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Supplementary Material 



 

Supplementary Figure S1. A) SDS-PAGE illustrating flag-tagged IN-FL expressed from mammalian 

expression system, IN-FL, IN-CTD and IN-CTD-ΔCT from E. coli used in this study. B) Structural model (left 

panel) of a weakly structured RNA(30)-mer used for EMSA assay (right panel) illustrating the interaction of 

IN-FLm. The RNA substrate was incubated with increasing concentrations of proteins (0; 100; 200; 400 µM) 

for 30 minutes at 37°C in binding buffer as indicated in experimental procedures. C) EMSA assay indicating 

the binding of IN-FL produced in E.coli to TAR substrate. 



 

Supplementary Figure S2. A) Sequence alignment of Lentivirus IN proteins. Amino acid sequences were 

obtained from the HIV database compendium (http://www.hiv.lanl.gov/), aligned using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and analysed by ESPript 3.0 Web server (65). Secondary 

structure elements were presented on top of the alignment (helices with squiggles, strands with arrows and 

turns with TT letters). Red shading indicates sequence identity and boxes indicate sequence similarity, 

according to physic-chemical properties. HIV - Human Immunodeficiency virus, SIV - Simian 

immunodeficiency virus, FIV - feline immunodeficiency virus, MVV - Maedi visna virus, EIAV - equine 

infectious anemia virus. B) EMSA assay illustrating the interaction of IN-CTD and IN-CTD-ΔCT with TAR 
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RNA. The RNA substrates (50 nM) are labelled with 32P (black star) and incubated with increasing 

concentrations of proteins (0; 100, 200, 400 and 800 nM) under the conditions described in ‘Materials and 

Methods’ section. C) Real-time sensorgrams of the BLI experiment relative to experiment shown in Figure 

1F, showing the interaction of IN-CTD and IN-CTD-ΔCT with 5’-biotinylated TAR RNA. Association and 

dissociation curves are obtained for different protein concentrations 1.8, 2.7, 5.4, 8.1, 16.2 and 32.5 µM, at 

37°C in a buffer containing 200 mM NaCl. 

 

Supplementary Figure S3. A) EMSA assay illustrating the binding of IN-FLm to TAR wild type and mutants. 

Increasing concentrations of IN-FLm were added to 5’-end radiolabelled TAR RNA and treated as indicated 

in ’Materials and Methods’ paragraph. B) EMSA assay showing the interaction of Tat protein (0, 100, 200, 

400 nM) with TAR mutants (50 nM) showed in Figure 2A. C) Graph showing the fractions of RNA bound by 

Tat as a function of Tat concentration. Detection, quantification, and data analysis were carried out as 

described in Figure 2C.  



 

Supplementary Figure S4. A) RNA-denaturing gel showing the effect of IN-CTD and IN-CTD-ΔCT on TAR 

structure in the absence of RNAse T1. Radiolabelled TAR RNA was incubated with IN truncations in the 
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same conditions used in Figure 3A. Bands corresponding to spontaneous cleavage in the presence IN-CTD 

and IN-CTD-ΔCT are identified as position markers. Gel lanes are as follows: (M) Ladder of two RNA 

transcripts of 33 and 20 nucleotides in length (lane 1); (AC(40)-AH) alkaline ladder of AC(40)-mer RNA (lane 

2); TAR RNA; TAR RNA incubated with IN-CTD-ΔCT (lane 4) and IN-CTD (lane 5). Digestion patterns were 

mapped on TAR secondary structure depicted on the right of the gel by arrows. B) Denaturing RNA gel 

showing the absence of nucleases in protein samples used for experiments of Figure 3A and Supplementary 

Figure 4A. The linear AC(40)-mer RNA was incubated with indicated protein preparations in the same 

conditions used for probing experiments: (AC(40)-AH) alkaline ladder of AC(40)-mer RNA (lane 1); (M) Ladder 

of three RNA transcripts of 25, 22 and 19 nucleotides in length (lane 2); (AC(40)) native AC(40)-mer RNA; TAR 

RNA incubated with IN-CT (lane 4), IN-CTD-ΔCT (lane 5); IN-CTD (lane 5) and Tat (lane 6). C) 

Interferometry sensorgrams of protein-RNA interaction used to calculate the equilibrium dissociation 

constants of Figure 3E. Bt-RNA(30)-mer was first loaded on the streptavidin-coated biosensor for 120 s (Bt-

RNA(30)-mer loading) then the unbound RNA was washed for 30 s (wash). The sensor was dipped in a 

solution containing 90 μM of IN protein for 200 s then incubated with different concentrations of Tat (0.2, 1 

and 2 μM) for 200 s. D) Interferometry sensorgrams to measure the affinity of Tat for immobilized Bt-TAR 

RNA (upper panel) and Bt-RNA(30)-mer (lower panel). The graph shows the real-time association and 

dissociation kinetics at different Tat concentrations. 
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Supplementary Figure S5. A) Schematic illustration of the steps performed during real-time binding 

experiments by BLI. First, we immobilized Bt-TAR or Bt-RNA(30)-mer to streptavidin-coated biosensor and 

washed out the unbound RNA. Then we soaked the probe in a solution containing Tat. Afterwards, the 

Tat:RNA bound-biosensor was dipped in a solution containing either IN-CTD or IN-CTD-ΔCT. B) 

Sensorgram showing the association of Tat (32.2 µM) to Bt-TAR (first rising curve between 200 and 400 s). 

Then the sensor was dipped in a solution containing 32.2 µM of either IN-CTD or IN-CTD-ΔCT for 200 s 

(curve between 400 and 600 s). C) Sensorgrams to measure the association of Tat (2 µM) to Bt-RNA(30)-

mer (first rising curve between 200 and 400 s). Then the sensor was dipped in a solution containing 90 µM 

of either IN-CTD or IN-CTD-ΔCT for 200 s (curve between 400 and 600 s). D) Histidine pull-down assay 

using His-tagged IN-CT and IN-CTD-ΔCT. Tagged IN truncations were mixed with Tat and incubated in a 

buffer containing 200 mM NaCl before co-precipitation. Input (20% of total) and pull-down fractions were 

analysed by 15% SDS-PAGE followed by Coomassie blue staining. 

 

 

Supplementary Figure S6. A) Solution NMR structure of TAR (black) bound to Tat RBD (green) deposited 

with PDB code: 6MCE from (Pham et al. 2018). B) Structural model of IN-CTD-ΔCT/TAR complex from 

(Dixit et al. 2021). 
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Supplementary Table S1. RNA substrates used in this study 

Table S1 RNAs used in this study
Name Sequence (5’-3’) Oligonucleotides and RNA

synthesis
AG(50)-mer gggagagagagagagagagagagagagagagagagagagagagagagaga FF48/FF54 hybridization

RNA(30)-mer cguccaucuggucaucuagugauaucaucg chemically synthesized

TAR gggucucucugguuagaccagaucugagccugggagcucucuggcuaacuagggaaccc FF90/FF135 hybridization

polyA gggcacugcuuaagccucaauaaagcuugccuugagugcuucaaguagug FF155/FF156 – PCR from pNL4-3

DIS gggcucggcuugcugaagcgcgcacggcaagaggcgag FF157/FF158 – PCR from pNL4-3

SD/Ψ gggcgacuggucaguacgccaaaaauuuugacuagcggaggcuagaaggag FF159/FF160 – PCR from pNL4-3

TAR-LS gggucucucugguuagaccagaucugagcgcugggacgcucucuggcuaacuagggaac
cc

FF91/FF136 hybridization

TAR-SS gggucucucugguuagaccagaucugagcugggacucucuggcuaacuagggaaccc FF92/FF137 hybridization

TAR-VSS Gggucucucugguuagaccagaucugagcgcucucuggcuaacuagggaaccc FF93/FF138 hybridization

Bt-TAR gggccagaucugagccugggagcucucuggccc chemically synthesized

AC(40) acacacacacacacacacacaaaaaaaaaaaaaaaaaaaa chemically synthesized

Supplementary Table1



 

Supplementary Table S2. DNA oligonucleotides used to produce the RNA substrates. 
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Table S2 DNA Oligonucleotides used to produce RNA substrates

Name Sequence (5’-3’)

FF48 AAATAATACGACTCACTATAGGG

FF54 CTCTCTCTCTCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCCCTATAGTGAGTCGTATTATTT

FF135 AAATAATACGACTCACTATAGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCC

FF90 GGGTTCCCTAGTTAGCCAGAGAGCTCCCAGGCTCAGATCTGGTCTAACCAGAGAGACCCTATAGTGAGTCGTATTATTT

FF136 AAATAATACGACTCACTATAGGGTCTCTCTGGTTAGACCAGATCTGAGCGCTGGGACGCTCTCTGGCTAACTAGGGAACCC

FF91 GGGTTCCCTAGTTAGCCAGAGAGCGTCCCAGCGCTCAGATCTGGTCTAACCAGAGAGACCCTATAGTGAGTCGTATTATTT

FF137 AAATAATACGACTCACTATAGGGTCTCTCTGGTTAGACCAGATCTGAGCTGGGACTCTCTGGCTAACTAGGGAACCC

FF92 GGGTTCCCTAGTTAGCCAGAGAGTCCCAGCTCAGATCTGGTCTAACCAGAGAGACCCTATAGTGAGTCGTATTATTT

FF138 AAATAATACGACTCACTATAGGGTCTCTCTGGTTAGACCAGATCTGAGCGCTCTCTGGCTAACTAGGGAACCC

FF93 GGGTTCCCTAGTTAGCCAGAGAGCGCTCAGATCTGGTCTAACCAGAGAGACCCTATAGTGAGTCGTATTATTT

FF155 AAATAATACGACTCACTATAGGGCACGCAAGCCCAAAAAAGCGCCGAGGCCAAAGAGG

FF156 CCTCTTTGGCCTCGGCGCTTTTTTGGGCTTGCGTGCCCTATAGTGAGTCGTATTATTT

FF157 AAATAATACGACTCACTATAGGGCTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAG

FF158 CTCGCCTCTTGCCGTGCGCGCTTCAGCAAGCCGAGCCCTATAGTGAGTCGTATTATTT

FF159 AAATAATACGACTCACTATAGGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAG

FF160 CTAGCCTCCGCTAGTCAAAATTTTTGGCGTACTCACCAGTCGCCCTATAGTGAGTCGTATTATTT

Supplementary Table 2


