified con-
figurations for meta-learners represents a logical strategy. The careful 
arrangement of hyperparameter tuning within a nuanced perspective 
facilitates a balanced allocation of resources and optimization of pre-
dictive skills in ensemble modeling. 

3.10. Genetic algorithm optimization 

In the pursuit of enhancing the prediction accuracy of target vari-
ables within the residential construction sector, this study utilized GAs 
as an advanced optimization method to refine the combination of base 
learners (Shahhosseini et al., 2022). Building upon this premise, recent 
literature has highlighted the robustness of GAs in optimization. For 
example, a study on improving efficiency in Saffron farms showcased 
the efficacy of GAs (Saeidi et al., 2022), reaffirming their utility and 
adaptability across different domains and emphasizing their significance 
in advancing predictive modeling within residential construction. GAs, 
which draw inspiration from principles of evolution, provide a formal 
framework for this objective which is illustrated in Fig. 11. The utili-
zation of binary strings to represent the combinations of basic learners 
enabled the investigation of a wide range of potential solutions. The 
fitness function utilized in this investigation was characterized by a 
unique emphasis, adopting the MSE as the key indicator for 

Fig. 8. Conceptual framework and structural overview of stacking models.  

Fig. 9. Conceptual framework and structural overview of bagging models.  
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quantitatively evaluating the performance of each combination (Feng 
et al., 2021). 

The methodology employed in this study involved generating an 
initial population including many potential solutions, each representing 
a unique combination of base learners. The population underwent a 
process of selection, crossover, and mutation, resulting in the evolution 
of subsequent generations. This evolutionary process favored combina-
tions that exhibited enhanced prediction accuracy, as measured by the 
MSE. The convergence process denoted the culmination of the GA, 
unveiling the ensemble of base learners that encapsulated the most 
efficient amalgamation of several algorithms (Qu et al., 2021). 
Furthermore, a comprehensive overview of the essential parameters 
employed in this GA optimization procedure is presented, as outlined in 
Table 3. 

This study presents a novel application of GAs that offers a promising 
approach for improving target variable predictions in residential 
buildings. By effectively integrating the collective intelligence of mul-
tiple ML algorithms, the predictive accuracy is enhanced, thereby 
making a valuable contribution to the field of energy-efficient residen-
tial building management. 

4. Result and discussion 

The results indicate that the model’s performance depends on 
various factors. One of the most important factors is the dataset’s 
characteristics, which directly influence our decision to model the 
dataset. The characteristics of the dataset have a significant impact on 
the performance of the algorithms. For instance, variations in the dataset 
can lead to different accuracy scores and affect our interpretation of the 
results (D’souza et al., 2020). Therefore, thoroughly understanding and 
analyzing the dataset is crucial for making informed decisions when 
modeling the data. The efficacy of single, bagging, and boosting algo-
rithms varies across datasets due to their inherent limitations. Individ-
ually, each model’s explanations for its results will be discussed. 
Stacking models consistently produce superior results despite the vari-
able performance of single, bagging, and boosting algorithms across 
various datasets. Stacking models have combined six distinct algorithms 
as the base model, and ANN is set as the meta-learner for the models’ 
final prediction. Then, ensemble models attain greater precision, 

robustness, and generalization across all models by stacking multiple 
models. Consequently, the efficacy of ensemble models will be discussed 
in a separate section. 

4.1. Prediction performance of single algorithms 

The KNN algorithm, known for its simplicity and versatility, exhibits 
different performance trends among the models examined. The results 
shown in Table 4 indicate that the KNN algorithm has a certain level of 
susceptibility to noisy data (Uddin et al., 2022). This observation is 
particularly clear in subset-1, which focuses on predicting peak energy 
demand. In the given setting, the KNN algorithm exhibits a somewhat 
elevated level of MSE and MAPE, suggesting its susceptibility to the 
impact of noisy or irrelevant information. This observation highlights a 
fundamental constraint in its relevance to situations characterized by 
variations in data. 

Nevertheless, the study demonstrates a divergent pattern in subset-2, 
specifically about the forecasting of reduced energy consumption. 
Within the confines of this field, the implementation of the KNN algo-
rithm effectively minimizes the occurrence of prediction inaccuracies, 
leading to a notable decrease in both MSE and MAPE. This implies that 
the KNN algorithm performs well in situations with prominent localized 
patterns in the data, but struggles to capture broader worldwide trends 
(Shapi et al., 2021). This is evident from the comparatively high MSE 
and MAPE observed in subset-3, which represents weekend energy 
usage. The constraint mentioned above is further intensified when 
dealing with datasets with many dimensions, as the computational 
complexity of the KNN algorithm becomes more prominent. 

In sharp contrast, DT presents an alternate framework for predicting 
energy usage. The observations emphasize the consistent performance 
features displayed by the studied models. An important advantage of DT 
is their intrinsic capacity to choose features automatically, which is 
crucial for identifying relevant predictors and improving the accuracy of 
target variable estimates (Biresselioglu and Demir, 2022). Subset-2, 
which places significant emphasis on predicting situations with low 
consumption, provides as a strong example of this capability, as it ex-
hibits minimal prediction errors and a correspondingly low MAPE. 
Moreover, DT demonstrate a remarkable ability to capture non-linear 
correlations in the data, making them a suitable option for situations 

Fig. 10. Conceptual framework and structural overview of boosting models.  
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when decision boundaries go beyond linearity (Czajkowski et al., 2023). 
The concept of interpretability emerges as a crucial factor, offering 
clarity on the factors that influence predictions. Additionally, DT include 
an inherent capability to mitigate overfitting, a prevalent issue in 
modeling initiatives, by skillfully employing pruning strategies and 
depth limitations (Mehdizadeh Khorrami et al., 2023). This fosters a 
nuanced equilibrium between predictive accuracy and the model’s 
generalizability. The investigation concludes with a strong endorsement 
of ANNs as an excellent choice of algorithm, supported by its consis-
tently outstanding performance across all models. The inherent 
complexity of ANN models enables them to effectively capture subtle 
correlations present in the data, resulting in consistently low MSE values 
(Truong et al., 2021). Subset-2 underscores the importance of accurate 
forecasts of reduced energy use and highlights the exceptional perfor-
mance of the algorithm. The outstanding efficiency of this system is 
based on the algorithm’s inherent ability to learn features automatically, 
thus reducing the requirement for costly manual feature engineering (Lu 
et al., 2022). Furthermore, the adaptive learning mechanism intrinsic to 
ANNs, assisted through the backpropagation process, allows for a 
continual adjustment of weights throughout training. This results in a 

gradual improvement in the accuracy of predictions (Runge and 
Zmeureanu, 2019). 

4.2. Prediction performance of ensemble models 

4.2.1. Bagging 
The data pertaining to peak demand often exhibits substantial 

volatility and unpredictability, typified by abrupt surges and swift 
fluctuations, as depicted in Fig. 12. The presence of these inherent 
problems renders it a formidable testing ground for any forecasting 
model. In the present scenario, the RF algorithm exhibits outstanding 
performance, as evidenced in Table 5, by efficiently harnessing the 
collective potential of several DT (Wang et al., 2018). The system 
skillfully manages the intricacies associated with peak demand, suc-
cessfully capturing the non-linear patterns and deep linkages inherent in 
the data. The marginally elevated MSE seen in this model does not 
indicate subpar performance. Rather, it underscores the algorithm’s 
capacity to excel notwithstanding fluctuations in the data, leading to 
resilient predictions. 

When focusing on predicting scenarios of low consumption, we are 
confronted with distinct aspects of data characteristics. The dis-
tinguishing features of low demand data include its inherent stability 
and predictability, exhibiting little fluctuations. In this context, the RF 
has significant success. The algorithm’s ensemble nature, characterized 
by the combination of several DT, facilitates the creation of a very 
precise model. The extraordinary success of RF can be attributed to its 
versatility and its capacity to effectively handle the nuanced fluctuations 
present in low-demand data (Ahmad et al., 2017). 

The energy usage trends observed during weekends exhibit a 
distinctive combination of data properties. The consumption of energy 
over weekends is subject to a variety of factors, encompassing individual 
behaviors, weather conditions, and special activities. The data 

Fig. 11. Schematic representation of the GA optimization procedure.  

Table 2 
Results of hyperparameter optimization: Optimal parameter Configurations for 
different algorithms.  

Hyperparameters    

ANN Subset-1 Subset-2 Subset-3 

hidden_layer_sizes (90, 39) (94, 42) (97, 40) 
max_iter 954 1000 850 
batch_size 17 20 14 
n_iter_no_change 10 15 16 
XGB    
n_estimators 450 500 485 
max_depth 12 14 17 
learning_rate 0.4 0.46 0.48 
RF    
n_estimators 190 200 210 
max_depth 50 55 48 
KNN    
n_neighbors 3 5 7 
p 1 2 2 
GBT    
n_estimators 280 300 293 
learning_rate 0.13 0.1 0.08 
max_depth 10 15 11 
DT    
max_depth 51 55 57  

Table 3 
GA parameters for base learner combination 
optimization.  

Hyperparameter names Value 

Population size 6 
Number of generations 10 
Mutation Probability 0.2 
Crossover Probability 0.2  
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Table 4 
Performance of evaluation metrics of single algorithms.  

Algorithms Subset-1 Subset-2 Subset-3 

MSE (Wh) R2 MAPE 
% 

MSE (Wh) R2 MAPE 
% 

MSE (Wh) R2 MAPE 
% 

KNN 2867.47 0.835 11.48 104.34 0.895 10.70 1044.67 0.904 18.99 
DT 749.24 0.957 4.54 26.08 0.974 1.40 272.23 0.975 5.75 
ANN 328.67 0.981 1.88 15.15 0.985 1.26 3.84 0.996 1.40  

Fig. 12. Comparison of Actual and Predicted target variable in Buildings over Time Intervals: Assessing the Performance of Forecasting bagging (RF) Models. 
Predicted vs. actual energy consumption (a): Subset-1, (b): Subset-2, and (c): Subset-3. 
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environment is characterized by intrinsic variability and frequent fluc-
tuations. Despite the intricate nature of these difficulties, the RF algo-
rithm consistently demonstrates a noteworthy degree of performance. 
The strong nature of its ensemble characteristics, along with its resil-
ience to noise and dimensionality, is particularly evident in this scenario 
(Smarra et al., 2018). By combining numerous DT, the program effec-
tively navigates the complex landscape of energy use patterns on 
weekends. The system demonstrates adaptability to the diverse and 
ever-changing elements that impact of target variable over the course of 
weekends. 

4.2.2. Boosting 
When prioritizing the prediction of peak energy usage, both XGB and 

GBT exhibit outstanding results. The remarkable accomplishment, as 
evidenced in Table 6, can be attributed to their proficiency in handling 
intricate and unpredictable data. The algorithms showcased in this study 
exhibit remarkable efficacy in capturing intricate, non-linear associa-
tions inherent in the dataset. Consequently, they are adept at properly 
managing abrupt fluctuations and volatility frequently encountered in 
scenarios characterized by peak demand, as illustrated in Fig. 13 (Bassi 
et al., 2021). Furthermore, the adaptive learning techniques utilized by 
these models are continuously improved to adapt to the ever-changing 
patterns of high demand (Chammas et al., 2019). The capacity to 
adapt is crucial in ensuring accurate predictions during periods char-
acterized by heightened energy usage. 

In the context of forecasting low energy demand scenarios in subset- 
2, both XGB and GBT algorithms consistently demonstrate remarkable 
performance. The efficacy of these entities in such situations can be 
ascribed to their adeptness in managing stability and the significance of 
their features. The aforementioned algorithms have the ability to sustain 
a substantial level of forecast precision, even when confronted with data 
that exhibits consistent and minimal energy use patterns (Huang et al., 
2022). Further, these systems possess the capability to autonomously 
detect and assign priority to the most pertinent attributes, a character-
istic that holds significant value in situations where minor fluctuations 
in data are pivotal for precise prognostications (Abediniangerabi et al., 
2022). 

In subset-3, the examination is directed towards target variable 
patterns during weekends. XGBoost and GBT algorithms exhibit 
robustness in the face of noise and fluctuations present in the dataset. 
The great performance of the subject under consideration can be 
attributed to their capacity to effectively adjust to the various elements 
that impact target variable on weekends, including individual behaviors 
and special events. 

4.2.3. Stacking 
The stacking approach effectively leverages the distinctive strengths 

of each component while simultaneously addressing their weaknesses, 
therefore offering a viable solution to the intricate challenge at hand 

(Sun et al., 2021). In the domain of peak demand forecasting, the uti-
lization of Stacking demonstrates noteworthy efficacy. The process of 
stacking capitalizes on the combined intellectual capabilities of the six 
fundamental learners. The resulting predictive model has a notably low 
MSE, a high R-squared (R2), and a remarkably low MAPE percentage. 
The statement above emphasizes the notable precision and adaptability 
of Stacking in handling the intricate and uncertain relationships found 
within the volatile data of maximum demand, as depicted in Fig. 14 (Cao 
et al., 2023). In settings characterized by low demand, Stacking con-
tinues to demonstrate its effectiveness. As mentioned above, the system 
consistently delivers accurate predictions, rendering it a compelling 
option for estimating household energy consumption. The stability 
handling skills of the model, derived from its different base learners, 
enable accurate predictions of energy use, even in settings characterized 
by consistent and low levels of target variable (Divina et al., 2018). 
Stacking effectively addresses the obstacles presented by target variable 
during weekends by exhibiting adeptness in handling noise and 
capturing intricate relationships among multiple factors that influence 
weekend energy usage. The characteristics demonstrate its reliability as 
a viable choice. Table 7 indicates its continuously low MSE values and a 
high R2 when predicting weekend energy use (see Fig. 15). 

The advantages of stacking become evident when it is compared to 
other methodologies, such as Single Algorithms (e.g., ANN, DT, and 
KNN), Bagging (RF), and Boosting (XGB&GBT). Stacking is a notable 
technique that combines the qualities of these six base learners to form a 
comprehensive and versatile strategy that effectively addresses diverse 
data features and obstacles. The consistent and accurate supply of 
extremely precise predictions, as demonstrated by low MAPE values 
across many situations, is of great value in the context of precise energy 
consumption forecasting. The adaptability of stacking is shown in its 
capacity to effectively manage a wide range of data properties, including 
the volatility associated with peak demand, the stability observed during 
periods of low demand, and the noise inherent in weekend consumption 
patterns. The model consistently has high R2 values, indicating a strong 
fit and ability to explain the data variance effectively. 

Additionally, it consistently achieves low MSE values, suggesting its 
proficiency in minimizing prediction mistakes. In summary, the use of 
Stacking exemplifies a resilient and adaptable methodology for pre-
dicting residential building energy consumption. This strategy is 
deemed highly suitable for this crucial undertaking due to its ability to 
amalgamate the advantageous attributes of six fundamental learners. 

4.3. Performance of improved stacking models 

To improve the precision of target variable prediction, the GA- 
Stacking method carefully chooses the most suitable combination of 
base models. Table 8 presents the compositions obtained for each sce-
nario, namely subset-1 (Peak Demand), subset-2 (Low Demand), and 
subset-3 (Weekend Consumption). 

Table 5 
Performance of evaluation metrics of Bagging models.  

Algorithms Subset-1 Subset-2 Subset-3 

MSE (Wh) R2 MAPE 
% 

MSE (Wh) R2 MAPE 
% 

MSE (Wh) R2 MAPE 
% 

Bagging-RF 382.86 0.978 2.80 17.38 0.983 1.27 72.68 0.993 4.54  

Table 6 
Performance of evaluation metrics of Boosting models.  

Algorithms Subset-1 Subset-2 Subset-3 

MSE (Wh) R2 MAPE (%) MSE (Wh) R2 MAPE (%) MSE (Wh) R2 MAPE (%) 

Boosting-XGB 542.64 0.969 3.68 19.86 0.980 2.12 123.58 0.989 5.39 
Boosting-GBT 718.83 0.959 4.39 24.26 0.976 1.47 241.88 0.978 5.45  
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The process of choosing base models for different scenarios of pro-
jecting household energy use consistently exhibits a noticeable pattern 
in the field of GAs. The repetitive occurrence of this pattern underscores 
the adaptability of the GA in customizing combinations of base models 
to align with the unique attributes of each given scenario (Zheng et al., 
2023). Adaptability is of utmost importance in the progression of 
Hybrid-Stacked models, as they provide enhanced accuracy in predic-
tive capabilities. Furthermore, as seen from Table 9 and Fig. 15, using 
GAs for optimization led to a reduction in the quantity of base learners 
while maintaining a high level of accuracy. Additionally, there was a 

notable improvement in the MAPE metric. 
Acknowledging that the traditional performance measurements, R2 

values, and MSE may exhibit minimal variations is important. Never-
theless, the significant alteration noticed in the MAPE data garners 
attention. The numbers mentioned above, which are utilized as a metric 
to gauge the precision of predictions, experience a significant decrease, 
ultimately reaching levels that are close to inconsequential. The sub-
stantial decrease indicates the models’ impressive ability to generate 
target variable projections with high accuracy. 

In conclusion, the combination of Stacking and GA optimization 

Fig. 13. Comparison of Actual and Predicted target variable in Buildings over Time Intervals: Assessing the Performance of Forecasting boosting (XGB) Models. 
Predicted vs. actual energy consumption (a): Subset-1, (b): Subset-2, and (c): Subset-3. 
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results in the development of Hybrid-Stacked models, significantly 
improved the accuracy of target variable forecasts. The significant 
decrease in MAPE demonstrates the accuracy and excellent performance 
of the models in providing precise estimates for household energy con-
sumption. This establishes them as the ideal alternative for these crucial 
forecasting duties. 

After conducting a thorough analysis of various algorithms and 
methods, it is evident that each approach presents a unique set of ad-
vantages and limitations. Table 10 offers a concise comparison to assist 
in selecting the most suitable model based on specific needs and 
constraints. 

5. Conclusion 

This paper addresses the significant challenge of accurately fore-
casting building energy consumption, which has garnered substantial 
attention in the scientific community in recent years. The results re-
ported in this study have important significance for managers and pol-
icymakers in the global management and economics sectors. Through 
the utilization of sophisticated machine learning methods and predictive 
modeling, managers of organizations can get essential knowledge 
regarding energy consumption trends within buildings. This knowledge 
empowers them to make proactive decisions aimed at improving energy 
efficiency and optimizing resource allocation. This not only decreases 

Fig. 14. Comparison of Actual and Predicted Target Variable in Buildings over Time Intervals: Assessing the Performance of Forecasting Stacking Models. Predicted 
vs. actual energy consumption (a): Subset-1, (b): Subset-2, and (c): Subset-3. 
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operational expenses but also corresponds with sustainability objectives, 
which have grown progressively crucial in the contemporary global 
economy. Policymakers can employ these prediction models to guide the 
development of regulations and incentives that encourage the adoption 
of environmentally friendly architectural designs and energy-efficient 

practices in different industries. It provides a framework that can be 
generally used to make educated decisions in building management and 
design. By incorporating these approaches into their operations, man-
agers and policymakers of enterprises can promote sustainable devel-
opment, reduce environmental impact, and optimize economic 

Fig. 15. Comparison of Actual and Predicted Target Variable in Buildings over Time Intervals: Assessing the Performance of Forecasting GA-stacked Models. Pre-
dicted vs. actual energy consumption (a): Subset-1, (b): Subset-2, and (c): Subset-3. 

Table 7 
Performance evaluation metrics of stacking models.  

Algorithms Subset-1 Subset-2 Subset-3 

MSE (Wh) R2 MAPE (%) MSE (Wh) R2 MAPE (%) MSE (Wh) R2 MAPE (%) 

Stacking 297.78 0.983 1.84 15.15 0.985 0.26 3.19 0.999 1.37  
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outcomes worldwide. In this study the dataset is divided into weekday 
and weekend subsets to tackle this issue. Then, K-means cluster algo-
rithms are employed on the weekday subset to identify patterns of low 
and peak energy consumption during a day on a 10-min basis, providing 
valuable insights into energy consumption within the study. ML 
methods, such as single algorithms and ensemble models, are utilized to 
achieve the best prediction performance. The single ML algorithms used 
in this study include KNN, DT, and ANN. 

Furthermore, ensemble models such as bagging (RF), boosting 
(XGB&GBT), and stacking are employed to leverage the collective power 
of multiple models. Hyperparameter tuning is performed to optimize the 
performance of each model. Additionally, GAs is applied to the stacked 
model to improve the model’s performance and determine the optimal 
combination of base estimators. Comparing the various algorithms in-
dicates that the GA-stacked ensemble model outperforms other methods 
in all three models, with MAPE test scores of 0.016, 0.006, and 0.012% 
for the subset-1, subset-2, and subset-3, respectively. This finding sug-
gests that the combination of GAs and the stacking approach leads to 
superior predictive capabilities in our study and can be an appropriate 
Framework to achieve the best result in the forecasting energy con-
sumption field in buildings. 

6. Future work 

Forecasting energy consumption is crucial, so future work can be 
expanded to develop a comprehensive framework and establish proper 
guidelines for collecting efficient features. These features should be 
capable of aiding decision-makers and engineers in utilizing them 
effectively in forecasting energy consumption for different types of 
buildings, including commercial and residential structures, under 
diverse meteorological conditions. Another avenue worth exploring in 
future research is identifying and recommending efficient solutions for 
reducing and decentralizing energy consumption. 

Although our study shows encouraging outcomes in forecasting 
building energy usage using ensemble models, it is important to 
acknowledge numerous limitations. The reliability and generalizability 
of our findings may be compromised by data restrictions, such as the 
extent and inclusiveness of the dataset, as well as concerns like missing 
or inaccurate data. Moreover, the inherent trade-offs between the ac-
curacy and interpretability of ensemble approaches give rise to worries 
about the practical implementation of our findings. Ensemble models, 
although more accurate, tend to be more intricate and less explainable 
than simpler models such as linear regression. Furthermore, the 
computing resources needed for training and deploying ensemble 
models, particularly with extensive datasets. 
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3. Balances predictive accuracy and generalizability  
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