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A B S T R A C T   

In isolated structures, the large relative displacements with respect to the base that occur as a result of significant 
seismic actions can excessively deform and damage the isolation system or can lead to pounding with adjacent 
structures if the distance between the structures (gap) is not sufficiently large; this can result in local or structural 
damage and damage to equipment contained in the structure due to increased absolute accelerations. One way to 
mitigate this damage is to insert appropriate deformable and dissipative devices (bumpers) between adjacent 
structures. The objective of the work is to evaluate, by numerical analysis, how uncertainties on the gap 
parameter, initially assumed to be symmetrical and positive, can give rise to nonsymmetrical and negative gaps 
and can also significantly influence the nonlinear dynamic response of a vibro-impact single-degree-of-freedom 
system optimally designed and excited with harmonic excitation at the base. The main results obtained showed 
how the presence of an uncertainty in the gap, modeled through normal probability distributions, is reflected i) 
on the nonlinear dynamic response of the system with values that lie in frequency-dependent confidence zones, 
(ii) on the probability distributions of the response quantities (the absolute accelerations and relative dis-
placements of the mass and the deformations and forces in the bumpers), (iii) on the width of the intervals in 
which the probability distributions of the response turns out to be of normal distributions, (iv) on the link be-
tween the gap values and the values obtained from the different response quantities considered.   

1. Introduction 

Base isolation system represents one of the most widely applied 
passive control strategies to mitigate the dynamic response of structures 
and equipment [1]. In contrast, semi-active isolation systems, using 
sensors, processors and actuators, allow the mechanical parameters 
(such as stiffness [2]) of control devices to be adjusted in real time so 
limiting problems due to large displacements. The objective of base 
isolation is to decouple the movement of the structure from that of the 
ground by introducing a highly horizontally deformable element (the 
isolator) between the substructure and the structure, so as to signifi-
cantly increase the period of oscillation of the system and reduce the 
absolute acceleration transmitted to the structure. 

Thus, this control strategy is characterized by isolation devices that 
have a low stiffness value; this can produce large horizontal relative 
displacements concentrated in the isolation system under both static and 
dynamic actions such as Near Fault (NF) earthquakes, which are char-
acterized by pulses with a long period and high intensity [3–5]. Large 

displacements on the one hand can severely damage isolation devices by 
exceeding their deformation limit (leading them to permanent defor-
mation or rupture), and on the other hand can lead to pounding with 
adjacent retaining walls or adjacent structures [6–9] if the available gap 
is not large enough. Potential pounding can lead to consequences 
ranging from minor local structural damage to severe structural damage 
or even collapse of structures [10–12]; in fact, pounding generates in-
creases in both accelerations and interstorey drifts in isolated structures. 
High increases in accelerations are strongly influenced by the stiffness of 
the impacting elements (hard impact) and, at the floors where impact 
occurs, affect the floor response spectra with possible damage to any 
vulnerable equipment [10]. Increases in interstorey drifts, on the other 
hand, can lead to permanent deformations or failure of structural and 
nonstructural elements. 

One possible way to reduce excessive displacements is to add Tuned 
Mass Dumper systems (TMD) equipped with Inerter to traditional base 
isolation systems [13–16]. The Inerter is a two-terminal device, pro-
posed by Smith [17], able to develop a resisting force proportional to the 
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relative acceleration of its ends by a constant called “inertance”. The 
performance of these new systems, referred to in the literature as Tuned 
Mass Damper Inerter (TMDI), has been extensively studied and 
demonstrated both numerically [13–16,18,19] and experimentally 
[20–22]. 

Another possible mitigation method to prevent damage to the 
isolation system due to pounding is the interposition of deformable and 
dissipative (soft impact) devices (bumpers) placed at a certain distance 
(gap) [12,23], which on the one hand limit the displacement of the 
structure and on the other hand reduce (if properly designed) the in-
creases in accelerations that occur as a result of pounding. The dynamic 
response of these new isolation systems equipped with bumpers, named 
Vibro-Impact Isolation Systems (V-IIS), can be very varied: primary and 
secondary resonances, left and right hysteresis, irregular resonances, 
quasi-chaotic and chaotic responses [24–32]. 

V-IISs subjected to harmonic excitation at the base have been 
extensively studied by the authors of this article [32–40], from these 
studies it was found that the parameters affecting the nonlinear dynamic 
response are, in addition to frequency, the gap (distance between the 
mass and the bumpers), stiffness and damping of the bumpers. The au-
thors also showed how the non-smooth dynamic response that charac-
terizes V-IISs can be made smooth by designing the bumpers by 
imposing an optimality relationship [32,41] between the stiffness and 
damping of the bumpers and the damping coefficient of the isolator 
(damper), and the optimality curve [41,42] that links the value of the 
gap to the value of the stiffness of the bumpers, reducing the optimal 
design to the gap parameter only. 

As shown in Ref. [43] the uncertainties come principally from two 
different factors: 1) the first uncertainty factor comes from the imper-
fections and idealizations made in the formulation of the physical 
models, as well as from the choices made on the types of probability 
distributions for representing the uncertainties; these uncertainties are 
called model uncertainties; 2) the second uncertainty factor comes from 
parameters such as geometry, material properties, actions, boundary 
and initial conditions, etc.; these uncertainties are called data un-
certainties. One way to handle the inevitable uncertainties governing a 
problem is to use probabilistic criteria and analysis. 

Structures are frequently subject to stochastic time-dependent ac-
tions, such as natural phenomena from wind gusts, earthquakes, random 
noise, etc. The influence that stochastic actions have on the dynamic 
response of single-degree-of-freedom vibro-impact systems has attracted 
the attention of many researchers, who have developed various analysis 
methods, such as Markov processes method, stochastic averaging 
method, mean impact Poincaré map method [44–50], to obtain the 
system response under such actions. The research conducted shows how 
the nature of the stochastic action is reflected in the response quantities 
of the system, which also exhibit a stochastic character and are typically 
represented by their probability distribution functions, histogram plots, 
Poincaré maps and limit cycles. 

In [43] a vibro-impact system (Timoshenko beam with an elastic 
barrier) is treated in which two different types of uncertainties, modeled 
through a gamma probability distribution, are considered, the former on 
the parameters of the Timoshenko beam (mass, stiffness and damping) 
and the latter on the stiffness of the elastic barrier; through the use of 
confidence zones it is shown how these uncertainties affect the nonlinear 
dynamic response of the system. 

In [51–53] a possible method for governing uncertainties through 
controlled synchronization is shown; specifically, a slave system follows 
the response of a master system by applying to the slave system, through 
an actuator, an additional forcer with a defined control law so as to 
compensate for any parameter uncertainties. 

The uncertainties considered in this work are related exclusively to 
the only design parameter of the V-IIS, namely the gap. The un-
certainties involved in the values of the gaps of the two bumpers come 
principally from errors in the positioning of the bumpers or from acci-
dental position changes that may occur later, as was observed in one of 

the experimental campaigns carried out by some of the authors of this 
paper [40]. To account for the influence of gap uncertainties on the 
nonlinear dynamic response, a normal probability distribution was used. 

The objectives of this work are. 

• to study the influence of gap uncertainties (excursion and eccen-
tricity) on the nonlinear dynamic response of single-degree-of- 
freedom vibro-impacting systems designed through the optimality 
relationship and optimality curve; 

• statistically evaluate the nonlinear dynamic response (absolute ac-
celeration and relative displacement of mass, deformation and force 
in bumpers) in terms of excursion and eccentricity;  

• evaluate the relationship connecting the uncertainties (excursion 
and eccentricity) of the gaps to the excursion and eccentricity of the 
nonlinear dynamic response;  

• to characterize, through statistical tests, the probability distribution 
functions (PDFs) of the nonlinear dynamic response in terms of 
excursion and eccentricity; 

The paper is organized as follow Section 2 presents the numerical 
model and the equations of motion; Section 3 shows the results neces-
sary to understand both the nonlinear dynamic response of V-IIS and the 
possible scenarios; Section 4 defines the bumpers configurations in a 
pseudo-random way and shows the system response through confidence 
zones; Section 5 shows how the response quantities are distributed and 
identifies the normality preservation intervals; finally, the main con-
clusions and future developments are given in Section 6. 

2. Equation of motions 

The study was conducted considering a single degree of freedom 
(SDOF) vibro-impacting system (shown in Fig. 1), composed of a mass M 
(highlighted in green), a damper D (highlighted in blue) and two 
deformable and dissipative bumpers (highlighted in red) indicated, 
respectively, as right bumper (BR) and left bumper (BL), i.e. Bj with j =

R,L. The bumpers are positioned on both sides of the mass at an initial 
distance (initial gap) G0j (j = R, L). The damper and bumpers are 
modeled using a linear elastic element with stiffness K and Kj (j = R,L), 
respectively, and a linear viscous damper with damping coefficient C 
and Cj (j = R,L), respectively; these elements are arranged in parallel as 
shown in Fig. 1. 

The system is subject to a harmonic base acceleration At(t) =

AG sin Ωt, characterized by an amplitude AG and circular frequency Ω. 
The relative displacements of the mass with respect to the ground and 
the deformations of the bumpers are indicated, respectively, as u and uj 

(j = R,L). 
The equations of motion are written in dimensionless form to make 

Fig. 1. Model of the SDOF system with the two lateral bumpers: the mass of the 
system is highlighted in green, the damper is represented in blue, while the 
right and left bumpers are represented in red. 
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them as general as possible. The components of the equation are 
normalized with respect to the term F* = Mω2u*, which represents the 
maximum force in the SDOF system in free flight (without impact, FF): 
the quantity u* = ustRd,max represents the maximum relative displace-
ment in FF, where ust = AG/ω2 is the static displacement and Rd,max = 1/
(

2ξ
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√ )
is the maximum value of the dynamic amplification in 

displacement (i.e. the value of the dynamic amplification factor in 
displacement Rd(ξ, β) evaluated for the value of β for which the reso-
nance in displacement occurs), finally ω =

̅̅̅̅̅̅̅̅̅̅
K/M

√
is the natural fre-

quency of the system. 
To write the dimensionless equations in compact form, the following 

dimensionless quantities are defined: the dimensionless time τ = ωt, the 
dimensionless relative displacement of the mass q = u/u* and the 
dimensionless deformation of the bumpers qj = uj/u* (j = R, L), the 
damping ratio of the SDOF system ξ = C/(2Mω), the maximum 
dimensionless of base excitation aG = 2ξ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√
, the frequency ratio 

β = Ω/ω and the dimensionless gap δ0j = G0j/u* (j = R, L). From the 
normalization adopted we have that the mass impacts the j-th bumper 
for 0 ≤ δ0j < 1, while the mass is in free flight conditions if δ0j ≥ 1. The 
force f(τ) = 2ξq́ (τ) + q(τ) is the dimensionless force of the damper; 
while fj(τ) = 2ξγjqʹ(τ) + λjqj(τ) (j = R, L) are the dimensionless contact 
forces, where γj = Cj/C and λj = Kj/K are the dimensionless damping 
and stiffness of the bumpers. Finally, a(τ) = qʹ́ (τ) + at(τ) is the dimen-
sionless absolute acceleration of the mass, where at(τ) = aG sin βτ is the 
dimensionless harmonic acceleration at the base. 

By dividing the equations of motion by the term F* and substituting 
the dimensionless quantities just introduced, the dimensionless equa-
tions can be written in the following form: 
{

qʹ́ (τ) + 2ξqʹ(τ) + q(τ) + fj(τ) • ψ1
[
δj(τ)

]
• ψ2

[
fj(τ)

]
= − aG sin βτ (1a)

fi(τ) = 0 (1b)
(1)  

where it is assumed that if j = L in Eq. (1a), then i = R in Eq. (1b), or if 
j = R in Eq. (1a), then i = L in Eq. (1b). In other words, Eq. (1a) governs 
the motion of the mass in contact with the j-th bumper, while Eq. (1b) 
refers to the free evolution of the i-th bumper; therefore, if the mass is in 
contact with the right bumper we will have j = R and i = L, vice versa if 
the mass is in contact with the left bumper we will have j = L and i = R. 

The superscript (́ ) denotes the differentiation of the generic function 
made with respect to the dimensionless time τ, while the Heaviside 
functions ψk (k = 1,2) are defined in the following way: 

Contact ψ1
[
δj(τ)

]
=

{
0, δj(τ) > 0
1, δj(τ) = 0 (2a)  

Separation ψ2

[
fj(τ)

]
=

{
0, fR(τ) ≤ 0 or fL(τ) ≥ 0
1, fR(τ) > 0 or fL(τ) < 0 (2b)  

where δj(τ) = δ0j + Δqj(τ) (j = R,L), ΔqR(τ) = qR(τ) − q(τ) and ΔqL(τ) =
q(τ) − qL(τ) is the clearance function and represents the distance, at any 
instant of time, between the mass and the j-th bumper. When the mass is 
in contact with the j-th bumper δj(τ) = 0, otherwise δj(τ) > 0. 

Despite the relative simplicity of the model, in which both the 
damper and the bumpers were modeled using the Kelvin–Voigt model, 
the system is highly non-linear, due to the presence of the gaps, of the 
unilateral constraints and of the occurrence of the impact which causes 
abrupt changes in stiffness and damping upon contact. 

As regards the beginning of the contact phase between the mass and 
the j-th bumper, it was identified based on the value of the clearance 
function δj(τ) (j = R,L), as illustrated in Eq. (2a); the impact occurs when 
δj(τ) = 0. On the other hand, the evaluation of the time instant of the 
detachment is obtained based on the value of the contact force fj(τ) (j =

R,L), as illustrated in Eq. (2b). This condition is motivated by the need to 

overcome one of the drawbacks that the Kelvin-Voigt model has when it 
is used to model contact, i.e. the existence of attractive forces after the 
restitution phase; therefore, the change in sign of the contact force is 
assumed as a condition of separation between the mass and the bumper. 

3. Nonlinear dynamic response of vibro-impacting systems 

In this section the physical meaning of the response quantities is 
shown, what it means to have negative gap values, and through a series 
of comparisons it is evaluated how the dynamic response of the system 
changes as the excursion and eccentricity of the gap vary. In section 2 
the initial configuration of the bumpers is uniquely identified through 
the initial dimensionless gaps δ0j (j = R, L). However, the initial 
configuration of the bumpers can also be identified in terms of the initial 
excursion δ0 of the dimensionless gap, defined as the sum of the 
dimensionless initial gaps, and in terms of the initial eccentricity e0 of 
the dimensionless gap, defined as the difference between the two 
dimensionless initial gaps. 

These two ways of representing the initial configuration of the 
bumpers are linked through the following relations: 
{

δ0 = δ0R + δ0L (3a)
e0 = δ0R − δ0L (3b) (3)  

{
δ0R = (δ0 + e0)/2 (4a)
δ0L = (δ0 − e0)/2 (4b) (4) 

Since in this study the initial configuration of the bumpers is not 
assumed exclusively symmetrical, it is considered appropriate to 
describe this configuration in terms of δ0 and e0. 

In this section, various comparisons are carried out among different 
initial configurations of the bumpers; in these comparisons the me-
chanical parameters of the bumpers λj and γj (j = R,L) remain always the 
same. The dimensionless stiffness λj and the dimensionless damping γj 

are obtained by an optimal design in an initial reference configuration of 
the bumpers. In the results shown below, a value of δ0 = 0.06 and a 
value of e0 = 0 are assumed for the reference configuration; therefore, 
for the reference configuration the two gaps are assumed to be sym-
metrical and with zero eccentricity. Once the reference configuration of 
the bumpers is known, it is possible to obtain the dimensionless stiffness 
λR = λL = λ by entering the optimality curve with a value of δ = δ0/2; 
once the value of λ is known, the value of γR = γL = γ is calculated via the 
optimality relation. 

3.1. Physical meaning of the response quantities 

When the system is subject to actions of a harmonic nature, the most 
effective way to describe the response of the system is through Pseudo- 
Resonance Curves (PRCs), i.e. analyzing the response of the system in 
the frequency domain; this way of viewing the response allows us to 
show how the system behaves in steady state conditions for each value of 
the dimensionless frequency of the forcing β. 

In Section 4, Pseudo-Resonance Curves are used to illustrate the 
response of the system. The PRCs are plotted for response quantities 
which allow particular behaviors of the system to be highlighted; it is 
therefore necessary to define these response quantities. 

Fig. 2 shows four response quantities considered fundamental to 
describe the behavior of a vibro-impacting system: relative displacement 
(a) and absolute acceleration of the mass (b), deformations (c) and 
contact forces (d) of the bumpers. The response quantities, of which the 
PRCs are reported in Section 4, are obtained -for each value of the 
dimensionless frequency of the forcing-starting from the time histories 
shown in Fig. 2. 
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⎧
⎪⎪⎨

⎪⎪⎩

ηd,exc=
qmax − qmin

q0
max − q0

min
(excursionof therelativedisplacementof themass) (5a)

ηd,ecc=
qmax+qmin

q0
max − q0

min
(eccentricityof therelativedisplacementof themass) (5b)

(5)  

⎧
⎪⎪⎨

⎪⎪⎩

ηa,exc=
amax − amin

a0
max − a0

min
(excursionof theabsoluteaccelerationof themass) (6a)

ηa,ecc=
amax+amin

a0
max − a0

min
(eccentricityof theabsoluteaccelerationof themass) (6b)

(6)  
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηB,exc=
qj,max − qj,min

q0
max − q0

min
(excursionof thedeformationsof thebumpers) (7a)

ηB,ecc=
qj,max+qj,min

q0
max − q0

min
(eccentricityof thedeformationsof thebumpers) (7b)

(7)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηF,exc=
fj,max − fj,min

f0
max − f0

min
(excursionof thecontactforcesof thebumpers) (8a)

ηF,ecc=
fj,max − fj,min

f0
max − f0

min
(eccentricityof thecontact forcesof thebumpers) (8b)

(8)  

In Eqs. (7) and (8) the index j takes on the values R and L (right bumper 
and left bumper). 

As can be seen from the relationships reported in Eqs. (5)–(8), each of 
the response quantities reported in Fig. 2 is associated with two other 
response quantities, i.e. the maximum excursion and the eccentricity of 
the response quantity. In equations (5)–(8) reported above, the response 
quantities that appear on the right side are the maximum and minimum 
values that the generic response quantity attains in steady state condi-
tions. Observing the numerator of Eq. (5a) it is possible to notice that 
this quantity is graphed in Fig. 2a with the double green arrow, whereas 
the numerator of Eq. (5b) is graphed in Fig. 2a with the yellow dot; 

similarly the numerator of Eqs. (6)–(8) is reported, respectively, in 
Fig. 2b,c,d. 

The response quantities just illustrated (represented with the double 
green arrow and the yellow dot in Fig. 2) are also normalized by 
appropriate quantities; the normalization is done with respect to the 
response quantities that occur in resonance conditions for the system in 
free flight conditions. Each of the response quantities has its own value 
of β for which resonance occurs and therefore there are time histories 
similar to those shown in Fig. 2 also for the FF condition: the response 
quantities reported in Eqs. (5) and (7) are divided by the excursion of the 
relative displacement of the mass in FF, the response quantities reported 
in Eq. (6) are divided by the excursion of the absolute acceleration of the 
mass in FF, finally, the response quantities reported in Eq. (8) are 
divided by the damper force excursion in FF. 

The time histories shown in Fig. 2 were obtained for bumpers that 
have an eccentricity e0 different from zero and, as can be seen from this 
figure, this leads to having response quantities that also have an ec-
centricity different from zero. In particular, passing from the notation δ0 
and e0 to that with δ0R and δ0L through the relations reported in Eq. (4), 
values of the left and right dimensionless gaps of: δ0R = 0.05 and δ0L =

0.01 are obtained. From the time history of the relative displacement of 
the mass, reported in Fig. 2a, it is possible to observe the presence of a 
positive eccentricity value of this response quantity; therefore the mass 
has greater relative displacements to the right, i.e. in correspondence 
with the largest gap. Vice versa, for the other three response quantities 
reported in Fig. 2 negative eccentricities of the response quantities are 
noted; therefore the absolute accelerations of the mass, the deformation 
and the contact force of the left bumper, i.e. the bumper which presents 
a smaller gap value, are slightly larger. The response of the system for 
bumpers with a positive eccentricity of the gap (e0 > 0) can vary 
depending on the gap excursion and on the value of the forcing fre-
quency, as will be shown in Sect. 4; therefore the time histories shown in 
Fig. 2 are representative of a particular configuration of the bumpers and 
of a particular value of the forcing frequency. 

Fig. 2. Time histories of the selected response quantities obtained for a value of ξ = 0.1, for β = 1.42 (acceleration resonance frequency of the reference config-
uration), for values of λ = 1.14 and γ = 5.70 which derive from the optimal design relating to the reference configuration (δ0 = 0.06, e0 = 0) and for δ0 = 0.06 and e0 
= 0.04; in a) and b) the time histories of the relative displacement and absolute acceleration of the mass are reported respectively, while in c) and d) the time histories 
of the deformations and contact forces of the bumpers are reported respectively. The double green arrow and the yellow dots represent, respectively, the excursion 
and eccentricity of the generic response quantity. 
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3.2. Physical meaning of the negative gaps 

In the analyzes reported in Sect. 4, initial configurations of the 
bumpers δ0 and e0 to which negative δ0R and δ0L values are associated 
will also be considered. It therefore becomes necessary to show what the 
physical significance of negative gap values is. 

Fig. 3 shows an exhaustive list of the possible scenarios that can 
occur due to the pseudo-random generation of δ0 and e0. From this figure 
it is possible to see how, for all four scenarios shown, configuration 
0 (represented through the dotted lines in Fig. 3) is physically impos-
sible, as it would give rise to an unbalanced initial configuration char-
acterized by the interpenetration of the bumpers and of the mass. The 
negative gap values give rise to forces applied to the mass through the 
pre-compression of the bumpers, since if they could the bumpers would 
move to the 0 configuration, but since this configuration is not physi-
cally possible the system moves to an equilibrium and physically 
possible configuration, i.e. configuration 1 (or initial configuration of 
the bumpers). 

The transition from configuration 0 to configuration 1 is thought to 
occur in static conditions and since it is not possible to know a priori 
whether a bumper is pre-stressed or not, (see cases c) and d)), this 
transition is carried out by solving a non-linear static problem, in which 
the non-linearity is inherent in the fact that it is not possible to know a 
priori whether the generic bumper will have to be inserted into the 
equilibrium equation or not. The static equilibrium equation at the 
initial instant changes based on the value assumed by the relative 
displacement of the mass and on the moment in which this displacement 
is obtained by solving the static equilibrium equation; therefore, it is 
necessary to proceed iteratively. 
⎧
⎨

⎩

q(0) + λ(q(0) − δR0) + λ(q(0) + δL0) = 0 if δR = δL = 0 (9a)
q(0) + λ(q(0) − δR0) = 0 if δR = 0 e δL > 0 (9b)
q(0) + λ(q(0) + δL0) = 0 if δR > 0 e δL = 0 (9c)

(9) 

The way to proceed is to hypothesize a first value of the relative 
displacement of the mass, generally assumed as qtest = 0, check which of 
the three cases reported in Eq. (9) it falls into and solve the respective 
equation in terms of q(0); if the value of the relative displacement ob-
tained by solving Eq. (9) coincides with the value of the hypothesized 
relative displacement the procedure is concluded, while if these dis-
placements do not coincide the procedure is repeated taking as qtest the 
relative displacement of the mass obtained by solving Eq. (9). 

From case a) shown in Fig. 3, which is related to values δ0 < 0 and 
e0 = 0 which lead to having values of δ0R and δ0L that are equal and both 
negative in configuration 0, it is possible to notice how the transition 
from configuration 0 to configuration 1 it does not involve movements 
of the mass; this is due to the fact that the bumpers are pre-compressed 
in the same way leading to the creation of two forces equal in magnitude 
but in opposite directions which act on the mass. 

The case b) shown in Fig. 3 is instead relative to the values of δ0 < 0 
and e0 > 0 which lead to having values of δ0R and δ0L which are both 
negative in the 0 configuration but with δ0R > δ0L. This means that the 
left bumper has a negative gap value and is greater in absolute value 
than the right one and is more pre-compressed. This difference in pre- 

compression of the bumpers will mean that two unbalanced forces due 
to the bumpers act on the mass; therefore, to guarantee the balance of 
the mass, the damper will also have to provide its contribution through 
the restoring force that is generated following a relative displacement of 
the mass. Then, in this case the transition from configuration 0 to 
configuration 1 leads to a positive shift (to the right) of the mass. 

The cases c) and d) shown in Fig. 3 are also related to values of δ0 < 0 
and e0 > 0, but in these cases this pair of values leads to having values of 
δ0R and δ0L which in configuration 0 are, respectively, positive and 
negative. In both cases the transition from configuration 0 to configu-
ration 1 leads to a positive shift (to the right) of the mass, due to con-
siderations similar to those made for the case b). For case c) the 
displacement suffered by the mass due to the pre-compression of the left 
bumper also brings the mass into contact with the right bumper (which 
is also compressed); however, in case d) the movement of the mass does 
not bring it into contact with the right bumper (which is unloaded at the 
initial instant). 

The transition from configuration 0 to configuration 1 is a step that is 
always implicitly or explicitly done; in fact, if the pair of δ0 and e0 leads 
to a pair of δ0 and e0, both positive, configuration 1 will always coincide 
with configuration 0, while if the pair of values of δ0 and e0 leads to 
having configurations 0 like those shown in Fig. 3, the considerations 
just made apply. 

The nonlinear dynamic analysis will start from the initial conditions 
that derive from configuration 1. 

Fig. 4 shows the time histories relating to the four scenarios repre-
sented in Fig. 3; hence, once configuration 0 has been defined, the non- 
linear static problem that leads to configuration 1 is solved and finally 
the system is subjected to a harmonic forcing. 

For the four time-histories reported in Fig. 4 for the dimensionless 
time instant τ = 0 it is possible to observe configuration 1; for case a) 
given the symmetry of the bumpers, the relative displacement of the 
mass is zero, while for the other cases the relative displacement of the 
mass is positive (the oscillator is moved to the right at the initial instant, 
see Fig. 3). For Fig. 4a and b the left and right gaps are both negative; 
this can be seen in the time history through the fact that the bumpers 
recover the deformation for values that have the opposite sign to the 
respective peak value. While for Fig. 4c and d it can be noted that the gap 
of the right bumper is positive while the left one is negative. 

In a manner consistent with case d) in Fig. 3, in the time history 
reported in Fig. 4d the right bumper is not pre-compressed in configu-
ration 1; in fact, in Fig. 4d the gap of the right bumper does not undergo 
deformations at the initial instant and the mass will impact for the first 
time against this bumper starting from a dimensionless time value τ = 3. 

Moving from case a) to case d), the value of the eccentricity of the 
bumpers e0 increases and -as can be seen from Fig. 4- this leads to an 
increasingly eccentric response. 

3.3. Comparison between different bumpers’ configurations 

To show how the behavior of the system changes as the bumper 
configurations vary, several comparisons are made between various 
bumpers’ configurations and the reference configuration (δ0 = 0.06 ed 

Fig. 3. Four of the possible scenarios that can occur due to the pseudo-random generation of δ0 and e0. The dotted lines show configuration 0, i.e. the configuration 
that occurs following the pseudo-random generation of δ0 and e0, the solid lines show configuration 1 or initial configuration of the bumpers, i.e. the equilibrium 
configuration that occurs following precompression of the bumpers. The case a) it is representative of a value of δ0 < 0 and e0 = 0; instead the cases b), c) and d) are 
representative of values of δ0 < 0 ed e0 > 0, in the latter three cases δ0 moving from case b) to case d) remains negative and decreases in absolute value, while e0 when 
moving from case b) to case d) remains positive and increases in absolute value. 
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e0 = 0). 
In Fig. 5a the blue and red curves refer to two configurations which 

have, respectively, gap excursion values δ0 larger and smaller than those 
of the reference configuration, while the eccentricity of the gap is 
identically equal to zero for in all three cases. The black curve shows the 
response of the reference configuration; from this figure it is possible to 
see how an increase in the gap excursion leads to an increase in both the 
relative displacement of the mass and the total force discharged to the 
ground, therefore leading to larger force-displacement cycles represen-
tative of a greater dissipative capacity. 

In Fig. 5b the blue and red curves refer to two configurations that 
have negative gap excursion values δ0 and zero gap eccentricity values 
e0, the black curve instead shows the response of the reference config-
uration; it is possible to note that even when the gap excursion becomes 
negative the same considerations made previously apply, i.e. that the 
area subtended by the force-displacement cycle, the maximum relative 
displacement of the mass and the maximum total force discharged to the 
ground are reduced as the gap excursion decreases. 

In Fig. 5c and d it is analyzed how the eccentricity of the gap, positive 
and negative, is reflected in the response. This is done both for values of 

Fig. 4. Time histories relating to four different configurations of the bumpers, for a value of ξ = 0.1, β = 1.42 and for values of λ = 1.14 and γ = 5.70 that derive from 
the design optimal relative to the reference configuration (δ0 = 0.06, e0 = 0). Time histories refer to the following pairs of δ0 and e0: a) δ0 = − 0.06, e0 = 0, b) δ0 =

− 0.06, e0 = 0.04, c) δ0 = − 0.04, e0 = 0.06, d) δ0 = − 0.01, e0 = 0.09; the relative displacement of the mass is shown in black, the position of the right gap in red and 
the position of the left bumper in blue for each instant of time The green dot indicates the initial configuration related to nonlinear static analysis. 

Fig. 5. Comparison between different force-displacement cycles with the reference configuration (δ0 = 0.06, e0 = 0), for a value of ξ = 0.1, β = 1.42 and for values of 
λ = 1.14 and γ = 5.70 which derive from the optimal design relative to the reference configuration (δ0 = 0.06, e0 = 0). In all the figures, the black curve is related to 
the reference configuration, while the blue and red curves are related to bumpers configurations that are compared with the reference one. 
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the gap excursion equal to that of the reference configuration (Fig. 5c) 
and for negative gap excursion values (Fig. 5d). From these figures it is 
possible to see how the eccentricity of the gap leads to a translation in 
the direction of the stiffness of the damper of the force-displacement 
cycles. In fact, for the same gap excursion the area subtended by the 
force-displacement cycle remains the same. This translation is due to the 
response quantities which also become eccentric following the eccen-
tricity of the gap. 

4. Effect of gap size uncertainty on the nonlinear dynamic 
response 

The main objective of this section is to show how the uncertainties 
that exist on the parameters δ0 and e0 are reflected on the response; in 
fact, we are going to probe how sensitive the system is to variations in 
these parameters. 

To give a better understanding of the results that will be shown, the 
dimensionless parameters δ0 and e0 are written as a function of the 
dimensional parameters, in order to understand which physical pa-
rameters we are planning of varying: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ0 =
(G0d + G0s)ω2

AgRd,max
(10a)

e0 =
(G0d − G0s)ω2

AgRd,max
(10b)

(10) 

Assuming that both the parameters ω2 and Rd,max of the SDOF system 
and the action parameter Ag are known, the uncertainties that affect the 
dimensionless parameters δ0 and e0 are exclusively linked to un-
certainties that affect the physical parameters G0R and G0L (shown in 
Fig. 1). 

The uncertainties linked to the value of the two gaps G0R and G0L 
mainly derive from errors in the positioning of the bumpers or from 
accidental position variations that can occur subsequently. 

4.1. Generation of the input parameters δ0 and e0. 

The robustness analysis conducted is not a simple parametric anal-
ysis in which a range of variation is set for the parameters δ0 and e0 and 
all possible cases are analyzed, but in the following analysis the pairs of 
values δ0 and e0 are generated in a pseudo-random way according to 
probabilistic criteria. 

The way in which the analysis is conducted consists in fixing the pair 
of values δ0 and e0, which we will later call the reference configuration 
(it would be the desired configuration of the bumpers). From this 
configuration the dimensionless stiffness λ and the dimensionless 
damping γ are obtained through the optimal design procedure, which 
consists in entering the optimality curve with a value of δ = δ0/ 2 thus 

obtaining the parameter λR = λL = λ. Known λ, the parameter γR = γL =

γ is obtained through the optimality relation. Finally, different pairs of 
values δ0 and e0, also called “configurations”, are generated in a pseudo- 
random way. Therefore, for all the configurations generated in a pseudo- 
random way, the values of λ and γ are those that derive from the optimal 
design carried out with the reference configuration. 

In this article the pairs of values δ0 and e0 are generated in a pseudo- 
random way (MATLAB function random): both a vector of values for δ0 
and a vector of values for e0 are generated, both of which are arranged 
according to a normal probability distribution; therefore the j-th 
component of the vector δ0 is associated with the j-th component of the 
vector e0, generating the j-th configuration. 

To make a comparison between a histogram and a probability den-
sity function (pdf), it is necessary to scale the histogram in a way 
consistent with the probability density function, therefore since the area 
under the pdf is equal to one, also the area under the histogram must be 
equal to one. 

Fig. 6 shows how the values of δ0 and e0 generated in a pseudo- 
random way, represented by the blue histogram, are arranged accord-
ing to a normal probability distribution, which has the same mean and 
standard deviation as the values of δ0 and e0 generated. The values of δ0 
and e0 generated have an average value that tends to the value of the 
reference configuration, while the standard deviation is assumed to be 
the same for both parameters. 

In this paper, the value of the standard deviation is chosen in such a 
way that almost all of the values of δ0 and e0 generated fall in a range 
between ∓0.1 the value of the reference configuration, thus allowing the 
behavior of the system to be analyzed even for values of the gap pa-
rameters that are significantly different than that of the reference 
configuration. 

4.2. Confidence zone 

For each of the generated bumper configurations, the Pseudo- 
Resonance Curves (PRCs) are worked out for the eight response quan-
tities reported in Eqs. (5)–(8). 

The PRCs are traced by subjecting the system shown in Fig. 1 to a 
sine-type action with dimensionless frequency β varying over time and 
with constant dimensionless acceleration aG. Therefore, we start from 
the minimum value of β considered, bring the system to steady state 
conditions and through the relations reported in Eqs. (5)–(8) the first 
point of the curve is plotted, after that the value of the dimensionless 
frequency β is changed, increasing it by an appropriate increment Δβ, 
and the system is brought again to steady state conditions starting from 
the initial conditions that derive from the time history obtained with the 
previous β. This is done until reaching a maximum value of β, once this 
value of β is reached we will return to the minimum β value by reducing 
the frequency of the forcing of a decrement Δβ at each step. The PRCs 

Fig. 6. Comparison of the histogram of the input parameters (δ0 and e0) generated pseudo-randomly with the normal type probability density function for the 
reference configuration δ0 = 0.6 and e0 = 0; in graph a) the histogram of the frequency densities of the gap excursion δ0 and the comparison with the relative 
probability density function (red curve) are shown; similarly in graph b) the same comparison is shown but made with the eccentricity of the gap e0. 
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traced in this way, in addition to providing information about the system 
in steady state conditions, also allow us to understand how much the 
system depends on the initial conditions. 

The presence of an uncertainty in the input parameters δ0 and e0 is 
reflected in an uncertainty in the output parameters, i.e. in the response 
quantities; this leads to responses that are not deterministic but which 
can take on values within a certain range, called confidence zone. 

The graphs shown in Fig. 7 are related to a specific reference 
configuration (δ0 = 0.6 and e0 = 0) but it can be assumed as represen-
tative of an entire range of reference configurations, i.e. for all those 
reference configurations that present δ0 > 0.38 and e0 = 0. 

Fig. 7 shows the Pseudo-Resonance Curves for both the reference 
configuration (red curve) and for the gap configurations generated in a 
pseudo-random way (PRCs of 1000 configurations represented by black 
curves). The blue points represented in the various figures identify the 
range of β values for which the collision occurs for the reference 
configuration. As can be seen from these figures for some values of β the 
response is not unique but takes on different values going to define the 
confidence zone, which takes on a length defined by the range 0.30 ≤

β ≤ 1.35 and an width that in general does not remain constant, showing 
how there are some values of β that are more sensitive than others to 
uncertainties. 

The graph shown in Fig. 7a1 shows the PRCs of excursion of the 
relative displacement of the mass. The width of the confidence zone does 
not remain constant with β and shows the maximum width for the β of 
resonance (β = 1.09) where it is equal to 0.081; finally, it is possible to 
note how for a value of β equal to 1.2 this width tends to zero. 

The graph shown in Fig. 7a2 shows the PRCs of the eccentricity of the 

relative displacement of the mass. The width of the confidence zone does 
not remain constant with β and shows maxima in correspondence with 
two values of β, i.e. for β = 0.5 and β = 1.15 where it turns out to be, 
respectively, equal to 0.022 and 0.028; finally it is possible to notice how 
this graph shows a certain symmetry with respect to the axis ηd,ecc = 0. 

The graph shown in Fig. 7b1 shows the PRCs of the excursion of the 
absolute acceleration of the mass. The width of the confidence zone does 
not remain constant with β and shows the maximum width for the β of 
resonance (β = 1.08) where it is equal to 0.082; finally, it is possible to 
note how, also in this case, for a value of β approximately equal to 1.18 
the width of the confidence zone tends to zero. 

The graph shown in Fig. 7b2 shows the PRCs of the eccentricity of the 
absolute acceleration of the mass. The width of the confidence zone does 
not remain constant with β and shows maximums near the two blue 
points, i.e. for β = 0.7 and β = 1.25 where it is, respectively, equal to 
0.064 and 0.093; finally it is possible to notice how this graph shows a 
certain symmetry with respect to the axis ηa,ecc = 0. 

The graph shown in Fig. 7c1 shows the PRCs of the excursion of the 
deformations of the bumpers. The width of the confidence zone does not 
remain constant with β and shows the maximum width for a value of β =

1.25 where it is equal to 0.102. 
The graph shown in Fig. 7c2 shows the PRCs of the eccentricity of the 

deformations of the bumpers. The width of the confidence zone remains 
approximately constant for most of its width where it is equal to 0.010, 
also in this case it is possible observe a certain symmetry with respect to 
the axis ηB,ecc = 0. 

The graph shown in Fig. 7d1 shows the PRCs of the excursion of the 
contact forces of the bumpers. The width of the confidence zone does not 

Fig. 7. Pseudo-Resonance Curves obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ = 2.26 which derive from the optimal design relative to the reference 
configuration (δ0 = 0.6 and e0 = 0). In a1) and a2) the PRCs of the excursion and eccentricity of the relative displacement of the mass are reported; in b1) and b2) the 
PRCs of the excursion and eccentricity of the absolute acceleration of the mass are reported; in c1) and c2) the PRCs of the excursion and eccentricity of the de-
formations of the bumpers are reported; in d1) and d2) the PRCs of the excursion and eccentricity of the contact forces of the bumpers are reported. In all graphs, the 
red curves represent the PRCs of the reference configuration, the blue points delimit the range of β values for which the collision occurs in the reference configuration; 
finally, the black curves represent the response of the pseudo-random configurations. 
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remain constant with β and shows the maximum width for a value of β =

1.25 where it assumes a value equal to 0.146; finally, it is possible to 
note that in this case there are two values for which the confidence zone 
tends to zero, i.e. for β equal to 0.89 and 1.14. 

The graph shown in Fig. 7d2 shows the PRCs of the eccentricity of the 
contact forces of the bumpers. The width of the confidence zone does not 
remain constant with β but shows maxima near the two blue points, i.e. 
for β = 0.72 end β = 1.24 where it turns out to be, respectively, equal to 
0.096 and 0.135; also in this case the graph shows a certain symmetry 
with respect to the axis ηF,ecc = 0. 

The graphs shown in Fig. 8 are related to a given reference config-
uration (δ0 = 0.06 ed e0 = 0) but it can be assumed as representative of 
an entire range of reference configurations δ0 ≤ 0.38 and e0 = 0. Many 
of the pseudo-random configurations analyzed in Fig. 8 have negative 
gaps, so these results also show how the system responds to such 
configurations. 

Fig. 8 shows the Pseudo-Resonance Curves for both the reference 
configuration (red curve) and for the gap configurations generated in a 
pseudo-random way (PRCs of 1000 configurations represented by black 
curves). The blue points represented in the various figures identify the 
range of β values for which the collision occurs for the reference 
configuration. As can be seen from these figures, for the entire range of β 
values the response is not unique but takes on different values, defining 
the confidence zone, which takes on a length equal to the entire range of 
β and a width which in general does not remain constant, showing how 
there are some values of β that are more sensitive to uncertainties than 
others. 

The graph shown in Fig. 8a1 shows the PRCs of the excursion of the 

relative displacement of the mass. The width of the confidence zone does 
not remain constant with β but shows the maximum width near the 
value of β for which resonance occurs (β= 1.30) and is equal to 0.134, 
the point at which the confidence zone tends to zero is not so clear but 
can be identified near a value of β equal to 2.1. 

The graph shown in Fig. 8a2 shows the PRCs of the eccentricity of the 
relative displacement of the mass. The width of the confidence zone can 
be assumed constant with a good approximation for the entire range of β 
with a width equal to 0.056. Finally, it is possible to notice how this 
graph shows a certain symmetry with respect to the axis ηd,ecc = 0. 

The graph shown in Fig. 8b1 shows the PRCs of the excursion of the 
absolute acceleration of the mass. The width of the confidence zone does 
not remain constant with β and shows its maximum widths in corre-
spondence with two points, the first near the value of β for which the 
resonance occurs (β= 1.34) where it presents a value of 0.264, while the 
second turns out to be β = 2 with an width equal to 0.219; also in this 
case the point at which the confidence zone tends to zero is not so clear 
but can be identified near a value of β equal to 1.7. 

The graph shown in Fig. 8b2 shows the PRCs of the eccentricity of the 
absolute acceleration of the mass. The width of the confidence zone does 
not remain constant with β but shows a first maximum point for β = 0.6 
where it takes on a value of 0.057, after which it gradually reduces until 
reaching a width of 0.019 which remains constant until value of β = 1.9 
where it shows a sharp increase assuming a value equal to 0.128, finally 
it is possible to notice how this graph shows a certain symmetry with 
respect to the axis ηa,ecc = 0. 

The graph shown in Fig. 8c1 shows the PRCs of the excursion of the 

Fig. 8. Pseudo-Resonance Curves obtained for a value of ξ = 0.1, for values of λ = 1.14 and γ = 5.70 which derive from the optimal design relative to the reference 
configuration (δ0 = 0.06 and e0 = 0). In a1) and a2) the PRCs of the excursion and eccentricity of the relative displacement of the mass are reported, in b1) and b2) the 
PRCs of the excursion and eccentricity of the absolute acceleration of the mass are reported, in c1) and c2) the PRCs of the excursion and eccentricity of the de-
formations of the bumpers are reported, in d1) and d2) the PRCs of the excursion and eccentricity of the contact forces of the bumpers are reported. In all graphs, the 
red curves represent the PRCs of the reference configuration, the blue points delimit the range of β values for which the collision occurs in the reference configuration; 
finally, the black curves represent the response of the pseudo-random configurations. 
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deformations of the bumpers. The width of the confidence zone does not 
remain constant with β and shows the maximum width for a value of β =

1.8 where it is equal to 0.117; in this case the points in which the width 
of the confidence zone tends to zero are two and they are localized for β 
values of 0.95 and 1.45. 

The graph shown in Fig. 8c2 shows the PRCs of the eccentricity of the 
deformations of the bumpers. The width of the confidence zone can be 
assumed with a good approximation to be constant for the entire range 
of β with a width equal to 0.043; also, in this case it is possible to observe 
a certain symmetry with respect to the axis ηB,ecc = 0. 

The graph shown in Fig. 8d1 shows the PRCs of the excursion of the 
contact forces of the bumpers. The width of the confidence zone does not 
remain constant with β and shows its maximum widths in correspon-
dence with two points, the first near the value of β for which the reso-
nance occurs (β= 1.35) where it presents a value of 0.172, while the 
second is β = 1.8 with an width equal to 0.257, also in this case the point 
at which the confidence zone tends to zero is not so clear but can be 
identified near a value of β equal to 1.7. 

The graph shown in Fig. 8d2 shows the PRCs of the eccentricity of the 
contact forces of the bumpers. The width of the confidence zone remains 
approximately constant up to a value of β = 1.9 where it shows a sharp 
increase assuming a value equal to 0.175, also in this case the graph 
shows a certain symmetry with respect to the axis ηF,ecc = 0. 

Comparing the PRCs relating to the two reference configurations (red 
curves in the figure) of Figs. 7 and 8, it is possible to see how a reduction 
in the excursion of the gap δ0 leads to lower excursions of the relative 
displacements and absolute accelerations of the mass. The excursions of 
the deformations of the bumpers are also smaller as they decrease, while 
the excursion of the contact forces of the bumpers are larger for the 
reference configuration shown in Fig. 8. In all cases the eccentricity of 
the various response quantities is always zero; this result is a direct 
consequence of the optimal design carried out. For Fig. 8 it is possible to 
notice how the first blue point is positioned for a value of β = 0, this 
condition, which occurs for the first time for a value of δ0 = 0.38, has 
been identified as a watershed between two different types of results: 
those similar to the results in Fig. 7 and those similar to the results in 
Fig. 8. 

Moving on to analyze the various confidence zones, it is possible to 
notice how for all the graphs shown in Fig. 7 the confidence zones al-
ways disappear near the two blue points, while for all the graphs shown 
in Fig. 8 the confidence zones are present throughout the range of β. 
Furthermore, for the graphs shown in Fig. 8 the confidence zones, in 
addition to being markedly longer, are also wider than those shown in 
the graphs shown in Fig. 7. From these considerations it is possible to 
deduce that systems that have a reference configuration characterized 
by smaller gap excursion values are more sensitive to uncertainties than 
those systems that have a reference configuration that present a greater 
gap excursion. 

4.3. Symmetry of the eccentricity of the response quantities 

From Figs. 7 and 8 it is possible to see how the graphs of the ec-
centricities of all the response quantities show a fairly symmetrical 
trend. Therefore, we want to verify whether this symmetry derives 
exclusively from bumper configurations that have the same gap excur-
sion value but eccentricity of the opposite sign. 

The Pseudo-Resonance Curves shown in Figs. 7 and 8 were obtained 
by carrying out a sweep of the β value both forwards and backwards, 
taking the steady-state values of the previous β as initial conditions of 
the subsequent β; this way of proceeding, although it allows us to probe 
how much the system has a more or less strong dependence on the initial 
conditions, can lead to different results based on the initial conditions. 
The first thing to do to better highlight this possible symmetry of the 
eccentricity of the response is to trace the PRCs always taking the same 
initial conditions for each value of β. 

Furthermore, the pseudo-random generation of the values of δ0 and 
e0 inevitably leads to not having configurations with the same gap 
excursion values but with eccentricities of the opposite sign, as can be 
seen from Fig. 6 in which the graphs of δ0 and e0 are not perfectly 
symmetrical. The second thing to do is therefore to ensure that each 
value of δ0, generated in a pseudo-random way, is associated with a 
value of e0, also generated in a pseudo-random way, equal in magnitude 
but of opposite sign. 

By ensuring these two conditions it is possible to verify whether there 
is perfect symmetry in the response eccentricity graphs. 

Fig. 9 shows the PRCs of the eccentricity of the various response 
quantities both for case a), which is relative to a reference configuration 
of δ0 = 0.6 and e0 = 0, and for case b), which is relative to a reference 
configuration of δ0 = 0.06 and e0 = 0. For both cases all response 
quantities show perfect symmetry. 

The graphs shown in Fig. 9a1 and Fig. 9b1 relate to the eccentricity of 
the relative displacement of the mass. From Fig. 9b1 it is possible to see 
how configurations that have values of e0 > 0 (and similarly e0 < 0) are 
associated with eccentricities of the response quantity which are also 
positive (negative). Instead from Fig. 9a1 it is possible to notice how 
there are ranges of β in which the configurations that have values of e0 >

0 (and similarly e0 < 0) present an eccentricity of the response quantity 
which is also positive (negative), while for other ranges of β a real 
change in behavior occurs, i.e. the configurations that have values of 
e0 > 0 (and similarly e0 < 0) present an eccentricity negative (positive) 
of the response quantity. 

Behaviors similar to those just described are also present for Fig. 9a2 
and Fig. 9b2, which relate to the eccentricity of the absolute acceleration 
of the mass. 

In the graphs reported in Fig. 9a3 and Fig. 9b3 which are related to 
the eccentricity of the deformations of the bumpers, and in those re-
ported in Fig. 9a4 and Fig. 9b4 which are related to the eccentricity of the 
contact forces of the bumpers, it is possible to observe how the config-
urations that have values of e0 > 0 (represented by the PRCs in green) 
present a negative eccentricity of the response quantity. Vice versa the 
configurations that have values of e0 < 0 (represented by the PRCs in 
red) present a positive eccentricity of the response quantity. 

Fig. 10 shows the PRCs of the excursion of the absolute acceleration 
of the mass for case b), i.e. the one relating to a reference configuration 
δ0 = 0.06 and e0 = 0. In drawing the graph, all the responses relating to 
pseudo-random configurations that have values of e0 > 0 were first 
plotted in green, and then all the responses relating to values of e0 < 0 
are plotted in red. As one can see from this graph there is a perfect 
overlap of the green PRCs and the red ones, as all the green PRCs are 
covered by the red PRCs. Results similar to those shown in Fig. 10 are 
obtained for all response excursions for both cases a) and b). From these 
results it can be deduced that the response excursions are not affected by 
the sign of the gap eccentricity, as the results obtained for positive ec-
centricity values of the gap are obtained exactly for negative eccentricity 
values of the gap. 

4.4. Behaviour change points 

In Fig. 9 the PRCs of the eccentricities of the various responses have 
been reported. This figure, in addition to containing information of the 
output (i.e. of the various response quantities), also contains informa-
tion of an input quantity (the eccentricity of the gap e0). This was done 
by representing the PRCs with an e0 > 0 in green and the PRCs with an 
e0 < 0 in red. Similarly, the figures shown in this section, in addition to 
containing output information (mainly the excursion of the various 
response quantities), also contain information of an input quantity, 
which in this case is the gap excursion. 

Fig. 11 shows the PRCs of the excursion of the various response 
quantities both for case a), which is relative to a reference configuration 
of δ0 = 0.6 and e0 = 0, and for case b), which is relative to a reference 
configuration of δ0 = 0.06 and e0 = 0. The orange PRCs refer to bumper 
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configurations that present a gap excursion value δ0 greater than that of 
the reference configuration, while the light blue curves refer to those 
configurations that present a δ0 lower than that of the reference 
configuration. 

Commenting on Figs. 7 and 8, we noticed the presence, for some 
response quantities, of some values of β near which the confidence zone 

showed a more or less marked narrowing; from Fig. 11 it is possible to 
see how near these restrictions there is a change in the behavior of the 
confidence zones. 

The graphs shown in Fig. 11a1 and Fig. 11b1 are related to the 
excursion of the relative displacement of the mass. From Fig. 11a1 it is 
possible to notice how in correspondence with a value of β = 1.2 there is 
a point of change in behavior characterized by the fact that the width of 
the confidence zone tends to zero; for values of β < 1.2 the configura-
tions with values of δ0 greater than that of the reference configuration 
(and similarly, the configurations with values of δ0 lower than that of the 
reference configuration) show a greater (smaller) response than that of 
the reference configuration, while for values of β > 1.2 the configura-
tions with values of δ0 greater than that of the reference configuration 
(and similarly, configurations with values of δ0 smaller than that of the 
reference configuration) show a smaller (greater) response than that of 
the reference configuration. Instead, from Fig. 11b1 it is possible to see 
how up to a value of β = 1.7 the configurations with δ0 greater than that 
of the reference configuration present responses greater than the refer-
ence one. For values of 1.7 < β < 2.1 these configurations present lower 
responses with respect to the reference one, while for values of β > 2.1 
they return to having greater responses than the reference one. Con-
figurations with values of δ0 lower than that of the reference configu-
ration present responses lower than the reference one up to a value of 
β = 2.1, however after this point of change in behavior they present 
responses greater than the reference one. 

Fig. 9. Pseudo-Resonance Curves obtained for a value of ξ = 0.1, obtained for two reference configurations (for case a): δ0 = 0.6 and e0 = 0, for case b): δ0 = 0.06 ed 
e0 = 0) and for values of λ and γ that derive from the optimal design relating to the respective reference configurations (for case a): λ = 0.45 and γ = 2.26; for case b): 
λ = 1.14 and γ = 5.70. In a1), a2), a3) and a4) (and similarly in b1), b2), b3) and b4)) the PRCs of the eccentricity of the relative displacement and of the absolute 
acceleration of the mass, of the deformation and of the contact forces of the bumpers are reported. In all graphs, the curves in black represent the PRCs relating to the 
reference configuration, the PRCs relating to configurations with positive gap eccentricity are shown in green, while in red those relating to a negative gap 
eccentricity. 

Fig. 10. Pseudo-Resonance Curves of the excursion of the absolute acceleration 
of the mass obtained for a value of ξ = 0.1 for values of λ = 1.14 and γ = 5.70 
that derive from the optimal design relative to the reference configurations (δ0 
= 0.06 and e0 = 0). The curves in black represent the PRCs relating to the 
reference configuration, in green the PRCs relating to configurations with 
positive gap eccentricity are shown, while in red those relating to a negative 
gap eccentricity. 
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The graphs shown in Fig. 11a2 and Fig. 11b2 are related to the 
excursion of the absolute acceleration of the mass. These graphs show 
similar behavior to that of the graphs shown in Fig. 11a1 and Fig. 11b1; 
the only differences derive from the different position of the behavior 
change points, which for the graph shown in Fig. 11a2 occurs for a value 
of β = 1.18. For the graph shown in Fig. 11b2, the configurations with δ0 
greater than that of the reference configuration present two points of 
change in behavior which occur for β = 1.7 and β = 2.5, while the 
configurations with δ0 less than that of the reference one present only 
one point of change in behavior for β = 1.7. 

The graphs shown in Fig. 11a3 and Fig. 11b3 relate to the range of 
deformations of the bumpers. The graph shown in Fig. 11a3 presents a 
single point of change in behavior at β = 0.65; instead, the graph shown 
in Fig. 11b3 presents two points of change in behavior, characterized by 
the fact that the width of the confidence zone tends to zero, corre-
sponding to β = 0.9 and β = 1.4. 

Finally, the graphs shown in Fig. 11a4 and Fig. 11b4 relate to the 
excursion of the contact forces of the bumpers. The graph shown in 
Fig. 11a4 presents a first point of change in behavior at β = 0.65 and two 
other points, characterized by the fact that the width of the confidence 
zone tends to zero, for β = 0.9 and β = 1.1; instead the graph shown in 
Fig. 11b4 presents three points of change in behavior corresponding to 
β = 0.35, β = 1.75 and β = 2.6. 

Fig. 12 shows the PRCs of the eccentricity of the absolute accelera-
tion of the mass for case a), the one relating to a reference configuration 

δ0 = 0.6 and e0 = 0; from this graph it is possible to see how the PRCs 
obtained for values of δ0 0 greater than that of the reference configu-
ration (orange curves) provide very similar results to those of the PRCs 
which have δ0 values lower than that of the reference configuration 
(blue curves). Results similar to those shown in Fig. 12 are obtained for 
all response eccentricities for both cases a) and b). From these results it 

Fig. 11. Pseudo-Resonance Curves obtained for a value of ξ = 0.1, obtained for two reference configurations for case a): δ0 = 0.6 and e0 = 0, for case b): δ0 = 0.06 
and e0 = 0, and for values of λ and γ that derive from the optimal design relating to the respective reference configurations for case a): λ = 0.45 and γ = 2.26, for the 
case b): λ = 1.14 and γ = 5.70). In a1), a2), a3) and a4) (and similarly in b1), b2), b3), b4)) the PRCs of the excursion of the relative displacement and of the absolute 
acceleration of the mass, of the deformation and the contact forces of the bumpers are reported. In all the graphs, the curves in black represent the PRCs relating to 
the reference configuration, in orange the PRCs relating to configurations which present a gap excursion larger than those of the reference configuration are shown, 
while in blue those relating to a gap excursion smaller than that of the reference configuration. 

Fig. 12. Pseudo-Resonance Curves of the eccentricity of the absolute acceler-
ation of the mass obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ =
2.26 that are derived from the optimal design relative to the reference con-
figurations (δ0 = 0.6 ed e0 = 0). The curves in black represent PRCs relative to 
the reference configuration, in orange are PRCs relative to configurations that 
have a larger gap excursion than those of the reference configuration, and in 
light blue those relative to a smaller gap excursion than that of the reference 
configuration. 
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can be deduced that the response excursions are not excessively affected 
by variations in gap excursion. 

4.5. Relationship between input and output quantities 

The considerations made up to now have highlighted how the link 
between the input quantities (δ0 and e0) and the output quantities (the 
various response quantities) does not remain constant either when β 
varies or the value of β, however, from these graphs it is still quite 
complicated to understand the link between the input and output 
quantities. 

In this section, the link between the input and output quantities is 
shown through level curve graphs. 

Fig. 13 shows the relationship between the parameters δ0 and e0 and 
the response quantities excursion and eccentricity of the contact force of 
the bumpers, for the case which has as reference configuration δ0 = 0.6 
and e0 = 0 and for a value of β = 1.05. For this value of β the collision 
occurs in all the configurations of the bumpers generated in a pseudo- 
random way. 

The contour plots depicted in the graph shown in Fig. 13a show a 
pseudo-vertical trend and perfect symmetry with respect to the axis e0 =

0. The pseudo-vertical trend of the contour plots shows how, once a 
value of δ0, is fixed, even a fairly significant variation in e0 does not lead 
to large variations in the response; the perfect symmetry of the response 
with respect to the e0 = 0, axis, which had already been glimpsed in 
Fig. 10, shows how, having fixed a value of δ0 and the value of e0 in 
modulus, the positive and negative eccentricity of the gap provide 
exactly the same answer. 

The contour plots shown in the graph shown in Fig. 13b show a 
pseudo-horizontal trend and perfect symmetry with respect to the e0 = 0 
axis. The pseudo-horizontal trend of the contour plots shows how, once a 

value of e0, is fixed, even a fairly significant variation in δ0 does not lead 
to large variations in the response; the perfect symmetry of the curves 
with respect to the axis e0 = 0, which had already been glimpsed in 
Fig. 9, shows how, having fixed a value of δ0 and the value of e0 in 
modulus, the positive and negative eccentricity of the gap provide 
exactly the same answer, equal in form but of opposite sign. 

Fig. 14 shows the relationship between the parameters δ0 and e0 and 
the response quantities excursion and eccentricity of the contact force of 
the bumpers, for the case which has as reference configuration δ0 = 0.6 
and e0 = 0 and for a value of β = 1.20. Also in this case, for this value of 
β the collision occurs in all the configurations of the bumpers generated 
in a pseudo-random way. This figure, like Fig. 13, also shows perfectly 
symmetrical contour plots trends with respect to the e0 = 0, axis, with 
contour plots showing a pseudo-vertical trend for Fig. 14a and a pseudo- 
horizontal trend for Fig. 14b; therefore, the considerations made pre-
viously for Figs. 13a and b on what it means to have pseudo-vertical and 
pseudo-horizontal contour plots remain valid. 

What differentiates Figs. 13 and 14 are the different values of β for 
which they were plotted; these two values were chosen in such a way 
that when moving from the value of β = 1.05 to the value of β = 1.20 
there is a point of change in behavior. In fact, comparing Figs. 13a and 
14a it is possible to notice how in one case an increase in δ0 leads to an 
increase in the response while in the other it leads to a reduction of the 
response; instead, comparing Figs. 13b and 14b it is possible to notice 
how the eccentricity of the response is not influenced by the point of 
change in behavior. 

The relationships between input and output quantities just shown, 
although they are related to a certain response quantity (contact force) 
and to certain values of β, appear to also be representative of the other 
response quantities provided that for the totality of the bumper con-
figurations generated in a pseudo-random way the collision occurs. 

Fig. 13. Relationship between the input and output parameters obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ = 2.26 that derive from the optimal 
design relating to the reference configurations (δ0 = 0.6 and e0 = 0). In a) and b) the trend of the excursion and eccentricity of the contact force of the bumpers is 
reported as δ0 ed e0 vary for a value of β = 1.05. 

Fig. 14. Relationship between the input and output parameters obtained for a value of ξ = 0.1, for values of λ = 0.45 and which derive from the optimal design 
relating to the reference configurations (δ0 = 0.6 and e0 = 0). In a) and b) the trend of the excursion and eccentricity of the contact force of the bumpers is reported as 
δ0 and e0 vary for a value of β = 1.20. 
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Fig. 15 shows the relationship between the parameters δ0 and e0 and 
the response quantities excursion and eccentricity of the contact force of 
the bumpers, for the case which has as reference configuration δ0 = 0.6 
and e0 = 0 and for a value of β = 0.65. In this case, for bumper con-
figurations that have values of δ0 > 0.68 and values of e0 between − 0.02 
and 0.02 the collision does not occur; this means that for these config-
urations the response will always be the same (equal to that which oc-
curs in FF conditions) and this means that the contour plots lose the 
characteristic of being pseudo horizontal and pseudo vertical. 

5. Statistical characterization of the nonlinear dynamic 
response 

This section shows how generating bumper configurations in a 
probabilistic manner leads to responses that also have a probabilistic 
nature; furthermore, using a statistical test, it is verified whether the 
distributions of the response quantities are also normal. 

5.1. Distribution of the output 

As was shown in Sect. 4, each response quantity has its own confi-
dence zone characterized by its own length and its own width, the latter 
which varies as β varies. Therefore, once a response quantity and a value 

of β have been fixed, the confidence zone assumes a certain width. This 
means that the response quantity can take on all the results shown in 
that range, but not all the results will have the same probability of 
occurring; in fact, just as some bumper configurations are much more 
probable than others, the same thing happens for the response 
quantities. 

To visualize the probability distributions of the output quantities, 
histograms are used, just as done for the input quantities. 

Fig. 16 shows how the excursion of the relative displacement of the 
mass is distributed, for the case with the reference configuration δ0 =

0.6 and e0 = 0, for different values of β (1.10, 0.60, 1.30). For each value 
of β both the forward (in blue) and backward (in red) histograms are 
plotted. As can be seen, these histograms overlap almost perfectly, 
giving rise to a single purple histogram. This representation allows us to 
observe how, following an optimal design of λ and γ, the forward and 
backward responses do not show significant differences even if the gap 
values deviate from the optimal value. 

As can be seen from Fig. 16, although the input distribution always 
remains the same for each value of β, the output distribution also varies 
significantly as β varies. 

Although the distributions vary as β varies, for each distribution if we 
average all the responses, we observe that this average always tends 
towards the response of the reference configuration. 

Fig. 16. Distribution of the excursion of the relative displacement of the mass obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ = 2.26 which derive from 
the optimal design relating to the reference configurations (δ0 = 0.6 and e0 = 0). In Fig. a) the PRCs of the excursion of the relative displacement of the mass are 
reported; in b), c) and d) three different histograms plotted for the following values of β 1.10, 0.60 and 1.30 are reported; the histograms in blue represent the forward 
responses while those in red represent the backward responses; the black dots present in the histograms represent the values assumed by the response quantity for the 
reference configuration. 

Fig. 15. Relationship between the input and output parameters obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ = 2.26 that derive from the optimal 
design relating to the reference configurations (δ0 = 0.6 and e0 = 0). In a) and b) the trend of the excursion and eccentricity of the contact force of the bumpers is 
reported as δ0 and e0 vary for a value of β = 0.65. 
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For all the excursions of the response quantities relating to the case 
with reference configuration δ0 = 0.6 and e0 = 0 it is possible to observe 
a behavior similar to that reported in Fig. 16: for a range of β values 
located in the vicinity of the resonance the distribution of the response 
tends to be normal like the input quantities (Fig. 16b), moving away 
from this range the normal distribution curve tends to shift to one side 
and most of the response values tend to group into a single bin (as shown 
in Fig. 16c and d); this grouping process into a single bin will be 
concluded when the value of β is reached for which no collision occurs 
for all the bumper configurations. 

Fig. 17 shows how the eccentricity of the relative displacement of the 
mass is distributed, for the case with the reference configuration δ0 =

0.6 and e0 = 0, for different values of β (1.10, 0.60, 1.30). For each value 
of β both the forward (in blue) and backward (in red) histograms are 
plotted. As can also be seen in this case, these histograms overlap almost 
perfectly, giving rise to a single purple histogram. 

Although the distributions vary as β, varies, for each distribution if 
we average all the responses, we observe that this average always tends 
towards the response of the reference configuration. 

For all the eccentricities of the response quantities relating to the 
case with reference configuration δ0 = 0.6 and e0 = 0 it is possible to 
observe a behavior similar to that reported in Fig. 17: for a range of β 
values located in the vicinity of the resonance the distribution of the 
response tends to be of a normal type like the input quantities (Fig. 17b), 
moving away from this range the values tend to all concentrate in a 
single bin (the one relating to the response in FF conditions); unlike the 
distributions of the response excursions, the distributions of the eccen-
tric response quantities always show a rather marked symmetry (sym-
metry which will be perfect if one follows the hypotheses reported in 
section 4.3). 

Fig. 18 shows how the excursion of the relative displacement of the 
mass is distributed, for the case with the reference configuration δ0 =

0.06 and e0 = 0, for different values of β (0.01, 1.00, 2.00 and 3.00). 
For all the excursions of the response quantities relating to the case 

with reference configuration δ0 = 0.06 and e0 = 0 it is possible to 
observe a behavior similar to that reported in Fig. 18: starting from a 
value of β which tends to zero, the distribution of the response shows a 
tendency towards normal distribution (as shown in Fig. 18b) and this 
tendency is maintained for a wide range of β values, in particular up to 
β = 1.45; for further increases in the β value the normal distribution 

curve first tends to move to one side (as shown in Fig. 18d) and then to 
the other side (as shown in Fig. 18e) and most of the values will tend to 
cluster into a single bin. 

Fig. 19 shows how the eccentricity of the relative displacement of the 
mass is distributed, for the case with the reference configuration δ0 =

0.06 and e0 = 0, for different values of β (0.01, 1.00, 3.00). 
For all the eccentricities of the response quantities relating to the 

case with reference configuration δ0 = 0.06 and e0 = 0 it is possible to 
observe a behavior similar to that reported in Fig. 19: starting from a 
value of β which tends to zero, the distribution of the response shows a 
tendency towards a normal distribution (as shown in Fig. 19b) and this 
tendency is maintained up to a value of β = 2.00; moving away from this 
range all the values tend to group into a single bin but the distributions 
will continue to show a marked symmetry (as shown in Fig. 19d). 

As shown for Figs. 16–19, the histograms for the forward (blue) and 
backward (red) output quantities are approximately equal (purple, as a 
red and blue overlay). These small differences are attributable to nu-
merical errors and can be eliminated by increasing the number of cycles 
of the analysis to reach steady-state condition, therefore uncertainties 
about the gaps do not lead to variations in the response, which is hence 
unique, even if conditioned by a variation in initial conditions. This can 
be attributed to good robustness of optimal design of bumpers’ char-
acteristics, in contrast to the case of bumpers not designed in accordance 
with the optimal design [39]. 

5.2. Normality preservation intervals 

Through statistical tests, particularly through tests of goodness of fit, 
we test for which ranges of β the distributions of the response quantities 
can be assumed to be normal. 

A statistical test is a rule by which it is decided whether or not to 
accept a hypothesis formulated on the basis of the sample findings. The 
hypothesis to be tested is usually denoted by the symbol H0 and called 
the null hypothesis, if the result of the statistical test is negative (i.e., the 
null hypothesis cannot be accepted) the rejection of the H0 hypothesis 
leads to the acceptance of the H1 hypothesis called the alternative hy-
pothesis [54]. 

The hypothesis to be tested takes the following form: 

H0 : f(z)= f0(z) versus H1 : f(z) ∕= f0(z) (11) 

Fig. 17. Distribution of the eccentricity of the relative displacement of the mass obtained for a value of ξ = 0.1, for values of λ = 0.45 and γ = 2.26 which derive from 
the optimal design relating to the reference configurations (δ0 = 0.6 and e0 = 0). In Fig. a) the PRCs of the eccentricity of the relative displacement of the mass are 
reported; in b), c) and d) three different histograms plotted for the following values of β 1.10, 0.60 and 1.30 are reported; the histograms in blue represent the forward 
responses while those in red represent the backward responses; the black dots present in the histograms represent the values assumed by the response quantity for the 
reference configuration. 
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which consists in evaluating whether the distribution f(z) of the generic 
random variable z (where z in our case is the value assumed by the 
generic response quantity) is significantly equal to the theoretical dis-
tribution f0(z). 

The theoretical distribution f0(z) can be completely or only partially 
specified; in the case in which the hypothesis is completely specified, 
hypotheses are also made on the values of the parameters that charac-
terize the probability distribution, while in other cases the hypothesis 
concerns only the type of probability distribution of f0(z). If, in addition 
to the type of distribution, hypotheses are also made on the parameters 
of the distribution, as they are not known, these parameters are calcu-
lated starting from the sample of responses observed. 

In our case the hypothesis is to verify whether the sample is arranged 

according to a normal probability distribution and since the parameters 
of the distribution are not known, further hypotheses are made on the 
parameters, which are assumed to be like the mean and standard devi-
ation of the sample: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ =

∑

i
fixi

n
(12a)

σ2 =

∑

i
(xi − μ)2

n
(12b)

(12) 

Once these parameters are known, the distribution f0(z), is known, 
which in this case is a continuous probability function. To carry out the 
statistical test it is necessary to pass from the PDF to histograms 

Fig. 18. Distribution of the excursion of the relative displacement of the mass obtained for a value of ξ = 0.1, for values of λ = 1.14 and γ = 5.70 which derive from 
the optimal design relating to the reference configurations (δ0 = 0.06 and e0 = 0 In Fig. a) the PRCs of the excursion of the relative displacement of the mass are 
reported; in b), c), d) and e) four different histograms plotted for the following values of β 0.01, 1.00, 2.00 and 3.00 are reported; the histograms in blue represent the 
forward responses while those in red represent the backward responses; the black dots present in the histograms represent the values assumed by the response 
quantity for the reference configuration. 

Fig. 19. Distribution of the eccentricity of the relative displacement of the mass obtained for a value of ξ = 0.1, for values of λ = 1.14 and γ = 5.70 which derive from 
the optimal design relating to the reference configurations (δ0 = 0.06 and e0 = 0). In a) the PRCs of the eccentricity of the relative displacement of the mass are 
reported; in b), c) and d) three different histograms plotted for the following values of β 0.01, 1.00 and 3.00 are reported; the histograms in blue represent the forward 
responses while those in red represent the backward responses; the black dots present in the histograms represent the values assumed by the response quantity for the 
reference configuration. 
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consistent with those present in Fig. 16 and to do so it is necessary to 
carry out as many integrals of the PDF as there are bins present in these 
histograms. At the end of this operation, we have both the histograms 
shown in Fig. 16 (which derive from the observed distribution f(z)) and 
histograms that are derived from the assumed normal distribution f0(z). 

The test on the goodness of fit chosen is called the chi-square test and 
consists of verifying whether the following inequality is satisfied: 

χ2
k− 1 = n

∑k

j=1

(
fj − π0j

)2

π0j
≤ χ2

k− 1,1− α (13) 

To the left of the inequality reported in Eq. (13) we have: n = sample 
size, k = number of bins (histogram rectangles), fj is the value assumed 
by the j-th bin of the ’’real’’ histograms (those in Fig. 16), π0j is the value 
assumed by the j-th bin of the histograms obtained by integrating the 
hypothesized f0(z). 

To the right of the inequality reported in Eq. (13), given that the test 
function is distributed as a chi-square variable with a number of degrees 
of freedom equal to k-1 (or k-q-1 if also the parameters of the distribu-
tion have been estimated, where q = number of estimated parameters), 
we have: χ2

k− 1,1− α the quantile of order α of the chi-square variable with 
k-1 (k-q-1) parameters; α is known in the literature as the level of sig-
nificance and is the parameter that allows defining the regions of 
acceptance and rejection of the hypothesis. 

If the hypothesis is not verified, we have the certainty that, for the 
generic value of β and for the generic response quantity, the distribution 
is not of the normal type (strong rejection of the hypothesis); instead, if 
the test is verified, the verified hypothesis can be assumed with a sig-
nificance level α (weak acceptance of the hypothesis). For the purpose of 
this study this level of acceptance is considered more than sufficient. 

Fig. 20 shows the verification of the statistical test carried out for the 
excursion of the relative displacement of the mass and carried out for 
each value of β; in this figure the range of β for which the red curve is 
below the blue curve identifies the range for which the output distri-
bution can be assimilated to a normal distribution, thus identifying the 
interval of conservation of the normality of the response quantity: range 
of relative displacement. The normal distributions identified will all 
have as parameter μ (average) the response value assumed by the 

reference configuration for that specific β. However, as regards the 
standard deviation (which is an index of dispersion) it does not remain 
constant for the range of β in which the output distribution can be 
assumed to be normal; this can be immediately observed in Fig. 7 where 
it is possible to notice how the confidence zone does not always have the 
same width (therefore the response is not always dispersed in the same 
way). 

For the reference configuration δ0 = 0.6 and e0 = 0 the normality 
conservation intervals for the excursions of the response quantities are 
on average between 0.65 < β < 1.15, while for the eccentricity of the 
response quantities they are on average between 0.7 < β < 1.25. 

For the reference configuration δ0 = 0.06 and e0 = 0 the normality 
conservation intervals for the excursions of the response quantities are 
on average between 0 < β < 1.45, while for the eccentricity of the 
response quantities they are on average between 0 < β < 2.00. 

6. Conclusions 

In this work, the nonlinear dynamic response of a two-sided vibro- 
impact single-degree-of-freedom system under harmonic base excitation 
was studied. Specifically, it was studied by numerical analysis how the 
uncertainties on the gap values (excursion δ0 and eccentricity e0), with 
respect to symmetrical (e0 = 0) and positive (δ0 > 0) initial gap values, 
affect the nonlinear dynamic response of the vibro-impact system. 

Two cases related to two different reference configurations of opti-
mally designed bumpers [32,41,42] were considered in this study. 
Compared with the two reference cases, configurations of the bumpers, 
excursion δ0 and eccentricity e0 were generated in a pseudo-random 
way, and by modeling the uncertainty of the gaps through normal 
probability distributions. The nonlinear dynamic response of the 
vibro-impact system was evaluated under steady-state conditions. 

The results obtained in the two cases considered can be taken as 
representative of a much larger case series: the first case studied, 
excursion δ0 = 0.6 and eccentricity e0 = 0, was taken as representative 
of all those initial configurations that present δ0 > 0.38 (which corre-
sponds to the value of δ0R = δ0L = 0.19, i.e., that case that corresponds 
to impact occur for β = 0) and e0 = 0, while the second case, excursion 
δ0 = 0.06 and eccentricity e0 = 0, was assumed to be representative of 
all those reference configurations that present 0 ≤ δ0 ≤ 0.38 and e0 = 0 
and that can result in configurations with even negative gap values. 

From the analyses conducted, the following conclusions can be 
deduced should the collision occur.  

• the presence of an uncertainty in the value of the input data related 
to the gap (excursion δ0 and eccentricity e0) is reflected in an un-
certainty in the values of the output data, i.e., of the response 
quantities considered (the absolute accelerations and relative dis-
placements of the mass and the deformations and forces of the 
bumpers). This leads responses to take values within a certain range, 
called the confidence zone;  

• the confidence zones, for the various response quantities, vary in 
both length (β frequency range) and width (response range). This 
highlights how each response quantity is differently affected by un-
certainties in the gap values;  

• for the vibro-impact system with a reference configuration of δ0 = 0.
6 and e0 = 0 (first case), the confidence zones have a significantly 
smaller length and width than for the vibro-impact system that have 
a reference configuration of δ0 = 0.06 and e0 = 0 (second case);  

• Comparison between the values of the gap data and the results of the 
response quantities in terms of excursion δ0 and of eccentricity e0 
showed that the excursions of the response quantities depend almost 
exclusively on the excursion of the gap (δ0), while the eccentricities 
of the response depend almost exclusively on the eccentricity of the 
gap (e0);  

• the confidence zones related to the eccentricity of the response 
quantities show symmetry; this result is a direct consequence of the 

Fig. 20. Verification of the chi-square statistical test with a significance level α 
= 0.01 carried out for the excursion of the relative displacement of the mass (ηd, 

max), for a system with ξ = 0.1, for values of λ = 0.45 and γ = 2.26 which derive 
from the optimal design relative to the reference configurations (δ0 = 0.6 and 
e0 = 0). The red curve represents the term on the left of the inequality reported 
in Eq. (13) (the demand), while the blue curve represents the term on the right 
of the inequality reported in Eq. (13) (the capacity). 
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symmetry of the vibro-impact system, which causes that at the same 
gap excursion (δ0) two gap eccentricities equal in modulus but 
opposite in sign lead, respectively, to eccentricities of the response 
quantities equal in modulus but opposite in sign. Furthermore, it has 
been observed that a positive gap eccentricity does not always 
correspond to a response quantities eccentricity of the same sign; 
such a link between the sign of the gap eccentricity and the sign of 
the response eccentricity for some response quantities does not 
remain constant along the length of the confidence zones (as it 
happens for the relative mass displacement, for the first case, and 
absolute mass acceleration, for the second case); 

• the confidence zones related to the excursion of the response quan-
tities showed, for some values of β, the presence of some nodal points 
or zones of change in behavior; that is, points which define ranges of 
the confidence zones that show responses that, compared with the 
reference response, are first greater and later less and conversely. 
These results show how uncertainty about the configuration of 
bumpers leads to having both ranges of β to which correspond 
response excursion values that are greater than those of the refer-
ence, and ranges of β to which correspond response excursion values 
that are smaller;  

• it turned out that each value of β that falls within the confidence zone 
is associated with a different probability distribution, although the 
probability distributions of the gap are always the same. For the two 
cases analyzed, trends were found for both the excursions and ec-
centricities of the response quantities that describe how the proba-
bility distributions of the output vary as the β changes;  

• using statistical tests, ranges of β were finally identified in which the 
response quantities retain the same probability distribution as the 
input, that is, a normal distribution. In these ranges, the probability 
distribution of the response quantities has a mean value tending to 
the value assumed by the reference response and a standard devia-
tion varying with β. The ranges showing a response with normal 
distribution are larger for the first reference case (δ0 = 0.06 and e0 =

0) than for the second reference case (δ0 = 0.6 and e0 = 0). 

A possible future development of the work is related to considering 
the role of uncertainties in the stiffness and damping parameters of 
bumpers. 

Another future development is to consider techniques for controlling 
uncertainties to direct them toward optimizing the response. 
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