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Abstract: An altered amino acid metabolism has been described in frail older adults which may
contribute to muscle loss and functional decline associated with frailty. In the present investigation,
we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia
(PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust
non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS–DA) models were built
to define the amino acid signatures associated with the different frailty phenotypes. PLS–DA allowed
correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an
amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine,
and glutamic acid. PF&S and control participants were discriminated based on serum concentrations
of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest
that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid
profiling may therefore serve as a valuable tool for frailty biomarker discovery.

Keywords: aging; geroscience; metabolic profiling; metabolism; metabolomics; muscle wasting;
protein; physical function; sarcopenia; systems biology

1. Introduction

Frailty is a multifaceted condition characterized by a decreased homeostatic reserve
and a reduced resistance to stressors, which lead to an increased risk of negative health
outcomes [1]. Frailty has many phenotypic manifestations reflecting its heterogeneous
pathophysiology, which encompasses multilevel alterations ranging from subcellular pro-
cesses to socioeconomic determinants [2]. Frailty, especially in its physical domain, shares
common risk factors and clinical manifestations with major age-related conditions, includ-
ing sarcopenia and type 2 diabetes mellitus (T2DM) [3–5]. Muscle wasting may indeed
represent the common ground upon which frailty and associated conditions develop and
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progress [6–8]. The recognition of muscle failure as the biological substratum of frailty and
associated diseases may help identify mechanisms and biomarkers associated with these
conditions, and develop new therapeutics [9–11].

Amino acid metabolism plays a central role in both energy homeostasis and muscle
trophism, and modulates critical processes such as inflammation, insulin sensitivity, redox
balance, and stem cell function [12–16]. Alterations in these processes, in turn, are associ-
ated with the development of frailty and degenerative diseases. Targeted metabolomics
approaches have been used to measure circulating amino acid levels and identify amino
acid profiles associated with muscle wasting disorders, T2DM, and frailty [17–20].

Recently, within the “BIOmarkers associated with Sarcopenia and PHysical frailty in
EldeRly pErsons” (BIOSPHERE) and “Metabolic biomarkers of frailty in older people with
type 2 diabetes mellitus” (MetaboFrail) studies, we showed that specific amino acid profiles
identified older adults with physical frailty and sarcopenia (PF&S) [21] and pre-frail/frail
older adults with T2DM (F-T2DM) [22], respectively. In the present study, we conducted
secondary analyses to characterize similarities and differences in the amino acid profiles
of older adults with PF&S and F-T2DM, and obtain further insights into the relationship
between protein/amino acid dyshomeostasis and frailty.

2. Materials and Methods
2.1. Study Participants

The present investigation included participants enrolled in MetaboFrail and BIO-
SPHERE studies [23,24]. MetaboFrail was designed within the “Multi-modal Intervention
in Diabetes in Frailty” (MID-Frail) project [23,25,26]. The MID-Frail Consortium included
clinical and research centers across seven European countries (Belgium, Czech Republic,
France, Germany, Italy, Spain, and United Kingdom). The aim of the main project was
to optimize the medical management of older adults with F-T2DM through the adoption
of a multicomponent intervention (strength training plus personalized nutritional coun-
seling). A multicenter randomized clinical trial was conducted to test the efficacy of the
proposed intervention at increasing the short physical performance battery (SPPB) score
compared with standard of care in older adults with F-T2DM (ClinicalTrials.gov identifier:
NCT01654341) [25,26]. For the MetaboFrail substudy, a cohort of MID-Frail participants
from Spain and France was recruited [23,25,26]. Participants of MetaboFrail were men
and women aged 70+ years, diagnosed with T2DM for more than two years, and who
were pre-frail or frail according to the criteria proposed by Fried et al. [27]. BIOSPHERE
was conceived as an observational study to identify biomarkers for PF&S through a multi-
marker strategy [24]. BIOSPHERE was conducted at the Department of Geriatrics and
Orthopedics of the Università Cattolica del Sacro Cuore, Rome, Italy (IRB no. 8498/15).
The study protocol is detailed elsewhere [24]. BIOSPHERE participants were older adults
aged 70+ with PF&S. PF&S was operationalized as the co-occurrence of reduced physical
performance, defined as an SPPB score from 3 to 9 [28], and low appendicular lean mass
according to the criteria established by the Foundation for the National Institutes of Health
sarcopenia project [29]. PF&S was further characterized by a retained ability to walk 400 m
in 15 min at a usual pace (i.e., absence of mobility disability) [30].

Control participants were enrolled at the geriatric outpatient clinic of the Fondazione
Policlinico A. Gemelli IRCCS at the Università Cattolica del Sacro Cuore (Rome, Italy)
and had the following characteristics: (a) 70+ years; (b) no diagnosis of T2DM; (c) a
summary score on the SPPB > 9; and (d) no mobility disability. All participants provided
written informed consent prior to enrollment. The study was conducted in accordance
with the recommendations by the International Council for Harmonization of Technical
Requirements for Pharmaceuticals for Human Use Good Clinical Practice and the principles
of the Declaration of Helsinki.
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2.2. Determination of Serum Concentrations of Amino Acids and Derivatives

Samples for serum determinations were collected by blood drawing after overnight
fasting and processed following standard procedures for serum separation and storage.
Serum levels of 37 analytes, including amino acids and intermediates, were determined by
ultraperformance liquid chromatography/mass spectrometry (UPLC/MS). Methods for the
UPLC/MS analysis have been thoroughly detailed in previous publications [21,22]. Briefly,
50 µL of serum were added to 100 µL 10% w/v sulfosalicylic acid containing a mixture of
internal standards (50 µM; Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA).
The solution was subsequently centrifuged at 1000× g for 15 min. The supernatant (10 µL)
was mixed with borate buffer (70 µL) and AccQ Tag reagents (20 µL) (Waters Corporation,
Milford, MA, USA). The solution was heated at 55 ◦C for 10 min. The chromatographic
separation was performed using CORTECS UPLC C18 column 1.6 µm 2.1× 150 mm (Waters
Corporation). The elution flow rate was set at 500 µL/min with a linear gradient (9 min)
from 99:1 to 1:99 water 0.1% formic acid/acetonitrile 0.1% formic acid. Detection was
carried out by single quadrupole mass spectrometer (ACQUITY QDa, Waters Corporation)
using positive electrospray ionization mode. Amino acid controls (level 1 and level 2),
manufactured by the MCA laboratory of the Queen Beatrix Hospital (The Netherlands),
were used to monitor the analytical process. Analyte concentrations were determined by
comparison with values obtained from individual standard curves. Standard curve values
were 0.5–2.5–125–250–500 µmol/L for all amino acids, except for cystine for which the
following values were used: 1–5–50–250–500–1000 µmol/L. Data analysis was performed
using the TargetLynx software (Waters Corporation).

2.3. Statistical Analysis

Normal distribution of data was assessed via the Shapiro–Wilk test. Personal, anthro-
pometric, and functional characteristics of participants are summarized as mean ± standard
deviation for continuous variables and absolute values (percentages) for categorical vari-
ables. Comparisons among PF&S, F-T2DM, and controls were performed by one-way
analysis of variance with post hoc tests when appropriate and χ2 statistics for continuous
and categorical variables, respectively. Analyses were performed using Jamovi freeware
version 2.0.0.0 (The Jamovi project, 2021; retrieved from https://www.jamovi.org; accessed
on 20 February 2023). Multivariate classification models, based on partial least squares
discriminant analysis (PLS–DA) [31,32] and soft independent modeling of class analogies
(SIMCA), were built to define similarities and differences in circulating amino acid patterns
among F-T2DM, PF&S, and control participants.

2.3.1. Partial Least Squares Discriminant Analysis

PLS−DA is a classification technique that was introduced to build discriminant models
also in cases where the matrix of predictors is ill-conditioned (e.g., having more variables
than samples or variables being highly correlated). This is enabled by the exploitation
of the advantages of the PLS algorithm through the transformation of a classification
problem into a regression by suitably coding the target response vector. The PLS algorithm
overcomes the limitations of ill-conditioning by projecting the predictor matrix X onto a
low-dimensional subspace of orthogonal latent variables. The projection is accomplished
through a suitable matrix of weights R identifying the directions of maximum covariance
between the predictors and the response y. The result is a matrix of scores T (coordinates of
the samples onto the latent variables subspace):

T = XR (1)

The response y to be predicted is then expressed as a function of the scores T, according to:

y = Tq (2)

q being the regression coefficients.

https://www.jamovi.org
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The same approach can be used for classification of two or more groups by using a
dummy binary y coding for class belonging. When the problem involves only two classes,
y is a vector whose elements can be either 1 (class 1) or 0 (class 2). In the case of more than
two categories, the responses are collected in a binary matrix Y having as many columns
as the number of classes. In the latter case, each row of Y contains all zeros except for the
column corresponding to the category of the sample, where a value of 1 is present. In both
cases, linear discriminant analysis is applied to the predicted values of the response to
achieve the final classification.

In the present study, classification models were first built to evaluate differences in
amino acid profiles between PF&S (y = 1) and F-T2DM (y = 0). Then, PLS–DA models were
built to explore differences between the three groups, and the corresponding rows of the
dummy Y matrix were coded as follows: [1 0 0] for controls, [0 1 0] for PF&S, and [0 0 1]
for F-T2DM.

Model validation was achieved through repeated double cross-validation (DCV) [33].
In DCV, all available samples are arranged into two cross-validation loops nested into one
another. Model selection (i.e., choosing the optimal number of latent variables) is based on
the classification error estimated on the inner loop. The evaluation of model performances
in independent validation samples is carried out on the outer loop, which mimics an
external test set. The procedure is repeated a suitable number of times (50, in the present
study), changing at each iteration the distribution of samples in the different cancelation
groups. This allows calculating confidence intervals for all model parameters and figures
of merit. Analyses were performed using in-house routines running under MATLAB
R2015b environment (The MathWorks, Natick, MA, USA) and freely downloadable at https:
//www.chem.uniroma1.it/romechemometrics/research/algorithms/plsda (accessed on
20 February 2023).

2.3.2. Soft Independent Modeling of Class Analogies

SIMCA is a chemometric class modeling technique and, as such, it focuses on one
category at a time, trying to capture its salient features by means of an individual model.
Classification translates into checking how likely it is for an individual to be part of
that specific category, usually by computing some sort of distance to the model [34,35].
Mathematically, SIMCA builds a model for each class of participants (in our case, PF&S,
F-T2DM, and controls) using principal component analysis (PCA) only on the data of
the category of interest. The decision of whether an individual should be considered as
belonging to that class or not (i.e., be accepted by the class model or not) relies on calculating
a distance to the model according to the formula:

dic =

√
(T 2

ic,red

)2
+ (Qic,red)

2 (3)

where T2
ic,red is the Mahalanobis distance of the ith sample from the center of the PCA

space calculated for class c, Qic,red is the orthogonal distance (residual) of the sample to its
projection on the PCA space of class c, and the subscript red indicates that the two statistics
are normalized by their respective 95th percentile. Acceptance or rejection of the unknown
samples is based on imposing a threshold to the distance described in Equation (3), which is
usually equal to

√
2. Accordingly, if dic <

√
2, the individual is accepted by the class model,

otherwise it is rejected. Sensitivity and specificity of the model are then calculated. Analyses
were performed using in-house routines running under MATLAB R2015b environment
(The MathWorks).

3. Results
3.1. Characteristics of Study Participants

The present study included data from 94 older adults with PF&S, 66 with F-T2DM, and
40 controls. The main characteristics of participants according to frailty categories are listed
in Table 1. Participants with PF&S and F-T2DM did not differ for age or body mass index

https://www.chem.uniroma1.it/romechemometrics/research/algorithms/plsda
https://www.chem.uniroma1.it/romechemometrics/research/algorithms/plsda
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(BMI) values, while controls were significantly younger and had lower BMI. Participants
with PF&S were mostly women, while F-T2DM and controls had a similar sex distribution.
As expected, SPPB scores were significantly lower in PF&S (mean difference = −4.2) or
F-T2DM (mean difference = −2.8) than controls. In addition, the mean SPPB score was
lower in PF&S than F-T2DM participants (mean difference = −1.4).

Table 1. Baseline Characteristics of Study Participants According to Frailty Categories.

Characteristic PF&S
(n = 94)

F-T2DM
(n = 66)

Controls
(n = 40) p

Age, years 77.3 (4.9) 76.5 (4.5) 74.4 (3.9) * 0.0001
Women, n (%) 69 (73.4) 32 (48.5) 16 (40.0) 0.0001
BMI, kg/m2 30.0 (5.0) 29.2 (5.0) 26.6 (2.4) * <0.0001

SPPB summary score 7.2 (1.2) 8.6 (2.9) § 11.4 (0.8) * <0.0001
Data are expressed as mean (standard deviation) unless otherwise specified. * p < 0.05 vs. PF&S and F-T2DM;
§ p < 0.05 vs. PF&S. Abbreviations: BMI, body mass index; F-T2DM, pre-frailty/frailty with type 2 diabetes
mellitus; PF&S, physical frailty and sarcopenia; SPPB, short physical performance battery.

3.2. Participant Classification by Partial Least Squares Discriminant Analysis

The data matrix used to build PLS–DA models included 31 out of 37 amino acids (Figure S1)
because six analytes had concentrations below the lower limit of quantitation (i.e., anserine,
carnosine, cystathionine, γ-aminobutyric acid, phosphoethanolamine, and phosphoserine). The
first PLS–DA model was built to identify similarities and differences in circulating amino acid
patterns between participants with PF&S and F-T2DM (Figure 1). The optimal PLS–DA model
complexity included 5 ± 2 latent variables. The model allowed the prediction of participant
class belonging with 98.8± 0.4% accuracy, corresponding to 99.6± 0.5% and 97.7± 0.9% correct
classification rates for PF&S and F-T2DM, respectively. The non-parametric estimation of the
distribution of these figures of merit under the null hypothesis by permutation testing indicated
that they were statistically significant (p < 0.001).

The remarkable difference between the amino acid profiles of participants with PF&S
and F-T2DM, and the contribution of individual analytes to the discrimination can be
appreciated by inspecting the sample scores along the only canonical variate (CV) (i.e.,
direction of maximum discrimination) of the model and the corresponding variable weights
defining the projection (Figure 1).

The variables that mostly contributed to participant classification were alanine, argi-
nine, β-aminobutyric acid, ethanolamine, glutamic acid, isoleucine, methionine, 1- and
3-methylhistidine, and sarcosine (higher in F-T2DM), and aminoadipic acid, asparagine,
aspartic acid, cystine, taurine, and tryptophan (higher in PF&S).

A PLS–DA model was then built to compare the three classes of participants (i.e.,
PF&S, F-T2DM, and controls). The optimal model complexity was found to be 10 ± 5 latent
variables, yielding an average classification accuracy of 78.2 ± 1.9%. The correct classifica-
tion rates were 72.9 ± 2.8% for PF&S, 95.5 ± 2.1% for F-T2DM, and 61.4 ± 4.6% for controls.
DCV indicated that the results were statistically significant (p < 0.001).

Figure 2A, which depicts the projection of participants onto the space spanned by the
only two CVs of the PLS–DA model, shows a clear separation of participants with F-T2DM
from those with PF&S and controls along CV1. A differentiation between participants with
PF&S and controls can be observed along CV2, although the separation is not as evident.

The examination of the weights plot (Figure 2B) allows identifying the variables that
mostly contributed to the differentiation among the three classes of participants and their
relationships. To simplify, variables lying farthest from the origin are those contributing
the most to the definition of the CVs and, therefore, to sample discrimination. Variables
lying close to one another are positively correlated, while those lying on the opposite
side of the plot with respect to the origin are negatively correlated. The simultaneous
inspection of scores (Figure 2A) and weights plots (Figure 2A) makes it possible to associate
discrimination between participant classes with differences in concentrations of specific
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analytes, which are therefore the most distinctive. Participants that occupy a position in
the scores plot where one or a group of variables lies in the corresponding weights plot
have the highest value(s) of this(ese) variable(s). Accordingly, participants with F-T2DM
showed higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic
acid. PF&S and control participants were discriminated based on serum concentrations of
aminoadipic acid, aspartate, cystine, taurine, and tryptophan (Figure S1).
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3.3. Participant Classification According to Soft Independent Modeling of Class Analogies Analysis

The existence of specific amino acid profiles associated with frailty categories was
further tested by SIMCA class modeling. Separate SIMCA models were built and validated
by DCV for one participant group at a time. Sensitivity was determined based on the model
ability to correctly recognize participants as belonging to their actual category. Specificity
was calculated as the percentage of participants correctly rejected. The optimal complexity
of the PCA model for each class was found to be 8 ± 1, 10 ± 1, and 7 ± 1 components, re-
spectively. The results of SIMCA analysis on the outer loop samples of DCV are depicted in
Figure 3. The dashed black line corresponds to the decision threshold dic <

√
2. The SIMCA

model built for F-T2DM had 85.1% sensitivity and 94.0% overall specificity, corresponding
to 93.6% specificity versus PF&S and 95.0% versus controls (Figure 3A). The model built
for PF&S had 81.9% sensitivity and 68.2% total specificity (94.0% versus F-T2DM and 25.0%
versus controls) (Figure 3B). Finally, the model built for controls showed 70.0% sensitivity
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and 71.4% overall specificity (95.5% versus F-T2DM and 54.3% versus PF&S) (Figure 3C).
Collectively, the results of SIMCA analysis confirmed the existence of a clear difference
between the amino acid profiles of participants with F-T2DM compared with PF&S and
controls. A less obvious difference was found between PF&S and controls.
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4. Discussion

In the present investigation, we showed that specific amino acid profiles are associated
with different types of frailty in community-dwelling older adults. Participants with F-
T2DM had a serum amino acid signature that was markedly different from those with PF&S
and controls. Older adults with PF&S could be discriminated from controls based on their
circulating amino acid profile, albeit with less accuracy. The amino acid profile associated
with F-T2DM was characterized by higher levels of 3-methylhistidine, alanine, arginine,
ethanolamine, and glutamic acid. PF&S and control participants were discriminated based
on serum concentrations of aminoadipic acid, asparagine, aspartic acid, cystine, taurine,
and tryptophan.

3-methylhistidine derives from the post-translational methylation of histidine residues
of actin and myosin [36,37]. Following muscle protein breakdown, 3-methylhistidine is
released into the circulation and excreted in urine [38]. Hence, 3-methylhistidine has
been proposed as a marker of myofibrillar proteolysis in muscle wasting disorders and
T2DM [39–43]. High circulating levels of 3-methylhistidine have been found in frail older
inpatients and community-dwellers [20,44].

Alanine and glutamic acid are two non-essential gluconeogenic amino acids in-
volved in an interorgan metabolic network that regulates insulin sensitivity and energy
homeostasis in insulin-sensitive tissues, such as skeletal muscle and liver [45–47]. Al-
terations in circulating alanine and glutamic acid levels have been described in chronic
disease (e.g., T2DM, chronic obstructive pulmonary disease) and experimental models
of muscle atrophy [48–50]. Elevated concentrations of glutamic acid may also promote
oxidative stress and contribute to glucose toxicity in pancreatic β-cells [51]. In a system-
atic review and meta-analysis of prospective cohort studies involving 71,196 participants
across US, Europe, and Asia, higher circulating levels of alanine and glutamic acid were
associated with a greater risk of T2DM [18]. In the Baltimore Longitudinal Study of Aging,
higher plasma concentrations of alanine and glutamic acid were linked to increased odds
of abnormal fasting glucose [52]. Moreover, serum levels of glutamic acid were signifi-
cantly higher in frail older adults compared with non-frail peers and young adults in a
cross-sectional study involving 166 community-dwellers aged 20–93 years, living in the
Baltimore area [53].

Ethanolamine is involved in the cytidine 5′-diphosphate (CDP)–ethanolamine path-
way, one of the main mechanisms through which glycerophospholipids and biological mem-
branes are synthetized in mammalian cells [54,55]. Perturbations in the CDP–ethanolamine
pathway or its intermediates in skeletal muscle have been associated with tissue damage,
mitochondrial dysfunction, and altered glucose homeostasis [56,57].

Arginine metabolism is involved in the regulation of key biological processes, in-
cluding immune and vascular health, neurotransmission, and respiratory function, which
are altered in chronic disease states [58]. The main metabolic reaction in the arginine
metabolism is its conversion to nitric oxide (NO) and citrulline by NO synthase [59], which
regulates NO bioavailability and, therein, its pleiotropic activities [60]. The presence of
arginine among the most distinctive analytes in participants with F-T2DM suggests a role
for arginine metabolism in muscle homeostasis and frailty [61]. This is corroborated by
the effects of L-arginine supplementation on physical function in age-related conditions,
including chronic lung disease [62], congestive heart failure [63], and conditions associated
with accelerated biological aging, such as long COVID [64].

Aminoadipic acid is a lysine metabolite that is released into the circulation following
proteolysis [65]. Circulating levels of aminoadipic acid have been associated with low mus-
cle mass in old Taiwanese men [66]. In vitro and in vivo models suggest that aminoadipic
acid may increase insulin secretion as a compensatory mechanism to maintain glucose
homeostasis in early insulin resistance [67]. Noticeably, aminoadipic acid concentrations
in the top quartile were associated with a fourfold increase in T2DM risk over 12 years of
follow-up in middle-aged participants of the Framingham Heart Study [67].
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Aspartic acid participates in several cellular processes, such as the urea cycle and
malate-aspartate shuttle. The latter mediates the transport of nicotinamide adenine dinu-
cleotide (NAD) reducing equivalents between the cytoplasm and the mitochondrial matrix,
and modulates the NAD/NADH ratio, a critical regulator of pro-longevity sirtuin deacety-
lases [68,69]. Aspartic acid also plays a role in muscle energy metabolism [70,71] and
counteracts lipopolysaccharide-induced muscle atrophy in a piglet model [72].

Tryptophan is an essential amino acid with both gluconeogenic and ketogenic prop-
erties that exerts multiple activities related to growth, mood, behavior, and immune
function [73]. Tryptophan metabolism involves two main pathways, the tryptophan–
kynurenine and tryptophan–methoxyindole pathways, that lead to the synthesis of NAD,
serotonin, and melatonin [73]. A perturbed tryptophan metabolism has been described in
several age-related conditions, including cardiovascular disease [74,75], T2DM [76], and
depression [77]. Tryptophan and its associated metabolites have also been associated with
low muscle mass [78,79], poor muscle quality [80], and frailty [81] in independent cohorts.

Cystine is a sulfur-containing amino acid derived from the oxidation of two cysteine
molecules. Cystine transport into mammalian cells regulates cysteine supply and the
bioavailability of essential molecules, such as taurine, glutathione, coenzyme A, and
inorganic sulfur [82,83]. Altered plasma cystine levels were reported in aging and in
conditions associated with increased oxidative stress [84,85]. In older adults with breast
cancer, higher levels of cystine and 3-methylhistidine were associated with frailty [86].
Low plasma cystine was found in conditions characterized by progressive skeletal muscle
catabolism, including cancer and HIV infection [87].

Taurine is the most abundant free amino acid in several tissues, including the skeletal
muscle, which stores 70% of total body taurine [88]. In muscle, taurine participates in the
regulation of ion transport, membrane stability, mitochondrial function, redox and osmotic
balance, calcium handling, and muscle contractility [89–91]. Tissue taurine depletion
accelerates skeletal muscle senescence and shortens lifespan in animal models [92]. For
its multiple anti-aging activities, taurine has also been proposed as a possible remedy
against sarcopenia [93].

Unexpectedly, branched-chain amino acids (BCAAs) were not included among the
discriminating metabolites by the PLS–DA models. The only exception was isoleucine,
which was selected among the variables that differentiated F-T2DM from PF&S (Figure 1).
BCAAs and some of their metabolic products act as signaling molecules and metabolic
rheostats, and regulate several biological processes ranging from protein synthesis to insulin
secretion [94]. Circulating levels of BCAAs and their metabolites have been associated with
muscle mass in older adults with functional impairment and low muscle quality [78,80].
Low non-fasting concentrations of leucine and isoleucine were detected in plasma from
Norwegian community-dwelling older adults with sarcopenia [95]. Discrepancies with our
findings may be due to differences in operational definitions of frailty and the experimental
protocols adopted, as well as to heterogeneity in eating habits among participants of the
different studies.

Collectively, our results suggest that alterations in arginine metabolism, redox balance,
muscle metabolism, and turnover characterize the metabolic profile of older adults with
frailty compared with controls. Participants with F-T2DM may have more pronounced
muscle decay than PF&S and control participants, as highlighted by the co-occurrence
of high 3-methylhistidine and low cystine levels. This may be due to the synergistic
negative effects of frailty and diabetes on muscle metabolism [96]. A perturbed arginine
metabolism characterizes both frailty phenotypes, with specific patterns in F-T2DM (higher
arginine levels) and PF&S (higher citrulline) [21] (Figure S1). Further studies are needed to
comprehensively assess arginine metabolism, including methylarginines and markers of
NO bioavailability, due to the critical role played by this metabolic pathway on endothelial
function and physical performance [60,97].

The present study has limitations that should be acknowledged. The cross-sectional
design does not allow the temporal relationship between changes in amino profiles and
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frailty status to be established. A fairly large number of variables were evaluated in
a relatively small sample. To cope with this issue, we adopted a PLS–DA approach,
which is ideal for analyzing matrices containing highly correlated variables. BIOSPHERE
and MetaboFrail enrolled older adults from three European countries. However, most
participants were Caucasian; thus, findings may not be generalized to other ethnic groups.
Dietary habits may influence circulating amino acid levels, but no nutritional data were
collected. However, variations in blood amino acid concentrations do not necessarily reflect
changes in amino acid intake [98]. Appendicular lean mass was available for BIOSPHERE
participants and controls. Thus, it was not possible to ascertain whether markers of muscle
turnover were associated with lean mass in participants with F-T2DM. Finally, although a
quite large number of amino acids were evaluated, we cannot exclude that adding other
mediators (e.g., amino acid derivatives such as arginine metabolites) might allow a more
accurate classification of participants.

5. Conclusions

In the present study, we showed that specific amino acid profiles are associated
with a distinct operational definition of frailty. Our findings also offer insights on the
mechanisms potentially involved in the pathophysiology of frailty with or without T2DM,
such as perturbations in muscle energy and interorgan metabolic pathways, alterations in
arginine/NO metabolism, and oxidative stress. Further studies are needed to determine
the contribution of individual pathways to the phenotypic manifestations of frailty, in order
to develop targeted interventions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13040542/s1, Figure S1: Serum amino acid concentrations in
study participants according to frailty category.
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33. Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in
metabolomics studies. Metabolomics 2012, 8, 3–16. [CrossRef] [PubMed]

34. DeLuca, S.; Bucci, R.; Magrì, A.D.; Marini, F. Class modeling techniques in chemometrics: Theory and applications. In Encyclopedia
of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R., Ed.; John Wiley and Sons: New York, NY, USA, 2018;
pp. 1–24. [CrossRef]

35. Wold, S.; Sjöström, M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. In Chemometrics: Theory
and Application; Kowalski, B.R., Ed.; The American Chemical Society: Washington, DC, USA, 1977; Chapter 12; pp. 243–282.
[CrossRef]

36. Asatoor, A.M.; Armstrong, M.D. 3-methylhistidine, a component of actin. Biochem. Biophys. Res. Commun. 1967, 26, 168–174.
[CrossRef] [PubMed]

37. Johnson, P.; Perry, S.V. Biological activity and the 3-methylhistidine content of actin and myosin. Biochem. J. 1970, 119, 293–298.
[CrossRef]

38. Long, C.L.; Haverberg, L.N.; Young, V.R.; Kinney, J.M.; Munro, H.N.; Geiger, J.W. Metabolism of 3-methylhistidine in man.
Metabolism 1975, 24, 929–935. [CrossRef]

39. Mussini, E.; Cornelio, F.; Dworzak, F.; Cotellessa, L.; Morandi, L.; Colombo, L.; De Ponte, G.; Marcucci, F. Content of methylhis-
tidines in normal and pathological human skeletal muscles. Muscle Nerve 1983, 6, 423–429. [CrossRef]

40. Warnes, D.M.; Thomas, F.M.; Ballard, F.J. Increased rates of myofibrillar protein breakdown in muscle-wasting diseases. Muscle
Nerve 1981, 4, 62–66. [CrossRef]

41. Trappe, T.; Williams, R.; Carrithers, J.; Raue, U.; Esmarck, B.; Kjaer, M.; Hickner, R. Influence of age and resistance exercise on
human skeletal muscle proteolysis: A microdialysis approach. J. Physiol. 2004, 554, 803–813. [CrossRef]

42. Sheffield-Moore, M.; Dillon, E.L.; Randolph, K.M.; Casperson, S.L.; White, G.R.; Jennings, K.; Rathmacher, J.; Schuette, S.;
Janghorbani, M.; Urban, R.J.; et al. Isotopic decay of urinary or plasma 3-methylhistidine as a potential biomarker of pathologic
skeletal muscle loss. J. Cachexia Sarcopenia Muscle 2014, 5, 19–25. [CrossRef]

43. Marchesini, G.; Forlani, G.; Zoli, M.; Vannini, P.; Pisi, E. Muscle protein breakdown in uncontrolled diabetes as assessed by
urinary 3-methylhistidine excretion. Diabetologia 1982, 23, 456–458. [CrossRef]

44. Kochlik, B.; Stuetz, W.; Pérès, K.; Féart, C.; Tegner, J.; Rodriguez-Mañas, L.; Grune, T.; Weber, D. Associations of plasma
3-methylhistidine with frailty status in French cohorts of the FRAILOMIC initiative. J. Clin. Med. 2019, 8, 1010. [CrossRef]
[PubMed]

45. Felig, P.; Pozefsk, T.; Marlis, E.; Cahill, G.F. Alanine: Key role in gluconeogenesis. Science 1970, 167, 1003–1004. [CrossRef]
[PubMed]

46. Gancheva, S.; Jelenik, T.; Álvarez-Hernández, E.; Roden, M. Interorgan metabolic crosstalk in human insulin resistance. Physiol.
Rev. 2018, 98, 1371–1415. [CrossRef] [PubMed]

47. Jang, C.; Hui, S.; Zeng, X.; Cowan, A.J.; Wang, L.; Chen, L.; Morscher, R.J.; Reyes, J.; Frezza, C.; Hwang, H.Y.; et al. Metabolite
exchange between mammalian organs quantified in pigs. Cell Metab. 2019, 30, 594–606.e3. [CrossRef]

48. Jagoe, R.T.; Engelen, M.P.K.J. Muscle wasting and changes in muscle protein metabolism in chronic obstructive pulmonary
disease. Eur. Respir. J. Suppl. 2003, 46, 52s–63s. [CrossRef]

49. Ilaiwy, A.; Quintana, M.T.; Bain, J.R.; Muehlbauer, M.J.; Brown, D.I.; Stansfield, W.E.; Willis, M.S. Cessation of biomechanical
stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics
analysis. Int. J. Biochem. Cell Biol. 2016, 79, 80–92. [CrossRef]

50. Uchitomi, R.; Hatazawa, Y.; Senoo, N.; Yoshioka, K.; Fujita, M.; Shimizu, T.; Miura, S.; Ono, Y.; Kamei, Y. Metabolomic analysis of
skeletal muscle in aged mice. Sci. Rep. 2019, 9, 10425. [CrossRef]

https://doi.org/10.1002/jcsm.12432
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1093/geronj/49.2.M85
https://doi.org/10.1093/gerona/glu010
https://www.ncbi.nlm.nih.gov/pubmed/24737557
https://doi.org/10.1089/rej.2009.0853
https://doi.org/10.1002/cem.1180010306
https://doi.org/10.1007/BFb0062108
https://doi.org/10.1007/s11306-011-0330-3
https://www.ncbi.nlm.nih.gov/pubmed/22593721
https://doi.org/10.1002/9780470027318.a9578
https://doi.org/10.1021/bk-1977-0052.ch012
https://doi.org/10.1016/0006-291X(67)90229-X
https://www.ncbi.nlm.nih.gov/pubmed/6067661
https://doi.org/10.1042/bj1190293
https://doi.org/10.1016/0026-0495(75)90084-0
https://doi.org/10.1002/mus.880060605
https://doi.org/10.1002/mus.880040111
https://doi.org/10.1113/jphysiol.2003.051755
https://doi.org/10.1007/s13539-013-0117-7
https://doi.org/10.1007/BF00260962
https://doi.org/10.3390/jcm8071010
https://www.ncbi.nlm.nih.gov/pubmed/31295923
https://doi.org/10.1126/science.167.3920.1003
https://www.ncbi.nlm.nih.gov/pubmed/5411169
https://doi.org/10.1152/physrev.00015.2017
https://www.ncbi.nlm.nih.gov/pubmed/29767564
https://doi.org/10.1016/j.cmet.2019.06.002
https://doi.org/10.1183/09031936.03.00004608
https://doi.org/10.1016/j.biocel.2016.08.012
https://doi.org/10.1038/s41598-019-46929-8


Metabolites 2023, 13, 542 14 of 15

51. Huang, X.T.; Li, C.; Peng, X.P.; Guo, J.; Yue, S.J.; Liu, W.; Zhao, F.Y.; Han, J.Z.; Huang, Y.H.; Li, Y.; et al. An excessive increase in
glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci. Rep.
2017, 7, 44120. [CrossRef]

52. Semba, R.D.; Gonzalez-Freire, M.; Moaddel, R.; Sun, K.; Fabbri, E.; Zhang, P.; Carlson, O.D.; Khadeer, M.; Chia, C.W.; Salem, N.; et al.
Altered plasma amino acids and lipids associated with abnormal glucose metabolism and insulin resistance in older adults. J. Clin.
Endocrinol. Metab. 2018, 103, 3331–3339. [CrossRef]

53. Westbrook, R.; Zhang, C.; Yang, H.; Tian, J.; Guo, S.; Xue, Q.-L.; Walston, J.; Le, A.; Abadir, P.M. Metabolomics-based identification
of metabolic dysfunction in frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 2367–2372. [CrossRef]

54. Patel, D.; Witt, S.N. Ethanolamine and phosphatidylethanolamine: Partners in health and disease. Oxid. Med. Cell. Longev. 2017,
2017, 4829180. [CrossRef] [PubMed]

55. van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and
phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta 2017, 1859, 1558–1572. [CrossRef] [PubMed]

56. Funai, K.; Lodhi, I.J.; Spears, L.D.; Yin, L.; Song, H.; Klein, S.; Semenkovich, C.F. Skeletal muscle phospholipid metabolism
regulates insulin sensitivity and contractile function. Diabetes 2016, 65, 358–370. [CrossRef] [PubMed]

57. Selathurai, A.; Kowalski, G.M.; Mason, S.A.; Callahan, D.L.; Foletta, V.C.; Della Gatta, P.A.; Lindsay, A.; Hamley, S.; Kaur, G.;
Curtis, A.R.; et al. Phosphatidylserine decarboxylase is critical for the maintenance of skeletal muscle mitochondrial integrity and
muscle mass. Mol. Metab. 2019, 27, 33–46. [CrossRef]

58. Mangoni, A.A.; Rodionov, R.N.; Mcevoy, M.; Zinellu, A.; Carru, C.; Sotgia, S. New horizons in arginine metabolism, ageing and
chronic disease states. Age Ageing 2019, 48, 776–782. [CrossRef]

59. Wu, G.; Morris, S.M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [CrossRef]
60. Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [CrossRef]
61. Tokarz, J.; Möller, G.; Artati, A.; Huber, S.; Zeigerer, A.; Blaauw, B.; Adamski, J.; Dyar, K.A. Common muscle metabolic signatures

highlight arginine and lysine metabolism as potential therapeutic targets to combat unhealthy aging. Int. J. Mol. Sci. 2021,
22, 7958. [CrossRef]

62. Scott, J.A.; Maarsingh, H.; Holguin, F.; Grasemann, H. Arginine therapy for lung diseases. Front. Pharmacol. 2021, 12, 627503.
[CrossRef]
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