
Ontology-Based Information Extraction
experiences, framework, algorithms and tools

Department of Computer, Control and Management Engineering “Antonio
Ruberti”

Dottorato di Ricerca in Ingegneria Informatica – XXXIII Ciclo

Candidate

Federico Maria Scafoglieri

Thesis Advisor

Prof. Domenico Lembo

Co-Advisors

Prof. Maurizio Lenzerini
Prof. Massimo Mecella

June 2021

Thesis defended on 17 September 2021
in front of a Board of Examiners composed by:

Prof. Alessandro Saetti (chairman)
Prof. Emanuele Panizzi
Prof. Marco Maggini

Ontology-Based Information Extraction experiences, framework, algorithms and tools
Ph.D. thesis. Sapienza – University of Rome

© 2021 Federico Maria Scafoglieri. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: scafoglieri@diag.uniroma1.it

mailto:scafoglieri@diag.uniroma1.it

Fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

Ye were not form’d to live the life of brutes,
But virtue to pursue and knowledge high.

from The Divine Comedy
Hell, Canto XXVI, Verses 119-120

Dante Alighieri

v

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor, Prof. Domenico
Lembo, for his constant support and enthusiastic encouragement during my Ph.D. journey.
The numerous and lengthy conversations I had with him were a constant source of inspiration
and wide perspectives. Without his help, this work would never have been accomplished. My
debt to him goes beyond this dissertation. I also wish to thank the “Data Management and
Service-Oriented Computing” research group at the “Department of Computer, Control and
Management Engineering” of “Sapienza University of Rome”. I feel very lucky and honored to
have been part of it. During my Ph.D. career, I have joined the IBM Almaden research center as
a visiting scholar. I am grateful to all those who made me feel at home during that time. I am
also thankful to my mentors at IBM: Dr. Ronald Fagin, Prof. Phokion Kolaitis, Dr. Yunyao Li,
Dr. Lucian Popa. It was truly a privilege for me to work with these outstanding researchers.
Special thanks go to my father Michele, my sister Giulia, and especially to my mother Innocenza,
to whom I dedicate this thesis.

Federico Maria Scafoglieri

vii

Abstract

A significant portion of the information collected by enterprises and organizations resides in
text documents and is thus inherently unstructured. Turning it into a structured form is the aim
of Information Extraction (IE). Depending on the approach, the output of an IE process can fill
forms, populate relational tables, or even be presented through an ontology. This last approach,
known in the literature under the name of Ontology Based Information Extraction (OBIE), is
particularly interesting, since ontologies may facilitate the integration with other corporate and
external data and enable data management and governance at an abstract, conceptual level.
However, despite OBIE has been so far the subject of several investigations, how to exploit the
reasoning abilities offered by an ontology to improve the extraction process has not yet been
specifically studied. This thesis is intended to be a first step in that direction.

Starting from our experience gained from implementing OBIE systems via open-source
technologies, and with the intent to address the encountered weaknesses, we propose a formal
framework for OBIE, called Ontology Based Document Spanning (OBDS). We devise our
proposal by revisiting the Ontology Based Data Access (ODBA) paradigm, a sophisticated
form of semantic data integration from relational databases, and leveraging the investigation on
Document Spanners, a recent formal study of rule-based information extraction that follows the
database principles.

The reasoning service of main interest in OBDS, as usual in ontology based data management
approaches, is Query Answering (Q. A.). We provide an analysis of this service in different
settings and propose algorithms for Q. A., in the spirit of OBDA. Right here we show how the
ontology plays a major role by mediating the extraction of information from text.

To demonstrate the applicability of our approach in practice, we illustrate Mastro System-
T, an OBDS tool that we have implemented using robust industrial technologies and experimented
on large document datasets.

Last but not least, we formally treat the problem of the Entity Resolution (ER), which is
recurrent in the OBIE context, as in general in information integration approaches.

Keywords: Ontology, Information Extraction, Natural Language Processing, Theoretical
Computer Science, Document Spanners, Entity Resolution.

ix

List of Publications

The results presented in this thesis are part of my doctoral research work findings. Many of
such results have been already published in the following scientific publications1:

• [134] D. Lembo, Y. Li, L. Popa, K. Qian, and F. M. Scafoglieri. Ontology mediated
information extraction with MASTRO System-T. In Proceedings of the 19th International
Semantic Web Conference (ISWC) Demos and Industry Tracks, 2020. Best Demo Paper

• [135] D. Lembo, Y. Li, L. Popa, and F. M. Scafoglieri. Ontology mediated information ex-
traction in financial domain with Mastro System-T. In Proceedings of the 6th International
Workshop on Data Science for Macro-Modeling (DSMM), pages 1–6, 2020.

• [143] D. Lembo and F. M. Scafoglieri. Ontology-based document spanning systems for
information extraction. International Journal of Semantic Computing, 14(01):3-26, 2020.

• [188] D. Caltabiano, E. Catoni, A. Fabrizi, D. Lembo, M. Minenna, M. Punchina, G.
Ronconi, M. Ruzzi, F. M. Scafoglieri. Semantic Technologies for the Production and
Publication of Open Data in ACI - Automobile Club d’Italia. In Proceedings of the 18th In-
ternational Semantic Web Conference (ISWC) Satellite Tracks (Posters & Demonstrations,
Industry, and Outrageous Ideas), pages 307–308, 2019.

• [140] D. Lembo and F. M. Scafoglieri. Coupling ontologies with document spanners. In
Proceedings of the 32nd International Workshop on Description Logics (DL), 2019.

• [191] D. Lembo and F. M. Scafoglieri. A formal framework for coupling document spanners
with ontologies. In Proceedings of the 2nd IEEE International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), pages 155–162, IEEE, 2019.

• [98] G. Ganino, D. Lembo, M. Mecella, and F. M. Scafoglieri. Ontology population for
open-source intelligence: A GATE-based solution. Software: Practice and Experience,
48(12):2302-2330, 2018.

1Authors are listed in alphabetical order as the norm in theoretical computer science.

x

• [99] G. Ganino, D. Lembo, M. Mecella, and F. M. Scafoglieri. Ontology population for
open-source intelligence (discussion paper). In Proceedings of the 26th Italian Symposium
on Advanced Database Systems (SEBD), 2018.

• [100] G. Ganino, D. Lembo, and F. M. Scafoglieri. Ontology population from raw text
corpus for open-source intelligence. In Current Trends in Web Engineering – ICWE 2017
International Workshops (selected revised papers), pages 173-186. Springer, 2017

Some contributions reside in unpublished works that are listed below:

• [88] R. Fagin, P. Kolaitis, D. Lembo, L. Popa, F. M. Scafoglieri. Entity Resolution in
Description Logics: A theoretical prespective. Manuscript

• [145, 192, 136, 190] D. Lembo, F. Medda, F. M. Scafoglieri. Ontology Population from
Key Information Documents to uncover Financial Market Manipulation. Manuscript

xi

Contents

1 Introduction 1
1.1 Thesis Contributions . 5
1.2 Structure of the Thesis . 7

2 Background 9
2.1 Ontologies . 9

2.1.1 OWL . 10
2.1.2 Graphol . 12
2.1.3 SPARQL . 13

2.2 Metrics . 14

3 Ontology Population a GATE-based Approach 17
3.1 General Architecture for Text Engineering . 19
3.2 Approach and Architecture . 20

3.2.1 Semantic annotation . 20
3.2.2 Ontology population . 27

3.3 Case Study: design and development . 29
3.3.1 Crawling Phase . 30
3.3.2 Domain Ontology . 31
3.3.3 Gazetteer . 33
3.3.4 JAPE Rules in the Semantic Annotation Phase 33
3.3.5 Multi-Lingual Noun Phrase Extractor (MuNPEx) 38

3.4 Case Study: tests and results . 38
3.4.1 Performance Evaluation . 39
3.4.2 Discussion . 39

3.5 Simplifying Gazetteer Lists Generation: design and development 41
3.6 Simplifying Gazetteer Lists Generation: Tests and Results 43
3.7 Final Remarks . 49

xii Contents

4 Financial Market Supervision through Information Extraction 53
4.1 CONSOB Domain . 55

4.1.1 Key Information Document . 56
4.1.2 Ontology . 58

4.2 Tool . 59
4.2.1 Data Preparation . 60
4.2.2 Annotation . 62
4.2.3 Exporter . 65

4.3 Evaluations and results . 67
4.3.1 First Dataset . 68
4.3.2 Second Dataset . 69
4.3.3 Third Dataset . 70
4.3.4 Execution time performances . 71

4.4 Final Remarks . 72

5 Theoretical Background 73
5.1 Relational Databases . 73

5.1.1 Query Answering in Relational Databases 73
5.2 Description Logics . 74

5.2.1 Query answering in Ontologies . 77
5.3 Computational Complexity . 79
5.4 Ontology Based Data Access . 80

5.4.1 Mapping Assertions . 80
5.4.2 Semantics and Query Answering . 81

5.5 Document Spanners . 82
5.5.1 Strings and spans . 82
5.5.2 Spanner representation . 83
5.5.3 An algebra over spanners . 84

6 Linking Text Documents to Ontologies 87
6.1 Ontology-based document spanning Framework 89
6.2 Complexity of query answering in OBDS systems 92
6.3 Query Answering via Query Rewriting in DL-Lite 94

6.3.1 GAV Extraction Assertions . 95
6.3.2 GLAV Extraction Assertions . 99

6.4 Final Remarks . 101

Contents xiii

7 Mastro System-T 103

7.1 Mastro . 105

7.2 SystemT . 107

7.3 Mastro System-T . 109

7.3.1 System Overview . 110

7.3.2 Query Answering . 111

7.4 Case Studies . 113

7.4.1 EDGAR . 113

7.4.2 CONSOB . 115

8 Entity Resolution 121

8.1 Preliminaries . 124

8.1.1 Equivalence Classes . 124

8.1.2 Ontologies with Concrete Domains . 125

8.2 KER systems . 126

8.2.1 Terminological component of a KER system 126

8.2.2 Assertional component of a KER system 127

8.2.3 Entity resolution component of a KER system 128

8.2.4 Semantics of a KER system . 129

8.3 Universal models . 131

8.4 Query answering . 132

8.5 Computing a universal model . 136

8.6 Adding functionalities . 146

8.6.1 Functionalities on attributes as matching dependencies 148

8.6.2 Universal Models . 151

8.6.3 Query answering in the presence of functional attributes 151

8.6.4 Revisiting the Chase . 153

8.7 Final Remarks . 155

9 Related Work 157

9.1 OBDA . 157

9.2 Declarative Information Extraction . 159

9.3 Ontology-Based Information Extraction . 161

9.4 Entity Resolution . 162

xiv Contents

10 Conclusion 165
10.1 Discussion . 165
10.2 Future works . 167

A Consob Appendix 189

1

Chapter 1

Introduction

A huge portion of information is nowadays spread in free-text documents, like reports, e-mails,
web pages, articles, etc. These documents are obviously tailored for the human reading, but it
is often desirable, within an organization, that relevant data contained therein are extracted
and integrated with other corporate data.

Information Extraction (IE) is a subdiscipline of Natural Language Processing (NLP) that
studies how to automatically extract data from text and turn them into a structured format,
typically a spreadsheet, database, or even a knowledge base [117]. IE has been intensively studied
starting from the late '80s [105], and since then, several extraction methods have been proposed,
which, in broad terms, can be classified as either ML-based(machine learning-based) or rule-
based [189]. In the former case, IE is based on probabilistic models, e.g., probabilistic classifiers
or sequence models, (e.g., [109, 95]). Instead, rule-based (a.k.a. pattern-based) approaches encode
specific extraction tasks into rules (pattern), mostly corresponding to finite-state transducers
(e.g., [68, 55, 197]). Although an ML-based approach can lead to saving the design effort required
for pattern definition and extraction rule development, a rule-based approach is adopted in
this dissertation for three main reasons. First, it tends, in some scenarios like the financial
ones studied in this thesis [57], to yield higher performances, because human expertise in
these contexts usually results in very accurate patterns and extraction rules. Second, in the
applications of this dissertation, the design effort required by a rule-based approach is expected
to be less than the effort required for manually annotating a sufficiently large portion of training
data, required by ML-based approach. Third, rule-based approaches (when fully declarative)
are the best candidate to be suitably coupled with ontologies, which is the ultimate goal of this
thesis.

Indeed, in several contexts, like the ones described in the following chapters, it is often
desirable that the extracted data are organized according to an ontology, i.e., a formal concep-
tualization of the domain of interest [106]. This choice typically simplifies and empowers data

2 1. Introduction

governance and sharing, since ontologies allow for shifting data management at the conceptual
level, as well as for reasoning over the representation they provide. Research on Ontology Based
Information Extraction (OBIE) [186] attempts to satisfy this need.

Although different formalisms were proposed, in the most general sense ontologies represent
knowledge in the form of defined ‘entities’ and their properties. For this reason, the OBIE
literature has converged in defining two main subtasks, i.e., the extraction of entities, along with
their classification, and the retrieval of their properties (relations with other entities or with
values). These two subtasks are defined below.

• Named Entity Recognition (NER), also known as entity identification, entity extraction,
or entity chunking, amounts to classify a contiguous set of word tokens contained in
unstructured text into pre-defined categories. Consider, for instance the following sentence:

President Joe Biden lives in Washington D.C.

The result of NER should annotate the text as follows:

President [Joe Biden]PERSON lives in [Washington D.C.]LOCATION

i.e., it should produce an annotation PERSON for ‘Joe Biden’, and LOCATION for
‘Washington D.C.’.

• Relation extraction (RE) recognizes relationships between two entities or between an
entity and a value, starting from evidences in the text. In continuation of the previous
example, RE should annotate the document as follows:

President [Joe Biden]PERSON lives in [Washington D.C.]LOCATION

LIVES_IN

that is, Joe Biden, that was previously annotated as a PERSON, and Washington D.C.,
previously annotated as a LOCATION, are now linked through the relation LIVE_IN

Both NER and RE techniques have seen some advancements over the years. However,
rule-based OBIE approaches typically suffer the lack of a formal framework, based on a clear
semantics and with a well-defined connection between the rule-based extraction mechanisms and
the rules specifying the ontology. At the same time, and mainly because of the above mentioned
lack, reasoning over the ontology has not been so far really exploited to support and empower
the IE process, so that ontologies in OBIE have been essentially treated until now as simple
conceptual models. Through this dissertation, we aim at moving a step forward to fill this gap.

3

To this aim, we have looked at some prominent open-source rule-based IE tools, such as
GATE [70] and coreNLP [156], and used them through the mediation of a domain ontology.
However, from our experiences, it turned out that the coupling of ontologies and extraction rules
we realized continued to suffer from some of the problems we complained about, in particular,
because of the lack of declarative semantics at the basis of the rule languages adopted by these
tools, which affects the clear assessment of their expressive power, as also remarked in [87].
At the same time, the use of such languages resulted often involved, and the specification of
extractor components particularly time-consuming, also due to the need of having to frequently
complement rules with custom pieces of programming code.

We thus have shifted our attention to a more formal treatment of rule-based IE. In this
respect, Fagin et al. have carried out in the last years a foundational study on the topic, and
have introduced a formal framework based on the notion of (document) spanner [86, 87]. A
spanner is a function that maps a given string to a relation, i.e., a set of tuples, over its spans.
A span is a pair of indices that identify substrings of a given string. For example, given the
string President Joe Biden, the spans [10, 12〉 and [13, 17〉 identify the substrings Joe and Biden,
respectively. Fagin et al. studied possible representations of spanners and analyzed how the use
of some algebraic operations on the relations returned by the spanners evaluation influences the
expressiveness of spanner-based extractors. In particular, they considered spanners defined by
regular expressions with capture variables (a.k.a. “regex formulas”), and manipulated through
some algebraic operators. Intuitively, regex formulas are regular expressions allowing for mapping
sub-matches of regular expressions, in the form of spans, to variables. Algebraic operators
considered in [86], are the relational operators union, projection, and join, plus string-equality
selection, which allows to select tuples of spans identifying certain wanted substrings. Spanners
represented by regex formulas and combined with the above operators are called core spanners,
denoted [[RGX{∪,π,on,ζ=}]], and are those providing the expressiveness suited to the aim of our
investigation, as we will see in the following chapters of this dissertation.

Inspired by the above work, in this thesis we construct a formal framework, called Ontology
Based Document Spanning (OBDS), for coupling spanners with ontologies. Through this
framework we intend to structure information extracted from text documents according to
the terminology provided by an ontology. To this aim, we adapt the well-known Ontology
Based Data Access (OBDA) framework, in which an ontology is mapped to an external source
database through declarative mappings specifying the semantic relationship between the ontology
vocabulary and the data at the sources [48, 212]. OBDA is a powerful paradigm for data access,
integration, and governance. In OBDA, however, ontologies have been used so far only on top of
relational databases, with very few exceptions (as, e.g., [30]). In this dissertation we thus enrich
OBDA with the capability of accessing unstructured information contained in text documents.

4 1. Introduction

Within OBDS systems, we study the problem of query answering, which is the service of
main interest in ontology based data management systems, and show that the ontology plays a
leading role in mediating information extraction. Interestingly, the task we solve is a form of
on-the-fly information extraction, in the spirit of query answering in OBDA.

We finally complement the above investigation through the study of Entity resolution (ER),
another core task useful to populate ontologies from text with clean data, and that our initial
experiences on OBIE highlighted as a serious issue in IE. ER amounts to identify different entities
that describe the same real-world object [129]. It is a fundamental process in data management
[85], that affects data of any kind, from structured ones [91], as in relational databases [129, 20],
to semistructured information, as in the Semantic Web context [166, 201], to unstructured data,
as for entities that have to be resolved starting from text documents.

In particular, Entity Resolution in NLP, also known in the literature as Record Linkage, is
the task of finding tokens in free-text that refer to the same entity, as in the following example.

President [Joe Biden]PERSON lives in [District of Columbia]LOCATION

[Washington]LOCATION is the capital of the [United States]LOCATION

SAME_AS

Here, District of Columbia and Washington, both previously annotated with LOCATION,
clearly refer to the same city of the real-world and then should be linked to each other (denoted
through a SAME_AS relation in the example).

Our investigation on ER led us to the definition of a formal framework, called KER, in which
we couple ontologies with expressive entity resolution rules, allowing for specifying the conditions
under which two entities have to be interpreted as the same real-world object. We define tailored
semantics for KER systems to properly deal with entity resolution rules in the presence of
ontologies, and study query answering under such semantics. We point out that in the KER

framework we do not consider mechanisms to link ontologies to external data sources, e.g., text
documents, as in OBDS, and that our results are obtained through chase-based techniques.
Thus, to apply them to OBDS (or even OBDA) systems it is necessary to first populate the
ontology by materializing the result of the extraction phase.

We finally point out that the experimental results shown in this thesis are reproducible, and
all the material used, including datasets, code, ontologies, etc., can be found in the following
GitHub repository https://github.com/Scafooo/Phd-Thesis.

https://github.com/Scafooo/Phd-Thesis

1.1 Thesis Contributions 5

1.1 Thesis Contributions

This thesis provides both practical and theoretical results on the themes we have discussed so
far. In the following, we provide a more precise account of all its contributions.

I We address OBIE from a practical perspective. We consider the most widely used open-
source IE technologies, GATE and CoreNLP, and adapt them to populate domain ontologies.
Properly, we describe, by detailing the approach followed and highlighting the issues
encountered, the pipelines that we have designed, and the ad-hoc implementations that we
have carried out. Our results have been validated in two main scenarios, one (approached
through GATE) from the Open Source Intelligence context, considering text documents
crawled from the web, and one (faced with coreNLP) concerning with extraction from
financial documents, investigated in the context of a collaboration with CONSOB (Italian
Companies and Exchange Commission). For both experimentations we designed domain
ontologies and executed fully reproducible tests on large datasets.

II We introduce the notion of Ontology Based Document Spanning (OBDS) system. In an
OBDS system, an ontology is linked to text documents through extraction assertions,
which act similarly as mapping assertions in OBDA, and in which document spanners are
associated to queries over the ontology.

III We study query answering over an OBDS system, i.e., how to answer a user query specified
over the ontology by retrieving the answers from the text documents mapped to the
ontology. We consider the case in which (i) the ontology is specified in the Description
Logics DL-LiteR or DL-LiteF (see Section 5.2), (ii) user’s queries are conjunctive queries
(CQs), (iii) spanners in extraction assertions belong to the class [[RGX{∪,π,on,ζ=}]] (see
Section 5.5), (iv) queries in the head of extraction assertions are CQs. We show that query
answering is in PTime in data complexity (i.e., the complexity computed only with respect
to the size of the underlying documents). We remark that DL-LiteR and DL-LiteF are the
two most popular ontology languages used in OBDA to deal with large datasets, CQs are
the most expressive queries for which query answering over ontologies has been shown to
be decidable, and spanners in [[RGX{∪,π,on,ζ=}]] are among the most expressive document
spanners considered in [86]. We note also that extraction assertions we define resemble
GLAV mapping assertions used in data integration and in OBDA, i.e., the most expressive
form of mappings adopted in these contexts [146, 78, 48, 89].

IV We investigate query rewriting in OBDS systems, i.e., whether it is possible to answer a
query by first rewriting it and then evaluating the rewriting over the data layer. Our aim

6 1. Introduction

is to understand whether we can reduce query answering to the execution of a document
spanner of the same kind of those used in the extraction assertions. We positively answer
the above question for the case in which ontologies are specified in DL-LiteR and extraction
assertions have the full expressive power allowed by our framework, and for the case of
DL-LiteF ontologies when we adopt some restrictions on the form of extraction assertions
(still obtaining, however, a practically interesting case). We indeed provide an algorithm
that rewrites every CQ issued over an OBDS system (i.e., over its ontology) into a spanner
belonging to [[RGX{∪,π,on,ζ=}]].

V We present Mastro System-T, a tool for OBDS. We describe its architecture and
the components that realize its query answering process. Through the support of an
experimentation within a real-world financial application domain, we show the benefits our
tool can provide in IE. We make a performance comparison between Mastro System-T
and CoreNLP. Namely, we re-examine the CONSOB scenario mentioned above, and use
Mastro System-T to perform the information extraction task.

VI We formally define a framework for Entity Resolution over ontologies, which we call KER.
Namely, we describe the components of a KER system, and in particular the form of entity
resolution rules it allows for. We give the semantics of KER systems in terms of special
interpretations, which, besides the domain of interpretation and the interpretation function,
are characterized by an equivalence relation allowing to interpret ontology concepts with
sets containing equivalence classes that gather together resolved entities, i.e., entities that
are denoting the same real-world object.

VII We study KER systems without and with functional dependencies in the ontology language.
Whereas functionalities on roles are assimilable to entity resolution rules, functionalities on
attributes may enforce equalities on different values (e..g., different numbers or strings),
which would cause a KER system to be inconsistent. To cope with this situation, we interpret
functionalities on attributes as matching dependencies [23, 92], i.e., rules establishing
conditions under which values have to be matched (rather than equated). We resolve
matching through a general function that takes the union of the values to be matched, in
the spirit of the union class of match and merge functions considered in [18]. We show that
also in the presence of functional attributes conjunctive query answering can be reduced
to query evaluation over a tailored chase built specifically for KER system that can be
constructed in polynomial time respect to the size of facts reside in the ontology.

1.2 Structure of the Thesis 7

1.2 Structure of the Thesis

The thesis is organised in ten chapters, whose content is briefly summarised below:

• Chapter 1 is the current introduction

• Chapter 2 is a background where basic notions about OWL ontologies, SPARQL queries, and
the metrics used to evaluate the quality of IE systems are presented. Some of these notions
are here given informally and precisely formalized later, in Chapter 5.

• Chapter 3 illustrates an approach for the automatic population of predefined ontologies
with data extracted from text, and discusses the design and realization of a pipeline
based on the General Architecture for Text Engineering (GATE) system. We provide an
experimental validation of our approach, on a specific domain namely “Mafia Capitale”,
that shows its performances in terms of the quality of the information we are able to
extract.

• Chapter 4 reports the activity we have been carried out within a joint project between
Sapienza University and CONSOB, consisting into an IE application applied to financial
documents, to support monitoring actions aimed to uncover financial wrongdoing.

• Chapter 5 is a theoretical background introducing Description Logic ontologies, the
framework of Document Spanners, and the Ontology Based Data Access.

• Chapter 6 illustrates the formal framework of Ontology Based Document Spanning (OBDS).
The problem of query answering over OBDS is studied considering different settings. We
will provide both algorithms and complexity results.

• Chapter 7 presents Mastro System-T, an OBDS tool born from a joint collaboration
between the Sapienza University and IBM Research Almaden, and its application in
financial domains. The chapter also reports about a comparison in terms of performance
with the technology used in Chapter 4.

• Chapter 8 introduces KER systems, i.e., a formal framework for entity resolution over
ontologies. In this chapter, we study query answering over KER systems.

• Chapter 9 reviews some literature that is closely related to this thesis.

• Chapter 10 concludes the thesis with a brief discussion and possible directions for future
work.

9

Chapter 2

Background

This chapter contains some of the basics needed to understand the following chapters of this
thesis. Here, we introduce ontologies, their definitions through textual and visual representations,
and the SPARQL query language. We dedicate the last part to talk about the metrics used to
evaluate the results of the approaches that will be shown in this dissertation. This chapter is
intended to be a brief introduction to such matters, while an exhaustive treatment of them is
out of our scopes. For further background we refer the reader to [160, 173]

2.1 Ontologies

In Computer Science, an ontology is commonly defined as a specification of a conceptualization,
that is, a formal description of an abstract, simplified view of a certain portion or aspect of the
world [106, 107]. According to this definition, an ontology provides a conceptual representation
of a domain of interest, and thus it abstracts from aspects typical of logical or physical data
modeling and storage. Furthermore, an ontology is formal, which means that the description
of the world it provides is not ambiguous. It is usually given in some mathematically based
language with precise syntax and clear semantics, commonly rooted in some logic. Another
essential characteristic of ontologies is that they are shared, i.e., they are agreed upon by all
their users. Therefore, ontologies are considered an excellent way to represent knowledge on the
Web, where they are mainly used to add semantics to data. This also allows for the usage of
powerful reasoning mechanisms that ontologies are usually equipped with [9]. The importance of
ontologies to interpret and structure Web data is also demonstrated by the huge standardization
effort carried out by the W3C, which led to the definition of OWL, the standard Web Ontology
Language1 [110].

1https://www.w3.org/TR/owl2-primer/

https://www.w3.org/TR/owl2-primer/

10 2. Background

2.1.1 OWL

As it is typical in ontologies and data modeling, in OWL, we distinguish between intensional
and extensional knowledge. Intensional knowledge is given in terms of logical axioms involving
classes (a.k.a. concepts) and properties, which are of two types, object properties (a.k.a. binary
relationships or roles) and data properties (a.k.a. attributes). Classes denote sets of individuals
(a.k.a. objects), object properties denote binary relations between individuals, whereas data
properties denote binary relations between individuals and values from predefined datatypes.
Each of these elements in OWL is generally defined as resource, and it is identified by a sequence of
characters called Uniform Resource Identifier (URI). When the URI is identifying an individual,
we also refer to it as entity. Among the various concrete syntaxes proposed to express ontologies
in OWL, in this thesis, we use the RDF/Turtle2 one. At the syntactic level we thus treat an OWL

ontology as an RDF dataset, i.e., a set of triples, each consisting of a subject, a predicate, and
an object, and express it in Turtle, according to which elements in a triple are separated by
whitespaces, each triple is terminated by a ‘.’ (dot), and prefixes can be used to make URIs more
compact (we will not use more advanced features of Turtle).

Under the above RDF view, an OWL ontology can be readily seen as a Knowledge Graph, i.e.,
an oriented graph where the nodes are the resources that appear in the triples in the position of
subject and object, and for each triple there is a labeled edge, whose label is the triple predicate,
and whose direction goes from the node representing the subject to the node representing the
object.

OWL is a very expressive language composed of a wide vocabulary used to define its resources.
For the sake of simplicity, we introduce its most common constructs through an example, and
we refer the reader to [104] for further details.

Example 2.1. Consider the following ontology which captures a part of the domain described

2https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/

2.1 Ontologies 11

later in Chapter 3 and acts also as a running example for this chapter:

Intensional Level
θ1) :Person a owl:Class .
θ2) :Politician_Company a owl:Class .
θ3) :City a owl:Class .
θ4) :first_name a owl:DataProperty .
θ5) :last_name a owl:DataProperty .
θ6) :lives_in a owl:ObjectProperty .
θ7) :Politician rdfs:subclassOf :Person .
θ8) :Politician rdfs:subclassOf :Person .
θ9) :Journalist owl:disjointWith :Politician .
θ10) :first_name rdfs:domain :Person .
θ11) :last_name rdfs:domain :Person .
θ12) :lives_in rdfs:domain :Person .
θ13) :lives_in rdfs:range :City .

Extensional Level
α1) :#Biden a :Politician .
α2) :#Washington a :City .
α3) :#Biden :first_name ‘Joe’ .
α4) :#Biden :last_name ‘Biden’ .
α5) :#Biden :lives_in :#Washington .

Here owl: and rdfs: are two standard prefixes reserved to identify resources belonging to the
OWL vocabulary (which also includes terms from the RDFS vocabulary). Instead : (the empty
prefix) is used to specify the resources belonging to this specific ontology (as a convention in
this thesis, when : is followed by the symbol #, the URI refers to an entity).

The intensional level (θ1 − θ11) declares the classes :Person (θ1), :Politician (θ2) and
:City (θ3), the attributes :first_name (θ4) and :last_name (θ5) and the role :lives_in (θ6).
θ7 and θ8 assert that every politician and every journalist is also a person. Triple θ9 says that if
someone is a journalist she/he cannot be a politician. Triple θ10 and θ11 specify the domain of
the attributes :has_first_name and :has_first_name, respectively, which is :Person. Finally
θ12 and θ13 specify that the domain of the role :lives_in is :Person and the range is :City

The extensional level (α1 − α5) states that the entities :#Biden and :#Washington are
instances of :Politician and :City (through α1 and α2, respectively). The name of :#Biden
is ‘Joe’ and its last name is ‘Biden’. Finally the last triple (α5) states that :#Biden lives in
:#Washington. �

We would also like to point out that in OWL it is also possible to assert that two enti-
ties in fact denote the same individual (notice that OWL does not adopt the unique name
assumption, i.e., does not impose that different entities denote different objects of the do-
main of discourse). This is done through the use of the owl:sameAs. For instance, the as-

12 2. Background

sertion :#District_of_Columbia owl:sameAs :#Washington states that the two individuals
:#District_of_Columbia and :#Washington have to be interpreted as the same object.

As mentioned above, the purpose of an ontology is not limited to the mere representation
of knowledge, but provides a suitable structure over which complex reasoning tasks can be
performed. For this reason, the W3C consortium has defined the current version of OWL, also
referred to as OWL 2, which is completely rooted in Description Logics, and it has designed
different tractable profiles3 (also called fragments or sub-languages). Each profile trades some
expressive power, placing restrictions on the structure of OWL 2 ontologies, in order to improve
the efficiency of the reasoning services.

2.1.2 Graphol

We would like to mention that, besides standard textual syntaxes used to specify ontologies4

(e.g., the RDF/Turtle syntax that was used in the previous example), various attempts have
been made to devise graphical representations of OWL ontologies, to make the understanding of
ontologies and their specifications easier for non-experts in logic or formal languages. Among
them, Graphol5 is a recent diagrammatic language that is completely graphical, i.e., it does
not require to complement diagrams with logical formulas, and that is equivalent to OWL 2,
the current version of the OWL standard [138, 139]. Thanks to this equivalence, Graphol
completely preserves the OWL ontology specification, but at the same time allows for a more
intuitive ontology comprehension. This is the reason why in this thesis we prefer sometimes to
present the ontologies using this graphic formalism rather than through textual syntax.

Example 2.2. Consider the following Graphol ontology which contains the intensional level
of the OWL ontology in Example 2.3

Classes are represented through labeled rectangles, objectproperties through labeled dia-
monds, and dataproperties through labeled circles (as in Entity-Relationship diagrams). To

3https://www.w3.org/TR/owl2-profiles/
4https://www.w3.org/TR/owl2-syntax/
5https://www.obdasystems.com/graphol

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-syntax/
https://www.obdasystems.com/graphol

2.1 Ontologies 13

denote the first (domain) and the second (range) component of a property, a white and a black
square are respectively used, connected to the property they refer to with dashed arrows ending
with a small diamond (called input edges). A black hexagon indicates a union of classes that
are also disjoint, whereas for plain union an hexagon labeled with “or” is used. Other operators
allowed in hexagons are, for instance, “and” (to capture intersection of classes), and “not” (to
capture the complement of a class). Each class involved in the union (or in the intersection,
complement, etc.) is connected to the hexagon with an input edge. Labels associated to the
domain and range of properties are used to specify restrictions, such as existential restrictions
(label exists), or cardinality restrictions (label x,y, where x and y are non-negative integers,
with y ≥ x and y 6= 0). Cardinality restrictions are similar to cardinality constraints in
Entity-Relationship or UML class diagrams. Solid arrows denote inclusions between classes (or
properties), even general ones, which are obtained through the use of operators like the ones
mentioned above (see, e.g., the arrow going from the black hexagon to the class :Person, or the
one going from the range of :lives_in to the class :City).

2.1.3 SPARQL

Among the various reasoning services over ontologies, one of the most studied that will also
be treated later in this thesis is query answering. Several query languages have been designed
for this purpose, including OntoQL [115], RDQL [195], SeRQL [31]. In this thesis, we consider the
SPARQL language [173] standardized in 2008 by the W3C and supported by most RDF triple
stores, thus considered the standard language for querying ontologies.

The main query type in SPARQL is the SELECT query, which has two main components: a
list of selected variables, and a WHERE clause for specifying the basic graph patterns, i.e., a
conjunction of triples, specified in RDF/Turtle like syntax, except that each of the subjects,
predicate, and object may be a variable.

The evaluation of these queries on (the RDF graph corresponding to) the ontology is
performed through a graph pattern matching mechanism. The result of a SELECT query is the
set of all pattern matches, which are usually represented as a table having one column for each
selected variable and one row for each pattern match.

Example 2.3. Consider the following SPARQL query posed over the ontology in Example 2.3,
which is asking for the first names and last names of the politicians living in Washington.

SELECT ?X ?Y

WHERE {

?Z has_first_name ?X

?Z has_last_name ?Y

14 2. Background

?Z a :Politician .

?Z :lives_in :#Washington .

}

The result of the query is the following table:

?X ?Y

‘Joe’ ‘Biden’

SPARQL also provides several operators for combining graph patterns such that optional
patters, union of patterns and filters. We refer the reader to [108] for a complete list and
description of them.

2.2 Metrics

In the following chapters of this thesis, we will show the quality of the proposed approaches
through a series of tests. These are performed, taking into account the standard parameters
for evaluating IE tasks. Properly they are the Correct Annotations (a.k.a. True Positives), i.e.,
the annotations we have identified that turned out to be correct, the Spurious Annotations
(a.k.a False Positives), i.e., the annotations we have found that were indeed wrong, and the
Missing Annotations (a.k.a. False Negatives), i.e., those annotations that we were not able to
find. These three parameters allowed us to calculate:

• Precision, i.e. the fraction of the correct annotations over the total number of identified
annotations. It is formally defined as follows:

Precision = Correct

Correct+ Spurious
(2.1)

• Recall, i.e the fraction of the correct annotations over the total amount of annotations It
is formally defined as:

Recall = Correct

Correct+Missing
(2.2)

• F-measure, i.e the harmonic mean of Precision and Recall. It is formally defined as:

F-measure = Precision ∗Recall
0.5 ∗ (Precision+Recall) (2.3)

Example 2.4. In the following example, the entity Joe Biden is not correctly annotated, because

2.2 Metrics 15

we missed the annotation over the token Joe. Instead, Washington D.C. can be defined as a
correct annotation.

President Joe [Biden]PERSON lives in [Washington D.C.]LOCATION

For the rest of the thesis, in the tables concerning the tests carried out, if not differently
specified, we indicate with C.A. the correct annotations, with S.A. the spurious annotations
and, with M.A. the missing annotations.

17

Chapter 3

Ontology Population a GATE-based
Approach

In this chapter we report about a first experience on Information Extraction, whose final outcome
has been the construction of the instance level of an OWL ontology by using data extracted from
text documents crawled from the Web. To this aim we have used GATE (General Architecture
for Text Engineering) and some specific third-party components tailored to ontology population.
This experience has been carried out in the context of Open-Source INTelligence (OSINT) for
security applications.

OSINT is intelligence, i.e., information gathering, based on publicly available sources such
as news sites, blogs, forums, etc. OSINT is nowadays used in many application scenarios,
for instance for security (e.g., identifying lone wolves and weak signals on the Web [11]),
market intelligence (understanding users’ profiles and trends), or statistics (to cross-check and
complement data collected with traditional methods [193]). A major issue in using Internet as
a data source is that Web data come mainly in the form of free text, thus with no structure
and formal semantics. This means that two problems have to be faced. First, how to select
structured information from unstructured texts, and, second, how to interpret the selected
information according to precise semantics.

For a comprehensive solution we have investigated how to populate a domain ontology using
the information extracted from a given cluster of textual documents crawled from the Web.
Structuring Web data according to the predicates and axioms defined in an ontology turns out
to be particularly effective for our purposes, even in the light of the reasoning abilities ontologies
allow for [9].

Among various existing open-source tools for information extraction (e.g., LingPipe1 or

1http://alias-i.com/lingpipe/

http://alias-i.com/lingpipe/

18 3. Ontology Population a GATE-based Approach

OpenNLP2), we decided to use GATE3, given the flexibility it allows to customize its underlying
architecture, and to incorporate other external components developed by third parties. The
extraction activity in GATE is typically carried out through different stages, each depending
on the contingent needs of the user, who can, for instance, adopt existing dictionaries (a.k.a.
Gazetteers) for NER (Named Entity Recognition), or create new ones, and/or specify tailored
extraction rules through the use of the Java Annotation Pattern Language (JAPE) [69]. GATE
has become popular in the last years, especially in relation to information extraction from
English documents. To some extent, it also supports other languages, primarily thanks to the
dictionaries created and then shared on the platform by its many users.

The main contributions of this chapter are:

(i) to show how to build a complete ontology population pipeline step-by-step, presenting all
the relevant methods, techniques, and design choices, entirely based on open source tools;

(ii) to provide an experimental validation of this approach that shows its performances in
terms of the quality of the information we are able to extract;

(iii) to describe how to exploit semantic technologies to reduce the manual workload needed in
some components of our pipeline (in particular, for the definition of Gazetteer lists).

Our techniques have been tested within the XASMOS and RoMA projects, involving the
‘Leonardo’ company (formerly Selex), and the ‘Sapienza’ Research Center on Cyber Intelligence
and Information Security. The projects focused on OSINT for security applications. Namely, we
considered the case study ‘Mafia Capitale’, from the name of an important 2015 investigation
that received quite a lot of attention from the Italian media, and, thus, turned out to be a valid
testbed (for both number of Web documents available and significance of the domain). For
our case study specific dictionaries and JAPE rules for Italian were created to instantiate a
domain ontology with the information extracted from Web documents. We present our case
study to provide some insight on the possibilities offered by such an approach. In particular,
we successfully applied it to more than 2600 documents crawled from the Web. The results
we obtained were encouraging in terms of number of extracted instances and quality of the
information extracted.

In our case study we experienced that some of the tasks we had to deal with, such as
dictionaries or JAPE rule definitions, were rather domain specific and time-consuming since they
required a lot of manual work. We, thus, started to investigate how to refine our approach so
that the time needed to perform these tasks could be reduced and the solution adopted could be

2https://opennlp.apache.org/
3https://gate.ac.uk/

https://opennlp.apache.org/
https://gate.ac.uk/

3.1 General Architecture for Text Engineering 19

easily reused in different contexts. In particular, we focused on the dictionary construction task,
and faced it with a more general approach, which relies on a simple extraction of dictionaries
through SPARQL queries issued over the open knowledge base Wikidata 4.

The chapter is structured as follows:

• Section 3.2 describes our approach for ontology population and introduces the modules
that were used in the GATE system;

• Section 3.3 presents our case study and explains the specific actions we had to take for
the application at hand;

• Section 3.4 reports the evaluations and results for our case study.

• Section 3.5 illustrates the Wikidata-based approach for the generation of Gazetteer lists;

• Section 3.6 discusses the evaluations and results for this approach.

3.1 General Architecture for Text Engineering

GATE is an architecture, a framework and a development environment for Language Engineering
(LE) [70]. Since it is an ’architecture’, it defines the organization of an LE system and the
assignment of responsibilities to different components, and ensures that the interactions of the
components satisfy the system’s requirements. As a ‘framework’, it provides a reusable design
for an LE software system and a set of preset software building blocks that language engineers
can use, extend and customize for their specific needs [72].

GATE has a component-based model which allows for coupling and decoupling of the
processors, thereby facilitating the comparison of alternative configurations of the system or
different implementations of the same module (e.g., different parsers). GATE comprises a
core library and a set of reusable LE modules. The framework implements the architecture
and provides (amongst other things) facilities for processing and visualizing sources, including
representation, import and export of data. The provided reusable modules are able to perform
basic language processing tasks such as POS (Part-Of-Speech) and semantic tagging. This
eliminates the need for users to keep recreating the same kind of components, and provides a
good starting point for new applications.

GATE components may be implemented through a variety of programming languages, but
they are always represented to the system as Java classes. A class may simply call the underlying
program or provide an access layer to a database; alternatively it may implement the whole
component.

4https://www.wikidata.org/

https://www.wikidata.org/

20 3. Ontology Population a GATE-based Approach

Figure 3.1. The process for ontology population.

3.2 Approach and Architecture

Our work builds, by leveraging GATE, a pipeline for the extraction of information from text
documents in a specific language. We assume to have as input a reference ontology that has
been designed by analysts and domain experts, and that needs to be populated with instances
of classes and properties. To achieve this goal through the components in GATE, our approach
proceeds through two main phases, see Figure 3.1:

1. Semantic annotation: in this phase, we create annotations, i.e., metadata that indicate
properties of the text contained in the analyzed documents. At the end of this phase, the
annotations will allow us to identify in the text those entities that are indeed instances of
the classes and properties of the ontology given as input to our pipeline.

2. Ontology population: in this phase, we extract and classify instances of classes and
properties described in the reference ontology starting from the output of the previous
phase.

In the following, we detail all the processing resources (PRs) used to create our pipeline in
GATE.

3.2.1 Semantic annotation

Entity identification, entity disambiguation, and text annotation are the three main tasks that
semantic annotation of resources has to deal with. In our proposed GATE-based approach,

3.2 Approach and Architecture 21

this phase relies on several PRs, which are available as GATE plugins, possibly provided by
third-party organizations5.

In the following, we describe such resources, through an ongoing example in which we
analyze a short text, and we show the output produced by each component, through some
screenshots. In such screenshots, we have three main areas (cf. Figure 3.2): the left-upper part
of the window shows the text that is analyzed, the right-hand side of the window reports the
types of annotations available, and which the user can select, whereas the bottom part of the
window describes the selected annotations. This area indicates the Type of the annotation,
the portion of the text that the annotation refers to (Start and End characters), the Id of the
annotation (which is unique), and the Features of the annotation (which depend on the type) 6.

The semantic annotation components used in our approach are the following ones:

1. Document Reset: this component allows to reset the annotations that have been added
to a document, and it is useful when different applications are executed on the same
corpus. This resource has been inserted in each pipeline before any other PR so that
annotations added by a previous application on the text documents do not influence the
results obtained in the current execution [69].

2. GATE Unicode Tokeniser : this component is used to split the text in Tokens and
SpaceTokens; the latter ones denote spaces among single terms, whereas the former ones
are of four kinds, i.e., number, punctuation, symbol, and word. The use of this component
is essential for introducing in the document those annotations that will be exploited in
next phases by JAPE rules, which we describe later. In Figure 3.2, we show the output
of the GATE Unicode Tokeniser for our ongoing example. For instance, the first row in
the bottom part describes an annotation of type Token that refers to a string starting at
character 0 and ending at character 3. Among the features, we can read that the Token is
of kind word, contains 3 characters, the first character is an upper letter, and the string is
“The”. Similarly for the other rows.

3. RegEx Sentence Splitter : this component divides the processed document into sentences,
which are chunks of text that make sense taken in isolation. It is essentially language-
independent, in the sense that it can be used as it is for very many common languages,
such as English, German, Italian, etc. It is an alternative component to the ANNIE 7

Sentence Splitter, a splitter component, completely based on JAPE, provided by GATE.
In particular, RegEx Sentence Splitter outperforms ANNIE in terms of execution time

5https://gate.ac.uk/gate/doc/plugins.html
6The column Set refers to specific annotation sets, but is not used in this example [69].
7https://gate.ac.uk/sale/tao/splitch6.html#chap:annie

https://gate.ac.uk/gate/doc/plugins.html
https://gate.ac.uk/sale/tao/splitch6.html#chap:annie

22 3. Ontology Population a GATE-based Approach

Figure 3.2. An example output of GATE Unicode Tokeniser.

and for its abilities to deal with several languages and irregular inputs. Moreover, this
component is completely implemented in Java, and, as the name itself says, it is based
on regular expressions that define the syntactic rules for sentence identification. At the
end of this phase, two new annotations are added to the document, i.e., Sentences and
Splits. As shown in Figure 3.3, no particular features are assigned to sentence annotations,
whereas split annotations can be (i) internal, i.e., splits among two sentences, (ii) external,
i.e., the split that closes the document, or (iii) non-splits (not shown in the example),
which are fragments similar to splits, but not really splits (such as punctuations used for
abbreviations).

Figure 3.3. An example output of RegEx Sentence Splitter.

3.2 Approach and Architecture 23

4. TreeTagger Part-of-Speech (TreeTagger POS) 8: it is a component for document annotation
with POS and lemma information, developed at the Institute for Computational Linguistics
of the University of Stuttgart. It is a Markov Model tagger that makes use of a decision
tree to get more reliable estimates for contextual parameters [194]. It can be used with
various languages, provided that it is fed with an input parameter file specific for the
language. Despite the fact that several POS taggers exist that could be used in this phase,
the TreeTagger POS turned out to be the best one for the Italian language (which is the
language considered in our case study). Indeed, we tested other taggers (such as TagPro 9)
on various documents in Italian, and TreeTagger POS provided best performances for both
number of correct POS annotations and lemma information. In particular, information
on lemmas, which are canonical forms of set of words (e.g., “represent” is the lemma of
“represents”, “representing”, etc.), is a peculiar characteristic of TreeTagger POS. Similarly
to the tokenization obtained through the GATE Unicode Tokeniser, at the end of this
phase we have a set of annotations associated to each token; in this case, the column
Features provides POS and lemma information. This is shown in Figure 3.4, where we
called such annotations SemanticTokens, and where each annotation reports, in particular,
a category and a lemma. We notice that the category assumes one among several POS
values, specific for the language at hand (e.g., for the English language, DT is a determiner,
NN is a common name, NP is a proper singular name, VVZ, is verbe present tense, 3rd
person singular).

Figure 3.4. An example output of TreeTagger POS.

5. Gazetteer [69]: this component annotates the documents on the basis of a set of lists
8http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
9http://hlt-services2.fbk.eu/textpro/?p=89

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
http://hlt-services2.fbk.eu/textpro/?p=89

24 3. Ontology Population a GATE-based Approach

containing names of entities, such as countries or organizations, but also names or abbre-
viations for types of companies (e.g., ltd., Corp., Inc.), for political offices (e.g., President,
Prime Minister, Senator), etc. Each list can be associated with a so-called major and minor
type. Usually, at least the major type is specified. Intuitively, these types correspond
to categories, such that minor types are more specific than the corresponding major
types. If the document contains a string matching with an element of a Gazetteer list, the
component annotates the string with the major and minor type of this list. If the string
has more than one match, major and minor types of all the matching lists are added.

As an example, let us consider two different lists, called day.list and month.list, respectively,
the former containing the days of the week, the latter containing the months of the year.
We associated as major type to both lists the value time, whereas we set as minor type
days for day.list and month for month.list. If a document contains the string “Monday”, it
will be annotated with a Lookup annotation having major type time and minor type day.
This allows to exploit such annotations in next phases (in particular through JAPE rules)
at different level of abstraction, e.g., considering the string as a time fragment or as a day,
depending whether the major or minor type is accessed.

The effectiveness of this phase is completely dependent on the quality of the information
contained in the lists. The construction of such lists is a non-trivial task, but once created,
a list can be used in several applications.

In Figure 3.5, we provide the output of the Gazetteer PR applied to the text of our ongoing
example. We used a list with some job names, a list with some proper names of persons,
and a list with some names of organizations. For instance, in the fifth row, we annotate
the string “Police” with minor type defence, and major type organization.

Figure 3.5. An example of output of the Gazetteer PR.

3.2 Approach and Architecture 25

6. JAPE Transducer (Semantic): this component completes the phase of semantic annotation
and is used to import the user-written JAPE rules into the GATE platform, so that they
can be used to create or modify text annotations on documents. The JAPE language
allows to recognize regular expressions among the annotations previously produced. Once
the expression is matched, a further annotation referring to the searched patterns/entities
is added to the document [69].

The JAPE Transducer executes a JAPE grammar, which is a set of phases organized in
a precise order, each one composed by a set of patterns and action rules. These phases
are performed in a sequential way to create a cascade of finite-state transducers. Each of
these transducers takes as input the output and the related annotations of the previous
phase. The running order of the phases is defined in an index JAPE file.

Consider the following example of a phase in JAPE:

1 Phase: University
2 Input: Lookup Token
3 Options: control = appelt
4 Rule: University1
5 Priority:80
6 (Token.string == "University" Token.string == "of" Lookup.minorType == city):orgName
7 →
8 :orgName.Organisation = {rule = “University1”, kind = “university”}

From line 1 to line 3 we have the header that contains the attributes:

• Phase: it indicates the name of the phase.

• Input: it indicates the kind of data, obtained from previous operations, on which
the user wants to perform actions. In the example, we consider Lookup annotations
created by the Gazetteer.

• Options: it indicates the kind of matching style, which defines how we deal with
annotations that overlap, or where multiple matches are possible for a particular
sequence. There are 5 options:

– brill: if one or more rules identify a match in the same portion of the document,
they are performed all together. More annotations on the same piece of text can
be identified. All the rules are executed starting from the same position and the
next matching will start from the position in which the longest match ends;

– all: it is similar to brill, but the rule continues the search of a match from the

26 3. Ontology Population a GATE-based Approach

next offset with respect to the currently found one;

– first: when a rule finds a match, it is activated regardless of a possible longest
match;

– once: when a rule has been activated, the entire phase ends after the first match;

– appelt: only one rule can be activated in the same part of the text, according to
precise rules of priority:

∗ among all the rules that have a match with the identical initial position, it
will be activated only the one that corresponds to the longest match;

∗ if one or more rules have a match on the same portion of the document, it
will be activated the one with highest priority;

∗ if there is more than one rule with the same priority, it will be activated the
rule that was defined earlier.

From line 4 to the end we have the description of the actions in case of matching:

• Rule: the fourth line indicates the name of the first rule, the presence of more than
one rule in a single phase is allowed but it is good to pay attention to the order in
which they are written and performed, to prevent unexpected results caused by the
control options.

• Priority (optional): the fifth line indicates the priority of a rule. The user can declare
an optional parameter of priority associated to each rule that is usually a positive
integer. A higher number corresponds to a higher priority. If the priority is not
declared, by default all rules have priority −1.

• LHS (Left Hand Side): it is everything before the arrow and it consists in the
description of the pattern that the rule must follow to find the match. In the example,
it corresponds to the sixth row.

• RHS (Right Hand Side): it describes the actions to be performed on the annotations
when there is a matching with the pattern defined by LHS. In the example, it
corresponds to the eighth row. Information about the text span is transferred from
the LHS of the rule using a label, and it is annotated with the entity type (which
follows it). Finally, attributes and their corresponding values are added to the
annotation. Alternatively, the RHS of the rule can contain Java code to create or
manipulate annotations.

The phase shown in the example behaves as it follows: each time “University of <name of
a city>” is found, e.g., “University of Bari”, an annotation of type organization is created

3.2 Approach and Architecture 27

over the whole expression, and this new annotation has two attributes, namely rule with
value University1 (to indicate the rule producing it) and kind with value university.

At the end of this phase, through the use of specific JAPE rules, we can have new
annotations, such as Lawyer depicted in Figure 3.6.

Figure 3.6. An example output of our JAPE Transducer (Semantic) rules.

3.2.2 Ontology population

In the ontology population phase of our approach, all the previous PRs are created in order
to use the OwlExporter10 component; it can populate OWL ontologies by using the Protegé-OWL
libraries. The main features of the OwlExporter are:

• Exporting individuals: creating OWL individuals using entities of a corpus;

• Exporting dataproperties: creating OWL dataproperties using information from a corpus;

• Exporting objectproperties: creating OWL objectproperties among OWL individuals by
exploiting information obtained from a corpus;

• Exporting coreference chains: creating coreference chains using owl:sameAs for entities
that re-appear in different parts of a corpus.

The three PRs that compose the ontology population phase are the following:

1. JAPE Transducer (MuNPEx) 11: this component is implemented in JAPE, and is used for
(multi-lingual) noun phrase (NP) extraction, i.e., identification of elements in a sentence

10http://www.semanticsoftware.info/owlexporter
11http://www.semanticsoftware.info/munpex

http://www.semanticsoftware.info/owlexporter
http://www.semanticsoftware.info/munpex

28 3. Ontology Population a GATE-based Approach

having a noun as head word, which is the word determining the syntactic function of
the phrase. It is needed for managing the natural language processing specific for the
OwlExporter, as it will be further clarified in the case study. MuNPEx requires a POS
tagger to work and can additionally use detected named entities to improve chunking
performance [209]. Currently the supported languages are English, German, and French,
with additional Spanish support in beta. Thus we had to adapt it for the Italian language.
For each detected NP, an annotation NP is added to the document, as depicted in
Figure 3.7.

Figure 3.7. An example output of JAPE Transducer (MuNPEx).

2. JAPE Transducer (Mapping): the annotations created by the semantic annotation phase
are not in a compatible format to be an input to OwlExporter. It is necessary to convert
them through JAPE rules; the user needs to create the following two new annotations
declaring the mapping among the NLP annotations (created during processing), the
external NLP and domain ontologies (created by an ontology engineer) [211]:

• OwlExportClass: this annotation records which document annotations need to be
exported, and to which ontology class;

• OwlExportRelation: this annotation defines the export of roles between entities, which
are recorded using OWL objectproperties.

At the end of this phase, there will be two new annotations: OwlExportClassDomain and
OwlExportRelationDomain, as depicted in Figure 3.8.

3. OwlExporter : this is a component that can be included as part of a GATE pipeline.
It allows to export document annotations created by the previous PRs to individuals

3.3 Case Study: design and development 29

Figure 3.8. An example output of JAPE Transducer (Mapping).

in OWL. The OwlExporter manages two ontologies, a domain-specific and a domain-
independent one. This allows to link domain-specific entities detected in a text to their
lexical representation, e.g., paragraphs, sentences, or noun phrases. The first ontology is a
domain specific ontology that models concepts and relationships that are relevant for the
given domain; the latter ontology is a domain independent NLP ontology that contains
concepts commonly used in language engineering [210]. When OwlExporter terminates,
we obtain the population of the reference ontology with the information obtained from the
analysed text documents.

3.3 Case Study: design and development

In this section, we describe our case study, focusing in particular on the design and development
phases.

Our solution has been tested in a project in which we considered the domain of “Mafia
Capitale”, from the name of a judicial inquiry that involved the city council of Rome in 2015,
according to which, alleged crime syndicates misappropriated money destined for city services.
This investigation received a lot of attention by the media, thus it allowed us to retrieve a large
number of newspaper articles. The information retrievable was however completely unstructured
and difficult to analyse in an automatic way. At the same time, manually processing it was
definitely prohibitive.

We started from the Web crawling phase, from the definition of an ontology to represent
some concepts of interest related to our domain, and we created specific Gazetteer lists and
JAPE rules used for document annotation by GATE PRs described in Section 3.2. Many

30 3. Ontology Population a GATE-based Approach

technical details on all the phases of the case study, very useful for practitioners and for
the reproducibility of the whole case study, are provided online at https://tinyurl.com/

Ontology-population-via-GATE, where there are an online appendix with all configuration
instructions, the Gazetteer, the JAPE rules, the ontology and the crawled documents, i.e., all
the artefacts needed for re-creating the case study and the experimental results. This initial
pipeline is referred in the following as OS/HK – open-source/human-knowledge, to mean that the
needed artefacts are produced manually, based on human knowledge by also possibly exploiting
publicly (open) available information sources (papers, blogs, etc.), especially when creating the
Gazetteer lists. We will also experiment a further pipeline in which Gazetteer lists are built
semi-automatically by using Wikidata (cf. Section 3.5).

We remark that documents that we extracted from the Web are all written in the Italian
language, and thus we could not resort either to the many English tailored Gazetteer lists
available in the literature, or to the JAPE rules commonly used for the English language. Instead,
we had to define new Gazetteer lists and sets of JAPE rules specifically for the present project.
At the same time, however, these outcomes are reusable resources, that is, they are general
enough to be exploited also in other domains where the text to be annotated is in Italian. The
interested reader and practitioner can find them in the online appendix mentioned above. We
now overview the main phases of our project.

3.3.1 Crawling Phase

Initially, we have chosen different Web sources to retrieve articles from online newspapers as raw
data. We had to carry out crawling operations on newspaper websites, for a period ranging from
16 June 2015 to 29 February 2016. We made use of Web Content Extractor 12, a software that
is able to crawl web sites also in the presence of robot.txt files; we have configured it accurately
through various settings, like the initial seed, which is the URL from which the crawling action
starts, and the depth of research. Through these two parameters this crawling software is able
to create an SQL table with the following columns:

• ID, which is the number of the entry

• TITLE, which is the title text of the article

• ARTICLE, which is the content of the article

• URL, which is the URL where to find the article

Once this table is populated, it is possible to export the extracted text through SQL queries in
XML format, which is the format accepted by GATE.

12http://www.newprosoft.com/web-content-extractor.htm

https://tinyurl.com/Ontology-population-via-GATE
https://tinyurl.com/Ontology-population-via-GATE
http://www.newprosoft.com/web-content-extractor.htm

3.3 Case Study: design and development 31

Figure 3.9. The description of our Pipeline.

To obtain articles related to “Mafia Capitale”, for every newspaper web site we selected, we set
the initial seed to the result of the keyword search we executed over the newspaper web site using
the words “Mafia Capitale”. For example, for the web site of “La Republica”, a major Italian news-
paper, we have set the initial seed to “http : //ricerca.repubblica.it/ricerca/repubblica?query =
Mafia+ Capitale”. The crawling phase has generated, in about 3 hours, the amount of 2657
articles, distributed as indicated in the following Table 3.1:

Newspaper Number of articles
La Repubblica 938
Il Messaggero 777
Libero 842
Il Fatto Quotidiano 100

Table 3.1. Number of documents in the case study

3.3.2 Domain Ontology

The (intensional level of the) ontology is depicted in Figure 3.10 , through the Graphol ontology
language – as anticipated in Section 2.1.2, it provides a visual representation for OWL ontologies.

32 3. Ontology Population a GATE-based Approach

Company

(1,1)

CountryLegal
Representative

exists

Criminal
Organization

exists

exists

(1,1)

role

(1,1)

Country

manages

Entrepreneur

Governmental
Organization

exists

exists

Person

exists

organizationName

isLegal
Representative

exists

exists

locationName

exists

Newspaper
Organization

exists

enrolledIn

Oranization

Institutional
Role

(1,1)

Manager

or

writesFor

(1,1)

lives_in

exists

Region

(1,1)

isComponentOf

(1,1)

Cooperative

investigatesOn

Lawyer

(1,1)

Agency

worksFor

exists

City

Party

Journalist

Politician

firstName

(1,1)

Location

exists

lastName

Figure 3.10. The reference ontology in the case study

The ontology conveys that Politician, Enterpreneur, Lawyer, Manager, CountryLegalRepresenta-
tive, and Journalist are non-disjoint sub-classes of Person. They inherits firstName and lastName
from Person, as well as the fact that each instance livesIn in a City. All such properties are
mandatory and functional, as indicated by the (1,1) labels in the diagram. In addition, each
Manager has also a role (exactly one), and a CountryLegalRepresentative has an institutionalRole
(exactly one). A Location can be a Country, Region, or City. Each Location has necessarily
a name. Organizations are instead partitioned into GovernamentalOrganizations, Cooperatives,
CriminalOrganizations, NewspaperOrganizations, Company(ie)s, and Party(ie)s. An Agency is a
special type of GovernamentalOrganization. Each Organization has exactly one name. An Agency
can investigatesOn Persons, whereas a Person can manage Cooperatives, or can be a component
of (cf. isComponentOf) a CriminalOrganization. A Politician is enrolledIn exactly one Party, a
Manager worksFor exactly one Company and a Journalist writesFor NewspaperOrganizations. All
objectproperties are typed in both the domain and range (indicated by the arrows denoting
inclusions from the domain or the range of the property to the class it is typed on), which means
that no individuals other than those among the instances of the typing classes can instantiate
the domain and the range of the objectproperty. Similarly for the domain of dataproperties
(whereas for simplicity we do not indicate the typing of their ranges).

3.3 Case Study: design and development 33

3.3.3 Gazetteer

As discussed in Section 3.2, the Gazetteer PR annotates the documents on the basis of a set of
lists containing names of entities. These lists are used to find occurrences of these names in text
(e.g., for the task of NER). In our project, it was crucial to create all the Gazetteer lists used for
document annotation, because all the articles we analyzed are written in Italian, and when we
started our project no reusable support for Gazetteer lists for Italian was available.

To create the lists related to the domain entities of “Mafia Capitale”, we used two methods:

• based on human knowledge: this approach is used to write the lists containing words that
identify certain categories to which entities belong, e.g., containing all the words identifying
lawyers. In order to create this list, we have read some articles from newspapers about
the domain of interest, to better understand the terms identifying a specific category, as
“Lawyer”, “Advocate”, “Barrister” and “Attorney” for the category of “Lawyer”. Then, we
wrote the terms in the Gazetteer lists in both uppercase and lowercase letter, as GATE
has a case sensitive approach.

• based on open data sources: this approach is used to find the first and last name of
individuals belonging to a specific category, e.g., the members of the City Council of Rome,
with the information of their role as well. To this aim, we have downloaded specific lists
of interest from open data sites, e.g., OpenPolitici13 for the lists of Politicians currently in
charge, and also by other data sources such as DBpedia, etc.

The construction of such lists was not trivial and required a significant amount of time to
obtain good results; in our case, the effort is quantifiable in 7 person-days. This takes into
account a first phase of search of the information on the Web and a subsequent cleaning, which
has lead to a translation and transformation of the extracted resources into the format accepted
by GATE for the of Gazetteer. The value of 7 person-days can be subject to important variations
as it depends strictly on both the language and the domain of interest. A richer ontology in a
less widely spoken language could lead to a greater search effort and also to a greater manual
writing of resources.

3.3.4 JAPE Rules in the Semantic Annotation Phase

The JAPE Transducer completes the semantic annotation phase and it is used to import the
user-written JAPE rules into the GATE platform, so they can be used to create or modify text
annotations on documents. JAPE allows users to recognise regular expressions in annotations
on documents by using the annotations previously produced from other PRs.

13http://politici.openpolis.it/

http://politici.openpolis.it/

34 3. Ontology Population a GATE-based Approach

Next we describe the process of building annotations through JAPE rules. We have created
many JAPE rules to annotate different entities based on the respective classes of the reference
ontology. As a example, in the following we discuss this process for the Lawyer annotation.
It has First Name and Last Name as attributes in the ontology, so we need them when we
annotate a Lawyer entity in text documents. In a nutshell, we go through the text and search
for expressions (i) referring to a legal profession, and (ii) containing the first name and last
name of a person qualified with the term under investigation; as an example, when we want to
create an annotation Lawyer for the entity Person called “Carlo Taormina” given the following
expression “L’avvocato Carlo Taormina ha difeso l’imputato davanti alla Corte.” 14, the first
step is to create a Person annotation identifying humans from the attributes first name and
last name. We assume that, since it is very difficult to create a list of all possible surnames, we
can not use a Gazetteer list to find such an annotation. Nevertheless, it is possible to write
a Gazetteer list containing all the most common first names. Accordingly, we have created a
Gazetteer list that creates a Lookup annotation when there is a matching between an entry in
the first name list and a word in the analysed texts. Moreover, since we want to find the first
name and last name to identify a Person entity, the first name only is obviously not enough;
therefore, starting from the assumption that usually a first name is followed by a surname with
a capital letter, we can adopt the annotation Token created by the Unicode Tokeniser that has
an orth-attribute indicating if a word commences with a capital or lowercase letter. Our project
is based on Italian language, so we distinguished six cases for the construct first name and last
name:

1. FirstName Surname, as in Antonio Bianchi;

2. FirstName SecondName Surname, as in Stefano Andrea Bianchi;

3. FirstName FirstSurname SecondSurname, as in Dante Delli Priscoli;

4. FirstName SecondName FirstSurname SecondSurname, as in Marco Antonio Della Valle;

5. FirstName FirstSurname ’ SecondSurname, as in Riccardo Dell’Aquila (note the apostrophe
separating the two parts of the surname);

6. FirstName SecondName FirstSurname ’ SecondSurname, as in Alessandro Maria Dell’Acqua.

Now we have Person annotations on the text and we can use them to find the humans that
are lawyers, by searching the sentence with annotations Person near an expression that contains

14The translation of the sentence in English is “The lawyer Carlo Taormina has defended the accused in front
of the Court.”

3.3 Case Study: design and development 35

a reference to the legal profession. This annotation is produced by the Lawyer JAPE rules 15

Phase: Lawyer//it is the name of the Phase

Input: Token Lookup Person //they are the input annotation of the Phase

Options: control = Brill

//it indicates the kind of matching. In this case we use Brill: If one or more rules

identify a match in the same portion of the document, they are performed all at

once.

Rule:FindLawyerCaseOne

//it indicates the name of the first rule. In a Phase we can have many rules.

((({Lookup.minorType==lawyer}):jobOne// it is a word that is in Lawyer.lst(list of

terms that referred to the lawyer profession) annotated by Gazetteer; it is a

word that identify the lawyer job and we add a label jobOne on it

({Person}):personWorkOne) // it is an annotation Person composed by First Name and

Surname found by the JAPE rule Person described above and we add a label

personWorkOne on it

):personWork // it is the label of the entire regular expression that is composed by

the construct (Lookup)(Person)

-->

//here the RHS part starts

{gate.FeatureMap features = Factory.newFeatureMap();

// this command is used to create a new type of Annotation

gate.AnnotationSet firstNameSet = (gate.AnnotationSet)bindings.get("personWorkOne");

// through this command we can take the collection of regular expression found in the

text that matching the regular expression with label personWorkOne defined in LHS

gate.Annotation firstNameAnn = (gate.Annotation)firstNameSet.iterator().next();

// this command is used to take a single matching of person

features.putAll(firstNameAnn.getFeatures());

// this command is used to export all the attributes present in the matching

annotation Person to the new Annotation Lawyer

features.put("class","Lawyer");

// attach the new attribute class to the new annotation created with value the string

‘Lawyer’ that represents the specific concept of the reference ontology. This

attribute is useful for the Ontology Population Phase

features.put("rule", "FindLawyerOne");

// attach a new attribute rule to the new annotation created with value the string

‘FindLawyer’ that represents the name of the rule that finds the annotation

outputAS.add(firstNameSet.firstNode(), firstNameSet.lastNode(), "Lawyer",features);

15The Lawyer rule in JAPE is translated in English for the reader, but in our work the JAPE rules are written
in Italian.

36 3. Ontology Population a GATE-based Approach

// create the new annotations Lawyer and their related attributes

}

Rule:FindLawyerCaseTwo// it indicates the name of the second rule

((({Person}):personWorkTwo

// it is an annotation Person composed by First Name and Surname found by the JAPE

rule Person described above; we add a label personWorkTwo on it

({Token.string == ","}) // it is a comma that follows the first Person annotation

({Lookup.minorType==lawyer}):jobTwo)

// it is a word that is in Lawyer.lst(list of terms that referred to the lawyer

profession) annotated by the Gazetteers; it is a word that identify the lawyer

job; we add a label jobTwo on it

):personWork// it is the label of the entire regular expression that is composed by

the construct (Person) , (Lookup)

-->

//the description of the RHS in this case is equal to the description of the RHS of

FindLawyerCaseOne

{

gate.FeatureMap features = Factory.newFeatureMap();

gate.AnnotationSet firstNameSetDue =

(gate.AnnotationSet)bindings.get("personWorkTwo");

gate.Annotation firstNameAnnDue = (gate.Annotation)firstNameSetDue.iterator().next();

features.putAll(firstNameAnnDue.getFeatures());

features.put("class","Lawyer");

features.put("rule", "FindLawyerTwo");

outputAS.add(firstNameSetDue.firstNode(), firstNameSetDue.lastNode(),

"Lawyer",features);}

This rule can annotate as Lawyer the human occurring in this two types of sentence:

• Lookup(with minor type equals to lawyer) Person, as in “L’avvocato Carlo Taormina ha
difeso l’imputato”16: the rule is activated, so we have an annotation Lawyer on the Person
identified by Carlo Taormina.

• Person, Lookup(with minor type equals to lawyer), as in “Carlo Taormina, avvocato di
fama internazionale” 17: the rule is activated, so we have an annotation Lawyer on the
Person identified by Carlo Taormina.

We decided to use a short range between the annotation Person and Lookup on the basis of
16The translation of the sentence in English is “The lawyer Carlo Taormina has defended the accused”.
17The translation of the sentence in English is “Carlo Taormina, the internationally famous lawyer”.

3.3 Case Study: design and development 37

an analysis on text documents; in particular, the following LHS part of the rule shows that the
range can be maximum two Tokens:

({Lookup.minorType==lawyer}):jobOne

// it is a word that is in Lawyer.lst (list of terms that refers to the lawyer

profession) annotated by Gazetteer; it is a word that identifies the lawyer job;

we add a label jobOne on it

(({Token})?) // a generic token that can be present

(({Token})?)// a generic token that can be present

({Person}):personalavorauno

// it is an annotation Persona composed by Name and Surname found by the JAPE rule

Person described above; we add a label personWorkOne on it

Finally, we want to annotate Lawyer in a special case where the category lawyer is referred
to two persons. Let us consider the sentence “Gli avvocati Carlo Taormina e Mario Rossi sono
appena entrati in aula” 18. This states that both Carlo Taormina and Mario Rossi are lawyers,
but there is only one word referring to the legal profession carried out by both the individuals.
In order to put a correct Lawyer annotation on Carlo Taormina and Mario Rossi, the following
DoubleLawyer JAPE rule needs to be adopted and produces a matching if there is a plural word
referring to the legal profession followed by two annotations Person separated by the conjunction
“e”(“and” in English):

//we show only the Regular expression to identify this special case of Lawyer

Rule: AvvocatoTipoDouble

(

({Lookup.minorType==lawyerMultiple}):jobOne

// it is a word that is in Lawyers.lst (list of terms that referred to the lawyer

profession in plural case) annotated by Gazetteer

({Person}):lawyerOne

(({Token.kind == word,Token.string =="e"})

({Person}):lawyerTwo

)

):personJob // the regular expressions finds the following case (Lookup) (Person) "e"

(Person)

18The translation of the sentence in English is “The lawyers Carlo Taormina and Mario Rossi just arrived in
the courtroom”.

38 3. Ontology Population a GATE-based Approach

3.3.5 Multi-Lingual Noun Phrase Extractor (MuNPEx)

We have introduced in Section 3.2 MuNPEx as a multi-lingual noun phrase extraction component.
Currently, this component does not support the Italian language. We have implemented an
Italian support for MuNPEx based on the previously described TreeTagger POS. To this aim, we
have modified the standard classes of the MuNPEx French version to adapt them to TreeTagger
parameter files used for the Italian language. For each detected noun phrase, an annotation
“NP” is added to the document, which includes several features [209]:

• DET, the determiner of the NP;

• MOD, a list of modifiers of the NP;

• HEAD, the head noun of the NP;

• Pronoun, boolean value (true, false) indicating a pronoun NP;

• MOD2, NP modifiers that appear after the HEAD noun.

MuNPEx contains language-specific and language-independent files and it is implemented as
a set of grammars running in a multi-phase JAPE Transducer. For our Italian version, we have
implemented the file it-np main.jape that contains the transducer definition with five phases:

• it-np-parts.jape, which contains the language-specific definitions for the determiner,
modifier, and head slots;

• np-entities.jape, which is a language-independent file defining which named entities to
use for the HEAD slot of an NP;

• check.jape, which is a language-independent file that handles the special cases of differ-
ences between the input and output of the transducer;

• np.jape, which is a language-independent file that constructs annotations from the
constituents detected in the previous phases;

• clean.jape, which cleans up temporary annotations.

3.4 Case Study: tests and results

Here, we describe the evaluation of the approach previously described in Sections 3.2 and 3.3.
To test our techniques, we have used an amounts of 2657 articles generated by the crawling
phase. We evaluated the approach on two different types of test:

3.4 Case Study: tests and results 39

1. In the first one, we have chosen 10 documents, in a random way among those produced
by the crawling phase, and have asked a domain expert to annotate them, according to
the domain ontology we specified. The manual annotations aimed at identifying all and
only the instances of the ontology predicates that can be extracted by the documents
(on the basis of the document content and the knowledge of the expert). We have then
processed these documents through our GATE-based pipeline, and we have compared the
annotations produced by our pipeline with the manual annotations of the domain expert.

2. In the second one, we have processed in our pipeline all the 2657 articles obtained by the
crawling phase. Due to the large number of documents, obviously no previous reference
annotation could be done, and also checking Precision for all annotations has been
impossible. We thus used this test to measure the total number of class, objectproperty
and dataproperty membership assertions, produced and to verify the Precision on a portion
of the analyzed documents.

3.4.1 Performance Evaluation

The results of the above tests are shown in Table 3.2 and in Table 3.3, respectively, where
Words indicate the number of words contained in the documents, and CA, OPA and DPA
respectively denote the number of class, objectproperty, and dataproperty assertions extracted
by our pipeline, S. Ann. and M. Ann. is the number of spurious annotations and missing
annotations, respectively. In Table 3.3, the execution time represents the running time of the
entire pipeline in order to process 2657 documents. Both the experiments were performed on a
MacBook Pro 9.2, with Intel Core i7 2,90 GHz and 8GB RAM.

Words Total Annotations S. Ann. M. Ann. Precision Recall F-measure
6.084 414 11 98 97,3 78,7 87%

Table 3.2. Results of test #1

Words CA OPA DPA Exec.time (sec.)
1.285.290 38.452 419 99.145 1.948,88 (∼30 mins)

Table 3.3. Results of test #2

3.4.2 Discussion

We soon notice excellent Precision and good Recall, a very high number of dataproperty assertions
added to the ontology, a good number of class assertions, but few objectproperty assertions.

40 3. Ontology Population a GATE-based Approach

As for the Precision, we point out that the errors we obtained were mainly due to the wrong
annotations associated to the word “Marino”, which is both a city (close to Rome) and the last
name of a Rome ex-mayor19. Indeed, in our pipeline, disambiguation is done through the JAPE
rules we defined, which however are able to identify the correct annotation only when the last
name is coupled in the text with the first name of the mayor, which is often not the case in the
selected documents.

The above problem can be mitigated by adding to our pipeline two additional PRs, namely
the Pronomial Coreference and the OrtoMatcher (we in particular expect the latter to be
able to solve the previous issue). We observe that the use of such PRs would allow us to
also substantially increase the number of objectproperty assertions retrieved, as the example
discussed in the following show.

• Pronominal Coreference (PC): this PR provides an annotation on pronouns that refer to
an already annotated entity. For example, in the sentence “Marco Rossi is a successful
lawyer. He lives in Milan”, our current solution recognizes that an individual named Marco
Rossi is a lawyer, and also that Milan denotes a city, but it is not able to understand
that “He” refers to the individual previously annotated and to extract the objectproperty
assertion representing the fact that Marco Rossi lives in Milan. By using the PC we can
instead obtain this missing annotation. Currently GATE provides this PR only for the
English language, and thus we could not directly introduce it in our pipeline.

• OrtoMatcher : it provides an annotation on an entity that is indeed denoted in the text
with an abbreviation of an already annotated expression. For instance, in the sentence
“Marco Rossi is a successful lawyer. Rossi lives in Milan”, our current solution is not able
to understand that Marco Rossi lives in Milan, since the full name is abbreviated into
the last name only. OrtoMatcher would be able instead to find this annotation. However,
the OrthoMatcher provided by GATE needs a quite exhaustive list of abbreviations for
each non-abbreviated denotation of an entity, similar to Gazetteer lists. This approach
is clearly impossible to pursue for cases with very many possible abbreviations (as for a
person). In the current release of our approach, this resource is actually used only for the
most common abbreviations for the names of some famous organizations in the world.

We point out that the insertion in our pipeline of the above resources would also allow
to augment the recall in our experiments, since its current value is mainly due to missed
objectproperty assertions.

19Ignazio Marino was the mayor of Rome at the time of the investigation, and therefore his name appears many
times in the news articles used for our case study.

3.5 Simplifying Gazetteer Lists Generation: design and development 41

In the second test, we were not aiming at measuring Precision and Recall for all documents,
but our main goal was to evaluate the impact of our approach on a large text corpus, and get
an idea of the computation time it requires on real-world cases. Nonetheless, to get an idea of
the quality of the result, we measured the Precision on the 1% of the data in the output and we
have got a value of 94%.

3.5 Simplifying Gazetteer Lists Generation: design and devel-
opment

As explained in Section 3.3.3, the construction of Gazetteer lists is in general non-trivial and
requires a significant amount of time to obtain good quality results.

We thus investigated alternative methods for Gazetteer lists generation that might reduce
the required manual effort, and might be more easily replicable in different domains, thus
augmenting the generality of our approach. To this aim, we considered the knowledge base
Wikidata as source for Gazetteer lists production.

The aim of presenting this variant is twofold: (i) to demonstrate, on the one side, how the
pipeline we have built is flexible and different phases can be modified and incrementally refined
in order to improve them; and, on the other side, (ii) to show how semantic technologies can be
used also internally to the pipeline in order to improve some phases.

Wikidata is a collaboratively edited Knowledge Graph, which organizes a large amount of
data in a structured way according to a general reference ontology. It is an openly accessible
resource, following the Semantic Web standards for exporting, interconnecting and querying
data, which can be edited and read by both machines and humans.

In Wikidata every resource has its own URI based on the following convention. Classes and
individuals are identified by the Wikidata prefix :wd followed by ‘Q’ and a sequence of numbers
(for example wd:Q47729 identifies the democratic party)20. For property identifiers (both object
and data properties) the pattern is similar to that of classes and instances except that the prefix
is :wdt and ‘P’ is used instead of ‘Q’(for example wd:P17 identifies the the property country of
belonging).

Our idea has been therefore to exploit such resource to partially automate the process of
Gazetteer lists generation.

We have thus downloaded a Wikidata RDF dump (specifically we used the version of March
3, 2017), and have loaded it on a graph database management system with RDF/SPARQL

20The use of a common identifier for both classes and instances is due to the meta-modelling of the knowledge
base [148].

42 3. Ontology Population a GATE-based Approach

support, namely Blazegraph21. This has enabled us to access Wikidata information through
standard SPARQL queries.

Through this approach, it is possible to avoid tedious and time-consuming development
of ad-hoc solutions for each required Gazetteer list. Indeed, once the setup of the system is
completed, a user just needs to define and execute a set of SPARQL queries to obtain the lists
of interest.

For example, to obtain the list of the names of Italian political parties, it is possible to use the
property wdt:P31, which represents instance of (corresponding to the predicate rdf:type, typically
abbreviated into a), and the property wdt:P279, which represents subclass of (corresponding to
the predicate rdfs:subclassOf), and to reference the class wd:Q7278, which represents political
party. Finally we need to filter this statement through the property wdt:P17, which represents
country of belonging, referencing the class wd:Q7278, which represents Italy. In the following, we
can observe the exact structure of the SPARQL query that returns the names of Italian political
parties from Wikidata:

SELECT ?element

WHERE {

?item wdt:P31/wdt:P279* wd:Q7278 .

?item wdt:P17 wd:Q38 .

?item rdfs:label ?element

}

The result of the SPARQL query is exported as CSV file, which has to be simply renamed,
so that its extension is .lst, in order to be processed by the Gazetteer.

We conclude this section by providing a qualitative evaluation of the effort required by the
Wikidata approach. In Table 3.4 we give the costs in person-days for the various tasks we went
through in our experiment.

Task Person-days
System setup 0.5

Wikidata ontology comprehension and analysis 0.5
Query specification 0.5
Query execution 0.3

Table 3.4. Person effort for the generation of the Wikidata-based Gazetteer lists

The total effort in this case has been of 1,8 person-days, to be compared with the 7 person-days
of the OS/HK approach.

21https://www.blazegraph.com/

https://www.blazegraph.com/

3.6 Simplifying Gazetteer Lists Generation: Tests and Results 43

The task of system setup can be avoided using the SPARQL online endpoint22 provided
by the Wikidata Query Service, if the queries to be executed do not exceed the execution
time limit imposed by the system. This also allows to always use the most up-to-date data.
Moreover, once the practitioner has learned the most common relations used within Wikidata
and has understood the structures of the portion of interest, future applications of this approach
will no longer involve an in-depth analysis of Wikidata ontology, thus allowing to save more
effort/time. As for query specification, the time taken for the generation of our 12 queries, was
0,5 person-days. These queries are easy to write, and as can be seen from the previous example,
they have an almost standard structure with variations only with respect to the Wikidata class.
Their execution time is low, in fact the time to perform was about 0,3 person-days (a few hours).

In the next section, we test the quality of the lists obtained through the Wikidata approach
with respect to the other ones defined in Section 3.3, comparing the quality of annotations
produced through them.

3.6 Simplifying Gazetteer Lists Generation: Tests and Results

In this section, we compare the Wikidata approach for the generation of Gazetteer lists, described
in Section 3.5, with the open source (OS) and human knowledge (HK) approach described in
Section 3.3.

To this aim, we consider five lists containing words identifying Politicians, Journalists,
First Names, Criminal Organizations and Political Parties, respectively. Each list has been
produced and used in two versions, i.e., the OS/HK-based one and the Wikidata-based one.
The comparison has been done on 15 articles, randomly selected among those returned by
the crawling phase described in Section 3.3.1, and following the same criteria of the first test
discussed in Section 3.4: a hand-based annotation has been performed by a domain expert; then,
the articles have been annotated through the Gazetteer component of our pipeline by using the
two different sets of lists generated with the two approaches; we have finally computed Precision,
Recall and F-measure in the two cases, by using the manual annotation of the expert as ground
truth.

We have checked the results produced by this experiment in two different points of our
pipeline: just after the annotation done by the Gazetteer PR, and at the end of the entire pipeline.
The first check (test #1) is aimed to highlight the contribution given to the semantic annotation
by the Gazetteer PR, alimented either with the OS/HK-based lists or with the Wikidata-based
ones, and thus without the “adjustments” provided by the JAPE rules. Therefore the results
obtained in this case are produced by a pipeline composed only by the following PRs: Document

22https://query.wikidata.org/

https://query.wikidata.org/

44 3. Ontology Population a GATE-based Approach

Reset, Unicode Tokeniser, RegEx Sentence Splitter, TreeTagger POS and Gazetteer. Such results
are given in Table 3.5. Notice that this “reduced” pipeline does not actually produce OWL
assertions corresponding to the instances of the ontology, but returns documents annotated
by the PRs that have been used in the pipeline (and in particular containing the annotations
obtained through the Gazeteer lists). Thus, Precision, Recall and F-measure are computed with
respect to the corresponding annotations done by the domain expert. In this table, the columns
“Total Ann.”, “S. Ann.”, and “M. Ann.” refer to the overall number of annotations produced by
our pipeline, the number of false positives, and the number false negatives, respectively.

In the second check (test #2) we instead look at the final results obtained after both the
semantic annotation and the ontology population phases of our pipeline. In this case we aim to
measure the overall impact of substituting in our entire extraction process the OS/HK-based
Gazetteer lists with the Wikidata-based ones. The results are given in Table 3.6, where Precision,
Recall and F-measure are given with respect to the OWL assertions produced through the
manual annotation of the domain expert. The columns “OWL Assertions”, “S. OWL Ass.” and
“M. OWL Ass.” refer to the total number of OWL assertions returned by our pipeline, the
number of false positives, and the number of false negatives, respectively. Notice also that OWL
assertions we consider refer to instances of classes of the ontology. For example, the assertions
considered in the first row are of the form (p a :Person), where p is an instance of the class
Person (cf. Section 3.3.2) that the Gazetteer list First Name Open Source, together with the use
of the JAPE rules (as described in Section 3.3), allowed to identify. Similarly, the assertions
considered in other rows refer to the ontology classes CriminalOrganization, Politician, Journalist,
and Party.

List Entries Total Ann. S. Ann. M. Ann. Precision Recall F-measure
First Names Open Source 8913 322 83 0 74,2% 100% 85,2%
First Names Wikidata 2517 262 31 5 88,1% 97,8% 92,7%
Criminal Organizations Human Knowledge 25 37 21 0 43,2% 100% 60,3%
Criminal Organizations Wikidata 68 20 18 14 10% 12,5% 11%
Criminal Organizations Wikidata Mod. 273 30 24 10 20 % 37,5% 26%
Politicians Open Source 1083 11 0 40 100% 21,6% 35,4%
Politicians Wikidata 7778 17 0 34 100% 33,3% 50%
Journalists Open Source 369 4 0 4 100% 50% 66,6%
Journalists Wikidata 3727 8 0 0 100% 100% 100%
Political Parties Open Source 131 23 0 2 100% 92% 95,8%
Political Parties Wikidata 447 4 0 21 100% 16% 27,6%
Political Parties Wikidata Mod. 1293 26 7 6 73% 76% 74,5%

Table 3.5. Results of test #1

We first discuss the results given in Table 3.5. We initially notice that the number of entries
in the lists created with Wikidata is in total larger than the number of entries obtained through
the OS/HK approach. In particular, if we do not consider the list containing Italian first names,

3.6 Simplifying Gazetteer Lists Generation: Tests and Results 45

List OWL Assertions S. OWL Ass. M. OWL Ass. Precision Recall F-measure
First Names Open Source 313 5 59 98,4% 83,9% 90,5%
First Names Wikidata 305 4 66 98,6% 82,0 89,5%
Criminal Organizations Human Knowledge 16 0 0 100% 100% 100%
Criminal Organizations Wikidata 2 0 14 100% 2,5% 22,2%
Criminal Organizations Wikidata Mod. 9 1 8 88,8% 50% 64,0%
Politicians Open Source 22 0 29 100% 43,1% 60,2%
Politicians Wikidata 23 0 28 100% 45,1% 62,2%
Journalists Open Source 4 0 4 100% 50% 66,6%
Journalists Wikidata 8 0 0 100% 100% 100%
Political Parties open source 23 0 2 100% 92% 95,8%
Political Parties Wikidata 4 0 21 100% 16% 27,6%
Political Parties Wikidata Mod. 26 7 6 73% 76% 74,5%

Table 3.6. Results of test #2

which is the only one for which the OS/HK approach outperforms Wikidata in terms of amount
of returned entries, this number is on average 9 times larger for the Wikidata lists. On the other
hand, the Wikidata-based lists contain various entries with typos and flaws. For example, the
Political Parties Wikidata list contains the entry “““PSDI””” (with wrong additional quotation
marks), which does not allow to correctly annotate the word PSDI (which is an acronym of an
Italian political party). The presence of more errors in the Wikidata-based lists was somehow
expected. Our experiments however show that the Precision value for annotations with the
Wikidata lists is the same or better than the Precision obtained with OS/HK lists in all cases but
the Criminal Organizations one. We point out that this list in the OS/HK approach has been
accurately produced through a manual process based on human knowledge, since, before putting
Wikidata into the loop, we could not find any open data source providing such information in
the form of a dictionary list. Nonetheless we could not avoid some errors in annotations, since
the names of such organizations are inherently ambiguous and may easily lead to production of
false positives. In this respect, we could not expect this problem to be mitigated by using a list
automatically extracted by Wikidata.

For several Wikidata lists, also the Recall is close to the one measured for the corresponding
OS/HK lists. For the cases of Criminal Organizations and Political Parties we instead got initially
very low values for the Recall. This was mainly due to problems with uppercase/lowercase
letters, since GATE is case sensitive. We thus refined the two lists by adding for each entry the
three versions: all uppercase letters, all lowercase letters, and all capitalized words. In Table 3.5
and Table 3.6 these new lists are denoted as Wikidata Mod. (modified).

We can observe that with this fix the value of Recall for both the lists has become greater
than that of the original Wikidata lists. However, for the Political Party Wikidata Mod. list,
this approach has caused a decrease in Precision. This is due to the introduction of new entries
that have more than one meaning, such as the word si (i.e., the lowercase version of SI, which
is the acronym of an Italian political party). This word is indeed used in Italian as reflexive

46 3. Ontology Population a GATE-based Approach

pronoun, but with the use of the modified lists it has been sometime wrongly annotated as a
political party.

We remark that the Political Party Wikidata list (i.e., the non-modified one) does not contain
the all lowercase version of the entries, and thus this problem did not arise by using the orignal
version of this list. Despite the decrease of Precision, we notice that the modification of this
list produced an increment of the Recall, which reached the 79%, and of the F-measure, which
changed from 26,7% to 74,5%, that thus largely compensates the loss of Precision.

Wrapping up our discussion on test #1, we can say that the overall results obtained with
the Wikidata approach are quite good, as highlighted in Figure 3.11, where for the sake of
presentation we show the values of the F-measure in the various cases in the form of a bar graph.

0 10 20 30 40 50 60 70 80 90 100

Political Parties

Journalists

Politicians

Criminal Org.

First Names

F-Measure

Open Source/Human Knowledge Wikidata Wikidata Mod.

Figure 3.11. F-Measures for test #1

The question now arises about which is the effect of executing our entire pipeline (that in
particular means introducing in the annotation process the contribution of the JAPE rules
we have specified). We thus now focus on the results given in Table 3.6. As done for the
previous test, in Figure 3.12 we also show as a bar graph the F-measures given in this table.
By comparing the F-measures of the two tests, we soon notice that there is an improvement
for the First Names, Criminal Organizations and Politicians lists, both in the OS/HK-based
and in the Wikidata-based approach, whereas for the other lists Precison, Recall, and thus
F-measure remain the same as before. This confirms that the use of JAPE rules in general
improve the quality of the extracted information. In particular, for all the versions of the
Criminal Organizations list we notice a great increment in Precision, which testifies that in this
case the JAPE rules have primarily contributed to eliminate many of the spurious annotations
introduced by the Gazetteer PR. A similar behaviour can be seen for both versions of the First

3.6 Simplifying Gazetteer Lists Generation: Tests and Results 47

Names lists. Instead, for the two versions of the Politicians list, the gain we get is on the Recall
(being the Precision the same as in Table 3.5), which means that in this case the JAPE rules
have helped to identify relevant cases that were not captured in the previous test. We also
notice that the improvement is almost always more substuntial for the OS/HK-based approach.
This is not surprising, since to some extent the JAPE rules have been specified to work on
the annotations provided by these Gazetteer lists. Nonetheless, these JAPE rules contribute
to improve our results also for the case of Wikidata-based Gazetteer lists. Indeed, even if the
OS/HK approach in test #2 outperforms the Wikidata approach in 3 cases over 5 (thus at a
first glance overturning the result of test #1), in the overall the two approaches produce in fact
results of very similar quality, if we also take into account the number of annotations produced
through each single Gazetteer list. This can be seen by computing the weighted average of the
F-measures in the two cases, where the weight for the F-measure of each list is the fraction of
the number of annotations obtained for this list over the total number of annotations, which
returns 89,3% for the OS/HK approach and 86,4% for the Wikidata approach. Formally, the
weighted average of the F-measures is: ∑n

k=1 xi · wi∑n
k=1wi

where each xi is the F-measure of the i-th list, and its weight wi is equal to ai∑n

i=1 ai
, with ai the

number of annotations produced for the i-th Gazetteer list. For the sake of completeness, we
show the various xi, wi, and the weighted F-measure in Table 3.7 and Table 3.8.

List xi wi Wheighted F-Measure
First Names Open Source 90.5% 0.82 75%
Criminal Organizations Human Knowledge 100% 0.042 4.23%
Politicians Open Source 60.2% 0.058 3.5%
Journalists Open Source 66.6% 0.01 0.7%
Political Parties Open Source 95.8% 0.06 5.8%
Total 89.2%

Table 3.7. The weighted average of the F-measures for the OS/HK approach

We conclude this section by having a look at the OWL dataproperty assertions returned by
our entire pipeline in the two approaches considered in this section. We first notice that the
OWLExporter component often introduces several individuals (i.e., identifiers given in the form
of IRIs23) to denote the same entity. In fact, the OWLExporter reconciles these individuals
through owl:sameAs assertions, which say that two different URIs are “equivalent”. We can

23https://www.w3.org/TR/owl2-syntax/

https://www.w3.org/TR/owl2-syntax/

48 3. Ontology Population a GATE-based Approach

List xi wi Wheighted F-Measure
First Names Wikidata 89.5% 0.82 73.6%
Criminal Organizations Wikidata 64.0% 0.01 1.55%
Politicians Wikidata 62.2% 0.03 3.85%
Journalists Wikidata 100% 0.02 2.15%
Political Parties Wikidata 74.5% 0.07 5.22%
Total 86.4%

Table 3.8. The weighted average of the F-measures for the Wikidata approach

0 10 20 30 40 50 60 70 80 90 100

Political Parties

Journalists

Politicians

Criminal Org.

First Names

F-Measure

Open Source/Human Knowledge Wikidata Wikidata Mod.

Figure 3.12. F-Measures for test #2

thus interpret them with the same object of the domain. For example, the OWL assertion (A

owl:sameAs B) is indeed saying that A and B are two different identifiers for the same object
(intuitively, they act as synonyms). As a consequence, every property of A is clearly also a
property of B. Coming back to the OWL dataproperty assertions returned by our pipeline, we
notice that under the adoption of OS/HK-based Gazetteer lists we obtain a larger number of
such assertions with respect to those obtained by making use of the Wikidata-based Gazetteer
lists. This however does not really results in a loss of this kind of assertions. Indeed, in the first
approach data properties are in fact returned in a “closed form with respect to the owl:sameAs
assertions”, i.e., in the resulting OWL file a data property for an individual A (e.g., (A :name

“Ignazio”)) is also explicitly associated to all the individuals related to A through owl:sameAs

(e.g., also (B :name “Ignazio”) is present in the OWL file). Instead, this does not happen
when we use Wikidata-based Gazetteer lists. This is mainly due to the way in which these lists
are written down in files and the way in which JAPE rules use such annotations (remember that
we have designed the JAPE rules primarily to couple them with the OS/HK-based Gazetteer

3.7 Final Remarks 49

lists).

To verify the above behaviour, and to show that it is indeed possible and easy to recover
dataproperty annotations missing from the OWL file produced by the pipeline equipped with
the Wikidata-based Gazetteer list, we resorted to the use of an OWL reasoner, and used it to
generate the dataproperty assertions that were implicit in the OWL file (i.e., not asserted but
implied by the ontology according to the owl:sameAs relation). We did this by considering
only the two Gazetteer lists Politicians Wikidata and Journalists Wikidata, since are those
for which we measured the most substantial (apparent) loss of dataproperties. The results
of this further test are given in Table 3.6, where “DPA”, “M. DPA”, and “DPAR” refer to
the dataproperty assertions returned by our pipeline, those missed by our pipeline, and those
obtained after the use of the OWL reasoner. For the sake of completeness, we also report the
number of Class assertions (“CA”) computed by the pipeline. As shown in the table, in both
cases the reasoner allowed us to recover all the missing assertions. As OWL reasoner we used
HermiT [101], through the plugin available for Protégé24. To obtain the missing assertions it
has been sufficient to open our populated ontology in Protégé, start the reasoner and then
export the result. We point out that HemiT computed the missing assertions in few seconds
(this is indeed an easy task, which essentially amounts to compute the transitive closure of the
owl:sameAs relation, which is polynomial in the number of assertions).

Lists CA DPA M. DPA DPAR Recover
Politicians Wikidata 23 21 32 53 100%
Journalists Wikidata 8 0 16 16 100%

Table 3.9. Results of test #3

Realistically, we would obtain results similar to those commented in this section when the
number of analysed articles increases. We believe that this confirms that resorting to Wikidata
for producing lists to be used by the Gazetteer PR allows for both time savings, in our case 1.8
person days instead of 7 person days, and annotations of a good quality.

3.7 Final Remarks

In this chapter, we have proposed a working pipeline based on GATE that allows to populate
a reference ontology from Italian text documents through the use of specific PRs. We have
discussed a pipeline, that consists of the following main steps:

24https://protege.stanford.edu/

https://protege.stanford.edu/

50 3. Ontology Population a GATE-based Approach

• Web crawling, which is not specific of our approach and for which any standard technique
can be applied.

• Ontology definition, which, as web crawling, is not specific of our approach, and for which
usual methods and best practices for ontology and conceptual modeling can be adopted
(cf., e.g., [200]). We only require the ontology be specified in the standard OWL syntax.

• Semantic Document Annotation via GATE. We have precisely shown how these activity
should be carried out, by explaining the specific GATE configuration we had to create for
Information Extraction from documents written in Italian.

• Ontology population: We have shown how the ontology is finally populated with instances
extracted from the semantic annotated documents and exported in OWL. In particular,
we have show how to customize the OwlExporter component, a third party PR, to be used
on Italian text documents in order to make the ontology population phase easier.

After presenting the above pipeline, we have also discussed a second partially-automated
pipeline, in which we have exploited available open knowledge bases (namely, Wikidata) to
simplify Gazetter lists generation and provide a more definite procedure to approach their
definition (thus increasing the replicability of our solution). This second pipeline consists of the
same phases of the previous one, and makes use of exactly the same components. However, the
generation of Gazetteer lists is faced with a completely different approach, based on querying,
through the standard SPARQL language, an open ontology available on the Web, i.e., Wikidata,
in order to create such lists without a specific design (as done in the first pipeline). We have
shown through additional experiments that such an approach produces results of quality that is
comparable to the one reached in the previous pipeline (cf. Table 3.6), where the Gazetteer lists
are produced through a less structured approach requiring more manual effort.

We recall that many technical details of our approach, particularly useful for practitioners
and for the reproducibility of our solution, are available through online resources accessible at
https://tinyurl.com/Ontology-population-via-GATE.

We conclude this part by talking about the problems encountered in our implementation,
which also serve as motivation for the following chapters.

Although GATE, being a rich environment for Language Engineering, supports general
development and provides good debugging mechanisms, implementing ad-hoc solutions through
the definition of new modules imposes a thorough knowledge of the APIs and data structures
underlying the framework, not always supported by adequate documentation. This aspect
dramatically affects the usability of this technology, which requires an initial significant effort to
be understood.

3.7 Final Remarks 51

Regarding JAPE rules, the main criticism that can be raised concerns with its semantics,
which is not declarative [87]. The expressive power of this extraction language or fragment
thereof is not completely formalized, and is thus difficult to make comparisons with other
rule-based information extraction languages, such as [203]. Another important question that
remains open concerns the complexity of evaluating these rules.

We finally notice that the role of the ontology in the experimentation we have just described
has been essentially limited to the structuring of the information. In the IE activities, we only used
the vocabulary of the ontology to annotate text so that next phases in the pipeline could suitably
instantiate the corresponding ontology predicates. Of course, once the ontology is populated,
one can take advantage of reasoning services it allows for, as well as exploit the conceptual
representation it provides to support data sharing and integration. However, extraction rules
and ontology axioms in our GATE-based experience remained basically independent with one
another, and no specific ontology reasoning ability has been used in the extraction tasks. As
we will see in following chapters (in particular in Chapter 6), devising an approach in which
extraction rules and ontology axioms are more integrated, and the interaction between such
languages, as well as reasoning over them, is well-understood, is instead the main objective of
the investigation carried out in this thesis.

53

Chapter 4

Financial Market Supervision
through Information Extraction

In this chapter we describe an IE application we developed to support monitoring actions aimed
to uncover financial wrongdoing that can be identified through the inspection of documents
describing financial instruments, such as securities, stocks, or derivatives. The activities we
report here have been carried out within a joint project between Sapienza University and
CONSOB1 (Italian Companies and Exchange Commission).

Before delving in the details of our development and experimentation, we point out that,
in the literature, the use of rule-based IE techniques in the financial and economic context
[119, 186] has proven to be particularly effective, and represents nowadays the preferred choice
in industrial IE applications by virtue of the interpretability and maintainability of extraction
rules [57, 203]. We thus adopt such an approach, and, as done in the project described in the
previous chapter, we use rules to populate a domain ontology specifically designed to provide a
formal conceptualization of the information of interest, to facilitate data extraction, integration,
and sharing. However, as detailed in the following, we use here different tools, towards the
identification of more easy-to-use information extraction means. Also, as said, we focus on the
different scenario of financial market.

The financial market is where the trading and exchange of financial instruments of various
kinds occur. In recent years, financial news stories have brought to the fore the problem of
market manipulation, i.e., market abuse aimed at mystifying reality, e.g., inflating or deflating
the price of a security, to influence the behavior of the market for personal gain. In this chapter
we will focus on market manipulations that may derive from false or misleading information
contained in documents designed to help investors to understand investment products behaviour

1Commissione Nazionale per le Società e la Borsa – https://www.consob.it

https://www.consob.it

54 4. Financial Market Supervision through Information Extraction

and support comparison with other similar products.
In Italy, supervising the financial market to detect illicit activities is entrusted to CONSOB.

CONSOB daily receives from the creators of financial instruments (a.k.a. financial manufacturers)
helpful documentation that should validate the non-existence of malfeasance. On this, CONSOB
carries out an activity that can be summarized in two phases. The first one consists in
searching for certain specific data in the documents, namely Key Information Documents (KIDs),
transmitted by financial manufacturers. In the second one, retrieved data are analyzed through
comparison with other information sources, in order to detect irregularities and, if necessary,
alert the competent authorities.

There are however some critical issues related to the first phase: (i) the result of this
phase consists of a set of textual reports that do not structure information gathered from the
documents, nor prepare it for automatic processing; (ii) the search task is essentially carried
out manually, and thus it is particularly time-consuming.

For the above reasons, the monitoring activity carried out by CONSOB is not made on every
document but is done on a sample basis, with a negative impact on the performance of the
supervision tasks.

In this chapter, we discuss the solution we have adopted to address the above issues.
Regarding (i), we have modeled the information that CONSOB wants to extract from the
KIDs through a dedicated domain ontology. This ontology is written in a vocabulary shared
with CONSOB and compliant with European regulations that establish which data have to be
included in the KIDs and how they have to be structured. About (ii), we built an IE tool based
on CoreNLP [156], an open-source toolkit for IE by Stanford University, where, we compiled in
a set of rule-based extraction rules the manual process of searching information performed by
CONSOB operators.

The choice to use CoreNLP instead of GATE, which we have used in the project described
in Chapter 3, lies in the possibility offered by this tool to realize lean and fast solutions to
implement NLP systems, supported by reusable components that are particularly efficient and
allow to solve the most common IE tasks.

The main contributions of this chapter are:

• The formalization of a rich financial domain ontology, including a rich taxonomy of
products.

• The development of a pipeline for extracting data from financial documents, implemented
with open-source technologies.

• Experiments of the approach on a large dataset, validated by the experts of the domain.

4.1 CONSOB Domain 55

We point out that some of the resources presented in this chapter are reusable for other
purposes. For example, the ontology can be exploited by other institutions that carry out similar
market monitoring activities. Also, although our tool has been implemented for the Italian
language, with a simple translation of the extraction rules and a minimal change in the settings
of the other components, it can be reused for other languages. Moreover, the annotated dataset
we produced can be used for other purposes, i.e., it can be adopted as training set for statistical
IE approaches. We conclude this introduction by remarking that we ran a massive test validated
by CONSOB on a large dataset with compelling results.

In order to facilitate the reproducibility of the experiments, we provide the ontology, the
data and the tool in the following repository accessible through the link https://github.com/

Scafooo/Phd-Thesis/tree/main/Chapter%204. For presentation purposes, we have translated
into English some portions of the material presented in this chapter, which may slight differ
from their counterparts in the repository.

The structure of this chapter is summarized below:

• In Section 4.1, the KIDs analyzed by CONSOB are described. We discuss the main
information contained therein and their formalization in the domain ontology.

• In Section 4.2, we describe the approach and the architecture adopted to solve the problems
previously mentioned, also focusing on the technologies used to implement our solution.
Properly, we briefly describe the Stanford CoreNLP library, and we focus on one of its
components, namely TokensRegex, useful to define the extraction rules.

• In Section 4.3, we show the evaluation of the obtained results. Namely, we evaluate the
performances of our solution in terms of precision and recall, and discuss how the validation
was carried out.

4.1 CONSOB Domain

As said, the domain of interest for the project described in this chapter (which we simply call
CONSOB domain) concerns with the information context described through Key Information
Documents (KIDs).

In the remainder of this section, we first describe the main characteristics of KIDs, and
then we talk about the portion of the ontology that formalizes the information that we want
to extract from the KIDs. In this chapter we only describe part of the development we have
carried out for information extraction from KIDS.

https://github.com/Scafooo/Phd-Thesis/tree/main/Chapter%204
https://github.com/Scafooo/Phd-Thesis/tree/main/Chapter%204

56 4. Financial Market Supervision through Information Extraction

4.1.1 Key Information Document

A KID is a document that contains the most relevant information related to a so-called Packaged
Retail Investment and Insurance product (PRIIP). Figure 4.1 shows a portion of a KID acting
as a running example for this chapter.

Figure 4.1. KID by CreditSuisse. The full document can be found in Appendix

A recent European regulation2 governs the content and the presentation of the KIDs to
enhance investor protection standards for retail clients and increase transparency in the market.
More in detail, through a well-defined template (reported in Figure 4.2), all PRIIPs producers
are imposed not only what information to provide in the document, but also how to present it.
According to the template, the KID has to be split in several sections, each intended to provide
certain types of information.

In this chapter we focus only on a portion of the information contained in a KID, which
corresponds to the data we extracted, and for which we evaluated recall and precision of our
approach.

Specifically, we consider some information contained in the ‘Purpose’, ‘Product’, and ‘What
is this product?’ sections of the KID. The data we are interested in are described in Table 4.1:

2https://www.eiopa.europa.eu/sites/default/files/publications/pdfs/jc_2017_49_jc_priips_qa_
update_april_2019.pdf

https://www.eiopa.europa.eu/sites/default/files/publications/pdfs/jc_2017_49_jc_priips_qa_update_april_2019.pdf
https://www.eiopa.europa.eu/sites/default/files/publications/pdfs/jc_2017_49_jc_priips_qa_update_april_2019.pdf

4.1 CONSOB Domain 57

Figure 4.2. KID Template according to the European regulations

Information Description Section
PRODUCT NAME Name of the Product Product

MANUFACTURER NAME Legal name of PRIIPS manufacturer Product
IDENTIFICATION CODE Unique identification code of the PRIIP, if applica-

ble
Product

WEB SITE Website referring to the PRIIP’s manufacturer Product
PRODUCTION DATE Day month and year of product issue Product

ALERT A well-defined phrase that identifies products that
are particularly difficult to understand

Purpose

TYPE TEXT It identifies the type of product through a brief
description

What is this product?

CURRENCY The currency used to provide economic data about
the product

What is this product?

Table 4.1. Information contained in the ‘Purpose’, ‘Product’ and ‘What is this product?’ sections of
KIDs.

Although a rigid template for KIDs exists, this is often interpreted by financial manufacturers
more as a guideline rather than a legal obligation, and several variants for the structure of the

58 4. Financial Market Supervision through Information Extraction

document, and even for the names of the sections,can actually be found among the hundreds of
documents received by CONSOB.

For example, taking into consideration the excerpt of KID showed in Figure 4.1, we can see
that the purpose section is identified by the header ‘Intento’3 but the KIDs of other manufacturers
usually adopt the header ‘Scopo’, which is the compliant choice respect to the EU regulations
for documents in Italian. Other aspects on which discrepancies can be frequently found among
different KIDs, and with respect to the KID template, concern with the order of the various
sections, which is not always the same, and the different ways used to provide the same content
(tables, bullet points, lists).

This heterogeneity of presentation has an evident impact on the information extraction
phase, which will be discussed in Section 4.2.

We finally point out that financial manufacturers are required by law to transmit to CON-
SOB the KIDs associated to the PRIIPs they produce. The current mechanism adopted for
transmission, is to send KIDs in PDF format via certified e-mails (only one KID per email).

In order to keep track of this flow of information, CONSOB uses a cataloguing system called
DEMACO. This system stores the emails and it manages the entire lifecycle of the documents,
from their receipt to their deletion, or preservation over time.

4.1.2 Ontology

In this section, we briefly describe a portion of the domain ontology. The entire ontology is
composed of 52 classes, 10 relationships, and 26 attributes, an is given in Appendix A. The
excerpt that we describe here is given in Figure 4.3 as a Graphol diagram.

The two cornerstone concepts of the ontology are Document and Product, that represent PRI-
IPs and KIDs, respectively. Among the various attributes of Product, identification_code,
product_name, type, and issue_date correspond to some of the fields given in Table 4.1.
Financial_Entity is specialized in two disjoint classes, i.e., Regulator and Manufacturer.
Every individual instance of the class Regulator is responsible of the product to which it is
associated via the relation supervise. Every Manufacturer produces the Product and writes
its associated Document. Then, every Document has a receipt_date, a protocol_number, along
with its ID. Every Document can be a Start or an Update document. Each KID of type Update
updates another document. This pattern allows to keep track of updates (update occurs when a
new KID is provided for a certain PRIIP, since some of the PRIIP characteristics have been
changed).

We conclude this section by discussing the classification of financial products. One of the key
3‘Scopo’ and ‘Intento’ have the same meaning of ‘Purpose’ in English

4.2 Tool 59

Figure 4.3. Ontology excerpt

requests from CONSOB operators has been to classify PRIIPS into several classes. This task
plays a crucial role in the identification of market manipulation attempts, as it allows for an
initial skimming of products to be supervised. For this reason, we have formalized in the ontology
a three-level taxonomy of products. The taxonomy, built with the support of CONSOB and
following the standards in the sector, is composed by five main classes (Securities, IBIP, MOP,
CIS, Structured Deposit), having in turn an overall number of 26 subclasses. The Graphol
version of the taxonomy is given in Appendix X, whereas in the excerpt given in Figure 4.3
the classification of products is captured simply through the attribute type, which we use to
simplify the presentation.

4.2 Tool

In this section, we focus on the IE tool we implemented to extract the necessary information
from the KIDs. We will discuss the technologies used, the approach followed, and the issues
encountered.

The tool, whose architecture is shown in Figure 4.4, is organized in three macro modules,
each of them dealing with a specific task. The tasks are briefly described below and discussed in
more detail later in the chapter.

• Data Preparation: the KIDs are extracted from the emails stored in the DEMACO
system and undergo a series of pre-processing steps, that transform them from PDF files

60 4. Financial Market Supervision through Information Extraction

into pieces of annotable text.

• Annotation: By means of rule-based extractors, the annotations useful to provide the
final output are generated. The classification of the products is also carried out at this
stage.

• Export: The output of the tool is arranged in the form of the extensional level of the
ontology(i.e., an ABox), or, upon request, as a CSV file.

Figure 4.4. Architecture of the Tool

4.2.1 Data Preparation

Data Preparation is carried out by the Data Preparation Module. As said, this module transforms
the PDF contained in the emails sent to CONSOB by financial manufacturers into plain text4,
and clean it from errors.

This step is very critical, and if the PDF-to-text transformation produces bad quality results,
many errors do actually occur in the subsequent phases (these errors are indeed caused by
malformed sentences in the resulting text documents, rather than by the inability of the tool

4We tried transforming directly the PDF into a more structured format like XML, but the results were unusable
for our purposes.

4.2 Tool 61

to process the language). For this reason, we performed it using PDFBox5 by Apache, a
state-of-the-art and highly customizable library for working with PDF documents. PDFBox
presents a large number of options to manage such transformation. These include dealing with
different types of characters, normalization of the fonts, managing spaces, reading modes, etc.

In the various tests carried out, we noticed how the misreading of documents depended
on the financial manufactures that had sent them. Properly, the style and the form of PRIIP
presentation in the KIDS produced by some financial manufacturers caused to PDFBox, under
default settings, transformation problems. To overcome these problems, the PDFBox parameters
are adapted according to who sent the KID. This allowed us to drastically reduce the problems
and consequently increase the precision and recall of the annotation phase.

Example 4.1. An example of the output of the Data Preparation task, where the input is the
KID in Figure 4.1, is reported below:

Documento informativo termini indicativi

Intento

Il presente documento contiene informazioni chiave relative a questo prodotto

d’investimento.

Non si tratta di un documento promozionale . Le informazioni , prescritte

per legge ,

hanno lo scopo di aiutarvi a capire le caratteristiche , i rischi , i costi ,

i guadagni e le perdite potenziali di questo prodotto

e di aiutarvi a fare un raffronto con altri prodotti d’investi -

mento .

Prodotto

Nome del prodotto / ISIN : 100 % ProNote con Partecipazione in USD su Thomson

Reuters Gl . Resource Prot . Select Index ,

ISIN : CH0524993752 -LRB- il prodotto -RRB-

Ideatore del prodotto : Credit Suisse AG ,

il nostro sito web : www.credit-suisse.com/derivatives , per ulter ori

informazioni chiamare il numero +41 -LRB- 0 -RRB- 44 335 76 00 .

Emittente : Credit Suisse AG , Zurigo , tramite la sua succursale di Londra , UK

Autorit‘a competente : L’autorit‘a di controllo competente

Il presente documento ‘e stato creato il febbraio 27 , 2020 , 06:51 CET .

State per acquistare un prodotto che non ‘e semplice e pu‘o essere

di difficile comprensione .

5https://pdfbox.apache.org

https://pdfbox.apache.org

62 4. Financial Market Supervision through Information Extraction

Cos ’ ‘e

...

Here some of the text structure in the original PDF file is lost during the transformation, but
punctuation and new lines (useful, e.g., to identify the various sections) allow to reconstruct it .

4.2.2 Annotation

The annotation task, carried out by the Annotation Module, is the heart of the tool and is
based on CoreNLP. CoreNLP [156] is a JAVA toolkit for natural language processing whose
first release dates back to 2006 and is still maintained and evolving. The principles upon which
it is based and which gave rise to its implementation are (i) make an easy annotation on text,
(ii) easy to learn, (iii) minimal setup, (iv) provide a lightweight framework using plain Java
objects, (v) transparent communication between components via a common interface. Stanford
CoreNLP is currently one of the most widely used systems for building text processing tools.
Its popularity is due to the fact that in order to use this toolkit, it is necessary to know only
JAVA and not specific languages and components management, as it happens, for example, with
GATE. Other success factors of CoreNLP have been: complete documentation that favors its
immediate use; the software distributed through an open-source license; an active community
that has enormously contributed to the project. Although the software was written in JAVA, the
community has created several wrappers for other programming languages, including Python,
Perl, Ruby, Scala, and Javascript(Node.js). Regarding the supported natural languages, the
initial version of the software was able to process only English, German, Chinese, Arabic, and
French. Over the years, the support has been extended to other languages, mainly by external
contributors. For example, as far as Italian is concerned, the extension took place through the
CoreNLP-it module [4]. This toolkit, written in JAVA, provides core NLP services accessible
through APIs that can be combined to generate a pipeline for text annotation. Among these
services, we mention those related to tokenization, lemmatization, POS tagging, and sentence
splitting.

Another core component of CoreNLP used in our tool is TokensRegex [53], which extends
traditional regular expressions on strings by working on tokens instead of characters and defining
pattern matching via a stage-based application. These extensions of regular expressions allow
writing the extraction rules, i.e., rule-based extractors matching on additional token-level features,
such as part-of-speech annotations, named entity tags, and custom annotations. In a similar
way to the JAPE rules showed in Chapter 3, these characteristics bring concise rules at a higher
level than just matching against the individual words.

4.2 Tool 63

We introduce the syntax of a rule written in TokensRegex through the following example
and we remind the reader to [53] for a complete treatment.

Example 4.2. Consider the following TokensRegex extraction rule useful for extracting
International Securities Identification Numbers (ISINs) from (the plain text version of) KIDs:

ENV.defaults["stage"] = 3

$StartISIN = (

/ISIN/ /:/ |

/CODICE|Codice/ /IDENTIFICATIVO|Identificativo/ /ISIN/ /:/* /Code/* /:/* |

/Identificatori|Identificatore/ /del/ /presente/* /prodotto/ /:/* |

/Codice/ /del/ /Prodotto|prodotto/ /:/ |

/Codice/ /titolo/ /:/ |

...

)

$EndISIN = (

/ /

...

)

$code = "/([A-Za-z][A-Za-z][0-9]{10})/"

{

ruleType: "tokens",

pattern: (

($StartISIN) (?$CodeISIN [{word:$code} & {SECTION:"SECTION_PRODUCT"}]+?)

($EndISIN)

),

action: (Annotate($CodeISIN, ISIN, "ISIN"))

}

The ISIN is an alphanumeric sequence of 12 characters identifying a PRIIP. This sequence
begins with two characters, identifying the country code of the product, followed by ten numbers.
In our TokensRegex rule, this characteristic is compiled into the regex identified by $code.
Then, $StartISIN and $EndISIN represent the set of sequences of tokens (separated from each
other through the symbol |) preceding or following the ISIN code, respectively.

The main part of the rule lies in the JSON-like structure at the end of it. In a nutshell:

• ruleType specifies how the pattern should be used. In our case, the rule works on tokens
specified by "tokens" value.

64 4. Financial Market Supervision through Information Extraction

• pattern contains the pattern to be matched over the text, built over the tokens using
groups like the ones in POSIX (but also with names such as ?$CodeISIN). In our example,
our pattern specifies how to find the token such that there is a matching with the regex
$code among all the tokens in the product section (i.e. annotated with SECTION_PRODUCT),
and such that it is preceded by the tokens in $StartISN and followed by the ones in
$EndISIN.

• action describes what should happen when the pattern is matched, precisely what
annotation to apply. In our example, we annotate the token identified by the group
$CodeISIN with the annotation ISIN.

We point out that the code ENV.defaults["stage"] = 3 in the first line of the rule is an
optional field describing the order of applications and the priority of the extraction rule with
respect to the others.

The result of the application of this rule over the text in Example 4.1 is the annotation of
CH0524993752 with ISIN.

After standard annotation steps such as POS tagging, sentence splitting etc., which are
based on CoreNLPit, we rely to TokensRegex component the following tasks: (i) reconstruct
sections of the text; (ii) annotate fields useful for populating the ontology; (iii) clean and filter
annotations; (iv) classify financial products.

Steps (i) and (ii) are carried out using rules like the one in Example 4.2. In particular, in
(i), taking into the due account punctuations and new lines introduced by the PDF-to-text
transformation, we generate annotations that effectively reconstruct the KID sections. Step
(iii) is needed since extracted data sometimes requires to be cleaned and/or standardized
(mainly due to misreading of the PDF content, or due to different formats used to represent the
same information, e.g., dates). This step is carried out through either special TokensRegex
rules that, when matched, remove the annotations over the tokens, or through custom JAVA
code. As an example of cleanup task we describe the one performed on manufacturers. As
said, manufacturers are required to report their legal name in the KIDs. For this reason, we
have created a module that, given a dictionary containing the manufacturers’ entries, removes
everything that is not part of its legal name6. As said, standardization is, for instance, applied
to dates, which we transform, through custom JAVA code, into the standard European date
format “DD.MM.YYYY”.

We finally discuss step (iv). As already pointed out, document classification allows us to
identify an initial set of financial products on which to perform market control actions. This

6For example in Figure 4.1 near the name of manufacturer (near the line ‘Emittente’) there is also the legal
address

4.2 Tool 65

classification is done by a multistage rule-based classifier, whose features are the tokens annotated
by the previous phases. For each subclass of the concept Product, we specified three annotation
rules. The first analyzes the annotations related to the product name. This has the highest
priority and is the first to be executed. If it fails in identifying the type of the product, the rule
that processes the tokens related to the product type is triggered. In case also this second rule
is not able to accomplish the task, the third rule is executed. This acts on the tokens present in
the product section. We give below an example of classification rule analyzing the annotations
on product name.

Example 4.3. Consider the following extraction rule.

SECURITIES - CERTIFICATES - BENCHMARK

$BenchmarkName = (

[{word:/benchmark/} & {nameProduct:"NAME_PRODUCT"}] |

[{word:/Tracker/} & {nameProduct:"NAME_PRODUCT"}]

)

{

ruleType: "tokens",

pattern: (

(?$ClassificationOnName $BenchmarkName)

),

action: (Annotate($ClassificationOnName, BenchmarkCertificates,

"SECURITIES:CERTIFICATES:BENCHMARK")),

result: "BenchmarkCertificates"

}

In words, if the product name contains the words benchmark or tracker then the annotation
"SECURITIES:CERTIFICATES:BENCHMARK" will be applied.

We finally point out that rules have been designed iteratively with support of CONSOB,
alternating between phases of testing, writing and validation.

4.2.3 Exporter

The last task is carried out by the Exporter module. The purpose of this module is to prepare
the output in the desired form. It transforms text annotations into two possible formats (i)
ontology extensional level, (ii) CSV (Excel) file.

Regarding (i), the population of the ontology cannot be done using annotations on the text
directly. This is because sometimes some information comes from other sources and cannot be

66 4. Financial Market Supervision through Information Extraction

incorporated directly into the rules. Namely, we cannot express directly in TokensRegex rules
how to build the URIs denoting certain individuals, such as URIs relative to the documents,
which have to be built upon their names and file paths (which are not information contained
in KIDs). This has an obvious impact also in the instantiation of the ontology attributes and
relationships that exist between the domain objects obtained by extraction.

To overcome this problem we put all the extracted information (annotation results, informa-
tion in the subject of the email enclosing the KID, and the data in the DEMACO system) in
tabular form, and stored it into as a relational database. Then, with the support of Mastro
[42], a well-known tool for semantic access to relational sources, we integrated the resources at
our disposal in order to generate the ontology extensional level.

We report in Table 4.2, the annotations and respective OWL assertions generated using them.

Annotation OWL Assertion
PRODUCT_NAME P_ID :has_name ‘PRODUCT_NAME’

MANUFACTURER_NAME M_ID :has_name ‘MANUFACTURER_NAME’
CODE P_ID :has_code ‘CODE’

WEBSITE M_ID :has_web_site ‘WEBSITE’
DATE P_ID :has_production_date ‘DATE’
ALERT D_ID :has_name ‘ALERT’

TYPE TEXT P_ID :has_name ‘TYPE TEXT’
CURRENCY P_ID :currency ‘CURRENCY’

CLASSIFICATION
P_ID a :Securities
P_ID a :Derivatives

. . .
Table 4.2. Correspondence Annotations and ontology assertions

In the above table, P_ID and M_ID are two URIs identifying a product and a manufacturer,
respectively. Intuitively, the assertions under the OWL Assertion column are generated from
the portions of text identified by the annotations in the Annotation column. For example
using the TokensRegex extraction rule in Example 4.2, and the text in Example 4.1 we
can generate the OWL Assertion relative to the Product Code :2def9bb012344 :has_code

CH0524993752 where :2def9bb012344 is an identification of the Product built upon the file
path of the document. As for the export option (ii), we remark that this has been a requirement
by CONSOB, being CSV the format that can be read by most of the data analysis programs
used by CONSOB. To facilitate the iteration of CONSOB experts with the tool, we also created
a graphical interface shown in Figure 4.5.

4.3 Evaluations and results 67

Figure 4.5. User Interface of the Tool

4.3 Evaluations and results

In this section, we report the performance of the approach described in Section 4.2. We show
the Precision, Recall, and F-measure obtained on three different datasets of KIDs.

The the first two datasets served as the main seed for designing the extraction rules we use
in our tool, and the last one is a very large document base used to carry out a massive test and
provide our final assessment on the system performances.

In the following, for each dataset we also provide (i) the total number of documents it
contains, (ii) how many different most specific product types occur in the dataset7,(i.e., the
number of unique product classes),

(iii) how many different financial manufacturers occur in the dataset (i.e., the total number
of financial manufactures that have produced at least one document in the dataset). The above
metadata characterize both the size and the variety present in the dataset. This last aspect is
particularly important, since KIDs describing PRIIPs of different types have some differences
in the way in which information is described (and may contain slightly different data), and
KIDs produced by different manufacturers may be diversely formatted and may use distinct
terminologies (as already discussed).

7With most specific type we mean the most specific class of the taxonomy the product is an instance of. For a
product type to occur in the dataset there must be at least a KID describing a product of that type.

68 4. Financial Market Supervision through Information Extraction

Before describing the datasets, we remark that CONSOB experts confirmed the tool’s
performance through a manual inspection of the annotations we have produced with our tool.
All datasets can be found here URL.

4.3.1 First Dataset

The first dataset is composed of KIDs specifically selected by CONSOB operators as representa-
tive of the variety of the total set of documents to be analyzed. As said, this set has been used
as first document base for testing the initial set of extraction rules we designed on the basis of
experts specifications. The characteristics of the dataset are given below.

Number of KIDs 31
Number of PRIIP’s manufacturers 17

Number of most specific product types 16
Table 4.3. First Dataset

The results in terms of precision and recall relative to the kind of annotations listed in
Table 4.2

Annotation T. A. C. A. S. A. M. A. Precision Recall F-Measure
Product Name 31 27 1 4 96.2% 87.1% 91.4%
Manufacture 31 31 0 0 100% 100% 100%

ISIN 24 21 1 3 95.4% 87.5% 91.3%
Web Site 22 22 0 0 100% 100% 100%

Production Date 31 31 0 0 100% 100% 100%
Alert 24 24 0 0 100% 100% 100%

Type Text 31 28 1 3 96.5% 90.3% 93.3%
Currency 31 28 1 3 96.5% 90.3% 93.3%

Classification 31 28 1 3 96.5% 90.3% 93.3%
Table 4.4. Performance of the Approach on the First Dataset

In Table 4.4, columns T. A., C. A., S. A., M. A. refer to total, correct, spurious, missing
annotations, respectively. The cases in which 100% of F-measure is not reached are due to
an incorrect transformation of the PDF into text (occurred in 3 documents). Despite some
programming efforts to mitigate the above problem, in the best transformation we obtained
some sentences

are still mixed together, making it impossible to correctly split the document into the right
sections, which affects the correct extraction of some fields.

URL

4.3 Evaluations and results 69

4.3.2 Second Dataset

The KIDs contained in the second dataset were chosen randomly by CONSOB, with the aim of
creating a dataset 20 times larger than the first dataset. The metadata of the second dataset
are shown in Table 4.5.

Number of KIDs 701
Number of PRIIP’s manufacturers 88

NNumber of most specific product types 22
Table 4.5. Second Dataset

The system performance using the extraction rules written for the previous dataset is shown
below.

Field T.A. C. A. S. A. M. A. Precision Recall F-Measure
Product Name 701 470 40 231 92.1% 67.0% 77.6%
Manufacture 701 415 94 56 81.5% 59.2% 68.6%

ISIN 528 510 0 18 100% 96.5% 98.2%
Web Site 630 597 0 33 100% 94.7% 97.2%

Production Date 701 454 190 247 70.5% 64.7% 67.5%
Alert 531 531 0 0 100% 100% 100%

Type Text 701 415 56 286 88.1% 59.2% 70.8%
Currency 610 478 86 132 83.2% 78.3% 80.7%

Classification 701 378 96 323 79.7% 53.9% 64.3%
Table 4.6. Performance of the Approach on the Second Dataset

As shown in Table 4.6, the recall dropped considerably concerning the tests on the first
dataset due to the increment of the KIDs heterogeneity. The rules that have failed the most are
those aimed to identify the KID sections. Consequently, it was impossible to extract the fields
associated with them. To overcome the problem, we had to implement some changes on the
rules to correct them,. The new system performance is reported in Table 4.7. The difference in
terms of F-measure with the previous set of rules is reported in Chart 4.6.

70 4. Financial Market Supervision through Information Extraction

Field T.A. C. A. S. A. M. A. Precision Recall F-Measure
Product Name 701 695 2 16 99.7% 99.1% 99.4%
Manufacture 701 656 0 55 100% 93.5% 96.6%

ISIN 528 510 0 18 100% 96.5% 98.2%
Web Site 630 597 0 33 100% 100% 100%

Production Date 701 670 0 31 100% 95.5% 97.7%
Alert 531 531 0 0 100% 100% 100%

Type Text 701 671 13 30 98.1% 95.7% 96.9%
Currency 610 579 40 31 93.5% 94.9% 94.2%

Classification 701 701 40 0 94.6% 100% 97.2%
Table 4.7. Performance of the Approach on the Second Dataset

0 10 20 30 40 50 60 70 80 90 100

Classification

Currency

Type

Alert

Production Date

Web Site

ISIN

Manufacture

Product Name

F-Measure

First Iteration Second Iteration

Figure 4.6. F-Measures difference between the non-fixed rules and the fixed ones applied to the second
dataset

4.3.3 Third Dataset

This last test is the most representative among those we performed. We have conducted a
massive experiment, which is indicative of the performance of the tool in production, on over

4.3 Evaluations and results 71

14000 documents, for a total size of 995MB. The characteristics of the dataset are given below.

Number of KIDs 14606
Number of PRIIP’s manufacturers 182

Number of most specific product types 24
Table 4.8. Third Dataset

The rules compared to the tests on the second dataset have undergone some minor changes,
mainly related to the cleaning of some fields and classification. The final results, which are very
encouraging, are reported below.

Field T.A. C. A. S. A. M. A. Precision Recall F-Measure
Product Name 14242 14117 125 50 99.1% 99.6% 99.3%
Manufacture 14025 13865 160 91 98.8% 99.0% 98.9%

ISIN 14242 14242 0 0 100% 100% 100%
Web Site 13485 13485 351 0 97.4% 100% 98.7%

Production Date 13762 13611 151 196 98.9% 99.2% 99.0%
Alert 12561 12561 0 23 100% 99.2% 99.6%

Type Text 13777 13537 240 159 98.2% 98.8% 98.5%
Currency 12471 11566 905 1390 92.7% 89.2% 90.9%

Classification 14504 13887 617 136 95.7% 98.9% 97.3%
Table 4.9. Performance of the Approach on the Second Dataset after extraction rules fixing

Note that the performance on the third dataset is higher with respect to the first and second
datasets. This is attributable to the fact that the documents that generate errors on a large
dataset are also the ones that appear the less.

4.3.4 Execution time performances

We want to conclude this section by talking about the tool’s performance in terms of execution
time. The processing time for 14606 documents (third dataset) was 8.32 hours, with an average
of 2.05 seconds per document. On average, the data preparation took ∼1.03 seconds per
document. That is, it took the tool around 4.2 hours to transform all PDF documents in plain
text. Obviously, this cost could be avoided if documents were produced in different native format.
At the same time, we believe that this can be reduced by adopting different transformation
tools, which we could not properly investigate in the timeframe of the project.

72 4. Financial Market Supervision through Information Extraction

4.4 Final Remarks

In this chapter, we have reported an experience on information extraction from financial
documents, aimed to structure gathered data according to a domain ontology.

We exploited the CoreNLP technology to build a rule-based tool able to extract key informa-
tion from KIDs. In our development we could experience that the Stanford toolkit, compared to
GATE, simplifies some annotation steps and allows to write NLP modules more comfortably,
based on its components. Through a series of massive tests, supported by validation from
CONSOB, we have also shown the quality of our solution, which lead to obtain particularly
encouraging results.

In our discussion, we focused on TokensRegex, a CoreNLP component useful for defining
extraction rules. This component, similar to JAPE in GATE, allows to annotate portions of text
using a rule-based language acting over the tokens. This language shares with JAPE not only
its usefulness but unfortunately also the fact that, to the best of our knowledge, no study on its
formal characteristic has been so far carried out. As a consequence it is not completely clear
which is the expressive power of the language, and the computational complexity of evaluating
TokensRegex rules over a document.

In conclusion, this language, as JAPE, does not seem adequate for an effective coupling with
popular ontology languages for data management, where the trade-off between expressiveness
and complexity is particularly important, considered their use over large datasets.

73

Chapter 5

Theoretical Background

This chapter is an introduction of some theoretical notions useful for the next chapters of
this thesis. We first recap some aspects of relational databases [2]. Next we provide a brief
introduction to Description Logic (DL) ontologies [10, 46]. Then, after recalling some basics
of Complexity Classes [152, 172, 81], we turn our attention to Ontology Based Data Access
(OBDA), a sophisticated form of Information Integration [176, 213]. Finally we describe the
formal framework of Document Spanners proposed by Fagin et al. in [86, 87] for rule-based
IE. This chapter is intended to be a brief introduction to such matters, while an exhaustive
treatment of them is out of our scopes. For further background we refer the reader to the
literature cited above.

5.1 Relational Databases

A relational database schema (or simply schema) S is a finite set of predicate symbols, each
with a specific arity, and a set of integrity constraints. Given a schema S, an S-database DB
is a finite set of facts s(~c), where s is an n-ary predicate symbol of S, and ~c = (c1, . . . , cn) is
an n-tuple of constants. For the rest of this thesis, when we refer to a relational database we
always consider it as defined above, also known in literature as complete database [153], i.e.,
without null values.

5.1.1 Query Answering in Relational Databases

Relational databases were born with the purpose of storing information and making it accessible
through query mechanisms. In this subsection we start with a general notion of query in
first-order logic (FOL), and then we move to the definition of queries over relational databases.

74 5. Theoretical Background

A query is a function-free FOL open formula, which we denote as:

{~x |∃~y.φ(~x, ~y)} (5.1)

where ∃~y.φ(~x, ~y) called the body of the query is a FOL formula with free variables ~x, also called
the target list of the query, and existentially quantified variables ~y, possibly containing constants.
The number of variables in ~x is the arity of the query. Among FOL queries, we in particular
consider conjunctive queries (CQs), i.e., queries in which ∃~y.φ(~x, ~y) is a conjunction of the form
∃~y.p1(~x1, ~y1) ∧ . . . ∧ pn(~xn, ~yn), where each pi(~xi, ~yi) is an atom, ~x = ∪ni=1~xi and ~y = ∪ni=1~yi.

A union of conjunctive query (UCQ) is a FOL query of the form:

{~x | ∃~y1.φ1(~x, ~y1) ∨ · · · ∨ ∃~yn.φn(~x, ~yn)} (5.2)

such that each {~x | ∃~yi.φi(~x, ~yi)} is a CQ. To simplify notation, we can write a FOL query
{~x |∃~y.φ(~x, ~y)} as the formula ∃~y.φ(~x, ~y), and a UCQ as a set of CQs.

A query over a relational database has the form (5.1) where each atom is an n-ary predicate
in the signature of S. Given a relational database schema S, an S-database DB and a conjunctive
query q of arity n over S, an n-tuple ~c of constants is an answer to q on DB, if DB |= ∃~y.φ(~c, ~y).
The answers to q can be obtained by standard evaluation of q over DB.

In the following, sometimes we use q(~x) to denote a query of the form (5.1) with free variables
~x, and q(~c) to denote ∃~y.φ(~c, ~y).

5.2 Description Logics

Description Logics (DLs) [9] are decidable fragments of first-order logic that are largely recognized
as one of the best means to specify ontologies, being them formally well-understood and equipped
with powerful mechanisms to reason upon the representations they allow to specify. DLs model
the domain of interest in terms of concepts, that are abstractions for sets of objects, and roles,
that denote binary relations between objects. They are widely used in the context of the Semantic
Web, and indeed are at the basis of OWL 2, the W3C standard for specifying ontologies [67] (as
said in Chapter 2, in OWL 2 concepts are called classes and roles are called objectproperties).

Formally a DL ontology O is defined as a pair 〈T ,A〉 where:

• T , called TBox, is the terminological component, which contains assertions (i.e., closed
formulas of the logic, a.k.a. sentences) representing intensional knowledge, and

• A, called ABox, is the assertional component, which contains assertions representing
extensional knowledge.

5.2 Description Logics 75

For the rest of this section we assume to have a fixed infinite countable alphabet Γ of names
for concepts (called atomic concepts), roles (called atomic roles), and constants (which we also
call entities, as done in previous sections) The formal semantic of a DL language is given in
terms of FOL interpretations. An interpretation I = (∆I , ·I) over Γ consists of a non-empty
set ∆I of objects (the interpretation domain) and an interpretation function ·I that assigns to
each concept C a subset CI of ∆I , and to each role R a binary relation RI over ∆I , and to
each entity e an object o ∈ ∆I .

An interpretation I is a model of an ontology O if I satisfies all the assertions in T (denoted
with I |= T) and A (denoted with I |= A). The satisfaction of an assertion is defined in the
standard way for DLs [9]. We denote with Mod(O) the set of all models of an ontology O. We
say that O is satisfiable if Mod(O) 6= ∅, unsatisfiable, otherwise. We also say that O entails a
FOL sentence ψ, denoted O |= ψ, if ψI evaluates to true in every I ∈ Mod(O), where ψI denote
the standard interpretation of a FOL sentence [2].

In this thesis we will mainly focus on ontologies expressed in DL-Lite, a family of DLs
particularly suited for specifying ontologies on top of large data repositories [46, 176], and
that is at the basis of OWL 2 QL, one of the tractable profiles of OWL 2 [159], already mentioned
in Chapter 2. More specifically, we will consider the two basic members of this family, i.e.,
DL-LiteR and DL-LiteF .

In DL-LiteR, the TBox is a finite set of assertions having the following forms:

B1 v B2 Q1 v Q2 (concept/role inclusion)
B1 v ¬B2 Q1 v ¬Q2 (concept/role disjointness)

where: each Qi, with i ∈ {1, 2}, is a basic role, i.e., an atomic role R ∈ Γ or its inverse R−;
each Bi, with i ∈ {1, 2}, is a basic concept, i.e., an atomic concept C ∈ Γ, or a concept of the
form ∃R or ∃R−, i.e., unqualified existential restrictions, which denote the set of individuals
occurring as first argument (a.k.a. domain) or second argument (a.k.a. range) of R, respectively.

In DL-LiteF , inclusions and disjointnesses between roles are not allowed but it is possible to
specify functionalities, which are assertions of the form:

(funct Q) (role functionalities)

where Q is a basic role.
In both the above logics, the ABox is a finite set of membership assertions of the form C(e1)

or R(e1, e2), where C and R are an atomic concept and an atomic role, respectively, and e1 and
e2 are entities.

Given an interpretation I = (∆I , ·I), the semantics of DL-LiteR and DL-LiteF constructs is

76 5. Theoretical Background

as follows:

CI ⊆ ∆I

RI ⊆ ∆I ×∆I

(R−)I = {(o2, o1) | (o1, o2) ∈ RI}
(∃Q)I = {o | ∃o′ . (o, o′) ∈ QI}
(¬B)I = ∆I \BI

(¬Q)I = ∆I ×∆I \QI

where C is an atomic concept, R an atomic role, Q a basic role, and B a basic concept.
Then, I satisfies an inclusion B1 v B2 if BI1 ⊆ BI2 , and satisfies B1 v ¬B2 if BI1 ∩BI2 = ∅, and
analogously for assertions on roles (only for DL-LiteR). Furthermore, I satisfies (funct Q) (only
for DL-LiteF) if there are no o1, o2, o3 ∈ ∆I such that both (o1, o2) and (o1, o3) belong to QI .
Finally, I satisfies an ABox assertion C(e1) (resp. R(e1, e2)), if eI1 ∈ CI (resp. (eI1 , eI2) ∈ RI).

We finally note that DL-Lite logics adopt the Unique Name Assumption, that is, in every
interpretation different entities are interpreted with different objects.

Example 5.1. Consider the atomic concepts Professor and Course, the atomic roles teaches
and expert_in, and the following DL-LiteR TBox:

θ1 : Course v ¬Person θ2 : Professor v Person

θ3 : teaches v expert_in θ4 : ∃teaches− v Course

Such a TBox states that a course is not a person (θ1), every professor is a person (θ2), whoever
teaches (a course) is an expert (about it) (θ3), and that everything that is taught (i.e., occurs in
the range of teaches) is a course (θ4).

Instead, we obtain a TBox in DL-LiteF if we substitute θ3 with the assertion

(funct teaches−)

specifying that each course can be taught by at most one professor.
The following assertions are an example of ABox (for both DL-LiteR and DL-LiteF).

α1 : Professor(Einstein)
α2 : teaches(Einstein, Physics)

Such an ABox states that Einstein is a Professor (α1) and that Einstein teaches Physics
(α2). �

Observe that DL-Lite is an extension of the ontology language DL-LiteRDFS [13]. Specifically,

5.2 Description Logics 77

a DL-LiteRDFS is a finite set of assertions of the form:

B v C R1 v R2

where B is a basic concepts, C an atomic concepts, and R1, R2 atomic roles.

We will also consider a slight extension of the DL ontology language DL-LiteRDFS , namely
DL-Lite¬RDFS , which also allows for the concept/role disjointness assertions expressible in
DL-LiteR.

We further note that both DL-LiteR and DL-LiteF are extensions of DL-Litecore i.e., the
minimal logic of the DL-Lite family. A DL-Litecore ontology is a finite set of assertions of the
form:

B1 v B2 B1 v ¬B2

Observe that DL-Litecore and DL-LiteRDFS (respectively, DL-Lite¬RDFS) are incomparable
fragments of DL-LiteR.

5.2.1 Query answering in Ontologies

A query over an ontology has the form (5.1), where each atom predicate is either an atomic
concept or an atomic role from the ontology signature. Unlike relational databases, answering a
query over an ontology amounts to computing the so-called certain answers, i.e., those answers
that hold in all models of the ontology. Formally, given an ontology O = 〈T ,A〉 and a query q
of arity n over O, an n-tuple ~c = (c1, . . . , cn) of constants is a certain answer to q with respect
to O if O |= ∃~y.φ(~c, ~y), i.e., the sentence obtained by substituting in q each variable in ~x with
the corresponding constant in ~c is entailed by O (or, equivalently, (cI1 , . . . , cIn) ∈ qI for each
I ∈ Mod(O)). The set of certain answers to q with respect to O is denoted by cert(q,O).

We notice that query answering over an unsatisfiable ontology is meaningless, since computing
the certain answers to a query amounts to get all tuples of constants having the same arity of
the query. For these reasons, in this thesis we will consider only query answering over satisfiable
ontologies. We recall also that, for both DL-LiteR and DL-LiteF , establishing whether an
ontology is satisfiable can be reduced to query answering over a satisfiable ontology as shown in
[46, 47].

Computing the certain answers to a query q with respect to a (safisfiable) ontology O can
be solved by query rewrtiting, i.e., by first computing the so called perfect reformulation qr of
q with respect to the TBox T , and then evaluating qr over the ABox A (that is, evaluating it
over an interpretation that is isomorphic to A, which intuitively corresponds to consider A a

78 5. Theoretical Background

relational database instance). Formally, given a query q and a TBox T , a perfect reformulation
of q with respect to T is a query qr such that, for every ABox A, cert(q, 〈T A〉) = cert(qr,A)
(notice that cert(qr,A) indeed corresponds to evaluate qr over A seen as a database).

Calvanese et al. proposed in [46] a prototypical algorithm, called PerfectRef, for computing
the perfect reformulation of a UCQ Q with respect to a DL-LiteR or DL-LiteF TBox. At
the basis of the algorithm there is a property saying that to compute the certain answers via
rewriting over satisfiable DL-Lite ontologies, only concept/role inclusions (also called positive
inclusions) need to be used in the reformulation process.

According to PerfectRef, such inclusions are used as rewriting rules, from right to left, to
repeatedly rewrite atoms in the queries in Q (seen as a set of CQs). When an atom is rewritten,
a new CQ is added to the result, as long as a fix point is reached. The final rewriting is indeed a
UCQ. For example, given a TBox assertion C1 v C2, and a query {x | C2(x)} the atom C2(x) is
rewritten into C1(x) and the query {x | C1(x)} is added to the result. Notice however that for
an atom to be rewritten according to an inclusion assertion in T its terms must respect some
syntactic conditions [46]. Moreover, when atoms in the query unify, PerfectRef performs such
unification, which may then trigger some further atom rewriting1.

For more details on PerfectRef we refer the reader to [46]. Below, we simply provide an
example to intuitively show how it works.

Example 5.2. Consider the following query q expressed over the ontology O of Example 5.1:

q = {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}

asking for persons who teach a course.
The certain answers to q in O are given by the evaluation of the UCQ Q produced by the

algorithm PerfectRef over A. Q is a set consisting of the following CQs:

q : {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}
q1 : {x | ∃y.Professor(x) ∧ teaches(x, y) ∧ Course(y)}
q2 : {x | ∃y.Person(x) ∧ teaches(x, y)}
q3 : {x | ∃y.Professor(x) ∧ teaches(x, y)}.

The query q1 is obtained from q by rewriting Person(x) into Professor(x), according to
inclusion θ2. the CQ q2 is obtained from q after rewriting Course(y) into ∃z.teaches(z, y)
(according to inclusion θ4) and after unifying teaches(x, y) and teaches(z, y). Similarly for q3,

1We note that, as a consequence of unification operations, the target list of a query in the set of CQs returned
by PerfectRef may also contain constants, and that the target lists of the CQs in the returned set may also not be
equal to one another.

5.3 Computational Complexity 79

which is derived from q1. Since O is satisfiable, we can obtain the certain answers to q in O by
evaluating Q over the ABox A, which returns the set {Einstein}. �

Interestingly, the evaluation of the UCQ returned by PerfectRef can be delegated to a
relational DBMS in charge of managing the data in the ABox, thus making DL-Lite logics
particularly suited for efficient ontology-based data management. We say that both DL-LiteR
and DL-LiteF enjoy UCQ rewritability of conjunctive query answering, since for every TBox T
expressed in such languages and every CQ q, the perfect reformulation of q with respect to T can
be always expressed as a UCQ. We notice that UCQ-rewritability is a special case of the more
general first-order-rewritability of query answering, which is already enough for query answering
to be solved through query rewriting and query evaluation over a relational DBMS. Notably,
logics of the DL-Lite family are essentially the maximal DLs enjoying first-order-rewritability of
conjunctive query answering [47]. Other logics for which such property holds have been proposed
in the context of existential rules [162, 163] or Datalog+/- [36].

5.3 Computational Complexity

We assume familiarity with the basics about computational complexity, as defined in standard
textbooks [152, 172] In particular, we consider the following complexity classes:

AC0 (LogSpace ⊆ PTime ⊆ NP ⊆ ExpTime

We have depicted the known relationships between these complexity classes. In particular,
it is known that AC0 is strictly contained in LogSpace, while it is open whether any of the
other inclusions is strict [152]. However, it is known that PTime (ExpTime. We will also
mention the complexity class coNP, which is the class of problems that are the complement
of a problem in NP. We only comment briefly on the complexity classes AC0 and LogSpace,
which readers might be less familiar with. AC0 is the class of problems that can be solved by a
uniform family of circuits of constant depth and polynomial size, with unlimited fan-in AND
gates and OR gates. An example of problem in AC0 is the evaluation of a first-logic query
over an interpretation. LogSpace is the class of problems that can be decided by a two-tape
(deterministic) Turing machine that receives its input on the read-only input tape and uses a
number of cells of the read/write work tape that is at most logarithmic in the length of the input.
A prototypical problem that is in LogSpace (but not in AC0) is undirected graph reachability
[182].

We will consider computational complexity of query answering, and in particular data

80 5. Theoretical Background

complexity, which is the complexity of evaluating a query in a language as a function of the size
of the underlying data instance only, e.g., the ABox for query answering over a DL ontology
(that is, the size of the query and the schema are treated as fixed constants) [204]. The other
type of complexity typically considered for the query answering problem is combined complexity,
which considers the query, the schema, and the database instance (e.g., the TBox and the ABox
for query answering over a DL ontology) as input variables. The combined complexity of a query
language is typically one exponential higher than data complexity.

We notice that, as said before, the perfect rewriting returned by the algorithm PerfectRef
we described above is a UCQ (that is, a first-order query), which thus shows that conjunctive
query answering in DL-Lite logics is tractable in data complexity, and more precisely, in AC0.
As for combined complexity, it is NP-complete, since evaluating a UCQ over an interpretation
(and thus over a database instance or over an ABox) is an NP-complete problem.

5.4 Ontology Based Data Access

Linking data to ontologies and providing (efficient) reasoning services over them is the main
objective of Ontology-based Data Access (OBDA) [213, 60]. In OBDA the ontology, properly its
intensional level, is coupled with external databases through a mapping, which declaratively
specifies the semantic relationship between the ontology and the data. A user interacts only
with the ontology, e.g., by posing queries, which are automatically processed by sophisticated
algorithms that return the answers to the user by reasoning on the ontology and the mapping.
The OBDA paradigm resorts to a three-level architecture, consisting of the ontology, some
existing data sources relevant for an organization, and the mapping between the two.

From a more formal perspective, an OBDA system Ξ is expressed as a triple 〈T ,S,M〉,
where:

• T is a DL Tbox.

• S is a relational database schema, also called source schema.

• M is a mapping, i.e., a finite set of mapping assertions relating S to T .

An OBDA instance is a pair 〈Ξ,DB〉, where Ξ = 〈T ,S,M〉 is an OBDA system, and DB is
an S-database, also called source database for Ξ.

5.4.1 Mapping Assertions

Assertions constituting a mappingM relating a relational schema S to a TBox T are of the
form

∀~x.(∃~y.φS(~x, ~y)→ ∃~z.φT (~x, ~z)) (5.3)

5.4 Ontology Based Data Access 81

where φS(~x, ~y) and φT (~x, ~z) are finite conjunctions of atoms, as those allowed in CQs, over
S and T , respectively [146, 79]2. Mapping assertions of the above form are also called GLAV
(Global-and-Local-as-View) mapping assertions. Special cases of GLAV mapping assertions are
GAV (Global-as-View) and LAV (Local-as-View) mapping assertions.

A GAV mapping assertion is a GLAV mapping assertion in which the right-hand side of
the implication does not make use of existential variables, i.e., it is an assertion of the form
∀~x.(∃~y.φS(~x, ~y)→ φT (~x)).3

A LAV mapping assertion is a GLAV mapping assertion in which the left-hand side of the
implication is simply an atom without constants or repeated variables, such that all its variables
appear in the right-hand side of the assertion, i.e., it is of the form ∀x1, . . . , xn.(s(x1, . . . , xn)→
∃~z.φT (x1, . . . , xn, ~z)), where s is an n-ary predicate symbol of S, and x1, . . . , xn are pairwise
different variables.

5.4.2 Semantics and Query Answering

We now give the semantics of an OBDA system by defining its models. An interpretation I is a
model of an OBDA instance 〈Ξ,DB〉, denoted by I |= 〈Ξ,DB〉, if (i) I |= T and (ii) I satisfies
the mappingM with respect to DB, which is defined as follows: for every mapping assertion
m ∈M of the form (5.3), and every tuple ~c in the evaluation of the query ∃~y.φS(~x, ~y) over DB,
(∃~z.φT (~c, ~z))I evaluates to true in I. The set of models of an OBDA instance 〈Ξ, D〉, denoted
by Mod(Ξ,DB), is the set of interpretations I for 〈Ξ,DB〉 such that I |= 〈Ξ,DB〉. Entailment of
a FOL sentence ψ from an OBDA instance 〈Ξ,DB〉, denoted 〈Ξ,DB〉 |= ψ is naturally defined
as the task of verifying whether ψI evaluates to true in every I ∈ Mod(Ξ,DB).

Several reasoning services have been proposed for OBDA systems [60, 63, 66] but the main
service of interest is query answering, i.e., computing the certain answers to queries posed over
the ontology of the system [176]. Given an OBDA instance 〈Ξ,DB〉 and a query q of the form
(5.1) and of arity n, an n-tuple ~c = (c1, . . . , cn) of constants is a certain answer to q with respect
to 〈Ξ,DB〉 if 〈Ξ,DB〉 |= ∃~y.φ(~c, ~y) (or, equivalently, (cI1 , . . . , cIn) ∈ qI for each I ∈ Mod(Ξ,DB)).

Similar to the setting of a single ontology, we give the notion of perfect reformulation for
OBDA systems: given an OBDA system Ξ = 〈T ,S,M〉 and a query q, a perfect reformulation
of q with respect to Ξ is a query qr such that, for every source database DB for Ξ, cert(q,Ξ,DB)
coincides with the evaluation of qr over DB. We notice that when T is expressed in a logic
enjoying first-order rewritability of conjunctive query answering, as DL-LiteR or DL-LiteF , and

2Note that ∃~z.φT (~x, ~z) may also contain variable object terms used to construct entities that instantiate
ontology predicates from values returned by the query ∃~y.φS(~x, ~y). An explanation on the role of object terms is
given in Section 6.1

3We remark that also more expressive forms of GAV mappings have been often studied, namely allowing the
query in the left-hand side to be a generic SQL query over S [176].

82 5. Theoretical Background

M is GAV, when q is a CQ, qr is always expressible as a first-order query. This is typically done
through the so-called unfolding of the perfect reformulation q′ of q with respect to T . Intuitively,
the unfolding of q′ through the mappingM amounts to substitute each predicate S in q′ with
the union of queries in the body of the mapping assertions inM having S in their heads.

5.5 Document Spanners

Recently, Fagin et al. [86, 87] have initiated a foundational study on rule-based IE, and proposed
a new framework for it constructed on the notion of (document) spanner. In a nutshell, a spanner
is a program that extracts from a text document Doc (i.e., a string) a relation containing tuples
of spans, which are pairs of indices identifying substrings of Doc. For example if Doc is the
string Albert_Einstein_from_Ulma, the span [8, 16〉 selects the substring Einstein, which is the
slice of Doc going from the eighth to the fifteenth character in Doc (by definition, a span [i, j〉
goes from position i to position j-1, included).

Fagin et al. have in depth investigated how to represent spanners and how to combine
them through algebraic operators. In particular, they have studied spanners defined by regular
expressions with capture variables and operators adapted from relational algebra.

P r o f e s s o r _ E i n s t e i n _ t a u g h t _ p h y s i c s .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

T h e _ P r o f e s s o r _ w o n _ a _ n o b e l .

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 5.1. Document Docex

We now recall the definitions of spans and spanners, discuss a way of representing spanners,
and present an algebra, through which the spanners of interest in this dissertation are defined.
Our presentation is necessarily concise. For more details we refer the reader to [86].

5.5.1 Strings and spans

We fix a finite alphabet Σ of symbols, which we assume totally ordered. In the following
examples Σ is composed by the lower and capital letters of the English alphabet, the full stop
(“.”), and the underscore (“_”), which stands for the space character. We denote by Σ* the
set of all finite strings, called also documents over Σ. Thus, a document Doc ∈ Σ∗ is such that
Doc = σ1 . . . σn, with n ≥ 0 and σi ∈ Σ for i ∈ {1, . . . , n}.

A span identifies a substring of Doc by specifying its bounding indices. Formally a span
of Doc has the form [i, j〉, where 1 ≤ i ≤ j ≤ n + 1. If [i, j〉 is a span of Doc, then Doc[i,j〉

denotes the substring σi . . . σj−1. Note that Doc[i,i〉 is the empty string, and that Doc[1,n+1〉 is
Doc. Two spans [i, j〉 and [i′, j′〉 are equal if and only if i = i′ and j = j′.

5.5 Document Spanners 83

We denote by Spans(Doc) the set of all possible spans of Doc.

Example 5.3. Consider the document Docex given in Figure 5.1, and the span [11, 19〉. It
identifies the substring Einstein, i.e., Docex

[11,19〉 = Einstein. �

We assume to have a fixed and infinite set SVars of variables, disjoint from Σ∗. Given a finite
set V ⊆ SVars and a document Doc ∈ Σ∗, a (V,Doc)-tuple is a mapping µ : V → Spans(Doc)
that assigns a span of Doc to each variable in V . When V is clear from the context, we simply
call the above tuple a (Doc)-tuple. A (V,Doc)-relation is a set of (V,Doc)-tuples.

A document spanner (or simply spanner) is a function P over V that maps a document Doc
to a (V,Doc)-relation. We use SVars(P) to denote the set of variables of a spanner P . The
cardinality of SVars(P) is the arity of P . We may also use P (v1, . . . , vn) to denote a spanner P
over variables V = v1, . . . , vn. Furthermore, given a document Doc, we write eval(P ,Doc) to
denote the (V,Doc)-relation returned by P with Doc as input.

Example 5.4. In Figure 5.2 we provide an example of (V,Doc)-relation, for the spanner [[γtok]],
such that SVars([[γtok]]) = {x}. (V,Doc)-tuples in this figure correspond to the words of Docex

from Figure 5.1 (we discuss below how to represent such spanner in formulas). �

eval([[γtok]],Docex)
x

µ1 [1, 10〉
µ2 [11, 19〉
µ3 [20, 26〉
µ4 [27, 34〉
µ5 [35, 38〉
µ6 [39, 48〉
µ7 [49, 52〉
µ8 [53, 54〉
µ9 [55, 60〉

Figure 5.2. Spanner [[γtok]] applied to the document in Figure 5.1

5.5.2 Spanner representation

Among the possible ways of representing spanners [86], in this thesis we use so-called regex
formulas. In order to characterize them, we first give the definition of variable regex, which is an
extension of a regular expression with capture variables. Its grammar is defined as follows:

γ := ∅ | ε | σ | (γ ∨ γ) | (γ· γ) | γ* | x{γ} (5.4)

84 5. Theoretical Background

The symbol ∅ defines the empty set, ε is the empty string, and σ ∈ Σ. The ∨, · , and ∗

symbols denote disjunction, concatenation, and the Kleene-star operators, respectively. x{γ}
instead indicates that the match obtained through the variable regex γ is mapped (in the form
of a span) to the variable x ∈ SVars. Parenthesis may be used to specify precedence between
operators.

We denote by SVars(γ) the set of variables that occur in γ. We use γ+ as abbreviations
γ· γ*, and [σi-σj] as a shortcut for the disjunction of all characters σ ∈ Σ such that σi ≤ σ ≤ σj .

In this thesis we consider only variable regex expressions that are functional, i.e., such that
in a matching over a document each variable is associated with one span. A functional variable
regex is called regex formula. The class of regex formulas is denoted by RGX.

Example 5.5. Consider the following (simplified) set of regex formulas:

• γtok = (ε ∨ (Σ∗· (. ∨_)))·x1{[a-zA-Z]+}· ((. ∨_)·Σ∗),
i.e., a regex formula assigning to x1 the words in a document (that is, every non-empty
sequence of alphabetic characters preceded by either a space or an empty string, and
followed by either a fullstop or a space);

• γcap = (ε ∨ (Σ∗· (. ∨_)))·x1{[A-Z]·Σ∗}· ((. ∨_)·Σ∗),
i.e., a regex formula assigning to x1 the words that begin with a capital letter;

• γaft_prof = (Σ∗·_)· (Professor·_)·x1{Σ+}· (_·Σ∗),
i.e., a regex formula assigning to x1 the words that follow the word Professor (plus a space).

�

A regex formula γ naturally represents a spanner, and by [[γ]] we denote the spanner that is
represented by γ. Then, with [[RGX]] we denote the class of all spanners represented by regex
formulas.

5.5.3 An algebra over spanners

We now present an algebra over spanners. This algebra extends the class of spanners that are
represented by regex formulas, i.e., [[RGX]], with the following operators: union (∪), projection
(π), (natural) join (on), and string-equality selection (ζ=). The set of spanners represented by
formulas in the class RGX closed under ∪, π,on and ζ= is denoted by [[RGX{∪,π,on,ζ=}]]. Formally,
let P , P1 and P2 be spanners and let Doc be a document, the above operators are defined as
follows [86]:

• Union. The union P1 ∪ P2 is defined when P1 and P2 are union compatible, that is,
SVars(P1) = SVars(P2). In that case, SVars(P1 ∪ P2) = SVars(P1) and eval(P1 ∪ P2,Doc)
= eval(P1,Doc) ∪ eval(P2,Doc).

5.5 Document Spanners 85

• Projection. If v ⊆ SVars, then πv(P) is the spanner such that SVars(πv(P)) = v
and eval(πv(P),Doc) is obtained from eval(P ,Doc) by restricting the domain of each
(Doc)-tuple to v.

• (Natural) Join. The join between spanners is defined as P1onP2. It holds that
SVars(P1onP2) = SVars(P1)∪SVars(P2), and eval(P1onP2,Doc) consists of all (Doc)-tuples
µ that agree with some µ1 ∈ eval(P1,Doc) and µ2 ∈ eval(P2,Doc).

• String selection. Let x and y be two variables in SVars(P), the string-equality selection
operator is defined as ζ=

x,y P . We have that SVars(ζ=
x,y P) = SVars(P), and eval(ζ=

x,y P ,Doc)
consists of all (Doc)-tuples µ in eval(P ,Doc) such that Docµ(x) = Docµ(y).

Example 5.6. Using the regex formula defined in Example 5.5 we can define, using the spanner
algebra, the following more expressive and complex [[RGX{∪,π,on,ζ=}]]-spanner.

• [[ρprof]] = [[γcap]] on [[γaft_prof]], i.e., the spanner represented by a regex formula that assigns
to the variable x each word that both begins with a capital letter and follows the string
Professor_ . The result of applying [[ρprof]] to the document Docex in Figure 5.1 is shown
in Figure 5.3. The extracted span is [11, 19〉 corresponding to the substring Einstein. �

eval([[ρprof]],Docex)
x1

µ1 [11, 9〉

Figure 5.3. Result of spanner [[ρprof]] applied to the document in Figure 5.1

In our framework, which we introduce in the next chapter, we will consider only spanners
belonging to [[RGX{∪,π,on,ζ=}]]. It is worthwhile to remind the reader that spanners in such
class are called core spanners, for being them able to capture the core of AQL, the declarative
language used in SystemT, the IBM rule-based IE tool [55].

87

Chapter 6

Linking Text Documents to
Ontologies

One of the main lessons we learned from the experiences we have described in Chapter 3 and
Chapter 4 is that state-of-the-art solutions for IE are not specifically designed for an adequate
exploitation of the presence of a domain ontology, which essentially remains a terminology
through which organize the extracted data. Above all, we have suffered the lack of an organic
framework where rule-based extraction mechanisms could be smoothly coupled with the rules
specifying the domain ontology, so that reasoning services over the ontology could be suitably
exploited to support and enrich the entire IE process. Furthermore, introducing the ontology in
the extraction pipeline required in both our projects some ad-hoc manual operations, specific
for the application at hand and difficult to frame in a general and well-regulated approach.

In this chapter we fill some of the above gaps and propose a formal framework for coupling
ontologies and rules for IE. Our starting point is Ontology-based Data Access (OBDA). As
recalled in Section 5.4, in OBDA the ontology is coupled with external databases through
mapping assertions, which declaratively specify the semantic relationship between the ontology
and the data. In OBDA, however, ontologies have been essentially used so far only on top of
relational databases, with very few exceptions (as, e.g., [29, 54]), and how to access unstructured
data, like those contained in text documents, using the ontologies as in OBDA is still unexplored.

Clearly, for OBDA systems to be able to access text documents, classical mapping assertions
have to be modified. It is however crucial that the declarative nature of the mapping is preserved,
and that the languages used to specify it are well-understood and precisely formalized. To this
aim, we looked at the framework of document spanners (see Section 5.5), which lays foundational
groundwork for rule-based IE.

In the following we thus propose a formal framework for coupling ontologies with spanners

88 6. Linking Text Documents to Ontologies

for IE from documents. Within this framework, we focus on the problem of query answering
and provide some complexity results and practical algorithms for the case when the ontologies
are specified in some languages of the DL-Lite family of Description Logics and are coupled
with expressive spanners.

More in detail, the contributions of this chapter can be summarized as follows:

• We introduce the notion of Ontology-based document spanning (OBDS) system. In an
OBDS system, an ontology is linked to text documents through extraction assertions,
which act similarly as mapping assertions in OBDA. Roughly speaking, an extraction
assertion associates a document spanner P to a query q over the ontology, with the intended
meaning that the tuples of strings corresponding to the spans returned by P evaluated
over a text document must be among the answers to q evaluated over the ontology. An
extraction assertion can be thus seen as a rule, where P is the body and q is the head.

• We study query answering over an OBDS system, i.e., how to answer a user query specified
over the ontology by retrieving the answers from the text documents mapped to the
ontology. We consider the case in which (i) the ontology is specified in either DL-LiteR
or DL-LiteF (see Section 5.2), (ii) user’s queries are CQs, (iii) spanners in the body of
extraction assertions belong to the class [[RGX{∪,π,on,ζ=}]], i.e., are defined as regex formulas
extended with the relational algebra operators union, projection, join, and string selection
(see Section 5.5), (iv) queries in the head of extraction assertions are CQs. We show that
query answering is in PTime in data complexity (i.e., the complexity computed only with
respect to the size of the underlying documents). We remark that DL-LiteR and DL-LiteF
are the two most popular ontology languages used in OBDA to deal with large datasets,
CQs are the most expressive queries for which query answering over ontologies has been
shown to be decidable, and spanners in [[RGX{∪,π,on,ζ=}]] are among the most expressive
document spanners considered in [86]. We note also that extraction assertions we define
resemble GLAV mapping assertions used in data integration and in OBDA, i.e., the most
expressive form of mappings adopted in these contexts [146, 78, 48, 89].

• We investigate query rewriting in OBDS systems, i.e., whether it is possible to answer a
query by first rewriting it and then evaluating the rewriting over the data layer. Our aim
is to understand whether we can reduce query answering to the execution of a document
spanner of the same kind of those used in the extraction assertions. We positively answer
the above question for the case in which ontologies are specified in DL-LiteR. We indeed
provide an algorithm that rewrites every CQ issued over an OBDS system (i.e., over
its ontology) into a spanner belonging to [[RGX{∪,π,on,ζ=}]]. We also show that the same
holds when the ontology is expressed in DL-LiteF and extraction assertions are GAV,

6.1 Ontology-based document spanning Framework 89

i.e., they have in their heads only CQs without existential variables. We believe that
these results have an interesting practical fallout, since in these cases it is possible to
delegate the evaluation of the rewriting to same engine that is in charge of evaluating
the spanners in the body of the extraction assertions. We notice that this behaviour is
similar to what happens in OBDA when query answering is first-order rewritable: source
data are managed by a relational DBMS which is able to process both the queries in the
body of mapping assertions and the perfect reformulations computed when solving query
answering by rewriting (see also Section 5.4.2).

Interestingly, in our OBDS framework, as IE engine we can use an off-the-shelf tool like
IBM SystemT [55], whose AQL language allows for expressing spanners belonging to
[[RGX{∪,π,on,ζ=}]]. Also, the modular nature of our rewriting technique seems to streamline
the incorporation of OBDS capabilities into current OBDA engines (e.g., [43, 75]) as it
will be discussed in Chapter 7.

We conclude this section by observing that, to the best of our knowledge, none of the previous
works on ontology-based IE has proposed a formal declarative framework, nor has studied the
problem of query answering, with the exception of [144], which this chapter is based on.

The rest of the chapter is organized as follows. In Section 6.1 we introduce our OBDS
framework, and in Section 6.2 we establish our complexity results on query answering. Then,
in Section 6.3, we provide our query rewriting algorithms for OBDSs systems equipped with
DL-LiteR or DL-LiteF ontologies.

6.1 Ontology-based document spanning Framework

In this section we present our framework for coupling documents to ontologies, which we call
Ontology-based document spanning (OBDS) framework. In the last part of the section, we also
describe the problem of query processing in OBDS, which we will then study in depth in the
next sections of this chapter.

Before delving into the details of the framework, we discuss how to deal with the following
problem: when mapping documents to ontologies, it is likely that the text does not directly
contain the identifiers that are used at the ontology level to denote the objects that are instances
of the predicates of the ontology (in other terms, URI identifying entities may not be contained
explicitly in the documents). Rather, the strings that are extracted from the document should
more correctly interpreted as values. Our basic idea to deal with this problem is to use the same
technique adopted in OBDA to construct entities from values, that is, consider object identifiers
formed by (logic) terms built though the string values extracted from the documents [176]. To
formally describe this mechanism we recall the notions of object term and variable term. An

90 6. Linking Text Documents to Ontologies

object term has the form f(~d) where ~d is an m-tuple of either constants or variables and f is a
function symbols of arity m. If ~d does not contain constants, f(~d) is called variable object term.
If instead ~d is a tuple of only constants, f(~d) is called ground object term.

We now turn to the framework definition. The three ingredients for an OBDS system are
the ontology, a set of extraction assertions, and a source text document.

Definition 6.1. An OBDS System Y is a pair 〈T ,R〉, where

• T is a DL TBox.

• R is a set of extraction assertions of the form

P (~x) Ψ(~x) (6.1)

where

– P (~x) (the left-hand side of the assertion) is a [[RGX{∪,π,on,ζ=}]]-spanner.

– Ψ(~x) (the right-hand side of the assertion) is a CQ1 over T with free variables in
~x, possibly using variable object terms f(~w) , such that ~w ⊆ ~x, as arguments of its
atoms. Note that Ψ(~x) may contain also existentially quantified variables.

In the following, when the TBox of an OBDS system Y is specified in a DL language L we
say that Y is an L OBDS system.

Example 6.1. Let Y = 〈T ,R〉 be an OBDS system where T is as in Example 5.1, and let
[[ρprof]] and [[γteaches]] be two spanners, where [[ρprof]] is as defined in Example 5.6, whereas the
regex formula representing [[γteaches]] is:

γteaches = (ε ∨ (Σ∗·_))·x2{Σ+}· (_· taught·_)· y2{Σ+}· ((. ∨_)·Σ∗)

i.e., a regex assigning to x2 the words before the word taught, and to y2 the words after taught.
The set of extraction assertions R is as follows:

m1 : [[ρprof]](x1) Professor(prof(x1))
m2 : [[γteaches]](x2, y2) teaches(prof(x2), course(y2))

Notice that both prof and course are function symbols of arity 1 used to construct entities
from the string returned by the spanners. �

1In extraction assertions we consider CQs of the form (5.1) to be simply written as ∃~y.φ(~x, ~y). Notice that the
right-hand side of extraction assertions have the same form of the right-hand side of mapping assertions of OBDA
systems (cf. Equation (5.3))

6.1 Ontology-based document spanning Framework 91

The semantics of an OBDS system Y = 〈T ,R〉 is defined with respect to a document Doc.
Given one such document, an interpretation I is a model for Y with respect to Doc if:

• I is a model for T , and

• for each extraction rule of the form (6.1) in R, (Ψ(Docµ(x1), . . . ,Docµ(xn)))I evaluates to
true in I for each µ ∈ eval(P,Doc).

We use Mod(Y,Doc) to denote the set of models of Y with respect to Doc. The notion
of entailment naturally extends to OBDS systems, i.e., given a sentence ψ we write that
〈Y,Doc〉 |= ψ if ψI evaluates to true in every I ∈ Mod(Y,Doc).

In a way similar to what happens for mappings in the context of data integration [146] and
OBDA, we can have two types of extraction assertions, i.e., GAV and GLAV. GLAV assertions
are exactly of the kind we discussed so far. Instead, in a GAV extraction assertion there are
no existentially quantified variables in its right-hand side. In this case, Ψ(~x) in assertions of
type (6.1) is in the form p1(~x1) ∧ . . . ∧ pk(~xk), with ∪ki=1~xi = ~x. It is easy to see that a GAV
extraction assertion is equivalent to the set of following assertions:

P (~x1) p1(~x1)
. . .

P (~xk) pk(~xk),

that is, the right-hand side of each assertion is a single-atom query without existential variables.
Therefore, from now on, we always assume that GAV extraction assertions have the form above
(unless otherwise specified).

We conclude this section by talking about query answering, which is the task of computing
the certain answers to a query posed on the ontology of the OBDS system.

Definition 6.2. Let Y = 〈T ,R〉 be an OBDS system, let q be a query, and let Doc be a
document. A tuple of constants and ground object terms ~t is a certain answer to q with respect
to Y and Doc if for every model I ∈ Mod(Y,Doc) it holds that (q(~t))I evaluates to true in I2.

The set of certain answerts to q with respect to Y and Doc is denoted by cert(q,Y,Doc).

For example, the set of the certain answers to the query {x | Person(x)} in the OBDS system
Y of Example 6.1 with respect to the document Docex in Figure 5.1 is {prof(Einstein)}.

2(q(~t))I is the interpretation in I of the sentence q(~t), which possibly contains ground object terms. Each
such term f(~c) is interpreted exactly as a constant, i.e., (f(~c))I ∈ ∆I and no two different terms are interpreted
with the same object in ∆I (i.e., we adopt the unique name assumption on terms, too).

92 6. Linking Text Documents to Ontologies

6.2 Complexity of query answering in OBDS systems

To establish computational complexity of query answering in our framework we show how to
reduce this problem to query answering in an OBDA system.

Intuitively, given an OBDS system Y = 〈T ,R〉 and a document Doc, we can construct an
OBDA system Ξ = 〈T ,M,S〉 and a source database DB for Ξ such that:

• T is the same TBox of Y;

• S is a source schema which contains a relation schema TP for each spanner P occurring in
R, such that the arity of TP coincides with the number of variables in SVars(P) (in other
terms, S is the schema “produced” by the spanners in R);

• M is a mapping containing an assertion m for each extraction assertion r in R, such that
m and r have the same right-hand side, and, let P be spanner of r such that |SVars(P)|
is n, the left-hand side of m is the query TP (x1, . . . , xn) (in other terms, M contains
the same assertions of R, modulo a substitution of the spanners with the corresponding
relation symbol in S);

• DB is an S-database obtained by evaluating each spanner in R over the document Doc,
which returns tuples of spans, and by extracting the substrings of Doc identified by such
spans.

In Figure 6.1, we give an algorithm, called obds2obda, that taken as input a set of extraction
assertions R returnsM, S, and DB as described above.

Algorithm obds2obda
Input: A set of extraction assertions R, a document DB
Output: A mappingM, a relational schema S and a relational database DB
begin

S ← ∅;
DB← ∅;
M← ∅;
for each r ∈ R, where r = P (~x) Ψ(~x), do

S ← S ∪ {TP | such that TP is a fresh relation schema of the same arity of P};
DB← DB ∪ {TP (Docµ(x1), . . . ,Docµ(xn)) | µ ∈ eval(P,Doc)};
M←M∪ {TP (~x) Ψ(~x)};

returnM, S, and DB
end

Figure 6.1. The obds2obda(R,Doc) algorithm

The following lemma shows the semantic relation between an OBDS system and the corre-
sponding OBDA system constructed with the algorithm obds2obda.

6.2 Complexity of query answering in OBDS systems 93

Lemma 6.1. Let E = 〈T ,R〉 be Given an OBDS system and Doc be a document. Let M,
S and DB be respectively the mapping, the relational schema, and the database returned by
obds2obda(R,Doc), and let Ξ = 〈T ,M,S〉 be an OBDA system. Then, Mod(E ,Doc) =
Mod(Ξ,DB).

Proof. Let us assume that there exists I ∈ Mod(Y,Doc) such that I 6∈ Mod(Ξ,DB). Since I
is a model for Y with respect to Doc, then I satisfies T . Thus, if I is not a model of Ξ with
respect to DB, I does not satisfyM. This means that there must be an assertion Φ(~x) Ψ(~x)
belonging toM such that there exists a tuple of constants ~c in the evaluation of Φ(~x) over DB for
which (Ψ(~c))I evaluates to false in I. However, by construction of DB, Φ(~x) = TP (~x), and every
tuple ~c is such that ~c = (Docµ(x1), . . . ,Docµ(xn)) for some µ ∈ eval(P,Doc), and since I satisfies
R (by hypothesis), it holds that (Ψ(~c))I evaluates to true in I. This leads to a contradiction
and thus shows that Mod(Y,Doc) ⊆ Mod(Ξ,DB). The fact that Mod(Ξ,DB) ⊆ Mod(Y,Doc)
can be proved in an analogous way, thus finally showing the thesis.

The theorem below follows from Lemma 6.1 and the fact that computing the certain answers
to a CQ over an OBDA system whose TBox is specified in either DL-LiteR or DL-LiteF is in
AC0 in data complexity [46].

Theorem 6.1. Let Y = 〈T ,R〉 be either a DL-LiteR or DL-LiteF OBDS system, R be a set
of GLAV extraction assertions, Doc be a document, and q be a CQ over Y. Then computing
cert(q, E ,DB) can be solved in time polynomial in the size of DB.

Proof. From Lemma 6.1 it follows that cert(q,Y,Doc) = cert(q,Ξ,DB), where Ξ = 〈T ,S,M〉,
andM, S and DB are returned by obds2obda(R,Doc). Thus the data complexity of computing
cert(q,Y,Doc) is equal to the execution cost of obds2obda, with respect to the input document
Doc, and the cost of computing cert(q,Ξ,DB). It is also easy to verify that obds2obda runs in
polynomial time in the size of Doc. Indeed, the only steps of obds2obda that depend on Doc
concern with the construction of DB, which is obtained by the evaluation of all the spanners in
R over Doc, and the subsequent extraction of the substrings of Doc identified by the spans
returned by such evaluations, which clearly are tasks polynomial in Doc (see also [86]). As
for the cost of computing cert(q,Ξ,DB), we recall that conjunctive query answering in OBDA
systems having either DL-LiteR or DL-LiteF TBoxes and GAV mappings is in AC0 in data
complexity [176]. This result extends also to GLAV mappings, for DL-LiteR TBoxes, as shown
in [74]. When mappings are GLAV and TBoxes are in DL-LiteF the complexity rises to PTime,
which follows from the results in [82] and [46].

Thus, in all cases the problem can be solved in time polynomial in the size of Doc.

94 6. Linking Text Documents to Ontologies

Obviously, since DL-Litecore, DL-LiteRDFS , and DL-Lite¬RDFS are languages contained in
DL-LiteR, query answering over OBDS systems where the TBox is expressed in one of the
previous logics is polynomial in the size of Doc.

We notice that the above technique that reduces query answering over OBDS systems to
query answering over OBDA systems is obviously general and can be used also when the TBox
is specified in other DL languages. In all cases, however, we need to pay the cost of constructing
a source database for the OBDA system Ξ by evaluating the spanners in R over the document
Doc (which is polynomial).

From practical perspective, however, the approach of “materializing” the result of spanner
evaluation may have some drawbacks. Indeed, the source document is independent from the
ontology, and thus it may happen that, during the lifetime of an OBDS system, its content
is modified (in other terms, the system can be coupled with a new document, still using the
same extraction assertions). This would clearly require to set up a mechanism for keeping the
database created via spanner execution up-to-date with respect to the document “evolution”.
Furthermore, this is not in the spirit of virtual data integration, which is typically performed
through OBDA systems. To overcome such problems, in the next section we propose a different
approach to query answering, which we base on query rewriting.

6.3 Query Answering via Query Rewriting in DL-Lite

In this section we study query rewriting over OBDS systems, i.e., how to answer a CQ q posed
over one such system Y by transforming q into a spanner whose evaluation over an underlying
document Doc returns the certain answers to q in Y with respect to Doc.

We start by considering OBDS systems equipped with GAV extraction assertions, and show
that, in this case, CQ answering in both DL-LiteR and DL-LiteF OBDS systems is reducible to
the evaluation of a [[RGX{∪,π,on,ζ=}]]-spanner over a document Doc, i.e., a spanner of the same
expressiveness of those allowed in the extraction assertions.

Then we tackle the general case of GLAV extraction assertions. For this setting, we show
that the above result still holds for DL-LiteR (and its fragments) OBDS systems, and actually,
we can use the same technique of the GAV case, modulo an easy transformation of the extraction
assertions. We also show that, instead, this technique does not work for DL-LiteF OBDS
systems. For this case, we envisage that input queries should be rewritten in an algebra over
regex formulas allowing for recursion, i.e., that allows for expressing spanners that go beyond
[[RGX{∪,π,on,ζ=}]] (e.g. a spanner in RGXlog [202]).

6.3 Query Answering via Query Rewriting in DL-Lite 95

6.3.1 GAV Extraction Assertions

Given a GAV DL-LiteR or DL-LiteF OBDS system Y = 〈T ,R〉 and a query q over Y , we rewrite
q in three steps, which we call rewriting based on the ontology, rewriting based on the extraction
assertions and reformulation into document spanners. The first step is aimed at compiling the
TBox into the query. The second is aimed at rewriting the query obtained in the first step
(which is still a query expressed over the ontology) according to the assertions in R. The result
produced at this step is a set U of queries, having an “intermediate syntax” between CQs and
spanners in [[RGX{∪,π,on,ζ=}]]. The final step transforms the queries in U into document spanners
in the class [[RGX{∪,π,on,ζ=}]].

Rewriting based on the ontology. For the first step we adopt the algorithm PerfectRef presented
in [46], which we have briefly described in Sec. 5.2.1.

Rewriting based on the extraction assertions. The second step is through an unfolding method,
similar to the one described in [176]. Roughly, the unfolding procedure substitutes, in all possible
ways, each atom α in each query returned by PerfectRef with the spanners occurring in the
left-hand side of extraction assertions referring to the predicate occurring in α. To this aim, we
use the procedure Unfolding, which takes as input a UCQ Q and a set of extraction assertions
R. This procedure, for each CQ q ∈ Q, each atom pi(~ti) in q (where ~ti is a tuple of terms, i.e.,
variables and/or constants), and each extraction assertion P (~vi) pi(~vi), computes the most
general unifier σ between pi(~ti) and pi(~vi), and, if such a σ exists, substitutes pi(~ti) with P (~vi)
and applies σ to the obtained formula. Note that only queries having all atoms that unify with
at least one extraction assertion are completely unfolded and returned by Unfolding. After this
step, the returned set U contains queries of the form {~t | ∃~y1, . . . , ~yn.P1(~t1, ~y1)∧ · · ·∧Pn(~tn, ~yn)},
where the target list ~t may contain variables, constants, and object terms3, each Pi is a spanner,
each ~yi is a (possibly empty) sequence of variables, and each ~ti is a (possibly empty) sequence of
variables occurring also in ~t. An example of unfolding is given in Example 6.2.

Reformulation into document spanners. The last step is carried out by the Transform algorithm.
Roughly speaking, such an algorithm transforms the body of each query f ∈ U into a document
spanner in [[RGX{∪,π,on,ζ=}]], and returns this spanner together with the target list of f , suitably
modified on the basis of certain variable substitutions needed for the transformation. In
particular, Transform converts each join between values (expressed by multiple occurrences of a
variable in the body of f) and each selection (specified through the occurrence of a constant
in the body of f) into a Cartesian product between spanners (i.e., a on between spanners
with no common variables), to which a string selection (i.e., ζ=) is applied. More precisely,

3With a little abuse, we continue to call ~t target list, even though it does not contain only variables (as defined
in Sec. 5.2.1).

96 6. Linking Text Documents to Ontologies

Transform operates in three steps. First of all, it substitutes each constant c occurring in f

with a fresh (existentially quantified) variable, say w, and adds to the conjunction in f the
atom Pc(w), where Pc = [[Σ∗·w{c}·Σ∗]], i.e., Pc is the spanner represented by a regex formula
that assigns to the variable w only the spans matching with the constant c. For example,
given the query f̂ = {y | ∃x.P1(x, y) ∧ P2(y, c)}, Transform, in its first step, reformulates f̂ into
f̂ ′ = {y | ∃x,w.P1(x, y)∧P2(y, w)∧Pc(w)}. In the second step, for each variable z that appears
more than once in the query body, Transform substitutes each occurrence of z with a fresh variable,
and adds to the query body a conjunction of equalities specifying that all such fresh variables
are equal to one another. If z occurs in the target list (as free variable or as argument of object
terms), it is substituted with any of the newly introduced variables. In our ongoing example, f̂ ′

is reformulated into f̂ ′′ = {y1 | ∃x, y2, w1, w2.P1(x, y1)∧P2(y2, w1)∧Pc(w2)∧y1 = y2∧w1 = w2}.
In its third step, Transform iteratively applies the following rule, as long as it is applicable: let f ′′

be the query computed after the second step of Transform, let β be a conjunction of atoms of the
from α1 ∧ α2 ∧ x = y occurring in f ′′, such that x occurs in α1 and y occurs in α2, substitute β
in f ′′ with ζ=

x,y(α1 on α2)4. Finally, Transform adds a projection (i.e., π) to the query in order to
project out only the variables occurring in the target list of the query, eliminates the existential
quantification to obtain a syntactically correct span representation, and returns both the target
list and the computed spanner. In our example, the body of f̂ ′′ is thus finally transformed
into πy1(ζ=

y1,y2(P1(x, y1) on (ζ=
w1,w2(P2(y2, w1) on Pc(w2))))), whereas the target list returned by

Transform is simply constituted by the variable y5.

The rewriting algorithm for the GAV case, which put together the three functions we have
just described is given below. A complete example of the entire rewriting process is given in
Example 6.2 (see Eq. 6.3).

4Note that, except for the first iteration, in subsequent applications of the rule alpha1 and α2 can be
sub-formulas computed in previous iterations.

5In this simple example, Transform could even not explicitly return the target list, but in general the target list
conveys information crucial to construct object terms that may occur in the certain answers (see Example 6.2).

6.3 Query Answering via Query Rewriting in DL-Lite 97

Algorithm OBDS_Rewriting(Y, q)
Input: OBDS Y = 〈T ,R〉, such that T is either a DL-LiteR or a DL-LiteF TBox

and R is a set of GAV extraction assertions,
CQ q

Output: Sequence of terms T (i.e., a target list),
Document spanner P ∈ [[RGX{∪,π,on,ζ=}]]

begin
Q = PerfectRef(T , q)
U = Unfolding(Q,R)
(T, P) = Transform(U)
return (T, P)

end

Example 6.2. Consider the setting of Example 6.1, and the following query q that asks for the
persons who teach a course:

q = {x | ∃y. Person(x) ∧ teaches(x, y) ∧ Course(y)} (6.2)

as shown in Example 5.2, the result of PerfectRef(T , q) is the set Q containing the following
CQs:

q : {x | ∃y.Person(x) ∧ teaches(x, y) ∧ Course(y)}
q1 : {x | ∃y.Professor(x) ∧ teaches(x, y) ∧ Course(y)}
q2 : {x | ∃y.Person(x) ∧ teaches(x, y)}
q3 : {x | ∃y.Professor(x) ∧ teaches(x, y)}.

After the execution of PerfectRef, Unfolding(Q,R) unfolds the queries in Q by using the
extraction assertions in R. In our example only q3 can be completely unfolded.

For q3, the atom Professor(x) unifies with the atom Professor(prof(x1)) in the extraction
assertion m1 through the unifier σ′ = {x→ prof(x1)}, and then the atom σ′(teaches(x, y)) =
teaches(prof(x1), y) unifies with the atom teaches(prof(x2), course(y2)) in the extraction
assertion m2 with the unifier σ′′ = {x1 → x2, y → course(y2)}. The unfolding will thus produce
the following query6:

{prof(x2) | ∃y2.([[ρprof]](x2) ∧ [[γteaches]](x2, y2))} (6.3)

6Note that the application of the unifiers actually renames the variables used in the spanners.

98 6. Linking Text Documents to Ontologies

In the above query (6.3), we are slightly abusing the notation, since, after the unfolding, the
variables denote spans, and not directly the strings we are looking for. Thus, when we write
prof(x2) we in fact mean prof(Docx2), where Doc denotes the underlying text document. In
other words, prof(x2) indicates that the answer to the query consists of ground object terms
with function symbol prof and as argument the strings identified by the spans returned through
x2, when the spanner represented by the regex formula in (the body of) the query (6.3) is
evaluated.

Afterwards, the algorithm Transform(U) rewrites the above query in the spanner syntax
in order to obtain a document spanner ready to be evaluated over the underlying document.
Transform(U) first produces the following query, where no variable occurs more than once (see
the description of the second step of Transform):

{prof(z1) | ∃y2, z2.([[ρprof]](z1) ∧ [[γteaches]](z2, y2) ∧ z1 = z2)} (6.4)

Then, it produces a representation of (the body of) the above query in the [[RGX{∪,π,on,ζ=}]]
syntax. More precisely, it computes the spanner, which we denote [[ρtransf]], defined as follows:

[[ρtransf]] = πz1(ζ=
z1,z2([[ρprof]] on [[γteaches]])) (6.5)

The above spanner is returned together with the target list T = prof(z1). Note that, in Eq. (6.5),
[[ρprof]] and [[γteaches]] are the spanners as defined in Examples 5.5 and 5.6, but in which the
variables have been renamed by the functions Unfolding and Transform. More in detail, the
original variable x1 in [[ρprof]] is now z1, and the original variable x2 of [[γteaches]] is now z2. �

We show in the following that the algorithm OBDS_Rewriting can be used to obtain the
certain answers to a CQ q. It is indeed sufficient to evaluate over the underlying document the
spanner returned by the algorithm, extract the strings corresponding to the spans produced
by such an evaluation, and use them to bind the variables in the target list returned by
OBDS_Rewriting. To formalize this last aspect, we need to introduce the function res. Given a
document Doc, a spanner P such that SVars(P) = V = v1, . . . , vm, a target list T = t1, . . . , tn,
such that set of variables occurring in T coincides with V , and given a (V,Doc)-tuple µ ∈
eval(P,Doc), we define res(T, µ) as the function that returns a tuple of constants and ground
object terms c1, . . . , cn such that each ci is obtained as follows:

• if ti is a constant, ci = ti;

• if ti = vj , where 1 ≤ j ≤ m, ci = Docµ(vj);

• if ti = fi(vj1 , . . . , vjk), where 1 ≤ ji ≤ m for i ∈ {1, . . . , k}, ci = fi(Docµ(vj1), . . . ,Docµ(vjk)).

6.3 Query Answering via Query Rewriting in DL-Lite 99

We are now ready to provide the main result of this section.

Theorem 6.2. Let Y = 〈T ,R〉 be either a DL-LiteR or DL-LiteF OBDS system, such that R
is a set of GAV extraction assertions, let Doc be a document, let q be a CQ over Y, and let
T and P be the target list and spanner returned by OBDS_Rewriting(Y, q), respectively. Then,
cert(q,Y,Doc) =

⋃
µ∈eval(P,Doc) res(T, µ). Furthermore, P ∈ [[RGX{∪,π,on,ζ=}]].

Proof. The result follows from the following facts: (i) PerfectRef(q, T) returns the perfect
rewriting of a CQ q with respect to a DL-LiteR or DL-LiteF TBox T , i.e., given an ABox A,
the certain answers to q over 〈T ,A〉 coincide with the evaluation of q over A, seen as a database
[46]; (ii) the soundness of the procedure Unfolding to rewrite queries in GAV OBDA systems, as
shown in [176], and (iii) the correctness of the algorithm Transform, which performs a purely
syntactic/symbolic conversion. As for this last point, Transform simply converts CQs whose
atoms use (symbols denoting) document spanners as predicates, into spanners represented in
[[RGX{∪,π,on,ζ=}]]. It is not difficult to see that, for each CQ q in U , the first and second step of
Transform(U) produce a CQ query that is equivalent to q. Then the algorithm simply turns joins
in the CQ (which are expressed through equalities between variables) into Cartesian products
between spanners (i.e., natural joins between spanners with no common variables), which are in
fact expressed over spans. The semantics of the joins between values is then obtained through
the string-selection operator applied to the result of the natural joins between spans. As a
final step, the algorithm simply re-expresses the projection specified in the query through the
target list by using the projection operator π. It is then easy to see that T and P respect the
pre-conditions of the function res, i.e., that the set of variables occurring in T coincides with
SVars(P). Then, by construction we get that P belongs to the class [[RGX{∪,π,on,ζ=}]].

Obviously, the results of Theorem 6.2 also apply to OBDS systems where the TBox is
expressed in DL-Litecore, DL-LiteRDFS , or DL-Lite¬RDFS .

Example 6.3. In continuation of Example 6.2, we execute eval([[ρtransf]],Docex), where Docex

is the document in Fig. 5.1, and we obtain the span [11, 19〉. Then, cert(q,Y,Docex) =
{prof(Einstein)}. �

6.3.2 GLAV Extraction Assertions

We now consider the case in which we do not pose any restriction on the extraction assertions,
i.e., they are GLAV. We first consider DL-LiteR OBDS systems, and show that one such system
Y with GLAV extraction assertions can be transformed into a system Y ′ having GAV extraction
assertions only and an analogous behaviour for query answering. That is, the set of certain
answers to a CQ q in Y with respect to a document Doc coincides with the set of certain

100 6. Linking Text Documents to Ontologies

answers to q in Y ′ with respect to Doc. To this aim we exploit a transformation technique from
GLAV to GAV OBDA systems presented in [74]. For the sake of completeness, we describe
below the transformation from [74] (slightly adapted to the OBDS setting).

First thing, we recall that a GLAV extraction assertion r has the form P (~x) Ψ(~x) where
Ψ(~x) is a CQ, i.e., an expression of the form ∃~y.φ(~x, ~y), and P (~x) is a document spanner. Given
an OBDS system Y = 〈T ,R〉, we can thus turn it into a system having only GAV assertions by
transforming each assertion r ∈ R as follows:

Substituting each yi in the right-hand side of r with the term fi(~x), such that fi is a fresh
function symbol, i.e., it is different from all function symbols used in the assertions in R,
it is different from all other fresh function symbols used to transform other extraction
assertions, and it is such that fi 6= fj , for each i, j ∈ 1, . . . , n, where n is the number of
variables in ~y;

We denote with τ(r) the GAV extraction assertion obtained from a GLAV assertion r through the
above procedure. Given a set of GLAV extraction assertions R, we define τ(R) = {τ(r) | r ∈ R}.
The following theorem rephrases in the OBDS setting the analogous theorem given in [74] for
OBDA systems.

Theorem 6.3. Let Y = 〈T ,R〉 be a DL-LiteR OBDS system, let q be a CQ, let Doc be a
document, and let Yτ = 〈T , τ(R)〉. Then cert(q,Y,Doc) = cert(q,Yτ ,Doc).

With the above result in place we are thus able to compute the certain answers to a conjunctive
query q in a general (i.e., GLAV) OBDS system Y = 〈T ,R〉 when the TBox is specified in
DL-LiteR. It is indeed sufficient to apply the transformation τ to the set of extraction assertions
R, thus obtaining Yτ = 〈T , τ(R)〉, and then proceed with the query rewriting method described
in Sec. 6.3.1, i.e., execute OBDS_Rewriting(Yτ , q), modulo a trivial split of each extraction
assertion in such a way that the resulting set of extraction assertions contains only assertions
with a single atom query in their right-hand side (as described in Sec. 6.1). Certain answers are
thus obtained through the evaluation over the underlying document of the spanner returned by
OBDS_Rewriting(Yτ , q) and the use of the coupled target list that this algorithm also returns
(see Theorem 6.2), provided that tuples containing object terms constructed with the fresh
function symbols introduced by the transformation τ are excluded from the answer (these tuples
are indeed not certain answers, because the object terms produced by τ are denoting only the
existence of individuals, which may be different in the various models).

Let us now consider DL-LiteF OBDS systems. According to [74], Theorem 6.3 does no longer
hold when the TBox is specified in that logic. This is related to the fact that functionalities
present in DL-LiteF OBDS systems (or OBDA systems) induce equalities on existential variables

6.4 Final Remarks 101

which can never be satisfied by object terms introduced by the transformation τ due to the
Unique Name Assumption adopted on DL-LiteF ontologies.

For this case, we think that input queries should be rewritten in spanners specified in an
algebra over regex formulas allowing for recursion, in the same spirit of rewriting algorithms for
answering conjunctive queries in data integration systems in the presence of (G)LAV mappings,
such as the one proposed in [82].

6.4 Final Remarks

This chapter introduced the notion of Ontology-based Document Spanning systems, which is
inspired by the well-known OBDA framework, but allows to link ontologies to text documents.
We studied the problem of query answering on OBDS systems in different settings, and provided
algorithms and complexity results. Properly, we have shown that for both DL-LiteR and
DL-LiteF OBDS systems with GLAV extraction assertions having [[RGX{∪,π,on,ζ=}]]-spanners
in the left-hand side, answering conjunctive queries is polynomial in data complexity (i.e., in
the size of the documents). Moreover, we have provided a query rewriting algorithm, namely
OBDS_Rewriting, that allows us to reduce conjunctive query answering to the evaluation of a
spanner of the same expressiveness as those allowed in the extraction assertions. This algorithm
is sound and complete for DL-LiteR OBDS systems with GLAV extraction assertions and for
DL-LiteF systems and GAV extraction assertions.

The above results obviously apply also to OBDS systems whose TBox is expressed in
sublanguages of DL-LiteR and DL-LiteF , such as DL-Litecore, DL-LiteRDFS and DL-Lite¬RDFS .
Interestingly, it is straightforward to show that Theorems 6.1 and 6.2 are also valid for DL-LiteA
[177], an extension of both DL-LiteF and DL-LiteR with the possibility of using attributes (i.e.,
dataproperties in OWL jargon), and of expressing functionalities on roles and attributes together
with inclusions between roles and attributes, provided that a certain syntactic restriction is
satisfied (intuitively, functional roles or attributes cannot occur in the right-hand side of positive
inclusions between roles or attributes). The extension to attributes clearly says that the above
theorems also hold for TBoxes specified in OWL 2 QL.

The question remains about the feasibility of this approach from a practical point of view.
We will deal with this topic in the next chapter, where we integrate two state-of-the-art industrial
solutions to realize a tool for OBDS system management and query answering over them.

103

Chapter 7

Mastro System-T

In this chapter we present Mastro System-T, a tool for ontology-based IE developed within
this thesis. Mastro System-T is designed according to the OBDS framework described in
Chapter 6, and is able to manage OBDS systems whose TBox is expressed in one of the main
DL-Lite logics (including DL-LiteA and OWL 2 QL), and extraction assertions are GAV. It can
process conjunctive queries specified over OBDS systems through a variant of the algorithm
OBDS_Rewriting presented in Section 6.3.1.

As it can be guessed from its name, Mastro System-T has its foundations on two existing
tools, namely SystemT1, a rule-based IE system by IBM [56], and Mastro2, a state-of-the-art
OBDA engine from Sapienza University and OBDA Systems [76]. Indeed, our tool integrates the
extraction abilities of SystemT and the query rewriting services of Mastro, by leveraging the
modular nature of the OBDS framework, and the possibility it offers, for the DL-Lite case, to
reduce conjunctive query answering to the execution of a spanner of the class [[RGX{∪,π,on,ζ=}]].
As said at the end of Section 5.5, spanners of this class can be expressed through AQL, the core
language allowed in SystemT to express information extractors. Therefore, execution of such
extractors is actually demanded by Mastro System-T to a standard SystemT installation.

The thesis contributions reported in this chapter can be summarized as follows:

• We present Mastro System-T, describing its architecture and the components that
realize its query answering process.

• Through the support of an experimentation within a real-world financial application
domain, we show the benefits of the OBDS approach from a practical perspective.

• We make a performance comparison between Mastro System-T and CoreNLP. Namely,
we re-examine the CONSOB scenario seen in Chapter 4, and use Mastro System-T to

1https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
2https://www.obdasystems.com/mastro

https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://www.obdasystems.com/mastro

104 7. Mastro System-T

perform the information extraction tasks.

As mentioned above, we will discuss two different experimentations. In the first one we
performed extraction over a set of real-world financial text documents from a context in which
we believe our approach can bring several benefits. Specifically, we considered the Electronic
Data Gathering, Analysis and Retrieval system (EDGAR)3, which is a U.S. government open
repository of data about companies who are required by law to file information with the Securities
and Exchange Commission (SEC). EDGAR, among its objectives, aims to increase transparency
of the security market and to favour the sharing of public company’s financial information. In
this respect, ontologies can play a crucial role, for their ability of supporting data interpretation
and sharing. At the same time, EDGAR contains terabyte of data, mostly unstructured and
subject to continuous changes (about 3,000 filings per day). For these reasons it is unfeasible to
process them manually. Thus, our approach can bring great benefits to the EDGAR system, for
its ability of enabling automatic extraction of structured information in front to on-the-fly user
requests and exploiting reasoning over ontologies to retrieve complete answers.

To this aim, we initialized Mastro System-T providing an ad-hoc ontology written for
this domain and a series of extractors to populate the ontology. We finally selected a set of
queries to evaluate the effectiveness of our approach and demonstrate the advantages that can
be achieved in this real-world financial application.

In particular, our experiments show that reasoning over the ontology is crucial to increase
the recall in IE, properly +9.8% from the baseline, since reasoning over the ontology allows us
to trigger extraction assertions that would be overlooked in query answering without reasoning.

In the second experimentation, we mainly aimed at evaluating Mastro System-T in
terms of execution time. For this purpose, we carried out some more extensive tests related
to the CONSOB scenario (see also Section 4.1). Specifically, by selecting a set of user queries,
posed over the CONSOB ontology, and measuring their execution time, we show how Mastro
System-T significantly increases the speed of the information extraction process compared to
the CoreNLP-based implementation described in Chapter 4.

The rest of the chapter is organized as follows:

• In Section 7.1, we briefly describe the Mastro tool for OBDA.

• In Section 7.2, we introduce SystemT, whose theoretical foundation lies in the framework
of Document Spanners [123], summarized in Section 5.5. In this chapter, we in particular
focus on the Annotation Query Language of SystemT.

• In Section 7.3, we present the novel Mastro System-T tool, introducing its architecture
and its main components, and showing the query answering workflow.

3https://www.sec.gov/edgar/searchedgar/companysearch.html

https://www.sec.gov/edgar/searchedgar/companysearch.html

7.1 Mastro 105

• In Section 7.4, we show an application of Mastro System-T over the financial domain
EDGAR. Then, we discuss the more extensive experimentation we carried out on the
CONSOB domain.

7.1 Mastro

Mastro is a Java tool for ontology-based data access formerly developed at Sapienza Università
di Roma, and currently carried on by OBDA Systems s.r.l., a Sapienza start-up company.

Mastro is able to manage OBDA systems (cf. Section 5.4) whose TBox is specified in one
of the DL-Lite languages or in OWL 2 QL, the OWL 2 counterpart of DL-LiteR. The mapping in
Mastro is given as a set of GAV assertions, which use object terms in their right-hand side (cf.
Section 5.4.1), and whose left-hand side contains SQL queries posed over a relational database,
managed by an external and autonomous DBMS. Several concrete syntaxes have been proposed
in the literature to express mappings. Mastro uses a proprietary one based on XML, but can
also take as input and export mappings written in the W3C standard R2RML syntax [164]. For
the sake of presentation, in this chapter we write mappings in a simplified syntax, according
to which the right-hand side of mapping assertions is given in terms of SPARQL basic graph
patterns (cf. Section 2.1.3) that make use of R2RML templates to construct object identifiers
(which correspond to object terms described in Section 6.1).

An example of OBDA specification managed by Mastro is provided below (the ontology is
given as a set of OWL 2 QL triples).

Example 7.1. Consider the following Mastro TBox:

θ1) :Company a owl:Class .
θ2) :PublicCompany a owl:Class .
θ3) :PrivateCompany a owl:Class .
θ4) :comp_name a owl:DataProperty .
θ5) :has_revenue a owl:DataProperty .
θ6) :PublicCompany rdf:subclassOf :Company .
θ7) :PrivateCompany rdf:subclassOf :Company .
θ8) :has_name rdf:domain :Company
θ9) :has_revenue rdf:domain :Company

In this ontology there are three classes :Company(θ1), :PublicCompany(θ2) and :PrivateCompany(θ2).
We have also two attributes :comp_name(θ4) and :has_revenue(θ4). θ6 and θ7 assert that a
:Company can be a :PrivateCompany or a :PrivateCompany. Finally θ8 and θ9 assert that the
attributes :comp_name and :has_revenue refer to the entities of the class :Company.

The external database to which the TBox is linked contains information on U.S. institutional
offices, gathered for simplicity in the following table:

106 7. Mastro System-T

TAB table
ID NAME REVENUE . . . TYPE

P1 McKinsey & Company $10.5 B . . . Private

P2 Bloomberg $12.5 B . . . Private

P3 Apple $274.2 B . . . Public

...

P341 IBM $5.6 B . . . Public

The linkage is done through two mapping assertions. The first one is:
SELECT TAB.ID as id, TAB.NAME as name,
TAB.REVENUE as rev

FROM TAB
WHERE TAB.TYPE = ‘Public’;

:{id}#ID a :PublicCompany,
:{id}#ID :has_name name,
:{id}#ID :has_revenue rev

The above mapping assertion virtually populates the class :PublicCompany and its attributes
:has_name and :has_revenue, by using the SQL query in the left-hand side. In the right-hand
side of the assertion, :{id}#ID is a template [73] used to specify how to construct objects from
the tuples of values retrieved by the SQL query. Intuitively, for every value assigned to id by the
SQL query, an object identifier is constructed by substituting {id} with the value in TAB.ID.

The second mapping assertion instead virtually populates the class :PrivateCompany:, as
described below:

SELECT TAB.ID as id, TAB.NAME as name,
TAB.REVENUE as rev

FROM TAB
WHERE TAB.TYPE = ‘Private’;

:{id}#ID a :PrivateCompany,
:{id}#ID :has_name name,
:{id}#ID :has_revenue rev

The main reasoning service in Mastro is query answering. Answering unions of conjunctive
queries over OBDA instances managed by Mastro is performed through a query rewriting
technique similar to the one described in Section 5.2.1, coupled with an unfolding step (in fact,
Mastro implements an optimized version of PerfectRef based on the Presto algorithm [184],
plus several additional optimizations aimed at reducing the size of the perfect reformulations it
compute).

We show the Mastro query answering process through the following example (UCQs taken
as input by Mastro are specified in SPARQL):

Example 7.2. Consider the following SPARQL query on the Mastro system in Example 7.1:

SELECT ?X

WHERE {

?X a :Company

}

7.2 SystemT 107

First of all Mastro translate the query into a union of SPARQL queries, reasoning on the fact that
each :PublicCompany and each :PrivateCompany is a :Company. Then, Mastro generates the following
SQL through an unfolding step based on the mapping specification.

SELECT TAB.ID as id

FROM TAB

WHERE TAB.TYPE = ’Public’

UNION

SELECT TAB.ID as id

FROM TAB

WHERE TAB.TYPE = ’Private’

The tuples resulting from the evaluation of this query on the database are then translated, through
the templates, in entities that instantiate the ontology. In the end, Mastro returns the following result:

?x

:‘P1’#ID

:‘P2’#ID

:‘P3’#ID

...

:‘P341’#ID

For more documentation about Mastro, we refer the reader to [149, 62, 76, 42]

7.2 SystemT

Declarative Information Extraction explores the relationship between the extractors, i.e., rules
that produce tuples of spans (intervals of character indexes within the document), and their
manipulation using relational algebra operators [198] (see also the framework of document
spanners described in Section 5.5).

We recall that a span is a pair of indexes that identify sub-strings of a given document. For
example, given the string IBM Almaden, the spans [0, 3〉 and [4, 11〉 identify the substrings IBM
and Almaden, respectively. The extractors usually process the text via transducers (e.g., regular
expressions with capture variables or a dictionary lookup), and produce a set of spans. They
can be combined together using relational algebra operators (usually union, projection, and join)
to formulate new extractors.

108 7. Mastro System-T

The annotation query language (AQL), the language at the basis of SystemT [131, 56],
implements this idea by allowing to define extractors using a friendly declarative language with
SQL-like syntax. In addition to the classic relational algebra operators working over the spans,
SystemT allows to use operators specifically defined for IE tasks. These include:

• Regular Expression matcher. Given a regular expression, the matcher provides as output
the set of spans corresponding to the matches.

• Dictionary matcher. Given a dictionary consisting of a set of words or phrases, it produces
as output a span for each match of dictionary entries found in the text.

• Consolidate. It allows to choose how to handle match duplicates or overlapping spans.
This choice is generally made by deleting annotations or by merging the spans.

SystemT is highly optimized through both a mechanism to rewrite AQL extractors into smaller
ones and an execution plan made specifically for declarative information extraction.

We introduce the syntax of System-T through the following example of AQL Extractor.

Example 7.3. Consider the following document Doc:

The revenue of the company Apple grows fast.

The new CEO of the company IBM is Arvind Krishna

Now let’s consider the following AQL extractor

create dictionary Comp_dict as(‘company’);

create view View_Comp_prefix as
extract dictionary ‘Comp_dict’

on D.text as Comp_prefix
from _Document D;

create view ViewComp as
extract pattern (<I.Comp_prefix>) (<C.token>)

return group 0 as Comp
return group 1 as prefix
and group 2 as comp_name

from View_Comp_prefix I,
Generic_Export.token C;

This extractor is composed by two views, namely View_Comp_prefix and ViewComp. Each view
in AQL is responsible to map spans to variables. Specifically, View_Comp_prefix assigns to the
Comp_prefix variable all spans that match the word ‘company’, using the dictionary Comp_dict.
ViewComp uses the pattern (<I.Comp_prefix>) (<C.token>), built using the previous view,
that matches all the pairs of tokens where the first word is ‘company’. Then, ViewComp, through
a syntax for groups similar to the one of the POSIX regex, maps the full match of the pattern

7.3 Mastro System-T 109

to the variable Comp, the first group of the pattern(<I.Comp_prefix>) to the variable prefix,
and the second group of the pattern (<C.token>) to the variable comp_name.

The result of evaluation of the ViewComp over the document Doc is reported in the following
table:

Comp prefix comp_name
[19, 32〉 [19, 26〉 [27, 32〉
[60, 71〉 [60, 67〉 [68, 71〉

For more technical details about the architecture, the optimization, the syntax of AQL and
the theory behind SystemT, we refer the reader to [56] and [86].

7.3 Mastro System-T

Mastro System-T is a Java tool for OBDS developed within this thesis and enabled by a
joint study agreement between IBM Almaden and Sapienza University of Rome.

Mastro System-T leverages the results given in Chapter 6, and thus manages OBDS
systems in which the TBox is expressed in a DL-Lite logics (including OWL 2 QL) and the extraction
assertions are GAV. As said, under this setting, conjunctive query answering can be solved
through query rewriting (cf. the algorithm OBDS_Rewriting of Section 6.3).

Since Mastro System-T is based on Mastro, it also inherits from Mastro the concrete
syntax used for the definition of some of its components. In particular, UCQs issued by users are
encoded in SPARQL and the TBox is expressed through any of the standard OWL 2 syntaxes [161].
As for extraction assertions, their concrete syntax is very similar to the syntax used in Mastro
for the mapping. The main difference is that the body does no longer contain an SQL query
but rather an AQL extractor.

Example 7.4. Consider again the TBox defined in Example 7.1. The following one is an
example of extraction assertion which imports the view ViewComp of Example 7.3:

import view ViewComp from module m;
create view_Comp as

select GetText(C.comp_name) as name,
C.comp_name as n

from m.ViewComp C;

:{n}#ID a :Company,
:{n}#ID :has_name name

This assertion specifies how to generate instances of the class :Company and its attribute
:has_name starting from the spans returned by the AQL extractor evaluated on a given
document.

110 7. Mastro System-T

In the following we describe the architecture of our tool and the process of query answering
by rewriting implemented in Mastro System-T.

7.3.1 System Overview

The architecture of the tool is illustrated in Figure 7.1. We soon notice that whereas Mastro

Mastro System-T

System T

AQL Engine

Sparql
Query

Documents

Ontology

Extraction
Assertions

Query Manager

Ontology Manager

Extraction Assertions
Manger

System-T Interface

Q.A. Engine

Input GUI

SPARQL
Endpoint

Specification
Manager

Porjects
HUB

Figure 7.1. Architecture of Mastro System-T

System-T takes as input an OBDS specification (i.e., the Ontology and the extraction assertions),
as well as a user query, documents are instead given as input to an instance of SystemT, which
is external to Mastro System-T and suitably interfaced with it through a dedicated software
module (System-T Interface). Indeed, Mastro System-T does not directly manipulate the
source documents, but, for each user query, it produces the specification of the AQL extractors
that will be then executed by SystemT to obtain the spans from which to construct the query
answers, as described in more details later on. Ontology axioms are serialized in an internal
in-memory structure by the ‘Ontology Manager’ module. SPARQL queries are instead parsed and
managed by the ‘Query Manager’ module. Both components are based on the Apache Jena
framework4, and are indeed inherited by the system Mastro. Extraction assertions are encoded

4https://jena.apache.org/

https://jena.apache.org/

7.3 Mastro System-T 111

in a tailored concrete syntax and handled by the ‘Extraction Assertions Manager’.
Mastro System-T also provides a purpose-built graphical interface coded in Vue.js5 to

manage projects, inspect the specification, and query the system thought a SPARQL endpoint
(see Figure 7.2).

Figure 7.2. User Interface

The ‘QA Engine’ is the core component of Mastro System-T which implements the
query answering service offered by our tool. It is in turn composed by submodules devoted to
specific phases of the query answering process. Such modules, as well as the workflow for query
answering are described in more detail below.

7.3.2 Query Answering

Mastro System-T computes answers to user queries posed over the ontology by transforming
them into AQL extractors and delegating their execution to SystemT. With this approach
there is no need to apply every extraction assertion in the OBDS specification to the document
in order to materialize all the facts instantiating the ontology. Mastro System-T triggers only
the extraction assertions useful to generate the answers to the user query at hand and returns
always the most updated answer possible. This is particularly suited for dynamic scenarios,

5https://vuejs.org

https://vuejs.org

112 7. Mastro System-T

like the EDGAR one, where source documents change frequently and query answers cannot be
computed on the basis of outdated materializations.

In a nutshell, the query transformation process realized by the ‘QA Engine’ includes an
ontology-based query rewriting phase, and a further reformulation step that uses extraction
assertions to transform the query over the ontology into a set of extractors to be executed over
the text documents. The complete workflow is illustrated in Figure 7.3 and briefly explained in
the following.

Q.A. Engine

Sparql
Query

Documents

Ontology

Extraction
Assertions

Query Rewriter

SPARQL to AQLSpans to Ontology
Answer

AQL Query

System-T

Query
Answers

Spans

Figure 7.3. Query Answering Workflow

(Ontology-based) Query Rewriting. Given a SPARQL query q and a TBox T , the first step is
based on a compilation of T into q, so that after the rewriting the ontology can be disregarded
in the next query processing phases. This process is carried out by the module ‘Query Rewriter’
and the result is a UCQs. ‘Query Rewriter’ is in fact a module already existing in Mastro,
which we could reuse as is, by virtue of the modular nature of our query processing algorithm
(cf. Section 6.3). As already said, ontology-based query rewriting in Mastro (and thus in the
module ‘Query Rewriter’) is realized through an optimization of the PerfectRef algorithm called
Presto (see also Section 7.1).

Translation into AQL. The second step consists in translating the UCQs resulting from the
Query Rewriting phase into a set of AQL extractors. Roughly, the module ‘SPARQL to AQL’
substitutes, in all possible ways, each atom a in each query returned by the previous step with
the extractors occurring in the left-hand side of extraction assertions referring to the ontology
predicate occurring in a. This translation takes into account all possible selections and joins

7.4 Case Studies 113

inside the queries and transform them into string selections and join between spans, using the
special AQL predicate Equals. Notice that the module ‘SPARQL to AQL’ essentially implements
the Unfolding and Transform functions of the algorithm OBDS_Rewriting.

AQL extractor Evaluation. Now the AQL extractor is given as input to SystemT. The AQL
extractor goes through a series of optimization steps in order to increase its performance in
terms of execution speed. The results returned by SystemT is a set of tuples of spans, together
with the strings that they identify on the underlying document.

From Spans to Ontology answers. Given the set of spans and associated string values returned
by previous phase, the module ‘Span to Ontology answers’ computes the objects instantiating
the ontology by using the templates declared in the extraction assertions, and gives back the
answers to the user.

7.4 Case Studies

In this section we describe our experiments. We first talk about the one carried out on the
EDGAR scenario, and then we focus on the CONSOB one.

7.4.1 EDGAR

Electronic Data Gathering, Analysis, and Retrieval system (EDGAR) is a public platform where
companies acting in U.S. are required by law to enter a range of information for government
controls. EGARD is mainly composed by a large amount of raw text subject to significant
updates over time. Since human effort is not sufficient to process this amount of data, there
is the need for a mechanism that can automate the extraction phase by always providing the
most update information and allowing data sharing and standardization. To carry out our
experiments, we have designed a financial domain ontology tailored for the EDGAR system.

The ontology contains 75 classes, 56 object properties, 214 data properties, and 907 axioms.
Here we show a small excerpt of the ontology, built around the concept Company, and reported
in Figure 7.4 in Graphol. The figure shows 9 classes (concepts), 3 objectproperties (roles), and
3 dataproperties (attributes). In words, the ontology is saying that a company can be either
public or private. Also, investor, startup, and insider companies are private companies (and
therefore are companies), and are pairwise disjoint. Each company has a name (that is a string),
and a CEO, and can have a subsidiary or a competitor company. A CEO is always associated
to the company she/he directs, and is an Employee, which is a Person, and as such has a name
and a surname (two strings).

114 7. Mastro System-T

Figure 7.4. Ontology

As for the underlying dataset, we have selected 249 text documents6 containing data about
5 companies in the Fortune top 500, for a total dataset size of 250 MB.

We have written 30 extraction assertions linked to an equal number of ad-hoc AQL extractors.
Finally, in order to test the performance of our tool, with the main goal of highlighting the role
of reasoning in the extraction phase, we selected 3 simple but representative queries described
below.

The first query asks Mastro System-T to retrieve all the companies.

SELECT ?X WHERE {

?X a :Company}

For this query, we obtained the most interesting results, reported in Table 7.1, where we
give the values of precision and recall that we obtained by executing the query either without or
with reasoning, respectively, shown under the columns ‘Base’ and ‘Reasoning’. Values without
reasoning have been obtained by disabling the ontology-based query rewriting phase discussed
in Section 7.3.2. In this way, we did not include in the results answers inferred by virtue of the
axioms of the ontology, which has been thus considered in this case as a flat schema.

Base Reasoning Gap
Precision 81.82% 82.71% +0.89%
Recall 66.8% 76.26% +9.46%
F-Measure 73.59% 79.35% +5.76%

Table 7.1. Company query results

We note that the increase in recall in this case is due to the fact that the rewriting of the

6At the following https://www.sec.gov/Archives/edgar/data/51143/000104746918001117/a2233835z10-k.
htm, there is an example of document regarding the IBM Company

https://www.sec.gov/Archives/edgar/data/51143/000104746918001117/a2233835z10-k.htm
https://www.sec.gov/Archives/edgar/data/51143/000104746918001117/a2233835z10-k.htm

7.4 Case Studies 115

query is quite large, and includes, among other queries, also the queries

SELECT ?X WHERE {?X :has_competitors ?Y}

SELECT ?X WHERE {?X :has_subsidiary ?Y}

We could test that the extractors associated by the extraction assertions to the roles
:has_subsidary and :has_competitors perform particularly well in terms of amount of answers
retrieved, but also of precision, which remains almost the same as the base case.

We obtained a similar behaviour for the query

SELECT ?X WHERE {

?X :has_CEO ?Y}

This query aks for the individuals participating in the domain of the relationship :has_ceo.
The execution of the query without reasoning makes use only of the extractor connected to
:has_ceo, which in our dataset extracts only 5 individuals. By enabling the reasoning, the
number of extracted individuals increases to 2582.

The last query we show requests all the persons:

SELECT ?X WHERE {

?X a :Person}

In this case, the reasoning does not produces significant improvements, indeed we obtained
only the 0.1% increment in recall with respect to the base case. This is due to the fact that
the extractor mapped to the concept Person is already able to populate this class in an almost
complete manner. That is, it looks also for strings matching patterns suited to identify special
types of persons, i.e., those instantiating also (complex) classes subsumed by Person.

On the other hand, defining “complete extractors” means to manually encode in them the
reasoning that could be automatically done over the ontology, and this is clearly not always
possible. In particular, in our ontology, :Person has a less articulated hierarchy and connections
with other classes with respect to the class :Company, and this is why extraction assertions are
already able to directly provide almost all its instances.

7.4.2 CONSOB

In this part of the chapter we describe our second experiment, i.e., the one in which we have
used Mastro System-T for the CONSOB domain described in Chapter 4.

In order to compare the time performance of Mastro System-T with that of our CoreNLP-
based implementation described in Chapter 4, we translated into AQL extractors the extraction
rules that we have defined for CoreNLP. Then, based on such AQL extractors, we built the

116 7. Mastro System-T

Mastro System-T extraction assertions and linked them to the predicates of the domain
ontology showed in Figure 4.3.

As an example, we report below the AQL extractor (Example 7.5) and the extraction
assertion (Example 7.6) used to map the attribute :identification_code of the CONSOB
ontology.

Example 7.5. The following AQL extractor is used to extract from text documents the ISIN
of financial products (i.e., the code that identifies a product).

module ISIN;
import view _Document from module IEWTDocument as _Document;
import view Prodotto from module section as sectionProdotto;

create view ISINToBeConsolidated as
extract
regex /([A-Za-z][A-Za-z][A-Z0-9]10)/
on sP.sectionProdotto as isin
from sectionProdotto sP;

create view ISIN as
select Min(i.isin) as isin
from ISINToBeConsolidated i;

export view ISIN;

Note that AQL provides particularly useful constructors for IE tasks that are not expressible
in CoreNLP, effectively making SystemT’s language more expressive than Stanford’s one. In fact,
the above extractor, compared to its counterpart in TokensRegex, uses an AQL construct
called Min that allows to select the first occurrence of the match, thus avoiding the search in a
more specific portion of the text.

Example 7.6. Consider now the following extraction assertion:
import view ISIN from module ISIN;
import view ProductID from module IDs;
create view _populateISIN

select s.isin as isin, p.id as id
from ISIN s, ProductID as p;

 :{id}#ID :identification_code isin

As said, this extraction assertion specifies how to virtually populate the attribute :identification_code,
which relates every product with its ISIN, obtained using the AQL extractor in Example 7.5.

Regarding the dataset, we used the third one considered in the CONSOB scenario (i.e., the
largest one), whose characteristics are summarized in Table ??.

We then defined ed executed four queries. In Table 7.2, we report such queries, a description
for each of them, the execution time, and the number of tuples obtained from their evaluations.
We point out that, also in this experiment on the CONSOB scenario, the bottleneck is the

7.4 Case Studies 117

Query ID Query Description Time of execu-
tion

N. tuples

Q1

SELECT ?X ?Y WHERE {

?Z :web_site ?X

?Z a :Financial_Entity

?Z :name ?Y

}

Return the web-
site and the name
of all financial
institutions (i.e., in-
stances of the class
Financial_Entity)

∼ 23m 14001

Q2

SELECT ?X ?Y WHERE {

?Z a :IBIP

?Z :has_name ?X

?Z :identification_code ?Y

}

Return the names
and the identifica-
tion code of IBIP
products

∼ 16m 518

Q3

SELECT ?X ?Y WHERE {

?X :issue_date ?Y

?X a :Derivatives

}

Return all the
Derivatives and
their issue dates

∼ 15m 39

Q4

SELECT ?X ?Y WHERE {

?X a :Document

?X :alert :Y

?Z :associated_with ?X

?Z a :Securities

}

Return all the doc-
uments and their
alerts if they are as-
sociated with a Se-
curity product

∼ 45m 12542

Table 7.2. Execution time query

transformation of the original PDF documents into plain text, as previously mentioned in
Chapter 4 for the coreNLP-based implementation. The time taken by this task is the same for
all the queries and is around 4 hours. We have not included this amount of time in the figures
given in Table 7.2, where we thus exhibit times that correspond to query evaluation as if the
source documents (i.e., the KIDs) were directly in plain text format. We want to also point out
that the query Q4 is the one that takes more time. The explanation resides in the fact that,
among the four queries we executed, Q4 is the one that triggers the greatest number of AQL
extractors and returns as output a high number of tuples.

Overall, the times we have obtained may seem considerable and not suitable for an interactive
usage. However, these times must be compared with the total extraction time required in a
traditional IE approach, which actually requires populating the entire ontology before running
the queries (in the tested scenario total extraction time is in the order of hours, as discussed later
on). Whereas, from the one hand, it is true that over the populated ontology not one but all
queries can be executed, on the other hand, as in all materialized approaches to data integration,
one has to be aware that queries are not run over fresh data, and refresh costs have to be taken
into account. We further remind the reader that the database of documents considered in our

118 7. Mastro System-T

experiment is particularly large (more than 14000 KIDs). With smaller document datasets,
response times of less than one minute can be easily achieved. At the same time, it has to be
considered that our experiment is one of the first of its kind, and that Mastro System-T is
still susceptible to several optimizations, which are currently under study.

We now highlight the main practical differences we have experienced with respect to the
coreNLP-based implementation.

• We first remark that Mastro System-T allows for directly processing conjunctive queries
over the ontology, whereas our implementation based on coreNLP does not offer this
functionality. To obtain the same service in that case, we have to give the ontology we have
populated through our pipeline (both the TBox and the ABox returned by the extractor
component of our tool) as input to a system for ontology-mediated query answering and
OBDA, such as Mastro, and rely on its query processing functionalities. It is clear that
the entire approach is more involved, and that the two tools it is based on (i.e., Mastro
and the coreNLP-based extractors) are not really integrated with one another, as instead is
realized in Mastro System-T. Furthermore, and above all, this approach is not virtual,
that is, information extraction cannot be done at query time.

• We then point out that Mastro System-T can be even used to materialize the ABox
instantiating the TBox of the OBDS system. This can be done by triggering all extraction
assertions. We asked Mastro System-T to compute such ABox for the CONSOB case,
and our tool accomplished the task in 5 hours and 25 minutes. Compared with the time
needed by the coreNLP-based implementation to materialize the result of the extraction
(which, notice, is not exactly the ABox materialized by Mastro System-T), we measured
a reduction of more than 2 hours and 30 minutes (for both cases we are also considering
the time to transform PDF files into plain text files). This testifies that the solution we
developed may allow for important gains in time performances.

• The advantages of Mastro System-T with respect to coreNLP concern also with the
usability of the system. Properly, by virtue of the high expressive power of the AQL
language, Mastro System-T allows us to considerably simplify the writing of the
extraction rules and to strongly reduce the use of custom (e.g., Java) code to go beyond
the abilities of the language (to which instead we had to often resort in the coreNLP-based
approach).

To make the last observation more concrete, we provide below an example of extraction rule
in AQL.

7.4 Case Studies 119

Example 7.7. Consider the following (portion of) AQL extractor:

import view nameProduct from module nameProduct as nameProduct;

...

create dictionary SECURITIES_CERTIFICATI_BENCHMARK

from file ’dictionaries/SECURITIES:CERTIFICATES:BENCHMARK.dict’;

...

create view classificationName as

select

case

...

when ContainsDict (’SECURITIES_CERTIFICATI_BENCHMARK’,np.nameProduct)

then ’SECURITIES:CERTIFICATI:BENCHMARK’

...

else ’Unknown’

as classificationName

from nameProduct np;

This extractor using the dictionary SECURITIES_CERTIFICATI_BENCHMARK creates annotations
useful to class to classify the products i.e. to generate the instances of the class Benchmark,
that is a subclass of the concept Product. The AQL code shown is a portion of a more general
one that on the basis of some dictionaries classifies all documents and not just benchmarks.
We refer the reader to the following links to view the entire extractor (https://github.com/
Scafooo/Phd-Thesis/tree/main/Chapter%205/SystemT/src/tipologiaNome) and its coun-
terpart in CoreNLP (https://github.com/Scafooo/Phd-Thesis/blob/main/Chapter%204/
Tool/resources/rules/10_tipologiaNome.rule.txt).

https://github.com/Scafooo/Phd-Thesis/tree/main/Chapter%205/SystemT/src/tipologiaNome
https://github.com/Scafooo/Phd-Thesis/tree/main/Chapter%205/SystemT/src/tipologiaNome
https://github.com/Scafooo/Phd-Thesis/blob/main/Chapter%204/Tool/resources/rules/10_tipologiaNome.rule.txt
https://github.com/Scafooo/Phd-Thesis/blob/main/Chapter%204/Tool/resources/rules/10_tipologiaNome.rule.txt

121

Chapter 8

Entity Resolution

In this chapter we deal with entity resolution (a.k.a. entity matching, entity reconciliation,
record linkage, duplicate detection), i.e., the problem of establishing whether different entities
in the data refer in fact to the same real-world object [18, 130, 170, 52]. Entity resolution is
a very relevant issue in data management, especially when the information is integrated from
different heterogeneous sources, possibly semi-structured or unstructured, e.g., extracted from
text documents. This latter scenario turns out to be particularly challenging, since names
of entities have to be resolved from free text, and thus the task is hampered by the multiple
ways an entity can be described, even in the same document. Thus, we believe that the study
described in this chapter nicely complements the investigation on Ontology-based IE carried out
in this thesis, since it deals with an issue that is particularly critical in the context of IE.

In the following, we investigate entity resolution on DL ontologies equipped with concrete
domains and attributes (i.e., binary predicates representing relations between concepts and
values from a predetermined value-domain), such as age or height. In other terms, we here
explicitly deal with the logical counterpart of OWL dataproperty, differently from what we have
done in Chapter 6, where attributes have not been considered in the formal treatment, but
extension of the results we obtained to languages allowing for attributes, as OWL 2 QL, resulted
straightforward.

In our investigation, we abstract away from possible mappings connecting the ontology to
external data sources, as in Ontology-based Data Access (see Section 5.4) or in Ontology-based
Document spanning systems (Chapter 6). We thus assume that data directly instantiate ontology
predicates, i.e., are stored as facts in the ontology ABox. We however pursue a declarative
approach, which can be easily generalized to the presence of linking mechanisms between the
ontology and the data sources (e.g., by materializing the result of evaluating mappings or
extraction rules over the sources).

To incorporate an entity resolution mechanism in our framework, we introduce the notion of

122 8. Entity Resolution

KER system, i.e., a system extending the standard TBox and ABox components of a DL ontology
with a third component containing entity resolution rules, i.e., logical horn rules specifying the
conditions under which different entities have to be considered the same individual. As formally
described in the following, the rules we introduce correspond to a form of equality-generating
dependencies (egds) [2]. Then, we study query answering on KER systems and propose a
foundational approach to address this problem.

More in detail, in the following sections we will proceed as follows:

• We first study the case of TBoxes expressed through tuple-generating dependencies (tgds).
This allows us to define a very general framework that captures typical positive inclusion
assertions used in DLs. We formally define the components of a KER system, and in
particular the form of entity resolution rules we couple with the TBox.

• We give the semantics of KER systems in terms of special interpretations, which, besides
the domain of interpretation and the interpretation function, are characterized by an
equivalence relation allowing to interpret ontology concepts with sets containing equivalence
classes that gather together resolved entities, i.e., entities that are denoting the same
real-world object.

• In the spirit of previous work on tgds and egds, and fragments thereof, (e.g., [89, 39, 33, 46]),
we provide the definition of universal model for a KER system, i.e., a model for which
there is an homomorphism towards every other model of the KER system, and show
that conjunctive query answering over a KER system reduces to query evaluation over a
universal model.

• We show how to construct a universal model through a tailored chasing technique depending
on TBox tgds and entity resolution rules. We remark that in our approach the chase never
fail, since we can always merge equivalence classes interpreting entities each time an entity
resolution rule infers that two entities have to be equated. At the same time, the chase is
in general infinite, since in the framework we do not impose conditions on tgds and entity
resolution rules to ensure termination. However, for the cases in which it is finite, it can
be constructed in polynomial time with respect to the size of the ABox (data complexity).

• We then introduce functional dependencies in the ontology language, as those allowed
in DL-LiteF . Whereas functionalities on roles are assimilable to entity resolution rules,
functionalities on attributes may enforce equalities on different values (e..g., different
numbers or strings), which would cause a KER system to be inconsistent. To cope with this
situation, we interpret functionalities on attributes as matching dependencies [23, 92], i.e.,
rules establishing conditions under which values have to be matched (rather than equated).

123

We resolve matching through a general function that takes the union of the values to be
matched, in the spirit of the union class of match and merge functions considered in [18].

• We finally revise all main notions and constructions studied for the case of KER systems
with tgds only (e.g., the universal model and the chase), show that also in the presence of
functional attributes conjunctive query answering can be still reduced to query evaluation
over the chase, and that when the chase is finite, it can be constructed in polynomial time
in the size of the ABox.

We point out that, in our framework, answers to queries are tuples in which each component
is either a set of entities or a value, when the TBox of the KER system is a set of tgds only,
or tuples in which each component is a set of either entities or values, when the TBox of the
KER system is a set of tgds and functionalities on attributes. Thus, the answers we get provide
a compact report of all resolved entities and of all values associated to the same entity (or
equivalent ones) by a functional attribute. This is a distinguishing feature of our approach,
which we think is particularly useful from the practical point of view. Specifically, we are able to
provide, in polynomial time, meaningful answers to conjunctive queries also in the presence of
multiple values associated by functional attributes to the same entity, that is, in a situation in
which standard ontology semantics would interpret the system as inconsistent (and thus query
answering would become meaningless). We also point out that other declarative approaches to
inconsistency management resort to reason over the repairs of the data instance [6, 22], which
in the context of ontologies are typically defined as inclusion-maximal consistent subsets of
the ABox [25]. In such approaches, conjunctive query answering is intractable, unless some
approximate notion of repair is adopted [133], which however reduces the amount of consistent
answers that can be obtained from an inconsistent ontology. Furthermore, the answers we return
are different from both consistent answers (i.e., answers obtained through skeptical reasoning
over all repairs and the TBox) and possible answers (i.e., answers inferred by any repair coupled
with the TBox [25]). Instead, when an entity is associated to more than one value by a functional
attribute, we pack together all such values (e.g., if a person p is aged both 35 and 38 we merge
such conflicting values into the set {35, 38} and say that such set is the age of p), and provide in
this way the user with a more precise account of the inconsistencies that occur in the data (e.g.,
when asking for the age of p, she gets the answer {35, 38}, i.e., the set of all the alternatives
present in the data).

The rest of the chapter is organized as follows:

• In Section 8.1 we give some technical preliminaries needed for this chapter;

• In Section 8.2 we introduce our framework, and provide syntax and semantics of KER
systems, with TBoxes specified as sets of tgds only;

124 8. Entity Resolution

• In Section 8.3 we give the definition of Universal Model of a KER system;

• In Section 8.4 we define the notion of certain answers in our framework and show that
computing the certain answers to a conjunctive query can be reduced to query evaluation
over a Universal Model;

• In Section 8.4 we show how to construct a Universal Model through a (possibly infinite)
sequence of chase steps tailored to the kind of rules and semantics adopted in our framework;

• In Section 8.6 we extend our treatment to the full setting, i.e., we add functionality
assertions to the TBox language.

8.1 Preliminaries

In this section we provide some preliminary notions useful for our technical development.

8.1.1 Equivalence Classes

In the following we briefly review some mathematical basics on equivalence classes. For more
details we refer the reader to [125].

Let be Z a set of elements, a relation λ over Z is a subset of the Cartesian product of Z
with itself, i.e., λ ⊆ Z ×Z. The relation λ is an equivalence relation if:

• λ is reflexive, i.e. x λ x, ∀x ∈ Z,

• λ is symmetric, i.e. x λ y → y λ x, ∀x, y ∈ Z,

• λ is transitive, i.e. x λ y ∧ y λ z → x λ z, ∀x, y, z ∈ Z

Given an equivalence relation λ over a set Z, and x ∈ Z, [x]λ denotes the set {y ∈ Z | yλx},
called equivalence class of x w.r.t. λ. An equivalence class is always non-empty because the
equivalence relation is reflexive. Obviously, [x]λ = [y]λ for each pair of elements x, y such that
xλ y, thus a non-empty set E ⊆ Z that is an equivalence class w.r.t. λ can be denoted with [x]λ,
where x is any element in E. If two equivalence classes w.r.t. λ have an element in common,
they are equal. Since the equivalence relation is symmetric and transitive, equivalence classes
without common elements are disjoint. Therefore, an equivalence relation over a set Z partitions
Z. The quotient set of λ on Z, denoted Z/λ, is defined as the set of all equivalence classes over
Z w.r.t. λ, i.e. the set {[x]λ | x ∈ Z}. Obviously, given a quotient set Z/λ, Z =

⋃
[x]λ∈Z/λ

[x]λ.

8.1 Preliminaries 125

8.1.2 Ontologies with Concrete Domains

In the following we consider DLs equipped with concrete domains, which distinguish

• concepts from data types, the formers being abstractions for sets of objects, such as persons
or cities, while the latters being value domains, such as strings or integers, and

• roles from attributes, where a role denotes a binary relation between objects, such as
father_of or lives_in, and an attribute denotes a binary relation between objects and
values, such as name or height.

Ontologies defined through these DL languages are as usual composed by a TBox and an
ABox. In the following, TBoxes will be defined as sets of rules expressed in first-order syntax,
rather than in the classical DL syntax. This choice allows us to have a more uniform treatment
of TBox assertions and entity resolution rules, and to obtain a general framework that can be
instantiated with various DL dialects. The rules we consider make use of atoms constructed on
atomic concepts, atomic roles, and attributes, that is atoms of the form C(x1), R(x1, x2), and
A(x1, x3), respectively, where x1, x2, and x3 are variables. For these atoms, we call x1 and x2

entity-variables, as they occur as arguments of atoms whose predicate in an atomic concepts
or an atomic roles, or as the first argument of an atom whose predicate is an attribute (these
arguments are also called entity positions, since their meaningful binding is with entities). We
then call x3 a value-variable as it occurs as the second argument of an atom whose predicate is
an attribute (these arguments are also called value positions, since their meaningful binding is
with values). We will use this notion throughout the following sections.

The precise syntax of the TBox assertions we consider will be given in the following section.
We now only anticipate that we will investigate two settings: (i) TBoxes expressed through
tuple-generating dependencies, which capture so-called DL positive inclusions, as inclusions
of the form B1 v B2 and Q1 v Q2 given in Section 5.2 to define the syntax of DL-LiteR and
DL-LiteF , and (ii) TBoxes expressed as sets of tuple-generating dependencies and functionality
assertions, as those allowed in DL-LiteF (which we here extend to attributes). We point out
that separating the treatment in two parts is done only for the sake of presentation, since the
latter setting completely captures the former one.

Hereinafter, we assume to have the following pairwise disjoint alphabets1: NE, NV, NC,
NR, NA, i.e., the alphabet of entities, values, atomic concepts, atomic roles, and attributes,
respectively. Besides the above alphabets we also consider NF, i.e., the alphabet of n-ary built-in
predicates, which will be used in entity-resolution rules. Obviously, NF is disjoint from the other
alphabets. We use the letters e and v, possibly with subscripts, to denote entities and values,

1We consider one single concrete domain and do not distinguish between different data types.

126 8. Entity Resolution

respectively, whereas, we use the letters C, R, A, and F , possibly with subscripts, to denote
atomic concepts, atomic roles, attributes, and built-in predicates, respectively.

8.2 KER systems

We now introduce KER systems (i.e., Knowledge bases enriched with Entity Resolution rules),
which combine a DL ontology with a set of entity resolution rules, i.e., Horn rules, possibly
using built-in predicates in their body, having a single equality atom in the head. In other
terms, entity resolution rules are equality generating dependencies (of a special kind, as we will
precisely define later).

A KER system K is thus defined as a triple 〈T ,A, E〉 where:

• T is the TBox;

• A is the ABox;

• E is a set of entity resolution rules.

We will describe each component separately.

8.2.1 Terminological component of a KER system

We initially consider TBoxes constituted only by function-free Horn-rules, that is tuple-generating
dependencies (tgds), whose predicates are in NC , NR, and NA.

A tgd is a formula of the form2:

∀~x.φ(~x)→ ∃~y.ψ(~x, ~y) (8.1)

In the above formula, both φ(~x) and ψ(~x, ~y) are conjunctions of atoms of the form C(z),
R(z, z′), or A(z, w), where C, R, and A are an atomic concept, an atomic role, and an attribute,
respectively, z and z′ are entity-variables, and w is a value-variable. Each variable in ~x or ~y occurs
either only in entity-positions or only in value-positions, that is, it is either an entity-variable or
a value-variable. We call ∀~x.φ(~x) the body of the tgd, and ∃~y.ψ(~x, ~y) the head of the tgd.

In the following, we may write tdgs of the form (8.1) without the universal quantification
over the variables ~x (i.e., we may omit ∀~x.in the left-hand side of the tgd).

2As in [89], without loss of generality, ~x denotes all variables occurring in the left-hand side of the tgd, not all
necessarily occurring in the right-hand side of the tgd.

8.2 KER systems 127

Example 8.1. Let T be the TBox containing the following assertions:

θ1) Professor(x)→ Person(x)
θ2) Person(x)→ ∃y.has_name(x, y)
θ3) teaches(x, y)→ Professor(x)
θ4) lives_in(x, y)→ City(y)

Such a TBox states that professors are persons (θ1), every person has a name (θ2), who teaches
something is a professor (θ3), who lives somewhere has to live in a City (θ4).

We point out that reasoning over such dependencies is in general undecidable [14, 2], thus,
to identify decidable (and possibly tractable) settings, some restrictions have to be imposed,
e.g., some syntactic limitations on the form of the tgds and on their interaction with the entity
resolution rules of a KER system. We however preferred to define a general framework, which is
not limited to a specific ontological language, but which can be instantiated to different contexts.
In particular, the tgds we consider capture several forms of positive inclusion assertions given in
the classical DL syntax [9], used, e.g., to specify inclusions between concepts or roles, typings of
the role domain/range, typings of the attribute domain, mandatory participation of a concept
into a role or attribute, as allowed by positive inclusions in DL-Lite languages (but they rule out
positive inclusions not expressible as horn-rules, as well as negative inclusions and cardinality
restrictions different from minimum cardinality one). We further recall that tgds are also called
existential rules [163] or Datalog+/- rules[36]. Thus, the TBoxes we consider can be also seen
as specified in these languages, limitedly to the use of binary and unary predicates predicates
corresponding to concepts and their properties.

8.2.2 Assertional component of a KER system

The ABox A in a KER system is formed by a finite set of membership assertions on atomic
concepts, atomic roles, and attributes. Such assertions have the form:

C(e) R(e1, e2) A(e, v)

where e, e1, e2 ∈ NE and v ∈ NV. Intuitively, C(e) states that the entity e is an instance of the
atomic concept C. R(e1, e2) states that the pair constituted by the entities e1 and e2 is an
instance of the atomic role R. A(e, v) states that the pair constituted by the entity e and the
value v is an instance of the attribute A. For the rest of this chapter, in the examples, entities
are written in bold and with a # prefix, whereas values are written in italic style.

128 8. Entity Resolution

Example 8.2. Let A be the ABox containing the following assertions:

α1) Professor(#Ullman) α9) lives_in(#Ullman,#Palo.Alto)
α2) Professor(#A.Einstein) α10) lives_in(#J.Ullman,#Palo.Alto)
α3) Professor(#Einstein) α11) has_name(#Ullman, Ullman)
α4) Person(#J.Ullman) α12) has_name(#J.Ullman, J.Ullman)
α5) Person(#Einstein.A) α13) has_name(#A.Einstein, A.Einstein)
α6) teaches(#Ulman,#Database) α14) has_name(#Einstein, Einstein)
α7) lives_in(#Einstein,#Zurich) α15) has_name(#Einstein.A, Einstein.A)
α8) lives_in(#A.Einstein,#Zurich)

This ABox states that #Ullman, #A.Einstein, #Einstein are professors (assertions α1, α2,
and α3), #J.Ullman and #Einstein.A are persons (α4, α5), #Ullman teaches #Database
(α6), both #Einstein and #A.Einstein live in #Zurich (α7, α8), both #Ullman and
#J.Ullman live in #Palo.Alto (α9, α10).

Finally the name of #Ullman is Ullman, the name of #J.Ullman is J.Ullman (α11, α12),
the name of #A.Einstein is A.Einstein (α13), the name of #Einstein is Einstein (α14),
and the name of #Einstein is Einstein.A (α15). �

8.2.3 Entity resolution component of a KER system

We now provide the definition of entity resolution rules. In rules of this kind we may also make
use of n-ary built-in-predicates from NF, such as the Jaccard similarity, used to specify that two
strings have a similarity above a certain threshold, where the similarity is measured as the size
of the intersection of the two strings divided by the size of their union. We assume that they
have the same semantics in every interpretation. Intuitively, we treat them as pre-interpreted
special predicates, which do not occur in TBox and ABox assertions.

We first define atoms that may occur in entity resolution rules. Each such atom has the
form C(z), R(z, z′), A(z, w), or F (t1, . . . , tn), where C is an atomic concept, R is an atomic
role, A is an attribute, F is a built-in predicate of arity n, z and z′ are entity-variables, w is a
value-variable, and each ti is either a value-variable or a value from NV.

An entity resolution rule has the form:

∀~x.φ(~x)→ ∼(x1, x2) (8.2)

where φ(~x) is a conjunction of atoms of the form above, ~x is the sequence of variables occurring
in all such atoms, the symbol ∼ denotes a special binary predicate, appearing only in the entity
resolution rules, x1 and x2 are variables in ~x, and the following conditions hold: (i) every variable

8.2 KER systems 129

in ~x occurs either only in entity positions or only in value positions; (ii) for each variable w ∈ ~x
occurring in a built-in function there must be at least an atom of the form A(z, w) in φ(~x); (iii)
x1 and x2 are entity-variables. We call ∀~x.φ(~x) the body of the rule, and x1 = x2 the head of
the rule.

As for tgds, in the following we may write rules of the form (8.2) without the universal
quantification over the variables ~x.

Example 8.3. Let E be the set containing the following entity resolution rule ε1:

Person(x) ∧ Person(y) ∧ lives_in(x, z) ∧ lives_in(y, z)

∧ has_name(x,w1) ∧ has_name(y, w2) ∧ jaccardsim(w1, w2, 0.9)→ ∼(x, y)

In the above rule, x, y, z are entity-variables, whereas w1, w2 are value-variables. The rule ε1
states that if two entities denoting persons live in the same place and the Jaccard similarity of
their names is higher than 0.9, they are related to each other by the ∼ relation (as we will see
with the definition of the semantics of the entity resolution rules, this means that they have to
be considered as the same person of the real-world).

8.2.4 Semantics of a KER system

We now provide the definition of interpretation of a KER system. Each such interpretation,
differently from what is done in standard first-order logic, depends also by an equivalence
relation, interprets entities in terms of equivalence classes, and interprets concepts, roles and
attributes accordingly.

Definition 8.1 (interpretation). An interpretation I of a KER system K is triple (∆I , ·I ,∼I),
where

• ∆I = ∆IE ∪∆IV , where ∆IE and ∆IV are two disjoint sets such that NE ⊆ ∆IE and NV ⊆ ∆IV ,

• ·I is an interpretation function, detailed below,

• ∼I is an equivalence relation over ∆IE .

Then, ∆IE/∼I = {[x]∼I |x ∈ ∆IE}, i.e., the quotient set of ∼I on ∆IE , is the interpretation
domain for the entities, whereas ∆IV is the interpretation domain for the values.

The interpretation function ·I is defined as follows:

• eI = [e]∼I , for each entity e ∈ NE;

• vI = v, for each value v ∈ NV ;

130 8. Entity Resolution

• CI ⊆ ∆IE/∼I , for each atomic concept C ∈ NC;

• RI ⊆ ∆IE/∼I ×∆IE/∼I , for each atomic role R ∈ NR;

• AI ⊆ ∆IE/∼I ×∆IV , for each atomic attribute A ∈ NA

• F I ⊆ ×ni=1NV, for each n-ary built-in predicate F ∈ NF.

We assume that the semantics of built-in predicates is the same in all interpretations of all
KER systems, that is F I1 = F I2 for any two interpretations I1 and I2 and each F ∈ NF. We
thus in the following omit to specify how an interpretation function interprets such predicates.

To define the semantics of tgds and entity resolution rules we first introduce the notion
of assignment. Since this definition will be used also when we will define the evaluation of a
conjunctive query over an interpretation, and since a conjunctive query may contain constants
(either entities or variables), we define here the notion of assignment for a conjunction of atoms
in which also entities or values can occur (notice that constants are instead not allowed in
tgds, and values can occur in entity resolution rules only in atoms constructed with built-in
predicates).

Definition 8.2 (assignment). Let φ(~x) be a conjunction of atoms of the form C(t), R(t, t′),
A(t, t1), or F (t1, . . . , tn), where C, R, A, F are an atomic concept, an atomic role, an attribute,
or a n-ary built-in predicate, respectively, t, t′ are entity-variables in ~x or entities, and t1, . . . , tn
are value-variables in ~x or values. Let I = (∆I , ·I ,∼I) be an interpretation. An assignment
from φ(~x) to I is a mapping µ from the variables ~x to the set ∆IE/∼I ∪ ∆IV , such that
〈µ(x1), . . . , µ(xk), cI1 , . . . , cI` 〉 ∈ SI , for every atom S(x1, . . . , xk, c1, . . . , c`) of φ(~x), where, for
each 1 ≤ i ≤ `, ci is either an entity in NE or a value in NV

3. Let ~x = x1, . . . , xm, the sequence
µ(x1), . . . , µ(xm) is called the image of µ.

Let φ(~x) and ψ(~x, ~y) be two conjunctions of atoms as in Definition 8.2, and µ be an assignment
from φ(~x) to an interpretation I, an assignment µ′ from φ(~x)∧ψ(~x, ~y) to I is an extension of µ
if µ(x) = µ′(x) for each x occurring in ~x. Furthermore, µ(φ(~x)) is the binding of φ(~x) through
µ, i.e., the formula obtained by replacing each x belonging to ~x with µ(x) in φ(~x).

An Interpretation I of a KER system K satisfies:

• a tgd of the form (8.1) in K, if each assignment µ from φ(~x) to I can be extended to an
assignment µ′ from φ(~x) ∧ ψ(~x, ~y) to I.

• an entity resolution rule of the form (8.2) in K, if each assignment µ from φ(~x) to I is
such that µ(x1) = µ(x2).

3Without loss of generality we assume that entities and values, if any, occur always in the last ` positions of
an atom. Notice also that k ≥ 0, ` ≥ 0 and k + ` ≥ 1.

8.3 Universal models 131

Interestingly, the above definition coincides with the standard one (modulo the adoption of
our tailored notions of interpretation and assignment).

The interpretation I satisfies an ABox assertion C(e) (resp. R(e1, e2), A(e, v)), if eI ∈ CI

(resp. 〈eI1 , eI2 〉 ∈ RI , 〈eI , v〉 ∈ AI).
Finally, we say that an Interpretation I is a model of a KER system K = 〈T ,A, E〉, denoted

as I |= K, if I satisfies every tgd in T , every assertion in A, and every rule in E . The set of all
models of a KER system K is denoted with Mod(K), i.e., Mod(K) = {I | I |= K}.

Example 8.4. Let K = 〈T ,A, E〉 be a KER system, where T is the TBox in Example 8.1, A is
the ABox in Example 8.2 and E is the set of entity resolution rules in Example 8.3. Let ∼I be
the following equivalence relation (we omit pairs that can be obtained by applying symmetry
and transitivity to the given set and pairs associating each entity to itself):

∼I = {〈#Ullman,#J.Ullman〉, 〈#Einstein,#A.Einstein〉, 〈#A.Einstein,#Einstein.A〉}

The interpretation I = 〈∆I , ·I ,∼I〉 described below is a model for K.

∆IV = {Ullman, J.Ullman, A.Einsten, Einstein, Einstein.A}

∆IE/∼
I = {{#Ullman,#J.Ullman}, {#Einstein,#A.Einstein,#Einstein.A}, {#Database}, {#Zurich},

{#Palo.Alto}}

ProfessorI = {{#Ullman,#J.Ullman}, {#Einstein,#A.Einstein,#Einstein.A}}

PersonI = {{#Ullman,#J.Ullman}, {#Einstein,#A.Einstein,#Einstein.A}}

CityI = {{#Zurich}, {#Palo.Alto}}

teachesI = {〈{#Ullman,#J.Ullman}, {#Database}〉}

lives_inI = {〈{#Ullman,#J.Ullman}, {#Palo.Alto}〉, 〈{#Einstein,#A.Einstein,#Einstein.A}, {#Zurich}〉}

has_nameI = {〈{#Ullman,#J.Ullman}, Ullman〉, 〈{#Ullman,#J.Ullman}, J.Ullman〉,

〈{#Einstein,#A.Einstein,#Einstein.A}, A.Einstein〉,

〈{#Einstein,#A.Einstein,#Einstein.A}, Einstein〉, 〈{#Einstein,#A.Einstein,#Einstein.A}, Einstein.A〉}

8.3 Universal models

Among all possible models for a KER-system we focus on those having some special properties,
called universal models. Before giving the definition of universal model, we introduce some
preliminary notions.

Given an interpretation I we define the set of entity-nulls ∆IE⊥ = ∆IE \ NE and the set of
value-nulls ∆IV⊥ = ∆IV \ NV. Then, we define homomorphisms between interpretations.

Definition 8.3 (homomorphism). Let K be a KER system and let I1 = 〈∆I1 , ·I1 ,∼I1〉 and

132 8. Entity Resolution

I2 = 〈∆I2 , ·I2 ,∼I2〉 be two interpretations. An homomorphism h : I1 → I2 is a mapping from
the elements of ∆I1 to the elements of ∆I2 such that:

• h(e) = e, for each e ∈ NE;

• h(v) = v, for each v ∈ NV;

• h(e⊥) ∈ ∆I2E , for each e⊥ ∈ ∆I1E⊥ ;

• h(v⊥) ∈ ∆I2V , for each v⊥ ∈ ∆I1V⊥ .

• if e1 ∼I1 e2, then h(e1) ∼I2 h(e2), for each e1, e2 ∈ ∆I1E ;

• if [e]∼I1 ∈ CI1 , then [h(e)]∼I2 ∈ CI2 , for each atomic concept C in K and each equivalence
classes [e]∼I1 ∈ ∆I1E /∼I1 ;

• 〈[e1]∼I1 , [e2]∼I1 〉 ∈ RI1 , then 〈[h(e1)]∼I2 , [h(e2)]∼I2 〉 ∈ RI2 , for each atomic role R in K
and each [e1]∼I1 , [e2]∼I1 ∈ ∆I1E /∼I1 ;

• if 〈[e]∼I1 , v〉 ∈ AI1 , then 〈[h(e)]∼I2 , h(v)〉 ∈ AI2 , for each atomic attribute A in K, each
[e]∼I1 ∈ ∆I1E /∼I1 , and each v ∈ ∆I1V .

An interpretation I1 is homomorphically equivalent to an interpretation I2 if there is an
homomorphism h : I1 → I2 and homomorphism h′ : I2 → I1.

We are now ready to provide our definition of universal model.

Definition 8.4 (universal model). Let K be a KER system. A universal model for K is a model
U ∈Mod(K) such that for every model I ′ ∈Mod(K) there exists a homomorphism h : U → I ′.

The universal solutions are unique up to homomorphically equivalence.

8.4 Query answering

A CQ over a KER system has the same form of a CQ over an ontology (see Section 5.2.1). Since
we are now using DL ontologies containing attributes, we prefer to repeat this definition and
precisely describe the forms of CQ atoms. A CQ over a KER system is an open first-order logic
formula of the form:

∃~y.conj(~x, ~y) (8.3)

where ~x are the free variables, ~y are the existentially quantified variables, and conj(~x, ~y) is a
conjunction of atoms, each of the form C(t) or R(t, t′) or A(t, c), where C is an atomic concept,
R is an atomic role, A is an attribute, t and t′ are entity-variables occurring in either ~x or ~y, or

8.4 Query answering 133

entities in NE, c is a value-variable occurring in either ~x or ~y or values in NV. As usual, each
variable in ~x or ~y occur either always in entity-positions or always in value-positions. A usual, a
query q of the form above can be also denoted as q(~x).

Given a query q(x1, . . . , xn) of the form above and an interpretation I, the set of answers to
q with respect to I, denoted with qI , is the set of tuples 〈µ(x1), . . . , µ(xn)〉 such that µ is an
assignment from conj(~x, ~y) to I.

The following proposition follows from the definition of model and the definition of homo-
morphisms between interpretations (Definition 8.3)

Proposition 8.1. Let K be a KER system, q a query over K, I1 = 〈∆I1 , ·I1 ,∼I1〉 and I2 =
〈∆I2 , ·I2 ,∼I2〉 two models of K, and let h : I1 → I2 be an homomorphism from I1 to I2. If
〈T1, . . . Tn〉 ∈ qI1 , then 〈h(T1), . . . , h(Tn)〉 ∈ qI2 , where for every 1 ≤ i ≤ n: (i) h(Ti) = [h(e)]∼I2 ,
if Ti = [e]∼I1 , and (ii) h(Ti) = h(Ti), if Ti ∈ ∆I1V (i.e., Ti is either a value or a value-null).

In order to provide the definition of certain answers to a query over a KER system we give
some preliminary notions.

Definition 8.5 (typed tuple). A typed tuple is a tuple of the form 〈T1, . . . , Tn〉 where each Ti is
either a non-empty set of entities or a value.

Two typed tuples ~t = 〈T1, . . . , Tn〉 and ~t′ = 〈T ′1, . . . , T ′n〉 are equal, denoted ~t = ~t′, if Ti = T ′i

for every 1 ≤ i ≤ n. The type of a typed tuple 〈T1, . . . , Tn〉 is a tuple 〈ρ1, . . . , ρn〉 such that
ρi = e if Ti is a set of entities or ρi = v if Ti is a value, for every 1 ≤ i ≤ n. Two typed tuples
with types 〈ρ1, . . . , ρn〉 and 〈ρ′1, . . . , ρ′n〉, respectively, have the same type if ρi = ρ′i for every i
with 1 ≤ i ≤ n.

Let ~t = 〈T1, . . . , Tn〉 and ~t′ = 〈T ′1, . . . , T ′n〉 be two typed tuples of the same type. The tuple ~t′

is equally or more informative than ~t, denoted with ~t ≤ ~t′, if for every 1 ≤ i ≤ n, it holds either
(i) Ti ⊆ T ′i , if Ti and T ′i are sets of entities or (ii) Ti = T ′i if Ti and T ′i are values. The tuple ~t′ is
more informative than ~t, denoted with ~t < ~t′, if ~t ≤ ~t′ and ~t 6= ~t′.

When querying a KER system, as happens for query answering over DL ontologies, we are
interested in querying a set of models rather than evaluating the query over a single interpretation.
We thus adapted the classical notion of certain answers to our framework (note that in this case
a certain answer is a typed tuple).

Definition 8.6 (certain answer). Let K be a KER system and q a query of arity n over K. A
typed tuple ~t = 〈T1, . . . , Tn〉 is a certain answer to q w.r.t. K if for each I ∈ Mod(K) there
exists a tuple 〈T ′1, . . . , T ′n〉 ∈ qI such that for each 1 ≤ i ≤ n :

(i) if Ti is a set of entities, T ′i is an equivalence class in ∆IE/∼I and Ti ⊆ T ′i ;

134 8. Entity Resolution

(ii) if Ti is a value, T ′i is a value in ∆IV and Ti = T ′i ;

(iii) there is no typed tuple ~t′ that satisfies both (i) and (ii) such that ~t < ~t′.

Note that condition (iii) in the above definition says that a certain answer has to be a
maximal typed tuple, with respect to the informativeness order we have defined on typed tuples,
that satisfies conditions (i) and (ii).

We denote with cert(K, q) the set of certain answers to a query q w.r.t. a KER system K.

Proposition 8.2. Let K be a KER system, q be a query over K, and ~t = 〈T1, . . . , Tn〉 and
~t′ = 〈T ′1, . . . , T ′n〉 be two certain answers to q w.r.t. K. If Ti and T ′j are sets of entities, then
either Ti = T ′j or Ti ∩ T ′j = ∅, for any 1 ≤ i, j ≤ n.

Proof. Towards a contradiction, assume that Ti, T ′j are two non-empty sets of entities such
that Ti 6= T ′j and Ti ∩ T ′j = ∅. Then Ti $ Ti ∪ T ′j or T ′j $ Ti ∪ T ′j . Let’s assume Ti $ Ti ∪ T ′j .
Since 〈T1, . . . , Tn〉 and 〈T ′1, . . . , T ′n〉 are certain answers of q, for every model I, there are tuples
〈L1, . . . , Ln〉, 〈L′1, . . . , L′n〉 such that for every k we have Tk ⊆ Lk if Tk is a set of entities, and
Tk = Lk if Tk is a value and T ′k ⊆ L′k if T ′k is a set of entities and T ′k = L′k if T ′k is a value. Thus
we have that Ti ⊆ Li and T ′j ⊆ L′j . Since Ti ∩ T ′j = ∅, it follows that Li ∩ L′j = ∅. However, Ti,
T ′j are equivalence classes in the model I, hence they must coincide, i.e. Li = T ′j . It follows
that Ti ∪ T ′j ⊆ Li = T ′j . Consider now the tuple 〈T1, . . . , Ti−1, Ti ∪ Tj , Ti+1, . . . , Tn〉 which is
obtained from 〈T1, . . . , Tn〉 by replacing Ti by Ti∪Tj . Note that 〈T1, . . . , Ti−1, Ti, Ti+1, . . . , Tn〉 <
〈T1, . . . , Ti−1, Ti ∪ Tj , Ti+1, . . . , Tn〉 because Ti $ Ti ∪ T ′j . However for every model I of K, we
have that Ti ∪ T ′j ⊆ Li. Moreover, for all k 6= i, we have that Tk ⊆ Lk if Tk is a set of entities,
or Tk = Lk if Tk is a value. This, however, violates the more informativeness of 〈T1, . . . , Tn〉,
hence 〈T1, . . . , Tn〉 is not a certain answer, which is a contradiction.

The following property easily follows from the above proposition.

Corollary 8.1. Let K be a KER system, q be a query over K and ~t = 〈T1, . . . , Tn〉 be a typed
tuple. If ~t is a certain answer to q w.r.t. K and if Ti and Tj, where i 6= j, are sets of entities,
then either Ti = Tj or Ti ∩ Tj.

Proof. The thesis follows from Proposition 8.2, when ~t = ~t′.

Proposition 8.2 and Corollary 8.1 tell that if q is a query, then the set of certain answers
to q is a set if typed tuples such that if two sets of entities appear in the same or in different
tuples, then those two sets of entities either are the same set or they are disjoint. In particular,
we can identify the set of entities that appear in the set of certain answers with the equivalence
classes of some equivalence relation.

8.4 Query answering 135

We now explain the relation existing between universal models and certain answers. To this
aim, we have to introduce an operator that suitably allows us to get rid of entity-nulls and
value-nulls when evaluating a query over an model (analogously to what is done in the context
of Data Exchange [89]). We apply this operator, denoted ↓, to a tuple ~t whose components
are sets of entities and entity nulls (that is, equivalence classes in an interpretation), values, or
value-nulls. We first define how ↓ applies to each component of the tuple, and then we extend it
to the entire tuple, and to a set of tuples.

If T is a set of entities and entity-nulls, T↓ returns the set of entities obtained from T by
removing all entity-nulls in T . If T is a value, then T↓ = T . If 〈T1, . . . , Tn〉 is a tuple such that
each Ti is either a set of entities and entity-nulls or a value, then 〈T1, . . . , Tn〉↓ = 〈T1↓, . . . , Tn↓〉.
Let Θ be a set of tuples of the form 〈T1, . . . , Tn〉, where each Ti is a set of entities and entity-nulls,
or a value, or a value-null, then Θ↓ is the set obtained from Θ by removing all tuples in Θ
containing at least one value-null and all tuples containing a Ti such that Ti↓ = ∅, and replacing
each other tuple 〈T1, . . . , Tn〉 in Θ by the tuple 〈T1, . . . , Tn〉↓.

Theorem 8.1. Let K be a KER system, q be a query over K, ~t be a typed tuple, and U be a
universal model for K. Then cert(K, q) = qU↓.

Proof. For the sake of simplicity, but without real loss of generality, assume that q is a query
whose head is q(x1, x2, x3), where x1, x3 range over entities and x2 ranges over values.
Part I : qU↓ ⊆ cert(K, q). Let (x1, x2, x3) ∈ qU↓. Then x1, x3 are non-empty sets of entities
and x2 is a value, say x2 = v. Moreover, by definition of qU↓, there is a triple (y1, y2, y3) in
qU↓ such that (x1, x2, x3) = (y1, y2, y3)↓. Hence, x1 = y1↓, x2 = v = y2, x3 = y3↓. This also
means that y1 and y3 are equivalence classes of entities and/or entity-nulls in the universal
model U . Since x1, x3 are non-empty sets of entities, there must exist entities a1 and a3 such
that y1 = [a1]∼U and y3 = [a3]∼U . Thus x1 = [a1]∼U↓, x3 = [a3]∼U↓, where a1 and a3 are
entities. Consider now a model I of K. Since U is a universal model, there is a homomorphism
h : U → I. Since conjunctive query are preserved under homomorphism (by Proposition
8.1) and since ([a1]∼U , v, [a3]∼U) ∈ qU , we have that ([h(a1)]∼I , h(v), [h(a3)]∼I) ∈ qI . Since
a1, a3 are entities and v is a value, we have that h(a1) = a1, h(v) = v, h(a3) = a3, hence
([a1]∼I , v, [a3]∼I) ∈ qI . Since x1,x3 are set of entities, we have that for each entity c in x1 ∪ x3,
it holds that h(c) = c. Thus, since x1 ⊆ [a1]∼U and x3 ⊆ [a1]∼U , we have that x1 ⊆ [a1]∼I ,
x3 ⊆ [a3]∼I . The preceding argument shows that the tuple (x1, v, x3) satisfies conditions (i) and
(ii) in the definition of certain answer. It remains to show that (x1, v, x3) satisfies condition
(iii) in the definition of certain answer, i.e., that it is maximal w.r.t. the properties (i) and (ii).
The maximality of (x1, v, x3) with respect to typed tuples informativeness follows from the fact
x1 = [a1]∼U↓ and x3 = [a3]∼U↓. Indeed, suppose that there was a triple (x′1, v, x′3) satisfying

136 8. Entity Resolution

properties (i) and (ii) and such that x1 ⊆ x′1, x3 ⊆ x′3. We will show that x1 = x′1 and x3 = x′3

which will imply the maximality of (x1, v, x3). Since (x′1, v, x′3) satisfy properties (i) and (ii),
we have that there are entities a′1 and a′3 such that x′1 ⊆ [a′1]∼U and x′3 ⊆ [a′3]∼U . Therefore,
[a1]∼U ∩ [a′1]∼U 6= ∅ (both contain x1) and [a3]∼U ∩ [a′3]∼U 6= ∅ (both contain x3). Therefore,
[a1]∼U = [a′1]∼U and [a3]∼U = [a′3]∼U . But x1 = [a1]∼U↓ and x3 = [a3]∼U and x3 = [a3]∼U↓ which
means that x1 is the set of all entities in [a1]∼U and x3 is the set of all entities in [a3]∼U . Since
x1 ⊆ x′1 ⊆ [a1]∼U = [a′1]∼U , x3 ⊆ x′3 ⊆ [a3]∼U = [a′3]∼U and since x′1, x′3 are sets of entities we
must have that x1 = x′1 and x3 = x′3. This completes the proof that qU↓ ⊆ cert(K, q).

Part II : cert(K, q) ⊆ qU↓. Let (x1, v, x3) be a certain answer of q. Then there must exist
entities a1 and a3 such that x1 ⊆ [a1]∼U and x3 ⊆ [a3]∼U and also ([a1]∼U , v, [a3]∼U) ∈ qU . By
Part I, we have that ([a1]∼U↓, v, [a3]∼U↓) is a certain answer of q. Moreover, since x1, x3 are sets
of entities, we have x1 ⊆ [a1]∼U↓, x3 ⊆ [a3]∼U↓. By the maximality of (x1, v, x3) with respect
to typed tuples informativeness, we must have that x1 = [a1]∼U↓ and x3 = [a3]∼U↓. Hence
(x1, v, x3) ∈ qU↓.

8.5 Computing a universal model

In the following we adapt the well-known notion of restricted chase [15, 116, 89, 46] to our
framework. Intuitively, given a KER-system K = 〈T ,A, E〉, the chase of K is a procedure that
starts from a model “isomorphic” to the ABox A, which we call the minimal model of A, and
incrementally constructs an interpretation of K that satisfies the tgds of the TBox T and the
entity resolution rules in E . This is obtained by iteratively applying two chase rules, as long as
they are triggered in the (current) interpretation. Interestingly, the chase procedure we define
never produces a failure, as, e.g., for the application equality-generating dependencies in the
chase described in [89], since entities in an ABox have not to be considered hard-constants,
which cannot be made equal, but rather are soft-constants that can be interpreted with the same
equivalence class (which means that they are denoting the same object of the world). Thus, our
chase procedure always produces a model of the KER system However, because of the presence
of cycles among inclusions of the TBox, the chase can be constituted by an infinite sequence
of steps, and thus the model we obtain can be infinite. Regardless of this, the interpretation
produced by the chase is always a universal model of the KER system, as we are going to show in
this section.

We start with the notion of minimal model for an ABox.

Definition 8.7 (minimal model for an ABox). Let A be an ABox, the minimal model for A is
the interpretation IA = 〈∆IA , ·IA ,∼IA〉, such that:

• ∆IA = ∆IAE ∪∆IAV , where ∆IAE = NE and ∆IAV = NV;

8.5 Computing a universal model 137

• ∼IA= {〈e, e〉 | e ∈ ∆IAE };

• eI
A = [e]∼I

A
, for each entity e ∈ ∆IAE ;

• vI
A = v, for each value v ∈ ∆IAV ;

• CI
A = {[e]∼I

A
| C(e) ∈ A}, for each atomic concept C ∈ NC;

• RI
A = {〈[e1]∼I

A
, [e2]∼I

A
〉 | R(e1, e2) ∈ A}, for each atomic role R ∈ NR;

• AI
A = {〈[e]∼I

A
, v〉 | A(e, v) ∈ A}, for each attribute A ∈ NA.

Note that the elements in ∆IAE /∼IA are singletons because ∼IA contains only pairs of entities
equal only to themselves.

We next define two chase steps, one for the tgds of the TBox, and one for the entity resolution
rules. To this aim, we assume to have an infinite ordered set of labeled entity-nulls, denoted
∆E⊥ and an infinite ordered set of labeled value-nulls, denoted ∆V⊥ , such that ∆E⊥ ∩ NE = ∅,
∆V⊥ ∩ NV = ∅, and ∆E⊥ ∩∆V⊥ = ∅.

It is first convenient to define a total order on all the predicates, entities, values, labeled nulls,
variables, and symbols used in tgds and entity resolution rules. From ∆E⊥ = {e1⊥, e2⊥, . . . }
and ∆V⊥ = {v1⊥, v2⊥ . . . }, we define ∆EV ⊥ as the set {e1⊥, v1⊥, e2⊥, v2⊥, . . . }, i.e., the set
obtained by alternating the elements of ∆E⊥ with those of ∆V⊥ . We also assume to use
only variables from an infinite ordered set of variables NV . We can now consider the set
NC ∪ NR ∪ NA ∪ NF ∪ NE ∪ NV ∪ {∀, ∃, ., (,), ∧, , } ∪ NV ∪∆V E⊥ , and assume that it is totally
ordered and such that all the elements in ∆EV ⊥ follow, in the same order they have in ∆EV ⊥ ,
all the other elements.

We now define an order over assignments to an interpretation I whose domain ∆I = ∆IE∪∆IV
is such that ∆IE \NE ⊆ ∆E⊥ and ∆IV \NV ⊆ ∆V⊥ . To this aim, we assume that every equivalence
class E in the image of an assignment µ is represented in the bindings generated by µ as the
string obtained by concatenating all the elements occurring in E, following their alphabetic
order. Then, given an assignment µ from a conjunction of atoms φ to I and an assignment µ′

from a conjunction of atoms ψ to I, we say that µ precedes µ′ if µ(φ) precedes µ′(ψ) in the
lexicographic order. Obviously, we have always that either µ(φ) precedes µ′(ψ) or µ′(ψ) precedes
µ(φ) , unless φ = ψ and µ = µ′.

In what follows we also assume that the variables occurring in any rule (tgd or entity
resolution rule) of a KER system K are different from the variables used in all other rules of K
(which implies that an assignment applies only to the conjunction in the body of one single rule).

Definition 8.8 (Chase Step). Let I1 = (∆I1 , ·I1 ,∼I1), where ∆I1 = ∆I1E ∪∆I1V and ∆I1E ∩∆I1V = ∅,
be an interpretation such that ∆I1E \ NE ⊆ ∆E⊥ , and ∆I1V \ NV ⊆ ∆V⊥ .

138 8. Entity Resolution

• (tuple generating dependency) let d be a tgd of the form (8.1). Let µ be an assignment
from φ(~x) to I1 such that there is no extension of µ to an assignment µ′ from φ(~x)∧ψ(~x, ~y)
to I1. We say that d is applicable to I1 with assignment µ (we also say that µ triggers d
in I1).

Let I2 be the triple (∆I2 , ·I2 ,∼I2), defined as follows:

– extend µ to µ′ such that each variable yi in ~y is assigned to either (i) a set containing
only a fresh labeled entity-null from ∆E⊥ that follows in the order all the entity-nulls
and value-nulls in ∆I1 , if yi occurs in entity-position in d, (ii) a fresh labeled value-null
from ∆V⊥ that follows in the order all the entity-nulls and value-nulls in ∆I1 , if yi
occurs in value-position in d;

– ∆I2 = ∆I2E ∪∆I2V , where ∆I2E = ∆I1E ∪∆fresh
E⊥

and ∆I2V = ∆I1V ∪∆fresh
V⊥

, and ∆fresh
E⊥

and ∆fresh
V⊥

are the sets of fresh entity-nulls and fresh value-nulls in the image of µ′,
respectively;

– ∼I2=∼I1 ∪{〈f, f〉 | f is a fresh entity-null in the image of µ′};

– eI2 = eI1 and vI2 = vI1 for each entity or entity-null e ∈ ∆I1E and each value or
value-null v ∈ ∆I1V ;

– fI2e = {fe}, for each fresh entity-null fe in the image of µ′;

– fI2v = fv, for each fresh value-null fv in the image of µ′;

– SI2 = SI1 , for each predicate S in K not occurring in ψ(~x, ~y).

– CI2 = CI1 ∪ {µ′(z)}, for each atomic concept C in K such that C(z) ∈ ψ(~x, ~y);

– RI2 = RI1 ∪ {〈µ′(z1), µ′(z2)〉}, for each atomic role R in K such that R(z1, z2) ∈
ψ(~x, ~y);

– AI2 = AI1 ∪{〈µ′(z1), µ′(z2)〉}, for each attribute A in K such that A(z1, z2) ∈ ψ(~x, ~y).

• (entity resolution rule) let d be an entity resolution rule of the form (8.2). Let µ be an
assignment from φ(~x) to I1 such that µ(x1) 6= µ(x2). We say that d is applicable to I1

with assignment µ (we also say that µ triggers d in I1).

Let I2 be the triple (∆I2 , ·I2 ,∼I2), defined as follows:

– ∆I2 = ∆I2E ∪∆I2V , where ∆I2E = ∆I1E and ∆I2V = ∆I1V

– ∼I2=∼I1 ∪{〈f, g〉 | f, g ∈ µ(x1) ∪ µ(x2)};

– ·I2 is obtained from ·I1 by replacing each occurrence of µ(x1) and µ(x2) in the range
of ·I1 with µ(x1) ∪ µ(x2).

8.5 Computing a universal model 139

Let d be either a tgd or an entity resolution rule that can be applied to I1 with assignment µ, we
say that I2 is the result of applying d to I1 with µ and we write I1

d,µ−−→ I2. We call I1
d,µ−−→ I2 a

chase step.

From the above definition it is easy to see that ∆I1 ⊆ ∆I2 , ∼I1⊆∼I2 , and thus that
[e]∼I1 ⊆ [e]∼I2 , for each entity or entity null e ∈ ∆I1E .

We next prove that the triple I2 produced by a chase step from an interpretation I1 is in
turn an interpretation.

Proposition 8.3. Let I1 be an intepretation and I2 = (∆I2 , ·I2 ,∼I2) be such that I1
d,µ−−→ I2.

Then, I2 is an interpretation.

Proof. We first prove that ∆I2 = ∆I2E ∪∆I2V has the form given in Definition 8.1, i.e., ∆I2E ∩∆I2V =
∅, NE ⊆ ∆I2E , and NV ⊆ ∆I2V . If d is an entity resolution rule the property is trivially satisfied,
since I1 is an interpretation and ∆I2 = ∆I1 . If d is a tgd, by definition of the tgd chase step we
have that ∆I2 = ∆I2E ∪∆I2V , where ∆I2E = ∆I1E ∪∆fresh

E⊥
, and ∆I2V = ∆I1V ∪∆fresh

V⊥
. The thesis

follows from the fact that ∆fresh
E⊥

∩∆fresh
V⊥

= ∅, I1 is an interpretation and thus ∆I1E ∩∆I1V = ∅,
NE ⊆ ∆I1E and NV ⊆ ∆I1V .

We then prove that ∼I2 is an equivalence relation over ∆I2E . If d is an entity resolution rule,
we have that ∆I2E = ∆I1E , and ∼I2=∼I1 ∪ ∼e, where ∼e= {〈f, g〉 | f, g ∈ µ(x1) ∪ µ(x2)}. Since
µ(x1) ∪ µ(x2) ⊆ ∆I1E , then ∼e is a relation over ∆I1E (the same set of entities of I1). It is also
easy to see that ∼e is an equivalence relation over µ(x1) ∪ µ(x2). Thus ∼I2 is the union of two
equivalence relations, which implies that reflexivity and symmetry are preserved in ∼I2 . To
prove that ∼I2 is also transitive, let us consider all possible cases. Let x, y, z be elements in
∆I2E (which in this case, as said is equal to ∆I1E). The following situations are conceivable:

• (x, y) ∈∼I1 and (y, z) ∈∼I1 , but since ∼I1 is an equivalence relation then this implies that
(x, z) ∈∼I1 which in turn implies that (x, z) ∈∼I2 .

• (x, y) ∈∼e and (y, z) ∈∼e, but since ∼e is an equivalence relation then this implies that
(x, z) ∈∼e which in turn implies that (x, z) ∈∼I2 .

• (x, y) ∈∼I1 and (y, z) ∈∼e. Since (y, z) ∈∼e, then, by definition of chase step, y, z ∈
µ(x1)∪µ(x2), and [y]∼I1 ⊆ µ(x1)∪µ(x2). This last condition, together with the assumption
that (x, y) ∈∼I1 , from which it follows that x ∈ [y]∼I1 , implies that also x ∈ µ(x1)∪µ(x2),
and thus, by the definition of the chase step, also (x, y) ∈∼e, which coincides with the
previous case (for which we have already shown that transitivity holds).

If d is a tuple generating dependency, then ∼I2=∼I1 ∪{〈f, f〉 | f is a value-null or entity-null
not occurring in ∆I1E } (notice that the set of pairs of fresh nulls could even be empty). Thus
∼I2 is clearly an equivalence relation.

140 8. Entity Resolution

We finally prove that ·I2 is an interpretation function according to Definition 8.1. This
however can be readily seen by the definition of both the tgd and entity resolution chase steps
(in particular, note that in the tgd chase step the interpretation of a fresh entity-null fI2 is the
singleton {f}, which is the equivalence class of f w.r.t. ∼I2 , whereas in the entity resolution
rule step µ(x1) ∪ µ(x2) is an equivalence class w.r.t. ∼I2).

Definition 8.9 (Chase sequence). Let K = 〈T ,A, E〉 be a KER system, a chase sequence
for K, denoted σC(K), is a sequence (finite or infinite) I0, I1, I2 . . . , such that I0 = IA, and
Ii

di,µi−−−→ Ii+1 is a chase step, for each pair Ii, Ii+1 in the sequence. We also say that a chase
sequence is fair if in every chase step Ii

di,µi−−−→ Ii+1, µi is the assignment that precedes every
other assignment that is triggering a tgd or entity resolution rule in Ii, and di is the tgd or
entity resolution rule triggered by µi in Ii.4

It is easy to see that for a KER system K there is exactly one fair chase sequence, thus we
refer to it as the fair chase sequence for K.

We define the length of a chase sequence σC(K), denoted len(σC(K)), has the number of
interpretations occurring in σC(K). When the sequence is infinite, len(σC(K)) =∞.

It is worthwhile to note also that, let Ii and Ij two elements in σC(K) such that j > i,
∆Ii ⊆ ∆Ij , ∼Ii⊆∼Ij , and thus that [e]∼Ii ⊆ [e]∼

Ij , for each entity or entity null e ∈ ∆IiE .
We now prove that a (possibly infinite) fair chase sequence is well defined, which intuitively

means that if an assignment is triggering a tgd or entity resolution rule d at some chase step, d
will eventually be triggered by such an assignment at a next chase step, or alternatively, the
assignment will become non-triggering, due to the execution of other chase steps.

To precisely formalize the above property we need to introduce the additional definition of
propagation of an assignment. Let Ii and Ij be two interpretations in the chase sequence such
that j > i, let d be either a tgd or an entity resolution rule, and let µ be an assignment from the
body of d to Ii. The propagation of µ to Ij , denoted µ→j , is an assignment from the body of d
to Ij such that µ→j(x) = [e]∼

Ij , for every variable x in the body of d such that µ(x) = [e]∼Ii .
Note that since [e]∼Ii ⊆ [e]∼

Ij for each Ii and Ij belonging to the chase sequence such that
j > i and each e ∈ ∆IiE , µ→j correctly associates each variable x to exactly one equivalence class
in ∆IjE / ∼Ij .

Proposition 8.4. Let K = 〈T ,A, E〉 be a KER system, and d be either a tgd in T or an entity
resolution rule in E, and I0, I1, I2 . . . be the fair chase sequence for K. If there is an assignment
µ that triggers d in an interpretation Ii in the sequence, then there is an interpretation Ij in
the sequence such that j > i and µ→j doesn’t trigger d in Ij.

4Since we have assumed that different rules use different variables, the rule di is unique.

8.5 Computing a universal model 141

Proof. When the fair chase sequence is finite, the property is trivially verified. Let us thus
consider the case of an infinite chase sequence. Assume by contradiction that for every j > i

there exists at least an assignment µ′ different from µ that triggers either a tgd or an entity
resolution rule d′ in Ij , such that µ′ precedes µ (and thus µ′ is used in the chase step from
Ij to Ij+1) . This implies that there are infinitely many such assignments. Since A, T and
E in K are finite sets, since SI is a finite set for each predicate S occurring in A or T and
each interpretation I in the chase sequence, and since every variable occurring in a built-in
predicate of an entity resolution rule occurs also in a non-built-in predicate, from every tgd or
entity resolution rule there is always a finite number of assignments to an interpretation in the
chase sequence. Therefore, the infinitely many assignments that precede µ have to be generated
through the (infinitely many) steps that follow Ii in the chase sequence. Furthermore, since
the ABox A contains a finite number of entities from NE and values from NV, the images of the
infinitely many assignments that precede µ must involve entity-nulls and/or value-nulls. Without
loss of generality, let us assume that each chase step generates one such assignment, and that
µ′ triggering d′ in Ij has such form and is generated through the chase step Ij−1

dj−1,µj−1−−−−−−→ Ij .
This means that µ′ does not trigger d′ in Ij−1, that dj−1 is a tgd, and that µj−1 is extended by
means of fresh value-nulls or fresh entity-nulls that make µ′ triggering d′ in Ij (remember also
that µ′ precedes µ). However, by definition of chase step, fresh value-nulls and fresh entity-nulls
used to extend µj−1 must follow alphabetically all entities, values, entity-nulls and value-nulls
occurring in the domain of Ij−1, which leads to a contradiction.

In the following we only consider fair chase sequences, and thus we may simply call one such
sequence the chase sequence.

We are now ready to provide the definition of chase.

Definition 8.10 (Chase). Let K = 〈T ,A, E〉 be a KER system, and let σC(K) = I0, I1, I2 . . .

be the chase sequence for K. The chase of K, denoted chase(K), is the triple 〈∆CK , ·CK ,∼CK〉,
such that:

• ∆CK = ∆CKE ∪∆CKV , where:

– ∆CKE = {e | there exists Ii ∈ σC(K) such that e ∈ ∆IiE }.

– ∆CKV = {v | there exists Ii ∈ σC(K) such that v ∈ ∆IiV }.

• ∼CK= {〈e1, e2〉 | there exists Ii ∈ σC(K) such that 〈e1, e2〉 ∈∼Ii};

• eC
K = [e]∼C

K
, for each entity or entity-null e ∈ ∆CKE ;

• vC
K = v, for each value or value-null v ∈ ∆CKV ;

142 8. Entity Resolution

• CC
K = {[e]∼C

K
| there exists Ii ∈ σC(K) such that [e]∼Ii ∈ CIi}, for each atomic concept

C ∈ NC;

• RC
K = {〈[e1]∼C

K
, [e2]∼C

K
〉 | there exists Ii ∈ σC(K) such that 〈[e1]∼Ii , [e2]∼Ii 〉 ∈ RIi}, for

each atomic role R ∈ NR;

• AC
K = {〈[e]∼C

K
, v〉 | there exists Ii ∈ σC(K) such that 〈[e]∼Ii , v〉 ∈ AIi}, for each at-

tribute A ∈ NA.

In the remaining part of this section we prove that chase(K) is a universal model of a KER

system K. To this aim, we first show that chase(K) is an interpretation, then that it is a model,
and finally we prove that is also universal.

Lemma 8.1. Let K = 〈T ,A, E〉 be a KER system. Then chase(K) = 〈∆CK , ·CK ,∼CK〉 is an
interpretation.

Proof. Let σC(K) = I0, I1, . . . be the chase sequence of K. We soon recall that each Ii is an
interpretation, by the virtue of Proposition 8.3.

In order to prove that chase(K) is an interpretation, we first prove that ∆CK has the form
given in Definition 8.1. From Definition 8.10, we have that ∆CK = ∆CKE ∪∆CKV , and it is easy to

see that ∆CKE =
len(σC(K))⋃

i=0
∆IiE and ∆CKV =

len(σC(K))⋃
i=0

∆IiV , thus ∆I0E ⊆ ∆CKE and ∆I0V ⊆ ∆CKV , and
since I0 = IA, the thesis easily follows from Definition 8.7.

We then prove that ∼CK is an equivalence relation. From Definition 8.8 and Definition 8.9, it

is easy to see that ∼Ii⊆∼Ii+1 for 0 ≤ i < len(chase(K))− 1, and thus ∼CK=
len(chase(K))−1⋃

i=0
∼Ii .

Then, the thesis easily follows from Proposition 8.3, which in particular says that ∼Ii for each
Ii in σC(K) is an equivalence relation.

Finally we prove that ·CK is an interpretation function as given in Definition 8.1. This
however follows straightforwardly from Definition 8.10 and the fact that, as proved above, ∼CK

is an equivalence relation and ∆CK has the form given in Definition 8.1.

We now prove that the chase is also a model of the KER system.

Lemma 8.2. Let K = 〈T ,A, E〉 be a KER system. Then chase(K) = 〈∆CK , ·CK ,∼CK〉 is a model
of K.

Proof. From Lemma 8.1, it follows that chase(K) is an interpretation. We need to prove that
chase(K) satisfies all membership assertions in A, all tgds in T and all entity resolution rules in
E . We show each point separately:

8.5 Computing a universal model 143

(i) chase(K) satisfies all membership assertions in A since I0 = IA and IA satisfies A. More
precisely, by Definition 8.7, [e]∼I0 ∈ CI0 for each membership assertion C(e) ∈ A, and
thus, according to Definition 8.10, [e]∼C

K
∈ CCK , which means that chase(K) satisfies C(e).

Satisfaction of the other forms of membership assertions can be proved analogously.

(ii) To prove that chase(K) satisfies all tgds in T , let us assume by contradiction that there is
a tgd d = ∀~x.φ(~x)→ ∃~y.ψ(~x, ~y) that is not satisfied by chase(K). This means that there
is an assignment µ from φ(~x) to chase(K) such that there does not exist an extension µ′

of µ from φ(~x) ∧ ψ(~x, ~y) to chase(K). But thus d is triggered by µ in an interpretation Ii
belonging to σC(K), and from Proposition 8.4 we get a contradiction.

(iii) The fact that chase(K) satisfies all the entity resolution rules in E can be proved as done
in (ii) for satisfaction of tgds in T .

The following Lemma will be exploited to prove that chase(K) is not simply a model, but it
is also universal. A similar Lemma has been used in [89] to prove an analogous result in the
context of Data Exchange.

Lemma 8.3. Let I1
d,µ−−→ I2 be a chase step. Let I be an interpretation such that: (i) I satisfies

d and (ii) there exists a homomorphism h1 : I1 → I. Then there exists a homomorphism
h2 : I2 → I.

Proof. The proof follows the line of the proof of Lemma 3.4 in [89], and exploits the fact that
the composition of an assignment with an homomorphism yields a new assignment. However,
since our structures are based on equivalence classes, the various steps of the proof are more
involved.

Case of tgd chase step: Let d be the tgd φ(~x)→ ∃~y.ψ(~x, ~y). By the definition of the chase
step, µ is an assignment form φ(~x) to I1. We define the composition of homomorphism h1 with
assignment µ, denoted h1 ◦ µ, as follows: (i) h1 ◦ µ(x) = h1(µ(x)) = [h1(e)]∼I if µ(x) = [e]∼I1

and e ∈ ∆I1E , and (ii) h1 ◦ µ(x) = h1(µ(x)) = h1(v) if µ(x) = v and v ∈ ∆I1V . We notice that
point (i) of the above definition is independent from the representative element chosen for the
equivalence class [e]∼I1 . This follows from the following property, which is straightforward from
the definition of homomorphism (Definition 8.3): let J1 and J2 be a pair of interpretations,
E ∈ ∆J1

E / ∼J1 be an equivalence class, h be an homomorphism from J1 to J2, and let e1, e2 be
two elements of E, then h(e1) and h(e2) belong to the same equivalence class in ∆J2

E / ∼J2 .
It is easy to see that h1 ◦ µ is an assignment from φ(~x) to I.
Since I satisfies d, there is an assignment µ′ from φ(~x) ∧ ψ(~x, ~y) to I, such that µ′ is an

extension of h1 ◦µ, that is, µ′(x) = h1(µ(x)) for each x in ~x. For each variable y in ~y, we denote

144 8. Entity Resolution

by fy each labeled fresh null introduced in ∆I2 by the chase step to extend the assignment µ,
i.e., fy is either a fresh entity-null such that y is assigned to the singleton containing fy, or a
fresh value-null such that y is assigned to fy. Let us now define the mapping h2 from elements
in ∆I2 to elements in ∆I as follows. For every z ∈ ∆I2 ∩∆I1 , h2(z) = h1(z). Then, for every
fy ∈ ∆I2 (by construction fy 6∈ ∆I1), h2(fy) = µ′(y) if y is assigned by µ′ to a value-null in ∆IV ,
and h2(fy) = e if y is assigned by µ′ to an equivalence class E ∈ ∆IE/ ∼I and e is any element
in E. Notice that in this way h2 is defined for all the elements in ∆I2 , since ∆I2 is given by the
union of ∆I1 and the fresh nulls introduced by the chase step.

We now show that h2 is an homomorphism from I2 to I. The first four properties of
homomorphisms given in Definition 8.3 are satisfied by construction of h2. We have then to
prove that if e1 ∼I2 e2 then h2(e1) ∼I h2(e2) for each e1, e2 ∈ ∆I2E . In the case in which
e1, e2 ∈ ∆I2E ∩∆I1E , then the property can be easily shown, since e1 ∼I2 e2 implies e1 ∼I1 e2,
by definition of the chase step, h2(e1) = h1(e1) and h(e2) = h1(e2), by definition of h2, and
h1 is an homomorphism from I1 to I. If e1, e2 ∈ ∆I2E \ ∆I1E , they are either different fresh
nulls, and thus they are not equivalent in ∼I2 , or the same fresh null f , and we have only to
verify whether f ∼I2 f implies h(f) ∼I h(f), which is obviously true, since ∼I is reflexive. It
remains to prove that if [e′]∼I2 ∈ AI2 then [h2(e′)]∼I ∈ AI , for each atomic concept in the KER
system, and analogously for atomic roles and attributes. We show the case of atomic concepts.
The other cases can be proved similarly. When e′ ∈ ∆I2E ∩∆I1E , then, by definition of chase
step, [e′]∼I2 ∈ CI2 implies [e′]∼I1 ∈ CI1 , and since h1 is an homomorphism from I1 to I, then
[e′]I1 ∈ AI1 implies [h1(e′)]I ∈ CI . Since in this case h2(e′) = h1(e′), the property is verified.
When e′ ∈ ∆I2E \∆I1E , then e′ = fy, for some variable y occurring in ~y in entity position. By
definition of h2, in this case h2(fy) = e, where e is any element in the equivalence class µ′(y).
Since fy is a fresh entity-null, and [fy]∼

I2 ∈ CI2 , then the atom C(y) must occur in ψ(~x, ~y),
and since µ′ in an assignment from φ(~x) ∧ ψ(~x, ~y) to I (remember that I satisfies d), then
µ′(y) ∈ CI , that is [h2(fy)]∼

I ∈ CI .

Case of entity resolution rule chase step: Let d be the entity resolution rule φ(~x)→ ∼(x1, x2).
We take h2 to be h1 (notice that ∆I2 = ∆I1 when d is an entity resolution rule). We have to
show that h1 is still a homomorphism when considered from I2 to I. Obviously, h1 satisfies
the first four conditions given in Definition 8.3. We have then to prove that e1 ∼I2 e2 implies
h1(e1) ∼I h1(e2). We recall that, by definition of chase step ∼I1⊆∼I2 . When e1 and e2 are
such that also e1 ∼I1 e2, then obviously the property is verified, since h1 is an homomorphism
from I1 to I. The other possible case is that e1 6∼I1 e2. This means that e1 ∼I2 e2 is introduced
by the chase step, and that e1 ∈ µ(x1) and e2 ∈ µ(x2). Since, as shown above for the tgd
chase step, h1 ◦ µ is an assignment from φ(~x) to I, and I satisfies d, it necessarily holds that
h1(µ(x1)) = h1(µ(x2)), which implies that e1 ∼I e2. We now prove that if [e]∼I2 ∈ AI2 then

8.5 Computing a universal model 145

[h1(e)]∼I ∈ CI , for each atomic concept C in the KER system and entity e ∈ ∆I2E (the case of
atomic role and of attribute are analogous). Since [e]∼I1 ⊆ [e]∼I2 , and [e]∼I1 is not empty, there
is always ê ∈ [e]∼I1 ∩ [e]∼I2 . Since h1 is an homomorphism from I1 to I then [h1(ê)]∼I ∈ CI .
The thesis easily follows from the fact that [h1(ê)]∼I = [h1(e)]∼I , for every e ∈ [e]∼I2 .

Theorem 8.2. Let K be a KER system, chase(K) is a universal model of K.

Proof. From Lemma 8.1 it follows that chase(K) is an interpretation, whereas from Lemma 8.2
it follows that chase(K) is a model for K. It remains to prove that it is universal, i.e., that there
exists an homomorphism from chase(K) to every model of K. To this aim we need an additional
property

Lemma 8.4. Let J be a model for K and let I0 be the first interpretation in σC(K). The
identity function id : ∆I0 → ∆I0, i.e., such that id(x) = x for each element x ∈ ∆I0, is an
homomorphism from I0 to J .

Proof. We have to prove that the function id is compliant with Definition 8.3 (homomorphism).
First thing, we recall that I0 = IA, and note that ∆IA ⊆ ∆J , since ∆IA = ∆IAE ∪ ∆IAV ,
where ∆IAE = NE and ∆IAV = NV (see Definition 8.7), and NE ∪ NV ⊆ ∆J by definition of
interpretation (see Definition 8.1). Thus id is also a function from ∆I0 to ∆J . It is then easy to
see that id satisfies the conditions that an homomorphism has to respect when applied to entities,
values, entity-nulls and value-nulls (the last two cases are trivially satisfied since IA does not
contain null values). Then we have to show that if 〈e1, e2〉 ∈∼I

A , then 〈h(e1), h(e2)〉 ∈∼J ,
for each e1, e2 ∈ ∆IAE , but this also is straightforward, since ∼IA contains only pairs of the
form 〈e, e〉, which are mapped to themselves by the id function and obviously belong to ∼J

because of the reflexivity of the equality relation. Let C be an atomic concept, we have to
show that if [e]∼I

A
∈ CIA , then [id(e)]∼J ∈ CJ . This follows from the fact that CIA contains

all and only the classes [e]IA such that C(e) ∈ A, and from the fact that J satisfies A and
[id(e)]∼J = [e]∼J . The remaining conditions on satisfaction of atomic roles and attributes can
be proved analogously.

The thesis can be thus proved by applying Lemma 8.3 to each Ii, Ii+1 in σC(K), starting
from I0, I1 with, h1 = id homomorphism from I0 to a model J of K.

We conclude this section with an interesting result about the data complexity of chase
computation, for the cases in which the chase terminates.

Theorem 8.3. Let K = 〈T ,A, E〉 be a KER system. If chase(K) terminates, then it can be
computed in polynomial time in data complexity.

146 8. Entity Resolution

Proof. (Sketch) When the chase terminates, there is a polynomial in the size of A that bounds
the number of new facts that can be generated through the chase steps. Indeed, the number of
possible assignments triggering a rule at a certain chase step is expressible through a polynomial
in the size of A of degree b, where b is the maximum number of atoms in the body of a rule.
Then, the number of atoms that can be generated at each chase step is bounded by the maximum
number of atoms in the head of a tgd. Based on the above arguments, it is possible to show
that the degree of the polynomial we are looking for is k · b, where k = len(σC(K)), which is a
positive integer by hypothesis. Since each fact is never generated more than once in a chase
sequence, then the thesis follows.

The next result is an immediate consequence of Theorem 8.3 and Theorem 8.1, since a
DL-LiteRDFS TBox can be expressed as a set of full tgds (i.e., tgds without existentially
quantified variables in their heads), for which the chase always terminates [89].

Corollary 8.2. Answering conjunctive queries in KER systems with a DL-LiteRDFS TBox is
polynomial in data complexity.

We notice that besides the DL-LiteRDFS case mentioned above, it is possible to show that
query answering is polynomial in data complexity for some settings of tgds enjoying conditions
that ensure termination of the (classical) restricted chase, such as, e.g., for weakly acyclic
tgds [89] or for sets of tgds respecting the acyclicity conditions described in ??. We point out
that termination of the chase is not the only condition ensuring that conjunctive query answering
can be solved in our framework. Cases in which the chase is infinite are definitely worthwhile
to be investigated, as e.g., KER systems with a DL-LiteR TBox. In these cases, however, as
done in the literature of ontology-mediated query answering [26], approaches different from
simple chase computation have to be obviously considered, such as investigating whether the
possibly infinite chase can be represented using finitary means, or whether query answering can
be solved through query rewriting, or even combining (partial) chase computation with query
rewriting (in standard ontology-mediated query answering, examples of the previous approaches
are [37, 38, 155, 50]).

8.6 Adding functionalities

Some popular ontology languages tailored to data management, as, e.g., DL-LiteF [46], are
equipped with functionality assertions (or simply functionalities). Whereas in DL-LiteF func-
tionalities can be asserted only on roles (see Section 5.2), DLs allowing for attributes (as
DL-LiteA [176]) also consider functionalities on attributes. In both cases, such assertions state
that an entity cannot have more than one filler with respect to a certain role or attribute, that

8.6 Adding functionalities 147

is, given an entity e and a functional role R (resp. attribute A), there is at most an entity
e′ (resp. value v), i.e., at most one filler, that R (resp. A) associates to e. Such assertions
are similar to restrictions imposing maximum cardinality 1 on relationships or attributes in
Entity-Relationship diagrams (or in UML class diagrams).

We soon notice that at the semantic level functionalities on roles act as entity resolution
rules. Indeed, different fillers of a functional role for a certain entity can be interpreted with the
same real-world object, which in our framework means with the same equivalence class. This
correspondence holds also at the syntactic level, since a functionality on a role can be expressed
through an entity resolution rule of the form (8.2). For example, the assertion stating that the
role lives_in is functional (expressed, e.g., as funct(lives_in) in DL-LiteF) can be specified as
the rule ∀x, y, z.lives_in(x, y)∧ lives_in(x, z)→∼ (y, z) (note that y and z are entity-variables).

On the other hand, functionalities on attributes are not expressible as entity resolution
rules since they enforce an equality on value-variables, which might not be satisfied by any
interpretation, possibly resulting in an inconsistent ontology. The above situation often arises in
contexts such as data integration or information extraction, where data coming from different
databases or documents may result contradictory with respect to the rules of the ontology
(e.g., a person having two dates of birth, an attribute which is of course usually asserted as
functional). The number of conflicts of the above kind is typically increased by the presence of
entity resolution rules, which lead to identify different entities, possibly coming from different
data sources and associated to different values by the same functional attribute.

Typical approaches to cope with such inconsistencies are procedural data cleaning [113, 181],
which aims at solving the inconsistency through ad-hoc cleansing algorithms, or consistent
query answering [22, 25, 21, 133], which “tolerate” the inconsistency through the definition of
tailored semantics based on repairs, i.e., consistent data instances that are as close as possible
to the original instance (typically are its inclusion- or cardinality-maximal consistent subsets),
and compute answers to queries by reasoning over such repairs and the schema of the data or
knowledge base.

Our approach to manage violations of functional attributes follows a different direction.
We interpret functionalities on attributes as matching dependencies [23, 92], which are rules
specifying conditions under which certain values of attributes have to be matched. Thus, instead
of trying to equate the values as imposed by a functional attribute assertion, we combine them
through a merging function, so that we can still have a structure satisfying the functionality.
We adopt a general and common merging function that takes the union of the values filling
functional attributes for a single entity. This function actually belongs to the Union class of
match and merge functions introduced in [18] and also analyzed in [23].

In the rest of this section we investigate query answering over KER systems whose TBox

148 8. Entity Resolution

is as a set of tgds plus functionality assertions. As said, we see role functionalities as (special)
entity resolution rules, and thus hereinafter we do not explicitly consider them. We instead
give a novel definition of the interpretation of functional attributes, to see them as matching
dependencies enforcing merging of values through a union function. This requires to revise
the notion of interpretation of a KER system. Consequently, we need to modify the notions of
homomorphism between KER interpretations, universal model, certain answers, and the chase.
We also show that the chase and query answering properties proved in the previous sections
continue to hold under the new semantics, and in particular Theorem 8.1, Theorem 8.2 and
Theorem 8.3 are still valid for KER systems equipped with functionality assertions on attributes.

8.6.1 Functionalities on attributes as matching dependencies

Given an attribute A, a functionality assertion on A is defined as an equality generating
dependency of the following form:

∀x, y, z.A(x, y) ∧A(x, z)→ y = z (8.4)

Notice that this kind of assertion is not captured by the syntax of entity resolution rules (see
equation (8.2)), since y and z are value-variables (thus they are not entity-variables as required
in (8.2)). Notice also that Equation (8.4) expresses as a first-order rule a property that in DL
syntax is typically specified as funct(A) (see also Section 5.2).

As already said, in the following we revise the semantics of a KER system in order to properly
interpret functional assertions of the form (8.4) in the spirit of matching dependencies. In
particular, we will consider interpretations that assign ranges of attributes (i.e., the second
component of attribute predicates) with sets of values, rather than a single value, as done so
far. This will allow us to cope with situations in which a standard interpretation of functional
attributes would lead to an inconsistency. At the same time this gives us the opportunity to
consider new forms of selections and joins over ranges of attributes. To this aim we introduce a
new type of atom to be used in the body of tgds and entity resolution rules, or in conjunctive
queries. More precisely, we call matching atom an expression the form t1 ≈m t2, where t1 and t2
are variables or values in NV, and at least one of them is a variable5.

Intuitively, the intended meaning of a matching atom of the form y ≈m v, where y is a
variable and v is a value, is that the v has to belong to the set of values binding the variable
y. Similarly, an atom of the form y1 ≈m y2, where y1 and y2 are variables, expresses that the
intersection of the sets of values binding the variables y1 and y2 has to be non-empty.

5Our results apply straightforwardly to the more general case where t1 and t2 can be variables or sets of values,
but we do not explicitly consider this option for ease of exposition.

8.6 Adding functionalities 149

Remark. Hereinafter, we consider tgds and entity resolution rules of the form given in (8.1)
and (8.2), respectively, where the conjunction φ(~x) (rule body) may contain matching atoms
involving value-variables (that is, variables that occur in at least a value-position in some other
non-matching atom in φ(~x)).6

We notice that standard selections and joins between ranges of attributes are still allowed
in φ(~x). As usual, they are expressed through atoms of the form A(x, v), where A is an
attribute, x is a variable, and v is a value, or through multiple occurrences of the same value-
variable in different non-matching atoms, respectively. Thus, we may express in φ(~x) both
exact and approximate selections or joins on ranges of attributes. For instance, the conjunction
A1(x, y1) ∧ A2(z, y2) ∧ A3(w, y2) ∧ y1 ≈m y2 is satisfied by assigning the same set of values Ω
to the ranges of A2 and A3 (variable y2) and a set of value Ω′ to the range of A1 such that
Ω ∩ Ω′ 6= ∅.

In the following, we provide a formal characterization of the semantics of rules allowing for
matching atoms. We first revise the notion of interpretation given in Definition 8.1, and then
the notion of assignment given in Definition 8.2.

Definition 8.11 (interpretation (revisited)). Let K = 〈T ,A, E〉 be KER system, such that
T is a set of tgds of the form (8.1) and functionalities of the form (8.4). An interpretation
I = (∆I , ·I ,∼I) for K is defined as in Definition 8.1, except for the interpretation of attributes
and built-in predicates, for which the following conditions hold7

• AI ⊆ ∆IE/∼I × 2∆IV , for each attribute A ∈ NA;

• F I ⊆ ×ni=12NV , for each n-ary built-in predicate F ∈ NF.

Based on the above definition, we have also to modify the notion of satisfaction of ABox
assertions of the form A(e, v), where A is an attribute in NA, e is an entity in NE, and v is a
value in NV. Namely, we say that an interpretation I satisfies the ABox assertion A(e, v) if
there exists a set Ω ∈ 2∆IV such that vI ∈ Ω and 〈[e]∼I ,Ω〉 ∈ AI (remember also that vI = v).

We are now ready to redefine the notion of assignment.

Definition 8.12 (assignment (revisited)). Let φ(~x) be a conjunction of atoms of the form C(t),
R(t, t′), A(t, t1), F (t1, . . . , tn), y ≈m v, v ≈m y, or y ≈m z, where C, R, A, F are an atomic
concept, an atomic role, an attribute, or a n-ary built-in predicate, respectively, t, t′ are entity-
variables in ~x or entities, t1, . . . , tn are value-variables in ~x or values, y, z are value-variables,
and v is a value. Let I = (∆I , ·I ,∼I) be an interpretation. An assignment from φ(~x) to I is a
mapping µ from the variables ~x to the set ∆IE/∼I ∪ 2∆IV , such that

6Note that we do not allow for matching atoms occurring in the right-hand side of tgds.
7Given a set Γ, with 2Γ we denote the power set of Γ

150 8. Entity Resolution

1. for each atom in φ(~x) of the form S(x1, . . . , xk, c1, . . . , c`), where x1, . . . , xk are variables,
and, for each 1 ≤ i ≤ `, ci is either an entity in NE or a value in NV

8, the tuple
〈µ(x1), . . . , µ(xk), cI1 , . . . , cI` 〉 ∈ SI ; 9

2. for each atom in φ(~x) of the form y ≈m v or v ≈m y, vI ∈ µ(y)

3. for each atom in φ(~x) of the form y ≈m z, µ(y1) ∩ µ(y2) 6= ∅

As in Definition 8.2, let ~x = x1, . . . , xm, the sequence µ(x1), . . . , µ(xm) is called the image of µ.

The notion of extension of an assignment is as defined in Section 8.2.4.
We notice that point 2 and point 3 above formalize the approximate forms of selections and

joins mentioned before, in the spirit of the relaxed relation algebra considered in [23].
Given a tgd or an entity resolution rule ρ (possibly containing matching atoms in its body)

and an interpretation I of the form of Definition 8.11, the satisfaction of ρ by I is as defined in
Section 8.2.4, by using an assignment as defined in Definition 8.12. It remains to provide the
semantics of functionalities. We say that I satisfies a functionality assertion of the form (8.4) if
for each assignment µ from A(x, y)∧A(x, z) to I, µ(y) = µ(z) (notice that this requires that the
two sets assigned to y and z have to be equal). We remark that the above definition coincides
with the standard one for functionality assertions, modulo the use of our tailored definitions of
interpretation and assignment. Furthermore, such definition allows us to treat functionalities as
matching dependencies, for which we adopt a merge function returning the union of the values
associated to the same entity (or set of equivalent entities) by a functional attribute (cf. the
union class of match and merge functions of [18]).

Example 8.5. Consider the KER system K = 〈T ,A, E〉, where T contains only the functional
dependency age(x, y) ∧ age(x, z)→ y = z, A = {age(#Ullman, 78), age(#Ullman, 80)}, and
E = ∅. The interpretation I such that 〈[#Ullman]∼I , {78, 80}〉 ∈ ageI satisfies the functionality
assertions in T .

Obviously, a model for a KER system is an interpretation satisfying all tgds and functionalities
in T , all membership assertions in A, and all entity resolution rules in E . Then, the notion of
entailment is the usual one.

From the practical perspective, our semantics allow us to obtain a model even for KER

systems that would be considered inconsistent under standard first-order semantics. Our models
do not clean the inconsistency, nor repair it (e.g., by considering maximal subsets of the ABox
that are consistent with the TBox and the entity resolution rules, as in repair-based approaches).

8Without loss of generality we assume that entities and values, if any, occur as the last ` arguments of the
atom with predicate S. Notice also that k ≥ 0, ` ≥ 0, and k + ` ≥ 1.

9With a slight abuse of notation, if ci ∈ NV, here we consider cIi = {ci}.

8.6 Adding functionalities 151

Rather, we gather together in a set all possible values that a functional attribute A associates
to an entity e, and treat such a union as the only filler for e with respect to A.

8.6.2 Universal Models

The universal model of a KER system with a TBox expressed through tgds and functionalities is
as established in Definition 8.4, provided that the following revised notion of homomorphism is
adopted.

Definition 8.13 (homomorphism (revisited)). Let K = 〈T ,A, E〉 be KER system, such that T
is a set of tgds of the form (8.1) and functionalities of the form (8.4). Let I1 = 〈∆I1 , ·I1 ,∼I1〉
and I2 = 〈∆I2 , ·I2 ,∼I2〉 be two interpretations. An homomorphism h : I1 → I2 is defined as in
Definition 8.3, except for the last condition on interpretation of attributes, which is replaced by
the following one:

• if 〈[e]∼I1 ,Ω〉 ∈ AI1 , then 〈[h(e)]∼I2 ,Ω′〉 ∈ AI2 , such that h(Ω) ⊆ Ω′, where h(Ω) =
{h(v) | v ∈ Ω}, for each attribute A in K, each [e]∼I1 ∈ ∆I1E /∼I1 , and each Ω ∈ 2∆I1V .

8.6.3 Query answering in the presence of functional attributes

We consider conjunctive queries of the form (8.3), extended to the presence of matching atoms.10

The notion of evaluation of a CQ over an interpretation remains unchanged (cf. Section 8.4),
modulo the use of the new notions of interpretation and assignment. However, we note that now
a tuple in the evaluation of a query never contains single values, but may contain sets of values
from the interpretation domain (of course, such sets may be singletons). That is, given a query
q of arity n and an interpretation I = 〈∆I , ·I ,∼I〉, qI is a (possibly empty) set of tuples of the
form 〈T1, . . . , Tn〉, where each Ti is either a non-empty set of entities in ∆IE or a non-empty set
of values in ∆IV .

We point out that the property given in Proposition 8.1 is still valid, provided that we account
for the above mentioned difference. This is formally stated in the proposition below, whose
proof follows from the definition of query evaluation and from Definition 8.13 (homomorphism
revised).

Proposition 8.5. Let K be a KER system, q a query over K, I1 = 〈∆I1 , ·I1 ,∼I1〉 and I2 =
〈∆I2 , ·I2 ,∼I2〉 two models of K, and let h : I1 → I2 be an homomorphism from I1 to I2.

10Our approach applies straightforwardly to CQs in which sets of values from NV occur in exactly the same
positions where single values from NV may occur (as, e.g., in the query ∃x, y.age(x, {78, 80}), which asks to verify
the existence of an individual that is both 78 and 80 years old, or in the query ∃x.age(x, y) ∧ y ≈m {78, 80},
asking for the existence of some one that is either 78 or 80, or both). This would require to slightly modify
Definition 8.12. For the sake of presentation we do not consider this case (notice also that CQs containing sets of
values can always be rewritten into equivalent unions of CQs with values only).

152 8. Entity Resolution

If 〈T1, . . . Tn〉 ∈ qI1, then 〈X1, . . . , Xn〉 ∈ qI2, where for every 1 ≤ i ≤ n: (i) Xi = h(Ti) =
[h(e)]∼I2 , if Ti = [e]∼I1 , and (ii) h(Ti) ⊆ Xi ∈ 2∆I2V , where h(Ti) = {h(v) | v ∈ Ti}, if Ti ∈ 2∆I1V .

We then note that a typed tuple (revisited) is now a sequence 〈T1, . . . , Tn〉, such that each Ti
is either a non-empty set of entities in NE or a non-empty set of values in NV. The notions of
equality between typed tuples, type, and informativeness of a typed tuple naturally apply to
this revised notion (cf. Section 8.4). In particular, let ~t = 〈T1, . . . , Tn〉 and ~t′ = 〈T ′1, . . . , T ′n〉 be
two typed tuples of the same type, we say that ~t′ is equally or more informative than ~t, denoted
with ~t ≤ ~t′, if Ti ⊆ T ′i for every 1 ≤ i ≤ n. Similarly, we can revise the definition of certain
answer as follows.

Definition 8.14 (certain answer (revisited)). Let K be a KER system and q a query of arity n
over K. A typed tuple ~t = 〈T1, . . . , Tn〉 is a certain answer to q w.r.t. K if for each I ∈Mod(K)
there exists a tuple 〈T ′1, . . . , T ′n〉 ∈ qI such that:

(i) Ti ⊆ T ′i , for each 1 ≤ i ≤ n;

(ii) there is no typed tuple ~t′ that satisfies (i) such that ~t < ~t′.

It is easy to see that Proposition 8.2 and Corollary 8.1 continue to hold.

In order to (re-)establish the relation between universal models and certain answers, we first
need to extend the operator ↓ in such a way that it applies also to sets of values, from which it
eliminates value-nulls they may contain, exactly as it does for sets of entities. Then, given a set
Θ of tuples of the form 〈T1, . . . , Tn〉, where each Ti is either a set of entities and entity-nulls,
or a set of values or value-nulls, Θ↓ is the set obtained from Θ by removing all tuples in Θ
containing a Ti such that Ti↓ = ∅, and replacing each other tuple 〈T1, . . . , Tn〉 in Θ by the tuple
〈T1, . . . , Tn〉↓.

We notice that all the revisited definitions we have given above are indeed smoother than
the analogous ones given in Section 8.4, since now both the value and the entity components of
a typed tuple are sets, which allows us to provide a more uniform treatment.

We conclude this section by remarking that Theorem 8.1 continues to hold also under the
revisited notions of universal model, query evaluation, certain answer, and ↓ operator discussed
so far. The proof is essentially as the one we have given in Section 8.4, where however values
have to be substituted by sets of values. For instance, in Part I of the proof, x2 has to be equal
to {v1, . . . , vk} ↓ such that ([a1]∼U , {v1, . . . , vk}, [a3]∼U) ∈ qU and ([a1]∼I ,Ω, [a3]∼I) ∈ qI , where
{v1, . . . , vk} ⊆ Ω (then satisfaction of properties (i) and (ii) of Definition 8.14 is proved exactly
as done in Theorem 8.1 for properties (i) and (iii) of Definition 8.6).

8.6 Adding functionalities 153

8.6.4 Revisiting the Chase

We now revise the definition of chase step. The revision accounts for the presence of functionality
assertions in the TBox of a KER system, which requires to slightly modify the tgd chase step
and to introduce the additional functionality assertion step (whereas the entity resolution step
remains the same as in Definition 8.8). As for the tgd step, the only change we need is in the
extension of µ to µ′. Indeed, in this case µ′ assigns existential value-variables in the head of a
tgd with a singleton containing a fresh value-null.

We recall that, in the chase step definition, ∆E⊥ and ∆V⊥ are infinite ordered sets of
labeled entity-nulls and value-nulls, respectively, such that ∆E⊥ ∩ NE = ∅, ∆V⊥ ∩ NV = ∅, and
∆E⊥ ∩∆V⊥ = ∅. We also recall that we have defined an order on assignments to an interpretation
I whose domain ∆I = ∆IE ∪∆IV is such that ∆IE \ NE ⊆ ∆E⊥ and ∆IV \ NV ⊆ ∆V⊥ . Such order
also holds on assignments as given in Definition 8.12, provided that every set Ω of values and
value-nulls occurring in the image of an assignment µ is represented in the bindings obtained
through µ as the string constructed by concatenating all the elements occurring in Ω, following
the alphabetic order (as done for equivalence classes). Obviously, also assignments from the
conjunction in the body of functionality assertions of the form (8.4) to I are ordered as above.

We are now ready to give the revised definition of chase step.

Definition 8.15 (Chase Step (revisited)). Let I1 = (∆I1 , ·I1 ,∼I1), where ∆I1 = ∆I1E ∪∆I1V
and ∆I1E ∩∆I1V = ∅, be an interpretation such that ∆I1E \ NE ⊆ ∆E⊥ , and ∆I1V \ NV ⊆ ∆V⊥ .

• (tuple generating dependency) this step is as in Definition 8.8, except for the extension of
µ to µ′, which for the case where the variable yi in ~y is a value-variable (first bullet, point
(ii)), is now as follows: [the variable yi is assigned to] (ii) a set containing only a fresh
labeled value-null from ∆V⊥ that follows in the order all the entity-nulls and value-nulls in
∆I1 ;

• (entity resolution rule) this step is as in Definition 8.8;

• (functionality assertion) let d be a functionality assertion of the form (8.4). Let µ be an
assignment from A(x, y) ∧ A(x, z) to I1 such that µ(y) 6= µ(z) (i.e., µ(y) and µ(z) are
different sets of values from ∆I1V). We say that d is applicable to I1 with assignment µ (we
also say that µ triggers d in I1). Let I2 be the triple (∆I2 , ·I2 ,∼I2), defined as follows:

– ∆I2 = ∆I2E ∪∆I2V , where ∆I2E = ∆I1E and ∆I2V = ∆I1V ;

– ∼I2=∼I1 ;

– ·I2 is as ·I1 except for the interpretation of A, for which we have
AI2 = AI1 \ {〈µ(x), µ(y)〉, 〈µ(x), µ(z)〉} ∪ {〈µ(x), µ(y) ∪ µ(z)〉} .

154 8. Entity Resolution

Let d be a tgd, an entity resolution rule or a functionality assertion that can be applied to
I1 with assignment µ, we say that I2 is the result of applying d to I1 with µ and we write
I1

d,µ−−→ I2. We call I1
d,µ−−→ I2 a chase step.

It is easy to see that the structure I2 that is the result of applying d to I1 is an interpretation
according to Definition 8.11. The proof is analogous to the proof of Proposition 8.3. In particular,
for the case in which d is a functionality assertion, ∆I2 = ∆I1 , ∼I2=∼I1 , and the fact that ·I2

is an interpretation function can be readily seen by the definition of functionality assertion chase
step. Then I2 is an interpretation since I1 is an interpretation.

A (fair) chase sequence is defined as in Definition 8.9. Furthermore, Proposition 8.4 (showing
that the fair chase sequence is well defined) continues to hold even in the case in which the
TBox of the KER system contains also functionality assertions.

We remark also that, given a KER system K, and let Ii and Ij two elements in the chase
sequence σC(K) such that j > i, we have that ∆Ii ⊆ ∆Ij , ∼Ii⊆∼Ij , which implies that
[e]∼Ii ⊆ [e]∼

Ij for each entity or entity-null e ∈ ∆IiE , and also that for each attribute A and each
pair 〈[e]∼Ii ,Ω〉 ∈ AIi , there exists a pair 〈[e]∼

Ij
,Ω′〉 ∈ AIj such that Ω ⊆ Ω′.

We are finally able to provide a revised definition for the Chase.

Definition 8.16 (Chase (revisited)). Let K = 〈T ,A, E〉 be a KER system, and let σC(K) =
I0, I1, I2 . . . be the chase sequence for K. The chase of K, denoted chase(K), is the triple
〈∆CK , ·CK ,∼CK〉 defined as in Definition 8.10, except for the interpretation of attributes, which
is as follows:

• AC
K = ΘA \Θ−A, for each attribute A ∈ NA, where

ΘA = {〈[e]∼C
K
,Ω〉 | there exists Ii ∈ σC(K) such that 〈[e]∼Ii ,Ω〉 ∈ AIi}, and

Θ−A = {〈[e]∼C
K
,Ω〉 | there exist Ii, Ij ∈ σC(K), where j > i, such that 〈[e]∼Ii ,Ω〉 ∈ AIi

and 〈[e]∼
Ij
,Ω′〉 ∈ AIj and Ω ⊂ Ω′}.

Intuitively, among all pairs 〈[e]∼Ii ,Ω〉 in the interpretation of A with respect to any Ii
occurring in σC(K), chase(K) takes only the one where Ω is the maximal with respect to set
inclusion.

Given a KER system K, whose TBox contains both tgds and functionality assertions, it
is possible to show that chase(K) is a universal model of K, following the line of the proof
of Theorem 8.2. It is indeed easy to see that chase(K) is an interpretation according to
Definition 8.11 (the proof essentially coincides with the proof of Lemma 8.1), and that such
interpretation is a model. The proof for this last property is the same used for Lemma 8.2,
with the addition of a case showing that the chase satisfies all functionality assertions in the
TBox, which can be proved by contradiction, as we have done for satisfaction of tgds and

8.7 Final Remarks 155

entity resolution rules. It is then possible to show that Lemma 8.3 holds also in the presence of
functionalities in the TBox. From the above properties it immediately follows that chase(K) is
a universal model, as shown in the proof of Theorem 8.2. It is finally worth noting that also
Theorem 8.3 is still valid in the general framework allowing for functional dependencies. Thus,
also in this case, termination of the chase implies that conjunctive query answering is polynomial
in data complexity.

8.7 Final Remarks

In this chapter we have dealt with entity resolution over DL ontologies. We have provided a
general theoretical framework for ontologies expressed as sets of tgds and functionalities on
attributes, coupled with entity resolution rules, which are expressed as equality generating
dependencies (possibly using built-in predicates in their body). We have thus defined KER

systems, composed by a TBox, an ABox, and a set of entity resolution rules.
In our framework, we have revised the traditional way of interpreting rules in first-order logic

in two different ways. First, we have based the semantics of KER systems on interpretations
depending on an equivalence relation used to group entities in equivalence classes (according to
the conditions specified by entity resolution rules). Second, we have interpreted functionalities
on attributes as matching dependencies specifying conditions under which values have to be
merged, which in our framework is done through a union merge function.

We have shown that universal models of a KER system can be used for answering conjunctive
queries (similar to what happens in data exchange, Datalog+/- programs, existential rule
systems, or DL-Lite ontologies), and have provided a chase-based procedure to construct one
such model. Whereas in general the chase is infinite, for the cases in which it terminates we
have shown that it can be constructed in polynomial time in the size of the ABox.

The material presented in this chapter reports on our initial investigation on entity resolution,
and our main contribution is the framework, with its nice semantic properties. We believe that it
allows to smoothly combine powerful entity resolution rules with classical ontology languages for
data management. Our computational results are still preliminary, and concern with the “simple”
cases in which the chase terminates. An interesting line of research is to investigate query
answering for settings in which termination of the chase is not always guaranteed, as for all DLs
of the DL-Lite family. Another crucial point is how to deal with negative inclusions typically
allowed in ontology languages: resolving entities in the presence of negative inclusions may indeed
introduce forms of inconsistencies that cannot be dealt with as we have done for inconsistency
caused by functionalities. A possible solution could be to interpret entity resolution rules as soft
rules, so that the merge of equivalence classes they imply is done only if this does not lead to

156 8. Entity Resolution

violations of negative inclusions. This problem, however, deserves additional investigation.

157

Chapter 9

Related Work

In this section we discuss relevant research literature linked to the themes and topics treated in
of this thesis. This chapter is organized as follows:

• In Section 9.1 we discuss the work related to OBDA i.e. the semantic data integration
approach introduced in Chapter 5, which inspired the definition of OBDS systems.

• In Section 9.2 we review some studies on rule-based information extraction that share
with OBDS the declarative nature of the approach.

• In Section 9.3 we specifically deal with work on ontology-based information extraction,
mentioning both statistical and rule-based methods.

• In Section 9.4 we focus on the literature on entity resolution, related to the KER system
formalization proposed in Chapter 8.

9.1 OBDA

As stated previously, the OBDS approach can also be seen as a form of OBDA over unstructured
data sources. The main differences between the two frameworks is that in OBDS the link
between ontology and data is no longer expressed through mappings but extraction assertions.

OBDA takes as a starting point the extensive work done in the field of Information Integration.
Particularly relevant is the work on virtual data integration [147, 77], which aims to provide
centralized access to data via a global schema (typically relational) connected through mappings
to a set of possibly heterogeneous data sources. In this context various techniques for query
answering, i.e., processing queries posed over the global schema, have been proposed, mainly
based on query rewriting [1, 126, 179, 150, 83], possibly in presence of integrity constraints
specified over the global schema [32, 40].

158 9. Related Work

Differently from virtual data integration, where data are not moved from the sources, Data
Exchange [90, 5] studies the problem of materializing an instance of the global schema (in this
context called target schema). Here, query answering is typically solved through completion
of the target instance based on the classical chase procedure [116, 90, 34, 16], which adds
to the original instance new facts implied by the source-to-target mappings, expressed as
tuple-generating dependences (tgds) and essentially corresponding to so-called GLAV mappings
studied in virtual data integration. Also in the data exchange context integrity constraints are
considered on the target schema, expressed as tgds and equality-generating dependencies (egds).

The more recent OBDA approach enriches the traditional virtual data integration framework
by substituting the “classical” global schema with an ontology [177], thus making it possible to
have a rich conceptual representation of the domain of interest, which allows a system designer
to effectively abstract away from the logical and physical aspects of the source databases. As
mentioned above, in this context query answering is still the main reasoning service, faced
via query rewriting [177, 58, 37, 206, 174], or via chase-based algorithms [35], or even through
combined approaches [128, 165].

For the above reason, and starting from the seminal works in [151, 49, 111, 45], the interest of
the knowledge representation community for the problem of query answering over ontologies has
grown considerably. This problem is typically referred to as Ontology-Mediated Query Answering
(OMQA)[168, 169], to properly distinguish it from the OBDA framework, characterized by
the presence of mappings towards data sources. In OMQA, instead, the focus is on a single
ontology, and query answering amounts to reason over the ontology to return complete answers.
In OMQA, various combinations of ontology and query languages have been analyzed in order
to find the best setting that guarantees data tractability [84, 169]. For data-intensive OMQA
applications, the tractable settings mainly studied are those in which the query language is that
of conjunctive queries, and the ontology is expressed in one of the logics of the DL-Lite family
[45] or of the EL family [7], or in one of the more expressive Horn Description Logics (DLs) [84],
a fragment of Horn first-order logic. We also notice that the distinction between OBDA and
OMQA is a bit blurry in the literature, and some of the papers on OBDA we have mentioned
do not really consider mappings. In other terms, in such papers OBDA acts as a motivation to
study query answering, and, at the same time, query answering techniques they provide can be
easily extended to OBDA when mappings are GAV (i.e., roughly, are forms of full tgds). For
more detail on OMQA we refer the reader to the survey [27].

Other valuable reasoning services proposed on OBDA systems in the presence of relational
data sources are those related to the exposure of data services [60], for open-data publishing
[59] and for data quality purposes [64].

The success of OBDA is not only limited to theoretical research, but is also conveyed in a

9.2 Declarative Information Extraction 159

series of enterprise tools, such as Mastro [42], Ontop [41], Stardog1 and Ultrawap [196], largely
used for industrial applications [75, 122, 187].

However, the OBDA studies proposed in the literature so far have mainly focused on relational
data sources, with few exceptions, like [29], [54], and [142] (the last paper presents the framework
we have discussed in Chapter 6). In [29] the authors propose an OBDA approach over JSON
documents managed by MongoDB, a document-based DBMS and currently one of the most
popular NoSQL DBMSs. In that paper, the authors mainly focus on query answering via a
virtual approach, proposing algorithms for query rewriting into queries processable by MongoDB.
The proposed solutions take into account the features in MongoDB and have been tested in
practice through an ad-hoc implementation of Ontop. In [54], the specific case of tabular datasets
represented as CSV files has been considered, and a framework, called Morph-CSV, for querying
tabular data has been proposed. The ultimate goal of Morph-CSV is to exploit information
from OBDA inputs (e.g., mappings, queries) to enforce constraints that can be used together
with any SPARQL-to-SQL OBDA engine in order to increase query answering performances
(with respect to an approach that simply stores tables in a relational DBMS without integrity
constraints).

Except for the mentioned papers, OBDA in the presence of non-relational databases has
not been so far the subject of specific investigations, but it is typically faced through wrapping
[65, 12, 185], which allows to transform some non-relational data formats into the relational one
[77]. However, wrappings introduce a further level of data virtualization, which can drastically
downgrade performances and, in general, cannot manage unstructured sources (such as raw
text).

9.2 Declarative Information Extraction

As stated previously, OBDS systems express in a declarative way the link between the portion
of the text identified by AQL extractors and the predicates of the ontology.

This section discusses the most successful IE approaches in the literature, which share with
the OBDS framework the characteristics of being declarative and formally well-defined from a
theoretical point of view.

Rule-based declarative approaches for IE have been studied in the last two decades [207,
80, 154, 12]. Initially, the approaches were still presented some procedural flavor and generally
based on Common Specification Pattern Language, a rule language on which JAPE [71] and
TokensRegex [156] are also based on. Unlike Document Spanners, these languages do not have
formal declarative semantics underlying them [86]. After realizing the difficulty of maintaining

1https://www.stardog.com

https://www.stardog.com

160 9. Related Work

applications based on rules with an operational semantics, the IE community moved to approaches
inspired by declarative languages based on database principles [114, 124]. For a foundational and
theoretical study on declarative IE over free text, we refer to the work on Document Spanners
[86]. In the context of Document Spanners, several extensions have also been studied that are
capable of dealing with inconsistencies [87], with recursion [175], to annotate documents in CSV
format. Some studies on Document Spanners have also analyzed the computational complexity
[94, 3, 97] and logic underlying them [96].

Lixto In addition to IE over raw text carried out by systems like SystemT [57], which has
already been presented in Chapter 7, one of the most successful applications of declarative
IE resides in the extraction of information from the web pages [127]. Currently, most of the
information on the web is available in the form of HTML documents. Due to its structure,
this type of document is not suitable for automatic processing and database-like queries. This
problem has been addressed by a large bulk of work on so-called Web wrappers [154, 12],
rule-based programs that extract the relevant information from HTML documents and translate
it into a more machine-friendly format, such as XML, which can be easily queried and further
processed. Lixto proposed in [12] by Baumgartner et.al, is a system for generating HTML
wrappers through a language called ELog (“Extraction by datalog”). Elog has a solid and
well-understood theoretical basis. Properly, it is syntactically and semantically defined by
its underlying logic, which corresponds to monadic datalog, a function-free datalog fragment
[102, 103].

Theoretical studies have shown that Elog has some interesting computational properties.
Namely, it is proved that the evaluation of monadic datalog programs on tree structures
(e.g., an HTML document) can be done in linear time in data complexity, making then Elog
suitable for data-intensive tasks. Within Lixto there is also the possibility of using some
dialects less expressive than Elog. These sublanguages allow to express wrappers through
visual iterations, thus simplifying their creation. The main drawback of these wrapper-based
information extraction approaches is that, although they are particularly effective in the presence
of well-structured HTML documents, they do not take into account the information present in
free text, differently from the OBDS approach presented in this dissertation.

XLog Another declarative IE language based on datalog is XLog, proposed in [198]. The syntax
and semantics of this language match those of datalog with controlled use of built-in predicates
and functions. In their paper, the authors show that the main advantages of XLog lie in the
evaluation performance, also by virtue of the several optimizations proposed to reduce the
execution time. Among these, techniques based on the order of execution of the rules using a
suited query plan are particularly interesting.

9.3 Ontology-Based Information Extraction 161

9.3 Ontology-Based Information Extraction

Ontology-Based Information Extraction (OBIE) systems can be classified into two broad sets,
those that are tasked with populating a given ontology, such as the methods proposed in this
thesis, and those that also attempt to extract the intensional layer of an ontology along with
the extensional one [186, 214, 178, 199]. In addition, depending on the approach chosen, we can
identify OBIE systems based on rules [141], statistical methods [51], or combined techniques
[199]. In the following, we report on some of the best-known systems in the literature, also
resulting in industrial products, and that make use of some of the technologies used in this
thesis, shown in Chapters 3 and Chapter 4. We point out however that all proposed solutions in
OBIE simply look at the ontology as a conceptual model, and do not exploit reasoning services
to support the IE process, as we aim to do in this thesis.

Text2Onto In [61], Cimiano et. al propose a framework to extract ontologies from text, relying
on both statistical and rule-based algorithms. Text2Onto is based on GATE and uses its main
components, including JAPE, to generate from the text both the intentional and extensional
levels of the ontology. It extracts concepts, subclass relations, mereological (part-of) relations,
general relations, attributes, and instances of these, based on a probabilistic structure. The
system currently seems to be discontinued, as it has not been updated since 2008. In the
literature, similar approaches are those proposed by Velardi et al. with Ontoloearn [205],
which, however, has the main aim of creating taxonomies from free text with the purpose of
disambiguation. This system shares with the pipeline proposed in Chapter 3 the technologies
used, i.e., GATE, but also presents the issues we have previously mentioned about GATE and
the JAPE language.

NELL Tom Mitchel et al. proposed in [51] an architecture inspired by human learning, based on
never-stop learning techniques for populating and enriching an initial general-purpose ontology.
This architecture, namely, Never-Ending Language Learner (NELL), learns new facts, new
concepts, and new relationships from the web through text mining and rule-based deductive
knowledge completion steps, properly using inductive-learned and hand-written horn rules.
NELL is currently supported and has been active since 2010 [24]. The current output of the
system consists of an immense well-curated knowledge graph created semi-automatically and
refined through human-in-the-loop techniques. In fact, before inserting a fact into the knowledge
graph, the system requires that there is another trustworthy step, typically endorsed by external
human intervention. Concerning the work proposed in this thesis, although we do not address
the approach through learning techniques, the Horn rules defined for NELL can be seen as TBox
assertions. We note that the context of NELL, similar to that of a large RDFS graph, does not
provide incomplete information, unlike the notions studied in this dissertation that go over this

162 9. Related Work

limitation.

DeepDive Christopher Re et al. [199] proposed a system called DeepDive that employs popular
techniques, such as distant supervision and Markov logic language, in order to populate a
Knowledge Base. DeepDive, whose foundations are those of Stanford’s CoreNLP, also proposes
a declarative datalog-like language to manage the complexity of extractions. Unlike the previous
systems, it allows for integrating knowledge bases present on the web, such as YAGO, DBpedia,
Freebase, and Wikidata, through entity linking mechanisms. DeepDive first converts several
input data (e.g., raw corpora and ontologies) into relational features, to populate the knowledge
base using standard NLP tools and custom code. These features are then used to train statistical
models representing the correlations between linguistic patterns and target relations. Finally,
DeepDive combines the trained statistical models with additional knowledge (e.g., domain
knowledge) into a Markov logic program, which is then used to transform the relational features
(e.g., candidate entity mentions and linguistic patterns) into a knowledge base with entities,
relationships, and their provenance. Related to work, we may say that the role of reasoning and
how entity resolution is dealt with in DeepDive are not well identified.

9.4 Entity Resolution

Entity Resolution (ER) [85] is a task that has been attracting growing attention to address the
influx of structured and semi-structured data from a multitude of heterogeneous sources. As
stated previously, Entity Resolution is the task of identifying different entities that describe the
same real-world object [129]. It is a core task for Data Integration [85], applying to any kind of
data, from the structured entities [91] of relational databases [129, 20], to the semistructured
entities in Semantic Web [166, 201], and the unstructured entities that are automatically
extracted from free text [142]. Generally, ER consists of two parts: (i) the candidate selection
step, which determines the entities worth comparing, and (ii) the candidate matching step, or
simply Matching, which compares the selected entities to determine whether they represent
the same real-world object. There are two main ways to define the candidate selection step.
The schema-aware method needs to use a-priori schema information and selects some specific
attribute values or a combination of these attribute values as parameters for the matching [121].
In this context, the selected attributes are usually considered suitable for matching because they
are discriminative or contain less noisy data. Otherwise, schema-agnostic methods are used to
process data in order to resolve the ER task without considering schema information [28]. It is
possible to classify further ER methodologies based on their algorithmic foundations, which can
be learning-based, both supervised [183, 120, 180] and unsupervised [118], or rule-based [121].
Finally, we want to remark that the ER community, in the last decades, focused its attention also

9.4 Entity Resolution 163

on the problem of reducing the number of comparisons between records of data that are needed
to resolve entities, which is an extremely crucial task in the presence of a massive amount of data.
This task is mainly faced using Blocking techniques [158, 208] or through identifying special
settings for the ER tools [19, 17]. In the following, we focus on the schema-aware rule-based ER
methods characterized by a solid theoretical background, as they represent the work closest to
the KER framework we propose in Chapter 8.

Swoosh In [19] Benjelloun et al. introduced Swoosh, a generic conceptual framework for entity
resolution. The article defines the notions of matching function and merging function. Intuitively,
the former is used to identify database tuples that refer to the same entity, and is usually built
through similarity functions that perform a careful comparison of the attributes of the table
containing the tuples to be matched. The merging function, on the other hand, indicates what to
do when a match happens. For example, it is possible to combine somehow the values appearing
in the match, or select only one of them, based on a sort of more informativeness principle.
Relying upon the so-called ICAR properties, Benjelloun et al. show that, if such properties
are respected by the match and merge functions, the ER process leads to higher efficiency.
Differently from KER systems, Swoosh considers the setting of a single relational table, and
therefore does not deal with a rich data schema, as the one represented through an ontology
TBox. Moreover, Swoosh works at the record (tuple) level, that is, it merges pairs of tuples of
values, and does not consider entities explicitly, whereas KER systems work with entities, their
relationships, and their attributes. A consequence of this is that the merging in Swoosh remains
local to a tuple, even because there is no formal link between different tuples, whereas in KER

systems every merging of equivalence classes of entities is done globally in the entire model (cf.
Definition 8.8, entity resolution rule step)2 Note also that, at the end of the Swoosh process,
some tuples may be discarded (those “dominated” by others in the instance, if this is applicable
according to the merging function adopted), which is something that does not happen in the
never-failing chase procedure defined for KER systems. It is however worth noticing that Swoosh
considers general match and merge functions, whereas in KER systems we make a specific choice.
In particular, match functions are realized through entity resolution rules and functionalities on
attributes, whereas the merge is realized through union (for both entities and values).

Matching Dependencies In [91], Wenfei Fan proposed a new class of dependencies, called
Matching dependencies (MDs). Formally studied in [93], MDs are a form of semantic constraints
for data cleaning, useful to increase data quality over databases. More in-depth, MDs specify
that a pair of attribute values in two database tuples are to be matched, i.e., made equal, if
similarities hold between other pairs of values in the same tuples. The framework leaves the

2Note instead that, in KER systems, the merging of values enforced by functionalities on attributes is local to
the entity which the attribute refers to.

164 9. Related Work

implementation details of the data cleaning process with MDs completely unspecified, and
implicitly demands them to the application on hand. In [20] Bertossi et al. propose an extension
of the MDs framework, to overcome some of their limitations. In particular, in [20], matching
functions inducing a lattice framework on the attribute domains are considered. Another
interesting contribution given by that paper is the study of query answering in the presence
of MDs, which was not addressed in the Fan’s seminal paper. Compared to our KER systems,
the work of Bertossi et al. focuses on database tuples and it does not distinguish semantically
between entities and values. It also shares with Swoosh a local view of the data cleaning process,
i.e., when two tuples have to be merged, the merging does not affect the whole database, unlike
what we have proposed in this thesis. It is also worth noting that the semantics of matching
atoms, we propose in Section 8.6, allows us to define an approximated form of selection, which
is also enabled in the relaxed relational algebra proposed in [20].

165

Chapter 10

Conclusion

This chapter concludes the thesis with a brief discussion and possible directions for future work.

10.1 Discussion

One of the main contributions of this thesis is the formal study of rule-based information
extraction mediated by an ontology. To the best of our knowledge, this is the first formal
comprehensive study that semantically connect ontology languages with information extraction
rules, so that ontologies can be exploited as means for reasoning over the knowledge representation
they provide, and not simply treated as static conceptual models.

Motivated by the issues encountered in our initial implementation experiences based on
the two most popular open-source information extraction technologies, GATE and CoreNLP,
we have introduced the theoretical framework of Ontology-Based Document Spanning (OBDS)
systems. In designing this framework we leveraged the recent formal study on document
spanners for information extraction and the well-known properties of Ontology-Based Data
Access (OBDA) systems. In this respect, our framework can be seen as an extension of OBDA
to access unstructured data, as those contained in text documents.

Within our framework, we have conducted an accurate analysis of conjunctive query answering
over OBDS systems characterized by ontologies specified in the Description Logics of the DL-
Lite family, and extraction rules equipped expressive spanners (i.e., belonging to the class
[[RGX{∪,π,on,ζ=}]] of spanners, which are able to capture the core of AQL, the extraction language
used by IBM SystemT). Interestingly, in the practical and frequent cases in which mappings
are GAV (but also for GLAV mappings and DL-LiteR ontologies), answering CQs in the above
settings can be reduced to the evaluation of core spanners over the underlying documents,
through a query rewriting style technique.

Through the development of Mastro System-T, we have then shown that the notions

166 10. Conclusion

introduced and the technical results presented in the context of OBDS systems are not only
theoretically interesting but have also a concrete practical counterpart, which we extensively
tested in challenging financial scenarios, like the EDGAR or the CONSOB ones.

We have also formally studied the problem of entity resolution, which is a major recurring
issue in information extraction, as shown by our GATE experience in the OSINT context, and
which is also crucial in data integration applications in general. Properly, we have introduced the
notion of the KER system, i.e., an extension of the standard two-level representation provided by
ontologies with a third component composed by a set of horn rules, useful to solve the problem
of entity resolution. We have formally defined the semantics of KER systems characterized by
ontologies given in terms of very general tuple-generating dependencies, studied their properties,
and provided a novel chase-based technique for conjunctive query answering. Then, we have
extended our results to ontologies allowing for functionalities on properties, and we have provided
a novel semantics to interpret them as matching dependencies, thus suitably coping with possible
inconsistencies due to violations of the functionality.

We point out that the thesis left open some interesting and challenging problems, which are
detailed in the following list.

• From the theoretical perspective, it would be obviously interesting to close the case
of DL-LiteF OBDS systems with GLAV extraction assertions, by providing a tailored
rewriting technique for this setting (as said in Chapter 6, we expect that query answering
in this case can be reduced to the execution of a recursive spanner [202]).

• It would be interesting to enrich the expressiveness of spanners used in extraction assertions
of OBDS systems, and study query answering in this case. Natural candidates for this
extension are spanners allowing for recursion [202], and spanners able to manage incomplete
information [157].

• In our studies, we reported results related to data complexity of query answering, as it
is essential in data-intensive applications such as IE. To devise a complete picture of the
complexity of the problem, it would be however interesting to find also the respective
combined complexity results.

• We have not covered the case of KER systems with a TBox allowing for disjointness. A
nice extension of our work would be to study how they act combined with entity resolution
rules (see also discussion in Section 8.7).

• Query answering in KER systems with TBox expressed in DL-LiteR or DL-LiteF remains
open. Besides the issue with disjointness, mentioned above, a crucial aspect is that for
these languages the chase may not terminate. As said in Section 8.7, techniques based on

10.2 Future works 167

query rewriting or combined approaches, in the spirit of [155], are the best candidates to
solve the problem in these settings.

• An implementation of the KER framework would provide insights into whether the
theoretical results we achieved actually have an impact in practice as well.

10.2 Future works

In addition to tackling the open problems mentioned in the foregoing list, we see many other
interesting avenues for future research, including:

• Studying OBDS systems where the TBox is expressed in other DLs for which standard
query answering over ontologies is polynomial in data complexity, e.g, EL [8], or Horn
DLs [112, 167].

• Exploiting reasoning in the OBDS framework to identify anomalies in the specification of
extraction rules (e.g., intensional inconsistencies), in the spirit of the work on mapping
analysis in OBDA [137].

• Enriching extraction assertions in OBDS systems by allowing their left-hand side to contain
both spanners and atoms referring to ontology predicates. Through this enrichment it
should be possible to recall in an extraction assertions some extraction specifications
already associated to an ontology predicate. We have the intuition that, under suitable
conditions, we can reduce the enriched specification to a “standard” one, by compiling the
TBox of the ontology into the extraction assertions through query rewriting mechanisms.

• Devising optimization techniques for OBDS systems, similar to OBDA [132] but tailored
to ocument spanners.

• Examining cases where the language for expressing queries over OBDS systems goes
beyond UCQs.

• Enriching the form of entity resolution rules in KER systems, by, e.g., considering negation,
possibly interpreted under epistemic operators [44].

• Introducing blocking and filtering based optimization algorithms [171], very common in
entity resolution, in the chase-based algorithm we proposed for query answering over KER
systems.

• Developing an all-in one inclusive User Interface for Mastro System-T, offering also
functionalities to build the AQL extractors directly inside the environment.

168 10. Conclusion

We believe that each of the above issues is an interesting research problem that deserves to
be investigated.

169

Bibliography

[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries using materialized
views. In A. O. Mendelzon and J. Paredaens, editors, Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3,
1998, Seattle, Washington, USA, pages 254–263. ACM Press, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley Publ.
Co., 1995.

[3] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Constant-delay enumeration for
nondeterministic document spanners. ACM SIGMOD Record, 49(1):25–32, 2020.

[4] A. P. Aprosio and G. Moretti. Italy goes to stanford: a collection of corenlp modules for
italian. arXiv preprint arXiv:1609.06204, 2016.

[5] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange. Cam-
bridge University Press, 2014.

[6] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS), pages 68–79, 1999.

[7] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI-05, Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, pages 364–369, 2005.

[8] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI), pages 364–369, 2005.

[9] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2nd edition, 2007.

170 Bibliography

[10] F. Baader, I. Horrocks, and U. Sattler. Description logics. In Handbook on ontologies,
pages 3–28. Springer, 2004.

[11] R. Baldoni and R. De Nicola. The white book on cyber-security, 2015.

[12] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with lixto.
2001.

[13] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, L. A. Stein, et al. Owl web ontology language reference. W3C recommendation,
10(02), 2004.

[14] C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proc. of
the 8th Coll. on Automata, Languages and Programming (ICALP), volume 115 of Lecture
Notes in Computer Science, pages 73–85. Springer, 1981.

[15] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. J. of the ACM,
31(4):718–741, 1984.

[16] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. Santoro, and
E. Tsamoura. Benchmarking the chase. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017, pages 37–52, 2017.

[17] O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai, T. E. Larson, D. Menestrina, and
S. Thavisomboon. D-swoosh: A family of algorithms for generic, distributed entity resolu-
tion. In 27th International Conference on Distributed Computing Systems (ICDCS’07),
pages 37–37. IEEE, 2007.

[18] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom.
Swoosh: a generic approach to entity resolution. 18(1):255–276, 2009.

[19] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom.
Swoosh: a generic approach to entity resolution. The VLDB Journal, 18(1):255–276, 2009.

[20] L. Bertossi, S. Kolahi, and L. V. Lakshmanan. Data cleaning and query answering
with matching dependencies and matching functions. Theory of Computing Systems,
52(3):441–482, 2013.

[21] L. E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2011.

Bibliography 171

[22] L. E. Bertossi. Database repairs and consistent query answering: Origins and further
developments. pages 48–58, 2019.

[23] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query answering with
matching dependencies and matching functions. Theoretical Comput. Sci., 52(3):441–482,
2013.

[24] J. Betteridge, A. Carlson, S. A. Hong, E. R. Hruschka Jr, E. L. Law, T. M. Mitchell,
and S. H. Wang. Toward never ending language learning. In AAAI spring symposium:
Learning by reading and learning to read, pages 1–2, 2009.

[25] M. Bienvenu and C. Bourgaux. Inconsistency-tolerant querying of description logic
knowledge bases. In J. Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer, F. Lin, and
Y. Zhao, editors, Reasoning Web: Logical Foundation of Knowledge Graph Construction
and Query Answering - 12th International Summer School 2016, Aberdeen, UK, September
5-9, 2016, Tutorial Lectures, volume 9885, pages 156–202, 2016.

[26] M. Bienvenu and M. Ortiz. Ontology-mediated query answering with data-tractable
description logics. In W. Faber and A. Paschke, editors, Reasoning Web. Web Logic Rules
- 11th International Summer School 2015, Berlin, Germany, July 31 - August 4, 2015,
Tutorial Lectures, volume 9203 of Lecture Notes in Computer Science, pages 218–307.
Springer, 2015.

[27] M. Bienvenu and M. Ortiz. Ontology-mediated query answering with data-tractable
description logics. In Reasoning Web International Summer School, pages 218–307. Springer,
2015.

[28] C. Böhm, G. De Melo, F. Naumann, and G. Weikum. Linda: distributed web-of-data-scale
entity matching. In Proceedings of the 21st ACM international conference on Information
and knowledge management, pages 2104–2108, 2012.

[29] E. Botoeva, D. Calvanese, B. Cogrel, J. Corman, and G. Xiao. Ontology-based data
access–beyond relational sources. Intelligenza Artificiale, 13(1):21–36, 2019.

[30] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao. OBDA beyond relational
DBs: A study for MongoDB. In Proc. of the 29th Int. Workshop on Description Logic
(DL), 2016.

[31] J. Broekstra and A. Kampman. Serql: An rdf query and transformation language draft.
2004.

172 Bibliography

[32] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under integrity
constraints. Inf. Syst., 29(2):147–163, 2004.

[33] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. 48:115–174, 2013.

[34] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[35] A. Calı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res, 48:115–174, 2013.

[36] A. Calì, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. 14:57–83, 2012.

[37] A. Cali, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A family of
logical knowledge representation and query languages for new applications. In Logic in
Computer Science (LICS), 2010 25th Annual IEEE Symposium on, pages 228–242. IEEE,
2010.

[38] A. Calì, G. Gottlob, and A. Pieris. New expressive languages for ontological query
answering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25,
2011.

[39] A. Calì, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proc. of the 22nd ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS), pages 260–271, 2003.

[40] A. Calì, D. Lembo, and R. Rosati. Query rewriting and answering under constraints in
data integration systems. In IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 16–21,
2003.

[41] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, and G. Xiao. Ontop: Answering sparql queries over relational databases. Semantic
Web, 8(3):471–487, 2017.

[42] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The mastro system for ontology-based data access.
Semantic Web, 2(1):43–53, 2011.

Bibliography 173

[43] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based data access.
Semantic Web J., 2(1):43–53, 2011.

[44] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Eql-lite: Effective
first-order query processing in description logics. In IJCAI, volume 7, pages 274–279, 2007.

[45] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The dl-lite family. Journal of Automated
reasoning, 39(3):385–429, 2007.

[46] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[47] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity
of query answering in description logics. Artificial Intelligence, 195:335–360, 2013.

[48] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Ontology-based
data access and integration. In L. Liu and M. T. Özsu, editors, Encyclopedia of Database
Systems, Second Edition. 2018.

[49] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 149–158, 1998.

[50] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Actions and programs over
description logic ontologies. In Proc. of the 20th Int. Workshop on Description Logic (DL),
volume 250 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, pages
29–40, 2007.

[51] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, volume 5, page 3.
Atlanta, 2010.

[52] S. Castano, A. Ferrara, S. Montanelli, and D. Lorusso. Instance matching for ontology
population. In SEBD, pages 121–132, 2008.

[53] A. X. Chang and C. D. Manning. Tokensregex: Defining cascaded regular expressions over
tokens. Stanford University Computer Science Technical Reports. CSTR, 2:2014, 2014.

http://ceur-ws.org/

174 Bibliography

[54] D. Chaves-Fraga, E. Ruckhaus, F. Priyatna, M.-E. Vidal, and O. Corcho. Enhancing virtual
ontology based access over tabular data with morph-csv. Semantic Web, (Preprint):1–34,
2021.

[55] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and S. Vaithyanathan.
SystemT: an algebraic approach to declarative information extraction. In Proc. of the 49th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 128–137,
2010.

[56] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. R. Reiss, and S. Vaithyanathan.
Systemt: an algebraic approach to declarative information extraction. In Proc. of the 48th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 128–137.
Association for Computational Linguistics, 2010.

[57] L. Chiticariu, Y. Li, S. Raghavan, and F. R. Reiss. Enterprise information extraction:
recent developments and open challenges. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 1257–1258, 2010.

[58] A. Chortaras, D. Trivela, and G. B. Stamou. Optimized query rewriting for owl 2 ql. In
CADE, volume 11, pages 192–206. Springer, 2011.

[59] G. Cima. Preliminary results on ontology-based open data publishing. arXiv preprint
arXiv:1705.10480, 2017.

[60] G. Cima, M. Lenzerini, and A. Poggi. Semantic characterization of data services through
ontologies. In IJCAI, pages 1647–1653, 2019.

[61] P. Cimiano and J. Völker. text2onto. In International conference on application of natural
language to information systems, pages 227–238. Springer, 2005.

[62] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore, R. Mancini,
A. Poggi, R. Rosati, M. Ruzzi, et al. Mastro studio: managing ontology-based data access
applications. Proceedings of the VLDB Endowment, 6(12):1314–1317, 2013.

[63] M. Console and M. Lenzerini. Data quality in ontology-based data access: The case of
consistency. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

[64] M. Console and M. Lenzerini. Data quality in ontology-based data access: The case of
consistency. In C. E. Brodley and P. Stone, editors, Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pages 1020–1026. AAAI Press, 2014.

Bibliography 175

[65] V. Crescenzi, G. Mecca, P. Merialdo, et al. Roadrunner: Towards automatic data extraction
from large web sites. In VLDB, volume 1, pages 109–118, 2001.

[66] F. Croce, G. Cima, M. Lenzerini, and T. Catarci. Ontology-based explanation of classifiers.
In EDBT/ICDT Workshops, 2020.

[67] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The next step for OWL. J. of Web Semantics, 6(4):309–322, 2008.

[68] H. Cunningham. GATE, a general architecture for text engineering. Computers and the
Humanities, 36(2):223—-254, 2002.

[69] H. Cunningham. Developing Language Processing Components with GATE Version 8.
University of Sheffield Department of Computer Science, 2014.

[70] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications. In Proc. of
ACL’02, 2002.

[71] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts, G. Gorrell,
A. Funk, A. Roberts, D. Damljanovic, et al. Developing language processing components
with gate version 6 (a user guide). University of Sheffield, Department of Computer
Science, 2011.

[72] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva. Getting more out of biomedical
documents with gate’s full lifecycle open source text analytics. PLoS Computational Biology,
9(2).

[73] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language. W3C
Recommendation, W3C, Sept. 2012. Available at http://www.w3.org/TR/r2rml/.

[74] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Using ontologies
for semantic data integration. In A Comprehensive Guide Through the Italian Database
Research Over the Last 25 Years., pages 187–202. 2018.

[75] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo.
Mastro: A reasoner for effective ontology-based data access. In Proc. of the OWL Reasoner
Evaluation Workshop (ORE 2012), volume 858, 2012.

[76] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo.
MASTRO: A reasoner for effective Ontology-Based Data Access. In Proc. of the 1st Int.
Workshop on OWL Reasoner Evaluation (ORE), 2012.

http://www.w3.org/TR/r2rml/

176 Bibliography

[77] A. Doan, A. Halevy, and Z. Ives. Principles of data integration. Elsevier, 2012.

[78] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

[79] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of the 11th international conference on World Wide
Web, pages 662–673, 2002.

[80] A. Doan, J. F. Naughton, R. Ramakrishnan, A. Baid, X. Chai, F. Chen, T. Chen, E. Chu,
P. DeRose, B. Gao, et al. Information extraction challenges in managing unstructured
data. ACM SIGMOD Record, 37(4):14–20, 2009.

[81] J. Doleschal, N. Bratman, B. Kimelfeld, and W. Martens. The complexity of aggregates
over extractions by regular expressions. arXiv preprint arXiv:2002.08828, 2020.

[82] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans for data
integration. J. of Logic Programming, 43(1):49–73, 2000.

[83] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans for data
integration. The Journal of Logic Programming, 43(1):49–73, 2000.

[84] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao. Query rewriting for horn-shiq
plus rules. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26,
2012.

[85] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A
survey. IEEE Transactions on knowledge and data engineering, 19(1):1–16, 2006.

[86] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Document spanners: A formal
approach to information extraction. Journal of the ACM, 62(2):1–51, 2015.

[87] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Declarative cleaning of incon-
sistencies in information extraction. ACM Trans. on Database Systems, 41(1):6:1–6:44,
2016.

[88] R. Fagin, P. G. Kolaitis, D. Lembo, L. Popa, and F. Scafoglieri. A Framework for
Combining Entity Resolution and Query Answering in Knowledge Bases. In Proceedings
of the 20th International Conference on Principles of Knowledge Representation and
Reasoning, pages 229–239, 8 2023.

[89] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query
answering. Theoretical Computer Science, 336(1):89–124, 2005.

Bibliography 177

[90] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and query
answering. Theoretical Computer Science, 336(1):89–124, 2005.

[91] W. Fan. Dependencies revisited for improving data quality. In Proceedings of the twenty-
seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 159–170, 2008.

[92] W. Fan. Dependencies revisited for improving data quality. pages 159–170, 2008.

[93] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. Proceedings of
the VLDB Endowment, 2(1):407–418, 2009.

[94] F. Florenzano, C. Riveros, M. Ugarte, S. Vansummeren, and D. Vrgoc. Constant delay
algorithms for regular document spanners. In Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 165–177, 2018.

[95] D. Freitag. Machine learning for information extraction in informal domains. Machine
Learning, 39(2/3):169–202, 2000.

[96] D. D. Freydenberger. A logic for document spanners. Theory of Computing Systems,
63(7):1679–1754, 2019.

[97] D. D. Freydenberger and M. Holldack. Document spanners: From expressive power to
decision problems. Theory of Computing Systems, 62(4):854–898, 2018.

[98] G. Ganino, D. Lembo, M. Mecella, and F. Scafoglieri. Ontology population for open-source
intelligence: A gate-based solution. Softw. Pract. Exp., 48(12):2302–2330, 2018.

[99] G. Ganino, D. Lembo, M. Mecella, and F. Scafoglieri. Ontology population for open-source
intelligence (discussion paper). In S. Bergamaschi, T. D. Noia, and A. Maurino, editors,
Proceedings of the 26th Italian Symposium on Advanced Database Systems, Castellaneta
Marina (Taranto), Italy, June 24-27, 2018, volume 2161 of CEUR Workshop Proceedings.
CEUR-WS.org, 2018.

[100] G. Ganino, D. Lembo, and F. Scafoglieri. Ontology population from raw text corpus for
open-source intelligence. In I. Garrigós and M. Wimmer, editors, Current Trends in Web
Engineering - ICWE 2017 International Workshops, Liquid Multi-Device Software and
EnWoT, practi-O-web, NLPIT, SoWeMine, Rome, Italy, June 5-8, 2017, Revised Selected
Papers, volume 10544 of Lecture Notes in Computer Science, pages 173–186. Springer,
2017.

178 Bibliography

[101] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. Hermit: An owl 2 reasoner. J.
of Automated Reasoning, 53(3):245–269, 2014.

[102] G. Gottlob and C. Koch. Logic-based web information extraction. ACM SIGMOD Record,
33(2):87–94, 2004.

[103] G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages for web
information extraction. Journal of the ACM (JACM), 51(1):74–113, 2004.

[104] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. Owl 2:
The next step for owl. Web Semantics: Science, Services and Agents on the World Wide
Web, 6(4):309–322, 2008.

[105] R. Grishman and B. Sundheim. Message understanding conference- 6: A brief history.
In Proc. of the 16th Int. Conf. on Computational Linguistics (COLING), pages 466–471,
1996.

[106] T. R. Gruber. Towards principles for the design of ontologies used for knowledge sharing.
In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publishers, 1993.

[107] N. Guarino, D. Oberle, and S. Staab. What is an ontology? In Handbook on Ontologies,
pages 1–17. Springer, 2009.

[108] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C Recommendation, W3C,
Mar. 2013. Available at http://www.w3.org/TR/sparql11-query.

[109] R. Hoffmann, C. Zhang, X. Ling, L. S. Zettlemoyer, and D. S. Weld. Knowledge-based
weak supervision for information extraction of overlapping relations. pages 541–550, 2011.

[110] I. Horrocks. Ontologies and the Semantic Web. Communications of the ACM, 51(12):58–67,
2008.

[111] I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes. In
AAAI/IAAI, pages 399–404, 2000.

[112] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive
description logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 466–471, 2005.

[113] I. F. Ilyas and X. Chu. Data Cleaning. 2019.

http://www.w3.org/TR/sparql11-query

Bibliography 179

[114] A. Jain, A. Doan, and L. Gravano. Sql queries over unstructured text databases. In 2007
IEEE 23rd International Conference on Data Engineering, pages 1255–1257. IEEE, 2007.

[115] S. Jean, Y. Aït-Ameur, and G. Pierra. Querying ontology based database using ontoql
(an ontology query language). In OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", pages 704–721. Springer, 2006.

[116] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under functional
and inclusion dependencies. J. of Computer and System Sciences, 28(1):167–189, 1984.

[117] D. Jurafsky and J. H. Martin. Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech recognition, 2nd Edition.
Prentice Hall, Pearson Education International, 2009.

[118] A. Jurek, J. Hong, Y. Chi, and W. Liu. A novel ensemble learning approach to unsupervised
record linkage. Information Systems, 71:40–54, 2017.

[119] H. Karanikas, C. Tjortjis, and B. Theodoulidis. An approach to text mining using
information extraction. In Proc. Workshop Knowledge Management Theory Applications
(KMTA 00). Citeseer, 2000.

[120] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep entity resolution
with transfer and active learning. arXiv preprint arXiv:1906.08042, 2019.

[121] A. R. Khan and H. Garcia-Molina. Attribute-based crowd entity resolution. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management,
pages 549–558, 2016.

[122] E. Kharlamov, D. Hovland, M. G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao,
A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, et al. Ontology based data access in statoil.
Journal of Web Semantics, 44:3–36, 2017.

[123] B. Kimelfeld. Database principles in information extraction. In Proc. of the 33rd ACM
SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems (PODS), pages
156–163, 2014.

[124] B. Kimelfeld. Database principles in information extraction. In Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
156–163, 2014.

[125] B. Kolman, R. C. Busby, and S. C. Ross. Discrete Mathematical Structures. Prentice-Hall,
Inc., USA, 5 edition, 2003.

180 Bibliography

[126] G. Konstantinidis and J. L. Ambite. Scalable query rewriting: a graph-based approach.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of
data, pages 97–108, 2011.

[127] N. Konstantinou, E. Abel, L. Bellomarini, A. Bogatu, C. Civili, E. Irfanie, M. Koehler,
L. Mazilu, E. Sallinger, A. A. Fernandes, et al. Vada: an architecture for end user informed
data preparation. Journal of Big Data, 6(1):1–32, 2019.

[128] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined
approach to ontology-based data access. In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pages 2656–2661, 2011.

[129] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world
match problems. Proceedings of the VLDB Endowment, 3(1-2):484–493, 2010.

[130] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world
match problems. 3(1):484–493, 2010.

[131] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and H. Zhu. Systemt:
a system for declarative information extraction. ACM SIGMOD Record, 37(4):7–13, 2009.

[132] D. Lanti, G. Xiao, and D. Calvanese. Cost-driven ontology-based data access. In Interna-
tional Semantic Web Conference, pages 452–470. Springer, 2017.

[133] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant
query answering in ontology-based data access. 33:3–29, 2015.

[134] D. Lembo, Y. Li, L. Popa, K. Qian, and F. Scafoglieri. Ontology mediated information
extraction with MASTRO SYSTEM-T. In K. L. Taylor, R. S. Gonçalves, F. Lécué,
and J. Yan, editors, Proceedings of the ISWC 2020 Demos and Industry Tracks: From
Novel Ideas to Industrial Practice co-located with 19th International Semantic Web Con-
ference (ISWC 2020), Globally online, November 1-6, 2020 (UTC), volume 2721 of CEUR
Workshop Proceedings, pages 256–261. CEUR-WS.org, 2020.

[135] D. Lembo, Y. Li, L. Popa, and F. M. Scafoglieri. Ontology mediated information extraction
in financial domain with mastro system-t. In D. Burdick and J. Pujara, editors, Proceedings
of the Sixth International Workshop on Data Science for Macro-Modeling, DSMM 2020,
In conjunction with the ACM SIGMOD/PODS Conference, Portland, OR, USA, June 14,
2020, pages 3:1–3:6. ACM, 2020.

Bibliography 181

[136] D. Lembo, A. Limosani, F. Medda, A. Monaco, and F. M. Scafoglieri. Information
extraction through AI techniques: The kids use case at CONSOB. CoRR, abs/2202.01178,
2022.

[137] D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Mapping analysis in
ontology-based data access: Algorithms and complexity. In Proc. of the 14th Int. Semantic
Web Conf. (ISWC), pages 217–234, 2015.

[138] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo. Easy OWL drawing with the
graphol visual ontology language. In C. Baral, J. P. Delgrande, and F. Wolter, editors,
Proc. of the 15th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2016), pages 573–576. AAAI Press, 2016.

[139] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo. Drawing OWL 2 ontologies with
eddy the editor. AI Commun., 31(1):97–113, 2018.

[140] D. Lembo and F. M. Scafoglieri. Coupling ontologies with document spanners. In
M. Simkus and G. E. Weddell, editors, Proceedings of the 32nd International Workshop
on Description Logics, Oslo, Norway, June 18-21, 2019, volume 2373 of CEUR Workshop
Proceedings. CEUR-WS.org, 2019.

[141] D. Lembo and F. M. Scafoglieri. Coupling ontologies with document spanners. In
Description Logics, 2019.

[142] D. Lembo and F. M. Scafoglieri. A formal framework for coupling document spanners
with ontologies. In 2019 IEEE Second International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE), pages 155–162. IEEE, 2019.

[143] D. Lembo and F. M. Scafoglieri. Ontology-based document spanning systems for informa-
tion extraction. Int. J. Semantic Comput., 14(1):3–26, 2020.

[144] D. Lembo and F. M. Scafoglieri. Ontology-based document spanning systems for informa-
tion extraction. International Journal of Semantic Computing, 14(01):3–26, 2020.

[145] D. Lembo and F. M. Scafoglieri. Comparing state of the art rule-based tools for information
extraction. In A. Fensel, A. Ozaki, D. Roman, and A. Soylu, editors, Rules and Reasoning
- 7th International Joint Conference, RuleML+RR 2023, Oslo, Norway, September 18-20,
2023, Proceedings, volume 14244 of Lecture Notes in Computer Science, pages 157–165.
Springer, 2023.

182 Bibliography

[146] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages
233–246, 2002.

[147] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
233–246, 2002.

[148] M. Lenzerini, L. Lepore, and A. Poggi. Metamodeling and metaquerying in OWL 2 QL.
Artif. Intell., 292:103432, 2021.

[149] L. Lepore, M. Namici, G. Ronconi, M. Ruzzi, and V. Santarelli. The mastro ecosystem:
Ontology-based data management from theory to practice. In 2019 IEEE Second Inter-
national Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pages
101–102. IEEE, 2019.

[150] A. Y. Levy, A. O. Mendelzon, and Y. Sagiv. Answering queries using views. In Proceedings
of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 95–104, 1995.

[151] A. Y. Levy and M.-C. Rousset. Combining horn rules and description logics in carin.
Artificial intelligence, 104(1-2):165–209, 1998.

[152] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation. ACM
SIGACT News, 29(3):62–78, 1998.

[153] L. Libkin. Certain answers as objects and knowledge. Artificial Intelligence, 232:1–19,
2016.

[154] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrapper construction system for web
information sources. In Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073), pages 611–621. IEEE, 2000.

[155] C. Lutz, I. Seylan, D. Toman, and F. Wolter. The combined approach to obda: Taming
role hierarchies using filters. In International semantic web conference, pages 314–330.
Springer, 2013.

[156] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky.
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pages
55–60, 2014.

Bibliography 183

[157] F. Maturana, C. Riveros, and D. Vrgoc. Document spanners for extracting incomplete
information: Expressiveness and complexity. In Proceedings of the 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 125–136, 2018.

[158] N. McNeill, H. Kardes, and A. Borthwick. Dynamic record blocking: efficient linking of
massive databases in mapreduce. In Proceedings of the 10th international workshop on
quality in databases (QDB). Citeseer, 2012.

[159] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. Cuenca Grau. OWL Web
Ontology Language profiles. W3C Recommendation, W3C, Oct. 2009. Available at
http://www.w3.org/TR/owl-profiles/.

[160] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, et al. Owl 2 web ontology
language profiles. W3C recommendation, 27:61, 2009.

[161] B. Motik, B. Parsia, and P. F. Patel-Schneider. OWL 2 Web Ontology Language structural
specification and functional-style syntax (second edition). W3C Recommendation, W3C,
Dec. 2012. Available at http://www.w3.org/TR/owl2-syntax/.

[162] M. Mugnier. Data access with horn ontologies: Where description logics meet existential
rules. Künstliche Intell., 34(4):475–489, 2020.

[163] M. Mugnier and M. Thomazo. An introduction to ontology-based query answering with
existential rules. volume 8714, pages 245–278, 2014.

[164] M. Namici and G. D. Giacomo. Comparing query answering in OBDA tools over w3c-
compliant specifications. In M. Ortiz and T. Schneider, editors, Proceedings of the
31st International Workshop on Description Logics co-located with 16th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27th - to - 29th, 2018, volume 2211 of CEUR Workshop Proceedings.
CEUR-WS.org, 2018.

[165] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee. Rdfox: A highly-
scalable RDF store. In The Semantic Web - ISWC 2015 - 14th International Semantic
Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II, pages
3–20, 2015.

[166] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm. A survey of current link
discovery frameworks. Semantic Web, 8(3):419–436, 2017.

http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl2-syntax/

184 Bibliography

[167] M. Ortiz, S. Rudolph, and M. Simkus. Query answering in the Horn fragments of the
description logics SHOIQ and SROIQ. In Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 1039–1044, 2011.

[168] M. Ortiz and M. Šimkus. Reasoning and query answering in description logics. In
Reasoning Web International Summer School, pages 1–53. Springer, 2012.

[169] M. Ortiz and M. Šimkus. Revisiting the hardness of query answering in expressive
description logics. In International Conference on Web Reasoning and Rule Systems, pages
216–223. Springer, 2014.

[170] G. Papadakis, E. Ioannou, E. Thanos, and T. Palpanas. The Four Generations of Entity
Resolution. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2021.

[171] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. A survey of blocking and filtering
techniques for entity resolution. arXiv preprint arXiv:1905.06167, 2019.

[172] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[173] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), 34(3):1–45, 2009.

[174] H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting
under description logic constraints. J. Applied Logic, 8(2):186–209, 2010.

[175] L. Peterfreund, B. t. Cate, R. Fagin, and B. Kimelfeld. Recursive programs for document
spanners. arXiv preprint arXiv:1712.08198, 2017.

[176] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

[177] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. In Journal on data semantics X, pages 133–173. Springer, 2008.

[178] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov. Kim-a semantic platform
for information extraction and retrieval. Natural language engineering, 10(3-4):375, 2004.

[179] R. Pottinger and A. Levy. A scalable algorithm for answering queries using views. In
VLDB, pages 484–495, 2000.

Bibliography 185

[180] K. Qian, L. Popa, and P. Sen. Active learning for large-scale entity resolution. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
pages 1379–1388, 2017.

[181] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. Bull. of the
IEEE Computer Society Technical Committee on Data Engineering, 23(4):3–13, 2000.

[182] O. Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–
24, 2008.

[183] O. F. Reyes-Galaviz, W. Pedrycz, Z. He, and N. J. Pizzi. A supervised gradient-based
learning algorithm for optimized entity resolution. Data & Knowledge Engineering, 112:106–
129, 2017.

[184] R. Rosati and A. Almatelli. Improving query answering over dl-lite ontologies. KR,
10:51–53, 2010.

[185] M. T. Roth, M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J. Thomas, and
E. Wimmers. The garlic project. In Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, page 557, 1996.

[186] H. Saggion, A. Funk, D. Maynard, and K. Bontcheva. Ontology-based information
extraction for business intelligence. In Proc. of the 6th Int. Semantic Web Conf. and the,
2nd Asian Semantic Web Conf. (ISWC + ASWC), pages 843–856, 2007.

[187] V. Santarelli, D. Lembo, M. Ruzzi, G. Ronconi, P. Bouquet, A. Molinari, F. Pompermaier,
D. Caltabiano, E. Catoni, A. Fabrizi, et al. Semantic technologies for the production
and publication of open data in aci-automobile club d’italia. In ISWC Satellites, pages
307–308, 2019.

[188] V. Santarelli, D. Lembo, M. Ruzzi, G. Ronconi, P. Bouquet, A. Molinari, F. Pompermaier,
D. Caltabiano, E. Catoni, A. Fabrizi, M. Minenna, M. Punchina, and F. Scafoglieri.
Semantic technologies for the production and publication of open data in ACI - automobile
club d’italia. In M. C. Suárez-Figueroa, G. Cheng, A. L. Gentile, C. Guéret, C. M.
Keet, and A. Bernstein, editors, Proceedings of the ISWC 2019 Satellite Tracks (Posters
& Demonstrations, Industry, and Outrageous Ideas) co-located with 18th International
Semantic Web Conference (ISWC 2019), Auckland, New Zealand, October 26-30, 2019,
volume 2456 of CEUR Workshop Proceedings, pages 307–308. CEUR-WS.org, 2019.

[189] S. Sarawagi. Information extraction. Foundations and Trends in Databases, 1(3):261–377,
2008.

186 Bibliography

[190] F. Scafoglieri, D. Lembo, A. Limosani, F. Medda, and M. Lenzerini. Boosting information
extraction through semantic technologies: The kids use case at CONSOB. In O. Seneviratne,
C. Pesquita, J. Sequeda, and L. Etcheverry, editors, Proceedings of the ISWC 2021 Posters,
Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 20th
International Semantic Web Conference (ISWC 2021), Virtual Conference, October 24-28,
2021, volume 2980 of CEUR Workshop Proceedings. CEUR-WS.org, 2021.

[191] F. M. Scafoglieri and D. Lembo. A formal framework for coupling document spanners with
ontologies. In 2nd IEEE International Conference on Artificial Intelligence and Knowledge
Engineering, AIKE 2019, Sardinia, Italy, June 3-5, 2019, pages 155–162. IEEE, 2019.

[192] F. M. Scafoglieri, A. Monaco, G. Neccia, D. Lembo, A. Limosani, and F. Medda. Automatic
information extraction from investment product documents. In G. Amato, V. Bartalesi,
D. Bianchini, C. Gennaro, and R. Torlone, editors, Proceedings of the 30th Italian Sympo-
sium on Advanced Database Systems, SEBD 2022, Tirrenia (PI), Italy, June 19-22, 2022,
volume 3194 of CEUR Workshop Proceedings, pages 77–84. CEUR-WS.org, 2022.

[193] M. Scannapieco, G. Barcaroli, D. Summa, and M. Scarnò. Using internet as a data source
for official statistics: a comparative analysis of web scraping technologies. In Proc. of
NTTS’15, 2015.

[194] H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc. of the Int.
Conf. on New Methods in Language Processing, pages 44–49, 1994.

[195] A. Seaborne. Rdql-a query language for rdf (member submission). Hewlett-Packard,
January, 2004.

[196] J. F. Sequeda and D. P. Miranker. Ultrawrap: Sparql execution on relational data. Journal
of Web Semantics, 22:19–39, 2013.

[197] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative information
extraction using datalog with embedded extraction predicates. In Proc. of the 33rd Int.
Conf. on Very Large Data Bases (VLDB), pages 1033–1044, 2007.

[198] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative information
extraction using datalog with embedded extraction predicates. In VLDB, volume 7, pages
1033–1044, 2007.

[199] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental knowledge base
construction using deepdive. In Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, volume 8, page 1310. NIH Public Access, 2015.

Bibliography 187

[200] S. Staab and R. Studer, editors. Handbook on Ontologies, International Handbooks on
Information Systems. Springer, 2009.

[201] K. Stefanidis, V. Efthymiou, M. Herschel, V. Christophides, et al. Entity resolution in the
web of data. In WWW (Companion Volume), pages 203–204, 2014.

[202] B. ten Cate, B. Kimelfeld, L. Peterfreund, and R. Fagin. Recursive programs for document
spanners. 2019.

[203] M. A. Valenzuela-Escárcega, G. Hahn-Powell, and D. Bell. Odinson: A fast rule-based
information extraction framework. In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 2183–2191, 2020.

[204] M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM
SIGACT Symp. on Theory of Computing (STOC), pages 137–146, 1982.

[205] P. Velardi, S. Faralli, and R. Navigli. Ontolearn reloaded: A graph-based algorithm for
taxonomy induction. Computational Linguistics, 39(3):665–707, 2013.

[206] T. Venetis, G. Stoilos, and G. B. Stamou. Query extensions and incremental query
rewriting for OWL 2 QL ontologies. J. Data Semantics, 3(1):1–23, 2014.

[207] D. Z. Wang, M. J. Franklin, M. Garofalakis, J. M. Hellerstein, and M. L. Wick. Hybrid
in-database inference for declarative information extraction. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, pages 517–528, 2011.

[208] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity
resolution with iterative blocking. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 219–232, 2009.

[209] R. Witte. Multi-lingual noun phrase extractor(munpex).

[210] R. Witte. OwlExporter guide for users and developers, 2014.

[211] R. Witte, N. Khamis, and J. Rilling. Flexible ontology population from text: The
OwlExporter. In Proc. of LREC’10, may 2010.

[212] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-based data access: A survey. In Proc. of the 27th Int. Joint Conf.
on Artificial Intelligence (IJCAI), pages 5511–5519, 2018.

188 Bibliography

[213] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-based data access: A survey. In Proc. of the 27th Int. Joint Conf.
on Artificial Intelligence (IJCAI), pages 5511–5519, 2018.

[214] B. Yildiz and S. Miksch. ontox-a method for ontology-driven information extraction. In
International conference on computational science and its applications, pages 660–673.
Springer, 2007.

189

Appendix A

Consob Appendix

Documento informativo termini indicativi

Intento

Il presente documento contiene informazioni chiave relative a questo prodotto d’investimento. Non si tratta di un documento promozionale. Le informazioni, prescritte per legge,
hanno lo scopo di aiutarvi a capire le caratteristiche, i rischi, i costi, i guadagni e le perdite potenziali di questo prodotto e di aiutarvi a fare un raffronto con altri prodotti d’investi-
mento.

Prodotto

Nome del prodotto / ISIN: 100% ProNote con Partecipazione in USD su Thomson Reuters Gl. Resource Prot. Select Index, ISIN: CH0524993752 (il prodotto)

Ideatore del prodotto: Credit Suisse AG, il nostro sito web: www.credit-suisse.com/derivatives, per ulterori informazioni chiamare il numero +41 (0)44 335 76 00 .

Emittente: Credit Suisse AG, Zurigo, tramite la sua succursale di Londra, UK

Autorità competente: L’autorità di controllo competente

Il presente documento è stato creato il febbraio 27, 2020, 06:51 CET.

State per acquistare un prodotto che non è semplice e può essere di difficile comprensione.

Cos’è questo prodotto?

Tipo: Diritti valori (Wertrechte) disciplinati dal diritto svizzero.

Obiettivi: Il prodotto è uno strumento finanziario complesso collegato ad un sottostante (Thomson Reuters Gl. Resource Prot. Select Index (Indice azionario), il sottostante, si
veda la tabella seguente). Investendo nel prodotto, è possibile partecipare ad una percentuale dell’eventuale performance positiva del sottostante. Nella data di rimborso finale
l’investitore riceverà l’importo di rimborso finale, pari al 100% del taglio. Tale importo è denominato importo di rimborso minimo e non dipende dalla performance del
sottostante. Inoltre, nella data di rimborso finale è possibile ricevere un importo di pagamento in caso di performance del sottostante favorevole per l’investitore. In caso di
performance del sottostante sfavorevole per l’investitore, l’importo di pagamento può essere pari a zero.

Nel dettaglio:

In caso di livello finale più alto al prezzo di esercizio, riceverete un importo di payout che aumenterà in funzione della performance positiva del sottostante. L'importo di pa-
gamento sarà pari al taglio moltiplicato per il prodotto tra (i) la partecipazione e (ii) la differenza tra il livello finale e 100%. A causa della partecipazione, gli investitori parteci-
peranno a leva all’eventuale performance positiva del sottostante.

●

In caso di livello finale pari o più basso del prezzo di esercizio, l'importo di payout sarà pari a zero e riceverete esclusivamente l’importo di rimborso minimo alla data di rim-
borso finale.

●

Il prodotto non produce interessi o altra remunerazione periodica nel corso della sua durata. Il profilo rischio/rendimento del succitato prodotto sarà differente qualora il prodot-
to sia venduto prima della data di rimborso finale.

Dati del prodotto

Taglio USD 1'000 Lotto minimo di negoziazione USD 1'000

Prezzo d’emissione 100% del taglio (USD 1'000) Partecipazione 120%

Periodo di fixing iniziale 23.03.2020 - 25.03.2020 Fixing finale 22.09.2023

Livello iniziale 100% della media dei livelli di chiusura del sottostan-

te nel periodo di fixing iniziale.

Livello finale 100% del livello di chiusura del sottostante alla data

Fixing finale.

Data d’emissione 30.03.2020 Data di rimborso finale 29.09.2023

Ultima data di negoziazione 21.09.2023 Prezzo di Esercizio 100% del livello iniziale del sottostante

Importo di rimborso minimo 100% del taglio Valuta del prodotto dollaro statunitense (USD)

Dati del sottostante

Sottostante Bloomberg Ticker Tipo di indice Livello iniziale

Thomson Reuters Gl. Resource Prot. Se-
lect Index (Indice azionario)

TRGRPSE INDEX 128.26

Investitore non professionale a cui si intende commercializzare il prodotto: Il prodotto è destinato agli investitori non professionali, dotati di conoscenze ed esperienza
sufficienti in materia di prodotti strutturati: Prodotti a protezione del capitale e assimilati, con una capacità ridotta di sostenere perdite d’investimento e un orizzonte d’investi-
mento a medio termine.

Termine: La data di rimborso finale del prodotto è il settembre 29, 2023. La durata del prodotto termina alla data di rimborso finale. Il prodotto prevede che qualora si verifichi-
no alcuni eventi straordinari, l'emittente possa cessarlo anticipatamente. Questi eventi riguardano principalmente il prodotto, l'emittente e il sottostante. L’importo che ricever-
ete in caso di tale cessazione anticipata straordinaria differirà e potrebbe essere più basso dell’importo investito.

Eventuali pagamenti di dividendi effettuati sul sottostante, che rappresenta una quota o altro titolo di capitale, non saranno distribuiti agli investitori.

Pagina 1

iy
ut

57
yh

v3
e4

r

Quali sono i rischi e qual è il potenziale rendimento?

Indicatore sintetico di rischio

 1 2 3 4 5 6 7

Rischio più basso Rischio più alto

L'indicatore di rischio presuppone che il prodotto sia mantenuto fino alla data di scadenza precisa. Il rischio effettivo può variare in misura significativa in
caso di disinvestimento in una fase iniziale e la somma rimborsata potrebbe essere minore. Potrebbe non essere possibile vendere facilmente il prodotto o
potrebbe essere possibile vendere soltanto ad un prezzo che incide significativamente sull'importo incassato.

L'indicatore sintetico di rischio è un'indicazione orientativa del livello di rischio di questo prodotto rispetto ad altri prodotti. Esso esprime la probabilità che il prodotto subisca per-
dite monetarie a causa di movimenti sul mercato o a causa della nostra incapacità di pagarvi quanto dovuto. Abbiamo classificato questo prodotto al livello 2 su 7, che corris-
ponde alla classe di rischio bassa. Ciò significa che le perdite potenziali dovute alla performance futura del prodotto sono classificate nel livello basso e che è molto improbabile
che le cattive condizioni di mercato influenzino la nostra capacità di pagarvi quanto dovuto. Attenzione al rischio di cambio se la valuta di riferimento è diversa dalla valuta
del prodotto. Potreste ricevere pagamenti in una valuta straniera, quindi il rendimento finale che otterrete dipenderà dal tasso di cambio tra le due valute. Questo rischio non è
contemplato nell'indicatore sopra riportato. Avete diritto alla restituzione di almeno 100% del vostro capitale. Qualsiasi importo più alto a quello indicato e qualsiasi rendimento
aggiuntivo dipendono dalla performance futura del mercato e sono incerti. Se (noi) non (siamo) in grado di pagarvi quanto dovuto, potreste perdere il vostro intero investimento.

Scenari di performance
Non è possibile prevedere con precisione l'andamento futuro dei mercati. Gli scenari illustrati sono solo un'indicazione di alcuni degli sbocchi possibili in ba-
se ai rendimenti recenti. I rendimenti effettivi potrebbero essere inferiori a quanto indicato negli scenari di performance.

Investimento USD 10'000

Scenari 1 anno 2 anni
3 anni 6 mesi
(periodo di detenzione racco-

mandato)

Scenario di stress Quanto potreste essere rimborsati al netto dei costi USD 9'688.29 USD 9'791.32 USD 10'000.00
 Rendimento medio annuale -3.12% -1.05% 0.00%

uno scenario sfavorevo-

le
Quanto potreste essere rimborsati al netto dei costi USD 10'036.06 USD 9'872.82 USD 10'000.00

 Rendimento medio annuale 0.36% -0.64% 0.00%

uno scenario moderato Quanto potreste essere rimborsati al netto dei costi USD 10'786.73 USD 10'738.88 USD 10'522.15
 Rendimento medio annuale 7.87% 3.63% 1.46%

uno scenario favorevole Quanto potreste essere rimborsati al netto dei costi USD 12'201.33 USD 13'092.51 USD 14'358.81
 Rendimento medio annuale 22.01% 14.42% 10.89%

Questa tabella mostra gli importi dei possibili rimborsi nei prossimi 3 anni 6 mesi, in scenari diversi, ipotizzando un investimento di USD 10'000. Gli scenari presentati mostra-
no la possibile performance dell’investimento. Possono essere confrontati con gli scenari di altri prodotti. Gli scenari presentati sono una stima della performance futura sulla
base di prove relative alle variazioni passate del valore di questo investimento e non sono un indicatore esatto. Gli importi dei rimborsi varieranno a seconda della performance
del mercato e del periodo di tempo per cui è mantenuto l’investimento/il prodotto. Lo scenario di stress indica quale potrebbe essere l’importo rimborsato in circostanze di mer-
cato estreme e non tiene conto della situazione in cui non siamo in grado di pagarvi. Le cifre riportate comprendono tutti i costi del prodotto in quanto tale, ma possono non
comprendere tutti i costi da voi pagati al consulente o al distributore. Le cifre non tengono conto della vostra situazione fiscale personale, che può anch’essa incidere sull’im-
porto del rimborso.

Cosa accade se Credit Suisse AG non è in grado di corrispondere quanto dovuto?

Se Credit Suisse AG diventa insolvente, gli investitori devono essere disposti, nel peggiore dei casi, a sostenere la perdita totale del loro investimento. Il prodotto non è coperto
da sistemi di garanzia dei depositi istituzionali o di altro tipo. Se l'emittente e/o il garante sono soggetti a eventuali misure di risoluzione (ad es. bail-in), i vostri diritti possono
essere pari a zero, convertiti in azioni o la data di scadenza può essere modificata.

Quali sono i costi?

La diminuzione del rendimento (Reduction in Yield - RIY) esprime l’impatto dei costi totali sostenuti sul possibile rendimento dell’investimento. I costi totali tengono conto dei
costi una tantum, correnti e accessori. Gli importi qui riportati corrispondono ai costi cumulativi del prodotto in tre periodi di detenzione differenti. comprendono le potenziali
penali per uscita anticipata. Questi importi si basano sull’ipotesi che siano investiti USD 10'000. Gli importi sono stimati e potrebbero cambiare in futuro.

Andamento dei costi nel tempo

La persona che vende questo prodotto o fornisce consulenza riguardo ad esso potrebbe addebitare altri costi, nel qual caso deve fornire informazioni su tali costi e illustrare
l’impatto di tutti i costi sull’investimento nel corso del tempo.

Investimento USD 10'000

Scenari In caso di disinvestimento dopo 1 anno In caso di disinvestimento dopo 2 anni
In caso di disinvestimento alla fine del

periodo di detenzione raccomandato

Costi totali USD 432.92 USD 415.02 USD 405.27

Diminuzione del rendimento (RIY) per

anno
4.33% 2.05% 1.14%

Pagina 2

iy
ut

57
yh

v3
e4

r

Composizione dei costi

La seguente tabella presenta:

l’impatto, per ciascun anno, dei differenti tipi di costi sul possibile rendimento dell’investimento alla fine del periodo di detenzione raccomandato;●

il significato delle differenti categorie di costi.●

La presente tabella mostra l'impatto sul rendimento per anno

Costi una tantum Costi di ingresso 1.14% Impatto dei costi da sostenere al momento della sottoscrizione dell’investimento. Questo è

l’importo massimo che si paga; si potrebbe pagare di meno.

Costi di uscita n/a Impatto dei costi di uscita dall’investimento alla scadenza.

Costi correnti Costi delle operazioni di portafoglio, altri

costi correnti

n/a Non sono applicati costi correnti per questo prodotto.

Oneri accessori Commissioni di performance, commissioni

di overperformance

n/a Non sono applicati oneri accessori per questo prodotto.

Per quanto tempo devo detenerlo? Posso ritirare il capitale prematuramente?

Periodo di detenzione raccomandato: 3 anni 6 mesi (ossia fino alla data di rimborso finale)

La durata del prodotto è di 3 anni 6 mesi. Non è previsto il diritto di recesso per l'investitore. Di conseguenza, gli investitori devono essere disposti a mantenere l'investimento
per la durata del prodotto. L'unica possibilità per disinvestire anticipatamente è la vendita del prodotto attraverso la borsa su cui è quotato o all’ideatore/emittente del prodotto
al di fuori di tale borsa. Il prodotto sarà quotato su Borsa Italiana, Electronic Bond Market. In condizioni di mercato normali l’ideatore del prodotto cercherà di fornire i prezzi
denaro/lettera del prodotto in ogni giorno lavorativo, ma non è legalmente obbligato a farlo. In particolare, la vendita del prodotto potrebbe non essere possibile in situazioni di
mercato eccezionali o in caso di guasti tecnici. L’investitore che venda il prodotto nel corso della durata potrebbe incassare un ricavato della vendita piu basso al prezzo d'emis-
sione del prodotto.

Come presentare reclami?

Qualsiasi reclamo relativo alla persona che ha consigliato o venduto il prodotto può essere inviato direttamente alla persona in questione.

Qualsiasi reclamo in merito al prodotto (termini), al presente documento o alla condotta dell’ideatore del prodotto può essere presentato per iscritto a Credit Suisse AG Cross
Asset Derivatives Sales PO Box CH-8070 Zurich, o via e-mail a structured.products@credit-suisse.com, o visitando il nostro sito web www.credit-suisse.com/kid.

Altre informazioni rilevanti

Il presente documento informativo non contiene tutte le informazioni relative al prodotto. Per le condizioni generali giuridicamente vincolanti del prodotto nonché per una descri-
zione dettagliata dei rischi e i benefici connessi al prodotto, consultare il prospetto. Il prospetto è disponibile su www.credit-suisse.com/derivatives ed è possibile richieder-
ne una copia cartacea gratuita a Credit Suisse AG, Transaction Advisory Group, Uetlibergstrasse 231, 8070 Zurigo, Svizzera. Le informazioni contenute nel presente docu-
mento informativo non costituiscono una raccomandazione per l’acquisto o la vendita del prodotto e non sostituiscono la consulenza personalizzata della banca o del consulen-
te dell’investitore. Eventuali versioni aggiornate del presente documento informativo saranno pubblicate su: www.credit-suisse.com/kid.

Pagina 3

iy
ut

57
yh

v3
e4

r

Product

Document

exists

total_costs

RIY
associated_with

exists

in_the_period
exists exists

Period

exists exists

exists

name_product

Financial_Entity

exists

address

exists
average_annual_yield

refund
exists

exists
investment_value

name

exists

Financial_Manufacturer

exists

exists

telephone_number

web_site

email_subject

exists

exists

consob:_code

produce

issue_date

exists

Cost_Trend

exists

id

exists

Start Update

protocol_date

exists
data_recived

exists

exists

update

exists

exists

has_cost_trend
exists exists

referred_to_the_period
exists exists

chain

file

exists
protocol_ID

exists

exists

comprehension_alert

exists

draws_up

type_cost

impact_of_the_cost
exists

Cost_Una_Tantum Recurrent_Cost Incidental_Charges

Input_Cost

exists

Output_Cost Input_Cost Output_Cost OverPerformance_Cost

exists

Performance_Fees

IbipDerivatives

Regulator

Securities
Cis

Certificati Covered_Warrant Warrant Bonds

supervise

Equity_Protection

Digital_Protection/Cash_Collect/Express

Bonus

Twin_win

Benchmark_Certificates

Reverse_Convertible_Certificates

Minifutures

Fixed_Leveraged

Turbo

exists

Corridor

OrdinaryStructured Credit_Linked_Notes

Etp

Structured_Deposit

Mop Non_Mop

exists

Options SwapsFutures Forwards Cfd

Performance_Scenario

Stress_Scenario Unfavorable_Scenario Moderate_Scenario Favorable_Scenario

risk_identificator

exists

is_estimated
exists exists

type

exists

start

exists

end

exists

identification_code

Cost

exists

has_associated_cost

exists

exists

1

2

	Introduction
	Thesis Contributions
	Structure of the Thesis

	Background
	Ontologies
	OWL
	Graphol
	SPARQL

	Metrics

	Ontology Population a GATE-based Approach
	General Architecture for Text Engineering
	Approach and Architecture
	Semantic annotation
	Ontology population

	Case Study: design and development
	Crawling Phase
	Domain Ontology
	Gazetteer
	JAPE Rules in the Semantic Annotation Phase
	Multi-Lingual Noun Phrase Extractor (MuNPEx)

	Case Study: tests and results
	Performance Evaluation
	Discussion

	Simplifying Gazetteer Lists Generation: design and development
	Simplifying Gazetteer Lists Generation: Tests and Results
	Final Remarks

	Financial Market Supervision through Information Extraction
	CONSOB Domain
	Key Information Document
	Ontology

	Tool
	Data Preparation
	Annotation
	Exporter

	Evaluations and results
	First Dataset
	Second Dataset
	Third Dataset
	Execution time performances

	Final Remarks

	Theoretical Background
	Relational Databases
	Query Answering in Relational Databases

	Description Logics
	Query answering in Ontologies

	Computational Complexity
	Ontology Based Data Access
	Mapping Assertions
	Semantics and Query Answering

	Document Spanners
	Strings and spans
	Spanner representation
	An algebra over spanners

	Linking Text Documents to Ontologies
	Ontology-based document spanning Framework
	Complexity of query answering in OBDS systems
	Query Answering via Query Rewriting in DL-Lite
	GAV Extraction Assertions
	GLAV Extraction Assertions

	Final Remarks

	Mastro System-T
	Mastro
	SystemT
	Mastro System-T
	System Overview
	Query Answering

	Case Studies
	EDGAR
	CONSOB

	Entity Resolution
	Preliminaries
	Equivalence Classes
	Ontologies with Concrete Domains

	KER systems
	Terminological component of a KER system
	Assertional component of a KER system
	Entity resolution component of a KER system
	Semantics of a KER system

	Universal models
	Query answering
	Computing a universal model
	Adding functionalities
	Functionalities on attributes as matching dependencies
	Universal Models
	Query answering in the presence of functional attributes
	Revisiting the Chase

	Final Remarks

	Related Work
	OBDA
	Declarative Information Extraction
	Ontology-Based Information Extraction
	Entity Resolution

	Conclusion
	Discussion
	Future works

	Consob Appendix

